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Abstract—Federated learning (FL) has recently gained
much attention due to its effectiveness in speeding up
supervised learning tasks under communication and pri-
vacy constraints. However, whether similar speedups can
be established for reinforcement learning remains much
less understood theoretically. Towards this direction, we
study a federated policy evaluation problem where agents
communicate via a central aggregator to expedite the
evaluation of a common policy. To capture typical com-
munication constraints in FL, we consider finite capac-
ity up-link channels that can drop packets based on a
Bernoulli erasure model. Given this setting, we propose
and analyze QFedTD - a quantized federated temporal dif-
ference learning algorithm with linear function approxi-
mation. Our main technical contribution is to provide a
finite-sample analysis of QFedTD that (i) highlights the
effect of quantization and erasures on the convergence
rate; and (ii) establishes a linear speedup w.r.t. the num-
ber of agents under Markovian sampling. Notably, while
different quantization mechanisms and packet drop mod-
els have been extensively studied in the FL, distributed
optimization, and networked control systems literature, our
work is the first to provide a non-asymptotic analysis of
their effects in multi-agent and federated reinforcement
learning.
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I. INTRODUCTION

IS IT possible to obtain statistical models of high
accuracy for supervised learning problems (e.g., regression,

classification, etc.) by aggregating information from multiple
devices while keeping the raw data on these devices private?
This is the central question of interest in the popular machine
learning paradigm of federated learning (FL) [1]. When the
data-generating distributions of the participating devices are
identical (or sufficiently similar), several works have shown
that one can reap the benefits of collaboration by exchanging
locally trained models via a central aggregator (server) [2],
[3]. In practice, these models are typically high-dimensional
and need to be exchanged over unreliable communication links
of limited bandwidth. As such, a large body of work in FL
has investigated the effects of uploading quantized models
(or model-differentials, i.e., gradients) over channels prone to
packet drops/erasures [4], [5]. Drawing inspiration from this
literature, in this letter, we ask: Can we establish collaborative
performance gains for federated reinforcement learning (FRL)
problems subject to similar communication challenges? As it
turns out, little to nothing is known about this question from
a theoretical standpoint.

Towards this direction, we study one of the most basic prob-
lems in RL, namely policy evaluation, in a federated setting.
Specifically, in our problem, N agents, each of whom interacts
with the same Markov Decision Process (MDP), communicate
via a server to evaluate a fixed policy. While each agent can
evaluate the policy on its own using Monte-Carlo sampling
or temporal difference (TD) learning algorithms [6], [7], the
reason for communicating is the same as in the standard FL
setting: to achieve an N-fold speedup in the sample-complexity
of policy evaluation relative to when an agent acts alone. In
the recent survey paper on FRL [8], the authors mention that
the goal of the FRL framework is to achieve such speedups
while respecting privacy constraints, i.e., without revealing the
raw data (states, actions, and rewards) of the agents. Relative
to FL, proving finite-time rates for FRL is significantly more
challenging since we need to deal with temporally correlated
Markovian samples. Indeed, even for the single-agent setting,
finite-time rates under Markovian sampling have only recently
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been established [9], [10], [11], [12]. For the multi-agent
setting, almost all the prior works on TD learning make a
restrictive i.i.d. sampling assumption [13], [14]. The only two
exceptions to this are the very recent papers [15], [16] that
establish linear speedups under Markovian sampling; however,
none of the above works consider any communication con-
straints. As such, establishing linear speedups in FRL under
Markovian sampling and communication constraints remains
largely unexplored. In this regard, our contributions are as
follows.

Contributions: Our first contribution is to formulate a feder-
ated policy evaluation problem under two practical constraints
on the communication channels: finite capacity and packet
drops (lossy links). To capture these constraints, we propose
and analyze QFedTD - a federated TD algorithm with lin-
ear function approximation where agents upload quantized TD
update directions to the server over Bernoulli erasure chan-
nels [17], [18]. While various quantization and erasure models
have been extensively analyzed in the FL [4], distributed
optimization [19], and networked control literature [17], [18]
for almost two decades, our work is the first to formally study
them in multi-agent/federated RL.

Our second and most significant contribution is to provide a
rigorous non-asymptotic analysis of QFedTD that clearly high-
lights the effects of quantization and erasures, and establishes
an N-fold linear speedup in sample-complexity relative to the
single-agent setting. Since RL algorithms often require several
samples to achieve acceptable accuracy, our speedup result
under realistic communication models is of significant practi-
cal importance. We now comment on some of the highlights
of our analysis relative to [15] and [16]. Our work crucially
departs from both these papers in that, in addition to corre-
lated Markovian samples, we need to contend with two other
sources of randomness: one due to randomized quantization
and the other due to the Bernoulli packet-dropping processes.
Even in the absence of communication challenges, our analy-
sis has the following key benefits. Unlike [16], our work does
not employ any projection step. Moreover, compared to the
analysis in [15] that relies on Generalized Moreau Envelopes,
our proof is significantly shorter and simpler. As a byprod-
uct of this simpler analysis, we derive bounds that have a
tighter linear dependence on the mixing time (consistent with
the centralized setting) as opposed to the quadratic dependence
in [15], [16]; see Section III for more discussion on this point.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a setting involving N agents, where all agents
interact with the same Markov Decision Process (MDP). Let
us denote the shared MDP by M = (S,A,P,R, γ ), where
S is a finite state space of size n, A is a finite action space,
P is a set of action-dependent Markov transition kernels, R
is a reward function, and γ ∈ (0, 1) is the discount fac-
tor. We are interested in a policy evaluation (PE) problem
where the agents exchange information via a central aggre-
gator (server) to evaluate the value function associated with
a policy μ. Here, the policy is a map from the states to the
actions, i.e., μ : S → A. In what follows, we first review
some key concepts relevant to PE with function approxima-
tion. Then, we formally describe our communication model,
objectives, and challenges.

Policy Evaluation With Linear Function Approximation:
The policy μ to be evaluated induces a Markov Reward

Process (MRP) with transition matrix Pμ and reward
function Rμ : S → R. The purpose of PE is to
evaluate the value function Vμ(s) for each s ∈ S ,
where Vμ(s) is the discounted expected cumulative reward
obtained by playing policy μ starting from initial state s.
Formally,

Vμ(s) = E

[ ∞∑
k=0

γ kRμ(sk)|s0 = s

]
, (1)

where sk represents the state of the Markov chain at the
discrete time-step k under the action of the policy μ. Our par-
ticular interest is in the RL setting where the Markov transition
kernels and reward functions are unknown.

In several large-scale practical settings, the size n of the
state space S is large, thereby creating a major computa-
tional challenge. To work around this issue, we will resort
to the popular idea of linear function approximation where
Vμ is approximated by vectors in a linear subspace of R

n

spanned by a set of m basis vectors {φ�}�∈[m]
1; importantly,

m � n. To be more precise, let us define the feature matrix
� � [φ1, . . . ,φm] ∈ R

n×m. Given a weight (model) vector
θ ∈ R

m, the parametric approximation V̂θ of Vμ is then given
by V(θ) := V̂θ = �θ . If we denote the s-th row of � as
φ′

s, then the approximation of Vμ(s), in particular, is given
by V̂θ (s) = 〈θ ,φ′

s〉. Throughout, we will make the standard
assumption [9] that the columns of � are independent and that
the rows are normalized, i.e., ‖φ′

s‖2
2 ≤ 1,∀s ∈ S.

Communication Model and QFedTD Algorithm: Given the
above setup, the goal of the server-agent system is to collec-
tively estimate the model vector θ∗ corresponding to the best
linear approximation of Vμ in the span of �. To achieve this
goal, we now describe a multi-agent variant of the classical
TD(0) algorithm [6]. All agents start out from a common initial
state s0 ∈ S with an initial estimate θ0 ∈ R

m. Subsequently,
at each time-step k ∈ N, a global model vector θk is broad-
casted by the server to all agents. Each agent i ∈ [N] then
takes an action ai,k = μ(si,k), and observes the next state
si,k+1 ∼ Pμ(·|si,k) and instantaneous reward ri,k = Rμ(si,k);
here, si,k is the state of agent i at time-step k. Using the model
vector θk and the observation tuple oi,k = (si,k, ri,k, si,k+1),
agent i computes the following local TD update direction:

gi,k(θk, oi,k) = (ri,k + γ 〈φ′
si,k+1

, θk〉 − 〈φ′
si,k
, θk〉)φ′

si,k
.

We will often use gi,k(θk) as a shorthand for gi,k(θk, oi,k).
Note that although all agents play the same policy μ, and
interact with the same MDP, the realizations of the local obser-
vation sequences {oi,k} can differ across agents. We assume
that these observation sequences are statistically independent
across agents.2 Intuitively, based on this independence prop-
erty, one can expect that exchanging agents’ local TD update
directions should help reduce the variance in the estimate
of θ∗. This is precisely where the communication-induced
challenges we describe below play a role.

Channel Effects. We model two key aspects of realis-
tic communication channels in large-scale FL settings: finite
capacity (due to limited bandwidth) and erasures/packet drops.
To account for the first issue, we will employ a simple

1Given a positive integer m, we use the notation [m] = 1, . . . ,m.
2For each agent i, the observations over time are, however, correlated since

they are all part of a single Markov chain.
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unbiased quantizer which is a (potentially random) mapping
Q : Rm → R

m satisfying the following constraints [5].
Definition 1 (Unbiased Quantizer): We say that a quan-

tizer Q is unbiased if the following hold for all x ∈ R
m:

(i) E[Q(x)] = x, and (ii) there exists some constant ζ ≥ 0
such that E[‖Q(x) − x‖2

2] ≤ ζ‖x‖2
2, where the expectation is

w.r.t. the randomness of the quantizer.
The constant ζ captures the amount of distortion intro-

duced by the quantizer. Using any quantizer that satisfies
Definition 1, each agent i computes an encoded version
hi,k(θk) = Q(gi,k(θk)) of gi,k(θk). Here, we assume that the
randomness of the quantizer is independent across agents and
also independent of the Markovian observation tuples.

Next, to capture packet drops, we assume that the encoded
TD directions are uploaded to the server over Bernoulli era-
sure channels. Specifically, the transmission from an agent
i to the server is over a channel whose statistics are gov-
erned by an i.i.d. random process {bi,k}, where for each k,
bi,k follows a Bernoulli fading distribution, i.e., bi,k = 0 with
erasure probability (1 − p), and bi,k = 1 with probability p.
The packet-dropping processes are assumed to be independent
of all other sources of randomness in our model. We are now
in a position to describe the global model-update rule at the
server:

θk+1 = θk + αvk; vk = 1

N

N∑
i=1

bi,khi,k(θk), (2)

where α is a constant step-size/learning rate. We refer to the
overall updating scheme described above as the Quantized
Federated TD learning algorithm, or simply QFedTD.

Objective and Challenges: The main goal of this letter is to
provide a finite-time analysis of QFedTD. This is non-trivial
for several reasons. Even in the single-agent setting, provid-
ing a non-asymptotic analysis of TD(0) without any projection
step is known to be quite challenging due to temporal corre-
lations between the Markov samples. To analyze QFedTD,
we need to contend with three distinct sources of random-
ness: (i) randomness due to the temporally correlated Markov
samples {oi,k}i∈[N]; (ii) randomness due to the quantization
step; and (iii) randomness due to the Bernoulli packet drop-
ping processes {bi,k}i∈[N]. Furthermore, unlike a single-agent
setting, our goal is to establish a “linear speedup” w.r.t. the
number of agents under the different sources of randomness
above. This necessitates a very careful analysis that we provide
in the subsequent sections.

III. MAIN RESULT

In this section, we state and discuss our main result per-
taining to the non-asymptotic performance of QFedTD. First,
however, we need some technical preparation. As is standard,
we assume that the rewards are uniformly bounded, i.e., ∃r̄ > 0
such that Rμ(s) ≤ r̄,∀s ∈ S. This ensures that the value
function in (1) is well-defined. Next, we make a standard
assumption that plays a key role in the finite-time analysis
of TD learning algorithms [7], [9], [10].

Assumption 1: The Markov chain induced by the policy μ
is aperiodic and irreducible.

Assumption 1 implies that the Markov chain induced by
μ admits a unique stationary distribution π [20]. Let � =
��D�, where D is a diagonal matrix with entries given by the

elements of π . Since � is assumed to be full column rank, �
is full rank with a strictly positive smallest eigenvalue ω < 1;
ω will later show up in our convergence bounds. Next, we
define the steady-state local TD direction ∀θ ∈ R

m:

ḡ(θ) � Esi,k∼π,si,k+1∼Pμ(·|si,k)[gi,k(θ, oi,k)]. (3)

Essentially, the deterministic recursion θk+1 = θk + αḡ(θk)

captures the limiting behavior of the TD(0) update rule. In [9],
it was shown that the iterates generated by this recursion con-
verge exponentially fast to θ∗, where θ∗ is the unique solution
of the projected Bellman equation �DTμ(�θ∗) = �θ∗. Here,
�D(·) is the projection operator onto the subspace spanned
by {φ�}�∈[m] with respect to the inner product 〈·, ·〉D, and
Tμ : R

n → R
n is the policy-specific Bellman operator [7].

We now define the notion of mixing time τε that will play a
crucial role in our analysis.

Definition 2: Let τε be the minimum time step such that
‖E[gi,k(θ, oi,k)|oi,0] − ḡ(θ)‖ ≤ ε(‖θ‖ + 1),∀k ≥ τε,∀θ ∈
R

m,∀i ∈ [N],∀oi,0.
3

Assumption 1 implies that the Markov chain induced by μ
mixes at a geometric rate [20], i.e., the total variation distance
between P(si,k = ·|si,0 = s) and the stationary distribution
π decays exponentially fast ∀k ≥ 0,∀i ∈ [N],∀s ∈ S . This
immediately implies the existence of some K ≥ 1 such that τε
in Definition 2 satisfies τε ≤ K log( 1

ε
) [11]. Loosely speaking,

this means that for a fixed θ , if we want the noisy TD update
direction to be ε-close (relative to θ) to the steady-state TD
direction (where both these directions are evaluated at θ), then
the amount of time we need to wait for this to happen scales
logarithmically in the precision ε. For our purpose, we will
set ε = αq, where q is an integer satisfying q ≥ 2. Unlike the
centralized setting where q = 1 suffices [9], [10], to establish
the linear speedup property, we will require q ≥ 2. Henceforth,
we will drop the subscript of ε = αq in τε and simply refer to
τ as the mixing time. Let us define by σ � max{1, r̄, ‖θ∗‖} the
“variance” of the observation model for our problem. Finally,
let ζ ′ � max{1, ζ }, where ζ is as in Definition 1, and δ2

k �
‖θ∗ − θk‖2. We can now state our main result.

Theorem 1: Consider the update rule of QFedTD in (2).
There exist universal constants C0,C2,C3 ≥ 1, such that with
α ≤ ω(1−γ )

C0τζ
′ , the following holds for T ≥ 2τ :

E
[
δ2

T

] ≤ (1 − αω(1 − γ )p)TC1 + τσ 2

ω(1−γ ) (
C2αζ

′
N + C3α

3),

(4)

where C1 = 4δ2
0 + 2pσ 2.

Discussion: There are several important takeaways from
Theorem 1. From (4), we first note that QFedTD guarantees
linear convergence (in expectation) to a ball around θ∗ whose
radius depends on the variance σ 2 of the noise model. While
the linear convergence rate gets slackened by the probability
of successful transmission p, the “variance term”, namely the
second term in (4), gets inflated by the quantization parameter
ζ . Both of these channel effects are consistent with what one
observes for analogous settings in FL [4]. Next, compared to
the centralized setting [10, Th. 7], the variance term in (4) gets
scaled down by a factor of N, up to a higher-order O(α3) term
that can be dominated by the (α/N) term for small enough α.
Before we make this point explicit, it is worth noting that our

3Unless otherwise specified, we use ‖ · ‖ to denote the Euclidean norm.
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variance bound exhibits a tighter dependence on the mixing
time τ relative to [15] and [16], where similar bounds are
established. In particular, while this dependence is O(τ ) for
us, it is O(τ 2) in [15, Th. 4.1] and in [16, Th. 4]. Notably, the
O(τ ) dependence that we establish is consistent with results
on centralized TD learning [9], [10], and is in fact the optimal
dependence on τ under Markovian data [21]. With a suitable
choice of step-size α, if the number of iterations T is chosen
to be large enough, then the mean-square error of QFedTD
converges exactly to 0 at a rate of O(1/(NT)), i.e., we obtain
a linear speedup in sample-complexity w.r.t. the number of
agents N. To see this, let

α = log NT

ω(1 − γ )pT
, and T ≥ 2C0Nτζ ′ log NT

ω2(1 − γ )2p
. (5)

We can then easily show that (see our extended technical
report [22] for the details)

E[δ2
T ] ≤ O

((
ζ ′

p

)
max{δ2

0, σ
2}τ log(NT)

ω2(1 − γ )2NT

)
. (6)

As far as we are aware, our work is the first to establish
a linear speedup result of the above form under Markovian
sampling and communication constraints.

IV. PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1. We start by introducing
the following definitions to lighten the notation:

η
(i)
k,τ (θ) � ‖E[gi,k(θ , oi,k)|oi,k−τ

]− ḡ(θ)‖, k ≥ τ,

δk,τ � ‖θk − θk−τ‖, k ≥ τ. (7)

For our analysis, we will need the following result from [9].
Lemma 1: The following holds ∀θ ∈ R

m:

〈θ∗ − θ , ḡ(θ)〉 ≥ ω(1 − γ )‖θ∗ − θ‖2.

We will also use the fact that the random TD update direc-
tions and their steady-state versions are 2-Lipschitz [9], i.e.,
∀i ∈ [N],∀k ∈ N, and ∀θ , θ ′ ∈ R

m, we have:

max{‖gi,k(θ)− gi,k(θ
′)‖, ‖ḡ(θ)− ḡ(θ ′)‖} ≤ 2‖θ − θ ′‖. (8)

From [10], we also have that ∀i ∈ [N],∀k ∈ N,∀θ ∈ R
m:

‖gi,k(θ , oi,k)‖ ≤ 2‖θ‖ + 2r̄. (9)

Equipped with the above basic results, we now provide an
outline of our proof before delving into the technical details.

Outline of the proof : We start by defining:

ḡN(θk) �
1

N

N∑
i=1

bi,kḡ(θk), and

ψk � 〈vk − ḡN(θk), θk − θ∗〉. (10)

Since for all i ∈ [N], bi,k is independent of θk, we have
E
[〈ḡN(θk), θk − θ∗〉] = pE

[〈ḡ(θk), θk − θ∗〉]. Thus, recalling
that δ2

k � ‖θ∗ − θk‖2, and using (2), we obtain

E

[
δ2

k+1

]
= E

[
δ2

k

]
− 2αE

[〈θ∗ − θk, vk〉
]+ α2

E

[
‖vk‖2

]
= E

[
δ2

k

]
− 2αpE

[〈θ∗ − θk, ḡ(θk)〉
]

+ 2αE[ψk] + α2
E

[
‖vk‖2

]
. (11)

The main technical burden in proving Theorem 1 is in bound-
ing E

[‖vk‖2
]

and E[ψk] in the above recursion. Following
the centralized analysis in [9], [10], one can easily bound
E
[‖vk‖2

]
using (9). However, this approach will fall short of

yielding the desired linear speedup property. Hence, to bound
E
[‖vk‖2

]
, we need a much finer analysis, one that we pro-

vide in Lemma 2. Leveraging Lemma 2, we then establish an
intermediate result in Lemma 3 that bounds E

[‖θk − θk−τ‖
]
.

This result, in turn, helps us bound E[ψk] in Lemma 4. We
now proceed to flesh out these steps; some routine calculations
are omitted and can be found in [22]. In what follows, τ = τε
with ε = αq, q ≥ 2.

Lemma 2 (Key Technical Result): For k ≥ τ , we have

E

[
‖vk‖2

]
≤ 60ζ ′pE

[
δ2

k

]
+ 12σ 2p

(
10
ζ ′

N
+ α2q

)
. (12)

Proof: Note that ‖vk‖2 ≤ 3
N2 (T1 + T2 + T3), with

T1 =
∥∥∥ N∑

i=1

bi,kgi,k(θ
∗)
∥∥∥2
,

T2 =
∥∥∥ N∑

i=1

bi,k(gi,k(θk)− gi,k(θ
∗))
∥∥∥2
, and

T3 =
∥∥∥ N∑

i=1

bi,k(gi,k(θk)− hi,k(θk))

∥∥∥2
. (13)

We now proceed to bound T1 − T3. To that end, we first write
T1 as T1 = T11 + T12, with T11 = ∑N

i=1 b2
i,k‖gi,k(θ

∗)‖2, and
T12 = ∑N

i,j=1
i �=j

bi,kbj,k〈gi,k(θ
∗), gj,k(θ

∗)〉. Now using (9), we

obtain T11 ≤ 8(‖θ∗‖2 + r̄2)
∑N

i=1 b2
i,k. Recalling that σ �

max{1, r̄, ‖θ∗‖}, we then have E[T11] ≤ 16σ 2
E

[∑N
i=1 b2

i,k

]
=

16σ 2Np. Next, to bound the cross-terms in T12, we exploit
the mixing property in Definition 2. To that end, we note that
since (i) ḡ(θ∗) = 0 [9], (ii) the packet-dropping processes are
independent of the Markovian tuples, and (iii) gi,k(θ

∗) and
gj,k(θ

∗) are independent for i �= j,

E[T12] =
N∑

i,j=1
i �=j

E
[
bi,kbj,k

]〈E[E[gi,k(θ
∗)|oi,k−τ

]− ḡ(θ∗)
]
,

E
[
E
[
gj,k(θ

∗)|oj,k−τ
]− ḡ(θ∗)

]〉.
Using the Cauchy-Schwarz inequality followed by Jensen’s
inequality, we can further bound the above inner-product via
E

[
η
(i)
k,τ (θ

∗)
]

× E

[
η
(j)
k,τ (θ

∗)
]

≤ 4σ 2α2q. For the last inequality,
we used the mixing property by noting that k ≥ τ . Combining
this analysis with the fact that E

[
bi,kbj,k

] = E
[
bi,k
]
E
[
bj,k
] =

p2, we obtain that E[T12] ≤ 4N2p2σ 2α2q. Combining the
bounds for E[T11] and E[T12] thus yields:

E[T1] ≤ 16σ 2Np + 4N2p2σ 2α2q. (14)

Now, using (8), we see that

E[T2] ≤ N
N∑

i=1

E

[
b2

i,k‖gi,k(θk)− gi,k(θ
∗)‖2

]

≤ 4NE

[
δ2

k

] N∑
i=1

E

[
b2

i,k

]
= 4pN2

E

[
δ2

k

]
. (15)
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Defining λi,k(θk) � hi,k(θk) − gi,k(θk), we now turn to
bounding T3 by writing it as T3 = T31 + T32 where,

T31 =
N∑

i=1

b2
i,k‖λi,k(θk)‖2, and

T32 =
N∑
i,j
i �=j

bi,kbj,k〈λi,k(θk),λj,k(θk)〉. (16)

We now proceed to bound E[T31] and E[T32] as follows:

E[T31] =
N∑

i=1

E

[
b2

i,k

]
E

[
E

[
‖λi,k(θk)‖2|oi,k, θk

]]

(a)≤
N∑

i=1

pζE
[
‖gi,k(θk)‖2

]
(b)≤ 8Npζ(E

[
‖θk‖2

]
+ σ 2)

≤ 16NpζE
[
‖θk − θ∗‖2

]
+ 24Npζσ 2,

where (a) follows from the variance bound of the quantizer
map Q(·), and (b) follows from (9). Next, observe that:

E[T32] = p2
N∑

i,j=1
i �=j

E
[
E
[〈λi,k(θk),λj,k(θk)〉|oi,k, oj,k, θk

]]
.

Using the fact that the randomness of the quantization map is
independent across agents, and the unbiasedness of Q(·), we
conclude that E[T32] = 0. Combining the bounds on E[T1],
E[T2], and E[T3] above yields the desired result.

Later in the analysis, we will once again need to invoke a
mixing time argument by conditioning on θk−τ . This will give
rise to the δk,τ = ‖θk − θk−τ‖ term that we proceed to bound
below by leveraging Lemma 2.

Lemma 3: Let α ≤ 1
484τζ ′ and k ≥ 2τ . Then, we have

E

[
δ2

k,τ

]
≤ 480α2τ 2pζ ′

E

[
δ2

k

]
+ α2τ 2pσ 2

(
360ζ ′

N
+ 4αq

)
.

Proof: We start with a bound on δ2
k+1:

δ2
k+1 = δ2

k − 2α〈vk, θ
∗ − θk〉 + α2‖vk‖2

≤ (1 + α)δ2
k + (α + α2)‖vk‖2

≤ (1 + α)δ2
k + 2α‖vk‖2. (17)

Using Lemma 2 and the fact that p < 1, we obtain

E

[
δ2

k+1

]
≤ (1 + 121αζ ′)E

[
δ2

k

]
+ 24αpσ 2

(
10ζ ′

N
+ α2q

)
︸ ︷︷ ︸

B

.

Iterating this inequality, we get for any k − τ ≤ k′ ≤ k,

E

[
δ2

k′
]

≤ (1 + 121αζ ′)τE
[
δ2

k−τ
]

+ B
τ−1∑
�=0

(1 + 121αζ ′)�. (18)

Now using (1+x) ≤ ex,∀x ∈ R, observe that (1+121αζ ′)� ≤
(1 + 121αζ ′)τ ≤ e0.25 ≤ 2, for α ≤ 1/(484τζ ′). Thus,∑τ−1
�=0 (1 + 121αζ ′)� ≤ 2τ . Plugging this bound in (18),

E

[
δ2

k′
]

≤ 2E
[
δ2

k−τ
]

+ 2τB. (19)

Next, observe that δ2
k,τ ≤ τ

∑k−1
�=k−τ ‖θ�+1 − θ�‖2 =

τα2∑k−1
�=k−τ ‖v�‖2. Since k ≥ 2τ , we have � ≥ τ . Hence,

we can invoke Lemma 2 to bound E
[‖v�‖2

]
. This yields

E

[
δ2

k,τ

]
≤ α2τ

k−1∑
�=k−τ

60ζ ′pE
[
δ2
�

]
+ 0.5ατ 2B. (20)

Using (19) to bound E
[
δ2
�

]
above, we further obtain

E

[
δ2

k,τ

]
≤ α2τ

k−1∑
�=k−τ

120ζ ′p
(
E

[
δ2

k−τ
]

+ τB
)

+ 1

2
ατ 2B.

Simplifying using α ≤ 1/484ζ ′τ , p < 1, and q ≥ 2 yields

E

[
δ2

k,τ

]
≤ 120α2τ 2pζ ′

E

[
δ2

k−τ
]

+ α2τ 2σ 2p

(
180ζ ′

N
+ 2αq

)
.

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ and 240α2τ 2ζ ′ ≤ 1/2 to simplify

the above inequality, we arrive at the desired result.
Our next result provides a bound on E[ψk], and is the final

ingredient we need to prove Theorem 1.
Lemma 4: Define gN(θk) � 1

N

∑N
i=1 bi,kgi,k(θk), and let

α ≤ 1/(484ζ ′τ) and k ≥ 2τ . We have

E[ψk] ≤ ατp

(
3191ζ ′

E

[
δ2

k

]
+ σ 2

(
2461ζ ′

N
+ 30αq

))
.

Proof: We can write ψk = T1 + T2 + T3 + T4 + T5, with

T1 = 〈θk − θk−τ , gN(θk)− ḡN(θk)〉,
T2 = 〈θk−τ − θ∗, gN(θk−τ )− ḡN(θk−τ )〉,
T3 = 〈θk−τ − θ∗, gN(θk)− gN(θk−τ )〉,
T4 = 〈θk−τ − θ∗, ḡN(θk−τ )− ḡN(θk)〉,
T5 = 〈θk − θ∗, vk − gN(θk)〉.

(21)

Note that T1 ≤ 1
2ατ δ

2
k,τ + 1

2ατ‖gN(θk)− ḡN(θk)‖2, and so

T1 ≤ 1

2ατ
δ2

k,τ + ατ‖gN(θk)‖2 + ατ‖ḡN(θk)− ḡN(θ
∗)‖2.

Using (8), note that ‖ḡN(θk) − ḡN(θ
∗)‖2 ≤ 4

N

∑N
i=1 b2

i,kδ
2
k .

Also, ‖gN(θk)‖2 can be bounded exactly in the same way as
the first two terms in (13) of Lemma 2. Using these bounds
and invoking Lemma 3 yields:

E[T1] ≤ 304ατζ ′pE
[
δ2

k

]
+ ατpσ 2

(
300ζ ′

N
+ 3αq

)
.

Next we bound E[T3] and E[T4]. Observe that:

E[T3] = 1

N

N∑
i=1

E
[
bi,k〈θk−τ − θ∗, (gi,k(θk)− gi,k(θk−τ ))〉

]

≤ pE

[
δk−τ

1

N

N∑
i=1

‖gi,k(θk)− gi,k(θk−τ )‖
]

(8)≤ ατp

2
E

[
δ2

k−τ
]

+ 2p

ατ
E

[
δ2

k,τ

]
.

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ and Lemma 3, we then obtain:

E[T3] ≤ 1441ατpζ ′
E

[
δ2

k

]
+ 6ατpσ 2

(
180ζ ′

N
+ 2αq

)
.
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Using the same process, we can derive the exact same bound
for E[T4]. We now bound E[T2]. For ease of notation, let us
define Fk,τ = ({oi,k−τ }N

i=1, θk−τ ). Observe:

E[T2] = E
[
E
[
T2|Fk,τ

]] = E[〈θk−τ − θ∗,

p

N

N∑
i=1

(E
[
gi,k(θk−τ , oi,k)|Fk,τ

]− ḡ(θk−τ ))〉]

≤ E

[
δk−τ

p

N

N∑
i=1

η
(i)
k,τ (θk−τ )

]

≤ pαq
E
[
δk−τ (1 + ‖θk−τ‖)

]
.

Since α < 1, we have δk−τ (δk−τ + 2σ) ≤ δ2
k−τ
α

+ 2σδk−τ +
ασ 2 = (

δk−τ√
α

+ √
ασ)2 ≤ 2(

δ2
k−τ
α

+ ασ 2). Using q ≥ 2,

E[T2] ≤ 2pαq
E

[
1

α
δ2

k−τ + ασ 2
]

≤ 2pαE
[
δ2

k−τ
]

+ 2pαq+1σ 2. (22)

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ , Lemma 3, and simplifying yields:

E[T2] ≤ 5ατpζ ′
E

[
δ2

k

]
+ ατpσ 2

(
ζ ′

N
+ 3αq

)
. (23)

Finally, to bound T5, let Fk = {{oi,k}N
i=1, θk}. We have

E[T5] = E

⎡
⎢⎣〈θk − θ∗,E

[
vk − gN(θk)|Fk

]
︸ ︷︷ ︸

T51

〉
⎤
⎥⎦. (24)

Note that T51 = p
N

∑N
i=1 E

[
hi,k(θk)− gi,k(θk)|Fk

] = 0, based
on the unbiasedness of Q(·). Thus, E[T5] = 0. Collecting the
bounds on T1 − T5 concludes the proof.

With the help of the auxiliary lemmas provided above, we
are now ready to prove our main result, i.e., Theorem 1.

Proof of Theorem 1: Letting α ≤ 1
484ζ ′τ , we can apply the

bounds in Lemmas 1, 2, and 4 to (11). This yields:

E

[
δ2

k+1

]
≤ E

[
δ2

k

]
− αp(2(1 − γ )ω − 6446ατζ ′)E

[
δ2

k

]
+ 5162

α2τpσ 2ζ ′

N
+ 61α(2+q)τpσ 2. (25)

For α ≤ ω(1−γ )
C0τζ

′ with C0 = 6446, we then obtain:

E

[
δ2

k+1

]
≤ (1 − αω(1 − γ )p)E

[
δ2

k

]
+ 5162

α2τpσ 2ζ

N
+ 61α(2+q)τpσ 2. (26)

Iterating the last inequality, we have ∀k ≥ 2τ :

E

[
δ2

k

]
≤ ρk−2τ

E

[
δ2

2τ

]
+ τσ 2

ω(1 − γ )

(
C2αζ

′

N
+ C3α

3
)
,

where ρ = (1 − αω(1 − γ )p), C2 = 5162, C3 = 61, and
we set q = 2. It only remains to show that with our choice
of α,E

[
δ2

2τ

] = O(δ2
0 + σ 2). This follows from some simple

algebra and steps similar to those in the proof of Lemma 3.
We omit these details here; they can be found in [22].
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[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016, arXiv:1610.02527.

[2] S. U. Stich, “Local SGD converges fast and communicates little,” 2018,
arXiv:1805.09767.

[3] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. Int. Conf. Artif.
Intell. Statist., 2020, pp. 4519–4529.

[4] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. AISTATS, 2020,
pp. 2021–2031.

[5] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” 2020, arXiv:2002.12410.

[6] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[7] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Trans. Autom. Control,
vol. 42, no. 5, pp. 674–690, May 1997.

[8] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforce-
ment learning: Techniques, applications, and open challenges,” 2021,
arXiv:2108.11887.

[9] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal
difference learning with linear function approximation,” in Proc. Conf.
Learn. Theory, 2018, pp. 1691–1692.

[10] R. Srikant and L. Ying, “Finite-time error bounds for linear stochastic
approximation and TD learning,” in Proc. Conf. Learn. Theory, 2019,
pp. 2803–2830.

[11] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and J.-P. Clarke,
“Performance of Q-learning with linear function approximation:
Stability and finite-time analysis,” 2019, arXiv:1905.11425.

[12] G. Patil, L. Prashanth, D. Nagaraj, and D. Precup, “Finite time analysis
of temporal difference learning with linear function approximation: Tail
averaging and regularisation,” in Proc. Int. Conf. Artif. Intell. Statist.,
2023, pp. 5438–5448.

[13] T. Doan, S. Maguluri, and J. Romberg, “Finite-time analysis of dis-
tributed TD(0) with linear function approximation on multi-agent
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 1626–1635.

[14] R. Liu and A. Olshevsky, “Distributed TD(0) with almost no commu-
nication,” 2021, arXiv:2104.07855.

[15] S. Khodadadian, P. Sharma, G. Joshi, and S. T. Maguluri, “Federated
reinforcement learning: Linear speedup under Markovian sampling,” in
Proc. ICML, 2022, pp. 10997–11057.

[16] H. Wang, A. Mitra, H. Hassani, G. J. Pappas, and J. Anderson,
“Federated temporal difference learning with linear function approxi-
mation under environmental heterogeneity,” 2023, arXiv:2302.02212.

[17] C. N. Hadjicostis and R. Touri, “Feedback control utilizing packet drop-
ping network links,” in Proc. 41st IEEE Conf. Decis. Control, vol. 2,
2002, pp. 1205–1210.

[18] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc.
IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007.

[19] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[20] D. A. Levin and Y. Peres, Markov Chains and Mixing Times, vol. 107.
Providence, Rhode Island, USA: Amer. Math. Soc., 2017.

[21] D. Nagaraj, X. Wu, G. Bresler, P. Jain, and P. Netrapalli, “Least squares
regression with Markovian data: Fundamental limits and algorithms,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 16666–16676.

[22] N. Dal Fabbro, A. Mitra, and G. J. Pappas, “Federated TD learning over
finite-rate erasure channels: Linear speedup under Markovian sampling,”
2023, arXiv:2305.08104.

Open Access funding provided by ‘Università degli Studi di Padova’ within the CRUI CARE Agreement



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


