
Scuola di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica

Tesi di dottorato

Categorical structures
for deduction

CANDIDATO:
Greta Coraglia

RELATORE:
Chiar.mo Prof. Giuseppe Rosolini

ANNO ACCADEMICO 2021–22

Contents

Introduction i

1 Fibrations 1
1.1 Categories: notation and underlying theory 1

1.1.1 Categories . 1
1.1.2 Functors and natural transformations 3
1.1.3 2-categories . 4
1.1.4 Logical environment . 5

1.2 Motivation . 6
1.3 Main definitions . 8

1.3.1 On the fibers . 10
1.3.2 On cartesian liftings . 11
1.3.3 Characterizing fibrations 12

1.4 The 2-category of fibrations . 14
1.5 Fibrations and pseudofunctors 16
1.6 Split fibrations and the fibered Yoneda lemma 17

1.6.1 Right adjoint splitting . 18
1.6.2 Left adjoint splitting . 18

1.7 Faithful fibrations and the theory of doctrines 19
1.7.1 Primary . 20
1.7.2 Elementary . 21
1.7.3 Existential, universal . 22

1.8 Opfibrations, bifibrations . 23

2 Categorized judgemental theories 25
2.1 Categorized judgemental theories 28

2.1.1 Notions of substitution . 32
2.2 Judgement calculi . 34

2.2.1 Prolegomena . 34
2.2.2 Syntax . 37
2.2.3 Judgements . 38
2.2.4 Rules . 40
2.2.5 Policies . 42
2.2.6 On substitution . 43

2.3 Categorized dependent types theories 43
2.3.1 From natural models to (categorical) dtts 44
2.3.2 Judgemental dtts vs comprehension categories 47
2.3.3 Dictionary . 48

2.3.4 Context extension and type dependecy 49
2.3.5 Dependent type theories with Π-types 54
2.3.6 Dependent type theories with (extensional) Id-types . . . 58
2.3.7 A categorical definition of type constructor 59
2.3.8 Examples: unit types and Σ-types 61
2.3.9 The internal logic of a topos – externally 63

2.4 Categorized first-order logic . 67
2.4.1 Dictionary . 70
2.4.2 From properties to rules 71
2.4.3 Formal structural rules . 72
2.4.4 Formal rules for connectives 75
2.4.5 Substitution . 76
2.4.6 Formal rules for quantifiers 76
2.4.7 Cut elimination . 78

2.5 Future developments . 78

3 Fibrations for dependent types 80
3.1 Of judgements and types . 81

3.1.1 The category of contexts 81
3.1.2 What are we doing? . 82

3.2 A biadjunction between comonads and adjunctions 83
3.2.1 Morphisms of adjunctions and of comonads 84
3.2.2 Biadjunctions between comonads and adjunctions 85
3.2.3 The biadjunction in the loose case 88

3.3 Comparing type-theoretic comprehensions 89
3.3.1 Comprehension categories 89
3.3.2 Categorized dependent type theories 91
3.3.3 Weakening and contraction comonads 94
3.3.4 wcComonads v comprehension categories 96
3.3.5 wcComonads v cDTTs . 98
3.3.6 Examples . 103
3.3.7 Main theorem . 107

3.4 Properties of comprehension categories 108
3.4.1 The empty context . 108
3.4.2 Lax, pseudo, strict . 108
3.4.3 Properties of categorical models of dependent types . . . 110
3.4.4 Discrete vs full split . 112
3.4.5 Splitting a wc-comonad 113

3.5 Subtyping . 116
3.5.1 Comma objects induced by a cDTT 117
3.5.2 Rules for subtyping . 120
3.5.3 An example: semantic subtyping 122

3.6 Case study: CE-systems . 122
3.6.1 Type constructors in a cDTT 123
3.6.2 Comparing CE-systems to cDTTs 125
3.6.3 Constructors for free . 130

3.7 Future developments . 135

4 Fuzzy dependent types 136
4.1 Basic enriched category theory 136

4.1.1 Monoidal categories . 137
4.1.2 Enriched categories . 139
4.1.3 Enriched functors and natural transformations 140
4.1.4 Forgetful into CAT . 140
4.1.5 Representable V-functors 141
4.1.6 Let us end with V . 141

4.2 Propositions and types (and opinions) 143
4.3 The category of fuzzy sets . 144

4.3.1 Measuring fuzziness . 144
4.3.2 Fuzzy sets . 146
4.3.3 Enriching over fuzzy sets 149

4.4 Substitution in the enriched setting 149
4.5 From syntax to semantics and back 154

4.5.1 Reading type theory into a category 154
4.5.2 Reading fuzzy type theory into a category 154

4.6 Rules for fuzzy type theory . 156
4.7 On definitional equality . 160

4.7.1 Certain equality . 161
4.7.2 Skeletons . 162
4.7.3 Fuzzy equality . 164
4.7.4 The trivial option . 164
4.7.5 In conclusion . 165

4.8 Future developments . 165

Acknowledgements 167

Bibliography 168

Introduction

One could argue [Eve17, Chapter 2] that counting is one of the first instances
of abstraction in the history of the human species. At some point, not later
than 10.000 years ago1, humans discovered that they could represent a certain
amount of people with fingers on their hand, sheep with marks on a piece of
clay, days with incisions on a stick. This representation process took the form of
a bijection, so that one mark would be a stand in for a sheep and each sheep
would be recorded as a mark, and its convenience must have been immediately
clear as one could much easily look at a hundred marks than at a hundred sheep.
After that, noticing that both a hundred sheep and a hundred days could be
represented by the same marks, humans decided that perhaps studying the thing
“one hundred” would bring them some benefit in and of itself - and it did.

A bunch of thousands of years later, (some) humans still seem to be convinced
of the convenience of abstraction, and a few have invented category theory.
Category theory has proved to be an interesting tool to reason about common
phenomena in mathematics: its level of generality allows us to forget everything
but the property we want to consider each time, and this often leaves room
for a detached perspective that is hard to otherwise achieve. For example, the
Yoneda lemma tells us that to better understand an object one can look at how
it interacts with others.

Moreover, when one decides on some properties that they are interested in,
for example describing the notion of product of two sets, category theory allows
to see what happens when the same notion is transported in another context,
say for example topological spaces, and new interesting things are discovered,
such as that the “right” topology on the product of two topological spaces is in
fact the product topology. The marks on the stick representing the product can
be themselves studied, and this brings benefit.

Even though category theory was born [EML45] out of an abstraction of
concepts that are exquisitely geometrical, of vector spaces, and topological groups
and such, some people soon realized that its language, and its marks, would
nicely represent logical concepts as well. The content of this thesis is simply the
result of reading the marks on the stick resulting of this process.

In other words: category theory has developed some tools and structures,
and marked them on a very nice stick; then, a bunch of people have realized
that these marks finely describe some logical notions; we come and take these
idea to the extreme, and with logic in mind, read whatever we can on that very

1This it the approximate dating of a marked reindeer antler discovered in Little Salt Spring,
Florida [GW07], and of markings made in a cave in Monte Alegre [BBD+97]. The author is
neither an archaeologist nor an anthropologist, but thought framing the discussion that follows
in a broad perspective to be quite helpful.

i

same stick. This process brings some benefits.

Marks of categorical logic

We do not dare put together the history of categorical logic, but we could not
start our journey without mentioning a few points that have had a particular
influence on the present work. A first insight into the way in which categories
could help in the study of mathematical logic is contained in F. W. Lawvere’s
Ph.D. thesis [Law63]. In a later reflection upon its intent, he writes:

(5) The dialectical contrast between presentations of abstract con-
cepts and the abstract concepts themselves, as also the contrast
between word problems and groups, polynomial calculations and
rings, etc. can be expressed as an explicit construction of a new
adjoint functor out of any given adjoint functor. Since in practice
many abstract concepts (and algebras) arise by means other than
presentations, it is more accurate to apply the term “theory”, not
to the presentations as had become traditional in formalist logic,
but rather to the more invariant abstract concepts themselves which
serve a pivotal role, both in their connection with the syntax of pre-
sentations, as well as with the semantics of representations. [Law04,
Seven ideas introduced in the 1963 thesis]

Therefore the notion of theory ought to be reframed within this new language,
as it possesses the tools to better describe the relation between syntax and
semantics. The reader might find that our discussion on marks and sticks is very
much in line with Lawvere’s perspective, and in fact he next writes:

(6) The leap from particular phenomenon to general concept, as
in the leap from cohomology functors on spaces to the concept of
cohomology operations, can be analyzed as a procedure meaningful in
a great variety of contexts and involving functorality and naturality, a
procedure actually determined as the adjoint to semantics and called
extraction of “structure” (in the general rather than the particular
sense of the word). [Law04, Seven ideas introduced in the 1963
thesis]

This breaking shift was followed by a period of intense advance, not only in
the study of Lawvere’s algebraic theories [Law65, EW67, Fre66, Isb64], but also
in those that would later become the theories of topoi [Law69, Law64, Fre72],
of fibrations [Law70, Bén68], and of monads [EM65, BB66]. Of course this
distinction is merely artificial, as one would imagine in such a fast-growing
environment: monads are closely related to pairs of adjoint functors, which in
turn are related to certain algebraic theories, which in turn are related to certain
fibered categories, some of which give rise to topoi, and so on. In fact, all of
these will appear in the following chapters.

Nevertheless, if we were asked to single out the concept that has influenced
the present work the most, it would be that of fibration. Again, fibrations were
introduced in [Gro61] with quite a different purpose in mind, namely to abstract
various descent phenomena in geometry. In [Law69, Law70] Lawvere observed
that many key concepts in first-order logic (such as connectives and quantifiers)

ii

could be expressed as adjoint pairs of functors between different categories, each
representing formulae in a fixed context, and that this way of organizing logical
data could be synthesized in a fibered category. An in-depth introduction to
fibrations will be the beginning of this exposition and the content of Chapter 1.

The problem with equality

Dealing with fibrations, and in particular with the universal property of cartesian
liftings, poses a few problems that go otherwise unnoticed in other branches of
mathematics, we refer in particular to the problem of choice, of coherence, and,
above all, of equality. In particular, to have some sort of functoriality, hence
a given choice of cartesian lifting for each map, either some form of the axiom
of choice is needed, or in some sense a canonical choice ought to be known a
priori or by other means and from the start. Moreover, the moment one wants
to make such a choice, some necessary coherence conditions are required so
that calculations get more laborious, and new conditions have to be introduced.
These issues are dealt with in the study of split fibrations, and come into play
several times in the course of this work. But while dealing with this fleeting
notion of equality - that entertained between two cartesian liftings of the same
map - might appear as a complication of the theory, A. Grothendieck seems to
have thought it to be one of its main features. He writes:

Bien entendu, il y a intérêt le plus souvent à raisonner directement
sur des catégories fibrées sans utiliser des clivages explicites, ce qui
dispense en particulier de faire appel, pour la notion simple de [...]
foncteur cartesién, à une interprétation pesante comme ci-dessus.
C’est pour éviter des lourdeurs insupportables, et pour obtenir des
énoncés plus intrinsèques, que nous avons dû renoncer à partir de la
notion de catégorie clivée [...], qui passe au second rang au profit de
celle de catégories fibrée.

Il est d’ailleurs probable que, contrairement à l’usage encore prépondérant
maintenant, lié à d’anciennes habitudes de pensée, il finira par s’avérer
plus commode dans les problèms universels, de ne pas mettre l’accent
sur une solution supposée choisie une fois pour toutes mais de mettre
toutes les solutions sur un pied d’egalité.2 [Gro60]

We will repeatedly point out implications of such a “problem”, as it will follow us
throughout the text. An interesting approach that isolates this phenomenon and
makes it particularly clear is that of displayed categories [AL17]: we recommend
§1 thereof for an inspired account.

2 “Of course, it is most often useful to reason directly about fibered categories without
using explicit cleavages, without the need in particular to appeal, for the simple notion of [...]
cartesian functor, to a heavy interpretation as above. It is to avoid unbearable heaviness, and
to obtain more intrinsic enunciations, that we had to renounce (or depart) from the notion of
split categories [...], which takes second place with respect to that of fibered categories.

It is moreover probable that, contrary to the use still prevalent now, linked to old ways of
thinking, it will end up being more convenient for universal problems, not to put the emphasis
on a supposed solution chosen once and for all, but to put all solutions on an equal footing.”

The author dearly thanks her sister for the translation.

iii

Content of this thesis

In Chapter 2 we introduce categorized judgemental theories and their calculi as a
general framework to present and study deductive systems. As an exemplification
of their expressivity, we approach dependent type theory and natural deduction
as special kinds of categorized judgemental theories. Our analysis sheds light on
both the topics, providing a new point of view. In the case of type theory, we
provide an abstract definition of type constructor featuring the usual formation,
introduction, elimination and computation rules. For natural deduction we
offer a deep analysis of structural rules, describing some of their properties, and
putting them into context.

In Chapter 3 we put one of the main constructions introduced in Chapter 2,
namely that of categorized judgemental dependent type theories, to the test:
we frame it in the general context of categorical models for dependent types,
describe a few examples, study its properties, and use it to model subtyping and
as a tool to prove intrinsic properties hidden in other models.

In 2 and 3 we generalize known models, in Chapter 4 we transport one from
set-based categories to enriched categories, and use the information naturally
encoded into it to describe a theory of fuzzy types. We recover structural rules,
observe new phenomena, and study different possible enrichments and their
interpretation. We open the discussion to include different takes on the topic of
definitional equality.

iv

Chapter 1

Fibrations

Category theory starts with the
observation that many properties
of mathematical systems can be
unified and simplified by a
presentation with diagrams of
arrows.

[ML78, Introduction]

1.1 Categories: notation and underlying theory

Our discussion takes place in the world of categories: we here recall some basic
definitions, fix notation, and describe the underlying theory we are working in.

This account follows many introductory texts, above all [ML78] and [Rie17].

1.1.1 Categories

Definition 1.1.1.1 (Category). A category C is the data of

� a collection of objects A,B,C, . . . , and

� a collection of morphisms, or arrows or maps, f, g, h, . . .

where

� each morphism has given domain and codomain objects: we write f : A→ B
to mean that f is a morphism with domain A and codomain B;

� for each object A there is a designated identity morphism idA : A→ A;

� for each pair of composable morphisms f, g, i.e. morphisms such that the
codomain of f is the domain of g, there exists a specified composition
morphism gf or g ◦ f with domain the domain of f and codomain the
codomain of g, meaning

f : A→ B, g : B → C ⇝ gf : A→ C;

1

such that

� for any f : A→ B, the composites idBf and f idA are both equal to f ;

� for any composable triple f, g, h, the composites h(gf) and (hg)f are equal
and from now on denoted hgf .

In other words, composition is associative and has identities for (left and right)
units.

Notation 1.1.1.2. We usually write C(A,B) for the class of morphisms from A
to B in C.

Example 1.1.1.3. One traditionally refers to a category with the name of its
objects.

1. Call Set the category having for objects sets1, for morphism functions
with their domain and codomain, composition of functions and identity
functions.

2. Call Top the category of topological spaces and continuous functions.
Composition and identity are those of functions.

3. Call Grp the category of groups and group homomorphisms. Again,
composition and identity are those of functions.

4. Similarly, we can define a category Ab of abelian groups, Ring for rings,
R-Mod for R-modules, Pos for posets, and for many other algebraic
structures.

5. Call Set• the category of pointed sets and functions preserving the points.
Similarly define Top•.

6. Call Meas the category of measurable spaces and measurable functions.

7. Call 1 the category having one object and one (necessarily identity) mor-
phism.

Notation 1.1.1.4. Usually we use the letters C,D, E for unspecified categories,
and Set,Top,Grp for given categories.

Example 1.1.1.5. We have two paradigmatic examples with opposite “minimal”
information.

� Let (P,≤) a poset. It induces a category P with objects the elements of
the poset, and between two object there is at most one map, and there is
one p→ p′ if and only if p ≤ p′. Composition is given by transitivity and
identity by reflexivity.

� Let (M, ·, 1) a monoid. It induces a category M with one object and
morphisms the elements of the monoid. Composition and identities are
provided by, respectively, · and 1.

1By “set” we mean a set according to any choice of foundation, such as ZF, ZFC, NBG,
and others. See Section 1.1.4 for more on the meta-theory we are working in.

2

Definition 1.1.1.6 (Opposite category). For a category C, one can define its
opposite category Cop to be that having the same objects and maps going in the
opposite direction: Cop(A,B) = C(B,A).

In the very spirit of categories, putting the accent of morphisms over objects,
we can define a notion of morphism between categories.

1.1.2 Functors and natural transformations

Definition 1.1.2.1 (Functor). A functor F from C to D, written F : C → D, is
the data of

� for each object A in C, an object F (A) in D, and

� for each morphism f : A→ B in C, a morphism Ff : F (A)→ F (B) in D,

so that for any composable pair f, g, the composition Fg ◦Ff is equal to F (gf),
and for all A, F (idA) is equal to idF (A).

Example 1.1.2.2. One can define many functors between the categories in
Example 1.1.1.3.

1. There is a functor U : Grp→ Set, called forgetful, sending each group to
its underlying set. There are similar functors with domain Top,Ring,Set•
and so on. Similarly, one can define a functor U : R-Mod→ Ab forgetting
the multiplicative structure.

2. The fundamental group defines a functor π1 : Top• → Grp.

3. The operation of taking the free group over a given set produces a functor
F : Set→ Grp.

4. For an object A in a locally small category C we can define a functor
C(A,−) : C → Set that to each object B maps the set of morphisms
A→ B, and at each morphism acts as postcomposition. Similarly, one can
define a functor C(−, A) : Cop → Set.

Of course, we could wonder why should we stop at maps between categories
when we have new objects to relate, namely functors.

Definition 1.1.2.3 (Natural transformation). A natural transformation α from
F to G, written α : F ⇒ G, is the data of

� for each object A in C, a morphism αA : F (A) → G(A) in D, called the
component of α at A,

such that at any f : A→ B the square

F (A) G(A)

F (B) G(B)

GfFf

αA

αB

commutes.

3

Example 1.1.2.4. Let C be a locally small category, then every morphism
f : A→ B produces a natural transformation f∗ : C(B,−)⇒ C(A,−) that acts
by precomposition.

Functors and natural transformations can be composed in different ways,
depending on how they combine.

Lemma 1.1.2.5 (Vertical composition, [ML78, II.5]). Suppose α : F ⇒ G and
β : G⇒ H are natural transformations between parallel F,G,H : C → D. Then
there is a natural transformation β · α : F ⇒ G defined as (β · α)A = βA ◦ αA.

Lemma 1.1.2.6 (Horizontal composition, [ML78, II.5]). Suppose α : F ⇒ G and
β : H ⇒ K are natural transformations where F,G : C → D and H,K : D → E .
Then there is a natural transformation β ∗ α : HF ⇒ KG where (β ∗ α)A is
provided by the following composition.

HF (A) KF (A)

HG(A) KG(A)

βF (A)

KαAHαA

βG(A)

The horizontal composition of α and β is called their whiskering. When many
are computed, we might omit writing the “∗”: that is the case, for example, in
Section 3.2.

Corollary 1.1.2.7. As one could consider either α or β to be the identity, this
produces a way to compose natural transformations with functors, as well.

1.1.3 2-categories

Of course one could go on and try describing morphisms of natural transforma-
tions, and then morphisms of such morphisms, and so on. For the purpose of
this thesis, we only need information up to level 2, meaning concerning objects,
functors, and natural transformations. Actually, considering them all together
encourages a new definition to be given.

Definition 1.1.3.1 (2-category). A 2-category C is the data of

� a collection of objects or 0-cells, and

� a collection of morphisms or 1-cells between pairs of 0-cells, and

� a collection of 2-cells between parallel pairs of 1-cells

such that

� 0-cells and 1-cells form a category,

� for each pair of objects A,B, C(A,B) is a category with objects the 1-cells
of the form f : A → B and morphisms the 2-cells between them, with
composition · called vertical composition,

� for any object A there is a functor 1→ C(A,A) that picks out the identity
1-cell idA and its identity 2-cell IdidA ,

4

� for all objects A,B,C there is a functor ∗ : C(B,C)× C(A,B)→ C(A,C)
called horizontal composition which is associative and satisfies IdidH ∗ IdidF = IdidHF .

Example 1.1.3.2. The category Cat of locally small categories is a 2-category,
with vertical and horizontal composition as in Lemma 1.1.2.5 and Lemma 1.1.2.6.

One can naturally define the appropriate notion of a functor between 2-
categories, namely a 2-functor, and extend many related concepts, such as that
of adjoint pair, equivalence, and so on. We will see it all applied in the following
chapter, but point the reader to expository texts for a formal introduction, see
for example [KS74] for an early presentation of the topic.

1.1.4 Logical environment

As this aims to be a thesis in logic, above all, we ought to spend a few words
on what is the logical environment the theory of (fibered) categories lives in.
Different scholars have taken different approaches, some considering an extension
of ZF(C) to include classes, some building a suitable hierarchy of Grothendieck
universes, some using NBG. We do not dwell on their similarities or differences,
but present perhaps the most commonly used, which the reader might find a
detailed account of in [Shu08]. Other notable resources are [FK69] and [Bén85].

The reason why the theories described take into account at least two types
of entities, commonly called sets and classes, is that some key categorical
constructions that are interesting for mathematicians only make sense when one
is allowed to restrict sizes to a smaller universe than the one one usually works
in, or, conversely, one wishes to include constructions that inevitably explode
the size over to a second, bigger, universe. Of course Cantor’s paradox is an
occurrence of the second, while one of the most famous examples of the first is
the following.

Theorem 1.1.4.1 ([McL92, Ch. 24]). If a category C has products which are
indexed by the collection of morphisms in C, then C is a preorder. In particular,
any small complete category is a preorder, and no large category that is not a
preorder can admit products indexed by proper classes.

This work is meant to be read in ZFC, meaning Zermelo-Fraenkel set theory
(a comprehensive account of which can be found in [Jec07]) with the axiom of
choice. We consider a universe V whose elements we call sets, then any category
having objects and arrows being sets in V we call small (with respect to V). If
one wishes to consider the category of sets and functions, already they end up
needing a new, bigger, universe. This can be achieved in the language of ZFC,
still, because the axiom of replacement itself guarantees that the image of a set
under any “class function” is a set. There exists a class of all sets, namely V ,
while there might be things, such as V , which are not sets: these we call proper
classes. We say that a category is large if its collection of objects and arrows are
proper classes, and say that it is locally small if the collection of arrows with
fixed domain and codomain is a set.

Now to choice. There are different non-equivalent formulations of it, but in
classical ZF it is expressed for sets. Given that we have classes, too, we might
need to consider a version for classes: this is usually called the axiom of global
choice. Since assuming them both remains a delicate matter, we will express

5

explicitly when we use each. As a staring point, we refer to [Jec07, I.5] for a
technical presentation of choice in ZF, comprising of the principle of unique
choice, and to [Mai17] for the case of dependent type theory.

Of course we are making our life easy here, and perhaps we are in the right,
provided that discussing foundations of category theory is not the aim of the
present work. Nevertheless, given the spirit of our approach to both logic and
categories, entertaining the idea that categories could be the foundations, and
foregoing sets completely is perhaps not so far-fetched. In fact, as [Bén85, §2]
puts it, why should we exclude the possibility of having for sets the objects of an
elementary topos, instead of “finding” Set itself, together with its properties?
Well, one could argue [Bén85, §3] that the moment one decides to do that, and
use categories and their most peculiar constructions, one cannot help but stumble
on fibrations.

This is why we are here. We hope that the present work will convince the
reader of what benefits using these techniques can bring to the study of logic.

1.2 Motivation

Fibrations were introduced by A. Grothendieck in [Gro61] following the observa-
tion of different phenomena arising in geometric and algebraic contructions. In
particular, J. Bénabou writes:

Fibrations were introduced in [Gro61] to axiomatize in terms of
descent all the “gluing-processes”. [Bén85, §12]

In order to describe a few, we first need to point out a simple consequence of
the way in which categories are built: if the main notion of categories is that
of arrows, it most makes sense to compare objects depending on the arrows
relating them. In many ways, this is well-known in mathematical practice,
because strict identities are often too restrictive to say something meaningful,
and this is why such a big part of math involves isomorphisms instead. This
has had many repercussions in logic as well, see for example the works based
on sheaves [Sco79, Pit99], and the techniques of homotopy type theory [Uni13].
This suggests we reformulate many definitions from basic category theory asking
for isomorphism instead of identity in certain equations. We will do it quite a
lot in the following chapters, for the moment we only do it for the definition of
functor.

Definition 1.2.0.1 (Pseudofunctor). A pseudofunctor F from a category C into
the category Cat, written F : C ⇝ Cat, is the data of

� for each object A in C, an object F (A) in Cat, and

� for each morphism f : A → B in C, a morphism Ff : F (A) → F (B) in
Cat,

so that for any composable pair f, g, the composition Fg ◦ Ff is isomorphic to
F (gf), and for all A, F (idA) is isomorphic to idF (A). Moreover, the isomorphisms
above are all natural, associative and respect identities in the sense that certain
diagrams commute.

6

The notion of pseudofunctor is nowadays mostly considered in the context of
bicategories [Bén67], and a suitable definition can be expressed between any pair
of bicategories or 2-categories, see for example [Lei98] for a thorough description
of the necessary axioms. Throughout this presentation, instead, given that the
mathematical gadget we are really interested in are Grothendieck fibrations
(1.3.0.2), we simply consider pseudofunctors from 2-categories with trivial 2-cells
(containing no more data than a 1-category) into Cat, and only use Cat second
dimension to describe the necessary coherences. This is also the main interest of
the original work introducing fibrations, [Gro61], where the perspective is that
of providing a generalization of the notion of (set-valued) presheaf.

Example 1.2.0.2 (Right actions of a monoid). Let Mon be the category of
monoids and monoid homomorphisms. To every monoid M one can associate
the category H(M) = SetM

op

of right actions of M on (some) set, and for each
h : N →M a functor

H(h) = h∗ : SetM
op

→ SetN
op

,

such that for each set X and M -action α, h∗(X,α) : X × N → X acts as
(x, n) 7→ α(x, h(n)). This assembles into a pseudofunctor H : Monop ⇝ Cat.

Example 1.2.0.3 (Modules for a ring). Let CRing be the category of com-
mutative rings with units and ring homomorphisms. To every ring R one can
associate the category H(R) = R-Mod of R-modules and their morphisms, and
for each h : S → R a functor

H(h) : R-Mod→ S-Mod,

that “restricts” scalars, meaning that for an R-module M , H(h)(M) is the
S-module with the same addition as M , and multiplication r · x = h(r) ·M x.
This assembles into a pseudofunctor H : CRingop ⇝ Cat.

Example 1.2.0.4 (Families of objects). Let C be a category, and consider the
functor

Fam(C) : Setop → Cat

that maps each set I to CI , the category of I-indexed objects in C, and each
function u : J → I to the reindexing along u. More precisely, an object in CI is a
family of the form {Xi}i∈I with Xi an object of C for each i ∈ I. The image of u
is a functor CI → CJ that maps a family {Xi}i∈I to {Xu(j)}j∈J . This example
is paradigmatic in the work of Bénabou and is greatly discussed in [Str22] and
in [Jac99].

Example 1.2.0.5 (Slice category). Consider C a category with pullbacks and
define

P : Cop ⇝ Cat

that maps an object A to the slice category C/A and a morphism f : B → A to the
functor f∗ : C/A → C/B computing the pullback along f . This is not functorial
but only pseudofunctorial because in general we only have P (fg) ∼= P (g) ◦ P (f)
by the universal property of pullbacks.

See [Jac99, Prop. 1.2.2] for a proof that when C = Set this is equivalent (in
a suitable sense) to Example 1.2.0.4.

7

Example 1.2.0.6 (Restricted slice category). Of course one can restrict the
construction in Example 1.2.0.5 to any class of maps in a category C, provided
that a pullback exists and that such class is closed under taking it. A classical
example is that of monomorphisms, which is strictly related to Example 1.7.1.5.

All of the above describe for each object a category, called the fiber over such
object, and for each morphism a way to move from one category to the other.
This is why pseudofunctors in Cat are often also called indexed categories. The
key intuition in [Gro61] was that of turning this perspective around, so that one
could collect all of the data of all of these categories into one total category, in
such a way that one could always retrieve the original index of each fiber. This
process is described in Section 1.5.

1.3 Main definitions

The result of the change in perspective described at the end of the previous
section is that of a functor with the special property that one can move through
fibers in a coherent way. Such a coherence is identified in the notion of cartesian
morphism.

Definition 1.3.0.1 (Cartesian morphism). Let p : E → B a functor and
s : B → A a morphism in E . We say that s is p-cartesian or cartesian over
σ : Θ→ Γ if p(s) = σ and for any other r : C → A and τ such that p(r) = σ ◦ τ
there is a unique t : C → B in E such that p(t) = τ and s ◦ t = r.

C

B A E

Ξ

Θ Γ B

s

r

σ

σ◦τ

τ

p

We say that s is a (p-)cartesian lifting of σ.

Definition 1.3.0.2 (Fibration). A functor p : E → B is a fibration if for all A
in E , each σ : Θ→ pA has a cartesian lifting. We also say that E is fibered over
B or that E is over B. Oftentimes B is called the base category and E the total
category of p.

Example 1.3.0.3 (The fundamental fibration). One of the main examples
of fibration is that underlying Example 1.2.0.5. Consider a category C and
the codomain functor cod: C2 → C: the universal property of cartesian liftings
becomes that of pullbacks, so that a square over a map in C is cod-cartesian iff

8

it is a pullback. In fact, the very term cartesian is inspired by this example.

C ′

C B′ A′

B A C2

C

B A C

s

r

s

s◦t

t

cod

t

r′

More generally, it is possible to show that

� cod is an opfibration (1.8.0.2), and

� cod is a fibration iff C has pullbacks.

Dual results hold for the domain functor dom.

Example 1.3.0.4 (The simple slice, [Jac99, 1.3]). Another slice-like fibration is
the so called simple slice, which is of much interest to the study of simple type
theory, and will be thoroughly discussed in Chapter 3.

Let B be a category with products, and consider the category s(B) whose

� objects are pairs (I,X) of objects in B;

� arrows (J, Y)→ (I,X) are pairs (u, f) of maps in B, with u : J → I and
f : J × Y → X.

Composition can be defined using the universal property of products, meaning
that the composite of maps

(K,Z)
(v,g)→ (J, Y)

(u,f)→ (I,X)

is defined as the pair (u ◦ v, f ◦ ⟨g, vpr1⟩), and identities are of the form (id,pr2).
The obvious projection functor s(B)→ B sending

(I,X) 7→ I and (u, f) 7→ u

is a fibration. Its fibers are also denoted s(B)I = B//I , they have objects X
in B and maps X ′ → X are f : I × X ′ → X in B: one can think of these as
I-indexed families fi : X

′ → X with fixed domain and codomain. Perhaps a
comparison makes the action more evident, so recall that in the case of Fam
from Example 1.2.0.4 these are fi : X

′
i → Xi. If the definition of vertical maps

makes the reader think of a co-Kleisli construction, they are right.

Lemma 1.3.0.5 (Uniqueness up to iso of the cartesian lifting). Two cartesian
liftings of a σ : Θ→ pA are isomorphic in E/A.

If cartesian maps allow to move from fiber to fiber, it is natural to give a
name to maps that do the opposite.

9

Definition 1.3.0.6 (Vertical morphism, fibers). A morphism f : A′ → A such
that p(f) = id is called vertical. For Γ in B we write EΓ for the subcategory of E
of objects and vertical maps over Γ: this is the fiber over Γ.

We might also denote Eσ the subcategory of E of objects and maps that are
over σ in B.

Many properties that one usually lists of both cartesian and vertical maps,
such as that of being classes that are closed under composition, are contained in
the following result.

Proposition 1.3.0.7 (Vertical/cartesian factorization system, [Mye20]). Con-
sider p : E → B a fibration. The classes of vertical and cartesian morphisms
form a orthogonal factorization system on E . It additionally has the following
properties:

1. if g and gf are vertical, then so is f ;

2. pullbacks of vertical maps along cartesian ones exist and are vertical.

Remark 1.3.0.8 (Fibrations in any 2-category). We shall notice that many
of the constructions here are heavily Cat-based, but could be reproduced in a
different 2-category (or bicategory), see for example [Str80] and others. In the
present work, we only use the term fibration to mean a Grothendieck fibration,
i.e. a strict fibration in Cat.

1.3.1 On the fibers

One can produce a classification for fibrations based on the structure of their
fibers. The simplest example is that of fibrations where fibers are just sets.

Definition 1.3.1.1 (Discrete fibration). A fibration p is said to be discrete if
all vertical maps are identities.

Remark 1.3.1.2 (Uniqueness of cartesian lifting). In a discrete fibration, carte-
sian liftings are unique: in fact, they are generally unique up to vertical iso-
morphism (see 1.3.0.5), and isomorphisms can only be identities in the discrete
case.

Remark 1.3.1.3 (Cartesian wrt to discrete). With respect to a discrete fibration,
all morphisms are cartesian. This follows, from example, from Proposition 1.3.0.7.

One can see that a discrete fibration ends up having on each context not
any category, but a category that is a set (modulo size issues). While we will
discuss more on this in Proposition 1.5.0.4, we care to stress that this has proven
to be crucial in describing models for dependent types, as for a given context
there is traditionally supposed to be only a set (again, modulo size issues) of
type-judgements in that context. We will come back to this in Chapter 3.

Additionally, discrete fibrations fit into an orthogonal factorization system
on Cat with an interesting logical interpretation.

Theorem 1.3.1.4 (Comprehensive factorization). Every functor has an orthog-
onal factorization into a final functor followed by a discrete fibration.

10

Sketch of the proof. For a functor F : C → D define E(F) to be the category hav-
ing for objects pairs (D, [g]) with g : FC → D and [g] representing the connective
component of (g, C,D) in (F/idD). One can define a functor C → E(F) map-
ping C to (FC, [idFC]) and show that this is final, also the forgetful E(F)→ D
is a fibration and is clearly discrete. See [SW73] for the full proof and more
context.

The reader might have noticed the familiar construction of E(F) in the proof
above: we will talk about it extensively in Section 1.5. Unfortunately, being
discrete is not a categorical notion, in the sense that its not a property that is
preserved under equivalence of categories, but we can identify other properties
of the fibers that end up being both interesting on their own and leading to the
next best notion of discreteness.

Definition 1.3.1.5 (Groupoidal, faithful fibration). A fibration p is said to be

� groupoidal if all vertical arrows are isomorphisms;

� faithful if it is a faithful functor;

� essentially discrete if it is both faithful and groupoidal.

Remark 1.3.1.6 (Essential discreteness). A fibration p is equivalent to a discrete
one iff it is essentially discrete. A fibration p is essentially discrete iff p is faithful
and reflects isomorphisms. See [Str22, Sec. 9].

1.3.2 On cartesian liftings

Recall from Lemma 1.3.0.5 that the cartesian lifting of a given map is unique
only up to isomorphism. This poses the question of what happens when one
considers a particular choice of liftings.

Definition 1.3.2.1 (Cleavage). A cleavage S for a fibration p : E → B is a
choice for each A in E and σ : Θ→ pA of a cartesian lifting of σ at A. We denote
it sA,σ : S(A, σ) → A. A cleavage induces for each σ : Θ → Γ in B a functor
EΓ → EΘ by cartesianness of sA,σ.

S(A′, σ) A′

S(A, σ) A

Θ Γ

sA,σ

σ

f

sA′,σ

We call this reindexing functor and denote it with S(−, σ) or σ∗, as it is often
done in the literature.

Though this process seems functorial, it is not always the case, as one would
hope, that for composable σ and τ

S(−, σ ◦ τ) = S(−, τ) ◦ S(−, σ),

11

though one can show that they are canonically isomorphic.

S(A, σ ◦ τ)

S(S(A, σ), τ) S(A, σ) A

Ξ Θ Γ

sA,σ

στ

sS(A,σ),τ

sA,σ◦τ∼

One can see such a behavior in Example 1.2.0.5 and in many other examples that
occur naturally in the mathematical practice. Similarly, one does not necessarily
have S(−, id) = id, but only a canonical isomorphism.

Notation 1.3.2.2 (Cartesian liftings). If a cleavage S is not specified, we write
σ : A[σ]→ A or σ : σ∗A→ A or σ : Aσ → A for a cartesian lifting of σ at A.

Definition 1.3.2.3 (Split fibration). A cleavage S for a fibration p is called
split or splitting if

1. sA,idΓ = idA;

2. sA,σ◦τ = sA,σ ◦ sS(A,σ),τ .

A fibration is called split if it is endowed with a split cleavage.

As it will be hopefully clear from the rest of this work – starting from
Section 1.7 – we are interested in using fibrations because they can reasonably
model the relation that is entertained between types/formulae and their contexts.
In particular, the process of computing the cartesian lifting of a given map at a
given type/formula amounts to computing substitution, hence split fibrations
will be of main importance because they interpret a logical system in which
computing substitution with (along) two suitably composable terms (maps)
amounts to computing it with the resulting composite term (map). This is
sometimes referred to as having substitution on-the-nose.

1.3.3 Characterizing fibrations

The geometric inspiration of fibrations is perhaps evident in the following result.

Theorem 1.3.3.1 ([Gra66, Theorem 2.10]). The following are equivalent for a
functor p : E → B:

1. p is a fibration;

2. for each A in E , p : E/A → B/pA has a right adjoint right inverse.

Intuition. The right adjoint performs the action of picking a cartesian lifting.

In the style of [Gra66] we can provide a new characterization of fibrations by
means of lifting of 2-cells. We will make abundant use of it in Chapter 2.

12

Definition 1.3.3.2 (♯-lifting). Consider a functor f : A → B and a 2-cell
α : c′ ⇒ c : C → B, and compute the pullback of c and c′ along f . A sharp lifting
or ♯-lifting of α along f is a pair (id ×B f, α ×B f) of a functor and a natural
transformation as below,

c×B f A

c′ ×B f

C B

C

f

c

c′id

f∗c′

f∗c

id×Bf

α

α×Bf

so that all “vertical” squares commute.

Theorem 1.3.3.3 (Characterizing fibrations via ♯-lifting). The following are
equivalent for a functor p : E → B:

1. p is a fibration with a cleavage S;

2. each 2-cell α : c′ ⇒ c : C → B admits a terminal ♯-lifting along p, meaning
that provided another (g, β) ♯-lifting of α along p, we have a unique vertical
β such that β = α×B p ∗ β.

c×B p E c×B p E

c′ ×B p = c′ ×B pgg

α×Bpβ

β

Proof. If p is a fibration with cleavage S, we can define the functor

id×B p : c×B p→ c′ ×B p, (X,A) 7→ (X,S(A,αX))

reindexing A along αX : c′X → cX = pA. All desired squares commute. More-
over, we have a natural transformation α ×B p : p∗c′ ◦ id ×B p ⇒ p∗c that on
components is defined as follows

(α×B p)(X,A) = sA,αX .

In particular, since each sA,αX is cartesian we have that the pair (id×B p, α×B p)
enjoys the desired universal property: the induced unique vertical arrows assemble
into the necessary β.

Conversely, let p a functor and consider the trivial 2-cell dom⇒ cod, then

13

there exists a terminal sharp lifting as below,

cod×B p E

dom×B p

B2 B

B2

p

cod

domid

p∗dom

p∗cod

id×Bp

α

α×Bp

therefore id ×B p maps a pair (A, σ : Θ → pA) to a pair (B, σ : Θ → pA) with
pB = Θ, and there is a morphism

(α×B p)(A,σ) : B → A

in E over σ. We denote (id×B p)(A, σ) = S(A, σ) and (α×B p)(A,σ) = sA,σ. It
is cartesian because any other map over σ : Θ→ pA is part of another ♯-lifting
(g, β) of α along p and since (id ×B p, α ×B p) is terminal with respect to this
property, the unique induced β produces a suitable unique vertical map into
S(A, σ).

1.4 The 2-category of fibrations

We can gather fibrations into a 2-category.

Definition 1.4.0.1 (The 2-category of fibrations). Call Fib the 2-category
having

� for 0-cells fibrations;

� for 1-cells strict fibration morphisms p → p′ i.e. pairs of functors (E,B)
making the following square commute

E E ′

B B′
p p′

E

B

and such that if a map s is p-cartesian over σ, then Es is p′-cartesian over
Bσ;

� for 2-cells (E1, B1)→ (E2, B2) pairs of natural transformations (ϕ, ψ) with
ϕ : E1 ⇒ E2 and ψ : B1 ⇒ B2 such that p′ ∗ ϕ = ψ ∗ p.

Most of the times one is particularly interested in categories over a fixed base
B, for instance in Theorem 1.5.0.2. Specifying the definition above, one gets the
following.

14

Definition 1.4.0.2 (The 2-category of fibrations over B). Call Fib(B) the
2-category having

� for 0-cells fibrations over B;

� for 1-cells functors such that p′E = p and preserving cartesian maps, also
called cartesian functors;

� for 2-cells natural transformations with vertical components.

Definition 1.4.0.3 (Cartesian functors). More generally, for a lax-commutative
square

E E ′

B B′
p p′

E

B

α

involving fibrations p, p′ and functors E,B, we will say that E is cartesian if
for each p-cartesian map f in E (over some σ), E(f) is p′-cartesian (over B(σ)).
This will come in handy in Chapter 3.

Lemma 1.4.0.4 (Properties of cartesian functors, [Jac93, Lemma 2.5]). Let
p : E → B and q : D → B be two fibrations, and let F : E → D be a cartesian
functor. Then:

1. for each Γ in B, F induces a F |Γ : EΓ → DΓ, and

F is full (faithful) iff every F |Γ is full (faithful);

2. if F is fully faithful, then

s is p-cartesian iff Fs is q-cartesian.

Let us now call Cat2 the 2-category having for objects functors, with
Cat2(F,G) the category of pairs of functors (H0, H1), (K0,K1) and of nat-
ural transformations (α0, α1) as below,

C C′

D D′

F G

K0

H0

K1

H1

α0

α1

with GH0 = H1F , GK0 = K1F and G ∗ α0 = α1 ∗ F .
One can quickly see that Fib is a 2-full subcategory of Cat2. Not only that,

but the composition of such inclusion with cod: Cat2 → Cat yields a fibration
itself, with fibers precisely Fib(B)’s.

Proposition 1.4.0.5 (The fibration of fibrations, [Jac93, Proposition 2.6]).
The functor Fib → Cat sending each fibration to its base is itself a fibration.
Moreover FibB = Fib(B).

15

Sketch of the proof. Consider a fibration p : E → B and a functor H : C → B.
The pullback of p along H in Cat produces a functor which is itself a fibration,
and the resulting square is a strict fibration morphism.

One could of course consider the 2-subcategories of all fibrations that are
discrete, groupoidal, faithful. In the case of split ones, we additionally ask that
cartesian functors preserve the cleavage, hence the respective 2-subcategory is
not 1-full. We will come back to this with details when needed.

1.5 Fibrations and pseudofunctors

We have been saying that a fibration induces for each object of the base a
category, namely the fiber over such object, and that (provided a cleavage) for
each morphism a functor between such fibers. A whole lot of functoriality is
happening, and this Section details how, expressing a correspondence between
fibrations and pseudofunctors, sometimes also called indexed categories.

Remark 1.5.0.1 (On the existence of a cleavage). The results that follow
assume either one of the two:

1. to each fibration it is possible to associate at least one cleavage: this heavily
depends on the meta-theory one is working in;

2. each fibration comes equipped with a choice of cleavage: this implies
slightly changing the definition of fibration, and relaxing the definition of
morphism of fibrations.

One could argue that the definition of fibration is made in order for Theo-
rem 1.5.0.2 to hold, so we ask the reader to commit to either one of the two
possibilities. More on this and the existence of cleavages, especially split ones,
will follow in Section 1.6.

Theorem 1.5.0.2 (Grothendieck construction, [Gro61]). There exists a 2-
equivalence

Fib(B) ∼= Psd[Bop,Cat]

between the 2-category of fibrations (with base B), cartesian functors, and
natural transformations, and that of contravariant pseudofunctors (from B) in
the sense of 1.2.0.1, pseudonatural transformations, and modifications. Here
Cat stands for the 1-category of categories and functors.

Sketch of the proof. Provided a fibration E → B, we can define a pseudofunctor
Bop ⇝ Cat mapping each Γ in B to its fiber category, and each Θ→ Γ to the
functor EΓ → EΘ described in Section 1.3.2. The universal property of cartesian
liftings provides functoriality only up to isomorphism.

Conversely, a pseudofunctor F : Bop ⇝ Cat gives rise to a fibration p :
∫
F → B,

with
∫
F the category where

� objects are pairs (Γ, A) with Γ in B and A in F (Γ),

� arrows (Θ, B)→ (Γ, A) are pairs (σ, s) with σ : Θ→ Γ in B and s : B → F (σ)(A)
in F (B),

16

and p is the projection on the first component. Such a construction, called the
Grothendieck construction for F , can also be seen as the result of a lax-colimit
of the functor along a certain universal map.

Cartesian functors are in a 1-to-1 correspondence with natural transformations
between the relative pseudofunctors, since for a given context we have a functor
between the respective fibers if and only if the functor between the total categories
is cartesian.

One can read more on this proof in [Jac99, Section 1.10] or, for an account
following the original work of Grothendieck, [Vis04, Section 3.1].

Remark 1.5.0.3 (Cartesian maps for a Grothendieck fibration). With respect to
p :

∫
F → B, cartesian maps are precisely those (σ, s) where s is an isomorphism.

Of course, additional properties of fibrations translate to properties of the
corresponding pseudofunctors, and one could almost trivially restrict the 2-
equivalence above to the respective 2-subcategories.

Proposition 1.5.0.4 (Restricting the equivalence). Let p a fibration and F its
correspondent under Theorem 1.5.0.2. We have that:

� if p is discrete then F is a functor Bop → Set;

� if p is faithful then F is a functor Bop → Pos;

� if p is groupoidal then F is a pseudofunctor Bop ⇝ Gpd;

� p is split iff F is a functor.

1.6 Split fibrations and the fibered Yoneda lemma

As we have mentioned, when one is interested in logic, split fibrations bear a
special interest because they interpret substitution on-the-nose. As discussed in
Remark 1.5.0.1, one can reasonably hope to find a cleavage for each fibration,
and maybe it is possible to achieve that such a cleavage picks identities on
identities, but this is not the case for composition, as would be instead required
by Definition 1.3.2.3, and splittings can behave in unexpected ways with respect
to their transpositions to pseudofunctors. This discussion closely follows [Str22,
Section 3]. The main results are due to J. Bénabou and J. Giraud.

Remark 1.6.0.1 (Counterexamples in fibrations).

1. Not all fibrations admit a choice of a split cleavage. Consider for example
the (categories corresponding to) groups B = (Z2,+2) and E = (Z,+),
and the fibration p : a 7→ a(mod 2). If a splitting for p existed, it would
produce a functor s : B → E such that p ◦ s = Id, but there is no group
homomorphism h : (Z2,+2)→ (Z,+) with h(1) odd.

2. Different splittings of the same fibration may give rise to the same Cat-
valued functor. For example, consider H : 2op → Ab mapping 1 to the
zero group and 0 to some non-trivial group A. It follows that every a ∈ A
induces a different splitting of

∫
H simply by picking a to be the choice of

lifting of 0→ 1, but these all produce the same functor 2op → Ab, namely
H.

17

Nevertheless, one can always produce a split fibration out of a given one. In
fact, one can do it in two canonical ways: consider Sp(B) the 2-subcategory of
Fib(B) of split fibrations, cartesian functors preserving cleavages, meaning for a
F : p→ p′ that

F (S(A, σ)) = S′(FA, σ),

and natural transformations, then there are both a left and a right 2-adjoint to
the 2-forgetful U : Sp(B)→ Fib(B).

1.6.1 Right adjoint splitting

Remark 1.6.1.1 (Intuition). The domain fibration Γ = dom: B/Γ → B is
the discrete fibration associated to the representable presheaf HΓ = B(−,Γ).
Additionally, to each σ : Θ → Γ we can match a cartesian functor σ : Θ → Γ
which acts as postcomposition with σ: this corresponds to Yoneda’s presheaf
morphism HΘ →HΓ. Functors h as

B2 E

B
pdom

h

coherently pick objects of the form A(σ) → A out of (and over) a σ in B2, so
that when one asks for h to be cartesian, one gets a split cleavage.

Theorem 1.6.1.2 (Fibered Yoneda lemma). The 2-functor forgetting the split-
ting U : Sp(B) → Fib(B) has a right 2-adjoint. Moreover, the corresponding
counit is an equivalence.

Sketch of proof. We can define a 2-functor S : Fib(B)→ Sp(B) that on objects
acts as follows: consider a fibration p : E → B and define the following

Spr(p) : Bop → Cat, Γ 7→ Fib(Γ, p),

where Γ is dom: B/Γ → B. Since this is strictly functorial, the Grothendieck
construction provides a split fibration.

The counit US(p)→ p is obtained by mapping a pair (Γ, h : Γ→ p) to h(idΓ).
One can show that this in fact satisfies the appropriate universal property, and
that it is fully faithful. If one assumes the axiom of choice for classes, then it
is possible to show that it is also surjective on objects and that is therefore an
equivalence of categories.

Corollary 1.6.1.3 (Canonical equivalence). Every fibration is equivalent to a
distinguished split one.

Remark 1.6.1.4 (On the meta-theory). Theorem 1.6.1.2 uses the axiom of
choice for classes to prove that the counit is an equivalence, but that U ⊣ S is
independent from it.

1.6.2 Left adjoint splitting

Theorem 1.6.2.1 (Left adjoint splitting). The 2-forgetful functor U has a left
2-adjoint. Moreover, the corresponding unit is an equivalence.

18

Sketch of the proof. One can define a functor L : Fib(B)→ Sp(B) acting on ob-
jects as follows. Let p : E → B a fibration with a cleavage (recall Remark 1.5.0.1):
without loss of generality, we can pick it in such a way that it satisfies

sA,id = idA,

if not, we can just switch the original one with one that picks the desired map at
the identities. A cleavage with this property is sometimes said to be normalized.
Out of this we may construct a functor Spl(p) : Bop → Cat, which in turn gives
rise to a split fibration, L(p). We define Spl(p)(Γ) to be the category with objects
pairs (σ,A), where A is in E and σ : Γ → pA, and morphisms (τ,B) → (σ,A)
are vertical maps as below,

B S(B, τ)

S(A, σ) A

pB Γ pAτ σ

meaning that Spl(p)(Γ) ((τ,B), (σ,A)) = EΓ (S(B, τ), S(A, σ)). With a bit of
care, one can define Spl(p) on base morphisms, too, repeatedly using cartesianness
of maps, and show that it is strictly functorial by construction.

The unit p→ UL(p) maps A to (idpA, A) and satisfies the desired universal
property. Since our starting cleavage is normalized, it is possible to show that
this produces an equivalence of fibrations.

Remark 1.6.2.2 (On the meta-theory). In this case, it is possible to avoid
choosing a cleavage: one can define morphisms between the fibers of Spl(p) to
be certain equivalence classes, and see that for each (normalized) cleavage on p
there exists precisely one representative of that in said equivalence class. See
[Str22, p. 14] for more details.

Remark 1.6.2.3 (It takes a 2-category). Both in Theorem 1.6.1.2 and in
Theorem 1.6.2.1, the 2-categorical aspect of Fib is fundamental: a fibration is
not isomorphic but equivalent to its split counterpart.

Both splittings have found interesting uses in logic, and have different inter-
pretations. We will come back to some in Chapter 3.

1.7 Faithful fibrations and the theory of doctrines

A special mention should go to faithful fibrations, as they represent one of
the stepping stones in the process of using fibrations, which originally had a
geometric flavor, to do logic.

In a series of seminal papers, F.W. Lawvere [Law69, Law70] introduces the
notion of hyperdoctrine following the intuition that logical languages and theories
can be encoded into indexed categories, and that the study of their 2-categorical
properties can be both meaningful and fruitful. One striking example is that
of connectives and quantifiers, which are determined by adjunctions between

19

certain fibers. We here revisit some results and definitions from the literature in
increasing order of complexity.

For the rest of this section, we assume that B has finite products, for we want
to be able to produce (non dependent) contexts juxtaposing typing statements.
We write Pos for the category of partial orders and monotone functions.

1.7.1 Primary

Definition 1.7.1.1 (Primary doctrine, [MR13]). A primary doctrine is a functor
P : Bop → Pos which factorizes via a functor Bop → InfSL, the category of inf-
semilattices, i.e. such that

1. for every Γ in B, the partial order P (Γ) has infinite infima, and

2. for every σ : Θ→ Γ in B, the monotone map P (σ) = Pσ preserves them.

A primary doctrine contains the structure needed to describe a many-sorted
logic with conjunction and a constant for “true”.

Example 1.7.1.2 (The algebra of formulae for a theory). The prominent
example of a primary doctrine is that induced by the Lindenbaum-Tarski algebra
of a given first-order theory T in a language L. We take ctx to be the category
where

� objects are lists of distinct variables x = (x1, . . . , xn),

� arrows are lists of substitution for variables, meaning [t1/y1, . . . , tm/ym] =
[t/y] : x→ y, with tj ’s being L-terms that are built on variables x1, . . . , xn,

and composition is defined by simultaneous substitution. The product of two
lists x and y is a list w with length the sum of the lengths of x and y, and
projections on x and y are substitutions with, respectively, the first n and the
last m variables in w. Categorically and in the sense of [Law63], this is the free
Lawvere theory on the language L.

One can define the functor LTT : ctxop → InfSL so that to each list x, the
category LTT (x) has for objects equivalence classes of well-formed formulae
in L with free variables at most those that are in x, and with respect to the
equivalence relation induced by reciprocal deducibility in T , ϕ ⊣⊢T ϕ′. Notice
that this makes our treatment proof-irrelevant. Maps in LTT (x) are provable
consequences in T . Composition is given by the cut rule of the calculus, and
identities are tautologies. Since substitution preserves provability, LTT can be
suitably extended to a functor.

Such a construction was first introduced in [Law70] and is thoroughly ex-
plained in [KR77] and [MR13].

Example 1.7.1.3 (The powerset doctrine). Provided a suitable meta-theory,
one can define the doctrine S : Setop → InfSL that

� to each set A assigns its poset of subsets, where morphisms are given by
inclusions,

� to each function f : B → A assigns a functor between the fibers that acts
as the inverse image, Sf = f−1.

20

Example 1.7.1.4 (The powerobject doctrine). Example 1.7.1.3 extends to any
elementary topos E . Let Ω be its subobject classifier: when computing E(−,Ω)
one gets a functor

E(−,Ω): Eop → HeytAlg

with values in Heyting algebras and their morphisms. This captures subobjects,
see for example [MLM94, Prop. I.3.1].

Example 1.7.1.5 (The subobject doctrine). Actually, a result of the kind of
Example 1.7.1.4 holds with much weaker hypotheses: consider a category C with
finite products and pullbacks, and define S : Cop → InfSL mapping each object
A to the poset S(A) whose

� objects are (equivalence classes of) subobjects α : X ↣ A in C, and

� α′ ≤ α iff there is a commutative diagram

X ′ X

A
α′ α

x

for a necessarily unique x : X ′ → X.

Example 1.7.1.6 (The weak subobject doctrine, [MR13, Example 2.9]). Exam-
ple 1.7.1.5 can be generalized to an even weaker context. Consider a category C
with finite products and weak pullbacks, and define the functor Ψ: Cop → InfSL
given by the poset reflection of each comma category C/A with A varying in C.
Weak (chosen) pullbacks provide the desired reindexing functors.

Doctrines are not only interesting as objects, but also when one consider
morphisms between them: in particular, morphisms from LTT (Example 1.7.1.2)
to S (Example 1.7.1.3) have a special interpretation.

Lemma 1.7.1.7 (Models). There is a 1-to-1 correspondence between classical
models of T and indexed-categories morphisms LTT → S preserving the structure
of a primary doctrine.

We believe that Lemma 1.7.1.7 testifies to the clarity that the theory of
doctrines can bring to the study of logic. On top of a primary doctrine, we can
put different structure in order to expand our expressive power.

1.7.2 Elementary

Definition 1.7.2.1 (Elementary doctrine, [MR13]). A primary doctrine P : Bop → InfSL
is elementary if for every Γ in B there is an object δΓ in P (Γ× Γ) such that for
all Θ the functor

ÆΘ,Γ : P (Θ× Γ) −→ P (Θ× (Γ× Γ))

A 7→ P⟨pr1,pr2⟩(A) ∧ P⟨pr2,pr3⟩(δΓ)

is left adjoint to P⟨pr1,pr2,pr2⟩.

21

Remark 1.7.2.2 (Intuition). To clarify Definition 1.7.2.1 we unfold it in the
case of Example 1.7.1.2, and get the assignment

x, y ⊢ A(y, x) ⇝ x, x′, y ⊢ A(y, x) ∧ δ(x, x′),

so that when we ask that this is left adjoint to P⟨pr1,pr2,pr2⟩, we get

x, x′, y; A(y, x) ∧ δ(x, x′) ⊢ B(y, x, x′) iff x, y; A(y, x) ⊢ B(y, x, x).

It is clear that this amounts to asking (at each context) the existence of an
equality-like predicate.

Studying equality in this algebraic guise allows for interesting findings about
its “nature” to appear. Notably, it was shown in [EPR20] that the procedure of
freely adding equality predicates is comonadic, and that such a result can be
applied to the elimination of imaginaries in models of first-order theories.

1.7.3 Existential, universal

Definition 1.7.3.1 (Existential doctrine, [Law69]). A primary doctrine P : Bop → InfSL
is existential if for any Γ1 and Γ2 in B and for any pri : Γ1 × Γ2 → Γi, the rein-
dexing Ppri has a left adjoint ∃pri , this is natural in Γi, and together they
satisfy

1. the Beck-Chevalley condition, meaning that for any pullback of a projection
pr along any map σ

Θ′ Γ′

Θ Γpr

σσ′

pr′

⌟

and for any A in P (Θ), the canonical arrow ∃pr′Pσ′(A) ≤ Pσ∃pr(A) in
P (Γ′) is an iso;

2. Frobenius reciprocity, meaning that for pr : Θ→ Γ, A in P (Γ), and B in
P (Θ), the canonical arrow ∃pr(Ppr(A) ∧B) ≤ A ∧ ∃pr(B) is an iso.

Remark 1.7.3.2 (Intuition). Again, we turn to Example 1.7.1.2 for a better
understanding of the definition. The existential ∃1 acts as

x, y ⊢ A(x, y) ⇝ x ⊢ ∃y.A(x, y)

then adjointness provides

x; ∃y.A(x, y) ⊢ B(x) iff x, y; A(x, y) ⊢ B(x).

Beck-Chevalley guarantees that the existential commutes with substitution, so
that for A(x, y)

∃y.(A[t/x]) ⊣⊢ (∃y.A)[t/x],

while Frobenius dictates the following

∃y.(A(x) ∧B(x, y)) ⊣⊢ A(x) ∧ ∃y.B(x, y).

22

Similarly, one can give an account of the universal quantifier.

Definition 1.7.3.3 (Universal doctrine, [MR13]). A primary doctrine P : Bop → InfSL
is universal if for any Γ1 and Γ2 in B and for any pri : Γ1 × Γ2 → Γi, the rein-
dexing Ppri has a right adjoint ∀pri , this is natural in Γi, and together they
satisfy

1. the Beck-Chevalley condition;

2. Frobenius reciprocity.

Many other properties and structures can be translated into the language
of doctrines, and doctrines with such property or structure can be assembled
into suitable 2-categories. Their study provides many insights on the nature of
said properties and structures. The reader might be interested in [Pit99, MR13,
MR15, MPR17, EPR20, Tro20], and can find how these are related to cartesian
bicategories in [BSSS21].

1.8 Opfibrations, bifibrations

As one might expect, it is possible to recalibrate the discussion in Section 1.3,
Section 1.4, and Section 1.5 with covariant Cat-valued pseudofunctors, liftings
with a given domain, and so on.

Definition 1.8.0.1 (Opcartesian morphism). Let p : E → B be a functor and
s : B → A a morphism in E . We say that s is p-opcartesian or opcartesian over
σ : Θ→ Γ if it is cartesian over σ for p : Eop → Bop, meaning that p(s) = σ and
for any other r : B → C and τ such that p(r) = τ ◦σ there is a unique t : A→ C
in E such that t ◦ s = r.

C

B A E

Ξ

Θ Γ B

s

t

σ

τ

τ◦σ
p

r

We say that s is a (p-)opcartesian lifting of σ.

Definition 1.8.0.2 (Opfibration). A functor p : E → B is an opfibration if for
all B in E we have that each σ : pB → Γ has a opcartesian lifting.

Theorem 1.8.0.3 (Grothendieck construction).

OpFib(B) ∼= Psd[B,Cat]

Definition 1.8.0.4 (Bifibration). A functor p : E → B is an bifibration if it is
both a fibration and an opfibration.

Lemma 1.8.0.5 (Characterizing bifibrations, [Jac99, 9.1.2]). A fibration is a
bifibration if and only if each reindexing S(−, σ) has a left adjoint

∐
σ.

23

Proof. Let p : E → B a fibration and σ : Θ→ Γ a map in B, then for each B in
EΘ and A in EΓ we have

EΓ(
∐
σ

B,A)
(1)∼= EΘ(B,S(A, σ))

(2)∼= Eσ(B,A)
(3)∼= EΓ(

∐
σ

B,A)

describing the following

B
∐
σ B

S(A, σ) A

Θ Γ

sA,σ

σ

where (2) follows from cartesianness of sA,σ. Then∐
σ

exists iff (1) exists iff (3) exists iff p is an opfibration.

24

Chapter 2

Categorized judgemental theories

Everything that can be thought at
all can be thought clearly.
Everything that can be said can
be said clearly.

[Wit22, 4.116]

This chapter is concerned with the notions of context, judgement and de-
duction. These three notions belong to Logic, but different communities with
different backgrounds and cultures have quite different perspectives on them.
The purpose of this work is to present a mathematical and unified approach
that accommodates these diverse takes on the topic of deduction. The effort
required in order to do so turns out to be extremely fruitful, so much so that it
contributes a fresh perspective on deduction itself. In order to show how tightly
this new framework captures the motions of deductive systems, we develop two
applications of the theory we introduce, and since our choice is intended to pay
tribute to two major cultures concerned with the topic, we look at examples
from type theory [MS84] and from proof theory [TS00]. They each stand on
different conceptual grounds, as it is exemplified by the two following rules.

Γ ⊢ a : A Γ.A ⊢ B Type
(DTy)

Γ ⊢ B[a] Type

x; Γ ⊢ ϕ x; Γ, ϕ ⊢ ψ
(Cut)

x; Γ ⊢ ψ

Despite their incredibly similar look, and the somehow parallel development of
the theories in the same notational framework, there are some philosophical
differences between the interpretation of the symbols above.

TT) In type theories, especially those inspired by the reflections of Martin-Löf,
Γ ⊢ B Type is intuitively seen as a judgement. A judgement is an act of
knowledge [Mar96a, Mar87] bound to a context (Γ) and pertinent to an
object (B). For example, Γ ⊢ B Type could be read Given Γ, B is a type.
The ontological status of a context and an object is, in principle, very
different. Also, and most notably, judgements can be of different kinds,
claiming all sorts of possible things about their objects [Mar96a].

ND) In natural deduction, x; Γ ⊢ ψ is intuitively seen as a consecution. A
consecution is a relation between structured formulae (x; Γ) and formulae

25

(ψ) [Kle67]. For example, the sequent x; Γ ⊢ ψ could be read The multiset
of formulae Γ, in the variables x, entails ψ. Besides the fact that structured
formulae are multisets of formulae, there isn’t an ontological difference
between the glyphs appearing on the left and right side of the entailment.

These differences, though admittedly subtle and not that easy to detect
on a technical level, dictate a part of the experts’ intuition on the topics (see
Section 2.2.1). Of course, one could argue that these different points of view
are mostly philosophical, that the oversimplification commanded by the length
of this introduction stresses on them in a somewhat artificial way, and that
some variations are allowed, for example [NvP08] adopts what we would call a
more type theoretic perspective on proof theory, and indeed it is always possible
to adopt a judgemental perspective on consecutions. In particular, the deep
connection between proof theory and type theory has of course been studied
for a while, and its development falls under the paradigm that is mostly known
as propositions-as-types [Wad15], and how to translate intuitionistic natural
deduction into the language of types is beautifully described in [Mar96b]. This
work aims at providing a new, perhaps more semantic, argument in the same
unifying direction.

Rebooting some ideas from [Jac99], we conciliate the differences in a unified
categorical framework that can highlight and clarify in a more precise way the
meaning of all these apparently specific phenomena. Going back to the example
of (DTy) and (Cut), we intuitively see how they both fit the same paradigm, in
the sense that we could read both as instances of the following syntactic string
of symbols

♡ ⊢ ■ □ ⊢ ♣
(△) ♡ ⊢ ♠

which we usually parse as: by △, given ♡ ⊢ ■ and □ ⊢ ♣ we deduce ♡ ⊢ ♠.
Our theory allows for a coherent expression of all such strings of symbols, and
shows how a suitable choice of context either produces (DTy) or (Cut). As a
necessary biproduct of our effort, we get a theory that has both the advantage
of being very versatile, spanning much farther than dependent types and natural
deduction, and computationally meaningful in the sense that it has a built-in
notion of computation. We also believe it establishes a clear philosophical view
on context, judgement, and deduction.

Our contribution

We introduce the notion of categorized judgemental theory using the language
of category theory. Judgemental theories are philosophically inspired by Martin-
Löf’s reflections on the topic of judgement [Mar87, Mar96a], and technically
grounded on the most recent developments in the categorical treatment of
dependent type theory [Awo18, Uem19]. We believe that our perspective is also
very attuned to type refinement systems as described in [MZ15].

Γ ⊢ H H λH ⊢ F F

Usually, when looking at the premises of a rule, we are confronted with a list of
(nested) judgements as above, which then are transformed into another judgement
by the rule. The technical advantage of our notion is to allow natively for nested

26

judgements. That is, for us a nested family of judgements is actually a whole
judgement per se:

Γ ⊢ H.λF H.λF .

This flexibility allows for a very algebraic treatment of type constructors (and
of connectives), in a fashion that is somewhat inspired by Awodey’s natural
models. Judgment classifiers will be categories living over contexts, and functors
between them will regulate deduction rules. In the example below, which is
the formation rule for the Π-constructor in dependent type theory, the category
U .∆U classifies the nested judgement in the premise of the rule (on the right).

U .∆U U

ctx

Π Γ ⊢ A Type Γ.A ⊢ B Type
(ΠF)

Γ ⊢ ΠAB Type

We expand the original approach à la Jacobs, where some of these ideas
were evidently hinted at both in the treatment of propositional logic [Jac99,
Chapter 2], and in the treatment of type theories [Jac99, Chapter 10]. It also
expands Awodey’s natural models [Awo18], taking very seriously his algebraic
presentation of some constructors: see for example the discussion at page 9 and
later Prop. 2.4 in loc. cit.

It should be noted that Logical Frameworks [HHP93] of Plotkin et al. have a
similar purpose, and their system is based on λΠ-calculus. Logical Frameworks
do rely on the notion of judgement in a substantial way, as we do, but their
approach is somewhat much more syntactic. More recently [Uem19] has provided
recipes to transform Logical Frameworks into more categorical gadgets, based
on a generalization of Awodey’s natural models. One of the advantages of our
approach is to avoid the complexity of Logical Frameworks (and thus of Uemura’s
recipe), substituting it with a native categorical language.

In the next subsection we will discuss in detail all the achievements of this
structure on a technical level, though we end this very qualitative discussion
with a bird’s-eye view on a list of advantages of our system.

1. We provide a very algebraic approach to the notion of rule, which is also
suitable for a neat analysis of the proof theory associated to a deductive
system.

2. In the case of type theory, this provides a clear definition of (dependent)
type constructor, which was actually not available before, if not in a
case-by-case form. We put into perspective the usual paradigm of rules
(formation, introduction, elimination, β- and η-computation).

3. In a similar spirit, we provide an in depth analysis of what constitutes
what in proof theory are called structural rules. We here see that branches
in proof trees are cones in our framework.

4. We introduce the notion of policy for a categorized judgemental theory,
inspired by the classical Cut of the Gentzen calculus. Surprisingly, type
dependency in dependent type theory is precisely a type theoretic form of
Cut.

27

5. Our proofs are computationally meaningful. In a sense, this is due to
the structural rigidity and the algebraicity of the framework. Each of our
proofs needs to be as atomized and as transparent as possible, this will
be particularly evident in our analysis of the proof theory generated by
a dependent type theory with Π-types. The whole framework feels like a
categorical proof assistant when doing proofs.

While this introduction seems to focus mainly on dependent type theories
and natural deduction, the reader will notice that we have only chosen these
two specific frameworks as an exemplum of the expressive power of this theory.
Indeed we could have covered modal logic, infinitary logics and much more.

2.1 Categorized judgemental theories

Definition 2.1.0.1 (Categorized pre-judgemental theory). A categorized pre-
judgemental theory (ctx,J ,R,P) of (contexts, judgements, rules, policies) is
specified by the following data:

(ctx) a category (with terminal object ⋄);

(J) a set of functors f : F → ctx over the category of contexts;

(R) a set of functors λ : F → G.

(P) a set of 2-dimensional cells filling (some) triangles induced by the rules
(functors in R) and the judgements (functors in J), as in the diagrams
below.

F G F G F G F G

H H ctx ctx

γ τ

λ

γ τ

λ

f g

λ

f g

λ

λ♯ λ♯ λ♯λ♯

Notation 2.1.0.2. Let us introduce a bit of terminology:

� contexts Γ,Θ are objects of ctx, morphisms σ : Θ→ Γ are substitutions;

� the element g : G → ctx of J is the classifier of the judgement G. We
will often blur the distinction between the classifier and its judgement. In
general we use letters such as F ,G,H;

� objects G in G are usually named after corresponding letter;

� a rule λ is an element of R;

� a policy λ♯ is an element of P;

and for special categorized judgemental theories that happen to have an estab-
lished notation we declare a switch of notation in the appropriate section.

This is all the syntactic data needed to describe deduction: judgement
classifiers prescribe the status of objects with respect to contexts; rules transform
objects into other objects, with the context changing accordingly; and policies
allow for the possibility that the context of the premise of the rule and that of the

28

consequent are somehow naturally related, either covariantly (i.e. λ♯ : f ⇒ gλ),
contravariantly (i.e. λ♯ : gλ⇒ f), or constantly (i.e. when the triangle is strictly
commutative) with respect to the direction of the rule. A bird’s eye view of this
first definition and what it might have been can be found in Section 2.5.

Example 2.1.0.3 (Toy Martin-Löf type theory). In order to get acquainted with
the definition, let us introduce the categorical syntax to present a toy type theory.
Consider a category ctx of contexts and substitutions, U a category (universe)
of types and U̇ a category (universe) of terms. For simplicity, we imagine that
a term is always registered together with its type, so that objects of U̇ are of
the form (a,A) with A an object in U . Define the categorized pre-judgemental
theory having J = {u, u̇}, R = {Σ}, P = {Id : u ◦ Σ⇒ u̇} as below.

U̇ U

ctx

uu̇

Σ

Id

Intuitively, u̇ classifies terms with their context, u does the same for types, Σ
performs typing, meaning it is the second projection, and Id shows that such an
operation preserves the context.

We know that this all looks very unorthodox. We will use this toy example
to get a first small impression on how categorized judgemental theories work,
see 2.2.3.5, 2.2.4.1, and above all Section 2.3.

On the data expressed by a categorized pre-judgemental theory we wish
to impress some deductive power. This is achieved using some 2-categorical
constructions and properties.

Definition 2.1.0.4 (Categorized udgemental theory). A categorized judgemental
theory (ctx,J ,R,P) is a categorized pre-judgemental theory such that

1. R and P are closed under composition;

2. the judgements are precisely those rules whose codomain is ctx;

3. R and P are closed under finite limits (see 2.1.0.9, 2.1.0.10 and 2.1.0.11),
♯-liftings (see 2.1.0.12) and whiskering (see 2.1.0.14).

For readability reasons, and when we believe the stressing on their categorical
nature is unneeded, we sometimes omit the word “categorized” and refer to them
simply as judgemental theories.

The rest of this section is dedicated to clarifying the technical aspects of this
definition. In the next section we will see that these properties influence the
inference power of our logical systems. The more we put, the more we infer.

Remark 2.1.0.5. The condition (2) in Definition 2.1.0.4 is actually not needed,
yet it is not harmful for the theory and it allows a cleaner axiomatization of (3),
which otherwise would not look as pretty.

Remark 2.1.0.6 (Infinitary judgemental theories). We could have allowed
λ-small limits for λ a (regular) cardinal, so that we are actually studying finitary
judgemental theories. In the present work we stick to this choice.

29

Remark 2.1.0.7 (Economical presentations of categorized judgemental theories).
In the majority of concrete instances, a judgemental theory is presented by a
pre-judgemental theory (ctx,J ,R,P), in the sense that we close the data of
judgements, rules and policies under finite limits and ♯-liftings and whiskering.
This produces the smallest judgemental theory containing (ctx,J ,R,P).

Notation 2.1.0.8. When a classifier X is obtained by iterated pullback of
classifiers along rules, we try to use a notation that keeps in mind this special
property of the classifier. Consider thus the diagram below.

(H.λF)γ.V V

H.λF F × G F

H G ctx

f

gλ

⌟

γ
⌟

⌟

� We use the notation F × G when we pullback classifiers along classifiers.

� When we pullback a classifier along a rule, we use the notation H.λF . We
can make sense of this as if we put an additional bound on F , and this is
induced from H via λ. The reader will find more about this in 2.2.3.2.

� When we iterate this procedure, for example as in the diagram, we use the
notation (H.λF)γ.V. When g = f we write it Hγ.λV.

We are aware that this notation is not entirely economical, nor uniquely de-
termined, but in the practical circumstances of this chapter, it will be very
useful.

2.1.0.9 (Pullbacks). R is closed under pullbacks in the sense that, given solid
(black) spans and cones in R as below, we have that all the red arrows belong
to R.

X

FR.RH H

F GR

RR

R

⌟

R

R

R

In this definition we see the advantage of including J in R, otherwise we
would have to specify another axiom for the case in which the span is made of
judgements. This could have been done without major differences, but would
lead to an incredible proliferation of diagrams.

30

2.1.0.10 (Equalizers). Similarly to the case of pullbacks, we require that the
equalizer E , together with its limiting maps, belongs to the rules.

X

E F GR

RR

RR

2.1.0.11 (Powers). We also require that, for all rules X → Y, we can form the
finite powers below in R and that, as in 2.1.0.10 and 2.1.0.9, all the arrows
induced by their universal properties by cones made of rules, are rules too.

X 2 Xn

X X
domcod π1 πn...

Regarding our meta-theory, this only requires that the finite product of sets (or
classes, or κ-sets for some inaccessible cardinal κ, depending on the meta-theory
of choice) is again a set (or class, or κ-set). See Section 1.1.4 for more on the
matter.

2.1.0.12 (♯-lifting). First of all recall from Definition 1.3.3.2 the notion of ♯-
lifting. Notice that it is a construction involving a functor and a 2-cell, and
is always possible when said functor is a fibration, so it makes no difference if
the functor in the domain of the 2-cell is the composite of different functors or
not: in fact, one could restate Theorem 1.3.3.3 for sharp liftings of 2-cells of
the following kind. Notice that we slightly change the notation from 1.3.3.2 to
isolate λ as below.

Consider a policy λ♯ as in the diagram below, and a rule R∗ which is
a fibration. Then the pair (R∗λ,R∗λ♯) belong to R and P (respectively).
Similarly, for R∗ an opfibration, we get the op-diagram on the right. Notice that
in both cases the square containing λ and R∗λ or R∗λ commutes strictly.

FR∗.RH H FR∗.RH H

GR∗.RH GR∗.RH

F X F X

G G

R∗

R

R

R

R∗λ

λ

R

R

R

λ

R

R

R∗λ
R∗

⌟

⌟

⌟

⌟

λ♯

R∗λ♯ R∗λ♯

λ♯

Proof of the existence of the arrows. We only argue for the case of fibrations
and only show that a fibration has ♯-liftings of this kind, the converse is proved
precisely as in Theorem 1.3.3.3. Define R∗λ as follows: to each pair (F,H)

match a (λF, S(H,λ♯F)) obtained via the cartesian lifting of λ♯F . Such a definition
can be extended to maps using naturality of λ♯. The natural transformation
R∗λ♯ at each (F,H) is just the cartesian map lifting λ♯F .

Notation 2.1.0.13 (Substitution). For the time being, and to avoid continuous
explicit reference to a given cleavage for each fibration involved, we write A[σ]

31

for what was called S(A, σ) up to this point. Implications of the existence of
such a cleavage were discussed in Section 1.3.2.

2.1.0.14 (Whiskering). As it is quite frequent in 2-category theory (see for
instance Section 1.4), one might want to compose 1-cells with 2-cells. As our
theory is quite heavily 2-dimensional, it only make sense that we ask that
performing such an operation does not bring us out of our logic. We recall the
general definition in the 2-category Cat, as it is the one we are interested in
now. Consider categories, functors, and natural transformations as below.

A B C DF H
G

G′

α

One can always define natural transformations α ∗ F : GF ⇒ G′F and H ∗
α : HG⇒ HG′ that point-wise act as

(α ∗ F)A = αFA (H ∗ α)B = H(αB).

Given classifiers X ,Y,Z , rules λ, λ′, γ and a policy λ♯, then, we say that the
categorized judgemental theory is closed under whiskering in the sense that the
red natural transformations are policies too.

X Y Z X Z

Z X Y Z X

λ

λ′

γ

γλ

γλ′

λ

λ′

γ

λγ

λ′γ

γ(λ♯)λ♯

λ♯ λ♯γ

Disclaimer 2.1.0.15. We understand that up to this point the reader has been
faced with many concepts and strange notations that they have no intuition
for. Therefore, before we formally describe what it means to define a calculus
based on the blocks that are our categorized judgemental theories, we advise the
reader to skip to Section 2.3.3.1 and see what it is that we are trying to achieve.

2.1.1 Notions of substitution

Definition 2.1.1.1. A judgement classifier is (op)substitutional if it is an
(op)fibration. A rule is (op)cartesian if it preserves (op)cartesian maps. A policy
is (op)Frobenius with respect to a given judgement classifier if it has cartesian
components.

By extension, we will say that a categorized (pre)judgemental theory is
(op)substitutional if all judgement classifiers are (op)substitutional, all rules are
(op)cartesian, and all policies are (op)Frobenius.

See Section 2.2.6 for what these imply for categorized judgemental theories,
for the moment we only prove a couple of technical results.

32

Lemma 2.1.1.2 (♯-lifting of cartesian functors). Consider a fibration h and a
2-cell λ♯ as follows, and apply the construction in 2.1.0.12.

F .H H

G.H

F ctx

G
g

f

λ

g.h

f.h

h∗λ
h

λ♯

h∗λ♯

If λ preserves cartesian maps, then so does h∗λ.

Proof. Consider a morphism a = (a1, a2) : (F ′, H ′)→ (F,H) in F .H, meaning a
pair a1 : F ′ → F in F and a2 : H ′ → H in H such that f(a1) = σ = h(a2). One
can check (see, for example, [Jac93, Proposition 2.6]) that this is cartesian with
respect to h ◦ (f.h) if and only if both a1 is f -cartesian and a2 is h-cartesian.
The latter is equivalent to saying that a2 is of the form a2 = σ : H[σ]→ H. Now
consider that the functor h∗λ acts as follows

(a1, a2) : (F ′, H ′)→ (F,H) 7→ (λa1, a
!
2) : (λF ′, H ′[λ♯F ′])→ (λF,H[λ♯F])

with a!2 the unique map induced by naturality of λ♯ at h(a2). Assume that a is
cartesian, then we end up having

H[σ][λ♯F ′] H[σ]

H[λ♯F] H

Θ′ Θ

Γ′ Γ

σ

σ

λ♯F

λ♯
F ′

σ′

λ♯
F ′

λ♯F

therefore a!2 = σ! is itself cartesian. Hence if λ preserves cartesian maps, then so
does h∗λ.

Remark 2.1.1.3 (♯-lifting is cartesian). The natural transformation h∗λ♯ has
h-cartesian components.

Proof. This is actually trivial by definition of h∗λ♯: in fact, it acts as

(h∗λ♯)(F,H) = λ♯F : H[λ♯]→ H .

33

2.2 Judgement calculi

In the previous section we have introduced categorized judgemental theories,
very concrete mathematical objects for which we have presented a suggestive
notation referencing some logical intuition. This section is devoted to grounding
that intuition and showing that each categorized (pre)judgemental theory is
a categorical version of a proof assistant or, more technically, something that
supports the categorical semantics for the specification of a type system. We will
see how a categorized judgemental theory automatically produces a deductive
system via a process of translation. Actually, a judgemental theory is intrinsically
a calculus of deduction in a very precise sense.

This section will describe a way to translate the data of a categorized
judgemental theory (ctx,J ,R,C) into a judgement calculus.

U .∆U U

ctx

Π Γ ⊢ A Type Γ.A ⊢ B Type
(ΠF)

Γ ⊢ ΠAB Type

Of course, such a process of translation requires an almost formal definition
of judgement calculus, which must be flexible enough to encode the usual calculi
that are used in type theory and in proof theory. For the reasons expressed in
the introduction, this is a non-trivial task.

2.2.1 Prolegomena

As we have hinted in the introduction, a very general definition of deductive
system or calculus is much easier to describe than to actually define. Of course,
one can make reference to [Res02], or to [MS84], or to [HHP93], or to several
variations of this notion, but there is no unified take we find satisfying. In
this subsection we go through a critical analysis of the deductive systems of a
dependent type theory and of a proof theory to better motivate the choices of
the next subsection.

2.2.1.1 The deductive system of a DTT

We consider the problem of defining the semantics of the underlying signature,
judgements and rules defining a formal calculus of a dependent type theory
based on Martin-Löf’s type theory. There are indeed several approaches in the
literature, and the very notion of type theory is somehow (intentionally) fuzzy.
We would go as far as to say that a complete agreement on the matter does
not exist. Of course, this flexibility is part of the richness of this theory. The
informality in the definition of rule and type constructor is one of the reasons for
which the topic of (categorical) semantics for dependent type theory is both so
popular and so useful in the theoretical research on dependent type theory.Most
sources would probably agree that to declare (the calculus of) a dependent type
theory means to specify three boxes of data.

(S) Syntax (contexts, types, terms): a theory of dependent types is -informally-
a formal system dealing with types and terms in context. From a symbolic
point of view, these are a bunch of glyphs that we use as atoms of our

34

language.
Γ A a : A

(J) Judgements (about contexts, types, terms): a judgement is a very simple
sentence made up of symbols from the syntax, and whose intention is to
somehow bound together pieces of atomic data. The most simple type
theories of the sort we refer to present three possible (kinds of) judgements,

⊢ Γ ctx Γ ⊢ A Type Γ ⊢ a : A

which are informally interpreted as Γ is a context, A is a type in context
Γ, a is a term of type A in context Γ.

(R) Rules (to declare new types, terms, and interact with the syntax): Finally,
we should be able to interact with and declare a type. For those that are
acquainted with a programming language, this need is completely evident.
Indeed we might want to introduce a type which is constructed from other
types.

Γ ⊢ a : A Γ.A ⊢ B Type
(DTy)

Γ ⊢ B[a] Type

Depending on the complexity of the theory, beyond a bunch of basic rules
(like type and term dependency (Section 2.3.4)), we find type constructors.
Type constructors are packages of rules, labelled by their feature, that
allow to construct new types from old ones. Below we list the inescapable
labels, for a constructor whose name is - say - Φ.

ΦF Some formation rule(s), presenting the type. They specify under
which circumstances we can assume it to exist (or, from the point of
view of programming languages, we can form it). By circumstances,
we usually refer to syntactic data.

ΦI Some introduction rule(s), producing the canonic terms of a such type.
Given a set of syntactic data, they tell how to cook up a term of the
new type.

ΦE Some elimination rule(s), specifying the interaction between a term
of the new type and the terms of the types that contributed to the
formation of the new type.

Additionally, based on the computational semantics associated to the
theory one wishes to consider, one needs to describe how introduction
and elimination interact with one another, meaning to provide suitable
conversion rules.

These three packages of data reflect the necessities of a type theory: indeed,
type theory emerged as a foundational framework, but from a cultural
point of view its history is intertwined with that of programming languages.
This deep interaction has shaped several aspects of type theory, we will see
this especially in the declarative and interactive nature of the Rules box.
Let us stress on the fact that, besides these informal distinctions, there is
no formal definition of a type constructor, nor of a rule.

35

While the three boxes of Syntax, Judgements, and Rules are definitely there
in any type theory, the list of rules, judgments, and the sort of symbols that
inhabit them is subject to major choices. Even those that we have listed can be
seen as somewhat arbitrary. Still, we believe that in any reasonable type theory
the data above will be included. In most of the concrete instances, type theories
are even richer than what we have listed above:

� morphisms of contexts are usually added to Syntax;

� definitional equality is usually added to Judgements;

� β- and η-computation are almost always added to Rules, and through
definitional equality they determine how introduction and elimination
interact with one another. Also, we will see to that our type theory has
context formation, which stands for a set of rules that form fresh contexts
from existing types. Finally, if the syntax is enriched with morphisms of
contexts, there might be rules regulating their interaction with judgements
(that would be substitution).

A vast majority of computer scientists and type theorists would probably
classify β- and η-computation as an essential feature of a type theory.

2.2.1.2 Natural deduction

As it was said in the introduction, natural deduction has already been shown to
be fittingly translatable in the language of types [Mar96b], but we here describe
its interpretation separately for multiple reasons:

1. on one hand, natural deduction for first-order logic has had a greater
fortune in being studied and employed in our schools and universities,
and it is the one that we believe is understood best among most people,
therefore

2. we believe that its “familiarity” makes it easier for the reader to connect the
categorical syntax for the intuition of what the rules should be, moreover

3. such a familiarity allows us the freedom to describe more rules, and the
practice of such an encoding is the main aim of this first chapter.

The following presentation is mostly inspired by [Res02, Def 2.18], but it is
coherent with the treatment of [NvP08] and [TS00] too.

When specifying a natural deduction calculus we provide three boxes of data:

(S) Syntax (variables, formulae): a natural deduction calculus is -informally- a
formal system dealing with variables, lists of formulae and formulae. From
a symbolic point of view, these are glyphs that will be the atom of our
calculus,

x Γ ϕ.

Often punctuation symbols as the semicolon ; are used too to combine the
symbols.

36

(S) Sequents: a sequent is a very simple sentence made up of symbols from the
syntax, and whose intention is to specify an entailment relation between
the data on the left and the data on the right of the entailment symbol.

x; Γ ⊢ ϕ.

For example, the sequent above could be read the list of formulae in Γ
entails the formula ϕ, and they all have (at most) free variables in x.

(R) Rules: in natural deduction rules are used to state atomic consequences,
they transform a family of sequents into a (family of) sequent(s).

x; Γ ⊢ ϕ x; Γ, ϕ ⊢ ψ
(Cut)

x; Γ ⊢ ψ

Traditionally, there is a distinction between structural rules [Res02, 2.23]
and other rules. Referring to [Res02, pag. 26], the structural rules influence
what we can prove. The more structural rules you have, the more you will
be able to prove. The other rules are more in the spirit of type constructors
and they account for the behavior of the logical operators, like ∧,∨,∀,∃.
In modal logics, they can account for the behavior of modal operators too.

It is pretty intuitive that we can treat a sequent as a form of judgement. This
just amounts to a re-tuning of our intuition with respect to the way we are used
to read sequents. On the other hand it is not entirely trivial to find a precise
correspondence between the rules of proof theory and the constructors of type
theory. For example, for the reason that there is not a precise definition of
constructor, nor a classification of them.

2.2.1.3 Judgement calculi

Given the discussion above, our challenge is pretty clear: how to accommodate
type constructors, connectives, and deduction rules in a conceptually unified and
technically coherent framework? Provide that we can see sequents as judgements,
how do we formally deal with their manipulation from a semantic point of view?
Let us dive into the definitions. For us, to declare a judgement calculus means
to specify three boxes of data:

(S) Syntax (contexts and objects);

(J) Judgements (acts of knowledge bound to a context and pertaining to a (list
of) object(s));

(R) Rules (transforming judgements into other judgements).

2.2.2 Syntax

Let (ctx,J ,R,C) be a (pre)judgmental theory. Then its corresponding judge-
ment calculus has in its Syntax box letters for each context and each object in a
judgement classifier.

Γ Γ ∈ ctx
F F ∈ F

37

2.2.3 Judgements

Judgemental calculi include two main kinds of judgement for each F ∈J .

� The first kind of judgement acknowledges a F-empirical evidence and
clarifies the status of an object. One can see it as a kind of Tarskian snow
for our approach, meaning something that fulfills Tarski’s requirement
for something to “characterize unambiguously the class of those words
and expressions which are to be considered meaningful” [Tar56]. For
F ∈ f−1(Γ), then we find in our set of judgement the writing

Γ ⊢ F F .

This can be understood as Given Γ, F exists or Given Γ, G is green,
or Given Γ, M is made of marble. In the case of the same category
F appearing as the domain of two different judgements, we might use
Γ ⊢ F F(f).

� The second kind of judgement is an equality checker for the equality
classified by the judgement. We will write

Γ ⊢ F =F F ′,

when F, F ′ ∈ f−1(Γ) and F = F ′. This could be read as Given Γ, F
and F ′ are indistinguishable by existence1, or Given Γ, G and G′ are
indistinguishable by green. Notice that the interpretation of the notion
of equality is relative to the choice of the classifier. If we were to look at
something classifying types in a type theory, the equality would (and will,
in Section 2.3) be indistinguishability up to computations.

In the table below, we find on the left column the judgement and on the
right its translation in terms of the categorized judgemental theory.

Γ1 ⊢ F1 F ... Γn ⊢ Fn F (F1...Fn) ∈ f−1(Γ1)× ...× f−1(Γn)
Γ ⊢ F =F F ′ F, F ′ ∈ f−1(Γ) and F = F ′

It might seem that such simple judgements do not guarantee much in terms
of expressiveness. This is in fact far from the truth! Recall that a judgemental
theory is closed under finite limits and several constructions, thus we obtain an
incredible variety of complex judgements.

Remark 2.2.3.1 (On notions of equality and the relationship between theory
and meta-theory). Notice that all choices made here are to consider as “external”,
in the sense that they constitute the building blocks of our calculus. They do
not prevent from having, say, an identity judgement in a judgemental theory,
see for example Section 2.3.6.

2.2.3.2 (Nested judgements: pullbacks). Let (ctx,J ,R,C) be a categorized
judgemental theory and consider a judgement of the form,

Γ ⊢ H.λF H.λF .
1This could be actually read Are identical.

38

We will see that such a judgement classifies a nested family of judgements,
depending on the data of H,F and λ.

•

H.λF F

H G ctx

f

gλ

f.gλ

⌟

gλ.f

H.λF

H

F

By inspecting the pullback diagram that definesH.λF we can see that judgements
of this form are in bijection with pairs of judgements of the form,

Γ ⊢ H H gλH ⊢ F F .

This means that we are entitled to see the line above, which is composed of two
related but separate judgements (in possibly different contexts!), as a single one
(in context Γ). We call judgements of this form nested. Notice that, depending
on what we want to express, we could say that the relation binding H to Γ
(hence the judgement classifier with domain H in the line above) is either gλ
itself, therefore forcing both H and F to have the same context, or some other
h. Still, we chose to present the pullback in its most general form.

As a string of symbols, notice that a nested judgement is an informal judge-
ment, in the sense that it is not well defined in our framework. Despite this, we
will feel free to use notations as that above because they are a bit easier to parse
from a human perspective. This means that for the rest of the chapter we will
write

Γ ⊢ H.λF H.λF
Γ ⊢ H H gλH ⊢ F F

to intend that the synthetic judgment below is an alias for the nested judgement
above, which is defined in our context.

Our notation (H.λF) retains almost all the information needed to predict the
kind of nested judgements we classify. This also explains why we write composed
judgements the way we do: we think of the component in H to be free, while
that in F is bounded via the map λ.

Example 2.2.3.3 (Lists). Let X be a judgement classifier, and consider Xn,
which is given by the (wide) pullback below,

Xn

X ... X

ctx

x x x

πnπ1

then the judgement Γ ⊢ X1. · · · .Xn Xn can be interpreted as a list of judgements,
as described below.

39

Γ ⊢ X1. · · · .Xn Xn

Γ ⊢ X1 X · · · Γ ⊢ Xn X

Notice that the fact that a judgemental theory is by definition closed under finite
products implies that these judgements are always available.

Example 2.2.3.4 (Composable arrows). Let C be a category and consider the
following pullback as on the left. The resulting nested judgement, then, reads as
on the right and classifies composable arrows in C.

C2dom.codC2 C2

C2 C

dom

cod

⌟ C ⊢ (f, g) C2dom.codC2

C ⊢ f C(cod) C ⊢ g C(dom)

The middle ground is given by the actual middle object f and g share. Notice
that, though the context (i.e. the object) is the same, their bounds to it are very
different (that is, respectively cod and dom).

Example 2.2.3.5 (Toy Martin-Löf type theory). In the categorized judgemental
theory generated by that in Example 2.1.0.3, we now have a way of coding, for
example, pairs of types in the same context. This is achieved by the pullback
Uu.uU .

Uu.uU U

U ctx

u

u

⌟ Γ ⊢ (A,A′) Uu.uU
Γ ⊢ A U Γ ⊢ A′ U

The examples above are not particularly interesting, though we believe
they give an intuition of the expressive power of nested judgements. We hope
Section 2.3 will be definitive proof.

2.2.3.6 (Nested judgements: equalizers). Similarly to the previous case, equaliz-
ers classify nested judgements of the kind below.

E(λ, λ′) F G
λ

λ′

e
Γ ⊢ F E(λ, λ′)

Γ ⊢ F F Γ ⊢ λF =G λ
′F

2.2.4 Rules

Let (ctx,J ,R,P) be a categorized judgemental theory. Consider judgements
and a rule as in the diagram below, for each rule λ : F → G and each judgement
Γ ⊢ F F , we will write as follows (on the right).

F G

ctx ctx

λ

f g

Γ ⊢ F F(λ)
gλF ⊢ λF G

From a technical level, this is just a compact way to organize the data of the
functoriality of λ. Indeed it is true that λF ∈ g−1(gλF), so that gλF ⊢ λF G is
actually a judgement in our framework. This is the only kind of rule that we

40

admit in our judgemental calculi, and in a sense all the rules are the same, there
are no intrinsic labels like structural, introduction, elimination, and so on. Yet,
similarly to the case of judgements, the closure under finite limits guarantees an
incredible richness of rules, as we will see for the rest of the subsection.

Example 2.2.4.1 (Toy Martin-Löf type theory). The rule Σ from Exam-
ple 2.1.0.3 now reads as follows.

Γ ⊢ (a,A) U̇
(Σ)

uΣ(a,A) ⊢ Σ(a,A) U

Now recall that uΣ = u̇, so the behavior of a policy is implied: see Section 2.3
for more on this. We follow the intuition provided for all the data of the
judgemental theory in Example 2.1.0.3 and translate it in the usual type-theoretic
strings of symbols. Then it reads as follows

Γ ⊢ a : A(Σ)
Γ ⊢ A Type

and depicts the typing rule. We thoroughly detail this process of translation in
Section 2.3.3.

Remark 2.2.4.2 (Rules with many outputs). The notion of nested judgement
2.2.3.2 and of our calculus as a whole have one additional very useful feature,
and that is allowing for multiple consequents simultaneously. In fact, it is very
common that one might want to write rules that deduce several judgements from
the same (set of) judgement(s), but writing it organically is somewhat frowned
upon, so that one usually encounters a proliferation of rules (for example two
elimination rules in Section 2.3.6 and in Section 2.4.4). While we mostly follow
the tradition with regard to this, the attentive reader will see that in fact they
are always the product of the “break-down” of a single nested judgement. We
make this explicit once in Remark 2.3.4.6.

Remark 2.2.4.3 (Soundness and completeness). When one looks at this section
as a whole, that is the process of producing a graphical/grammatical bookkeeping
of the categorical properties of the judgemental theory, organized in the form of a
collection of judgements and deductions, it is natural to raise the question which
deductions are actually produced by a categorized judgemental theory? There are
two possible approaches to this question.

� The first approach is to refine our notion of calculus, and give a precise
definition of what we mean by deductive system. Our presentation is
not that far from a formalization. Then, one would say that the content
of this section provides a kind of soundness/correctness theorem for the
categorical syntax, and one could try to provide a completeness result that
characterize all the possible judgements and deductions.

� The second approach is to claim that the question contains an implicit bias
towards grammatical/syntactic representations of deductions, and that, in
a sense, the categorical language already provides the grammar the reader
is looking for, while the calculus in this section only represents a way to
make it more digestible to the grammarian.

41

Both the approaches are valid, one maybe making a more political statement,
and the other being more prone to the classical tradition. Because the author
herself does not entirely agree on the path to follow, and because this chapter
already contains a lot of material, we choose not to invest more on this question
in the present work. We will be greatly interested in developing this more along
the line.

2.2.5 Policies

Recall that a policy is a 2-cell as follows

F G

ctx
f g

λ

λ♯

with f, g judgement classifiers and λ a rule. This additional data contains that
of the rule λ, hence

Γ ⊢ F F(λ)
Θ ⊢ λF G

but it also establishes a relation between Γ = fF and Θ = gλF , namely
λ♯F : Θ→ Γ. We wish our judgemental calculus to reflect this.

If f is a fibration by 2.1.0.12 we can ♯-lift λ♯ along f ,

F .F F

G.F F F

F ctx ctx

G
g

f

λ

g.f

f.f

f∗λ
f

⌟

⌟

f f

g.f◦f∗λ◦⟨id,id⟩

λ♯

f∗λ♯

and get a pair (f∗λ, f∗λ♯) such that on a pair of objects F, F ′ over the same
context

f∗λ : (F, F ′) 7→ (λF, F ′[λ♯F]),

hence we can use the universal property of pullbacks to precompose the policy
“on top” with ⟨id, id⟩ to get the lax triangle on the right. This now reads as

Γ ⊢ F F(g.f ◦ f∗λ ◦ ⟨id, id⟩)
Θ ⊢ F [λ♯F] F

where λ♯F : Θ→ Γ.
One could detail a similar argument for covariant policies: we do not do so

here because in the present work we will only encounter contravariant ones. Still,
the reader can easily see how covariant rules are strictly connected to comonads,
and comonads have been proven of special interest in logic (see, for example, the
treatment of equality in [DR21]), and this is why we have carried them through
all definitions and technical proofs.

42

2.2.6 On substitution

Section 2.2.5 is a first instance of application of substitution-like properties in
our setting, in it is worth noticing that the additional data of a policy can be
only externalized in our setting when the target judgement classifier is a fibration.
It seems worth it, then, to describe what information - from the point of view of
categorized judgemental theories - lies under the assumption that a functor is
a fibration. In particular, we break down the universal property described in
Theorem 1.3.3.3.

Recall from Theorem 1.3.3.3 that for a fibration p : E → B there are (p∗id, p∗α)
such that for any other ♯-lifting (g, β) there is a unique p-vertical β satisfying
β = p∗α ∗ β.

B2.codE E

B2.domE

B2 B

B2

p

cod

domid

dom.p

cod.p

g

α

β

B2.codE E

B2.domE

B2 B

B2

p

cod

domid

dom.p

cod.p

p∗id

g

α

p∗α

β

Hence the peculiarity of fibrations seems to lie in the existence of a unique
vertical β. We break down its meaning in the following policy, resulting from
whiskering β with p ◦ dom.p,

B2.codE B2.domE

B

g

p◦dom.p◦p∗id p◦dom.p

(p◦dom.p)∗β

and it is easy to see that p◦dom.p◦p∗id is a fibration, therefore we can apply the
discussion in Section 2.2.5 and derive the following rule in our judgemental theory.
With σ : Θ → pA and B(A, σ) = (dom.p ◦ g)(A, σ), given that (A, σ)[βA,σ] =
B(A, σ),

Θ ⊢ (A, σ) B2.codE
Θ ⊢ (B(A, σ), σ) B2.codE

meaning that initiality translates to the fact that any substitution is derivable
from the cartesian one.

2.3 Categorized dependent types theories

In this section we show what features must a categorized judgemental theory
have in order to support dependent type theory. We show it produces desired
rules, and with respect to this provide some evidence of the computational power

43

of judgemental theories. We then pin-point which rules one needs to add in
order to gain typically desirable constructors, for example dependent products
and identity. In doing so, we learn something about constructors in general and
give a (unifying) definition of type constructor.

Definition 2.3.0.1 (Categorized dependent type theory). A categorized depen-
dent type theory is a substitutional categorized judgemental theory generated by
the pre-judgemental theory described by the diagram below.

U̇ U

ctx
u̇ u

Σ

∆

⊣
To be precise, we mean that J = {u̇, u} and that those are fibrations, R =
{Σ,∆}, P contains the witness of the commutativity of the solid diagram, and
both the unit and the counit (ϵ, η) of the adjunction Σ ⊣ ∆. Finally, we require
that (ϵ, η) are cartesian natural transformations. We call this cDTT, for short.

We think of U as classifying types, U̇ as classifying terms, and the functor Σ
as the one performing the typing. Its adjoint ∆ will interpret context extension.
The choice of the greek letters Σ,∆ is inspired by the notation classically used
for polynomials, for example in [GK13, p.7].

Remark 2.3.0.2 (Notational caveats). As we mentioned in 2.1.0.8 our notation,
while being very telling, sometimes hides pieces of data. For example one finds
that U̇ .ΣU̇ ∼= U̇ × U̇ . This is an instance of the fact that, depending on the
choice of maps along which one performs the pullbacks (and depending on the
order in which one does so), one gets a classifier that is either nested, or it is
not. In general, the nesting degree is subject to change. Such equations, though
unpretty, will be interesting from the point of view of the theory. Each time
something of this kind happens, we will state it explicitly.

2.3.1 From natural models to (categorical) dtts

Recall that a natural model in the sense of [Awo18] is the data of

1. a category ctx with terminal object;

2. an arrow p : U̇ → U in the presheaf category Psh(ctx);

3. some representability data. This means that for all cospans as in the
diagram below, we are given an object Γ.A ∈ C, a morphism δA : Γ.A→ Γ
in ctx and an arrow qA : H(Γ.A) → U̇ , such that the square below is a
pullback.

H(Γ.A) U̇

HΓ U

p

A

H(δA)

qA

44

Remark 2.3.1.1 (Use of the Yoneda lemma). When working with natural
models, the Yoneda lemma is heavily used and, in particular, for a presheaf X
over ctx we tend to identify objects that are in a correspondence under the
following (natural) bijection.

X(Γ) ∼= NatTr(HΓ, X)

When we want to avoid using such an abuse, we denote with x an element
of X(Γ) and x∗ its corresponding natural transformation and, conversely, for
a natural transformation y we call y∗ its corresponding element. One of the
advantages of dealing with judgemental theories is that such an ambiguity will
be avoided entirely.

Theorem 2.3.1.2. A natural model is the same thing as a (judgemental) de-
pendent type theory where the types and terms fibrations are discrete fibrations.

The greatest part of the theorem relies on the following result. Recall that
with respect to a discrete fibration, all maps are cartesian (1.3.1.3), hence
whatever unit and counit we supply, their component will be, too.

Proposition 2.3.1.3. Let p : U̇ → U a morphism of presheaves over ctx and Σp
its image through the Grothendieck biequivalence 1.5.0.2 restricted to presheaves.
The following are equivalent.

1. We are provided with some representability data for p.

2. The functor Σp has a right adjoint ∆p.

Remark 2.3.1.4. It is evident from the discussion between page 245 and 246
of [Awo18] that Awodey was aware of this result, but because he only sketches
the proof of the proposition above, we provide it in full.

Proof of 2.3.1.3. First of all, let us briefly describe Σp : U̇ → U in terms of

p : U̇ → U , or at least how it acts on the objects. As detailed in the construction
in 1.5, the category U̇ has for objects pairs (Γ, a) where Γ is an object of ctx
and a ∈ U̇(Γ). Similarly, the category U has for objects pairs (Γ, A) where
Γ is an object of ctx and A ∈ U(Γ). The presheaf morphism p induces a
function pΓ : U̇(Γ) → U(Γ), therefore the (discrete) fibration morphism Σp

it induces maps a pair (Γ, a) to (Γ, pΓ(a)). We denote it Σp in analogy with
Definition 2.3.0.1.

(1⇒ 2) We will now construct the functor ∆p provided that p is representable.

U̇ U

ctx

u̇ u

Σp

∆p

⊣

Consider an object A ∈ U , recall that it corresponds by Remark 2.3.1.1
to an arrow A∗ :HuA→ U . Then, we define ∆p : A 7→ (qA)∗, where the

45

latter is obtained by the representability condition at A∗. On a substitution
σ : Θ→ Γ we take pullbacks as depicted below.

H(Γ.A) U̇

H(Θ.B)

HΓ U

HΘ

p

A

H(δA)

qA

H(σ)

B

H(δB)

qB

We now need to show that Σp ⊣ ∆p. The easiest thing is to provide the
unit and the counit.

(ϵ) We want to construct an arrow ϵA : Σp∆pA→ A. We define it to be
the cartesian lifting of δA at A. Now we need to show that this is a
natural transformation, but that follows from the universal property
of cartesian lifts. In fact, for each s : B → A, the composition s◦u∗δB
is the cartesian lifting of σ ◦ δB, u∗δA ◦ Σp∆ps that of δA ◦ ∆p(σ),
and δA ◦∆p(σ) = σ ◦ δB , therefore, by uniqueness (up to iso) of the
cartesian lifting, u∗δA ◦ Σp∆ps = s ◦ u∗δB too.

(η) We want to construct an arrow a → ∆pΣpa. This is also obtained
by cartesian lifting, that of γa induced by the dotted arrow in the
diagram below.

HΓ

H(Γ.A) U̇

HΓ U

p

A

H(δA)

qA

a

id

Naturality follows as for ϵ.

Triangle identities of (ϵ, η) lie above commutative diagrams, for Σp and
∆p respectively

idΓ = δA ◦ γa and idΓ.A = δAδA ◦ γqA ,

therefore they are satisfied again by uniqueness of the cartesian lifting as
introduced in 1.3.1.2.

46

(2)⇒ (1) The diagram below describes the representability data.

H(uΣp∆pA) U̇

HΓ U

p

A

H(u(ϵA))

∆pA

It is a pullback by the universal property of ϵ: for each pair (σ, b) such
that A ◦ σ = p ◦ b, there is a map

s : p ◦ b = Σp(b)→ A

induced by precomposition with σ. Therefore there must be a unique ϕ
such that ϵ ◦ Σpϕ = s. Now u(Σpϕ) gives the desired map into uΣp∆pA.

Proof of 2.3.1.2. There is a clear correspondence between couples (ctx, p : U̇ →
U) and triangles as below, where u̇, u are discrete fibrations. The correspondence
is given by the Grothendieck construction.

(ctx, p : U̇ → U)

U̇ U

ctx
u̇ u

Σp

The additional axioms required on both ends are equivalent because of Proposi-
tion 2.3.1.3.

2.3.2 Judgemental dtts vs comprehension categories

Another categorical approach to dependent type theories which is historically
very meaningful was given by Jacobs in [Jac99]. This is the theory of compre-
hension categories and it is inherently presented in the form of a categorized
pre-judgemental theory as below.

U ctx2

ctx

disp

u cod

Comprehension categories clearly realize some form of context extension, and
that is given by display maps.

Construction 2.3.2.1 (From cDTTs to comprehension categories). Each cate-
gorized dependent type theory produces a comprehension category as described

47

by the steps below.

U U̇ U ctx U U̇

ctx

U ctx U ctx2

∆ Σ u

id

u̇

u̇∆

u

∆

u u̇

disp

ϵ

δ

δ

It is enough to follow the picture from left to right (and top to bottom) to
see how a categorized dependent type theory in our sense produces a display
functor, which thus specifies a comprehension category.

Of course it is a legitimate question to ask whether every comprehension
category can be realized via a categorized dependent type theory, and indeed
something can be said on the topic: they are in fact equivalent, and to prove
such a thing is the starting point of Chapter 3.

2.3.3 Dictionary

Dependent type theory has a well established notation, which we switch to in
this subsection. The table below declares the dictionary between our framework
and the classical notation.

Following the presentation in Section 2.2.1, it will need to take into account
Syntax (but there is not much to say there), Judgements, and Rules. What
we adopt here is a one-to-one rewriting of (some) components introduced in
Section 2.2 in order to make the calculations we will see more transparent. Still,
each string of symbols will simply represent its categorical backbone.

2.3.3.1 Dictionary for judgements

As we mentioned in Definition 2.3.0.1, we think of U as classifing types, U̇ as
classifing terms, and of Σ as performing the typing. We make this clear with the
choices in the translation that follow. (Sometimes we might omit the word Type

for brevity).

Γ ⊢ A U Γ ⊢ A Type

Γ ⊢ a U̇ (Γ ⊢ A U Γ ⊢ Σa =U A) Γ ⊢ a : A
Γ ⊢ A =U B (Γ ⊢ A U Γ ⊢ B U) Γ ⊢ A = B Type

Γ ⊢ a =U̇ b (Γ ⊢ A U Γ ⊢ Σa =U A Γ ⊢ Σb =U A) Γ ⊢ a = b : A

Remark 2.3.3.1 (How many types to a term?). One might see our choice in
the treatment of typing as profoundly Church-like, in the sense that to one term
we only assign one type via the functor Σ, and that is far from the practice. The
generality of our definition, though, allows for some tweaks, so that if one wishes
to have the possibility of assigning different types to the same term (say both
0 : N and 0 : Z) one can simply choose U̇ as a subcategory of two categories with,
respectively, names for terms and for types (hence code the two above as (0, N)
and (0, Z)), and make Σ act as a second projection.

48

2.3.3.2 Dictionary for rules

We also have a dictionary for rules, which we have (at least) two of. The first is
implicitly used in Section 2.3.3.1, and it is the typing.

U̇ U

ctx

Σ

u̇ u

Γ ⊢ a U̇(Σ)
Γ ⊢ Σa U

Γ ⊢ a : Σa(Σ)
Γ ⊢ Σa Type

The

second is the policy δ from Construction 2.3.2.1, which we here denote as follows.

U U̇

ctx

∆

u u̇

δ
Γ ⊢ A U(δ)

u̇∆A ⊢ ∆A U̇
Γ ⊢ A Type

(δ)
Γ.A ⊢ qA : Σ∆A

Again, such writings are only stand-ins for their categorical counterparts.

2.3.4 Context extension and type dependecy

In this subsection we compute some rules that are automatically deduced by the
finite-limit closure of a categorized dependent type theory. As we will see, they
correspond to some very well known rules in dependent type theories.

2.3.4.1 Context extension in a DTT, explicitly

Notation 2.3.4.1. For readibility reasons, and in order to highlight the corre-
spondence between the logic and the categories without trivializing it, we denote
Aσ the result of the cartesian lifting of A along σ and A[σ] the substitution in
the sense of the type theory.

All of the pieces appearing in the dictionary 2.3.3.2 surely do look familiar
to the type-theorist reader, all but one, and that is Σ∆A. In fact one might
rightfully ask how to compute such an object.

Proposition 2.3.4.2 (On a formal emergence of substitution). Let A be on
object in U . Then, Σ∆A = AδA, in the sense of Section 2.2.5.

Proof. We know that there is an arrow ϵA : Σ∆A → A. By the discussion in
Section 2.2.5, the thesis is equivalent to the fact that the cartesian lifting of δA
along u is precisely ϵA. Recall, that δA is by definition u(ϵA), therefore it is a
lifting. It is cartesian by assumption.

Notice that this is as trivial as (and in fact it amounts to) proving that the
process of computing weakening can be simulated in the syntax using substitution,
provided that suitable substitution rules do in fact exist. We can re-read the
rule hidden in the policy δ as follows.

Γ ⊢ A U(δ)
u̇∆A ⊢ ∆AU̇

Γ ⊢ A Type
(δ)

Γ.A ⊢ qA : AδA

Finally, we observe that the deductive rule on the right is a version of context
extension in dependent type theory.

49

2.3.4.2 Type dependency in a DTT, explicitly

Similarly to the case of context extension, in a cDTT as in Definition 2.3.0.1
the most classical instances of type depencency emerge too. Let us produce the
following two rules.

Γ ⊢ a : A Γ.A ⊢ B Type
(DTy)

Γ ⊢ B[a] Type

Γ ⊢ a : A Γ.A ⊢ b : B(DTm)
Γ ⊢ b[a] : B[a]

In order to do so, we first need (nested) classifiers for the premises. More
generally, with an iterated construction we will code composed judgements of
the form below.

Γ ⊢ a : A,Γ.A ⊢ b : B Γ ⊢ A,Γ.A ⊢ b : B

Γ ⊢ a : A,Γ.A ⊢ B Γ ⊢ A,Γ.A ⊢ B

This is achieved as follows.

U̇ .Σ∆U̇ U .∆U̇ U̇

U̇ .Σ∆U U .∆U U

U̇ U U̇ ctx
∆ u̇

u

Σ

Σ

⌟⌟

⌟ ⌟

For example, the fibration on U .∆U classifies pairs (A,B) of types such that
uΣ∆(A) = u(B). This is precisely the composed judgement Γ ⊢ A,Γ.A ⊢ B.

Lemma 2.3.4.3 (Focus on U .∆U). In a judgemental dtt we have the following
rules and policy.

U .∆U U ctx

(Γ ⊢ A,Γ.A ⊢ B) (Γ ⊢ A) (Γ.A→ Γ)

u.u̇∆

u

u̇◦∆
δ

Proof. This is the first detailed instance of two judgement classifiers supported
by the same category, since one could perform the two following compositions

U .∆U U

U ctx

ctx

u

u̇◦∆

⌟

u
Id

δ

which are related as discussed in Section 2.3.4.3. Such a policy is the symptom of
a shift in perspective: on the upper path, one travels along the pullback diagram
above, therefore the context which one lands on is Γ.A; on the lower, one is
concerned with the “original” context of A, therefore getting to Γ. They are
related, as we have thoroughly discussed, by δA. Notice that the lower path,
being a composition of fibrations, is a fibration as well.

50

Since the classifier in the lower part of the diagram in 2.3.4.3 will play an
important role in a later discussion, we name it,

v : U .∆U → ctx.

In [Awo18, Prop. 2.2] there is the construction of a presheaf P (U), with
P a polynomial functor, classifying the same nested judgement as U .∆U . The
polynomial is defined as follows

P = Pp : Psh(ctx) Psh(ctx)/U̇ Psh(ctx)/U Psh(ctx)U̇∗ Πp ΣU

meaning the pullback along the terminal presheaf morphism from U̇ , followed by
the right adjoint to pullback along p, followed by composition with the terminal
from U . We apologize for the ambiguous notation (−∗, Π, Σ), but we promise
this will only be used in the current section.

Lemma 2.3.4.4 (Classifiers à la Awodey). One can show that the fibration
v : U .∆U → ctx is precisely the projection π :H↓P (U)→ ctx.

Proof. We sketch the identity fiber-wise. At each Γ, (U .∆U)Γ is comprised of
pairs (A,B) with A,B in U such that u(B) = u(Σ∆A) and u(A) = Γ. By
Remark 2.3.1.1, such A and B correspond to A∗ and B∗ fitting in the following
diagram,

U HΓ.A U̇

HΓ U

p

A∗

⌟

B∗

with the central square being a pullback by representability of p. Using a result
from [DT87], [Awo18, Prop. 2.2] shows that such diagrams are in a 1-to-1
correspondence with maps of the form

HΓ→ P (U)

hence with elements of P (U)(Γ).

We have shown that there is a very tight connection between our classifier and
Awodey’s. We hope that, though almost tautological, this result can convince
the reader about the advantages of our construction, as it makes it much easier
to predict the correct pullback that constructs the desired classifier (this will be
more and more evident in the following sections), while it might not be always
easy to find suitable (polynomial) functors to classify complex judgements. Also,
we can avoid the complex machinery of polynomial functors (and, in this case,
the conflicting notation).

In order to provide the rules (DTm) and (DTy) we build a map out of U̇ .Σ∆U
(and of U̇ .Σ∆U̇), and all we have is Σ,∆, η, ϵ, finite limits closure, composition,
substitution, whiskering, and ♯-lifting. A few tries lead us to the following choice.

51

U̇ × U̇

U̇ .Σ∆U̇ U̇

U̇ × U

U̇ .Σ∆U U

U̇

U̇ ctx

π

u∗id

π

id

u̇∆Σ

u̇

u

Σ

π

π

u̇∗id

u∗η′

η′

u̇∗η′

We call η′ : u̇ ⇒ u̇∆Σ the natu-
ral transformation induced by η via
2.1.0.14 and apply ♯-lifting (2.1.0.12)
as on the left. Write π for projec-
tions.
When we compute each lifting, we
see that the policy (u̇∗η′) computes,
starting from a pair (a, b) some new
term in context Γ, while the policy
(u∗η′) matches to a pair (a,B) a new
type in context Γ.
We give each a meaningful name,
that is, extensively:

u̇∗id(a, b) = (a, b[a]),

u∗id(a,B) = (a,B[a]).

Notice that the typing is appropriate
due to the action of the vertical Σ.

We are now one step away from having (DTy) and (DTm), and in fact the
distance between the policies u∗id, u̇∗id and the desired rules is extremely subtle,
and one could argue - though the author might disagree - a merely technical
one: on the premise of, say, dependent typing, we now have the following nested
judgement (which we write in our original notation for judgemental theories, so
that we can make the difference evident)

Γ.A ⊢ (a,B) U̇ .Σ∆U(u ◦ u̇∆Σ.u)

while we wish to have the pair stand over Γ. That is achieved by v (that from
Lemma 2.3.4.3),

Γ ⊢ (a,B) U̇ .Σ∆U(v) ,

therefore we need to adjust the two policies accordingly. We can do that by
regular 2-categorical manipulations attaching v (the composition of the red
arrows below) to the diagram above.

U̇ × U

U̇ .Σ∆U U .∆U U

U̇

U̇ ctx

u∗id

id
u̇

u

U̇ × U

U̇ .Σ∆U U .∆U ctx

u∗id

The policy on the right now is (DTy). One could repeat a similar argument
for terms, which again have the correct typing because of the action of Σ in the
♯-lifting above.

Remark 2.3.4.5 (Similarities between DTy and proof theoretic Cut). In the
next section we highlight a remarkable connection between dependent typing and
the cut rule from natural deduction: we redirect the reader to Remark 2.4.3.5
for more information.

52

2.3.4.3 Substitution along display maps

Of course there are (at least) two interesting natural transformations that we
know of insisting on

U̇ U U̇ ctxΣ ∆ u̇

that is η and ϵ. If η is so interesting, one might wonder what repeating the
process discussed in Section 2.3.4.2 with ϵ might bring. We have a hint about its
outcome, and that is given by the δ from Construction 2.3.2.1, still we compute
it precisely.

U̇ .Σ∆U̇

U̇ × U̇ U̇

U̇ .Σ∆U

U̇ × U U

U̇

U̇ ctx

π

u∗id

π

id

u̇

uΣ∆Σ

u

Σ

π

π

u̇∗id

u∗ϵ′

ϵ′

u̇∗ϵ′

We call ϵ′ : u̇∆Σ⇒ u̇. The construc-
tion detailed here, when explicitly
computed, induces the two following
rules involving δA : Γ.A→ Γ,

u̇∗id(a, a′) = (a, a′δA)

u∗id(a,A′) = (a,A′δA)

meaning we can transport terms and
types along arbitrary display maps,
given that they insist on the same
context.

Γ ⊢ a : A Γ ⊢ a′ : A′

Γ ⊢ a : A Γ.A ⊢ a′δA : A′δA

Remark 2.3.4.6 (Rules for free). Since we now have rules involving the unit and
rules involving the counit of an adjunction, we can exploit their relation to one
another and show once again the computational power of categorized judgemental
theories. In particular, the (bases of the) constructions in Section 2.3.4.2 and
Section 2.3.4.3 are related by the triangle identities:

U̇ U ctx U̇

U̇ U U̇ U ctx ctxΣ ∆ Σ u

Σ u

η

ϵ

η′ϵ′

so that whiskering the two ♯-liftings above to compute ϵ after η yields the functor
u̇. Then at each level we have the same relation. Therefore

(A′δA)[a] = A′ and (a′δA)[a] = a′,

or, explicitly, we have the following rule

U̇ × U̇ U̇ .Σ∆U̇ U̇ × U̇u̇∗id u̇∗id

id

Γ ⊢ a : A Γ ⊢ a′ : A′

Γ ⊢ a = a : A Γ ⊢ (a′δA)[a] = a′ : A′

which we did not know before. Such a rule is an instance of the discussion in

53

Remark 2.2.4.2. Of course we cannot say the same for the opposite composition,
but that is telling all in itself.

2.3.5 Dependent type theories with Π-types

Definition 2.3.5.1 (Π-types). A categorized dependent type theory with Π-
types is a cDTT as in Definition 2.3.0.1 having two additional rules Π, λ such
that the diagram below is commutative and the upper square is a pullback.

U .∆U̇ U̇

U .∆U U

ctx

Σ.(u̇∆.u)

λ

Π

Σ

v

Recall that v is that from Lemma 2.3.4.3. The rest of this subsection is
devoted to showing that the proof theory generated by such a categorized
judgemental theory actually meets our intuition for having Π-types.

2.3.5.1 À la Martin-Löf

Having Π-types in the sense of [Mar75] means to implement the following rules,

Γ ⊢ A Type Γ.A ⊢ B Type
(ΠF)

Γ ⊢ ΠAB Type

Γ ⊢ A Type Γ.A ⊢ b : B
(ΠI)

Γ ⊢ λAb : ΠAB

Γ ⊢ f : ΠAB Γ ⊢ a : A
(ΠE)

Γ ⊢ f(a) : B[a]

Γ.A ⊢ b : B Γ ⊢ a : A(Πβ)
Γ ⊢ (λAb)(a) = b[a] : B[a]

plus their congruence with definitional equality.

Γ ⊢ A = A′ Type Γ.A ⊢ B = B′ Type
(ΠF=)

Γ ⊢ ΠAB = ΠA′B′ Type

Γ ⊢ A = A Type Γ.A ⊢ b = b′ : B
(ΠI=)

Γ ⊢ λAb = λAb
′ : ΠAB

Γ ⊢ f = f ′ : ΠAB Γ ⊢ a = a′ : A
(ΠE=)

Γ ⊢ f(a) = f ′(a′) : B[a]

The first two rules are almost evident in the very definition of dependent type
theory with Π-types, while the other rules will be derived by the limit closure of
the class of judgements and rules.

(ΠF) Type formation is precisely the rule (Π) in the sense of Section 2.2.4 and
Section 2.3.3.1, indeed U .∆U classifies precisely the premises of (ΠF).

(ΠI) Similarly, the introduction rule is precisely the rule (λ) in the sense of
Section 2.2.4 and Section 2.3.3.2, where the commutativity of the diagram
ensures the correct typing for the term.

54

In order to express the elimination rule, we first need to code its premise,
that is the nested judgement

Γ ⊢ f : ΠAB Γ ⊢ a : A.

Notice that, because of (ΠF), this is actually silent of two judgements, meaning
it should read

Γ ⊢ A Γ.A ⊢ B Γ ⊢ f : ΠAB Γ ⊢ a : A,

instead, so that this is really the judgement we need to give a classification of.
One can check that U̇ .Σ(U .∆U) classifies the first, second, and fourth judgement
appearing above. Also, we know from Section 2.3.4.2 that U̇ .Σ(U .∆U) ∼= U̇ .Σ∆U .
This is an instance of Remark 2.3.0.2, and it just expresses the fact that, whenever
we have a term a : A, we really have its type in our code already.

U̇ .Σ∆U̇ U .∆U̇ U̇

U̇ .Σ∆U U .∆U U

U̇ U U̇ ctx
∆ u̇

u

Σ

Σ

⌟⌟

⌟ ⌟

To now introduce the term f , we need to perform one more pullback. We attach
the diagram above to that in Definition 2.3.5.1. We are entitled to do so because,
by hypothesis, the square that Π and λ fit in has the correct map on its left. For
brevity, and since it should not cause much trouble, for the remainder of the
proof we call all “horizontal” projections π, and all “vertical” ones Σ.

U̇ .Σ∆U̇ U .∆U̇ U̇

U̇ .Σ∆U U .∆U U

Σ

λ

Π

Σ
⌟

π

π

Σ
⌟

To express the classifier for the whole premise, then, is to compute the pullback
against Σ of the composition of Π and π in the lower part of the diagram. Call
Π′ = Π ◦ π. The premise of (E) is then classified by (U̇ .Σ∆U)Σ.Π′U̇ . We can see
how it all builds up in the following suggestive writing

(U̇ .Σ∆U)Σ.Π′U̇ (a . (A .B)) . f

which is fibered over Γ: though not all of its components are types or terms
specifically in context Γ, every judgement appearing in this nested one is built
out of a construction performed entirely in Γ.

From now on, we will write all n-uples as above as traditional n-uples, since
all pullbacks are subcategories of a product after all.

(U̇ .Σ∆U)Σ.Π′U̇

U̇ .Σ∆U̇ U .∆U̇ U̇

U̇ .Σ∆U U .∆U U

Σ

λ

Π

Σ
⌟

π

π

Σ
Σ

π

⌟

55

We now have two pullbacks insisting on the same cospan, then necessarily it is

(U̇ .Σ∆U)Σ.Π′U̇ ∼= U̇ .Σ∆U̇ . (2.1)

This in not an instance of Remark 2.3.0.2, though, and the isomorphism above
actually turns out to contain all the information needed to provide rules (E) and
(β), and then some.

Clearly there is always a map going from right to left, just consider:

(a, b) 7→ (A,B, λAb, a),

but Eq. (2.1) is adding three more pieces of information, meaning

(i) there is also a map going from left to right, (though we can always expand
information, only this tells us we can compact it);

(ii) starting from the left, going right, and back left again, yields the identity;

(iii) starting from the right, going left, and back right again, yields the identity.

Of these, (i) will induce elimination and (iii) β-computation. The additional
piece in (ii) will tell us something about what is generally called the η-rule, which
is much more controversial. We will discuss it in detail in Section 2.3.5.3.

Call ζ and θ the inverse maps. A little calculation shows that they act as
follows:

θ : (a, b) 7→ (A,B, λAb, a), ζ : (A,B, f, a) 7→ (a, fB),

where we write fB for the term of type B in the second component of ζ. Broadly
speaking, θ computes introduction (this is evident by λ ◦ π = π ◦ θ) and ζ
elimination (both because of its typing and because we say so).

Before we can provide an explicit representation for the missing rules, we
shall be able to account for writings b[a] and B[a]. In order to do that, we need
to use the diagram in Section 2.3.4.2. We paste it to the previous one as follows,
calling

γ = π ◦ u∗id and γ̇ = π ◦ u̇∗id.

Notice that the map Σ : U̇ .Σ∆U̇ → U̇ .Σ∆U is precisely that appearing in
Section 2.3.4.2 and Section 2.3.4.3, so that both “rectangles” insist on the same
functor. All solid squares are pullbacks, the dashed one is only commutative.

(U̇ .Σ∆U)Σ.Π′U̇

U̇ .Σ∆U̇ U .∆U̇ U̇

U̇

U̇ .Σ∆U U .∆U U

U

Σ

λ

Π

Σ

π

π

Σ

ζ
θ

π

Σ γ̇

γ

56

(ΠE) The functor γ̇ζ is the elimination rule, because to each quadruple it matches
a term of the correct type. We call γ̇(a, fB) = fB [a] =: f(a).

(Πβ) Computation β amounts to proving that if we apply introduction, followed
by elimination, we kind of get to the point we started from. This is a rule
with codomain as in 2.2.3.6, therefore we show that identity on U̇ .Σ∆U̇
equalizes the following pair of arrows,

U̇ .Σ∆U̇ (U̇ .Σ∆U)Σ.Π′U̇ U̇ .Σ∆U U̇
id

γ̇
ζθ

On the upper path is computed (λAb)(a), on the lower we get b[a]. The
two paths equalize trivially. The desired rule is then

id : U̇ .Σ∆U̇ → U̇ .Σ∆U̇ = E(γ̇ζθ, γ̇).

2.3.5.2 Of congruence rules involving definitional equality.

In our dictionary in 2.3.3 we decided that definitional equality of types and terms
should be interpreted as judgemental equality according to u and u̇, respectively,
hence as identity of objects in the respective “universe” categories. This guaran-
tees that rules (ΠF=), (ΠI=), (ΠE=) are automatically verified. Rule (ΠI=),
also known as the ξ-rule, in particular, is not verified by all models, especially
those that are more computationally oriented, such as Kleene realizability or
game semantics: we are indeed quite extensional in our spirit, but we believe this
is more of a choice that we are making than a constraint of categorized judge-
mental theories, and that it would be interesting to further develop the theory
with different, weaker, but still finite-limit stable interpretations of judgemental
equality.

2.3.5.3 Of η and elimination.

The η-rule accounts for the need to determine what happens in the case that one
wants to apply elimination followed by introduction, and at first it looks exactly
as the dual of (ΠβC). While it is clear that β should prescribe equality of two
terms, though, there is actually no agreement on the features η should present,
so that in the literature we find instances of the resulting computation of η as
being a conversion (i.e. consisting of a definitional equality), interpreted as an
expansion, or a reduction (meaning a non-symmetric relation whose reflexive,
symmetric, and transitive closure defines the conversion). The virtue of each
process, and each of its 2-categorical delivery, is the topic of [See86].

In our framework, Eq. (2.1) tells us something about which η-rule we should
be looking at, and in fact we have

Γ ⊢ f : ΠAB
(Πη)

Γ ⊢ f = λA(fB) : ΠAB

which is precisely what θζ = id says. This is only one of the possible expressions
for η, and it differs from that presented in [Awo18, p.253], which much more
swiftly agrees with the tradition of categories with families. This is because, in a
sense, we think the notion of elimination presented there, and in Section 2.3.5.1
above, is not the correct one: it really is ζ performing the elimination, and it

57

really is fB the term witnessing it. It is not in the computation through γ̇ that
a term of type ΠAB turns into a term involving A,B. This argument, together
with the possibility of excluding the η rule entirely, will be made much more
clear in Section 2.3.7.

2.3.6 Dependent type theories with (extensional) Id-types

For identity types we need to be able to consider pairs of terms of the same
type, this is why we begin by pulling back Σ against itself. Call π1, π2 the
corresponding projections and diag : U̇ → U̇ × U̇ the unique map such that
π1 ◦ diag = id = π2 ◦ diag.

Definition 2.3.6.1 (Extensional Id-types). A categorized dependent type theory
with extensional Id-types is a cDTT as in Definition 2.3.0.1 having two additional
rules Id, i such that the diagram below is commutative and the upper square is
a pullback.

U̇ U̇

U̇ × U̇ U

ctx

Σ

Id

diag

i

Again, the rest of the subsection is dedicated to showing that the proof theory
generated by such judgemental theory actually meets our intuition for having
Id-types. Classically, having Id-types means to implement the following rules

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ b : A
(IdF)

Γ ⊢ IdA(a, b) Type

Γ ⊢ a : A(IdI)
Γ ⊢ i(a) : IdA(a, a)

Γ ⊢ c : IdA(a, b)
(IdE)

Γ ⊢ a = b : A

Γ ⊢ c : IdA(a, b)
(Idη)

Γ ⊢ c = i(a) : IdA(a, a)

As it was for Definition 2.3.5.1, the first two rules are evident in the very definition
of dependent type theory with Id-types.

(IdF) Type formation is precisely the rule (Id) in the sense of Section 2.2.4 and
Section 2.3.3.1. Clearly U̇ × U̇ classifies the premises of (IdF).

(IdI) Similarly, the introduction rule is the rule (i) in the sense of Section 2.2.4
and Section 2.3.3.2, where the commutativity of the diagram forces the
correct typing for the term.

For elimination and conversion we need to pin-point a classifier for judgements
of the form

Γ ⊢ c : IdA(a, b),

but since the square is a pullback insisting on the cospan (Id,Σ), such a feat is
achieved by the (upper-left) U̇ . Then not only do Id, i compute the appropriate
term and type (below on the left), but they also act as projections (below on
the right).

U̇

U̇ × U̇ U̇ U̇i

π∼

diag

π ψ

58

a i(a) (a, b, c) c

(a, a) IdA(a, a) (a, b) IdA(a, b)

Σ

Id

diag

i π

π

Id

Σ

The object classifying judgements of the form Γ ⊢ a = b : A, instead, is the
equalizer E(π1, π2). By its universal property there must be a unique ϕ making
the following diagram commute.

E(π1, π2) U̇ U̇

U̇ × U̇ U

Σdiag

i

Id

ϕ

e

(IdE) The elimination rule, then, is ϕ : U̇ → E(π1, π2).

(Idη) The computation rule is computed as

U̇ → E(π, ψiπ1eϕ) = E(π, π) = U̇

therefore it is the map id : U̇ → U̇ .

There would be a notion of β-computation (in the sense of introduction
followed by elimination) here, too, but it is not usually written because it is
trivial once one has definitional equality. In fact, it takes the following form.

Γ ⊢ a : A(Idβ1)
Γ ⊢ a = a : A

Γ ⊢ a : A(Idβ2)
Γ ⊢ i(a) = i(a) : IdA(a, a)

2.3.7 A categorical definition of type constructor

Definition 2.3.7.1 (The type constructor Φ). A categorized dependent type
theory with Φ-types is a cDTT as in Definition 2.3.0.1 having two additional
rules Φ, Ψ such that the diagram below is commutative and the upper square is
a pullback.

X U̇

Y U

ctx

Σ

Φ

Λ

Ψ

Remark 2.3.7.2. Notice that the definition is implicitly assuming that Λ
belongs to the closure of the generators under finite limits. Also, it is evident by
the previous sections that Π-types and Id-types fall under this definition.

The rest of the subsection is devoted to showing that the proof theory
generated by such judgemental theory actually meets our intuition for having
Φ-types.

Γ ⊢ Y Y
(ΦF)

Γ ⊢ ΦY Type
Γ ⊢ X X(ΦI)

Γ ⊢ ΨX : ΦΛX

59

(ΦF) Type formation is precisely the rule (Φ) in the sense of Section 2.2.4 and
Section 2.3.3.1.

(ΦI) Similarly, the introduction rule is precisely the rule (Ψ) in the sense of
Section 2.2.4 and Section 2.3.3.2, where the commutativity of the diagram
forces the correct typing for the term.

Now, because we have requested that the square in Definition 2.3.7.1 is a pullback,
we automatically get the dashed functors below.

YΣ.ΦU̇ X

X U̇ YΣ.ΦU̇ U̇

Y U Y U

Σ

Φ

Λ

Ψ

Λ⋆Ψ

Λ

Ψ

Σ

Φ

(−)⟨−⟩

(ΦE) The rule associated to functor (−)⟨−⟩ gives us the elimination rule on
the right. Indeed the pullback category precisely classifies the premises of
(ΦE).

Γ ⊢ a : ΦY(ΦE)
Γ ⊢ ΦY ⟨a⟩ X

By essential uniqueness of pullbacks, the compositions ((−)⟨−⟩) ◦ (Λ ⋆Ψ) and
(Λ ⋆Ψ) ◦ ((−)⟨−⟩) both amount to the identity of the respective object. This
observation provided by universal property of the equalizer induces the arrows η
and β in the diagram below.

X YΣ.ΦU̇

E X U̇ E YΣ.ΦU̇ U̇
Ψ

Ψ◦((Λ−)⟨Ψ−⟩)

idβ

Φ.Σ

Φ.Σ◦Λ.Ψ◦((−)⟨−⟩)

idη

(Φβ) The rule associated to the functor β is our β-computation. Indeed, if we
write down the rule explicitly we get the following.

Γ ⊢ X X(Φβ)
Γ ⊢ ΨX = Ψ((ΛX)⟨ΨX⟩) : ΦΛX

(Φη) The rule associated to the functor η is our η-computation. Indeed, if we
write down the rule explicitly we get the following.

Γ ⊢ a : ΦY(Φη)
Γ ⊢ a = Ψ(ΦY ⟨a⟩) : ΦY

Additionally, and as in the case of dependent products in Section 2.3.5.2, we
have rules guaranteeing that definitional equality of terms and types is “preserved”
through formation, introduction, and elimination. See thereof for a discussion
on possible variations.

60

2.3.7.3 (Weaker notions of type constructors). Our definition of type constructor
is very modular: for example, if we request that the square in Definition 2.3.7.1 is
a weak pullback (as opposed to a pullback) with a distinguished section, we can
still construct the functors (−)⟨−⟩ and Λ ⋆Ψ, and one of the two compositions
still amounts to the identity. This ensures both elimination and β-computation,
while we lose η-computation. This remark generalizes a similar analysis contained
in [Awo18, Cor. 2.5].

We believe that Definition 2.3.7.1 is more proof of both the computational
and the expressive power of categorized judgemental theories. We now use the
construction above to enrich a cDTT with units and dependent sums. We reverse
engineer the theory in order to provide the correct definition, and that will be all
that we need because of the calculations above. By the end of this chapter, we
will have shown that Definition 2.3.7.1 captures dependent products, dependent
sums, unit types, extensional identity types. In addition, the construction in
[Awo18, §2.4] might suggest that it fits intensional identity, too, but we do not
discuss this further here.

Remark 2.3.7.4 (Other type constructors). We are indeed aware that Defini-
tion 2.3.7.1 does not capture all type constructors used in both the theory and
the practice of type theory, for example it does not allow for the description of
(co)inductive types, but we believe that our categorical theory of judgement has
been proved fruitful in coding syntactic data. Clearly finite limits will capture
finite constructions, but 2-category theory is much more than finite, nor it is
only about limits, therefore we trust that with some effort this work could be
extended to different constructors.

2.3.8 Examples: unit types and Σ-types

2.3.8.1 Dependent type theories with unit types

Our aim is to describe the premises of introduction and formation, and the relation

they are in. Recall that the rules in question are ⊢ Γ ctx(uI)
Γ ⊢ 1Γ Type

⊢ Γ ctx(uF)
Γ ⊢ ∗Γ : 1Γ

so that both only take in input a context, and the premises are identical, hence
our motivation to give the following definition.

Definition 2.3.8.1 (Unit-types). A categorized dependent type theory with
unit-types is a cDTT having two additional functors 1, ∗ such that the diagram
below is commutative and the upper square is a pullback.

ctx U̇

ctx U

ctx

id

∗

1

Σ

id u

We now show that the judgemental theory generated by diagrams in Def-
inition 2.3.8.1 contains codes for formation, introduction, elimination, and
computation of unit types. Introduction and formation in fact read as follows

61

Γ ⊢ Γ id(1)
Γ ⊢ 1Γ u

Γ ⊢ Γ id(∗)
Γ ⊢ (∗Γ, 1Γ) u̇

or, in our more familiar writing

⊢ Γ ctx(uI)
Γ ⊢ 1Γ Type

⊢ Γ ctx(uF)
Γ ⊢ ∗Γ : 1Γ

moreover, the elimination rule is captured by the unique map ψ : ctx.1U̇ → ctx
and it translates to the syntactic writing on the left, while postcomposed with ∗
it translates as the more familiar rule on the right

Γ ⊢ t : 1Γ(ψ) ⊢ Γ ctx

Γ ⊢ t : 1Γ(∗ ◦ ψ)
Γ ⊢ ∗Γ : 1Γ

which is also denoted (uE). Finally, computation β and η can be decoded from
the two following diagrams

ctx ctx.1U̇

Eq ctx U̇ Eq ctx.1U̇ U̇
∗

∗◦ψϕ

idβ

1.Σ

1.Σ◦ϕψ

idη

with ϕ the inverse to ψ, which read, respectively, as follows.

⊢ Γ ctx(uβ)
Γ ⊢ ∗Γ =1Γ ∗Γ

Γ ⊢ t : 1Γ(uη)
Γ ⊢ t =1Γ ∗Γ

2.3.8.2 Dependent type theories with Σ-types

We hope the reader will forgive us if to avoid confusion we adopt the unusual
notation of + instead of Σ. We then start to look at rules for formation and
introduction, which for sum types are usually the following.

Γ ⊢ A Type Γ.A ⊢ B Type
(+F)

Γ ⊢ +AB Type

Γ ⊢ A Type Γ.A ⊢ B Type Γ ⊢ a : A Γ ⊢ b : B[a]
(+I)

Γ ⊢ ⟨a, b⟩ : +AB

In order to classify the premise of (+F) we simply use U .∆U from Section 2.3.4.2.
The premise of (+I), instead, can be coded via the following nested judgement
classifier

(U̇ .Σ∆U)Σ.γU̇ U̇

U̇ .Σ∆U U .∆U U

U̇ U U̇ ctx
∆ u̇

u

Σ

⌟

γ
Σ

⌟

⌟

with γ = π ◦ u∗id from Section 2.3.4.2. The desired rule Λ, then, is the functor
(U̇ .Σ∆U)Σ.γU̇ → U .∆U appearing above.

62

Definition 2.3.8.2. A categorized dependent type theory with +-types is a
cDTT as in Definition 2.3.0.1 having two additional rules +, pair such that the
diagram below is commutative and the upper square is a pullback.

(U̇ .Σ∆U)Σ.γU̇ U̇

U .∆U U

ctx

Σ

+

Σ.(u.u̇∆)◦Σ.γ

pair

A cDTT with +-types immediately has formation and introduction (with ⟨a, b⟩ =
pair(a, b)) and, as follows from the content of Definition 2.3.7.1, the three (ad-
mittedly hard to look at) rules below. We write Λ for Σ.(u.u̇∆) ◦ Σ.γ.

Γ ⊢ c : +AB
(+E)

Γ ⊢
(

+A B
)
⟨c⟩ (U̇ .Σ∆U)Σ.γU̇

Γ ⊢ c : +AB
(+η)

Γ ⊢ c = pair(
(

+A B
)
⟨c⟩) : +AB

Γ ⊢ X (U̇ .Σ∆U)Σ.γU̇
(+β)

Γ ⊢ pair(X) = pair((ΛX)⟨pair(X)⟩) : +ΛX

If we break down the job of the classifier (U̇ .Σ∆U)Σ.γU̇ we recover the
familiar following ones.

Γ ⊢ c : +AB
(+E1)

Γ ⊢ π1c : A

Γ ⊢ c : +AB
(+E2)

Γ ⊢ π2c : B[π1c]

Γ ⊢ c : +AB
(+η)

Γ ⊢ c = pair(π1c, π2c) : +AB

Γ ⊢ a : A Γ ⊢ b : B[a]
(+β1)

Γ ⊢ a = π1(pair(a, b)) : A

Γ ⊢ a : A Γ ⊢ b : B[a]
(+β2)

Γ ⊢ b = π2(pair(a, b)) : B[a]

2.3.9 The internal logic of a topos – externally

We will show that the notion of topos, in particular, supports a dependent type
theory in the sense of Section 2.3. Such a dtt recovers, among other things, the
Mitchell-Bénabou language of the topos and nicely interacts with its Kripke-Joyal
semantics.

2.3.9.1 (A bit of history). The internal logic of a topos has been discussed by
several authors. After [MLM94], this collective humus has been crystallized in the
Mitchell-Bénabou language and its tautological interpretation, the Kripke-Joyal
semantics. These attributions are somewhat symbolic. For what concerns the
Mitchell-Bénabou language, the best historical account is given, to our knowledge,
by Johnstone [Joh77]. After Mitchell’s original contribution [Mit72], Johnstone

63

refers to the unfindable [Cos72] for Bénabou’s contribution, but the paper is
actually authored by Coste. [Osi75a] and others were definitely part of the
intellectual debate on the topic. For what concerns the Kripke-Joyal semantics
the situation is much more cloudy, Osius [Osi75b] tells us that the original ideas
from Joyal were never published, while a footprint of Joyal’s contribution to the
topic only emerges (in French) in [BJ81]. These ideas were later conveyed in
several texts with slight variations, like [LS88] and [Bor94]. Both in the case of
the language and its semantics, we will refer to the presentation in [MLM94, VI,
Sec. 5 and 6] which is in a sense the most informal and essential. Our main
objective is to demonstrate that our formalism can reboot the core ideas behind
the Mitchell-Bénabou language. We will not discuss in detail Kripke-Joyal
semantics, even though the connection could be drawn, as exemplified by the
very recent [AGH21]. Finally, if one wanted to strip down which property of a
topos corresponds to which portion of the logic, we point the reader to [Mai05].

Definition 2.3.9.2 (Topos). A topos E is category with finite limits, exponen-
tials, and a subobject classifier.

Let us now fix the topos E and denote with ⊤ : 1→ Ω its subobject classifier.

Construction 2.3.9.3 (The dtt of an elementary topos). For an an elementary
topos E , we can construct a dependent type theory in the sense of Defini-
tion 2.3.0.1 as follows.

E/1 E/Ω

E

id ω

Σ⊤

∆⊤

⊣

The map Σ⊤ is induced (via precomposition) by the map ⊤ : 1 → Ω which
picks the top-element of Ω. ∆⊤ is given by pullback, and of course the whole
discussion fits perfectly with Theorem 2.3.1.2, with the technical advantage that
the presheaves in this case are internally represented by objects in the topos,
thus there is no need to use the Yoneda embedding.

Σ∆ϕ 1

X Ω

⊤

ϕ

2.3.9.4 (Comprehension category, display maps, monomorphisms). Of course,
at this point the whole content of Section 2.3 applies, and thus we can load a
whole judgement calculus for this dependent type theory. For example, the rule

Γ ⊢ ϕ E/Ω
(∆)

∆ϕ ⊢ ∆ϕ E/1

is telling us that to each proposition ϕ : Γ→ Ω, corresponds an object ∆ϕ, which
is precisely the object supporting the subobject of X classified by ϕ. Similarly,

64

following the Construction 2.3.2.1, we obtain a representation of the internal
logic of the topos in terms of a comprehension category (3.3.1.1),

disp : E/Ω → E2.

Such correspondence maps a formula ϕ to the dashed red arrow in the construction
above. It follows that the correspondence maps a proposition to its zero locus,
i.e. the monomorphism whose characteristic function is precisely ϕ. Of course,
this idea is not novel and it dates back to Taylor’s PhD thesis or his more recent
[Tay99].

2.3.9.5 (Mitchell-Bénabou reloaded). Following [MLM94, VI Sec 5] we see that
there is a canonical dictionary between our judgements classified by E/Ω and
formulae, i.e. terms of type Ω in the sense of [MLM94, pag. 299, right after
the bulleted list]. Moreover, and somewhat most importantly, display maps
construct subobjects as zero locus of formulae, as explained in [MLM94, pag.
300, right after the bulleted list].

X ⊢ ϕ E/Ω ϕ(x)
X ⊢ ∆⊤ϕ E/⊤ {x|ϕ(x)}

Notice the difference between ∆ϕ and dispϕ, even though they might seem
to be similar things, the first one gives us the support of the subobject, while
the second one gives us the subobject itself.

{x|ϕ(x)} 1

X Ω

⊤

ϕ

dispϕ

∆ϕ

As a result of this discussion, one can use the judgement calculus produced
by this dependent type theory to simulate the internal logic of the topos, and
the result will be consistent with the Mitchell-Bénabou language of the topos.

Let us give a few examples. Notice that we chose topoi as a very strong
theory, but in fact Lemma 2.3.9.6, Lemma 2.3.9.7 show the modularity of our
approach, in a fashion very much affine to [Mai05].

Lemma 2.3.9.6. The cDTT induced by a topos E has unit types in the sense
of Definition 2.3.8.1.

Proof. It suffices to show that we have functors ∗ and 1 making the following
diagram commute and the square a pullback.

E E/⊤

E E/Ω

E

id

∗

1

Σ

id ω

65

Let us denote !X the unique map from X to the terminal – for the moment,
elsewhere we have and we will use X both for the object and the map to 1. One
can easily check that defining ∗ : X 7→!X , and in the obvious way on morphisms,
and 1 : X 7→ ⊤◦ !X , and in the obvious way on morphisms, does the job.

Lemma 2.3.9.7. The cDTT induced by a topos E has extensional identity
types in the sense of Definition 2.3.6.1.

This can be proved in similarly as in Lemma 2.3.9.6, using equalizers. We
take a bit of care in proving the following, instead.

Lemma 2.3.9.8. The cDTT induced by a topos E has dependent product types
in the sense of Definition 2.3.5.1.

Proof. It suffices to show that we have functors λ and Π making the following
diagram commute and the square a pullback.

E/Ω.∆E/⊤ E/⊤

E/Ω.∆E/Ω E/Ω

E

Σ.(id∆.ω)

λ

Π

Σ

v

Let us first compute the two categories

E/Ω.∆E/Ω and E/Ω.∆E/⊤ .

Following the construction in Section 2.3.4.2, we can see that they respectively
have objects

(ϕ, ψ) and (ϕ, {x|ϕ(x)})

with ϕ, ψ as below.

Ω {x|ϕ(x)} 1

X Ω

dispϕ

ϕ

⊤

∆ϕψ

⌟

The verical map on the left hand side of the square computes the diagonal of
the pullback square above, meaning it acts as (ϕ, {x|ϕ(x)}) 7→ (ϕ, ϕ ◦ dispϕ).

To provide suitable Π, λ we of course look at right adjoints to pullback
functors. The fact that they reasonably model dependent products has been
widely discussed from the publication of [See84], with distinguished treatments
in [CZ21], where an explicit construction is given, and in [Mai05], where it is
better framed in the context of the different properties of a topos and their
logical counterpart.

One can always show that for a given ϕ : X → Ω (and, in fact, for any
f : X → Y), we have the following equivalence and adjunction,

E/X ∼= (E/Ω)/ϕ E/Ω
Πϕ

ϕ∗

⊣

66

see for example [MLM94, IV.7]. Given a pair (ϕ, ψ) in E/Ω.∆E/Ω, then, it is
natural to compute dispψ,

1 {x, ϕ(x)|ψ(x)}

Ω {x|ϕ(x)} 1

X Ω

dispϕ

ϕ

⊤

∆ϕ

ψ
⌟

dispψ⊤

∆ψ

⌟

and define Π(ϕ, ψ) = Πϕ(dispϕ ◦ dispψ). As for λ, we put λ(ϕ, {x|ϕ(x)}) =
{x|ϕ(x)}.

The square involving Π, λ commutes because {x, ϕ(x)|ϕ(x)} = {x|ϕ(x)} hence
the composition of displays is mapped to the trivial triangle dispϕ : ϕdispϕ → ϕ.
The universal property of Πϕ is what guarantees that the domain of Π(ϕ, ψ) is,
in fact {p|Π(ϕ, ψ)(p)}. From this remark, one can immediately show that the
desired square is a pullback.

This is nothing new, but we believe it provides a different perspective on
the internal logic of a topos (or any category, really). This is really close to the
following intuition.

We can then conclude that describing the internal dependent type
theory of a category means to capture the type-theoretic properties
of the codomain fibration, while describing the internal many-sorted
logic of a category – considering the sorts as types – means to capture
the properties of the subobject fibration together with the one-
dimensional structure of the category under consideration. [Mai05]

In a sense, our work is about extending this process to more than just the
codomain fibration.

2.3.9.9 (Other topoi). Of course, Construction 2.3.9.3 also means that whenever
we have something of the kind, we can interpret a categorized dependent type
theory with characteristics similar to (at least in the structural rules part) the
theory of a topos. This could have applications both to topoi in the sense
suggested in [MP89, 6.4], and to elementary 2-topoi such as in [Web07], the key
example of which is the 2-category of categories. We leave this to future work.

2.4 Categorized first-order logic

In this section we design the categorized judgemental theory that performs
the calculus of natural deduction. As for Section 2.3, we introduce the basic
judgements and rules and show how they generate the desired structure, then
we add more rules to perform additional computations. Though we follow the
path of the well-known fibrational approach to first order logic, we spend some
time in re-developing it in the context of judgemental theories: this is meant
to present the benefits of the judgemental approach, to compare the resulting
structure with that of dependent types, and to give a pedagogical example of

67

how one might want to implement a judgemental theory starting from notions
which are known to be fibrational in nature.

Disclaimer 2.4.0.1 (Why we do not start from dependent type theory). As we
discussed in Section 2.2.1.2, one could very well follow [Mar75] and use Section 2.3
as a starting point for this analysis by simply restricting it to the proof-irrelevant
case. This is what is really happening in Definition 2.4.0.3, but we choose to
recover the whole theory from scratch for two reasons: on one hand, we hope that
it makes the present work accessible to the non-(type theorist), or to someone
who is more familiar with traditional first-order logic; on the other we aim to
more swiftly align to the tradition of doctrines [Law70, Pit83, Mak93, MR13].

Again, as explained in 2.2.1.2, our distinction is mathematically artificial,
and we will remark that throughout our discussion, see for example 2.4.3.5.

Disclaimer 2.4.0.2 (Why we do not do Gentzen’s sequent calculus). On the
other hand, we could have chosen to present first-order logic in the formalism
of sequent calculus in [Gen35]. Though our framework allows us for it – and in
fact many of the categorical constructions in the following section do so, already,
starting from Definition 2.4.0.3 – we have chosen to take the perspective of natural
deduction because on one hand we believe that, being closer to how logic is used
makes it easier to follow what each categorical operation is doing and, secondly,
dealing with connective and quantifiers with pairs of introduction/elimination
rules, as opposed to right/left introduction rules, helps to keep the connection
with dependent types (2.4.0.1) in the back of the reader’s mind.

Definition 2.4.0.3 (Categorized natural deduction theory). A categorized
natural deduction theory is a substitutional (2.1.1.1) categorized judgemental
theory (ctx,J ,R,P)such that

� ctx is Fin, the category of finite sets;

� J can be presented by one judgement classifier p : P → ctx, which is a
faithful fibration, has fibered products and implication, and has fibered
initial objects.

We think of ctx as the category of variables and terms and of P as the category
of well-formed formulae fibered over variables. We call this cNDT for short.

Remark 2.4.0.4 (On cardinality). We can define λ-ary theories but we would
need to close judgemental theories under λ-small limits, and we would have to
replace Fin with the category of λ-small sets.

Construction 2.4.0.5 (From doctrines to classifiers). Let P : ctxop → Pos be
a doctrine, intended in the most non-committal sense. Consider □ : P I → P any
operational property/structure on P , e.g.:

� having (finite) fibered meets ∧ : P I → P ;

� having (finite) fibered joins ∨ : P I → P ;

� having a negation operator ¬ : P → P .

then, by the Grothendieck construction, we obtain some corresponding diagram
of fibrations,

68

PI P

ctx

pI p

□

This produces a categorized pre-judgemental theory obtained by P , together with
all its structural operators. For example, if P in an Heyting algebra fiber-wise,
we have operators ⊥,⊤,∧,∨,⇒ of the proper arities on P.

Construction 2.4.0.6 (The arrow category). Consider a cNDT. Because it is
closed under finite powers (2.1.0.11) we can compute

P2 P

and we will show how the operations defined on P lift to (a suitable subcategory
of) P2 thanks to the closure under finite limits. We will come back to this in
Section 2.4.2.

Construction 2.4.0.7 (Weakening). Since p has fibered products we can
compute the following nested judgement (on the left)

P× P

ctx2 ctx

p

−×−

⌟ ctx2 ctx

ctx2 ctx2

−×−

diag

diag−×−

id

⊣

ϵ

with an adjunction diag ⊣ − ×− whose counit computes projections. These are
well known in the literature and perform what is usually called weakening:

x× y ⊢ x ctx .

We can now define a span (p2, p×) out of P2 (as a category, not as the fibration
P×P) with p× : (ϕ, ψ) 7→ (ϕ[pr1]∧ψ[pr2]) the product of the respective cartesian
lifts of ϕ, ψ along pr1,pr2,

ϕ[pr1] ∧ ψ[pr2]

ϕ pϕ× pψ ψ

pϕ pψ

pr1 pr2

and such a span makes the diagram involving P× commute, therefore we have a
unique rule

w : P2 → P×

over ctx2. If p(ϕ, ψ) = (x, y) we might denote w(ϕ, ψ) = wyϕ ∧ wxψ.

Definition 2.4.0.8 (cNDT with weakening). A cNDT is said to have weakening
if for each y ∈ ctx, −× y is in J .

In this section we will show that, in fact, a cNDT produces the calculus of
natural deduction.

69

2.4.1 Dictionary

As we did in Section 2.3, we declare a local dictionary, both to make the chapter
more comprehensible and to account for classical notation.

Notation 2.4.1.1 (Stratified contexts). Notice that already in Construction 2.4.0.7
we follow the intuition and use x, y, . . . to name objects of ctx. In fact, we here
want to give a way to present judgements that are traditionally of the form

x; Γ ⊢ ψ

so that they read as having two contexts: the free variables in the formulae and
the formula(e) in the premise of the sequent. In fact, we will “stack up” two
fibrations so that the objects living on top (Γ⇒ ψ) are both fibered on those in
the middle (Γ) and those on the bottom (x). We hope to make it all clearer in
the table that will follow.

Construction 2.4.1.2 (Entailment). We wish to represent entailment between
two formulae in the same context. In order to do that we pick in P2 all objects
belonging to the same fiber. Call I : ctx→ ctx2 the functor mapping Γ 7→ idΓ
and compute the following (dashed) limit.

P2I.p2ctx ctx

P2 ctx2

P ctxp

domcod cod dom

I

p2

⌟

Both the pullback and all universal arrows belong to the judgemental theory.
The classifier we are interested in is the composition P2I.p2ctx→ ctx, and will
simply denote it with e : E → ctx.

Remark 2.4.1.3. The Γ appearing in Notation 2.4.1.1 indicates a finite set of
formulae in context x. We can see it as a product in P and, when we want to
do so, we will write ϕΓ.

We are finally ready to declare our local dictionary according to the notation
of Section 2.2.3, and that is the following.

x ⊢ e E x ⊢ (dom ◦ I.p2)(e) =P ϕΓ x ⊢ (cod ◦ I.p2)(e) =P ψ x; Γ ⊢ ψ
x ⊢ e E x ⊢ (dom ◦ I.p2)(e) =P ϕΓ ∧ ϕ x ⊢ (cod ◦ I.p2)(e) =P ψ x; Γ, ϕ ⊢ ψ

Remark 2.4.1.4. Consider that in the case that (x;⊥ ⊢ ϕ P and x ⊢ ϕ→
ψ E) then x ⊢ ϕ ⇒ ψ P, therefore our framework accounts for the classical
correspondence for all x, ϕ, ψ,

x ⊢ ϕ⇒ ψ iff x;ϕ ⊢ ψ.

Remark 2.4.1.5. Since each p-fiber is thin, there is at most one e ∈ E between
each pair of objects (ϕ, ψ) ∈ P × P.

Notation 2.4.1.6. In order to make our calculations more readable, we pin-
point a specific notation for cod,dom in the case that they follow the inclusion
of E into P2. We creatively write c and d, respectively.

70

2.4.2 From properties to rules

Before we begin our analysis of rules of natural deduction, we show how certain
properties lift from P (the category) to E (the judgement classifier). These will
be instrumental in building up rules from p. In a sense, this subsection shows
how to turn internal properties of p into external rules about p, which is precisely
what we did for contexts in Example 2.1.0.3.

Remark 2.4.2.1 (The domain-codomain policy). Since we will frequently use
either c or d to select the consequent or the antecedent of a sequent, it will be
useful to have a way to relate the two. The proof of Lemma 2.4.2.2 is clear
evidence in this sense. There is a trivial policy

P2 P2

P

dom cod

id

α

where αψ→ϕ = (ψ → ϕ). Note that if useful we might bravely invert the direction
of id. We call α, too, the obvious whiskering d⇒ c.

Lemma 2.4.2.2 (A special instance of cut). The relation captured by e : E →
ctx is transitive in the sense that the rule below is in the cNDT.

x;ψ ⊢ ϕ x;ϕ ⊢ χ
(T)

x;ψ ⊢ χ
Proof. Consider the following ♯-lifting of the triangle in Remark 2.4.2.1 along d.

Ed.cE E (x;ψ ⊢ ϕ, x;ϕ ⊢ χ)

Ed.dE (x;ψ ⊢ ϕ, x;ψ ⊢ χ)

E P

E
d

c

id

d.d

c.d

d∗id
d

α

d∗α

A little computation shows that the upper triangle reads as on the right, pro-
ducing the desired rule

t := d.d ◦ d∗id : Ed.cE → E .

Lemma 2.4.2.3 (Preservation through product as a rule). Interaction of arrows
and products in P (the category) lifts to E (the judgement classifier) in the sense
that the rule below is in the cNDT.

x;ψ ⊢ ϕ x;⊥ ⊢ χ
(F)

x;ψ ∧ χ ⊢ ϕ ∧ χ
Proof. It is coded by a functor f : E × P → E which to pairs (ψ → ϕ, χ) over
some x assigns the unique map ψ ∧χ→ ϕ∧χ defined via the universal property
of the product in the fiber over x.

71

2.4.3 Formal structural rules

Here we show that an cNDT generates the following formal structural rules.

(H)
x; Γ, ϕ ⊢ ϕ

x; Γ,∆ ⊢ ϕ
(Sw)

x; ∆,Γ ⊢ ϕ
x; Γ, ψ, ψ ⊢ ϕ

(C)
x; Γ, ψ ⊢ ϕ

x; Γ ⊢ ϕ
(W)

x; Γ, ψ ⊢ ϕ
x; Γ ⊢ ϕ x; Γ, ϕ ⊢ ψ

(Cut)
x; Γ ⊢ ψ

We break the discussion into three parts.

2.4.3.1 Hypothesis and the simple fibration

Clearly for each pair (Γ, ϕ) over the same context, we have that pr2 : ϕΓ∧ϕ→ ϕ,
therefore E classifies x; Γ, ϕ ⊢ ϕ.

(H) The Hypothesis rule, then, is coded into the existence of e itself.

We would be content with this already, but it is worth noticing that the association
performing the projection pr2

(Γ, ϕ) 7→ (ϕΓ ∧ ϕ→ ϕ)

can be described functorially, and it contains some profound information. Such
functor, in fact, provides an insight into possible developments of the present
work, plus it (almost) allows for a presentation of the simple fibration from
[Jac99], which has a meaningful logical interpretation: it constitutes the “least
informative” type theory one can observe over a category with finite products.
Therefore we say a little more about that.

Construction 2.4.3.1 (The simple fibration). Define on the category E the
monad comprised of the following data:

� the functor S : E → E acting as follows

ψ → ϕ 7→ ψ ∧ ϕ→ ψ → ϕ;

� the 2-cell η : Id⇒ S defined via the universal property of products;

� the 2-cell µ : S ◦ S ⇒ S acting as (pr1, id).

Remark 2.4.3.2. (S, η, µ) is idempotent. This is because µ acts as follows

(ψ ∧ ϕ) ∧ ϕ ψ ∧ ϕ ψ ϕ

ψ ∧ ϕ ψ ϕ

pr1 id

and (ψ∧ϕ)∧ϕ = ψ∧ϕ because p is thin and its products are fibered, and in fact
the forgetful functor from algebras over S into E is fully faithful. All S-algebras
are free.

The Kleisli category of S is equivalent to (the total category) of what in
[Jac99] is called the simple fibration associated to p. That is p : s(P)→ P where
s(P) has for objects pairs (ϕ, ϕ′) in the same p-fiber and maps a = (a1, a2) :

72

(ϕ, ϕ′) → (ψ,ψ′) such that a1 : ϕ → ψ, a2 : ϕ ∧ ϕ′ → ψ′, and p(a1) = p(a2).
The functor p acts as the first projection. If we call 1 : ctx→ P the (fibered)
terminal object functor, one checks that p.1 ∼= p. Moreover, the functor

q : (ϕ, ϕ′) 7→ (ϕ ∧ ϕ′ → ϕ)

induces a comprehension category (as in Construction 2.3.2.1) s(P)→ P→. The
type theory associated to such a functor is (that equivalent to) untyped lambda
calculus.
The functor S induces the following rule.

E E

P

ctx

p

c c

S x; Γ ⊢ ϕ
Dictionary in 2.4.1

x ⊢ ϕΓ → ϕ E
(S)

x ⊢ S(ϕΓ → ϕ) E
Construction 2.4.3.1

x ⊢ ϕΓ ∧ ϕ→ ϕ E
Dictionary in 2.4.1

x; Γ, ϕ ⊢ ϕ

2.4.3.2 Swap and Contraction: fibered products everywhere

(Sw) The Swap rule holds because the fibered product is symmetric and this too
is expressed via a commutative triangle: consider the following composition

P × P P × P P∧∼
s

where the map s computes the permutation. The desired rule is computed
as the (iso)morphism

s.(d.∧) : (P × P).E → (P × P).E .

(C) Contraction is supported by the following dashed map

(P × P)d.(∧◦ id×∆)E E

(P × P)d.∧E

P × P P × P × P P

P × P

∧id

id×∆

id×pr1

∧

d

⌟

⌟

where we write ∧ for the obvious product P ×P ×P → P . On the bottom
we have the triangle on the left commuting, and id×∆ equalizing ∧ and
id× pr1 ◦ ∧. The two nested judgements on the top classify, respectively,
the antecedent and the consequent of (C), and the dashed map exists by
the universal property of the “smaller” pullback.

73

2.4.3.3 Weakening and Cut: more transitivity

We will see that to provide both Weakening and Cut it is sufficient to apply
(T) from Lemma 2.4.2.2 to appropriate triples. Let us start with (W), first:
notice that, as it happened in Section 2.3 and is evident from Section 2.4.1, the
consequent in (W) is actually silent of (at least) one judgement, that is x;⊥ ⊢ ψ.
The procedure we follow for (W) is that of

x; Γ ⊢ ϕ (x;⊥ ⊢ ψ)
(F)

x; Γ, ψ ⊢ ϕ ∧ ψ
(x; Γ ⊢ ϕ x;⊥ ⊢ ψ)

x;ϕ ∧ ψ ⊢ ϕ
(T)

x; Γ, ψ ⊢ ϕ

therefore we need to pre-process the premise of t in order to apply it to triples
of the form (ϕΓ ∧ ψ, ϕ ∧ ψ, ϕ). This is achieved via the following diagram

E × P P × P

Ed.cE E

E Pc

d
⌟f

c×id

q1

with q1 the map (ϕ, ψ) 7→ (ϕ∧ψ → ϕ) acting on pairs in the same p-fiber. Notice
how this is related to q in Construction 2.4.3.1.

Remark 2.4.3.3 (Cones and branches). Here branches in the tree of a deduction
correspond to cones over limit diagrams. We could make this statement more
precise, but we hope the following discussion speaks for itself.

(W) Weakening is computed by the dashed arrow above followed by t from
Lemma 2.4.2.2.

For (Cut) we again apply Lemma 2.4.2.2, this time to the triple (ϕΓ, ϕΓ ∧ ϕ, ψ),
that is we will build the diagram corresponding to the following composing rules.

x; Γ ⊢ ϕ x; Γ, ϕ ⊢ ψ
x; Γ ⊢ ϕ

x; Γ ⊢ ϕΓ ∧ ϕ

x; Γ ⊢ ϕ x; Γ, ϕ ⊢ ψ
x; Γ, ϕ ⊢ ψ
x;ϕΓ ∧ ϕ ⊢ ψ

(T)
x; Γ ⊢ ψ

Therefore we want a map from Ed.dSE , classifying the premise of Cut, into
Ed.cE so that we then can apply (T). That is achieved as follows.

Ed.dSE

E Ed.cE E

E × P E Pc

d
⌟

dS.d
d.dS

(id,d)

f

(Cut) Cut is computed by the dashed arrow above followed by t from Lemma 2.4.2.2.

74

Remark 2.4.3.4 (Cut is a policy). While perhaps not evident, the Cut rule is
in fact a policy in the sense of Definition 2.1.0.1: it just preprocesses data going
into the policy (T) from Lemma 2.4.2.2.

Ed.dSE Ed.cE Ed.dE

P

Remark 2.4.3.5 (Relationship between DTy and Cut). As we have seen, at
the very core of Cut sits the policy (T) from Lemma 2.4.2.2. The reader will
notice the incredible similarity between the process that constructs (T) and the
process that constructs (DTy).

Ed.dSE Ed.dE U̇ .∆ΣU U̇ × U

P ctx

Not only do the diagrams in Lemma 2.4.2.2 and in Section 2.3.4.3 look very
similar, but even their ingredients have affine logical meaning. Indeed, in both
cases the hypothesis of the policy is a nested judgement where a modality appears:
in the case of natural deduction, this is the monad S, in the case of dependent
type theory it is the monad ∆Σ. Of course, some delicate differences appear
too2. This kind of thoughts could lead to a general notion of cut, a special family
of policies, but we leave such a task for a possible future work.

2.4.4 Formal rules for connectives

We here show that the moment we ask that connectives are closed under p-fibers,
with p a cNDT, we automatically get the expected rules. Since Definition 2.4.0.3
already contains the requirement that p has fibered products, we here show how
to provide in a cNDT rules for ∧, and need to ask nothing more of it. If the
reader inspects the constructions below, they will see that such a procedure
could be repeated for cNDTs having p additionally equipped with ∨,¬.

The ones which are usually required for ∧ are the following.

x; Γ ⊢ ϕ x; Γ ⊢ ψ
(∧I)

x; Γ ⊢ ϕ ∧ ψ
x; Γ ⊢ ϕ ∧ ψ

(∧E1)
x; Γ ⊢ ϕ

x; Γ ⊢ ϕ ∧ ψ
(∧E2)

x; Γ ⊢ ψ

(∧I) Introduction is represented by the functor conj : Ed.dE → E induced by
the universal property of the fibered product.

(∧E1) In order to represent its domain, we compute the equalizer

E(d.d, conj) Ed.dE E
d.d

conj

where by d.d (sadly ambiguous, in this case) we wish to express the first
projection of the pullback. The desired rule is then induced by the first
product projection and it assumes the following form.

E(d.d, conj)→ E → E
2For example the height at which one performs the action of the monad, that is U̇ and U

are manipulated over contexts while both instances of E are bounded to formulae.

75

(∧E2) Dually, we compose the equalizer with the functor induced by the second
projection.

Definition 2.4.4.1 (Heyting and Boolean cNDTs). A cNDT is said to

� be Heyting if we have operators ⊥,⊤,∧,∨,⇒ of the proper arities on p;

� be Boolean if it is Heyting and, being ¬ := (-) ⇒ ⊥, the morphism of
fibrations ¬¬ is equivalent to id.

2.4.5 Substitution

While in Section 2.3 we thought of morphisms of contexts as substitutions, in
the setting of proof theory we regard them as terms. When we write a map

y → x

we see it as a list of terms and denote it as such:

[t/x] : y → x.

In particular, if x = x1 × · · · × xk, each term ti = pri ◦ t is a term built up from
y and in context xi, with i = 1, . . . , k. Then we can identify ctx/x with the
classifier collecting all terms in context x.

All of this belongs to the intuition and in fact there is nothing more to ctx
than what described in Definition 2.4.0.3, but it is with this perspective that we
now look at how substitution behaves in cNDTs. Recall from Section 2.2.5 that
substitutionality allows us to compute rules and policies as the following

ctx2.codP P

ctx2.domP

ctx2 ctx

ctx2

cod

id

dom.p

cod.p

p∗id p

dom
α

p∗α

x ⊢ ϕ P
y ⊢ ϕ[t/x] P

and here we have only blindly expanded the information contained in the diagram
on the left by following the discussion in 2.2.5.

2.4.6 Formal rules for quantifiers

Finally, we wish to give an account of quantifiers, hence we introduce more
structure on p and on the categorized judgemental theory it generates.

Definition 2.4.6.1 (First order cNDTs). A cNDT is said to

� be intuitionistic first order if it has weakening (Construction 2.4.0.7), is
Heyting and w from Construction 2.4.0.7 has left and right adjoints,

∃ ⊣ w ⊣ ∀,

76

where ∃,∀ are morphisms of fibrations and belong to J ; we call such
theories IcFOTs, for short;

� is classical first order if it is intuitionistic first order and also Boolean; we
call these cFOTs for short.

We believe that the request of being morphisms of fibrations (i.e. preserve
cartesian squares) is related to the more traditional properties required for ∀,∃,
namely Frobenius reciprocity and Beck-Chevalley.

Remark 2.4.6.2. Consider a (intuitionistic) first order theory in the traditional
sense. Then it induces a (I)cFOT: (the fibration associated to) the hyperdoctrine
of Lindenbaum-Tarski algebras of well-formed formulae, which we talked about
in Example 1.7.1.2.

We only provide explicit representation of the rules involving ∀ in the IcFOT,
∃ could be worked out in a similar fashion. First of all, notice that the pair of
adjoint functors w ⊣ ∀ induces (via the hom-set isomorphism) the following rule
(on the left)

x× y ⊢ w(ϕ, ψ) ≤ χ P
(FA)

(x, y) ⊢ (ϕ, ψ) ≤ ∀χ P × P

x× y ⊢ wyϕ ∧ wxψ ≤ χ P
x ⊢ ϕ ≤ ∀yχ P y ⊢ ψ ≤ ∀xχ P

which, if we denote ∀y = pr1 ◦ ∀ and ∀x = pr2 ◦ ∀, amounts to the rule on
the right. The two rules we need to produce are the following.

x× y;wyΓ ⊢ ϕ
(∀I)

x; Γ ⊢ ∀yϕ
x; Γ ⊢ ∀yϕ

(∀E)
x; Γ ⊢ ϕ[t/y]

Notice that we included the writing wyΓ (with wy of the kind described in
Construction 2.4.0.7) to express the desired dependency, since in this case we
wish to say that there is no y free in Γ. Also, writing ϕ[t/y] is a bit improper in
the sense that, since p(ϕ) = p(ϕΓ) × y = x × y, each substitution in ϕ should
have codomain x× y. It is clear what happens here, but we will go into detail
when the time comes.

We begin with Introduction. It does actually pretty much read as the fact
that ∀ is right adjoint to w “at” the triple ((ϕΓ, ϕΓ), ϕ), but if we wish to write
a rule in the sense of Definition 2.1.0.1, we shall start computing the premise,
which we do via the following pullback

P(Pr1 p.×).pP× P×

ctx2

P ctxp

Pr1

p.×⌟

which classifies pairs (x ⊢ Γ, x× y ⊢ ϕ). But now we exploit the fact that

wyΓ ≤ ϕ iff wyΓ ∧ ϕ = wyΓ

so we ask of the equalizer of the maps

P(Pr1 p.×).pP× P2 P2 P
p×(Pr1,Pr1)

id

77

with the top one computing wyΓ ∧ ϕ and the bottom one wyΓ. We denote
E(p×, p×(Pr1, P r1)) with A.

(∀I) The introduction rule is the functor A → A which follows from the hom-set
isomorphism discussed above. Its inverse implies that actually it is the
following.

x× y;wyΓ ⊢ ϕ
x; Γ ⊢ ∀yϕ

With Elimination, we (implicitly) use the isomorphism above and write [t/y] for
([x/x], [t/y]) : x→ x×y exploiting ctx/x×y ∼= ctx/x×ctx/y. Using substitution
again as in Section 2.2.5, we get

x× y;wyΓ ⊢ ϕ
x; (wyΓ)[t/y] ⊢ ϕ[t/y]

But recall that wyΓ = ϕΓ[pr1], and since

[pr1][t/y] : x→ x× y → x

is id = [x/x], given that also p is faithful, we automatically get (wyΓ)[t/y] = Γ
concluding the proof.

2.4.7 Cut elimination

In pointing out necessary features of a judgemental analogue of natural de-
duction, we see that no instance of Cut is (explicitly) mentioned and, instead,
in Section 2.4.3 Cut is shown to automatically be in the IcFOT generated by
p : P → ctx. We regard this as an instance of what in sequent calculus is
called “cut elimination” (and is shown to be quite hard to prove [Gen64]), or of
“normalization” in natural deduction (which, in turn, follows almost instantly
from admissibility).

In a very precise sense, such rule is a tool that we already have encoded in
the theory the moment we require that it satisfies some properties that we deem
fundamental. In fact, curiously, the main reason it works is the existence of the
domain-codomain policy (Remark 2.4.2.1) and not (only) composition of arrows.
More on this peculiarity was discussed in Remark 2.4.3.5.

2.5 Future developments

As we have specified in the introduction to this Chapter, we here only see a
couple of possible applications of the framework of judgemental theories, but
their versatility suggests many more are possible, for example to modal or linear
logic. A taste of the first is already contained in Chapter 3. Moreover, as any
other calculus, questions of compactness and normalization arise. We believe
trying to answer them would lead to interesting insights into both the logic and
the category theory.

Moreover, it feels like our treatment of substitution might intercept some
concepts in [MS21], where a calculus of substitution is introduced by means of

78

composition of certain dinatural transformations. This is a relation that we wish
to investigate in future work.

In Remark 2.4.3.5 a well-known link between the cut rule and substitution
of terms in expressed in our framework. There we suggested many common
features of the two, and a comodality seems to appear. We hope to find more
examples of these cut-like phenomena, and study their intrinsic properties.

Finally, the attentive reader might have noticed that the choice of fixing
a given category for contexts is a mere formality, and it actually makes the
definitions less smooth that we wished, see for example the discussion pertaining
Definition 2.1.0.4: if anything, this work has convinced us that the notion of
context in a logical theory is simply a relative one. We believe that this line of
thought and work should be explored further. Nevertheless, we decided to keep
the exposition closer to classical presentations as not to make an already cryptic
theory appear even more strenuous to follow.

79

Chapter 3

Fibrations for dependent types

La mia praticità consiste in
questo: nel sapere che a battere la
testa contro il muro è la testa a
rompersi e non il muro.

[Gra10, 19 maggio 1930]

In Section 2.3 we have introduced a new syntactic model for dependent types
obtained by generalizing a construction in [Awo18]. In Section 2.3.2 a relation
to another categorical model, namely comprehension categories, was suggested.
Here we inspect such relation and find that the two notions, though coming from
very different perspectives, are actually equivalent: this allows us to position
categorized dependent type theories into the wider landscape of fibration-based
models of dependent types.

Interestingly, a key concept arises in the form of a particular comonad whose
counit models weakening and multiplication represents contraction in our theory.
We analyze related constructions to gain further insights into type dependency.

We then apply our results to subtyping and to the study of inherent properties
of other categorical models.

Contribution

We prove the 2-equivalence of comprehension categories and weakening and
contraction comonads outlined in [Jac99, Theorem 9.3.4], then prove that the
latters are 2-equivalent to a suitable category of categorized dependent type
theories. We infer properties of the corresponding type theories via categorical
properties of the structures involved. We extend splitting results for fibrations
to the case of weakening and contraction comonads, getting a specialization
partly known from [GL23]. We prove the usefulness of non discrete fibrations for
the purpose of dependent types by modeling subtyping. Comparing categorized
judgemental theories with other models, we prove that some of their properties
are inherent to them, for example in the case of CE-systems [AENR21] and
dependent sums and units.

80

3.1 Of judgements and types

Up until this point, we have been using the word “type theory” quite liberally.
We now take some time to describe what we actually mean by it: this will
not only make the present work more precise, but it will tell us exactly which
elements we need in order to give a model of it.

Here we call type theory that described by Per Martin-Löf in [Mar84]. It is a
formal system devised to discuss about three kinds of objects - that is contexts,
types, and terms - whose mutual relations are described using judgements. There
are four (plus one) possible kinds of judgement,

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ A = B Γ ⊢ a = b : A (⊢ Γ ctx)

where Γ is a context, A and B are types, a and b are terms. They represent,
respectively, that A is a type in context Γ; that a is a term of type A in context
Γ; that the types A and B in context Γ are definitionally equal; that the terms
a and b of type A in context Γ are definitionally equal. Most of the times one
completes the calculus adding a “degenerate” judgement to say that Γ is a
context.

These judgements constitute the basic blocks of the calculus, but have no
computational power in and of themselves: that is impressed on the judgements
by adding rules manipulating them. A rule is a process taking in input one or
more judgements and producing a new one. See [Hof97] for a comprehensive list
of classical rules for dependent types and Section 4.6 for their fuzzy version.

A model of type theory, then, will need to provide an interpretation of
contexts, types, and terms, such that

1. they are in the appropriate relations described by the four judgements
above, and

2. they can be manipulated following the rules in such a way that they do
not fall outside the model.

3.1.1 The category of contexts

Before we begin our discussion, we ought to take a minute to talk about the cat-
egory of contexts B we will be working over. Our presentation is heavily focused
on the semantics, so we will assume the least possible number of hypotheses on
B. Nevertheless, it is convenient to know what we should think of B as. Needless
to say, this discussion will sound a bit circular.

Assume that we are working in a dependent type theory à la Martin-Löf
with weakening and substitution. We think of objects of B as lists of types,
Γ = (x1 : A1, . . . , xn : An) with Γ.A1.Ai ⊢ Ai+1 for all i ≥ 1, and of maps

f : Γ = (x1 : A1, . . . , xn : An)→ (y1 : B1, . . . , ym : Bm)

where f = (f1, . . . , fm) is{
Γ ⊢ f1 : B1

Γ ⊢ fj+1 : B[f1/y1, . . . , fj/yj]

for j ≥ 1. Composition of maps is given by simultaneous substitution, and the
identity on a given Γ is clearly x.

81

We refer to Example 3.3.6.5 for an explicit construction of the category B,
and urge the reader to compare this construction with (the category of contexts
of) the doctrine associated to the Lindenbaum-Tarski algebra of a given first
order theory (1.7.1.2).

Remark 3.1.1.1 (The empty context). One often asks for a category of contexts
to at least have an object interpreting the empty context, meaning that B has
(a choice of) a terminal object 1. We do not do this for the moment, but we will
come back to the issue in Section 3.4.1.

3.1.2 What are we doing?

The first step in our plan is comparing categorized dependent type theories (or
cDTTs, Definition 2.3.0.1) with comprehension categories (or compcats, Defini-
tion 3.3.1.1): something in this direction was already hinted at in Section 2.3.2,
but it is not trivial to prove that they are in fact equivalent, as they were
introduced with quite different approaches in mind.

Comprehension categories have a long history and witness the fruitful con-
nection between type theory and category theory, of reading the type theory
into the category (in the spirit of [See84]); moreover, having dependent sums
and products is a property of the category and not a structure on the category.
In contrast, categorized dtts are much more computational in flavour, and aim
to use categories as tools to (externally) describe relations of different entities:
for example, terms and types belong to two entirely distinct categories in order
to be treated as two entirely distinct entities.

Still, as categorical objects they have a lot in common, so it is entirely natural
to wonder whether the two are comparable. We believe it is not only interesting
from a mathematical point of view, but philosophically too, since we will show
that the two approaches can be actually made into one.

Finally, we apologize for the structure of this exposition, as the following
section will seem as it was coming out of the blue. To be honest, we could have
done one of the two: either postpone the discussion on comonads and adjunctions
to after the middle term to compare comprehension categories and cDTTs was
introduced, and subsequently describe what categories such structures could be
gathered into, or do it this way, and have structures and their categories be
defined all at once. If we had picked the first, perhaps the reader would have
had some more motivation to survive Section 3.2, but we believe the exposition
would have lost in clarity. Choosing the second, we ought to give away our
main intuition straight away, to the cost of losing in momentum. So here it is:
Section 3.3 will be devoted to proving following relation,

compcats certain comonads on a fibration comonads

cDTTs adjunctions

in the sense that comprehension categories will be shown to be equivalent to
particular comonads on top of a fibration, so that establishing a connection
between comprehension categories and cDTTs will pass through a classical
relation between comonads and adjunctions.

82

3.2 A biadjunction between comonads and adjunctions

Disclaimer 3.2.0.1. The content of this section is well-known to people working
in category theory. Nevertheless, we could not find any clear-enough exposition
we could refer to — in no small part due to the fact that we are interested
in comonads, instead of monads, so one needs to be extremely careful when
inverting the appropriate 1- and 2-cells. We recover known results, fix notation,
and give definitions that would be of use later, but the expert reader is welcome
to skip directly to Section 3.3. A thorough exposition of the 1-dimensional
version of the results we are interested in can be found in [MMdPR05, Theorems
39.i and 40.i].

First of all, let us recall some basic definitions and results.

Definition 3.2.0.2 (Comonad). A comonad on a category C is a triple (T, ϵ, ν),
with T an endofunctor on C, ϵ : T ⇒ Id, called the counit of the comonad, and
ν : T → T ◦T , called the comultiplication of the comonad, such that the following
diagrams commute.

T T 2 T 2 T T 2

T 2 T 3 T 2

ν

ν νT

Tν

Tϵ ϵT

ν
Id Id

Here we write T 2 for T ◦ T and T 3 for T 2 ◦ T . Often one denotes the comonad
simply by its endofunctor T .

As the name might suggest, the notion of comonad has a dual version namely
that of monad : we refer the reader to [ML78, Chapter VI] for a comprehensive
treatment on the topic.

Definition 3.2.0.3 (Coalgebras for a comonad). Let (T, ϵ, ν) a comonad con
C. A coalgebra for the comonad is a pair (A, a) with A an object of C and
a : A→ TA a morphism such that the following diagrams commute.

A TA A TA

A TA T 2A
id

a

ϵA a

a

νA

Ta

Construction 3.2.0.4 (The co-EM category). Coalgebras for a given comonad
T can be assembled into a category CoAlg(T) – called the co-Eilenberg-Moore
category of T . Its objects are coalgebras and a coalgebra morphism (A, a) →
(B, b) is a map f : A→ B in C such that the following diagram commutes.

A B

TA TB

f

Tf

a b

Every adjunction L ⊣ R determines a comonad on the composite LR (and a
monad on RL), as it was first observed in [Hub61]. Conversely, every comonad T

83

determines an adjunction via the Eilenberg-Moore construction of the category
of algebras [EM65]. In fact it determines two adjunctions—the second one
being given by the Kleisli construction [Kle65] of the category of free algebras,
but we shall only be interested in the former. As it is shown in [Str72], this
correspondence between adjunctions and comonads lifts to a 2-adjunction between
suitable 2-categories. We now recall the details, which we need to establish
an equivalence between categorized dependent type theories and weakening-
contraction comonads.

3.2.1 Morphisms of adjunctions and of comonads

Definition 3.2.1.1. The 2-category Cmd is defined as follows.
A 0-cell is a pair of a category C and a comonad (T, ϵ, ν) on C.
A 1-cell from (C, T, ϵ, ν) to (C′, T ′, ϵ′, ν′) is a lax morphism of comonads,

that is, a pair (H, θ) of a functor H : C → C′ and a natural transformation
θ : HT ⇒ T ′H such that the diagrams below commute.

HT T ′H

H

Hϵ

θ

ϵ′H

HT T ′H

HT 2 T ′HT T ′2H

Hν

θ

ν′H

θT T ′θ

A 2-cell from (H1, θ1) to (H2, θ2) is a natural transformation ϕ : H1 ⇒ H2

such that (T ′ϕ)θ1 = θ2(ϕT).

Remark 3.2.1.2. Note that the right-hand diagram in the definition 3.2.1.1 of
lax morphism of comonads can be read as saying that, given a lax morphism
of coalgebras (H, θ) : (T, ϵ, ν)→ (T ′, ϵ′, ν′), each component θE is a morphism

of coalgebras (HTE, θKE ◦HνE)→ (T ′HE, ν′HE). This means that θ lifts to θ̂
below.

C C′

CoAlg(T) CoAlg(T ′)

RK

H

RK′

CoAlg(H,θ)

θ̂

We need to consider several kinds of morphisms between adjunctions.

Definition 3.2.1.3. Let (L,R, η, ϵ) and (L′, R′, η′, ϵ′) be adjunctions, where
L : D → C and L′ : D′ → C′.

A left morphism of adjunctions from (L,R, η, ϵ) to (L′, R′, η′, ϵ′) is a pair
(F,G) where F : C → C′, G : D → D′ are functors such that L′G = FL.

A right morphism of adjunctions from (L,R, η, ϵ) to (L′, R′, η′, ϵ′) is a pair
(F,G) where F : C → C′, G : D → D′ are functors such that GR′ = RF .

A left loose morphism of adjunctions from (L,R, η, ϵ) to (L′, R′, η′, ϵ′) is a
triple (F,G, ζ) where F : C → C′, G : D → D′ are functors and ζ : L′G

∼⇒ FL is
a natural iso.

The composite of two left loose morphisms of adjunctions (F1, G1, ζ1) and
(F2, G2, ζ2) is (F2F1, G2G1, (F2ζ1)(ζ2G1)). The straightforward verification that
composition is associative is left to the reader.

84

A right loose morphism of adjunctions is defined dually as a triple (F,G, ξ)
where F : C → C′, and G : D → D′ are functors, and ξ : GR

∼⇒ R′F is a natural
iso.

Definition 3.2.1.4. The 2-category AdjlooseL is defined as follows.
A 0-cell is an adjunction (L,R, η, ϵ).
A 1-cell is a left loose morphism of adjunctions.
A 2-cell from (F1, G1, ζ1) to (F2, G2, ζ2) is a pair (ϕ, ψ) of natural transfor-

mations ϕ : F1 ⇒ F2 and ψ : G1 ⇒ G2 such that (ϕL)ζ1 = ζ2(L′ψ).
The 2-category AdjL is the wide 2-full sub-2-category of AdjlooseL on the

1-cells which are left morphisms of adjunctions.

3.2.2 Biadjunctions between comonads and adjunctions

First of all, we recall the definition of mate of a natural transformation.

Definition 3.2.2.1. Let L and L′ be left adjoints and ζ : L′G⇒ FL a natural
tranformation. Its mate ζ# is defined as in (3.1).

GR R′F

R′L′GR R′FLR

η′GR

ζ#

:=

R′ζR

R′Fϵ (3.1)

Remark 3.2.2.2. Using naturality of the arrows involved and the triangular
identities, it is straightforward to verify the following facts.

1. Let (F1, G1, ζ1) and (F2, G2, ζ2) be two composable left loose morphisms
of adjunctions. Then

(F2ζ1 ◦ ζ2G1)# = ζ#2 F1 ◦G2ζ
#
1 .

2. Let (F,G, ζ) be a left loose morphism of adjunctions. Then the two squares
below commute.

G R′L′G

GRL R′FL

Gη

η′G

R′ζ

ζ#L

L′GR FLR

L′R′F F

L′ζ#

ζR

Fϵ

ϵ′F

3. Consider two left loose morphisms of adjunctions (F1, G1, ζ1) to (F2, G2, ζ2)
and a pair (ϕ, ψ) of natural transformations ϕ : F1 ⇒ F2 and ψ : G1 ⇒ G2.
Then the left-hand square below commutes if and only if the right-hand
one does.

L′G1 F1L

L′G2 F2L

L′ψ

ζ1

ϕL

ζ2

G1R R′F1

G2R R′F2

ψR

ζ#1

R′ϕ

ζ#2

85

Remark 3.2.2.3. Given a 2-category C, we write Cop for the 2-category with
the 1-cells reversed, and Cco for the 2-category with the 2-cells reversed. The
2-category where both 1-cells and 2-cells are reversed is denoted Ccoop.

Let (−)o : Cat → Catco denote the 2-functor that maps a category to
its opposite and a natural transformation ϕ : F → G : C → D to ϕo : Go →
F o : Co → Do. This 2-functor gives rise to the isomorphisms of 2-categories

Cmd ∼= Mndco AdjcoR
∼= AdjL (3.2)

as we describe below.
A lax morphism of comonads (H, θ) : (C, T, ϵ, ν) → (C′, T ′, ϵ′, ν′) induces a

morphism of monads (Ho, θo) : (Co, T o, ϵ′o, ν′o) → (C′o, T ′o, ϵo, νo) as defined
in [LHTVM19, Section 3]. A 2-cell ϕ : (H1, θ1) → (H2, θ2) in Cmd induces a
transformation of monads (Ho

2 , θ
o
2) → (Ho

1 , θ
o
1). As both correspondences are

bijective, it follows that Cmd is 2-isomorphic to Mndco.
A left morphism of adjunctions (F,G) : (L,R, η, ϵ)→ (L′, R′, η′, ϵ′) clearly in-

duces a right morphism of adjunctions (Go, F o) : (Ro, Lo, ϵo, ηo)→ (R′o, L′o, ϵ′o, η′o).
A 2-cell (ϕ, ψ) : (F1, G1)→ (F2, G2) in AdjL is such that ϕL = L′ψ, and it in-
duces a pair (ψo, ϕo) : (Go

2, F
o
2) → (Go

1, F
o
1) such that ϕoLo = L′oψo. Again,

being bijective, these correspondences induce a 2-isomorphism between AdjL
and AdjcoR as defined in [LHTVM19, Section 3].

Theorem 3.1 in [LHTVM19] (see also [CVST10]) proves that there is a
2-adjunction:

Mnd AdjR
EM

⊣M
(3.3)

where M is the monad induced by an adjunction, and EM is the free-forgetful
adjunction given by the Eilenberg–Moore category of algebras. The counit of
EM ⊣M is the identity M ◦ EM = Id. It follows that Mnd is a 2-reflective
sub-2-category of AdjR.

Composing the 2-adjunction in (3.3) with the 2-isomorphisms in (3.2)

Cmd(C(L,R, η, ϵ), (T, ϵ, ν)) ∼= Mnd (M(Ro, Lo, ϵo, ηo), (T o, ϵo, νo))
op

∼= AdjR ((Ro, Lo, ϵo, ηo),EM(T o, ϵo, νo))
op

∼= AdjL ((L,R, η, ϵ),EM(T, ϵ, ν))

we see that the 2-category Cmd is a 2-reflective sub-2-category of AdjL. We
record this fact in the theorem below.

Theorem 3.2.2.4. There is a 2-adjunction

Cmd AdjL
EM

⊣C

such that the counit is the identity C ◦EM = IdCmd. In particular, the right
adjoint EM is injective on objects and fully faithful.

In fact, the 2-adjunction in Theorem 3.2.2.4 can be extended to a biadjunction
involving the 2-category whose 1-cells are left loose morphisms of adjunctions.
This is not hard to see, but we first need to recall some facts from [LHTVM19,
Section 3], translated along the 2-isomorphisms in 3.2.

86

The right adjoint EM maps a comonad (T, ϵ, ν) to the Eilenberg-Moore
adjunction:

CoAlg(T) C
UT

⊣

RT

whose counit is ϵ : UTRT = T ⇒ IdC and whose unit ηT : IdCoAlg(T) ⇒ RTUT

has component at a coalgebra (A, a : A → TA) the arrow a itself seen as
a morphism of coalgebras (A, a) → (TA, νA). A lax morphism of comon-
ads (H, θ) : T → T ′ induces a functor CoAlg(H, θ) : CoAlg(T) → CoAlg(T ′)
which maps a T -coalgebra (A, a) to the T ′-coalgebra (HA, θA ◦Ha). Clearly,
UT ′CoAlg(H, θ) = HUT . Therefore the pair (H,CoAlg(H, θ)) is a left morphism
of adjunctions, which gives the action of the 2-functor EM on 1-cells. Finally,
it is easy to see that every 2-cell ϕ in Cmd lifts to a natural transformation
CoAlg(ϕ) : CoAlg(H1, θ1) ⇒ CoAlg(H2, θ2) whose component at (A, a) is ϕA
itself. Therefore (ϕ,CoAlg(ϕ)) is a 2-cell in AdjL, which gives the action of EM
on 2-cells.

The left adjoint C maps an adjunction (L,R, η, ϵ) to the comonad (LR, ϵ, LηR).
A left morphism of adjunctions (F,G) induces a lax morphism of comonads
C(F,G) = (F,L′id#), where id# = (R′Fϵ)(η′GR) : GR ⇒ R′F is the mate
of id : L′G ⇒ FL. In fact, in Lemma 3.2.3.1.1 we will prove that a left loose
morphism of adjunctions induces a lax morphism of comonads as well. A 2-cell
(ϕ, ψ) in AdjL is simply mapped to ϕ. It is straightforward to verify that ϕ is a
2-cell (F1, L

′id#)→ (F2, L
′id#) in Cmd.

Every adjunction (L,R, η, ϵ) gives rise to a canonical comparison functor
KL,R making the diagram below commute.

D CoAlg(LR)

C
L

KL,R

ULR

(3.4)

Recall that KL,R maps an object A to the coalgebra LηAR : LRA → (LR)2A,
and an arrow f : A→ B to LRf : LRA→ LRB.

The unit η of the 2-adjunction C ⊣ EM at (L,R, η, ϵ) is defined as the
left morphism of adjunctions (Id,KL,R) : (L,R, η, ϵ)→ (ULR,RLR, η

LR, ϵ). This
family is natural in (L,R, η, ϵ) since, for every left morphism of adjunctions
(F,G),

L′id#
LA ◦ FLηA = L′R′FϵLA ◦ L′η′GRLA ◦ L′GηA

= L′R′FϵLA ◦ L′R′L′GηA ◦ L′η′GA

= L′η′GA

and FLf = L′Gf for A and f in D, imply CoAlg(C(F,G, ζ))◦KL,R = KL′,R′ ◦G.
On the other hand, for every comonad (T, ϵ, ν) we have C ◦EM(T, ϵ, ν) =

(T, ϵ, ν), since UKRK = K and UKηRK = ν. The counit of C ⊣ EM at (T, ϵ, ν)
is simply the identity. Naturality amounts to C◦EM(H, θ) = (H, θ), for every lax
morphism of comonads (H, θ) : (K, ϵ, ν)→ (K ′, ϵ′, ν′). To prove that equation,
recall that η′(A,a) = a and use the two diagrams in Definition 3.2.1.1 to show

that UK′ id#
E = K ′HϵE ◦UK′η′(HKE,θKE◦HνE) equals θE .

87

This can be verified with a simple calculation: consider id# : CoAlg(H, θ)RK ⇒
RK′H, then for E in C,

UK′ id#
E = K ′HϵE ◦UK′η′(HKE,θKE◦HνE)

= K ′ϵ′HE ◦K ′θE ◦ θKE ◦HνE
= K ′ϵ′HE ◦ ν′HE ◦ θE
= θE

using the definition of the unit η′ of UK′ ⊣ RK′ after Theorem 3.2.2.4, the
definition of lax morphism of comonads in Definition 3.2.1.1, and an identity of
the comonad on K ′. As the equality is trivial on 2-cells, we have also shown that

C ◦EM = Id.

Finally, the triangular identities follow from the equations in (3.5).

Cη = idC ηEM = idEM (3.5)

The left-hand one holds since the mate id# : KL,RR⇒ RLR of id : ULRKL,R ⇒ L
is itself an identity. The right-hand one holds since KUT ,RT = IdCoAlg(T)

Now we turn to the case of left loose morphisms of adjunctions.

3.2.3 The biadjunction in the loose case

Lemma 3.2.3.1. Let (F,G, ζ) : (L,R, η, ϵ)→ (L′, R′, η′, ϵ′) be a left loose mor-
phism of adjunctions. Then the following facts hold.

1. The two diagrams below commute.

FLR L′R′F

F

Fϵ

L′ζ#◦ζ−1R

ϵ′F

FLR L′R′F

F (LR)2 (L′R′)2F

L′R′FLR

FLηR

L′ζ#◦ζ−1R

L′η′R′F

(L′ζ#◦ζ−1R)LR L′R′(L′ζ#◦ζ−1R)

2. For every object A of D, the square below commutes.

L′GA FLA

L′R′L′GA L′R′FLA

L′η′GA

ζA

L′ζ#LA◦ζ−1
RLA◦FLηA

L′R′ζA

Proof. Both claims are easily verified using naturality of the arrows involved
and the triangular identities of the adjunctions.

1.

ϵ′F ◦ L′ζ# ◦ ζ−1R = ϵ′F ◦ L′R′Fϵ ◦ L′R′ζR ◦ L′η′GR ◦ ζ−1R

= Fϵ ◦ ζR ◦ ϵ′L′GR ◦ L′η′GR ◦ ζ−1R

= Fϵ

88

L′R′(L′ζ# ◦ ζ−1R) ◦ L′ζ#LR ◦ ζ−1RLR ◦ FLηR =

= L′R′(L′ζ# ◦ ζ−1R) ◦L′R′FϵLR ◦L′R′ζRLR ◦L′η′GRLR ◦ ζ−1RLR ◦FLηR
= L′R′L′(R′Fϵ ◦R′ζR ◦ η′GR) ◦ L′η′GR ◦ ζ−1R

= L′η′R′F ◦ L′ζ# ◦ ζ−1R

2.

L′ζ#LA ◦ ζ
−1
RLA ◦ FLηA ◦ ζA = L′R′(FϵLA ◦ ζRLA) ◦ L′η′GRLA ◦ L′GηA

= L′R′(FϵLA ◦ ζRLA ◦ L′GηA) ◦ L′η′GA

= L′R′ζA ◦ L′η′GA.

Corollary 3.2.3.2. The 2-functor C extends along AdjL ↪→ AdjlooseL to a
2-functor Cl : AdjlooseL → Cmd.

Proof. We only need to consider 1-cells. Lemma 3.2.3.1.1 ensures that (F,L′ζ# ◦
ζ−1R) is a lax morphism of comonads whenever (F,G, ζ) is a left loose morphism
of adjunctions. Functoriality follows from (1).

Remark 3.2.3.3. Consider a left loose morphism of adjunctions (F,G, ζ) : (L,R, η, ϵ)→
(L′, R′, η′, ϵ′). Then Lemma 3.2.3.1.2 entails that the natural iso ζ : L′G

∼⇒ FL
lifts to a natural iso

ζ̂ : KL′,R′ ◦G ∼⇒ CoAlg(Cl(F,G, ζ)) ◦KL,R

meaning that UL′R′ ζ̂ = ζ.

Theorem 3.2.3.4. The 2-adjunction from Theorem 3.2.2.4 extends along
AdjL ↪→ AdjlooseL to a biadjunction

Cmd AdjlooseL
EMl

⊣Cl

such that the counit is the identity Cl ◦EMl = IdCmd. In particular, the right
adjoint EMl is injective on objects and fully faithful.

Proof. It only remains to show that the unit η : Id ⇒ EMl ◦ Cl lifts to a
pseudo-natural transformation η : Id ⇒ EMl ◦Cl. This amounts to give, for
every left loose morphism of adjunctions (F,G, ζ) : (L,R, η, ϵ)→ (L′, R′, η′, ϵ′),
an invertible 2-cell (F,KL′,R′ ◦ G, ζ) → (F,CoAlg(Cl(F,G, ζ)) ◦ KL,R, id) in

AdjlooseL . For this 2-cell we can take (idF , ζ̂), where ζ̂ is the natural iso from
Remark 3.2.3.3.

3.3 Comparing type-theoretic comprehensions

3.3.1 Comprehension categories

Definition 3.3.1.1 ([Jac93], Def. 4.1). A comprehension category consists of a
Grothendieck fibration p : E → B together with a functor χ : E → B2 such that

89

1. p = codχ, and

2. χ preserves cartesian arrows.

Sometimes we might refer to p as the type fibration.

Intuitively, the category E collects all types and these are fibered over contexts
i.e. objects in B. The functor χ maps each type to its context extension projection,

A 7→ Γ.A→ Γ .

Condition 2 guarantees that substitution of types along morphisms behaves as a
pullback of the corresponding map. Terms, though not appearing explicitly, are
interpreted to sections of the projection maps.

Construction 3.3.1.2. Consider a functor F : C → D. It induces a functor
C2 → D2, we call it F 2. Similarly, we call α2 the natural transformation F 2 ⇒ G2

induced by α : F ⇒ G.

Definition 3.3.1.3. Let (p, χ) and (p′, χ′) be comprehension categories. A lax
morphism of comprehension categories from (p, χ) to (p′, χ′) is a triple (H,B, ζ)
as in the diagram below, where B2 is the functor induced by B, such that

1. (H,B) is a 1-cell in Fib, and

2. codζ = IdBp.

B2 B′2

E E ′

B B′
p cod

χ

B

H

B2

p′

χ′

cod

ζ

A lax morphism of comprehension categories (H,B, ζ) is a pseudo (respec-
tively, strict) morphism of comprehension categories if ζ is invertible (respectively,
the identity).

Remark 3.3.1.4. Unfolding the definition of lax morphism of comprehension
categories in Definition 3.3.1.1, one sees that to have a natural transformation
ζ : B2χ⇒ χ′H such that codζ = IdBp amounts to have a natural transformation
Bdomχ ⇒ domχ′H, which we also denote ζ, such that, for each E in E , the
triangle below commutes.

BXE X ′
HE

BpE = p′HE

BχE

ζE

χ′
HE

It follows that a lax morphism (H,B, ζ) is pseudo (respectively, strict) if and
only if, for every E in E , the arrow ζE above is invertible (respectively, the
identity).

90

Definition 3.3.1.5. The 2-category CompCat of comprehension categories is
defined as follows.

A 0-cell is a comprehension category (p, χ).
A 1-cell (p, χ)→ (p′, χ′) is a lax morphism of comprehension categories from

(p, χ) to (p′, χ′).
A 2-cell (H1, B1, ζ1) ⇒ (H2, B2, ζ2) is a 2-cell (ϕ, ψ) : (H1, B1) ⇒ (H2, B2)

in Fib as in the left-hand diagram below, such that ϕ ∗ ζ1 = ζ2 ∗ ψ2.

E E ′

B B′

p

B1

B2

H2

H1

p′

ψ

ϕ B2 B′2

E E ′

χ

H1

H2

B2
1

χ′

ϕ

ζ1

B2 B′2

E E ′

χ

H2

B2
1

χ′
B2

2

ζ2

ψ2

We write CompCatps and CompCatstr for the 2-full 2-subcategory of
CompCat with the same 0-cells and only those 1-cells which are pseudo (re-
spectively, strict) morphisms of comprehension categories.

Remark 3.3.1.6. What in the literature is usually called CompCat here is
CompCatstr.

Remark 3.3.1.7. Let (H1, B1, ζ
1), (H2, B2, ζ

2) : (p, χ) → (p′, χ′) be lax mor-
phisms of comprehension categories. Using Remark 3.3.1.4 one sees that a 2-cell
(ϕ, ψ) : (H1, B1) ⇒ (H2, B2) in Fib is a 2-cell in CompCat if and only if, for
every E in E over X, the top square in the diagram below commutes,

B1XE B2XE

X ′
H1E

X ′
H2E

B1X B2X

χ′
H1E

ζ1E

B1χE

ψX

ψXE

χ′
H2E

ζ2E

B2χE

where the front square is the image under χ′ of ϕE : H1E → H2E, the back
square is naturality of ψ, and the side triangles are those from Remark 3.3.1.4.

If (H1, B1, ζ
1) and (H2, B2, ζ

2) are strict morphisms, the top square above
commutes if and only if its horizontal arrows coincide. Therefore (ϕ, ψ) is a
2-cell between strict morphisms if and only if domχ′ϕ = ψdomχ, if and only if
χ′ϕ = ψ2χ.

3.3.2 Categorized dependent type theories

Remark 3.3.2.1 (On the definition of cDTT). If we treat a cDTT as a catego-
rized judgemental system, and use it to do calculations, we are interested in a
2-subcategory of Cat containing rules and policies described in Definition 3.3.2.2
and such that is closed under finite limits and ♯-lifting as described in Chapter 2.
In fact, that presented in 3.3.2.2 is called pre-categorized dependent type theory,
the cDTT is said subcategory.

91

From a traditional use of categorical models, instead, a cDTT is simply the
data of two fibrations and a pair of adjoint functors connecting them. For the
first part of this work, this is the only thing we need to consider. See Section 2.3
for a use of the full deductive power of a cDTT.

Definition 3.3.2.2 (Categorized dependent type theory). A categorized depen-
dent type theory is the data of

U̇ U

B
u̇ u

Σ

∆

⊣
where u̇, u are fibrations, Σ: u̇→ u in Fib, ∆ is right adjoint to Σ with cartesian
unit and counit. We call this cDTT for short.

Cartesianity of the unit and counit is meant in the following sense.

Definition 3.3.2.3 (Cartesian natural transformation). Let p : E → B a
fibration and F,G : E ′ → E two functors. A natural transformation α : F ⇒ G
is said to be cartesian if each of its components is p-cartesian.

Terms and types are interpreted to two different categories, respectively U̇
and U , both fibered over contexts. The functor Σ performs the typing, while ∆
details context extension,

A 7→ xA (: A+)

where A+ is the type A extended to the context Γ.A (i.e. the result of substituting
A along the projection map, here represented by uϵA) and xA is a fresh variable
of type A+.

Remark 3.3.2.4. Each component of the unit in a cDTT is a monic arrow.
Indeed, let f, g : a→ b in U̇ be such that ηbf = ηbg. It follows that

u̇f = (uϵΣb)(u̇ηb)(u̇f) = (uϵΣb)(u̇ηb)(u̇g) = u̇g

and, in turn, that f = g since ηb is cartesian.
The left adjoint Σ is then faithful. In fact, it is easy to see that Σ induces a

bijection

U̇(a, b) {f ∈ U(Σa,Σb) | (Σηb)f = (Σ∆f)(Σηa)}.∼ (3.6)

Indeed, since ηb is cartesian, the counter-image of f is the only arrow g in U̇(a, b)
over uf such that ηbg = (∆f)ηa.

Lemma 3.3.2.5. Let (u, u̇,Σ ⊣ ∆) a cDTT. Then we have that

(i) ∆ preserves cartesian maps iff Σ reflects cartesian maps;

(ii) ∆ preserves cartesian maps.

92

Proof. Let us start with (i): let f : a→ b in U̇ such that Σf is cartesian, then
∆Σf is cartesian, and we have the following

a b Σa Σb

∆Σa ∆Σb

f

∆Σf

ηa ηb

Σf

with cartesian units, hence ηbf is cartesian with ηb cartesian. By Remark 3.3.3.3,
f is cartesian too. The converse can be worked out exactly the same way using
counits.

As for (ii), let h : A → B in U cartesian and consider f : c → ∆B and
ϕ : u̇c→ u̇∆A such that u̇f = u̇∆h ◦ ϕ. In diagrams, as follows.

c Σc

∆A ∆B Σ∆A Σ∆B

A B

u̇c

u̇∆A u̇∆B

uA uB

h

∆h

f

u̇∆h

uh

uϵB

uϵA

u̇f

ϕ

g′

Σ∆h
ϵA

ϵB

Σf

g

Recall that u̇ = Σu and that Σ∆h is cartesian by Remark 3.3.3.3 because its
postcomposition with ϵB is. Now, Σf is u-over u̇f and Σ∆h is u-over u̇∆h,
so that there exists a unique dotted map g : Σc→ Σ∆A making that diagram
commute. Therefore we have a unique map ϵAg : Σc → A. Our claim is that
its correspondent map under Σ ⊣ ∆, g′ : c → ∆A, makes the desired triangle
commute: this follows from Σ(g′) = g and Σ being faithful by Remark 3.3.2.4.

Definition 3.3.2.6. Let J and J′ be cDTT’s. A (lax) cDTT morphism from J
to J′ is a triple of functors (C,H, Ḣ) as in the diagram below, such that

1. (C,H) : u→ u′ is a 1-cell in Fib,

2. (C, Ḣ) : u̇→ u̇′ is a 1-cell in Fib, and

3. (H, Ḣ) is a left morphism of adjunctions, i.e. Σ′Ḣ = HΣ.

U̇ U̇ ′

U U ′

B B′

u u̇ u′
u̇′

C

H

Ḣ

Σ

∆ ∆′

Σ′
⊣ ⊣

93

Similarly, a (lax) loose cDTT morphism from J to J′ is a quadruple (C,H, Ḣ, ζ)
such that

1. (C,H) : u→ u′ is a 1-cell in Fib,

2. (C, Ḣ) : u̇→ u̇′ is a 1-cell in Fib, and

3. (H, Ḣ, ζ) is a left loose morphism of adjunctions, i.e. Σ′Ḣ
∼⇒ HΣ (see

Definition 3.2.1.3).

Given a loose cDTT morphism (C,H, Ḣ, ζ), consider the mate ζ# : Ḣ∆⇒
∆′H as in (3.1). A (loose) cDTT morphism (H, Ḣ, C) is a pseudo (loose) cDTT
morphism if the mate ζ# is invertible. It is a strict (loose) cDTT morphism if
ζ# is the identity. In particular, in this case Ḣ∆ = ∆′H.

Definition 3.3.2.7. The 2-category cDTTloose of cDTT’s and loose cDTT
morphisms has these as objects and arrows, and a 2-cell (C1, H1, Ḣ1, ζ1) →
(C2, H2, Ḣ2, ζ2) is a triple (ϕ, ϕ̇, ψ) of natural transformations as in the diagram
below, such that

1. (ϕ, ψ) is a 2-cell in Fib,

2. (ϕ̇, ψ) is a 2-cell in Fib, and

3. the right-hand diagram below commutes.

U̇ U̇ ′

U U ′

B B′

u

Σ

u̇

Ḣ1

Ḣ2

Σ′

u̇′

H1

H2

u′

C1

C2

ϕ̇

ϕ

ψ

L′G1 F1L

L′G2 F2L

L′ψ

ζ1

ϕL

ζ2

The 2-category cDTT of cDTT’s and cDTT morphisms is defined as the
wide 2-full sub-2-category of cDTTloose on the cDTT morphisms.

We write cDTTps and cDTTstr for the 2-full 2-subcategory of cDTT with
the same 0-cells, and only those 1-cells which are pseudo (respectively, strict)
cDTT morphisms.

3.3.3 Weakening and contraction comonads

Turns out that we can compare the two using an intermediate notion introduced
in [Jac99] to equivalently present the data of a comprehension category.

Definition 3.3.3.1 ([Jac99], Def. 9.3.1). Let p : E → B a fibration. A weakening
and contraction comonad on p is a comonad (K, ϵ, ν) on E such that

1. the counit ϵ is p-cartesian and,

94

2. for every cartesian arrow f : A→ B in E the image in B under p

pKA pA

pKB pB

pKf

pϵA

pf

pϵB

(3.7)

of the naturality square is a pullback square.

We call these wc-comonads for short, and usually write pA.A for pKA. We often
use the word to indicate the pair of the comonad and the fibration it insists on.

As in Definition 3.3.1.1, E models types which are fibered over contexts via p.
The counit of the comonad models weakening, the comultiplication contraction,
and the comonad equations witness the fact that performing contraction after
weakening yields the identity (up to α-equivalence).

Remark 3.3.3.2. Given a wc-comonad (K, ϵ, ν) on a fibration p, the naturality
square of the counit ϵ for a cartesian arrow is a pullback too. This follows from
the fact that, in a fibration, a square in E is a pullback if it has two parallel
cartesian sides and it is sitting over a pullback in B.

In particular, the naturality square for ϵA is itself is a pullback. It follows
that the comultiplication is canonically determined by the counit ϵ via the two
counitality axioms. Thus one could equivalently define a wc-comonad to be a
copointed endofunctor which enjoys conditions 1 and 2 in Definition 3.3.3.1. See
also [Jac99, p.536].

Remark 3.3.3.3.

1. Cartesian maps enjoy the following property: if gf is cartesian and g is
locally monic, then f is cartesian too. An arrow g : B → C is locally monic
if, for every pair of arrows h, h′ such that ph = ph′, then h = h′ whenever
gh = gh′.

2. If (E, e) is a coalgebra for a wc-comonad, counitality implies that e is
cartesian.

3. If gf is cartesian and g is cartesian, then f is cartesian too.

4. It follows from Remark 3.3.3.2 that the functor K preserves cartesian
arrows.

Definition 3.3.3.4. The 2-category wcCmd of wc-comonads is defined as
follows.

A 0-cell is a pair K = (p,K) with p a fibration and K a wc-comonad with
respect to p.

A 1-cell between wc-comonads K and K′ is a triple (H,C, θ) as in the diagram
below, such that

1. (H,C) : p→ p′ is a 1-cell in Fib

2. (H, θ) is a lax morphism of comonads as in
Definition 3.2.1.1.

E E ′

E E ′

C C′

H

H

C

K K′

p p′

θ

95

A 2-cell between 1-cells (H1, C1, θ1) and (H2, C2, θ2) is a 2-cell (ϕ, ψ) : (H1, C1)→
(H2, C2) in Fib as in the left-hand diagram below, such that ϕ ∗ θ1 = θ2 ∗ ϕ.

E E ′

C C′

p p′

C1

C2

H1

H2

ϕ

ψ

E E ′ E E ′

E E ′ E E ′

K′K

H1

H2

K′K

H1

H2

H1

H2θ1

ϕ

ϕ

θ2

We write wcCmdps and wcCmdstr for the 2-full 2-subcategories of wcCmd
with the same 0-cells, and only those 1-cells (H,C, θ) such that (H, θ) is a pseudo
(respectively, strict) morphism of comonads.

3.3.4 wcComonads v comprehension categories

First of all, we prove the 2-equivalence suggested in [Jac99, 9.3.4]. For the fol-
lowing result we need to assume that the underlying fibrations of comprehension
categories and wc-comonads are cloven, see Remark 1.5.0.1 for a discussion on
what this entails. Morphisms, however, are not required to preserve cleavages
(but they will in Proposition 3.4.2.1).

Lemma 3.3.4.1. There is a 2-functor X : CompCat→ wcCmd.

Proof. Let (p, χ) : E → B2 be a comprehension category and S a cleavage for p.
For each E in E , consider the reindexing of E along its comprehension χE as
below.

S(E,χE) E E

XE pE BχE

χE

p

since cartesian lifts are defined by a universal property, the assignment KχE =
S(E,χE) induces an endofunctor Kχ on E . Moreover, Kχ is copointed because
the transformation ϵE := χE is natural by the very definition of Kχ on arrows.
It satisfies condition 1 from Definition 3.3.3.1 by construction and condition 2
because χ preserves cartesian arrows. By Remark 3.3.3.2, this is sufficient to
define a wc-comonad.

A lax morphism of comprehension categories (H,C, ζ) : (p, χ) → (p′, χ′)
induces a 1-cell (H,C) : p → p′ in Fib by its very definition. To obtain a lax
morphism of wc-comonads (H,C, θ) : Kχ → Kχ′ , it only remains to provide
θ : HKχ ⇒ Kχ′H that makes (H, θ) into a lax morphisms of comonads. For E
over X, the component θE can be obtained, using the fact that ϵ′HE is cartesian,

96

as the universal arrow induced by HϵE as in the diagram below.

K ′HE

HKE HE

BXE

X ′
HE BX

H(ϵE)

B(χE)

ϵ′HE

θE

χ′
HE

ζE

(3.8)

Naturality of θ follows from that of ϵ and ϵ′ using again the fact that the
components of ϵ′ are cartesian. Finally, θ commutes with the counits by definition,
and it does so with the comultiplications since these are canonically determined
by counits as in Remark 3.3.3.2. This action is clearly functorial in H and C,
and it is so in ζ since θ is defined by a universal property.

To conclude the definition of the desired 2-functor, we show that a 2-cell
(ϕ, ψ) : (H1, B1, ζ

1)⇒ (H2, B2, ζ
2) in CompCat is also a 2-cell (ϕ, ψ) : (H1, B1, θ

1)⇒
(H2, B2, θ

2) in wcCmd. As (ϕ, ψ) : (H1, B1) ⇒ (H2, B2) is a 2-cell in Fib, it
only remains to check that ϕ ∗ θ1 = θ2 ∗ ϕ. This amounts to verifying that, for
every E over X, the left-hand square in the left-hand diagram below commutes.

H1KχE B1XE

Kχ′H1E H1E X ′
H1E

B1X

H2KχE B2XE

Kχ′H2E H2E X ′
H2E

B2X

ϵ′H1E

θ1E

H1ϵE

ϕE

ϵ′H2E

ϕKχE

θ2E

H2ϵE

Kχ′ϕE

ζ1E

χ′
H1E

B1χE

ψXE

ζ2E

χ′
H2E

B2χE

ψX

p′

But this follows from the fact that ϵ′H2E
is cartesian once we show that the other

faces and the right-hand diagram commute. The right-hand diagram commutes
by Remark 3.3.1.7, the two triangles commute by definition of θ (3.8), and the
back and front squares by naturality of ϕ and ϵ′, respectively. Functoriality is
trivial.

Lemma 3.3.4.2. There is a 2-functor Y : wcCmd→ CompCat.

Proof. On objects, it suffices to map a pair (p : E → B,K) to χ : E → B2,
χ(E) := pϵE .

To define its action on a 1-cell (H,C, θ), we use θ to induce a suitable

97

ζ : C2χ⇒ χ′H as follows:

CpKE CpE

p′HKE

p′K ′HE p′HE

CpϵE

p′ϵ′HE

p′θE

idKE

idE

on the top row we read C2χ, on the bottom χ′H, and the square commutes
because by hypothesis Cp = p′H. With this definition, proving that such functor
maps 2-cells to 2-cells is straightforward.

Theorem 3.3.4.3 (Based on [Jac99], Thm 9.3.4). The two 2-functors Y : wcCmd⇆
CompCat :X give rise to an adjoint biequivalence, meaning that there are nat-
ural isos ζ : YX

∼⇒ Id and ξ : XY
∼⇒ Id such that

ζY = Yξ and ξX = Xζ.

Proof. We just need to show that they are 2-inverses. One composition is
precisely the identity

(YXχ)E = p(χE) = χE ,

so that we can define ζ = id. The other leads to compare (cartesian) ϵE to the
cartesian lift of pϵE : they clearly induce a vertical isomorphism that extends to
a suitable 2-isomorphism ξ : XY ∼= Id.

Provided that ζ is the identity and ξ is vertical, the desired equations follow
from the fact that both YXY = Id and XYX = Id.

3.3.5 wcComonads v cDTTs

Theorem 3.3.5.1. The adjunction in Theorem 3.2.2.4 lifts to a 2-adjunction
between wcCmd and cDTT, and to an adjoint biequivalence between wcCmd
and cDTTloose as shown in the diagram below,

wcCmd cDTTloose

wcCmd cDTT

Cmd AdjlooseL

Cmd AdjL

ÊMl

≡
Ĉl

Id

ÊM

⊣Ĉ

EM

⊣Cl

Id

EM

⊣C

where the vertical arrows are the obvious functors that forget the fibration from
the objects of the 2-categories in the upper square, and act similarly on 1-cells
and 2-cells.

98

The rest of the section is devoted to the proof of Theorem 3.3.5.1. We begin
with two lemmas ensuring that the 2-functors EM and C lift to 2-functors
between cDTT and wcCmd.

Lemma 3.3.5.2.

1. If (p,K, ϵ, ν) is a wc-comonad, then pUK : CoAlg(K)→ B is a fibration.

2. If (B,H, θ) : (p,K, ϵ, ν)→ (p′,K ′, ϵ′, ν′) is a lax morphism of wc-comonads,
then (B,CoAlg(H, θ)) : pUK → p′UK′ is a morphism of fibrations.

Proof. 1. Consider the Eilenberg-Moore adjunction associated to (K, ϵ, ν)

CoAlg(K) E
RK

UK

⊣

and let Γ in B, e : E → KE a coalgebra, and σ : Γ → pUK(E, e) = pE. A
pUK-cartesian lifting is a pullback square insisting on e. First of all, we can
lift σ to a p-cartesian s : Eσ → E arrow in E . Now, since K preserves cartesian
maps, if there is any map eσ making the left-hand diagram in (3.9) commute

Eσ E K(Eσ) K(E)

K(Eσ) K(E) Eσ E

s

K(s)

eeσ

K(s)

ϵEϵEσ

s

(3.9)

then such square is immediately a pullback, hence a cartesian lifting of σ.
Therefore it is sufficient to equip Eσ with such a coalgebra structure map eσ.

The right-hand square in (3.9) is a pullback by Remark 3.3.3.2, therefore the
span

Eσ Eσ Ee◦sid

induces a map eσ such that

ϵEσ ◦ eσ = idEσ and K(s) ◦ eσ = e ◦ σ. (3.10)

The left-hand equation in (3.10) is counitality for eσ. To show comultiplication
consider the following diagram:

E

Eσ K(Eσ) K(E)

K(Eσ) KK(Eσ) KK(E)

eσ

K(eσ)

νEσeσ ?

K(s)

s

e

νE

KK(s)

K(e)◦e

Each square but the desired one commutes because of (3.10), naturality of ν,
and the fact that (E, e) is a coalgebra for K. Then the inner left-hand square
commutes since KK(s) is cartesian.

2. Clearly, p′UK′CoAlg(H, θ) = BpUK by definition of CoAlg(H, θ) after
Theorem 3.2.2.4 and since (B,H) is a morphism of fibrations. It only remains
to show that CoAlg(H, θ) : CoAlg(K)→ CoAlg(K ′) preserves cartesian arrows.
But cartesian arrows between coalgebras are pullback squares, and these are
clearly preserved by CoAlg(H, θ).

99

Corollary 3.3.5.3. The 2-functor EM : Cmd→ AdjlooseL lifts to a 2-functor

wcCmd cDTTloose

(p,K, ϵ, ν) (p, pUK ,EMl(K, ϵ, ν))

(p′,K ′, ϵ′, ν′) (p′, p′UK′ ,EMl(K
′, ϵ′, ν′))

ÊMl

(C,H,θ) (C,H,CoAlg(H,θ))

Proof. First, we need to verify that (p, pUK ,EMl(K, ϵ, ν)) is a cDTT. Thanks
to Lemma 3.3.5.2.1, it only remains to show that the components of the unit and
counit of UK ⊣ RK are cartesian arrows. For the counit this holds by assumption,
and the component of the unit at a coalgebra is the coalgebra structure map,
which is cartesian by Remark 3.3.3.3.

Given a lax morphism of wc-comonads (C,H, θ) : (p,K, ϵ, ν)→ (p′,K ′, ϵ′, ν′),
we have that (C,H) is a morphism of fibrations by assumption, (C,CoAlg(H, θ))
is a morphism of fibrations by Lemma 3.3.5.2-2, and (H,CoAlg(H, θ)) =
EM(H, θ) is a left morphism of adjunctions by Theorem 3.2.2.4. This proves
that (C,H,CoAlg(H, θ)) is a cDTT morphism.

Given a 2-cell (γ, ϕ) : (C1, H1, θ1)⇒ (C2, H2, θ2) in wcCmd, the pair (ϕ,CoAlg(ϕ))
is a 2-cell in Fib, and thus (γ, ϕ,CoAlg(ϕ)) is a 2-cell in cDTTloose.

We now turn to the 2-functor from adjunctions to comonads.

Lemma 3.3.5.4. If (u, u̇,Σ,∆) is a cDTT, then for every cartesian arrow
f : A→ B in U the square

X.A X

Y.B Y

u̇∆f

uϵA

uf

uϵB

is a pullback in B.

Proof. Let k : Z → X and h : Z → pKB be such that (uϵB)h = (uf)k and
consider a cartesian arrow b : M → ∆B in U̇ over h. The arrow induced by h
and k will be the image under u̇ of a (cartesian) arrow d : M → ∆A in U̇ such
that (∆f)d = b. Note first that, since f is cartesian, there is a unique arrow
a : ΣM → A in U over k such that the left-hand diagram in (3.11) commutes.
In particular, a is cartesian since f and ϵB(Σb) : ΣM → B are.

ΣM A

Σ∆B B

a

f

ϵB

Σb

M ∆A

∆B ∆B

a#

∆fb

id∆B

ΣM A

Σ∆A A

a

idA

ϵA

Σa#

(3.11)
Transposing the left-hand square in (3.11) yields the central one, while transpos-
ing a trivial square involving a# yields the right-hand one. It follows that all
three squares in (3.11) commute.

Define
d := a# : M → ∆A,

100

which is cartesian because d = ∆a ◦ ηM , the unit is cartesian and ∆ preserves
cartesian maps by Lemma 3.3.2.5. Commutativity of the central and right-hand
square in (3.11) entails that (u̇∆f)(u̇d) = h and (uϵA)(u̇d) = k, respectively.
We are left to prove that u̇d is the unique such.

Let l : Z → X.A be such that (u̇∆f)l = h and (uϵA)l = k. Since ∆f is
cartesian, there is a unique arrow l′ : M → ∆A over l such that (∆f)l′ = b.
Transposing as above yields fl′# = ϵB(Σb) = fa. As u(l′#) = u(ϵA(Σl′)) = k, it
follows that l′# = a, and thus l′ = d.

Corollary 3.3.5.5. The 2-functor C : AdjlooseL → Cmd lifts to a 2-functor

cDTTloose wcCmd

(u, u̇,Σ,∆) (u,Cl(Σ,∆))

(u′, u̇′,Σ′,∆′) (u′,Cl(Σ
′,∆′))

Ĉl

(C,F,G,ζ) (C,Cl(F,G,ζ))

Proof. To verify that, when (u, u̇,Σ,∆) is a cDTT, the comonad C(Σ,∆) is a
wc-comonad with fibration u. Condition 1 in Definition 3.3.3.1 is satisfied since
the counit is cartesian by assumption. Condition 2 in Definition 3.3.3.1 is in
Lemma 3.3.5.4.

To verify that (C, Ĉl(F,G, ζ)) is a morphism of wc-comonads whenever
(C,F,G, ζ) is a 1-cell in cDTTloose note that the functor component of Ĉl(F,G, ζ)
is F . Thus (C,F) is a morphism of fibrations by assumption and Ĉl(F,G, ζ) is
a lax morphism of comonads by definition.

It remains to prove that (γ, ϕ) : (C1, Ĉl(F1, G1, ζ1))→ (C2, Ĉl(F2, G2, ζ2)) is
a 2-cell in wcCmd whenever (γ, ϕ, ψ) : (C1, F1, G1, ζ1) → (C2, F2, G2, ζ2) is a
2-cell in cDTTloose. This follows from condition 3 in Definition 3.3.2.7 as below.

Σ′∆′ϕ ◦ Σ′ζ#1 = Σ′ζ#2 ◦ Σ′ψ∆ = Σ′ζ#2 ◦ ϕΣ∆

When ζi : Σ′Gi
∼⇒ FiΣ, and (ϕΣ)ζ1 = ζ2(Σ′ψ), it follows that ∆′ϕ◦ζ#1 = ζ#2 ◦ψ∆

and

Σ′∆′ϕ ◦ Σ′ζ#1 ◦ ζ
−1
1 ∆ = Σ′ζ#2 ◦ Σ′ψ∆ ◦ ζ−1

1 ∆ = Σ′ζ#2 ◦ ζ
−1
2 ∆ ◦ ϕΣ∆.

Proof of Theorem 3.3.5.1. From Corollary 3.3.5.3 and Corollary 3.3.5.5 we have
2-functors ÊMl : wcCmd ⇆ cDTTloose : Ĉ. We begin by showing that the
2-adjunction from Theorem 3.2.2.4 and the biadjunction from Theorem 3.2.3.4
lift as well.

As in Theorem 3.2.2.4, the composite Ĉl ◦ ÊMl is the identity on wcCmd.
Next, we show that the unit η of EM ⊣ C lifts to a pseudo-natural transfor-
mation η̂ : IdCmd → Ĉl ◦ ÊMl. The component of the unit at an adjunction
(L,R, η, ϵ) is the left morphism of adjunctions (Id,KL,R), where KL,R is the
canonical comparison functor (3.4). Given a cDTT (u, u̇,Σ,∆), the functor
KΣ,∆ preserves cartesian arrows since Σ does and coalgebra structure maps
are cartesian by Remark 3.3.3.3. It follows that the triple (IdC , IdU ,KΣ,∆) is
a cDTT morphism. To see that this choice is pseudo-natural in (u, u̇,Σ,∆),
let (C,F,G, ζ) : (u, u̇,Σ,∆)→ (u′, u̇′,Σ′,∆′) be a loose cDTT morphism. The re-

quired invertible 2-cell is (idC , idF , ζ̂) : (C,F,KΣ′,∆′G, ζ)→ (C,F,CoAlg(Cl(F,G, ζ))KΣ,∆, id),

101

where ζ̂ is the natural iso from Remark 3.2.3.3. Clearly, if ζ = id so is the in-
vertible 2-cell, meaning that η̂ is natural with respect to cDTT morphisms.

The triangular identities follow immediately from those of C ⊣ EM in (3.5):

Ĉlη̂u,u̇,Σ,∆ = (IdC ,CηΣ,∆) = idĈl(u,u̇,Σ,∆)

η̂ÊMl(K,ϵ,ν)
= (IdB,ηEM(K,ϵ,ν)) = idÊMl(K,ϵ,ν)

It remains to show that the biadjunction Ĉl ⊣ ÊMl is in fact a biequiva-
lence. This amounts to show that the unit η̂ is a pseudo-natural equivalence.
Lemma 3.3.5.7 entails that each component of η̂ is an equivalence in cDTTloose,
with weak inverse given by the loose cDTT morphism (Id, IdU , JΣ,∆,UΣ∆ξ) and
invertible two cells given by

(IdC , IdU ,KJ,Uξ) (IdC , IdU , IdCoAlg(Σ∆))

(IdC , IdU , JK,UξK) (IdC , IdU , IdU̇)

(id,id,ξ)

(id,id,ζ)

As η̂ is pseudo-natural, so is the family of its weak inverses. This concludes the
proof.

Remark 3.3.5.6. One can retrace the proof of Theorem 3.3.5.1 and see that it
suitably restricts to the lax case or, equivalently, that the adjunction C ⊣ EM
in Theorem 3.2.2.4 lifts to cDTTs with lax morphisms, too.

We now wish to show that the adjunction in Theorem 3.3.5.1 actually produces
an equivalence. Notice that what follows requires that the term fibration u̇ is
cloven, and since Σ preserves cartesian maps u is automatically cloven, too.
Recall that a similar condition appears in Section 3.3.4.

Lemma 3.3.5.7. There are a functor JΣ,∆ : CoAlg(Σ∆)→ U̇ and natural isos

ζ : JΣ,∆KΣ,∆
∼⇒ IdU̇ and ξ : KΣ,∆JΣ,∆

∼⇒ IdCoAlg(Σ∆) making KΣ,∆ and JΣ,∆

into an adjoint equivalence of categories, meaning that also

KΣ,∆ζ = ξKΣ,∆ and JΣ,∆ξ = ζJΣ,∆.

Proof. The functor JΣ,∆ is defined on a coalgebra h : A→ Σ∆A as the reindexing
of ∆A along uh. The action on a morphism of coalgebra f is induced accordingly
using the cartesian lifting uh that defines JΣ,∆h as depicted below, where both

squares above, in U and U̇ respectively, sit on the square below.

B Σ∆B

A Σ∆A

f

k

Σ∆f

h

JΣ,∆k ∆B

JΣ,∆h ∆A

JΣ,∆f

uk

∆f

uh

Y Y.B

X X.A

uf

uk

u̇∆f

uh

102

As the action on arrows is defined by a universal property, functoriality of
JΣ,∆ is straightforward.

Recall that KΣ,∆a = Σηa. Therefore JΣ,∆ ◦KΣ,∆a is defined as the domain

of a cartesian lifting of u̇ηa in U̇ . But the component ηa of the unit at an object
a of U̇ is also cartesian. Therefore there is a unique vertical iso ζa : JΣ,∆Σηa → a
such that ηaζa = u̇ηa. Naturality of ζa in a is straightforward. It follows that
ζ : JΣ,∆KΣ,∆

∼⇒ IdU̇ .
On the other hand, since Σ preserves cartesian arrows, both h and Σuh are

cartesian over uh in U . It follows that there is a unique vertical iso ξh : ΣJΣ,∆h→
A such that hξh = Σuh. Again, naturality of ξh in h is straightforward and it
follows that ξ : ΣJΣ,∆

∼⇒ UΣ∆. To obtain a natural iso KΣ,∆JΣ,∆
∼⇒ IdCoAlg(Σ∆),

it is enough to show that ξh is in fact a morphism, and thus an iso, of coalgebras
from ΣηJΣ,∆h to h. This amounts to the commutativity of the square below.

ΣJΣ,∆h A

Σ∆ΣJΣ,∆h Σ∆A

ΣηJh

ξh

Σuh h

Σ∆ξh

The upper-right triangle commutes by definition of ξh. The lower-left triangle
is the image under Σ of the left-hand square below, which is the transpose under
Σ ⊣ ∆ of the right-hand square.

JΣ,∆h ∆ΣJΣ,∆h

∆A ∆A

uh

ηJh

∆ξh

idA

ΣJΣ,∆h ΣJΣ,∆h

Σ∆A A

Σuh

idJh

ξh

ϵA

The right-hand square commutes since Σuh = hξh and ϵAh = idA. It follows
that the other two squares commute as well.

To see that KΣ,∆ζ = ξKΣ,∆ note that, for every a ∈ U̇ , Σηa ◦ Σζa = Σu̇ηa
by definition of ζa. It follows that Σζa = ξΣηa as required. The other equation
JΣ,∆ξ = ζJΣ,∆ follows from the fact that uh is cartesian and commutativity of
the left-hand square above:

uhJΣ,∆ ◦ ξh = ∆ξh ◦ u̇ηJh = ∆ξh ◦ ηJh ◦ ζJh = uh ◦ ζJh.

3.3.6 Examples

3.3.6.1 Other categorical models

Example 3.3.6.1 (Categories with attributes, [Car86, Mog91]). A category
with attributes is the data of

� a category C with terminal object ⊤;

� a functor Ty : Cop → Set;

� for each A in Ty(Γ) an object Γ.A and a morphism pA : Γ.A→ Γ;

103

� for each σ : Θ→ Γ and A in Ty(Γ) a pullback diagram

Θ.(Ty σ)(A) Γ.A

Θ Γσ

pAp(Ty σ)(A)

qσ,A

such that q(idΓ, A) = idΓ.A and q(τ ◦ σ,A) = q(τ, (Ty σ)(A)) ◦ q(σ,A).

The attentive reader might have recognized the equations in 3.3.6.1 to be that
of the splitting of a fibration, in this case that of types. In fact, one can show
[Jac93, Example 4.10] that categories with attributes are equivalent to full split
comprehension categories, or to comprehension categories with discrete type
fibration.

In an attempt to obtain a model closer to the syntax, and explicitly describing
terms, one turns to categories with families. Recall that Fam is the category of
families of sets, meaning that having for objects pairs (I,B) where I is a set and
B = (Bi)i∈I is a family of I-indexed sets and for maps reindexing functions.

Example 3.3.6.2 (Categories with families, [Dyb96]). A category with families
is the data of

� a category C with terminal object ⊤;

� a functor F = (Ty,Tm) : Cop → Fam;

� for each Γ in C and A in Ty(Γ) an object Γ.A in C, together with two
projections pA : Γ.A→ Γ and vA ∈ Tm(Γ.A,Ty pA(A)) such that for each
σ : Θ→ Γ and a ∈ Tm(Tyσ(A)) there exists a unique morphism Θ→ Γ.A
making the obvious triangles commute.

In particular,
F (Γ) = (Ty(Γ), (Tm(Γ, A))A∈Ty(Γ))

so that types are fibered over contexts and terms are fibered over types. One
can show [Hof97, §3] that these are equivalent to categories with attributes.

Getting closer to the syntax allows us to gain in clarity, but makes our
definition much heavier. A more categorical perspective allows for a different,
perhaps more natural definition.

Example 3.3.6.3 (Natural models, [Awo18]). A natural model on a small
category C is a representable map of presheaves p : u̇→ u, meaning a presheaf
morphism such that for every Γ in C and A ∈ u(Γ) there is a Γ.A in C, a
πA : : Γ.A→ Γ, and a qA ∈ u̇(Γ.A) such that the following square is a pullback.

HΓ.A u̇

HΓ u

HπA p

qA

A

Notice that this all heavily relies on Yoneda lemma applied to (discrete) fibrations
(1.6.1.1), so that there is a one-to-one correspondence

A ∈ u(Γ) ↔ A : HΓ→ u .

These are themselves equivalent [Awo18, Prop. 1.2] to categories with families.

104

Putting together 3.3.6.1, 3.3.6.2, and 3.3.6.3 it is clear the direction of
the increasing level of abstraction and, at the same time, the effort of clearly
expressing the data needed to work with dependent types.

We wish to include cDTTs in this midst: their being equivalent to compre-
hension categories establishes that they are a suitably coherent generalization
(away from discrete type fibrations) of categories with families, with attributes,
and natural models, but we believe their use of computation makes them still
decisively intelligible. The motivation of our care in avoiding discrete types will
be clear in Section 3.5.

We conclude this brief exposition by presenting a last strategy for modeling
dependent types using categories, based on the idea of display maps, in some
sense isolating that of comprehensions for a comprehension category.

Example 3.3.6.4 (Display-map categories, [Tay99, HP87]). A display-map
category is a pair (C,D) with C a category and D = {pA : Γ.A→ Γ} a class of
morphisms in C called displays or projections such that:

1. for each pA : Γ.A→ Γ in D and σ : Θ→ Γ in C, there exists a choice of a
pullback of pA along σ and it is again in D,

Θ.A[s] Γ.A

Θ Γ

pA

σ

pA[σ]

σ

2. D is closed under pre and post-composition with isomorphisms.

One can see that these are equivalent to comprehension categories having the
comprehension functor be a full inclusion.

In a sense, display map categories forget about all the infrastructure and just
focus on the relations one might need: given a type in context, the first thing
we need to be able to do is extending that context with such type, the second
is substitution, and there is nothing more than that. We will see display-map
categories again in Chapter 4.

3.3.6.2 In “nature”

We have many examples of comprehension categories, or wc-comonads, or cDTTs,
and their restrictions.

Example 3.3.6.5 (Syntactic model). Given an extensional calculus of dependent
types, for example [Mar84, Tro87], one can build a full comprehension category
as follows. Let B the category having for objects (α-)equivalence classes of
contexts, denoted [Γ] = x1 : A1, . . . , xn : An, [Θ] = y1 : B1, . . . , ym : Bm and so
on, and such that a morphism

t : [Θ]→ [Γ] is (equivalence classes of) terms [t1], . . . , [tn]

such that Θ ⊢ ti : Ai[t1/y1, . . . , ti−1/yi−1] for each i = 1 : n. Identity of maps is
induced by definitional equality. The category E is defined to have objects [Γ ⊢ A]
(equivalence classes of) typing judgements and arrows (t, s) : [Θ ⊢ B]→ [Γ ⊢ A]

105

with t : [Θ]→ [Γ] and Θ, y : B ⊢ s : A[t/x]. The functor χ : E → B2 acts as the
projection

[Γ ⊢ A] 7→ [Γ, x : A]→ [Γ].

If the latter example seems little informative, it is because really all validity
results are: it just means comprehension categories do a good job at doing what
they were designed to do.

Example 3.3.6.6 (Simple fibration). Let B be a category with products, and
consider the category s(B) whose

� objects are pairs (I,X) of objects in B;

� arrows (J, Y)→ (I,B) are pairs (u, f) of maps in B, with u : J → I and
f : J × Y → X.

Composition can be defined using the universal property of products, and
identities are of the form (id,pr2). The obvious projection functor s(B) → B
sending

(I,X) 7→ I and (u, f) 7→ u

is a fibration. Its fibers are also denoted s(B)I = B//I , they have objects X in B
and maps X ′ → X are f : I ×X ′ → X in B: one can think of these as I-indexed
families fi : X

′ → X with fixed domain and codomain.
Such a construction can be reformulated to describe a comprehension category,

meaning there is a functor

s(B)→ B2, (I,X) 7→ (pr1 : I ×X → I)

satisfying the axioms of a comprehension. It models simple type theory.

Example 3.3.6.7 (Elementary topos). Let B be a topos with subobject clas-
sifier ⊤ : 1 → Ω. Then we can map each “predicate” ϕ to its comprehension
monomorphism, meaning

B/Ω → B2, (ϕ : A→ Ω) 7→ ({ϕ}↣ A)

where
{ϕ} 1

A Ω
ϕ

⌟

and such an assigment produces a comprehension category.

Remark 3.3.6.8 (Models as morphisms of comprehension categories). As it
is customary in the case of doctrines Section 1.7, and since we now have all
the necessary instruments, we can see how models (in the traditional, set-based
sense) can be related to special morphisms of structures encoding what we are
interested in.

In particular, we think of models of a given dependent type theory as strict
morphisms from its syntactic comprehension category (3.3.6.5) to that on the

106

elementary topos of sets (3.3.6.7).

B2 Set2

E Set/2

B Set

p cod

χ

B

H

B2

{−}

cod

In particular, each (equivalence class of) context(s) is sent to a set, each typing
judgement to a subset so that for [Γ ⊢ A] we have that H[Γ ⊢ A] = ϕA satisfies

{ϕA} ⊆ B[Γ],

meaning that the extension of the typing judgement is contained in the extension
of the context: we can think of this as saying that the interpretation of A consists
in picking up elements in the extension of its context. Moreover, from the top
square, we get

{ϕA} = B[Γ.A],

so that the extension of a given A consists precisely in that of its extended
context. If we consider lax morphisms, instead, this latter condition turns to a
function B[Γ.A]→ {ϕA}.

Finally, we describe a few particular cDTTs - each time trivializing one of
their main elements - as to better understand our model. They will produce
some interesting type theories.

Example 3.3.6.9 (Types in no context). Consider B = 1 and both u, u̇ the
unique terminal functors. They are fibrations where the only cartesian maps
are the vertical isomorphisms, hence η, ϵ are themselves isos and Σ,∆ form an
equivalence. Each type is closed and inhabited. This is in initial in cDTTs whose
B has a terminal object and morphisms preserve them.

Example 3.3.6.10 (Non-dependent types). If B = U and u = id, it follows that
Σ = u̇ hence a fibration with a right adjoint functor ∆, so that U̇ is non-trivially
fibered over U via Σ. The counit is of course cartesian, so we only ask that η
is. Each type has its own context (itself) and can be indefinitely extended with
itself, but we can no longer describe judgements of the form

Γ.A ⊢ B,

so that there is no real type dependency.

3.3.7 Main theorem

To make our presentation smoother, for this section we assume that all fibrations
are cloven. If not, the following result holds in a weaker, but informatively
equivalent, form.

Theorem 3.3.7.1. There is a biequivalence CompCat ≡ cDTTloose.

Proof. Trivial from Theorem 3.3.4.3 and Theorem 3.3.5.1.

107

We could interpret such a result as the following statement:

all terms are sections,

in the sense that even when one decides to treat terms and types as particular
objects of different statuses, such as belonging to different categories, the relation
that exists between them forces them to be sections and projections. Provided
that many models (e.g. categories with families and natural models) do not
deal with terms using sections of the context projection maps explicitly, this
might be slightly surprising, but in fact one can use the universal properties of
pullbacks involved in the respective definitions to recover sections from terms,
see for example [CD11, §3]. We conclude our discussion by fixing some notation
for the (equivalent) models.

Type theory
E B2

B
p cod

χ E

B

K

p

U̇ U

B
u̇ u

Σ

∆

⊣

contexts Ob(B) Ob(B) Ob(B)
types Ob(E) Ob(E) Ob(U)
Γ ⊢ A pA = Γ pA = Γ uA = Γ

Γ.A→ Γ χA pϵA uϵA
Γ.A dom(χA) pKA uΣ∆A

A+ (A in Γ.A) χ∗
A(A) KA Σ∆A

terms sections sections Ob(U̇)
Γ ⊢ a : A section of χA section of ϵA Σa = A

3.4 Properties of comprehension categories

We now explore what happens to Theorem 3.3.7.1, first when we add more
restrictions to the respective 1-cells, then when we ask specific properties of the
types and terms fibrations.

3.4.1 The empty context

As we have mentioned in Remark 3.1.1.1, one often wants to be able to in-
terpret the empty context, hence it makes sense to ask that the categories of
contexts have a terminal object, and that all fibration morphisms involved in
cDTT,wcCmd,CompCat preserve them. Given that Theorem 3.3.7.1 is the
identity on the type fibration, restricting the equivalence to such 0- and 1-cells
produces an equivalence, still: the only non trivial part is that the induced
functor of coalgebras does, but that too is immediate by the definition in 3.2.1.2.

3.4.2 Lax, pseudo, strict

As for Section 3.3.4, assume that our type fibrations are cloven.

Proposition 3.4.2.1. Theorem 3.3.4.3 restricts to:

� the respective pseudo 2-subcategories, and

108

� the respective strict 2-subcategories with cleavage-preserving fibration
morphisms.

Proof. Let (H,C, ζ) : (p, χ)→ (p′, χ′). If ζ is invertible, then the induced θ

K ′HE

HKE HE

BXE

X ′
HE BX

H(ϵE)

B(χE)

ϵ′HE

θE

χ′
HE

ζE

is invertible because both ϵ′HE and H(ϵE) are cartesian and p′ is cloven. When
ζE = id, the iso θE is an identity because K ′HE = HKE since H preserves
cleavages.

Proposition 3.4.2.2. The equivalence in Theorem 3.3.5.1 restricts to the
respective pseudo and strict 2-subcategories.

Proof. The case of going from cDTTs to wc-comonads is trivial because θ = Σ′γ.
For the opposite, consider θ : HK ⇒ K ′H iso. We need to show that the
canonical γ described in Definition 3.3.2.7

γA : ĤCA C ′U ′ĤCA C ′HUCA C ′HA
η′
ĤCA C′(HϵA)id

is an isomorphism. We will prove that it isomorphic to a (triangular) identity.
Clearly θ iso implies that Hϵ ∼= ϵ′H , hence C ′HϵA ∼= C ′ϵ′HA. Not only that,

but also ĤC ∼= C ′H, because the following diagram commutes by definition of
comonad morphism.

HKA K ′HA

HKKA

K ′HKA K ′K ′HA

HνA

θKA

ν′
HA=C′H(A)

K′(θKA)

θA

∼

∼

ĤC(A)

Therefore we have γA ∼= C ′(ϵ′HA) ◦ η′C′HA = idHA. If θ is the identity, we have
precisely γA = C ′(ϵ′HA) ◦ η′C′HA.

Corollary 3.4.2.3. The biequivalence CompCat ≡ cDTTloose restricts to:

� the respective pseudo 2-subcategories, and

� the respective strict 2-subcategories with cleavage-preserving fibration
morphisms.

109

3.4.3 Properties of categorical models of dependent types

3.4.3.1 Discrete

A big portion of the literature on categorical models actually considers the
fibration of types to be discrete, as it appears clear reading Section 3.3.6.1.

Remark 3.4.3.1. The biequivalence described in Theorem 3.3.7.1 is the identity
on the type fibration.

Hence, while the type fibration remains the same, one could wonder whether
discreteness can be induced on the term fibration, as well. We have a partial
result, that is the following.

Lemma 3.4.3.2 ([Str22, Lemma 2.1]). Let (u, u̇,Σ ⊣ ∆) a cDTT with u discrete.
Then Σ is a fibration.

Unfortunately, we can in no way prove that, if u is discrete, u̇ is itself discrete.
This is unpleasant but, after all, discreteness is not stable under equivalence of
categories. The “closest” categorical notion we can describe is that of essentially
discrete fibration, see Definition 1.3.1.5, and we can in fact show that if u is
essentially discrete, then so is u̇.

Definition 3.4.3.3. Call CompCatpos the category of comprehension cate-
gories where the type fibration is faithful. Call CompCatgpd the category of
comprehension categories where the type fibration reflects isomorphisms.

Lemma 3.4.3.4. CompCatps
pos = CompCatstr

pos.

Lemma 3.4.3.5. CompCatgpd = CompCatps
gpd.

Corollary 3.4.3.6. For a class of fibrations x,

CompCatx = CompCatps
x = CompCatstr

x

if and only if x is the class of essentially discrete fibrations.

We now show that, in fact, essential discreteness can be induced from the
type to the term fibration. In other terms, we can show the following.

Proposition 3.4.3.7. Theorem 3.3.7.1 restricts to the respective 2-subcategories
with essentially discrete terms and types fibrations.

Proof. They are both 1- and 2-full, so it suffices to show what happens to 0-cells.
The result follows from Proposition 3.4.3.8 and Remark 3.4.3.1.

Proposition 3.4.3.8. In every cDTT, if the fibration u is faithful, respectively
groupoidal, then so is the fibration u̇.

Proof. That u̇ is faithful whenever u is follows from the fact that Σ is faithful
by Remark 3.3.2.4.

Suppose now that u is groupoidal, and consider a vertical t : a→ b in U̇ . Then
its (still vertical) image through Σ has an inverse s : Σb→ Σa by hypothesis on
u. Our claim is that this induces a suitable ŝ inverse to t. Out of Σt and s we
get the following commutative diagrams and isomorphisms.

110

b ∆Σb Σb

a ∆Σa Σa

t

ηb

ηa

∆Σt Σt s∆sŝ ∼=∼=

Since s is vertical, so is ∆s, so that ∆sηb and ηa lie above the same map. We
define ŝ to be the unique map induced by cartesianity of ηa. Now,

ηaŝt = (∆s)(∆Σt)ηa = ηa

and ηa is monic by Remark 3.3.2.4, so that ŝt = id. One can similarly show that
tŝ = id and conclude the proof.

3.4.3.2 Split and full split

Definition 3.4.3.9. Call CompCatsplit of comprehension categories where the
type fibration is split and morphisms preserve the split cleavage.

Call CompCatfull split that where additionally χ is fully faithful.

We show a result similar to that of the previous subsection.

Lemma 3.4.3.10. Let (p,K) a wc-comonad with p split. Then the induced
term fibration pU is itself split and U (trivially) preserves the cleavages.

Proof. Let A an object in E and σ : Θ→ Γ a map in B with pA = Γ. We denote
by sA,σ : S(A, σ)→ A our choice of cartesian lifting of σ at A. We can define
a cleavage on pU by steps as follows: compute sA,σ, since this is cartesian and
K preserves cartesian maps by Remark 3.3.3.3, K(sA,σ) is cartesian, then pick
the obvious induced unique map S(A, σ)→ K(S(A, σ)) (see the diagram below).
We now show that such cleavage is in fact split.

Consider a morphism τ : Ξ→ Θ, and repeat the procedure above.
S(A, στ)

S(S(A, σ), τ) S(A, σ) A

K(S(S(A, σ), τ)) K(S(A, σ)) KA

K(S(A, στ))

Ξ Θ Γ

a

σ

sA,σ

∃!ŝa,σ
K(sA,σ)

τ

sS(A,σ),τ

∃!ŝŝa,σ,τ

id

id

sA,στ

K(sA,στ)

Since the starting cleavage is split both triangles commute, and by uniqueness
of the map S(A, στ)→ K(S(A, στ)) we deduce that our cleavage is split.

Proposition 3.4.3.11. Theorem 3.3.7.1 restricts to the respective 2-subcategories
with split terms and types fibrations.

Proof. We begin with 0-cells. Consider a cDTT with split terms and types fibra-
tion and Σ preserving cleavages, then clearly the induced comprehension category
has split type fibration. Conversely, consider a split comprehension category,
then the induced term fibration is split: this is the content of Lemma 3.4.3.10.

111

We denote the choice of cartesian lifting of a map σ : Θ→ Γ = pA at a coalgebra
a : A→ KA by ŝa,σ.

Now to 1-cells. A lax split cDTT morphism is, in particular, a morphism
of fibrations preserving cleavages of the type fibrations, hence it induces a lax
morphism of split comprehension categories. Conversely, we wish to prove
that any cleavage preserving (H,C) : p → p′ lifts to a cleavage preserving
(Ḣ, C) : pU → p′U ′. We start from a coalgebra a : A → KA and its cartesian
choice of lifting ŝa,σ. Recall that each lax wc-comonad morphism (H,C, θ)

induces Ḣ : CoAlg(K)→ CoAlg(K ′) defined by Ḣa = θA ◦Ha, hence we can fill
the right-hand side of the diagram below, which is commutative by construction
of ŝ, by naturality of θ, and by definition of Ḣ.

S′(HA,Cσ) HS(A, σ) HA

HK(S(A, σ)) HKA

K ′S′(HA,Cσ) K ′H(S(A, σ)) K ′HA

CΘ CΓ

Ha

Cσ

HsA,σ

Hŝa,σ

HK(sA,σ)

θAθS(A,σ)

K′H(sA,σ)

Ḣŝa,σ Ḣa

id

s′HA,Cσ

id

K′s′HA,Cσ

ŝ′
Ḣa,Cσ

Now, by hypothesis we have that (H,C) is a cleavage preserving morphism, so
that both the top and the bottom “triangles” commute as well. The map ŝ′Ha,Cσ
is defined to be that making the square involving s′HA,Cσ and Ḣa commute, so

that the left-hand square commutes as well, proving Ḣŝa,σ = ŝ′Ha,Cσ as desired.
The case for 2-cells is trivial because our 2-subcategories are 2-full.

3.4.4 Discrete vs full split

There is some result relating discrete and full split comprehension categories.

Lemma 3.4.4.1. [Jac93, Example 4.10] CompCatdisc ≡ CompCatstr
full split.

Sketch of the proof. Starting from a discrete comprehension category χ : E → B2,
we can define a new category E having the same objects that E has, and
E(A,B) = B2(χA, χB). There is an obvious identity-on-objects functor E → E
making the following diagram commute.

E

E B2

B
cod

χ

χ

p

p

Now χ is trivially full, one can show that discreteness of p implies p split. On
the opposite direction, one simply forgets all maps in the fibers.

112

Though equivalent, they are very different as subcategories of CompCat:
the first is full, while the second is not. Perhaps a look at it in our setting can
pin-point the difference and provide a logical interpretation for the mismatch.
We leave this for a future work.

3.4.5 Splitting a wc-comonad

It is well-known that there are two canonical ways to split a fibration, see for
example our discussion in Section 1.6. We want to extend such constructions to
wc-comonads. Notice that results similar to Theorem 3.4.5.2 and Theorem 3.4.5.5
appear in [LW15], where comprehension categories are used instead of wc-
comonads.

Definition 3.4.5.1. Call wcCmdsplit the category of wc-comonads with split
type fibration and lax morphisms preserving the split cleavage.

Theorem 3.4.5.2 (Fibered Yoneda for wc-comonads).

wcCmdsplit(B) wcCmd(B)
U

S

⊣

Proof. We define the 2-functor S on objects as follows,

S (p,K) := (

∫
Spr(p), K̃)

where
∫
Spr(p) is the Grothendieck construction associated to

Spr(p) : Bop → Cat, Γ 7→ Fib(Γ, p),

where Γ is dom: B/Γ → B, and which produces a split fibration as discussed

[Str22, §3]. On this we define a wc-comonad K̃

B/Γ E h+ : B/Γ.H B/Γ E

B B

(Γ, h) (Γ.H, h+)

h

Γ
p p

Γ.H

pϵH◦− h

Γ

where H := h(idΓ) and Γ.H = pKH = pH+ with the usual notation. Clearly
K̃(h) is a morphism of fibrations because it is the composition of such. Let us
write σ, with σ : Θ→ Γ a map in B, the corresponding postcomposition functor
B/Θ → B/Γ. Recall that a morphism in

∫
Spr(p) is (σ, α) : (Θ, l)→ (Γ, h) where

σ : Θ→ Γ in B and α : l⇒ h ◦ σ in Fib(Θ, p), and that it is cartesian iff α = id.
On a pair (σ, α) we can define K̃ as follows. Consider the composition

L = l(idΘ) h ◦ σ(idΘ) = h(σ) h(idΓ) = H
αidΘ h(!)

113

and call this s : L → H. The counit natural square induces the commutative
square below,

(Θ, l) B/Θ B/Θ.L

B

(Γ, h) B/Γ B/Γ.H

l

h

σ

pϵL

pϵH

α

(3.12)

which, in turn, induces a suitable (pKs, α ∗ id) : (Θ.L, l+)→ (Γ.H, h+).
We now show how this functor supports a wc-comonad structure induced

by that of K = (K, ϵ, ν) on p. We denote this (K̃, ϵ̃, ν̃). By definition of K̃, ϵ̃
can be trivially defined as (pϵH , id) and is thus

∫
Spr(p)-cartesian. Similarly,

a cartesian (σ, id) : (Θ, l) → (Γ, h) induces s = h(!) : h(σ) → h(idΓ) which is
cartesian because ! is and h preserves cartesian maps. Therefore the square in
3.12 is (forgetfully) over a pullback by hypothesis on K.

Additionally, one can check that S maps lax morphisms of comonads to lax
morphims of comonads: again, it all boils down to commuting squares in the
context category.

Finally, we prove that there is an appropriate natural isomorphism.

wcCmdsplit(B) ((q, C), S(p,K)) ∼= wcCmd(B) (U(q, C), (p,K))

Each lax morphism (F, θ) in wcCmd(B) induces one between the split coun-
terparts: define (F ′, θ′) with F ′(A) = F (−∗A), which is well defined because q
is split. Then F ′(A)(idΓ) = FA therefore we have the following commutative
diagram

B/Γ.A

B/Γ.FA B/Γ E

B

pϵFA

Γ.FA
Γ

F ′(A)

p

qϵA

pθA

(pointwise) describing a lax comonad morphism C → K̃.
One can check that, for the same reasons, the discussion above produces a

functor in the opposite direction, (F ′, θ′)→ (F, θ), where

F = F ′(−)(idq(−))

and θ can be calculated out of the following diagram where (θ′1, θ
′
2) = θ′.

B/qCA B/pKFA B/qA

B

θ′1

F ′CA

pϵFA

F ′A

qϵA

θ′2

It is clear that both constructions are one inverse to the other.

114

Lemma 3.4.5.3. US ∼= Id.

Remark 3.4.5.4 (On the meta-theory). Theorem 3.4.5.2, as its version in
Theorem 1.6.1.2, uses the axiom of choice for classes to prove that the counit is
an equivalence, but that U ⊣ S is independent from it.

Theorem 3.4.5.5 (Left 2-adjoint to splitting for wc-comonads).

wcCmdsplit(B) wcCmd(B)U

F

⊣

Proof. Again, we follow [Str22, §3]: consider a normalized cleavage on p and
define F on objects as

F (p,K) := (

∫
Spl(p),K)

where
∫
Spl(p) is the Grothendieck contruction associated to

Spl(p) : Bop → Cat

such that objects in Spl(p)(Γ) are pairs (A, a) with a : Γ→ pA and morphisms
α : (B, b) → (A, a) are vertical maps b∗B → a∗A. On the total category of∫
Spl(p) we can define a wc-comonad insisting on the endofunctor acting on

objects as
K : (Γ, (A, a)) 7→ (Γ.a∗A, (KA, pK(a)))

and on a map (Θ, (B, b))→ (Γ, (A, a)), which is the data of a pair (σ, α) with
σ : Θ → Γ and α : (B, b) → Spl(p)(σ)(A, a), as in the following diagram. We
mark with a ⇀ those maps that are p-cartesian.

KB Kb∗B

B b∗B K(aσ)∗A Ka∗A KA

(aσ)∗A a∗A A

pB.B Θ.b∗B

Θ.(aσ)∗A Γ.a∗A pA.A

pB Θ Γ pA
b σ a

⌟

⌟⌟
! pK(a)

a!

K(a)K(!)

α

b

K(b)

Kα

pKα

⌟

⌟

aσ

⌟

Filling in the diagram above out of (σ, α) is only a matter of patience and heavily
relies on (1), (2), and Remark 3.3.3.2.

One can check that K is copointed, as well, because it is possible to define a
natural ϵ : K ⇒ id with components

(pϵa∗A, α) : K(Γ, (A, a))→ (Γ, (A, a)).

Since (KA, pK(a)) = (a ◦ pϵa∗A)∗A we can define α to be the identity, therefore
ϵ has cartesian components. Moreover, for a cartesian (σ, id) : (Θ, (B, b)) →

115

(Γ, (A, a)) we have that the underlying square is a pullback: this we can read
again in the diagram above, where α = id, therefore pKα = id itself and (what
becomes) the middle square in the second row is the desired one.

Consider a pair (H, θ) : (p,K) → (p′,K ′): we can define F (H, θ) = (H, θ)
with H(Γ, (A, a)) := (Γ, (HA, a)) and the following diagram

HKa∗A HKA

K ′Ha∗A K ′HA

Ha∗A HA

HK(a)

H(ϵa∗A)

Ha

θAθa∗A

ϵ′a∗A

can be used to show that we have a suitable θ : HK ⇒ K ′H as well.
We now need to show that such a functor produces a left adjoint to U ,

wcCmdsplit(B) (F (p,K), (q, C)) ∼= wcCmd(B) ((p,K), U(q, C)).

For each lax morphism (H, θ) : (p,K)→ U(q, C) we can define

H ′ :

∫
Spl(p)→ F , (Γ, (A, a)) 7→ H(a∗A)

and this can suitably extended to morphisms in
∫
Spl(p). But thenH ′K(Γ, A, a) =

HK(a∗A) and CH ′(Γ, A, a) = CH(a∗A), so that we can define θ′ precisely as θ
on each component. Conversely, to a lax morphism (H ′, θ′) we can match (H, θ)
with

H(A) := H ′(pA, (A, id))

and with this we can rightfully define θA = θ′(pA, (A,id)). It is clear that these
constructions are one inverse to the other.

Remark 3.4.5.6. The unit of F ⊣ U is not an isomorphism.

3.5 Subtyping

Most models use a discrete type fibration but we have been taking a lot of care
in avoiding this request. One of the reasons for this, is that we believe that
vertical maps suitably model subtyping, so that

Γ ⊢ A′ ≤f A corresponds to f : A′ → A u-vertical.

If we wish to model something of the sort of

Γ ⊢ a : A′ Γ ⊢ A′ ≤f A
(Sbsm)

Γ ⊢ a : A

we need to manipulate our starting (non-discrete) cDTT to allow for a term to
have “multiple” types. Intuitively, we want to be able to speak of triples

(a,A, f) where f : Σa→ A is vertical.

The categorical notion we use, then, is that of comma object.

116

3.5.1 Comma objects induced by a cDTT

We aim to pick vertical maps only, therefore we need our comma category to
be fibration sensitive, hence we do not compute it in Cat, but in Fib(B): this
is the 2-category of fibrations, cartesian functors, and natural transformations
with vertical components Definition 1.4.0.2.

Lemma 3.5.1.1. For each cDTT (u, u̇,Σ ⊣ ∆) over B the comma object (Σ/Id)
in Fib(B) exists and is the desired one.

Proof. We need to provide a fibration over B, two fibration morphisms p1 and
p2 and a 2-cell α as below, such that they are universal with respect to such
property.

(Σ/Id) u̇

u u

p2

Id

Σ

p1

α

Our claim is that (Σ/Id) : Σ↓vU → B has domain the subcategory of Σ↓U with
only vertical structure maps, p1, p2 the obvious morphisms, and α(a,A,f) = f for
each triple (a,A, f). It maps (a,A, f) to u̇a, which is equal to uA because f is
vertical.

One can check that a map in Σ↓vU is cartesian if and only if its components
are, respectively, u̇- and u-cartesian. This implies that p1 and p2 are actually
cartesian functors. Moreover, each σ : Θ→ Γ in B can be lifted at triple (a,A, f)
over Γ as follows,

a[σ] a Σa[σ] Σa

A[σ] A

Θ Γσ

σ

σ

f

Σσ

f [σ]

with σ a u̇-cartesian lifting of σ at a and σ a u-cartesian lifting of σ at A. Since
f is vertical, there exists a unique vertical f [σ], plus Σ preserves cartesian maps
so that the morphism (σ, σ) is cartesian.

It has the desired universal property because another x : X → B, q1, q2, and
β as below,

x

(Σ/Id) u̇

u u

p2

Id

Σ

p1

α
q2

q1

β

there exists a unique cartesian functor F : x → (Σ/Id) such that β = F ∗ α
and piF ∼= qi for i = 1, 2. In fact, it is induced by the functor obtained from
the underlying comma category: since Σ ↓ U is a comma object in Cat and,
in particular, X , q1, q2, β satisfy appropriate hypotheses, there is a unique

117

F : X → Σ ↓ U , namely that acting on objects as X 7→ (q1X, q2X,βX). Now,
this restricts to Σ↓vU because β has vertical components since it is a 2-cell in
Fib(B). One can check that it is in fact cartesian and it satisfies all the right
equations.

Given that we are working in the context of categorized judgemental theories,
we need to relate such a construction - plus many that will follow - to what is
computationally allowed for a cDTT.

Remark 3.5.1.2. Any comma object can be constructed by means of pullbacks
and cotensors. In fact, given 1-cells F : A → C and G : B → C, one can compute

(F/G) P A

Q C2 C

B C

F

G

cod

dom

⌟

⌟

⌟

to get (F/G).

Remark 3.5.1.3. Given a cospan of fibrations p → r ← q in Fib(B), it is
equivalent to provide a comma object for p, r, q in Fib(B) or a subcategory of
their comma object in Cat only considering r-vertical maps.

Because of Remark 3.5.1.2, a categorized judgemental theory is always closed
with respect to comma objects, and to compute (Σ/Id) we need to either expand
our definition to include finite limits in Fib(B), or to allow us to get subcategories
as described in Remark 3.5.1.3. Either way, we believe our request to add such
a possibility is both very natural and not at all burdensome.

We now have a notion of typing that is labelled, meaning that if we denote,
in the language of cDTTs,

Γ ⊢ (a,A, f) (Σ/Id)

Γ ⊢ a :f A

we can express judgements of the form “in context Γ, the term a is of type A as
witnessed by f” or, in the style of [LSX13], “in context Γ, f coerces a to be of
type A”.

Additionally, we need a fibration classifying all subtyping judgements, mean-
ing of the form

Γ ⊢ A′ ≤f A ,

which we read as “in context Γ, A′ is a subtype of A by the coercion f”. In an
entirely similar fashion as Lemma 3.5.1.1, one can show that (Id/Id) on u exists
and it captures all vertical maps in U .

Lemma 3.5.1.4. For each cDTT (u, u̇,Σ ⊣ ∆) over B the comma object (Id/Id)
on u in Fib(B) exists.

Putting together the two notions, we can finally prove the following.

Proposition 3.5.1.5. The rule

118

Γ ⊢ a :g A
′ Γ ⊢ A′ ≤f A

Γ ⊢ a :fg A

is valid in the judgemental theory induced by a cDTT.

Proof. The premise of the rule is computed by the pullback S,

S U ↓vU

Σ↓vU U Σ↓vU U

U̇ U

q1

p2

q1

p2

⌟

Id

Σ

p1

p2

α

p1

q2

β

then we can map S to the cospan (Σ, Id) via p1 and q2. Now, there is a natural
transformation β with

β(g : Σa→A′ , f : A′→A) = fg .

The universal property of the comma category Σ↓U induces a unique functor,
which restricts to Σ↓vU and is that witnessing the desired rule.

Of course we should show that β in the definition above is itself in the
cDTT. We provide a proof just this once by means of pullbacks as detailed in
Remark 3.5.1.2. Every other 2-cell appearing in this section is in the cDTT for
similar reasons.

Consider the following diagram

s (Id/Id) q′ u

p′ u2 u

(Σ/Id) q u u

p u2 u (Σ/Id) q u

u̇ u p u2 u

u̇ u

Id

cod

dom

Σ

cod

dom

Σ

Id

Id

dom

cod

Id

Id

Id

computing Σ ↓ U , U ↓ U and then S. Then the dashed maps in the outer
diagram identify β. The unique map s→ (Σ/Id) produces the desired functor
representing the rule in Proposition 3.5.1.5.

Now that in our system we have at our disposal classifiers for both

Γ ⊢ a :f A and Γ ⊢ A′ ≤g A,

119

encoded, respectively, in

(Σ/Id) and (Id/Id),

we show that they end up representing a variation of a well-known kind of
subtyping.

3.5.2 Rules for subtyping

Section 3.5.1 was devoted to showing that a cDTT contains certain pieces of
information that can be interpreted as a form of subtyping. We here make that
intuition precise, and describe rules and properties of such subtyping.

As we have mentioned, our intuition closely follows that of coercive subtyping :
this is the product of thinking about subtyping as an abbreviation mechanism,
meaning that we say that a given type A′ is a subtype of A if there is a unique
coercion from A′ to A. Whenever we need a term of type A, then, it suffices
to have a term of type A′, which we can “plug-in” into A. Coercive subtyping
has many computational properties, and throughout the years it has been made
to behave very well with other common structures in dependent type theory
[Luo99, Che03, LSX13].

We here list a few meaningful rules that can be found in a cDTT.

Proposition 3.5.2.1 (Structural subtyping rules). A cDTT verifies the following
rules. Γ ⊢ A′ ≤f A Γ ⊢ A′′ ≤g A′

(Trans)
Γ ⊢ A′′ ≤fg A

Γ.A ⊢ B′ ≤f B Γ ⊢ a :g A
(Sbst)

Γ ⊢ B′[a] ≤u̇(∆gηa)∗f B[a]

Γ ⊢ A′ ≤f A Γ ⊢ B
(Wkn)

Γ.B ⊢ A′ ≤(uϵB)∗f A

Proof. As for transitivity, one follows a path similar to that in Proposition 3.5.1.5,
simply replacing Σ↓vU with U ↓vU . Substitution is achieved by the same means
of regular substitution in a cDTT Section 2.3.4, meaning using some variation
of the unit of Σ ⊣ ∆. Consider the following 2-cell,

Σ↓vU Σ↓vU

B

Id

uΣ∆p2 up2

η̃

where the first leg computes Γ.A, the second simply Γ, and

η̃(g : Σa→A) = u̇(∆g ◦ ηa) : Γ→ Γ.Σa→ Γ.A .

See that ♯-lifting Theorem 1.3.3.3 this along U ↓vU → B performs the cartesian
lifting of f along η̃g, meaning

B′[a] B′

B[a] B

Γ Γ.Σa Γ.A

f

u̇ηa u̇∆g

u̇(∆gηa)
∗f

120

then the induced u̇(∆gηa)
∗f is vertical and gives the coercion in the output.

Weakening needs no “intermediate” step, because u(f) = id immediately: simply
compute the ♯-lifting of the following 2-cell

U U

B
u uΣ∆

Id

u∗ϵ

along U ↓v U → B. Notice that A,A′ appearing in the consequent of the rule
should really read A+, A′+ for the respective extended types, but we follow the
tradition on notation here.

3.5.2.2 (Comparison with coercive subtyping). We here refer to coercive sub-
typing in its formulation appearing in [LSX13, 2.2]. There, the starting point
is a type theory T specified in a logical framework and C a set of subtyping
judgements. It is additionally asked that C is “coherent”, meaning that

� if a judgement Γ ⊢ A <c B is in C, then Γ ⊢ A, Γ ⊢ B, Γ ⊢ c : A→ B;

� the relation is not reflexive, meaning that Γ ⊢ A <c A is not in C for any
Γ, A, c;

� if both Γ ⊢ A <c1 B and Γ ⊢<c2 B are in C, then Γ ⊢ c1 = c2 : A→ B.

Theorem 3.5.2.3 ([LSX13, Theorems 3.9(2), Theorem 3.10(3)]). Let T a MLTT
and C a set of subtyping judgements. If C is coherent, we can extend T with C
adding appropriate judgements and rules, we call this T [C], and on it a calculus
T [C]∗ by extending terms to include a new application. Then

(i) T [C]∗ is a conservative extension of T , and

(ii) T [C] and T [C]∗ are equivalent.

The subtyping of a cDTT does not share all properties required by coercive
subtyping, in the sense that, provided that our intuition is to identify C with
the collection of all u-vertical arrows,

1. for each judgement in Γ ⊢ A ≤c B, c is a term of the dependent product,
while for us it is a vertical map, and

2. such a collection does indeed contain elements witnessing reflexivity, as
identities in the total categories are, in particular, vertical.

Nonetheless, we feel that these two problems are somewhat artificial when
employing subtyiping, because when choosing the set C, 2 can be avoided by
simply taking out all identities, and the dependent product condition in 1 is due to
the fact that one artificially extends the theory to include such function symbols
but they are not inherently included in T , so perhaps when working semantically,
that can be avoided, while categorical computations remain available. Uniqueness
of coercions is addressed below.

Remark 3.5.2.4. For every structural rule of subtyping (3.5.2.1), the coercions
appearing in the consequences are uniquely determined by those appearing in
the premises.

121

This guarantees that, starting from a given coercion, there is a unique coercion
that can be produced out of it by means of structural calculations. On the other
hand, of course we have the following.

Remark 3.5.2.5. If the type fibration is faithful (see Proposition 3.4.3.8), then
the subtyping here described is coherent in the sense of [LSX13].

This does not mean that we can say that coercive subtyping is modeled by
subtyping in a cDTT, but the spirit in which both work is very much akin. We
leave it to future work – and to a few more conversations with experts on the
topic – to further develop the study of the relation between the two.

3.5.3 An example: semantic subtyping

In this section we provide an interpretation of semantic subtyping as discussed
in [BCF08]. Consider the following pseudofunctor

M : Setop → Cat

mapping each set A to the full subcategory of Set/A containing only monos.
When one performs the Grothendieck construction associated to M , one gets a
subfibration of cod: Set2 → Set.

Remark 3.5.3.1. The embedding of
∫
M into cod is part of the data of a

comprehesion category. ∫
M Set2

Set

ι

p cod

The corresponding wc-comonad K on p maps each mono to its kernel pair
and has counit the pullback square computing it. Coalgebras are sections of
monos. This construction will be discussed in some detail in Fact 3.6.2.2.

Breaking up the discussion in Section 3.5.1 and Section 3.5.2 we get the
following interpretation.

classical syntax judgemental syntax semantics
A ⊢ B A ⊢ (A, b)

∫
M b : B↣ A

A ⊢ y : B A ⊢ ((A, b), y) CoAlg(K) y : A→ B s.t. by = id

A ⊢ B′ ≤f B A ⊢ (b′, b, f) (Id/Id)
B′ A

B

b′

b
f

Remark 3.5.3.2. More precisely, the subtyping presented in [BCF08] coincides
with subtyping in our sense where the type fibration is obtained by poset reflection
of M(A)’s. Then the typing relation becomes unlabelled because of what was
observed in Remark 3.5.2.5.

3.6 Case study: CE-systems

The general framework established in the present work allows for a swift and
comprehensive treatment of different categorical models of dependent type

122

theory. Moreover, the possibility of linking them to a cDTT allows for a precise
description of the behaviour of type constructors in each. To exemplify such a
procedure, in this section we study the case of CE-systems, which were introduced
in [AENR21] and can be thought of as a non-stratified version of Cartmell’s
contextual categories [Car86] or Voevodsky’s C-systems [Voe16, Lecture 5].

Definition 3.6.0.1 (CE-system). A CE-system consists of two strict category
structures F ,B on the same set of objects Ob(F) = Ob(B) and an identity-on-
objects functor I : F → B, together with

1. a chosen object 1 which is terminal in F ;

2. for any σ : Θ→ Γ in B and any A in F/Γ, there is a functorial choice of a
σ∗A in F/Θ such the following

Θ.σ∗A Γ.A

Θ Γσ

I(A)I(σ∗A)

σ+

⌟

is a pullback square in B.

Definition 3.6.0.2 (Morphism of CE-systems). Given two CE-systems I : F → B
and I ′ : F → B, a CE-system morphism consists of a pair of functors F,B such
that

F F ′

B B′
I I′

F

C

commutes, F (1F) = 1F ′ , and

F (σ∗A) = (Cσ)∗(FA) and C(σ+) = (Cσ)+ .

Definition 3.6.0.3 (The category of CE-systems). We write CEsys for the
category of CE-systems and CE-system morphisms.

We interpret the objects underlying both F and B to contexts, and use I to
pick out in B only those maps corresponding to context extension/projection: we
identify types with their projection, and terms of a given type are again sections.

3.6.1 Type constructors in a cDTT

Our plan is to show that CE-systems inherently contain the structure of dependent
sums and units, but before we do that we need to recall the way in which we
deal with type constructors in the context of cDTTs.

As it was briefly discussed in Remark 3.3.2.1, cDTTs were introduced in the
more general context of categorized judgemental theories (Chapter 2), which
aim to describe the calculus one encounters when starting reading functors
(mostly, fibrations) as judgements and (lax) commutative triangles as rules. In
principle, its approach is pretty far from that of a categorical model such as a
comprehension category. In Section 3.3 we have proved that the two are closely
related and, in fact, can be seen as different presentations of the same thing.

123

Still, the fact that cDTTs make sense in a calculus-like world allows for much
more freedom the moment one wants to add structure to the theory. In particular,
the treatment of type constructors simply amounts to asking the existence of two
functors, one into U performing formation, one into U̇ performing introduction,
satisfying some additional property. On the contrary, though some models
(e.g. [Awo18], partially [Jac99]) do, giving an account of type constructors is in
general not an easy feat. In fact, the definition of what a type constructor is,
though widely clear, could not be formalized.

Definition 3.6.1.1 (The type constructor Φ). A categorized dependent type
theory with Φ-types is a cDTT having two additional functors Φ, Ψ such that
the diagram below is commutative and the upper square is a pullback.

Ẋ U̇

X U

B

Λ

Ψ

Φ

Σ

v u

Intuitively, the category X is that coding - via universal properties of finite
limits - the premise of the formation rule, the category Ẋ that coding the one of
the introduction rule, Λ is some elaborated typing functor, sending each term
in Ẋ to its type. The way in which such a diagram describes a constructor is
detailed in Chapter 2, but to the benefit of the reader we recall what happens
for units in Proposition 3.6.1.3.

3.6.1.1 Units

Definition 3.6.1.2 (Unit-types). A categorized dependent type theory with
unit-types is a cDTT having two additional functors 1, ∗ such that the diagram
below is commutative and the upper square is a pullback.

B U̇

B U

B

id

∗

1

Σ

id u

Proposition 3.6.1.3 (The definition is correct). The categorized judgemental
theory generated by diagrams in Definition 3.3.2.2 and Definition 2.3.8.1 contains
codes for formation, introduction, elimination, and computation of unit types.

Proof. Introduction and formation read as follows

Γ ⊢ Γ id(1)
Γ ⊢ 1Γ u

Γ ⊢ Γ id(∗)
Γ ⊢ (∗Γ, 1Γ) u̇

or, in a more familiar writing

⊢ Γ ctx(uI)
Γ ⊢ 1Γ Type

⊢ Γ ctx(uF)
Γ ⊢ ∗Γ : 1Γ

124

moreover, the elimination rule is captured by the unique map ψ : B.1U̇ → B and
it translates to the syntactic writing on the left, while postcomposed with ∗ it
translates as the more familiar rule on the right

Γ ⊢ t : 1Γ(ψ) ⊢ Γ ctx

Γ ⊢ t : 1Γ(∗ ◦ ψ)
Γ ⊢ ∗Γ : 1Γ

which is also denoted (uE). Finally, computation β and η can be decoded
from the two following diagrams

B B.1U̇

Eq B U̇ Eq B.1U̇ U̇
∗

∗◦ψϕ

idβ

1.Σ

1.Σ◦ϕψ

idη

with ϕ the inverse to ψ, which read, respectively, as follows.

⊢ Γ ctx(uβC)
Γ ⊢ ∗Γ =1Γ ∗Γ

Γ ⊢ t : 1Γ(uηC)
Γ ⊢ t =1Γ ∗Γ

3.6.1.2 Dependent sums

Definition 3.6.1.4. A categorized dependent type theory with sum-types is a
cDTT as in Definition 3.3.2.2 having two additional rules sum, pair such that
the diagram below is commutative and the upper square is a pullback.

(U̇ .Σ∆U)Σ.γU̇ U̇

U .∆U U

B

Σ

sum

Σ.(u.u̇∆)◦Σ.γ

pair

The premise of the formation rule encodes pairs (A,B) of types such that
the context of ∆A is the same as that of B. The premise of introduction is
computed by iterated pullbacks of uΣ∆Σ first along u and then along Σ. A
2-cell γ is involved, see Section 2.3.8.2 for more details and Lemma 3.6.3.1 for
an explicit calculation.

3.6.2 Comparing CE-systems to cDTTs

We wish to relate CE-systems to either one of the following biequivalent cate-
gories,

CompCat ≡ wcCmd ≡ cDTTloose

or their respective subcategories. Since terms are interpreted to sections of I(A),
we might find it easier to aim at the first two.

Proposition 3.6.2.1. Each CE-system I : F → B induces a wc-comonad on a
split fibration.

125

Proof. First of all, let us define a fibration with base B as follows:

p := cod ◦ I2 : F2 → B2 → B,

with F2 the “I-full” subcategory or B2, meaning that its objects are morphisms
in F and its morphisms

B is Θ.B Θ

A Γ.A Γ

I(B)

I(A)

are commutative squares in B.
It really is a fibration because to each morphism of contexts σ : Θ→ Γ and

A ∈ F/Γ it corresponds a functorial choice of an object σ∗A ∈ F/Θ such that

Θ.σ∗A Γ.A

Θ Γσ

I(A)I(σ∗A)
⌟

is a pullback in B i.e. a cartesian lifting of σ in F2. Notice that the functoriality
appearing in Definition 3.6.0.1 implies that p is split.

Let us now define a suitable comonad (K, ϵ, ν) : F2 → F2. Intuitively, K is
intended to map types to their image under substitution along the projection
map, in this case I(A). Hence we can define

K(A) := I(A)∗A = A+

which induces a comonad on F2. This is an instance of the more general
Fact 3.6.2.2.

Finally, we need to show that its counit is cartesian, which is trivial because
it is a pullback in the first place, and that each cartesian map in F2 induces a
pullback as described in Definition 3.3.3.1, which is again true because a cartesian
arrow in F2 = E is the required square, hence a pullback by definition.

Fact 3.6.2.2 (Kernel-pair comonad). Let B be a category such that we can
always compute kernel pairs. Let K : B2 → B2 the functor mapping to each σ
its kernel pair: that is, the following iterated pullbacks, together with the use of
their universal property,

kσ kσ.σ kσ Θ

Θ kσ Θ Γσ

σσ.σ
⌟

σ.σ

(σ.σ).σ
⌟

σ.σ

!

!

(3.13)

where all red compositions are identities. Such a K induces a comonad on B
with counit ϵσ the last square on the right and comulitplication νσ the one on
the left. One can check that the (K, ϵ, ν)-coalgebras with structure map σ are
exactly the sections of σ.

Proposition 3.6.2.3. Each wc-comonad (p : E → B,K) with p split induces a
CE-system.

126

Proof. We only need to define a category FK and an appropriate identity-on-
objects map. We then consider the following directed graph GK having

� as vertices the same objects as B;

� as edges objects in E , so that an edge A has source pKA and target pA.

Call CK the free category on the graph GK , and define FK to be the category
having the same objects as CK and morphisms

FK(⌊B0, . . . , Bm−1⌋, ⌊A0, . . . , An−1⌋)

by induction on m.

Θ.B Θ Θ.Bm−1.Bm Θ.Bm−1 Θ

Γ.A Γ Γ.A Γ

⌊B⌋

⌊A0,...,An−1⌋

⌊Bm⌋

⌊A0,...,An−1⌋

⌊B0,...,Bm−1⌋

If m = 0, a morphism ⌊B⌋ → ⌊A0, . . . , An−1⌋ is a commutative square in B as on
the left; if m ≥ 1, a morphism ⌊B0, . . . , Bm+1−1⌋ → ⌊A0, . . . , An−1⌋ is defined
as the composition of ⌊B0, . . . , Bm−1⌋ → ⌊A0, . . . , An−1⌋ with ⌊Bm⌋.

Define IK : FK → B as

IK(Γ) = Γ, IK(A) = p(ϵA)

and let us show that it satisfies the characterizing property of CE-systems, that
is that, for each choice of σ in B and p(ϵA), a functorial choice of an object in
FK/Θ such that it completes the cospan below to a pullback.

• pK(A)

Θ p(A)σ

p(ϵA)

⌟

Notice that the choice need not to be unique, and in fact it is far from being
so since the same map p(ϵA) could be realized as the counit at different A’s.
Since p is split, we can compute the cartesian lifting of σ at A, and find a map
s : Aσ → A in E , hence a counit square ϵAσ → ϵA. Because it is a pullback, one
can check (the image through p of) such square provides the desired pullback
above.

Theorem 3.6.2.4 (Adjunction between CE-systems and discrete wc-comonads).
The constructions in Proposition 3.6.2.1 and Proposition 3.6.2.3 can be

promoted to a pair of adjoint functors

CEsys wcCmdstr
split

R

L⊣

where wcCmdstr
split is seen as a 1-category.

127

Proof. First of all, we need to show that both can be extended to functors. A
strict morphism of wc-comonads (see Definition 3.3.3.4) is in particular a 1-cell
(H,C) in Fib such that HK = K ′H. We claim that we can define a functor H
such that the following square

FK FK′

B B′
I I′

C

H

commutes and the appropriate equations are satisfied. By the free-forgetful
adjunction of graphs and categories, defining such a functor is equivalent to
providing a directed graph morphism GK → UFK′ . We can define it as

H(Γ) = C(Γ), H(A) = H(A) .

The object HA in E ′ has source p′K ′HA = C(pKA) and target p′HA = C(pA),
therefore it is an actual graph morphism, and its corresponding functor commutes
with C and I’s. The additional conditions that H(σ∗A) = (Cσ)∗(HA) and
C(σ+) = (Cσ)+ follow directly from the fact that p is split.

Conversely, a morphism (F,C) of CE-systems induces a strict morphism
between the associated wc-comonads: the required 1-cell in Fib is witnessed by
the following commutative diagram

F2 F ′2

B2 B′2

B B′
C

I2

cod cod

C2

I
′2

F 2

and F 2 is cartesian because it maps pullback diagrams to pullback diagrams. We
only need to show that F 2K = K ′F 2, where K,K ′ are the respective kernel-pair
comonads. Consider that K ′F 2(A) is computed as follows

• C(Γ.A)

C(Γ.A) C(Γ)
I′(FA)

I′(FA)I′(K′FA)

⌟

but since I ′F = CI by definition of morphism of CE-systems, by uniqueness of
the choice of the pullback we have that F 2K(A) = K ′F 2(A).

Call L the functor induced by Proposition 3.6.2.3 and R that induced by
Proposition 3.6.2.1, we show that L ⊣ R with unit ζ and counit θ. We start
by describing the counit θ : LR → id. Let I : F → B a CE-system, then
LR(I) : FLR → B is the CE-system having:

� the free category FLR generated by the graph GLR having the same objects
as B and morphisms those A in F2;

128

� LR(I)(Γ) = Γ, LR(I)(A) = p(ϵA) = I(A).

Since I is a functor, and B has the same objects as F , GLR is itself a category
and FLR = F . We can take θ to be the identity in CEsys.

Conversely, let (p : E → B,K) a wc-comonad with p split, and compute RL,
which yields the following:

� the free category FK generated by the graph with vertices objects in B
and edges objects in E with appropriate sources and targets;

� the fibration acting as cod ◦ IK(A) = cod(pϵA) = pA;

� the comonad K ′ mapping each A to the cartesian lifting of A at p(ϵA).

Since p is split, K ′A = KA by definition of wc-comonad. The unit ζ(p,K), then
can be defined as follows

E F2
K

E F2
K

B B

K

p cod◦I2K
C

H

H

K′

with C = id and H the functor acting on objects as A 7→ A, so that the upper
square trivially commutes. On morphisms, we can define it as

s : B → A 7→ (pKs, ps) : B → A

because the latter fits an appropriate square with sides B,A. Moreover, if s is
cartesian, such a square is a pullback by condition 2 in Definition 3.3.3.1, hence
it is (cod ◦ I2K)-cartesian, so that (H,C) truly is 1-cell in Fib.

Finally, we need to show that (L,R, θ, ζ) satisfies the triangle identities, but
since θ = id this amounts to proving that Lζ(p,K) = id(p,K) and ζR(I) = idR(I),
and that is readily checked.

Corollary 3.6.2.5. R is fully faithful.

Construction 3.6.2.6. Combining the results in Theorem 3.6.2.4 and Sec-
tion 3.3.5,

CEsys wcCmdstr
split cDTTstr

split

R

L
≡⊣

plus observations in Section 3.4, allows us to describe the cDTT associated to a
CE-system:

SecI F2

CoAlg(K) B2

B

U

I2

Σ

cod

⌟

129

where the external diagram describes our choices for terms and types fibrations.
The right adjoint ∆ to the typing functor is defined on objects as follows,

∆(A) := νI(A)

and on maps in the obvious way.
The counit at A is precisely the composition of diagrams appearing in (3.13),

and that is clearly a pullback. The unit at a section a is provided by unitality,
since we have the following diagram,

Γ Γ.A Γ

Γ.A Γ.A.A+ Γ.A

Γ Γ.A Γ
I(A)

I(A)I(A+)

a∆(A)

⌟

⌟

a

I(A)

a

⌟

⌟

where all red compositions are identities.
Because it will be of use later (see Theorem 3.6.3.5), we describe the image

of the unit of L ⊣ R in cDTTstr
split: consider

U̇ U

B SecI F2
Σ∆

B

Σ

∆

u̇ u

cod

Σ

∆

⊣

⊣

with

� the category F2
Σ∆ having for objects finite lists ⌊A0, . . . , An−1⌋ of objects

in U such that u(Σ∆(Ai)) = u(Ai+1) for all 0 ≤ i ≤ n− 2;

� the category SecI of sections of u(ϵA0
) ◦ · · · ◦ u(ϵAn−1

).

The triple

u̇η(−) : U̇ → SecI , ⌊−⌋ : U → F2
Σ∆ id : B → B,

with ⌊−⌋ the functor mapping an object A to the list ⌊A⌋ of length one (and
each morphism to the desired square), is the unit of (the image through the
equivalence) of L ⊣ R.

3.6.3 Constructors for free

3.6.3.1 CE-systems have dependent sums and units

Lemma 3.6.3.1. Each cDTT obtained from a CE-system following Construc-
tion 3.6.2.6 has dependent sums in the sense of Section 3.6.1.2.

130

Proof. It has dependent sums if, given the categories encoding the two nested
judgements of the premises from, respectively, the formation and the introduction
rule,

Γ ⊢ A Γ ⊢ B (Γ ⊢ a : A Γ ⊢ b : B[a])

and the typing functor connecting them, there is a pair of functors as below

JA,B, a, b K SecI

JA,B K F2

B

Σ

sum

pair

making the triangle commute and the square a pullback. Computing the appro-
priate categories JA,B, a, b K and JA,B K, one finds that objects of the first are
diagrams as on the left

Γ Γ.B[a] Γ

(Γ.A).B Γ.A

Γ

I(A)

I(B)

a

I(B[a])

a
⌟

b Γ Γ.B[a] Γ

(Γ.A).B Γ.A

Γ

I(A)

I(B)

a

I(B[a])

a
⌟

b

I(A◦B)

for A,B,B[a] in F and a, b sections in B. The category JA,B K only keeps track
of the lower part of the diagram, and the desired vertical functor “forgets” the
upper part. Now, since I is functorial, I(A) ◦ I(B) = I(A ◦ B) i.e. there is a
type A ◦B and (Γ.A).B = Γ.(A ◦B). Then we can define on objects

sum : (A,B) 7→ A ◦B

and that will make the triangle commute. It is clear that this extends to a
functor JA,BK → U . To define pair, we need to provide a section of I(A ◦ B),
but now it is sufficient to consider the composition

pair : (A,B, a, b) 7→ a ◦ b

as in the diagram on the right, and this is again functorial. Clearly the square
involving sum, pair commutes, let us now check that it is a pullback.

Let V a judgement classifier and g, h rules such that sum g = Σh. This means
that gV is a pair of maps gV1, gV2 in F such that we have the following diagram
on the left.

Γ Γ

Γ.gV1.gV2 Γ.gV1

Γ

I(gV1)

I(gV2)
hV

sumgV

Γ • Γ

Γ.gV1.gV2 Γ.gV1

Γ

I(gV1)

I(gV2)
hV

sumgV

∆(gV1)

⌟

id

!

131

There is always a term of type gV1, that is ∆(gV1), which is the dashed arrow in
the first diagram above. We complete the pullback and find the unique arrow
that induces in the diagram on the right. Then we have described the desired
functor V → JA,B, a, b K.

Corollary 3.6.3.2 (Free dependent sums). One can always freely add dependent
sums to a CE-system.

Lemma 3.6.3.3. Each cDTT obtained from a CE-system following Construc-
tion 3.6.2.6 has unit types in the sense of Definition 2.3.8.1.

Proof. We can easily provide 1, ∗ that do the job: just match to each Γ ∈ B its
identity in both cases.

Corollary 3.6.3.4 (Free units). One can always freely add unit types to a
CE-system.

3.6.3.2 cDTTs with sums and units are CE-systems

Not only CE-systems have sums and units, but they capture all discrete models
of dependent types that do, that is: the following holds.

Theorem 3.6.3.5. The counit of 3.6.2.6 is an isomorphism on all split cDTTs
with dependent sums and units.

Proof. Since we already proved Lemma 3.6.3.1 and Lemma 3.6.3.3, combining
Theorem 3.6.2.4 and the content of Section 3.3.5 we get the diagram above, but
since the counit θ is the identity on all CE-systems, we only need to show that
for each split J with dependent sums and unit types, the unit ζJ is itself an iso.
Recall from Construction 3.6.2.6 that its components are

u̇η(−) : U̇ → SecI , ⌊−⌋ : U → F2
Σ∆ id : B → B,

with ⌊−⌋ the functor mapping an object A to the list ⌊A⌋ of length one. We
define (P, S, id) a strict morphism of split cDTTs RLJ→ J and show that it is
an inverse to ζJ.

U̇ U

B SecI F2
Σ∆

B

Σ

∆

u̇ u

cod

Σ

∆
SP

id

⊣

⊣

Our strategy is to implicitly use the structure on LJ to break up pieces of data,
which can be then canonically sent to J, and then built back up with the existing
structure there.

Let us start from types: we will take advantage of sum (on the original
cDTT!) to describe a sort of concatenation on types, then use it to define the
action of S inductively on the length of lists in FΣ∆. Let ⌊A,B⌋ in F2

Σ∆, we
then have the following

u(A) u(Σ∆(A)) = u(B) u(Σ∆(B)) .A B

132

The middle condition is precisely stating that (A,B), as a pair of objects in
U , is in JA,B K. Then, since J has dependent sums, we can compute its image
through sum. We define the functor S on objects as follows, then:

� S⌊ ⌋ = 1Γ for Γ the base-point of the loop;

� S⌊A⌋ = A for A in U ;

� S⌊A0, . . . , An−1⌋ = sum(S⌊A0, . . . , An−2⌋, S⌊An−1⌋).

It is clear that this produces a fibration morphism, given that sum is one. On
one hand, S ◦ ⌊−⌋ = id by construction of S, on the other we only need to check
that

⌊sum(A,B)⌋ = A ◦B,

and the rest follows by induction on the length of lists. Since we have dependent
sums in the sense of Section 3.6.1.2, by pullback we have an isomorphism of
categories matching to each section c of sum(A,B) a pair (c1, c2) as follows.

Γ Γ Γ.B[c2] Γ

Γ.sum(A,B) (Γ.A).B Γ.A

Γ Γ

I(A)

I(B)

c1

I(B[c2])

c1
⌟

c2

I(A◦B)
sum(A,B)

c

(3.14)

The computation η, in particular, yields pair(A,B, c1, c2) = c, so that I(A◦B) =
sum(A,B) and c1 ◦ c2 = c.

We now define a compatible functor P : SecI → U̇ , again on the length of the
type of the section c. Notice that if c is a section of I(A ◦B) = u(ϵA) ◦ u(ϵB),
then there is a pair of sections as below

Γ Γ.B[∆A] Γ

(Γ.A).B Γ.A

Γ

u(ϵA)

u(ϵB)

∆A
⌟

!

c

id

which we write (c1, c2), hence from a type of length 2 we have canonically
produced two types of length 1: we can compute P one step down the desired
induction

P (c, ⌊A,B⌋) = pair(P (c1, ⌊A⌋) , P (c2, ⌊B[∆A]⌋)),

meaning

� if c is a section t of a type of length 0 with base-point Γ, define P (t, ⌊ ⌋)
to be the base-point loop ∗Γ;

133

� if c is a section a of I(A) = u(ϵA), we exploit the fact that u̇ is a fibration,

a∗∆A ∆A U̇

Γ u̇(∆A) = u(Σ∆A) u(A) Ba

a′

u(ϵA)

and claim that ηa∗∆A = a′, hence we can define P (a, ⌊A⌋) = a∗∆A;

� finally, define P (c, ⌊A0, . . . , An−1⌋) as follows

pair(⌊P (c1, A0, . . . , An−2)⌋ , ⌊P (c2 , An−1[∆⌊A0, . . . , An−2⌋])⌋)

with (c1, c2) constructed as detailed above.

It is a fibration morphism because of Remark 3.3.3.3 and because pair is. We
only need to show that it actually is ηa∗∆A = a′, but this follows from u̇ split,
while P ◦ u̇η− = id is trivial by construction.

Finally, for it to be part of a morphism of cDTTs, we need commutativity of
certain squares: we only prove it for terms with type of length 1. Everything
else follows immediately from the fact that the original cDTT has dependent
sums and, in particular, for what was observed in (3.14). Let us first check that
SΣ = ΣP : a given section a of ⌊A⌋ : uA→ uΣ∆A is sent to the cartesian lifting
a∗∆A whose image through Σ is A

a∗∆A ∆A

Σ(a∗∆A) Σ∆A A

Γ Γ.A Γ
⌊A⌋a

a′

Σ(a′) ϵA

id

because Σ(a′) is both cartesian and a section of uϵA. Moreover, it is also
P∆ = ∆S because at a given ⌊A⌋ we compute the following

∆⌊A⌋∗(∆A+) ∆A+ = ∆Σ∆A ∆A

Γ.A Γ.A.A+ Γ.A

Γ.A Γ

⌊A⌋

⌊A⌋

⌊A+⌋
⌊A+⌋

id

id

∆⌊A⌋

∆ϵA∆⌊A⌋′

⌟

and since u is split, the cartesian lifting of id : Γ.A→ Γ.A.A+ → Γ.A is itself the
identity, so that, since both maps in U̇ are cartesian by construction, because ϵ
is, and by Lemma 3.3.2.5, then ∆⌊A⌋∗(∆A+) = ∆A = ∆S⌊A⌋.

Corollary 3.6.3.6. CE-systems are in a 1-to-1 correspondence with split cDTTs
with dependent sums and units.

A more precise and desirable result would be the following.

134

Theorem 3.6.3.7. The adjunction L ⊣ R restricts to an equivalence of categories

cDTTstr
split

CEsys cDTTstr
split
sum,1

R

L

where cDTTstr
split
sum,1 is the subcategory of cDTTstr

split of cDTTs with dependent
sums and units.

The problem is that that would require us to describe what happens to
1-cells in L ⊣ R, and what 1-cells in cDTTstr

split
sum,1 should even be. We leave

this problem for a later time, nevertheless we hope that this result appropriately
witnesses the use in the judgemental approach to the analysis of categorical
models dependent types.

3.7 Future developments

We have framed cDTTs in the crowded world of categorical models of dependent
types, and have provided at least two good reasons as to why that could be of
use (3.5, 3.6).

Many more seem within reach: more structure on the collection of types over
a given context provides more tools to relate them, for example one could be
interested in mimicking what happens with doctrines (2.4.0.5) with connectives
and quantifiers. Another point to make would be comparing compcats and
cDTTs not only with respect to structural rules, but with type constructors, as
well.

135

Chapter 4

Fuzzy dependent types

“What giants?” asked Sancho
Panza. “Those thou seest there,”
answered his master, “with the
long arms, and some have them
nearly two leagues long.” “Look,
your worship,” said Sancho, “what
we see there are not giants but
windmills, and what seem to be
their arms are the sails that
turned by the wind make the
millstone go.” “It is easy to see,”
replied Don Quijote, “that thou
art not used to this business of
adventures.”

[CS10, Chapter 8]

The long-distance scope of this project is applying categorical tools usually
found in opinion dynamics, namely cellular sheaves [GH20, GR22], to a fuzzy
environment. The first step in the process is that of producing a suitable logic to
express judgements with variable degrees of confidence, and we do that combining
notions of enriched category theory with a classical model for dependent types.

Contribution

We begin the study of a theory of fuzzy types from their structural rules. We
prove soundness and completeness for their calculus.

4.1 Basic enriched category theory

Enriched category theory stems from the observation that sometimes in math
the collection of maps between two given objects has itself some structure other
than that of a set, for example, given a field k, the set of k-linear maps between
k-vector spaces is itself a k-vector space. Indeed it is clear how the very own
definition of category (Section 1.1.1) and functor (Section 1.1.2) heavily relies

136

on the notion of set and, more technically, on the category Set, and this fails
to capture, for example, the case of vector spaces. Sets seem unefficient even
when one wants to express the concept of morphisms between functors, and this
is just needed to get us to 2-categories (1.1.3). But as it has been hinted in
Section 1.1.4, putting sets on a pedestal is not at all necessary: on one hand,
we could use different foundations (see for example [Bén85]), on the other, we
could acknowledge the problem and build a new theory on top of the existing
one with the purpose of fixing this glitch. We follow this second route in the
steps of [Kel82].

Notice that, for size reasons, our discussion only takes into account locally
small categories, meaning categories whose collections of morphisms for any
given pair of objects is a set. If we wished to be completely general, we would
need to introduce a category of big sets, probably calling that SET or Class,
and so on. We hope the reader sees that that does not change the discussion
that follows.

4.1.1 Monoidal categories

First of all, we ought to understand what it is about sets that makes them good
at collecting morphisms, at composing them, at picking identities, and so on.
Recall from Definition 1.1.1.1 that a category is

� a collection of objects, and

� for each pair of objects A,B a set of morphisms from A to B,

moreover

1. for any object A there is a designated identity morphism idA : A→ A;

2. for any composable pair of morphisms f, g there is a morphism gf com-
puting their composition;

and these must satisfy the following equations: for f : A → B, g : B → C,
h : C → D,

f idA = f = idBf, h(gf) = (hg)f.

Denoting C(A,B) the set of maps from A to B, we can reformulate the conditions
above in term of structures in Set as follows: a category is

� a collection of objects, and

� for each pair of objects A,B an hom-set C(A,B) in Set

moreover

1. for any A there is a function idA : 1→ C(A,A);

2. for any A,B,C there is a function cmpA,B,C : C(A,B)×C(B,C)→ C(A,C);

such that the following diagrams commute.

1× C(A,B) C(A,B) C(A,B)× 1

C(A,A)× C(A,B) C(A,B)× C(B,B)

idA×Id Id×idB

l r

cmpA,A,B cmpA,B,B

137

(C(A,B)× C(B,C))× C(C,D) C(A,B)× (C(B,C)× C(C,D))

C(A,C)× C(C,D) C(A,B)× C(B,D)

C(A,D)

a

cmpA,B,C×Id

cmpA,C,D cmpA,B,D

Id×cmpB,C,D

Here 1 = {∗}, functions l, r project on the C(A,B) component, and a performs
association.

The intrinsic structure of Set needed is the object 1, the cartesian product ×
- although we do not use its universal property, just that it allows for functions
to be applied “in parallel” - and the existence of l, r, a. On top of this intrinsic
structure on set, C is a category if suitable id, cmp exist: generalizing this will
be the aim of Section 4.1.2.

Definition 4.1.1.1 (Monoidal category). A monoidal category V = (V0,⊗, I, a, l, r)
consists of a category V0, a functor ⊗ : V0⊗V0 → V0, a designated object I of V0,
and natural isomorphisms aX,Y,Z : (X⊗Y)⊗Z → X⊗ (Y ⊗Z), lX : I⊗X → X,
rX : X ⊗ I → X such that the two following diagrams, representing what are
called the coherence axioms, commute.

((W ⊗X)⊗ Y)⊗ Z (W ⊗X)⊗ (Y ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y))⊗ Z W ⊗ ((X ⊗ Y)⊗ Z)

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y)

X ⊗ Y

Id⊗a

a

a⊗Id

a

a

a

r⊗Id Id⊗l

Often we identify V0 with V , but it is important to notice that there may be
different monoidal structures on the same category: this will be the case for ref,
for example. We conclude this discussion by listing a few properties of monoidal
categories.

Definition 4.1.1.2 (Symmetric monoidal category). A monoidal category is
said to be symmetric if there is a natural isomorphism cX,Y : X ⊗ Y → Y ⊗X
satisfying suitable coherence axioms [Kel82, § 1.4].

Definition 4.1.1.3 (Cartesian monoidal category). A monoidal category is said
to be cartesian if ⊗ is a product, I the terminal object, l, r are projections, and
a is the natural isomorphism induced by the universal property of products.

Definition 4.1.1.4 (Closed monoidal category). A monoidal category is said to
be closed if each functor −⊗ Y : V0 → V0 has a right adjoint [Y,−]. The object
[Y,Z] is called the internal hom of Y and Z.

138

Remark 4.1.1.5 (Internal homs). Consider the bijection induced by −⊗ Y ⊣
[Y,−] at I

V0(I ⊗ Y,Z) ∼= V0(I, [Y, Z]),

then, given I ⊗ Y ∼= Y , we get

V0(Y,Z) ∼= V0(I, [Y,Z])

so that we can relate homomorphisms between Y and Z to their internal hom.

4.1.2 Enriched categories

Now that we have the appropriate structure on a category V , we can define what
it means for a category to be V-enriched. We fix a monoidal category V for the
rest of this discussion.

Definition 4.1.2.1 (V-enriched category). A V-category C is the data of

� a collection of objects,

� for each pair of objects A,B an hom-object C(A,B) in V0

moreover

1. for any A there is a V-morphism idA : I → C(A,A);

2. for any A,B,C there is a V-morphism cmpA,B,C : C(A,B) ⊗ C(B,C) →
C(A,C);

such that the following diagrams commute.

I ⊗ C(A,B) C(A,B) C(A,B)⊗ I

C(A,A)⊗ C(A,B) C(A,B)⊗ C(B,B)

idA⊗Id Id⊗idB

l r

cmpA,A,B cmpA,B,B

(C(A,B)⊗ C(B,C))⊗ C(C,D) C(A,B)⊗ (C(B,C)⊗ C(C,D))

C(A,C)⊗ C(C,D) C(A,B)⊗ C(B,D)

C(A,D)

a

cmpA,B,C⊗Id

cmpA,C,D cmpA,B,D

Id⊗cmpB,C,D

Remark 4.1.2.2 (The definition is meaningful). Considering each time V to
be (the obvious monoidal structures on) Set,Cat,2,Ab,DG-R-Mod,R+ we
respectively recover the notions of locally small category, 2-category, pre-ordered
set, additive category, differential graded category, and (generalized) metric
space.

139

4.1.3 Enriched functors and natural transformations

Similarly, we can think of a functor F : C → D between regular categories as
function

C(A,B)→ D(FA,FB)

for each pair of objects A,B.

Definition 4.1.3.1 (V-functor). For V-categories C,D, a V-functor F : C → D
consists of

� for each object A in A, an object FA in D, and

� for each pair of objects A,B, a V-morphism FAB : C(A,B)→ D(FA,FB),

subject to the compatibility with composition and with identities, meaning that
the following diagrams must commute.

C(A,B)⊗ C(B,C) C(A,C) I C(A,A)

D(FA,FB)⊗D(FB,FC) D(FA,FC) D(FA,FA)

cmpC

F

cmpD

F⊗F

idC

F
idD

Similarly one can define a notion of enriched natural transformation.

Definition 4.1.3.2 (V-natural transformation). Let F,G : C → D V-functors, a
V-natural transformation α : F ⇒ G is a family of maps αA : I → D(FA,GA)
such that the following diagram commutes.

I ⊗ C(A,B) D(FA,GA)⊗D(GA,GB)

C(A,B) D(FA,GB)

C(A,B)⊗ I D(FA,FB)⊗D(FB,GB)

l−1

r−1

αA⊗G

F⊗αB

cmp

cmp

In the case of natural transformations of mixed variance, some work is being
done in the direction of a calculus of substitution [MS21].

4.1.4 Forgetful into CAT

V-categories, V-functors (and V-natural transformations) assemble into a (2-)category.

Definition 4.1.4.1 (The category of V-enriched categories). We call V-CAT
the (2-)category of V-categories, V-functors (and V-natural transformations).

Definition 4.1.4.2 (The forgetful V). If V has V0 locally small, we have a
functor

V = V0(I,−) : V0 → Set

which computes what is called the underlying set.

140

The functor V often has some strong properties, for example when V =
Set,Ord,Top,Ab, R-Mod it is faithful and acts as the usual forgetful functor,
but this is not always the case.

Definition 4.1.4.3 (The forgetful (−)0). Call I the V-category with a single
object ∗ and I(∗, ∗) = I. Then the 2-functor

(−)0 = V-CAT(I,−) : V-CAT→ CAT

computes what is called the underlying category.

Remark 4.1.4.4. Unfolding the definition of (−)0 shows that the category C0
has the same objects as C, and a map f : A→ B in C0 is in particular a choice
of a map in C(A,B).

4.1.5 Representable V-functors
For the rest of this section we assume V symmetric (4.1.1.3) monoidal (4.1.1.4)
with V0 locally small.

Remark 4.1.5.1. The internal hom described in Remark 4.1.1.5 makes V a
V-category: its objects are those of V0, and for each pair X,Y we say that
V(X,Y) is [X,Y].

Remark 4.1.5.2. For each V-category C and object A in C, we can define the
(covariant) representable functor

C(A,−) : C → V

sending B to C(A,B) and on pairs A,B acting as follows

C(A,−)BC : C(B,C)→ V(V(A,B), C(A,C)) = [C(A,B), C(A,C)]

corresponding under the adjunction in Definition 4.1.1.4 to

cmpA,B,C : C(A,B)⊗ C(B,C)→ C(A,C).

Similarly one can define a contravariant representable functor.

Combining both the contravariant and the covariant representable functors,
one can define a functor

Cop ⊗ C → V.

4.1.6 Let us end with V
We conclude this extremely brief introduction with a look at ends in this enriched
context: they are a technical tool that will be of fundamental importance when we
compute weighted limits, which in turn will be crucial in modeling substitution.

For this discussion we will assume that V is symmetric monoidal closed, with
V0 locally small, and additionally that V0 is complete. These hypothesis will all
be satisfied by our categories of interest.

Definition 4.1.6.1 (End). Consider a V-functor T : Cop⊗C → V . If there exists
a universal V-natural family λA : K → T (A,A), we call (K,λ) the end of T . We
write

∫
A∈C T (A,A) for the object K and call λA the counit of the end.

141

Notice that in the naturality condition in Definition 4.1.3.2 in the case where
D = V translates because of V0(X, [Y,Z]) ∼= V0(X ⊗ Y, Z) ∼= V0(Y, [X,Z]) to
commutativity of squares of the following kind,

K T (A,A)

T (B,B) [C(A,B), T (A,B)]

λB

λA

ρAB

σAB

where σ and ρ are the images through the isomorphism above of, respectively,
T (−, B)BA and T (A,−)AB .

Notice also that the universal property describing ends, meaning that for any
other V-natural transformation µA : X → T (A,A) there is a unique x : X → K
such that µA = λAx, is in such terms expressed as a bijection of sets, but can
be lifted to an isomorphism in V0. In fact, consider

[idX , λA] : [X,

∫
A

T (A,A)]→ [X,T (A,A)],

one can see that ∫
A

[X,T (A,A)] ∼= [X,

∫
A

T (A,A)]

and it is so precisely by counit [idX , λA]. For more on this topic we refer to
[Kel82, §2], while for an in-depth treatment of ends we point the reader to
[Lor21]. We conclude this discussion providing two examples in the familiar case
where V = Set with the cartesian monoidal structure.

Example 4.1.6.2 (Natural transformations). Natural transformations can be
written as an end. Letting F,G : C → D be functors, natural transformations
between F and G form a subset of

∏
X:C D(F (X), G(X)).

Then, taking the end of D(F (−), G(−)) : Cop × C → Set, we have by the
commutativity requirement that the following diagram commutes:

τ
∫
X
D(F (X), G(X)) D(F (Y), G(Y)) τY

τX D(F (X), G(X)) D(F (X), G(Y)) G(f)∗τX = F (f)∗τY

πX

πY

F (f)∗

G(f)∗

∈

∈

∋

∋

and this actually is exactly the condition that τ forms a natural transformation
from F to G, as this diagram commuting implies that the following diagram
commutes.

F (X) F (Y)

G(X) G(Y)

τX

F (f)

τY

G(f)

Example 4.1.6.3 (Limits). Recall that for a diagram D : D → C, the limit of
D is the object limD in C such that, for all X in C,

C(X, limD) ∼= (∆X ⇒ D)

142

That is, the natural transformations from the constant functor at X to D is in
bijection with the morphisms from X to limD.

Then, we can represent ∆X ⇒ D by the end
∫
Y :D C(X,D(Y)), so that we

get that the the limit of a diagram D : D → C can be equivalently stated as the
object limD in C such that, for all X in C,

C(X, limD) ∼=
∫
Y

C(X,D(Y)). (4.1)

4.2 Propositions and types (and opinions)

Our aim is to – very roughly – model opinions, so we should first start by
saying what it is that we consider to be an opinion. On this, we follow the path
suggested by the correspondence that is mostly known as Curry-Howard: since
there is a one-to-one correspondence between logics and programming languages,
which kind of looks like the following

proofs executions (terms)
formula specification of progr. (type)

what we do is simply add a leg to it:

proofs programs (terms) motivations
formula specification of progr. (type) belief

In our setting, programs are beliefs and executions are thoughts that lead to
holding such beliefs. This is of course reductive of the human mind. Nevertheless,
we might be able to gain some insight out of it.

Now, given a belief and a motivation for it, I might consider it good or bad.
For example, I could motivate the belief “bees should be protected” either with
“they carry pollen between plants” or “I like honey”, but perhaps they are not
influential to the same extent. This is where fuzziness comes into play.

In the end, our task is the following: we need to model types (read: opinions)
in a way such that their terms are fuzzy in some sense. Our solution entails
considering notion of type to its formulation by Per Martin-Löf [Mar75] and
restricting it to the interpretation of types to sets and terms to their elements.
This context is inherently binary, so that looking for a notion of fuzzy type
amounts to finding a filler in the following table.

binary fuzzy

propositions {0, 1} [0, 1]

types Set ?

Our claim is that such a candidate should be ΣS:Set S → [0, 1]. It is also the
starting point of our journey.

143

4.3 The category of fuzzy sets

4.3.1 Measuring fuzziness

The minimum requirement we are willing to start from is that of a set with an
ordered relation, so that we compare confidence, have it increase and so on, and
a monoidal structure, so that we can enrich in, and that these interact properly.
This leads to the notion of commutative ordered monoid.

Definition 4.3.1.1 (Commutative ordered monoid). We say that M = (M, ·, 1,≤)
is a commutative ordered monoid if (M,≤) is a partial order, (M, ·, 1) is a monoid,
and for all m,n, x ∈M ,

if m ≤ n then x ·m ≤ x · n.

We say that M is

1. integral when the unit of the monoid is the top element of the order,

2. idempotent when x · x = x, for all x ∈ M.

Remark 4.3.1.2. A commutative monoid (M, ·, 1) is in fact a small thin
symmetric monoidal category.

A particular class of commutative ordered monoids is that of quantales.

Definition 4.3.1.3 (Quantale). A quantale Q = (Q, ·, 1,≤) is a complete
lattice with the structure of a commutative monoid that satisfies the following
distributive laws: for all a ∈ Q and {bi}i∈I ⊆ Q

a · (
∨
i∈I

bi) =
∨
i∈I

(a · bi) .

Often the definition of a quantale only requires the structure of a (non-
necessarily abelian) semigroup in (Q, ·), but in this work we will always consider
quantales which are commutative and with units.

Remark 4.3.1.4. A quantale supports (at least) two monoidal structures,
where one is that in Remark 4.3.1.2, and one is the cartesian one. This will
produce two monoidal structures on our category of fuzzy sets of choice, see
Proposition 4.3.2.4-2 and Proposition 4.3.2.9.

Proposition 4.3.1.5 (Characterizing quantales in complete lattices). A com-
plete lattice Q with the structure of a commutative monoid is a quantale iff it
admits an operation →: Qop × Q→ Q satisfying

a · b ≤ c iff a ≤ (b→ c)

for all a, b, c ∈ Q.

Proof. Define b→ c =
∨
{a ∈ Q : a · b ≤ c}. Suppose Q is a quantale. If a · b ≤ c,

then a ≤ b→ c, since → is the supremum. On the other hand, if a ≤ b→ c then

a · b ≤ (b→ c) · b

=
∨
{a ∈ Q : a · b ≤ c} · b

=
∨
{a · b : a · b ≤ c}

≤ c.

144

Now, suppose Q is a complete lattice satisfying a · b ≤ c iff a ≤ (b→ c) for all
a, b, c ∈ Q. Such condition means that the functor (−) · b has a right adjoint
b→ (−). So (−) · b preserves colimits. In particular, it preserves joins.

We now give some examples of M = (M, ·, 1,≤) commutative ordered monoids
that are integral and complete, most of them are integral quantales.

Example 4.3.1.6 (Commutative ordered monoids).

1. ({0, 1}, ·, 1,≤) where the product and the order are the usual, i.e., inherited
from the real numbers.

2. (O(X),∩, X,⊆) where O(X) is the set of open subsets of a topological
space X, the product is the intersection and the order is given by the
inclusion of sets.

3. ([0,∞], max , 0,≥) where the product is the maximum and we consider
the reverse order.

4. ([0,∞],+, 0,≥) where the product is the sum of non-negative real numbers
and we consider the reverse order.

5. I = ([0, 1], ·, 1,≤) where the product and the order are the usual.

6. ([0, 1], T, 1,≤) where T is a t-norm. A t-norm is a binary operator T :
[0, 1]2 → [0, 1] such that for all a, b, c ∈ [0, 1], T (a, b) = T (b, a), T (a, T (b, c)) =
T (T (a, b), c), T (a, 1) = a, and T (a, b) ≤ T (c, d), if a ≤ c and b ≤ d.

7. (I(R), ·, R,⊆) where I(R) is the set of ideals of a commutative ring R
with unit, the product is the product of ideals and the order is given by
the inclusion.

8. If M is a commutative ordered monoid and X a fixed set, then the set MX

of all functions from X to M is a commutative ordered monoid where we
the order of two functions is given by f ≤ g iff f(x) ≤ g(x),∀x ∈ X, the
product is pointwise, and the unity is the constant function whose value is
the unity of M.

9. The set △ = {f : [0,∞]→ [0, 1] : f is monotone and f(x) =
∨
y<x f(y)}

with point-wise order and product for f, g ∈ △ given by (f ⊗ g)(t) =∨
r+s≤t f(r) · g(s). See [HR13] for details.

Proposition 4.3.1.7. Let Q be a commutative integral quantale. Then we can
only have one of the two:

1. the product · is idempotent and · = ∧, Q is a frame, or

2. the product · in not idempotent.

Proof. Assume · idempotent. If we have a ≤ b and a ≤ c, then a = a · a ≤ b · c.
Conversely we have b · c ≤ b · 1 = b and, similarly, b · c ≤ c, hence both a ≤ b
and a ≤ c, meaning that we have

a ≤ b · c iff a ≤ b and a ≤ c.

145

4.3.2 Fuzzy sets

Definition 4.3.2.1 (Category of M-fuzzy sets). Call Set(M) the category having

� for objects X = (X0, | − |X) where X0 is a set and | − |X is a function
X0 →M ;

� morphisms f : X → Y are functions f : X0 → Y 0 such that

|x |X ≤ | f(x) |Y

for all x ∈ X0.

Example 4.3.2.2 (Fuzzy sets).

1. (X,χA) where X is a set and χA is the characteristic function of a subset
A of X and M = ({0, 1}, ·, 1,≤). Since every function f : X → Y satisfies
that f(A) ⊆ Y , we always have χA ≤ χf(A).

2. For M = ([0, 1], ·, 1,≤), take (X,µA) where X is a set and µA is a member-
ship function of a subset A of X that measures in which degree an element
x ∈ X is in A

µA(x) =

0, if x is not a member

µA(x) ∈ (0, 1), if x is a fuzzy member

1, if x is a full member.

3. For M = ([0,∞],+, 0,≥), consider (X, δz) where X is a pseudo-metric space
and δz(x) = δ(x, z) is the distance between x ∈ X and a fixed point z ∈ X.
Then any non-expansive map f : X → Y is an example of a morphism of
such M-sets since δX(x, z) ≥ δY (f(x), f(z)).

Remark 4.3.2.3. There are many more different choices for morphisms - hence,
categories - of fuzzy sets. See for example [Zad65, Wyl91, HWW14].

We describe a few properties of the category Set(M).

Proposition 4.3.2.4 (Properties of Set(M)).

1. Set(M) has a terminal object 11 = ({∗}, ∗ 7→ 1). Actually, the set {∗}
supports different M-set structures, for an α in M we write 1α for the pair
({∗}, ∗ 7→ α).

2. GivenX and Y objects in Set(M), their product isX×Y = (X0 × Y 0, | − |X×Y),
where | (x, y) |X×Y = |x |X ∧ | y |Y .

3. For maps f : X → Z and g : Y → Z we can compute their pullback in
Set(M) and show that it is the M-set with underlying set the pullback in
sets

(X ×Z Y)0 = {(x, y) | f(x) = g(y)}

and | (x, y) |X×ZY = |x |X ∧ | y |Y .

Remark 4.3.2.5. In Set(M):

1. monomorphisms are injective functions in Set(M),

146

2. epimorphisms are surjective functions in Set(M),

3. isomorphisms are bijective functions in Set(M); in particular, if f : X → Y
is an isomorphism in Set(M), then |x |X = | f(x) |Y .

Proposition 4.3.2.6. There is a pair of adjoint functors as below.

Set(M) Set
F

U1

⊣

Proof. The functor F maps a set S to the pair (S, const1). Conversely, U1 acts
as

X = (X0, | − |X) 7→ {x ∈ X0 s.t. |x |X = 1}.

Construction 4.3.2.7. For each α ∈M we can define a functor Uα : Set(M)→ Set

X = (X0, | − |X) 7→ {x ∈ X0 s.t. |x |X ≥ α}.

If there is an initial object 0, U0(X) = X0.

Proposition 4.3.2.8. If α ≤ β there is a natural transformation λ : Uα ⇒ Uβ .

Proof. λ is simply defined as set inclusion at each component.

Proposition 4.3.2.9. Set(M) inherits the monoidal structure from M.

Proof. Note that M has two monoidal structures: the multiplication · and the
meet ∧. Since the meet is a particular (idempotent) case of the multiplication,
we will prove the statement only for the most general operation.

Given X and Y objects in Set(M), their monoidal product is X ⊗ Y =
(X0 × Y 0, | − |X⊗Y), where | (x, y) |X⊗Y = |x |X · | y |Y .

The tensor unit is given by I = (I0, | − |I) where | i |I = 1M.
There are associators because

| ((x, y), z) |(X⊗Y)⊗Z = | (x, y) |X⊗Y · | z |Z
= |x |X · | y |Y · | z |Z
= |x |X · | (y, z) |Y⊗Z

= | ((x, (y, z)) |X⊗(Y⊗Z)

There are left unitors since

| (i, x) |I⊗X = | i |I · |x |X = 1 · |x |X = |x |X
The existence of right unitors follows analogously. The triangle identity holds

since

| ((x, i), z) |(X⊗I)⊗Z = | (x, (i, z)) |X⊗(I⊗Z)

= |x |X · | (i, z) |I⊗Z
= |x |X · 1 · | z |Z
= |x |X · | z |Z = | (x, z) |X⊗Z

The pentagon identity follows by the same reasoning.

147

Remark 4.3.2.10. Defining X⊗Y = (X0⊗Y 0, | − |X×Y), where | (x, y) |X×Y =
|x |X · | y |Y it is not monoidal cartesian. Recall that the cartesian product of two
sets is equipped with projections π1 and π2 such that for any pair of morphism
f : Z → X and g : Z → Y there is a unique morphism h : Z → X × Y such that
π1◦h = f and π2◦h = g. Moreover, know that h(z) = (f(z), g(z)), for any z ∈ Z.
However, such h may not be a morphism in Set(M). Take M = ([0, 1], ·, 1,≤),
then |h(z) |X×Y = | (f(z), g(z)) |X×Y = | f(z) |X · | g(z) |Y ≥ | z |Z · | z |Z ≤ | z |Z .

Of course, when · = ∧, then | (f(z), g(z)) |X×Y = | f(z) |X ∧ | g(z) |Y ≥
| z |Z∧| z |Z = | z |Z . This arguments works because ∧ is an idempotent operation.

It is known that Set(M) is cartesian closed category if and only if M is a
complete Heyting Algebra, see [Wyl91, Proposition 71.4]. Using an analogous
argument we now prove that Set(M) is monoidal closed if and only if M is a
quantale.

Proposition 4.3.2.11. Let M be a integral commutative ordered monoid, then
Set(M) is monoidal closed if and only if M is a quantale.

Proof. Given M-fuzzy sets Y and Z, define a M-fuzzy set ZY = ({h : Y →
Z}, | − |ZY) where |h |ZY =

∧
y∈Y

(| y |Y → |h(y) |Z).

It is clear that Set(X,ZY) ∼= Set(X × Y,Z), since Set with the cartesian
product is closed, but we want to show that Set(M)(X,ZY) ∼= Set(M)(X×Y,Z).
A morphism in Set(M)(X × Y, Z) is a function f : X × Y → Z satisfying

|x |X · | y |Y ≤ | f(x, y) |Z

for all (x, y) ∈ X × Y .
Since M is a quantale, this is equivalent to

|x |X ≤ | y |Y → | f(x, y) |Z ,

which happens if and only if

|x |X ≤ | y |Y → | f̃(x)(y) |Z ,
where f̃ is the exponentially adjoint to f in Set.
Observe that | f̃(x) |Y Z =

∧
y∈Y

(| y |Y → | f̃(x)(y) |Z). Thus, by definition of

infimum, we have a last equivalence:

|x |X ≤ | f̃(x) |Y Z

Therefore, f̃ : X → ZY is the morphism in Set(M) that testifies the desired
isomorphism.

Conversely, suppose that Set(M) is monoidal closed. Consider the M-fuzzy set
({∗},m) where {∗} denotes the singleton set and m denotes the constant function
| ∗ |{∗} = m, for each m ∈ M. We have mi ·mj ≤ mi for all mi,mj ∈ M. So we
have morphisms id∗ : ({∗},mi ·mj)→ ({∗},mi), for all i ∈ I. A diagram of such
morphisms has a colimit cone of morphisms id{∗} : ({∗},mi)→ ({∗},

∨
i∈I mi).

Set(M) is monoidal closed, so the tensor product is a left adjoint functor
and thus it has to preserve colimits. Take M-fuzzy set ({∗}, n). Observe that
({∗}, n)⊗ (−) preserves the above colimit iff n · (

∨
i∈I

mi) =
∨
i∈I

(n ·mi). Therefore,

M is a quantale.

148

We will see that we will need for Set(M) to be monoidal closed, the reason
for this is contained in the discussion in 4.1.5, hence we always assume that we
are in the hypotheses of Proposition 4.3.2.11.

4.3.3 Enriching over fuzzy sets

Let M be an integral commutative monoid which is also a quantale, and consider
its monoidal structure based on “·”. We break down Definition 4.1.2.1 and see
that a Set(M)-category C is the data of

� a collection of objects,

� for each pair of objects X,Y an C(X,Y) in Set(M), such that

� for each X there is an element idX ∈ C(X,X)0 such that

| idX |C(X,X) = 1,

� for each X,Y, Z and f ∈ C(X,Y)0, g ∈ C(Y, Z)0 there is an element
g ◦ f ∈ C(X,Z)0 such that

| f |C(X,Y) · | g |C(Y,Z) ≤ | g ◦ f |C(X,Z),

� and all the appropriate diagrams commute.

In order to make the text more readable, we might omit writing the M-set
in the valuation. We call Set(M)-Cat the category of Set(M)-categories and
Set(M)-functors.

4.4 Substitution in the enriched setting

As we have extensively seen in Chapter 3, and will see again in Section 4.5.1 and
Section 4.5.2, the categorical tool describing substitution is that of pullback in a
category. But now that we are moving in a fuzzy setting, it might be the case
that the regular definition of pullback is not the one we are really interested in.

Informally, the universal property of the pullback in a regular set-based
category states that, provided a cospan A→ C ← B, there are three maps from
the same object, one into A, one into B, and one into C such that the triangles
they form commute, and they are universal with respect to this property. Now
that we are in a setting where maps come equipped with certain values, what do
we do with them? How do we formally ask that such maps into A, B, C have
precise values? Can we? What universal property do they need to have? In
order to answer these questions precisely, we use the notion of weighted pullback,
specialize it to the enriched setting, and - considering the logic we want to
interpret - describe what we need. Weighted pullbacks are a specialization of
weighted limits, so we begin with them.

Recall from Definition 4.1.6.1 that we can express limits as ends, so with 4.1
in mind we want to extend it all to the enriched setting.

Definition 4.4.0.1. (Weighted limits) Let V be a closed symmetric monoidal
category and consider two V-enriched categories C and D. Then the weighted

149

limit of the diagram D : D → C with weights W : D → V is the object limW D
in C given by the following universal property:

C(H,
W

limD) ∼=
∫
D

[W−, C(H,D−)]

for all objects H in C. Here [·, ·] represents the internal hom in V.

The weight functor can be thought of as prescribing the weight of an arrow
to each of the objects in the diagram. We are interested in the case where V is
the category of fuzzy sets, and D is a cospan diagram, but in order to compute
the functor C(X,D−) we first need to make a little technical observation.

Remark 4.4.0.2 (Postcomposition in an enriched category). Computing the
wedge described in Definition 4.4.0.1 requires us to be very careful: in the
classical, set-based context, for each map f : A → B in a category C one can
define for each object H in C a function

C(H,A)→ C(H,B), g 7→ f ◦ g (4.2)

between the hom-sets. This in turn allows us to define for any X in C the map

[X, C(H,A)]→ [X, C(H,B)],

which is the one that is required by the definition of the wedge in 4.4.0.1. This is
not always the case in a V-enriched category, because the map described in 4.2,
while being a morphism in Set, might not be a morphism in V - in fact V might
not even be concrete. What we can do is unfold the behavior underlying 4.2 using
the monoidal structure, because that is the structure producing composition: in
fact, what one can do is compute the following

C(H,A)⊗ I → C(H,A)⊗ C(A,B)→ C(H,B),

in which the first maps picks out f in C(A,B) and the second computes composi-
tion. We only consider the case we are interested in, meaning when V = Set(M).
In order for this to work, though, we cannot have I = 11, meaning the singleton
with constant value 1 - or we would only be allowed to catch those fs that have
value 1 - but 1| f | , so that

| g |C(H,A) · | ∗ |1| f | ≤ | g |C(H,A) · | f |C(A,B) ≤ | f ◦ g |C(H,B).

This will change the nodes in the wedge we compute for the weighted pullback.

Construction 4.4.0.3 (Weighted pullbacks in categories enriched in fuzzy
sets). Let C a Set(M)-enriched category. We are only concerned with studying
pullbacks, so we pick D to be the cospan 0→ 2← 1.

0 A

1 2 B C

1wA

1wB 1wC

f

g
D

W

150

Our aim is to mimic pullbacks in an enriched category, so while D does what
it usually does in Set-enriched categories, we pick the weights to be singletons
with constant value possibly less than 1:

� singletons because to each vertex A,B,C we want to get one arrow,

� with value possibly less than 1 because if it was only 1 we would recover
only maps with value 1 and thus lose all the fuzzy-ness of substitution.

Notice that our choice requires wA ≤ wC and wB ≤ wC because the weights
diagrams need to live in Set(M).

Now say | f | = α and | g | = β, then by Definition 4.4.0.1 for any H in C we
have that C(H, limW D) is isomorphic to the limit below.

∫
D[W−, C(H,D−)]

[1wA , C(H,A)] [1wC , C(H,C)] [1wB , C(H,B)]

[1wA·α, C(H,C)] [1wB ·β , C(H,C)]

(4.3)
Let us first of all comment the mixed term [1wA·α, C(H,C)]: this is precisely an
instance of Remark 4.4.0.2 because 1wA·α ∼= 1wA ⊗ 1α. An M-set of the form

[1w, C(H,X)]

is the set of underlying functions x : (1w)0 = {∗} → C(H,X)0 with valuation

|x |[1w,C(H,X)] =
∧

y∈(1w)0

| y |1w → |x(y) |C(H,X) = w → |x(∗) |C(H,X),

so that it basically picks up M-set morphisms x : H → X and it assigns them a
new value depending on both their original one and on w.

Let us show that both

1. [1wA , C(H,A)]→ [1wA·α, C(H,C)], and

2. [1wC , C(H,C)]→ [1wA·α, C(H,C)]

are well defined. Clearly 2 acts as a sort of inclusion, because provided a map c
in C(H,C)0 we have

wC → | c | ≤ wA · α→ | c |

if wC ≥ wA ·α, but this is true because wC ≥ wA ≥ wA ·α. As for 1, we want to
perform postcomposition: to a map a ∈ C(H,A)0 we want to assign f ◦ a, which
produces a morphism in Set(M) if

wA → | a | ≤ wA · α→ | f ◦ a |

but by definition of composition in C we have

| f | · | a | ≤ | f ◦ a | or, equivalently, | a | ≤ | f | → | f ◦ a | = α→ | f ◦ a |

hence
wA → | a | ≤ wA → (α→ | f ◦ a |) = wA · α→ | f ◦ a |

151

by currying, yielding the desired result.
Now, one can show that the desired limit can be computed by (two) iterated

pullbacks in Set(M), which we know how to compute from Proposition 4.3.2.4,
3. It follows that

∫
D[W−, C(H,D−)] has underlying set

{(a, c, b) | f ◦ a = c = g ◦ b} ⊆ C(H,A)0 × C(H,C)0 × C(H,B)0

and valuation | (a, c, b) | = wA → | a | ∧ wC → | c | ∧ wB → | b |.
In particular, we can use this to describe the universal maps by checking

what happens to the image of idlimW D through

C(
W

limD,
W

limD) ∼=
∫
D

[W−, C(
W

limD,D−)] .

Remember that the identity has value 1, hence maps a, c, b from limW D to,
respectively, A,C,B must satisfy

1 ≤ | (a, c, b) | = wA → | a | ∧ wC → | c | ∧ wB → | b |

so that wA → | a | = 1, hence wA ≤ | a |, and so on for each term.

Following the discussion above, we make a first choice for the weights: we
chose wA, wB to be as informative as possible, and wC = 1 so that the square
commutes with certainty 1.

Definition 4.4.0.4 (Having weighted pullbacks). A Set(M)-category has weighted
pullbacks if for each cospan (f, g) it has (1| f | , 11, 1| g |)-weighted pullbacks.

Remark 4.4.0.5. If C has weighted pullbacks, then for each f, g

H

A×C B A

B C
| g |=β

| f |=α≥α
≥β

b

a
u

and a, b such that f ◦ a = g ◦ b there is a unique u : H → A ×C B with value
|u | = β → | a | ∧ α→ | b |.

Finally, we show that weighted pullbacks compose appropriately.

Lemma 4.4.0.6 (Pullback pasting lemma). Consider a commutative diagram
in Set(M)-enriched category C as follows

F E D

A B C

f ′ g′

h′′ h′ |h |=β

| f |=γ | g |=α

such that |h′ | ≤ |h′′ |. If the right square is a weighted pullback, then:

152

� the outer rectangle is a weighted pullback if the left square is a weighted
pullback;

� the left square is a weighted pullback if the outer rectangle is a weighted
pullback.

Proof. Suppose the left square is a pullback. Let H in C with maps a and d
such that g ◦ f ◦ a = h ◦ d. Then we have f ◦ a and d insisting on the cospan
(g, h). Since the right square is a pullback we have a unique u : H → E

H

F E D

A B C

f ′ g′

h′′ h′ |h |=β

| f |=γ | g |=α

a

d

u
v

which in turn induces a unique v : H → F with value

| v | = γ → |u | ∧ |h′ | → | a |
= γ → (α→ | d | ∧ β → | a |) ∧ |h′ | → | a |
≥ γ → (α→ | d |) ∧ γ → (β → | a |) ∧ |h′ | → | a |
= γ · α→ | d | ∧ γ · β → | a | ∧ |h′ | → | a |
≥ | gf | → | d | ∧ β → | a |

because | gf | ≥ γ · α, |h′ | = β ≥ γ · β.
Conversely, we wish to show that if the outer rectangle is weighted pullback,

then the left square is, too. Consider a pair a, e as below,

H

F E D

A B C

f ′ g′

h′′ h′ |h |=β

| f |=γ | g |=α

a

e

v

then by the universal propery of the rectangle we have a unique v : H → F with
value

| v | = | gf | → | g′e | ∧ β → | a |,
which we wish to show to be an appropriate universal map for the left square:
commutativity is trivial, so we only need to show that it has the appropriate
value. Given that the right square is a pullback, we trivially have

| e | = α→ | g′e | ∧ β → |h′e |,
therefore

γ → | e | ∧ β → | a | = γ → (α→ | g′e | ∧ β → |h′e |) ∧ β → | a |
≥ γ → (α→ | g′e |) ∧ γ → (β → |h′e |) ∧ β → | a |
= γ · α→ | g′e | ∧ γ · β → |h′e | ∧ β → | a |
≥ | fg | → | g′e | ∧ γ · β → |h′e | ∧ β → | a |
= | fg | → | g′e | ∧ β → | a |

153

because β ≤ |h′′ | by hypothesis, so that

γ · β → | fa | ≥ γ · |h′′ | → | fa | ≥ | fh′′ | → | fa | = |h′f ′ | → |h′e |.

4.5 From syntax to semantics and back

We can now finally describe the necessary categorical structure needed in order
to interpret fuzzy dependent types. We refer to Section 3.1 for a review of all the
elements needed, and to Section 3.3.6 for a comparison with alternative models.

4.5.1 Reading type theory into a category

Definition 4.5.1.1 (Display-map category [Tay99, HP87]). A display-map
category is a pair (C,D) with C a category and D = {pA : Γ.A→ Γ} a class of
morphisms in C called displays or projections such that:

1. for each pA : Γ.A→ Γ in D and s : ∆→ Γ in C, there exists a choice of a
pullback of pA along s and it is again in D,

∆.A[s] Γ.A

∆ Γ

pA

s

pA[s]

s

2. D is closed under pre and post-composition with isomorphisms;

3. C has a terminal object 1.

As in Chapter 3, we have used a suggestive notation to describe all of the
elements introduced in Definition 4.5.1.1 - and we will readily explain it - but
the reader should not forget that it is nothing more than that: notation. When
it comes to it, a display-map category is a category with essentially a choice of a
class of maps such that it is closed under pullback along maps in the category.

Now to the interpretation. If pA is a projection, we write Γ and Γ.A for its
codomain and domain, respectively, and this because we think of projections as
types, and of objects of C as contexts: given a type pA (or, simply, A), we can
always recover both its context and the one obtained extending it with A itself.

Pullback is meant to represent substitution of a type A along any morphism
of contexts s, and we denote the resulting type with A[s]. Asking for a choice
of pullback allows for coherence issues to be dealt with, while 1 is the empty
context. In this setting, terms of a given type A are represented by sections of
pA. See Theorem 3.3.7.1 for why this is a reasonable assumption.

4.5.2 Reading fuzzy type theory into a category

Definition 4.5.2.1 (Fuzzy display-map category). A fuzzy display-map category
is a pair (C,D) with C a Set(M)-category and D = {pA : Γ.A → Γ} a class of
morphisms in C called fuzzy displays or fuzzy projections such that:

154

1. for each pA : Γ.A→ Γ in D and s : ∆→ Γ in C, there exists a choice of a
weighted pullback (in the sense of Definition 4.4.0.4) of pA along s and its
underlying map is again in D,

∆.A[s] Γ.A

∆ Γ

pA

s

pA[s]

s

2. D is closed under pre and post-composition with isomorphisms;

3. C has a terminal object 1;

4. for all A, | pA |C(Γ.A,Γ) = 1.

Again, we think of objects in C as contexts, projections as types, (weighted)
pullback as substitution, 1 as the empty context. Notice that we additionally
ask for projections to always have the maximum possible value, so that types
themselves are not fuzzy.

Remark 4.5.2.2. Our types are not fuzzy. One could easily change that by
removing 4. See Section 4.7.3 for further discussion on this.

We now want to look at sections of projections, and say that they describe
terms in our new setting. We need to be able to fully exploit our enrichment,
and have sections come equipped with a given M-value, which we interpret to be
the desired “extent” discussed in Section 4.2. This is the motivation behind the
following definition. Recall 4.3.2.7 for the subtleties in the notation below.

Definition 4.5.2.3. (α-sections) Let pA a projection. An α-section of pA is a
morphism s in C(Γ,Γ.A) such that

� pA ◦ s = id, and

� | s | ≥ α.
Γ Γ.A Γs pA

This means that we can finally describe our interpretation to its full extent:
we understand objects of C as contexts, projections as types, terms (of confidence
at least α) as (α-)sections. If s is a term of type A in context Γ with confidence
α we write

Γ ⊢ s :α A.

Classical judgements involving types are written in the usual manner. Notice
that variables which are written in contexts only do not possess a confidence of
their own.

Remark 4.5.2.4 (Confidence is preserved). For all β ≤ α, the following holds.

Γ ⊢ s :α A

Γ ⊢ s :β A

While in Section 4.2 we have discussed the classical version of the propositions-
as-types interpretation, now that we have both fuzziness and our technical machin-
ery, it is worth spending a few words on how they shape such an interpretation.

Perhaps it is most useful considering it in its Curry-Howard form: this is
where we were at.

155

proofs programs (terms) motivations
formula specification of progr. (type) belief

Now, on top of this, we have a categorical model for executions and programs,
so that our correspondence looks like the following.

proofs programs (terms) motivations sections
formula specification of progr. (type) belief projection

4.6 Rules for fuzzy type theory

Now that we have all the basic elements of our theory, we need to express what
we can do with them. This section of the chapter flirts with moving swiftly
between the logical side of things and the categorical one, so we better spend
some time explaining each, and how the two are related.

Type theory as described in [Hof97] is a logical system in which one gives
an account of judgements pertaining terms and types in context. Out of these
basic blocks, one builds up a system imposing rules that dictate the behaviour
of all of these different pieces together: for example, out of a type in context,
one can produce a new context “pasting” the type to its context. Each rule has
a label that is meant to be descriptive of its meaning, for example the rule we
just described is usually denoted (C-Ext) for context extension.

On its categorical side, the rules represent operations one can perform in
the category, given the axioms one starts from, so that they are usually built in
the original definition of the categorical structure one chooses. In the case of
context extension, for example, the action of computing the context obtained
by extending a context with a type amounts to computing the domain of the
corresponding projection. If this sounds tautological at all, it is because the
categorical structure one considers is meant to precisely mimic the logic. When
our effort is successful, we say that the structure verifies the rules.

Remark 4.6.0.1 (Our strategy). Here, we sort of work the other way round: we
have defined a structure that is directly built on top of the “regular” definition,
now we repeat the same constructions, and read into the category the correct
formulation of the rules. Nonetheless, Theorem 4.6.0.2 and Theorem 4.6.0.4 are
expressed in the traditional form. Each is followed by a detailed explanation of
the rules from the point of view of the logic.

Theorem 4.6.0.2. (Soundness I) Let (C,D) a fuzzy display-map category. Then
it verifies the following rules for fuzzy type theory.

⊢ ⋄ ctx
(C-Emp)

Γ ⊢ A Type

⊢ Γ, x : A ctx
(C-Ext)

⊢ Γ, x : A,∆ ctx

Γ, x : A,∆ ⊢ x :1 A
(Var)

Proof. We interpret contexts to objects in C, types to fuzzy projections. To
compute the context of a type one needs to read the codomain of the associated
projection. Terms with confidence α are α-sections.

The terminal object in C provides the empty context. Given a type A in
context Γ, hence a projection

pA : • → Γ

156

we define the extended context of Γ with A as dom(pA). (In fact we have been
writing this as “Γ.A” this entire time.)

We only prove the variable rule in the case that ∆ = y : B a single type, as
it will be clear that the general case can be proved in an entirely similar way.
Since Γ, x : A, y : B is a context we have that:

� Γ is a context;

� A is a type in context Γ, hence there is a projection pA : Γ.A→ Γ;

� B is a type in context Γ, x : A, hence there is a projection pB : (Γ.A).B → Γ.A.

Therefore we can consider the following weighted pullback.

(Γ.A).B

((Γ.A).B).A[pA ◦ pB] Γ.A

(Γ.A).B ΓpA◦pB

pA
id

pB

x

By hypothesis 1 on fuzzy display-map categories, there is a functorial choice
of a type A[pA ◦ pB] making the square a weighted pullback, with all weights
1. Moreover, there is a unique x′ and its value is (1→ 1) ∧ (1→ 1) = 1. This
concludes our proof, see Remark 4.6.0.3 for a discussion on why is that so.

Let us now more carefully describe the meaning of each of the rules above.

(C-Emp) There is at least one context, that is the empty one.

(C-Ext) When one has a type in context, it is always possible to extend the initial
context with the type. In other logical systems, this would be called an
“assumption rule”.

(Var) The Variable rule tells us that whenever we assume an x : A, we can
always provide an x in A with confidence 1. It describes a tautology, but
it also provides us with a way of extracting out of a given type terms with
confidence 1, namely the trivial ones.

Remark 4.6.0.3 (Is A[pA ◦ pB] equal to A?). [Hof97], which we follow for
classical rules of type theory, and many others write the variable rule as in
Theorem 4.6.0.2. The main problem with doing so arises in our proof above and
is somewhat philosophical: the same type cannot have two different contexts,
as it seems to be the case in (Var). In fact, it seems that A is supposed to
be both in context Γ and in context Γ, x : A, y : B. Same goes for x. What
actually happens is that we substitute A with its correspondent A[pA ◦ pB] in
the extended context, without adding any essentially new information but the
new context, and, similarly, if we can pick out a variable x of type A, there is a
way for us to pick out a term in this new type A[pA ◦ pB], that is x′, which is
that adding precisely no information. This is also the cause of the confusion of
x having no confidence itself and suddenly having it be 1.

157

Mind that this is in no part due to our working with fuzzy terms, and is in
fact a feature of much of the literature on types and their categorical models, we
just point it out because we need to be particularly careful when dealing with this
extra level of complexity. Still, so that we are not too pedantic, we try to stick to
the classical notation as much as possible, and write A for A[composition of p’s].

Notice that we had a similar discussion for natural deduction calculus in
Section 2.4.

Theorem 4.6.0.4. (Soundness II) Let (C,D) a fuzzy display-map category.
Then it verifies the following rules for fuzzy type theory.

Γ,∆ ⊢ B Type Γ ⊢ A Type

Γ, x : A,∆ ⊢ B Type
(Weakty)

Γ,∆ ⊢ b :β B Γ ⊢ A Type

Γ, x : A,∆ ⊢ b :β B
(Weaktm)

Γ, x : A,∆ ⊢ B Type Γ ⊢ a :α A

Γ,∆[a/x] ⊢ B[a/x] Type
(Substty)

Γ, x : A,∆ ⊢ b :β B Γ ⊢ a :α A

Γ,∆[a/x] ⊢ b[a/x] :β B[a/x]
(Substtm)

Proof. We begin with Substitution: unwinding it for types and terms relies
heavily on (1) in Definition 4.5.2.1. The type B in context Γ, A,∆ amounts to
a display map pB : Γ.A.∆.B → Γ.A.∆ built up iteratively, while a is a section
of pA. We compute the iterated pullback below, and obtain first p∆[a], then
pB[a]. One can see that it all type-checks. As for terms we additionally have a b
section of the aftermentioned pB . The universal property of weighted pullbacks
guarantees that we have a section of pB [a]. We call this b[a].

Γ.∆[a] Γ.∆[a].B[a] Γ.A.∆.B

Γ.∆[a] Γ.A.∆

Γ Γ.A

Γ

γ2≥γ1

|b|≥β

a

|a|≥α

⌟

⌟

b[a]

ζ≥γ2·β

| id |=1

γ1≥α

We can easily estimate a lower bound for the confidence of b[a]:

| b[a] | = γ2 → ζ ∧ 1→ 1 ≥ γ2 → (γ2 · β) ≥ β,

which concludes our proof.
Weakening works in a similar way, but in some sense in the opposite direction.

We leave the diagram below to be interpreted by the reader.

Γ.A.∆ Γ.A.∆.B Γ.∆.B

Γ.A.∆ Γ.∆

Γ.A Γ

⌟

⌟ | b |=β
| id |=1

ζ≥1·β

b

158

Recall the discussion in Remark 4.6.0.3 for how we might denote types and their
correspondent in an extended context.

Again, we describe the meaning of the rules above.

(Weak) The rules describing Weakening tell us that if one can have a type or a
term in a given context (b, B in context Γ,∆), it is always possible to
express it in a context having more assumptions (Γ, A,∆), provided that
that is coherent (A is in context Γ). Moreover, the confidence of terms is
preserved.

(Subst) The rules describing Substitution explain how substituting a given term a
in a type or term (B or b) in a suitable context (depending on the type of
a) provides a new type or term. Once more, confindence is preserved, but
one should remember that, though it is not apparent, the α-confidence of
the term one is substituting still weighs on the result of the rule. See the
following Example 4.6.0.5 for further discussion on it.

Example 4.6.0.5 (Confidence on types). One might be tempted to compose
the two constructions in Theorem 4.6.0.4. We do it in a simple case: consider a
term ⋄ ⊢ a :α A and compute the following diagram.

1 1.A

1.A[pA][a] (1.A).A[pA] 1.A

1 1.A 1pA

pApA[pA]

a

x
id

a

⌟⌟
id

x[a]

id

As it was discussed in Theorem 4.6.0.2, |x | = 1, and by hypothesis | a | = α
therefore |x[a] | = (α→ α) ∧ (1→ 1) = 1 itself. We have proved the following
rule,

⋄ ⊢ a :α A

⋄ ⊢ x[a] :1 A[a]
(4.4)

which looks strange at first, because it seems to guarantee that out of any
term of any confidence we can build up a term of confidence 1. The key to
understanding this apparent incongruence, again, stems from the substitution
axiom (1), because the type A and the type A[a] (or, more precisely, A[pA][a],
since A[a] itself is not well-typed) are not the same. In fact, A[pA][a] is obtained
first by extending the context of A with a “copy” of A itself, meaning (x : A),
and then substituting a for x. We can interpret it as follows:

if I can prove A by a with confidence α,
then I can prove “I can prove A by a with confidence α” with confidence 1.

Such an example should warn us against foregoing writing substitutions explicitly
in all cases but along projections.

159

4.7 On definitional equality

We have yet to discuss definitional equality, and depending on your perspective
this is the point where categories for type theories either become incredibly
convincing, or fail. Per Martin-Löf writes:

Definitional equality is intensional equality, or equality of meaning
(synonymy). [...] Definitional equality ≡ is a relation between lin-
guistic expressions; it should not be confused with equality between
objects (sets, elements of a set etc.), [...] [it] is the equivalence relation
generated by abbreviatory definitions, changes of bound variables
and the principle of substituting equals for equals. Therefore it is
decidable, but not in the sense that a ≡ b ∨ ¬(a ≡ b) holds, simply
because a ≡ b is not a proposition in the sense of the present theory.
[MS84, Definitional equality]

From this we gather that:

1. it should be an equivalence relation, hence

2. for each pair of things in the same class, there should be (at least) one
process turning one into the other;

3. it should be part of the theory, and, as such,

4. it should be decidable.

In fact, when one builds a category out of a given type theory, to avoid any
confusion one turns to equivalence classes.

Example 4.7.0.1 (Syntactic model). Recall from Example 3.3.6.5 that we
can build C the category having for objects (α-)equivalence classes of contexts,
denoted [Γ] = x1 : A1, . . . , xn : An, [Θ] = y1 : B1, . . . , ym : Bm and so on, and
such that a morphism

t : [Θ]→ [Γ] is (equivalence classes of) terms [t1], . . . , [tn]

such that Θ ⊢ ti : Ai[t1/y1, . . . , ti−1/yi−1] for each i = 1 : n. One can define
projections

pA : [Γ, x : A]→ [Γ]

and these can be collected into a display-map category.

This has the effect of collapsing definitional equality to identity in the category,
which is itself a metatheoretical notion, and a very elusive one. But we wish to
regard categories as a logical tool, more than merely a model, then we argue
that the right notion to consider is that of isomorphism of objects. In fact:

1. it is an equivalence relation, and

2. it says that for each pair of things in the same class, there is (at least)
one process turning one into the other, namely (one of) the morphism(s)
involved;

3. if categories are our theory, it is in fact part of the theory, and

160

4. in that it is decidable.

It should be noticed that, in general, in the context of enriched category
theory it is not immediate to choose what an isomorphism should be: a priori, in
fact, we cannot pick elements in the hom object, hence we cannot say something
like a map f such that there is a map g.... Here we enrich with a concrete
category, namely Set(M), so perhaps using its relation to Set might be helpful,
but there are still two reasonable choices:

� consider isomorphisms those f ∈ C(A,B)0 such that there is a g ∈ C(B,A)0

such that gf = id, fg = id, or

� consider isomorphisms those elements f of C(A,B), meaning I → C(A,B)
such that there is a an element g : I → C(B,A) such that gf = id, fg = id,
so that all isomorphisms are of value 1.

This brings us to three possible solutions to the problem of interpreting defini-
tional equality. We analyze them in detail, then compare them.

4.7.1 Certain equality

We might decide to say that two contexts are equal if they are isomorphic with
value 1 in the category, meaning that there are inverse maps, each with value
one, between them. Then two types in context Γ are equal if they are isomorphic
with value 1 in the slice over Γ, two terms are equal if they are isomorphic with
value 1 in the co-slice over Γ.

We can interpret this as saying that we only identify objects that we are sure
to be equal with confidence 1. This works well, to a certain extent.

Proposition 4.7.1.1 (Soundness III). Let (C,D) a fuzzy display-map category.
Then it verifies the following rules for fuzzy type theory,

⊢ Γ ≡ ∆ Γ ⊢ A ≡ B (C-Ext-Eq)⊢ Γ.A ≡ ∆.B

⊢ Γ ≡ ∆ Γ ⊢ B (Ty-Conv)
∆ ⊢ B

in addition to (C-R), (C-S), (C-T), (Ty-R), (Ty-S), (Ty-T), meaning those
expressing reflexivity, symmetry, and transitivity of ≡ for contexts and types.

Proof. Proof of rules (C-R), (C-S), (C-T), (Ty-R), (Ty-S), (Ty-T) is trivial. Now
recall that a type in context Γ ⊢ A is identified by a projection pA : Γ.A→ Γ.
As in Theorem 4.6.0.2, we omit writing their domains to avoid misleading
interpretations.

Consider the following diagram portraying the premises of (C-Ext-Eq),

• •

Γ ∆

pA

∼

pB

∼

p′B

then ∆ ⊢ B is portrayed by the induced projection p′B , which is a display by 2
in Definition 4.5.2.1. In particular, such a composition proves (Ty-Conv). The
top isomorphism proves Γ.A ≡ ∆.B.

161

Remark 4.7.1.2 (The issue with typing). We would also wish to interpret the
following rule,

Γ ⊢ a :α A ⊢ Γ ≡ ∆ Γ ⊢ A ≡ B
(Tm-Conv)

∆ ⊢ a :α B

which does have some sort of match in our category: consider the diagram

Γ ∆

• •

Γ ∆

pA

∼

pB

∼

p′B

a

∼

a′

σ

σ+

σ

where a′ = σ+aσ−1. This produces a section of p′B because

p′Ba
′ = σpBσ

+aσ−1 = σpAaσ
−1 = id,

and | a′ | ≥ |σ+ | · | a | · |σ−1 | = | a |.
Hence there is a term of the necessary type, but that is not precisely a, it is

only isomorphic to it. It if was allowed, we would write something like

Γ ⊢ a :α A ⊢ Γ ≡ ∆ Γ ⊢ A ≡ B
(Tm-Conv′)

a ≡ a′ ∆ ⊢ a′ :α B

but judgement of mixed context, such as a ≡ a′ would be, are not allowed in our
system. Of course something of this kind could be expressed in the language of
judgemental theories Chapter 2, instead.

4.7.2 Skeletons

Our proposed solution matches the approach in Example 4.7.0.1 and the cat-
egorical tool “hiding” (such) isomorphisms is that of skeleton. We adjust the
classical definition to the enriched context to only include isomorphisms of value
1.

Definition 4.7.2.1 (Integral skeleton). Let C a Set(M)-enriched category. Its
integral skeleton sk(C) is a full Set(M)-subcategory of C where

� the inclusion I : sk(C) ↪→ C is integrally essentially surjective, meaning that
for any A in C there is an X such that IX is iso to A with value 1, and

� sk(C) is integrally skeletal, meaning that no two distinct object in sk(C)
are isomorphic with value 1.

Remark 4.7.2.2 (On the existence of the integral skeleton). If we assume a
form of choice for classes, then every Set(M)-category has a skeleton. Such
a hypothesis can be definitely weakened, for example to choice for sets and
small Set(M)-categories, or to even finer settings. We refer to the literature on
skeletons in classical category theory (see for example [AHS90]) for a deeper
treatment of the problem.

Proposition 4.7.2.3 (Properties of the integral skeleton).

162

1. Any two integral skeletons of a given Set(M)-category are isomorphic.

2. Any integral skeleton of a given C is equivalent to C.

Proof. As for 1, let sk(C) and sk(C)′ be two skeletons of C. Since they are both
integrally essentially surjective in C, by transitivity each X in sk(C) is iso with
value 1 to an X ′ in sk(C)′, say by an fX in C. We can define a Set(M)-functor
F : sk(C)→ sk(C)′ mapping X to X ′ and on maps

F (h : X → Y) = fY ◦ h ◦ f−1
X .

It is a Set(M)-functor because | fY ◦ h ◦ f−1
X | ≥ |h | for all h.

As for 2, the inclusion is a Set(M)-equivalence with inverse the Set(M)-functor
sending each A to its corresponding X. This is a functor because we only consider
isos with value 1.

Lemma 4.7.2.4 (Skeleton preserves display maps). Let (C,D) a fuzzy display-
map category. Call sk(D) the restriction of D to sk(C). Then (sk(C), sk(D)) is a
fuzzy display-map category.

Proof. Trivial.

Corollary 4.7.2.5. It follows that (sk(C), sk(D)) satisfies rules in Theorem 4.6.0.2
and in Theorem 4.6.0.2.

Definition 4.7.2.6 (Skeletal fuzzy display-map category). A skeletal fuzzy
display-map category is a fuzzy display-map category (C,D) where C is integrally
skeletal.

We finally show that all rules for definitional equality are valid in a skeletal
fuzzy display-map category. We omit mentioning those expressing reflexivity,
symmetry, and transitivity of ≡ for contexts, types, and terms, as their validity
is trivial.

Proposition 4.7.2.7 (Soundness IIIb). Let (C,D) be a skeletal fuzzy display-
map category. Then it verifies the following rules for fuzzy type theory,

⊢ Γ ≡ ∆ Γ ⊢ A ≡ B (C-Ext-Eq)⊢ Γ.A ≡ ∆.B

⊢ Γ ≡ ∆ Γ ⊢ B (Ty-Conv)
∆ ⊢ B

Γ ⊢ a :α A ⊢ Γ ≡ ∆ Γ ⊢ A ≡ B
(Tm-Conv)

∆ ⊢ a :α B

in addition to (C-R), (C-S), (C-T), (Ty-R), (Ty-S), (Ty-T), (Tm-R), (Tm-S),
(Tm-T) meaning those expressing reflexivity, symmetry, and transitivity of ≡
for contexts, types, and terms.

Proof. Everything but terms work as in Proposition 4.7.1.1. Reflexivity, symme-
try, and transitivity are here trivial. As for (Tm-Conv), consider the discussion
in Remark 4.7.1.2.

The problem with skeletons is that they seem to overlook many differences,
and they are generally frowned upon. In this case it might not be as bad, since
we are only picking isomorphism of the top-most value, but if we look at what
happens with sets, namely when M = {1}, it becomes problematic again.

163

4.7.3 Fuzzy equality

So we turn to the second possibility, namely that of isomorphisms of all possible
values in M, and have definitional equality be fuzzy as well.

Γ ≡α·α′ ∆ iff Γ ∆
|σ |=α

|σ−1 |=α′

When looking back at the diagram in Remark 4.7.1.2,

Γ ∆

• •

Γ ∆

pA

∼

pB

∼

p′B

a

∼

a′

|σ |=α

|σ+ |=α+

|σ |=α

one quickly sees that now we need to allow for fuzzy types too, because the new
presentation for B would produce

| p′B | = |σ | · | pB | ≥ α.

We believe this to be very promising and in fact a strong argument in favor
of fuzzy types. We claim that dropping 4 in Definition 4.5.2.1 produces the
following rules for fully fuzzy dependent types. In light of this new choice, we
move the values measuring confidence, meaning we write

Γ ⊢α A iff | pA | ≥ α
Γ ⊢α a :α′ A iff | pA | ≥ α, | a | ≥ α′, pAa = id

Nevertheless, we leave this for a later time.

4.7.4 The trivial option

Finally, we could simply consider identity of objects and commutativity of
appropriate triangles, and produce something very similar to Section 4.7.1. In
this case, Remark 4.7.1.2 is immediately resolved. With this interpretation of
definitional equality, we have the following.

Theorem 4.7.4.1 (Soundness). Let (C,D) be a fuzzy display-map category,
then it satisfies the following axioms for fuzzy type theory.

⊢ Γ ≡ ∆ Γ ⊢ A ≡ B (C-Ext-Eq)⊢ Γ.A ≡ ∆.B

⊢ Γ ≡ ∆ Γ ⊢ B (Ty-Conv)
∆ ⊢ B

Γ ⊢ a :α A ⊢ Γ ≡ ∆ Γ ⊢ A ≡ B
(Tm-Conv)

∆ ⊢ a :α B

164

⊢ ⋄ ctx
(C-Emp)

Γ ⊢ A Type

⊢ Γ, x : A ctx
(C-Ext)

⊢ Γ, x : A,∆ ctx

Γ, x : A,∆ ⊢ x :1 A
(Var)

Γ,∆ ⊢ B Type Γ ⊢ A Type

Γ, x : A,∆ ⊢ B Type
(Weakty)

Γ,∆ ⊢ b :β B Γ ⊢ A Type

Γ, x : A,∆ ⊢ b :β B
(Weaktm)

Γ, x : A,∆ ⊢ B Type Γ ⊢ a :α A

Γ,∆[a/x] ⊢ B[a/x] Type
(Substty)

Γ, x : A,∆ ⊢ b :β B Γ ⊢ a :α A

Γ,∆[a/x] ⊢ b[a/x] :β B[a/x]
(Substtm)

Proof. It follows from Theorem 4.6.0.2, Theorem 4.6.0.4, Proposition 4.7.1.1,
Remark 4.7.1.2.

We have shied away from this option up to this point because identity of
objects is in and of itself quite a delicate matter in foundations of category theory,
see for example [Bén85]. But if we start from an enriched setting, most problems
are avoided by the existence of the identity picking functor idΓ : I → C(Γ,Γ).

4.7.5 In conclusion

Before we take stock of this whole discussion, we care to explain why we have
saved the discussion on definitional equality for last. The reasons are at least
two:

� it is closely related to both the foundations and the metatheory one operates
in, and as such it is the one that most requires understanding how the
inner theory works;

� we believe that the fact that the informative content of equality can be in
our theory modulated to different levels of confidence, depending on the
interpretation of opinions one is most comfortable working with, is not
detrimental but an interesting feature of our proposed structure.

Our discussions in Section 4.7.1 and Section 4.7.4 can be pointed at to be
perhaps the most “natural” ones, though the first suggests a little flaw in the
interpretation; that in Section 4.7.3 paves the way to an interesting extension of
our theory, and one we have all tools for; Section 4.7.2 just makes it work. Of
course many more drastic choices could have been made, for example considering
double categories or enriching over sets not only with fuzzy membership, but
with fuzzy equality, as well. We leave this development to future works.

4.8 Future developments

Many questions remain open in Section 4.7, in the future we hope to explore and
compare all possible choices for definitional equality, and we are in particular
very excited to write fuzzy judgements such as those in 4.7.3. Moreover, now
that the structural rules are well established, the next step would be to read
type constructors and connectives in our theory.

Of course a different, but equivalent, approach would be considering enriched
fibrations as in [Vas18], and rephrase our structure in term of judgemental
theories, in a way much similar to 2.3.

165

Another interesting comparison to do would be that of our fuzzy type theory
with quantitative type theory as in [Atk18]: though different in spirit, since it
aims to model resource usage instead of confidence, hence taking value in a non-
ordered structure, it has many connections to ours and its algebraic perspective
could be quite interesting to import.

Finally, we want to recall that the very motivation of this project is modeling
opinions and in particular opinion dynamics, so that we soon hope to use this to
extend cellular sheaves as in [GH20] to the fuzzy context.

Acknowledgements

The content of Chapter 2 is based on a joint work with Ivan Di Liberti and
a version of it has appeared as [CD22]. The author is especially grateful to
Nathanael Arkor, Jacopo Emmenegger and Francesco Dagnino for their comments
and for their guidance through the literature. Moreover, the author is indebted to
Pino Rosolini, Milly Maietti and Mike Shulman for greatly inspiring discussions.

The content of Chapter 3 is based on a joint work with Jacopo Emmenegger.
The author is deeply grateful to Francesco Dagnino for suggesting subtyping in
the setting of judgemental theories, for his sharp questions, and for some help
with a proof in Section 3.3.5.

The content of Chapter 4 is based on a work in progress joint with Shreya
Arya, Ana Luiza da Conceição Tenorio, Paige North, Sean O’Connor and Hans
Reiss. The author is grateful to the founders of the Adjoint School, an annual
research school in applied category theory, and to the organizers of the 2022
edition, Angeline Aguinaldo, Elena Di Lavore, Sophie Libkind, and David Jaz
Myers. A great part of this work came to be during the research week for the
school, which took place in July 2022 at the University of Strathclyde in Glasgow,
Scotland.

The author is, moreover, deeply grateful to the reviewers of the present work
for their thoughtful comments, which led to greatly improve this work in its
present form, and their references to relevant bibliography. Their careful patience
in tolerating the strange notation of Chapter 2 is not to be underestimated.

This work would not have been possible without the many many stimulating
conversations with all the people in the logic group at the University of Genoa –
many of which have already been mentioned here. You made discussing math
and logic a joy.

Additionally, the author would like to thank the ItaCa community, for these
years would have been much less inspiring without it.

Finally, the author is deeply indebted to their advisor, Pino Rosolini, for
witnessing so clearly his love for math, logic, and category theory. It is a
testament to how important it is that such knowledge is spread to students and
to people in general. I will not forget it.

167

Bibliography

The items are ordered with respect to how their citation is coded. While we believe

having short place-holders makes reading the thesis a bit smoother, it also means that

a given author’s work might not appear consecutively in this list.

[AENR21] Benedikt Ahrens, Jacopo Emmenegger, Paige Randall North, and
Egbert Rijke. B-systems and C-systems are equivalent. ArXiv
e-prints, 2021.

[AGH21] Steve Awodey, Nicola Gambino, and Sina Hazratpour. Kripke-
Joyal forcing for type theory and uniform fibrations. arXiv preprint
arXiv:2110.14576, 2021.

[AHS90] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and
Concrete Categories: The Joy of Cats. Wiley, New York, 1990.

[AL17] Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed cate-
gories. Logical Methods in Computer Science, Volume 15, Issue 1,
05 2017.

[Atk18] Robert Atkey. The syntax and semantics of quantitative type theory.
In LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, July 9–12, 2018, Oxford, United Kingdom, 2018.

[Awo18] Steve Awodey. Natural models of homotopy type theory. Mathe-
matical Structures in Computer Science, 28(2):241–286, 2018.

[BB66] Michael Barr and Jonathan Beck. Acyclic models and triples. 1966.

[BBD+97] William P. Barse, Linda J. Brown, John E. Douglas, James Feathers,
C. Vance Haynes, Andrew Henderson, Maura Imazio da Silveira,
Judy Kemp, Marconales Lima da Costa, Christiane Lopes Machado,
Matthew O’Donnell, Ellen Quinn, Richard E. Reanier, and A. C.
Roosevelt. Dating a paleoindian site in the amazon in comparison
with clovis culture. Science, 275(5308):1948–1952, 1997.

[BCF08] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Se-
mantic subtyping: Dealing set-theoretically with function, union,
intersection, and negation types. J. ACM, 55(4), sep 2008.

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the
Midwest Category Seminar, pages 1–77, Berlin, Heidelberg, 1967.
Springer Berlin Heidelberg.

168

[Bén68] Jean Bénabou. Structures algébriques dans les catégories. Cahiers
de topologie et géométrie différentielle, 10(1):1–126, 1968.

[Bén85] Jean Bénabou. Fibered categories and the foundations of naive
category theory. The Journal of Symbolic Logic, 50(1):10–37, 1985.

[BJ81] André Boileau and André Joyal. La logique des topos. The Journal
of Symbolic Logic, 46(1):6–16, 1981.

[Bor94] Francis Borceux. Handbook of Categorical Algebra, volume 1 of
Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1994.

[BSSS21] Filippo Bonchi, Alessio Santamaria, Jens Seeber, and Pawe l
Sobociński. On Doctrines and Cartesian Bicategories. In Fabio
Gadducci and Alexandra Silva, editors, 9th Conference on Alge-
bra and Coalgebra in Computer Science (CALCO 2021), volume
211 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 10:1–10:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Car86] John Cartmell. Generalised algebraic theories and contextual
categories. Annals of Pure and Applied Logic, 32:209–243, 1986.

[CD11] Pierre Clairambault and Peter Dybjer. The biequivalence of locally
cartesian closed categories and Martin-Löf type theories. In Luke
Ong, editor, Typed Lambda Calculi and Applications, pages 91–106,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[CD22] Greta Coraglia and Ivan Di Liberti. Context, judgement, deduction.
ArXiv e-prints, 2022.

[Che03] Gang Chen. Coercive subtyping for the calculus of constructions.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’03, page 150–159,
New York, NY, USA, 2003. Association for Computing Machinery.

[Cos72] Michel Coste. Langage interne d’un topos. Seminaire Bénabou,
Université Paris-Nord, 1972.

[CS10] Miguel de Cervantes Saavedra. Don Quijote de la Mancha. New
York, 2010.

[CVST10] Joan B. Climent Vidal and Juan Carlos Soliveres Tur. Kleisli
and Eilenberg-Moore constructions as parts of biadjoint situations.
Extracta mathematicae, 25(1):1–61, 2010.

[CZ21] Olivia Caramello and Riccardo Zanfa. On the dependent product
in toposes. Mathematical Logic Quarterly, 67(3):282–294, 2021.

[DR21] Francesco Dagnino and Giuseppe Rosolini. Doctrines, modalities
and comonads, 2021.

[DT87] Roy Dyckhoff and Walter Tholen. Exponentiable morphisms, par-
tial products and pullback complements. Journal of Pure and
Applied Algebra, 49(1):103–116, 1987.

[Dyb96] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario
Coppo, editors, Types for Proofs and Programs, pages 120–134,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[EM65] Samuel Eilenberg and John C. Moore. Adjoint functors and triples.
Illinois Journal of Mathematics, 9(3):381 – 398, 1965.

[EML45] Samuel Eilenberg and Saunders Mac Lane. General theory of
natural equivalences. Transactions of the American Mathematical
Society, 58(2):231–294, 1945.

[EPR20] Jacopo Emmenegger, Fabio Pasquali, and Giuseppe Rosolini. El-
ementary doctrines as coalgebras. Journal of Pure and Applied
Algebra, 224(12):106445, 2020.

[Eve17] Caleb Everett. Numbers and the Making of Us. Harvard University
Press, Cambridge, MA and London, England, 2017.

[EW67] Samuel Eilenberg and Jesse B. Wright. Automata in general
algebras. Information and Control, 11(4):452–470, 1967.

[FK69] Solomon Feferman and Georg Kreisel. Set-theoretical foundations
of category theory. In Reports of the Midwest Category Semi-
nar III, pages 201–247, Berlin, Heidelberg, 1969. Springer Berlin
Heidelberg.

[Fre66] Peter Freyd. Algebra valued functors in general and tensor products
in particular. Colloquium Mathematicae, 14(1):89–106, 1966.

[Fre72] Peter Freyd. Aspects of topoi. Bulletin of Australian Mathematical
Society, 7:1–76, 1972.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. ii.
Mathematische Zeitschrift, 39:405–431, 1935.

[Gen64] Gerhard Gentzen. Investigations into logical deduction. American
Philosophical Quarterly, 1(4):288–306, 1964.

[GH20] Robert Ghrist and Jakob Hansen. Opinion dynamics on discourse
sheaves, 2020.

[GK13] Nicola Gambino and Joachim Kock. Polynomial functors and
polynomial monads. Mathematical Proceedings of the Cambridge
Philosophical Society, 154(1):153–192, 2013.

[GL23] Nicola Gambino and Marco F. Larrea. Models of Martin-Löf type
theory from algebraic weak factorisation systems. The Journal of
Symbolic Logic, 88(1):242–289, 2023.

[GR22] Robert Ghrist and Hans Riess. Cellular sheaves of lattices and the
Tarski laplacian. Homology, Homotopy and Applications, 24(1):325–
345, 2022.

[Gra66] John W. Gray. Fibred and cofibred categories. In S. Eilenberg, D. K.
Harrison, S. Mac Lane, and H. Röhrl, editors, Proceedings of the
Conference on Categorical Algebra, pages 21–83, Berlin, Heidelberg,
1966. Springer Berlin Heidelberg.

[Gra10] Antonio Gramsci. Lettere dal carcere; Prefazione di Luciano Can-
fora. I classici del pensiero libero. RCS Quotidiani, Milano, 2010.

[Gro61] Alexander Grothendieck. Categoriés fibrées et descente (Exposé
VI). Revêtements étales et groupe fondamental - SGA1, 1960-61.

[Gro60] Alexander Grothendieck. Technique de descente et théorèmes
d’existence en géométrie algébrique. I. Généralités. Descente par
morphismes fidèlement plats. In Séminaire Bourbaki : années
1958/59 - 1959/60, exposés 169-204, number 5 in Séminaire Bour-
baki. Société mathématique de France, 1960. talk:190.

[GW07] John A. Gifford and Rachel K. Wentz. Florida’s deep past: The
bioarchaeology of little salt spring (8so18) and its place among
mortuary ponds of the archaic. Southeastern Archaeology, 26(2):330–
337, 2007.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the ACM (JACM), 40(1):143–184,
1993.

[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types, page
79–130. Publications of the Newton Institute. Cambridge University
Press, 1997.

[HP87] Martin Hyland and Andrew M. Pitts. The theory of constructions:
Categorical semantics and topos-theoretic models. 01 1987.

[HR13] Dirk Hofmann and Carla D. Reis. Probabilistic metric spaces
as enriched categories. Fuzzy Sets and Systems, 210:1–21, 2013.
Theme : Topology and Algebra.

[Hub61] Peter J. Huber. Homotopy theory in general categories. Mathema-
tische Annalen, 1961.

[HWW14] John Harding, Carol Walker, and Elbert Walker. Categories with
fuzzy sets and relations. Fuzzy Sets and Systems, 256:149–165,
2014. Special Issue on Enriched Category Theory and Related
Topics (Selected papers from the 33rd Linz Seminar on Fuzzy Set
Theory, 2012).

[Isb64] John R. Isbell. Subobjects, adequacy, completeness and categories
of algebras. Instytut Matematyczny Polskiej Akademi Nauk, 1964.

[Jac93] Bart Jacobs. Comprehension categories and the semantics of type
dependency. Theoretical Computer Science, 107(2):169–207, 1993.

[Jac99] Bart Jacobs. Categorical logic and type theory. Elsevier, 1999.

[Jec07] Tomáš Jech. Set Theory: The Third Millennium Edition, revised
and expanded. Springer Monographs in Mathematics. Springer
Berlin Heidelberg, 2007.

[Joh77] Peter T. Johnstone. Topos theory, volume 10 of. London Mathe-
matical Society Monographs, 1977.

[Kel82] Maxwell Kelly. Basic concepts of enriched category theory, vol-
ume 64. CUP Archive, 1982.

[Kle65] Heinrich Kleisli. Every standard construction is induced by a pair
of adjoint functors. Proceedings of the American Mathematical
Society, 16(3):544–546, 1965.

[Kle67] Stephen Cole Kleene. Mathematical Logic. John Wiley & Sons,
1967.

[KR77] Anders Kock and Gonzalo E. Reyes. Doctrines in categorical logic.
In Studies in Logic and the Foundations of Mathematics, volume 90,
pages 283–313. Elsevier, 1977.

[KS74] G. M. Kelly and Ross Street. Review of the elements of 2-categories.
In Gregory M. Kelly, editor, Category Seminar, pages 75–103,
Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.

[Law63] F. William Lawvere. Functorial Semantics of Algebraic Theo-
ries: And, Some Algebraic Problems in the Context of Functorial
Semantics of Algebraic Theories. Mount Allison University, 1963.

[Law64] F. William Lawvere. An elementary theory of the category of
sets. Proceedings of the National Academy of Sciences U.S.A.,
52:1506–1511, 1964.

[Law65] F. William Lawvere. Algebraic theories, algebraic categories, and
algebraic functors. The theory of models, Proceedings of the 1963
International Symposium at Berkeley, page 413–418, 1965.

[Law69] F. William Lawvere. Adjointness in foundations. Dialectica,
23(3/4):281–296, 1969.

[Law70] F. William Lawvere. Equality in hyperdoctrines and comprehen-
sion schema as an adjoint functor. Proceedings of the American
Mathematical Society, pages 1–14, 1970.

[Law04] F. William Lawvere. Functorial Semantics of Algebraic Theories:
And, Some Algebraic Problems in the Context of Functorial Se-
mantics of Algebraic Theories. Number 5. Reprints in Theory and
Applications of Categories, 2004.

[Lei98] Tom Leinster. Basic bicategories, 1998.

[LHTVM19] Juan Luis Lopez Hernández, Luis Turcio, and Adrian Vazquez-
Marquez. Applications of the Kleisli and Eilenberg-Moore 2-
adjunctions. Categories and General Algebraic Structures with
Applications, 10(1):117–156, 2019.

[Lor21] Fosco Loregian. (Co)end Calculus. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2021.

[LS88] Joachim Lambek and Philip J. Scott. Introduction to higher-order
categorical logic, volume 7. Cambridge University Press, 1988.

[LSX13] Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping:
Theory and implementation. Information and Computation, 223:18–
42, 2013.

[Luo99] Zhaohui Luo. Coercive subtyping. Journal of Logic and Computa-
tion, 9(1):105–130, 02 1999.

[LW15] Peter LeFanu Lumsdaine and Michael A. Warren. The local uni-
verses model: An overlooked coherence construction for dependent
type theories. ACM Trans. Comput. Logic, 16(3), jul 2015.

[Mai05] Maria E. Maietti. Modular correspondence between dependent type
theories and categories including pretopoi and topoi. Mathematical
Structures in Computer Science, 15(6):1089–1149, 2005.

[Mai17] Maria E. Maietti. On choice rules in dependent type theory. In
T.V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and
Applications of Models of Computation, pages 12–23, Cham, 2017.
Springer International Publishing.

[Mak93] Michael Makkai. The fibrational formulation of intuitionistic predi-
cate logic I: completeness according to Gödel, Kripke, and Läuchli,
part 2. Notre Dame J. Formal Log., 34:471–498, 1993.

[Mar75] Per Martin-Löf. An intuitionistic theory of types: Predicative part.
In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73,
volume 80 of Studies in Logic and the Foundations of Mathematics,
pages 73–118. Elsevier, 1975.

[Mar84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in
proof theory. Bibliopolis, 1984.

[Mar87] Per Martin-Löf. Truth of a proposition, evidence of a judgement,
validity of a proof. Synthese, pages 407–420, 1987.

[Mar96a] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic journal of philosophical
logic, 1(1):11–60, 1996.

[Mar96b] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

[McL92] Colin McLarty. Elementary Categories, Elementary Toposes.
Clarendon Press, 1992.

[Mit72] William Mitchell. Boolean topoi and the theory of sets. Journal
of Pure and Applied Algebra, 2(3):261–274, 1972.

[ML78] Saunders Mac Lane. Categories for the Working Mathematician.
Springer, 1978.

[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and
Logic. Springer New York, 1994.

[MMdPR05] Maria E. Maietti, Paola Maneggia, Valeria C. V. de Paiva, and
Eike Ritter. Relating categorical semantics for intuitionistic linear
logic. Applied Categorical Structures, 13:1–36, 2005.

[Mog91] Eugenio Moggi. A category-theoretic account of program modules.
Mathematical Structures in Computer Science, 1(1):103–139, 1991.

[MP89] Michael Makkai and Robert Paré. Accessible Categories: The
Foundations of Categorical Model Theory. American Mathematical
Society, 1989.

[MPR17] Maria E. Maietti, Fabio Pasquali, and Giuseppe Rosolini. Triposes,
exact completions, and Hilbert’s ϵ-operator. Tbilisi Mathematical
Journal, 10:141 – 166, 2017.

[MR13] Maria E. Maietti and Giuseppe Rosolini. Quotient completion for
the foundation of constructive mathematics. Logica Universalis,
7(3):371–402, 2013.

[MR15] Maria E. Maietti and Giuseppe Rosolini. Unifying exact comple-
tions. Applied Categorical Structures, 23:43–52, 2015.

[MS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory,
volume 9. Bibliopolis Naples, 1984.

[MS21] Guy McCusker and Alessio Santamaria. Composing dinatural
transformations: Towards a calculus of substitution. Journal of
Pure and Applied Algebra, 225(10):106689, 2021.

[Mye20] David Jaz Myers. Cartesian factorization systems and Grothendieck
fibrations. arXiv: Category Theory, 2020.

[MZ15] Paul-André Melliès and Noam Zeilberger. Functors are type refine-
ment systems. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL ’15, page 3–16, New York, NY, USA, 2015. Association for
Computing Machinery.

[NvP08] Sara Negri and Jan von Plato. Structural proof theory. Cambridge
university press, 2008.

[Osi75a] Gerhard Osius. Logical and set theoretical tools in elementary
topoi. In Model Theory and Topoi, pages 297–346. Springer, 1975.

[Osi75b] Gerhard Osius. A note on Kripke-Joyal semantics for the internal
language of topoi. In Model theory and topoi, pages 349–354.
Springer, 1975.

[Pit83] Andrew M. Pitts. An application of open maps to categorical logic.
Journal of Pure and Applied Algebra, 29:313–326, 1983.

[Pit99] Andrew M. Pitts. Tripos theory in retrospect. Electronic Notes
in Theoretical Computer Science, 23(1):111–127, 1999. Tutorial
Workshop on Realizability Semantics and Applications (associated
to FLoC’99, the 1999 Federated Logic Conference).

[Res02] Greg Restall. An introduction to substructural logics. Routledge,
2002.

[Rie17] Emily Riehl. Category Theory in Context. Aurora: Dover Modern
Math Originals. Dover Publications, 2017.

[Sco79] Dana S. Scott. Identity and existence in intuitionistic logic, pages
660–696. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.

[See84] Robert A. G. Seely. Locally cartesian closed categories and type
theory. In Mathematical proceedings of the Cambridge philosophical
society, volume 95, pages 33–48. Cambridge University Press, 1984.

[See86] Robert A. G. Seely. Modelling Computations: a 2-categorical
Framework. The College, 1986.

[Shu08] Michael A. Shulman. Set theory for category theory, 2008.

[Str72] Ross Street. The formal theory of monads. Journal of Pure and
Applied Algebra, 2(2):149–168, 1972.

[Str80] Ross Street. Fibrations in bicategories. Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 21(2):111–160, 1980.

[Str22] Thomas Streicher. Fibred categories à la Jean Bénabou. arXiv
preprint arXiv:1801.02927, 2022.

[SW73] Ross Street and Robert F. C. Walters. The comprehensive fac-
torization of a functor. Bulletin of the American Mathematical
Society, 79:936–941, 1973.

[Tar56] Alfred Tarski. The concept of truth in formalized languages. Logic,
semantics, metamathematics, 2(152-278):7, 1956.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Number v.
59 in Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1999.

[Tro87] Anne S. Troelstra. On the syntax of Martin-Löf’s type theories.
Theoretical Computer Science, 51(1):1–26, 1987.

[Tro20] Davide Trotta. The existential completion. Theory Appl. Categ.,
35:1576–1607, 2020.

[TS00] Anne S. Troelstra and Helmut Schwichtenberg. Basic proof theory.
Number 43. Cambridge University Press, 2000.

[Uem19] Taichi Uemura. A general framework for the semantics of type
theory. arXiv preprint arXiv:1904.04097, 2019.

[Uni13] The Univalent Foundations Program. Homotopy Type The-
ory: Univalent Foundations of Mathematics. https://

homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[Vas18] Christina Vasilakopoulou. On enriched fibrations. Cahiers de
topologique et géométrie différentielle categoriques, LIX-4, 2018.

[Vis04] Angelo Vistoli. Notes on Grothendieck topologies, fibered categories
and descent theory, 2004.

[Voe16] Vladimir Voevodsky. Dependent type theories, February 2016.

[Wad15] Philip Wadler. Propositions as types. Communications of the ACM,
58(12):75–84, 2015.

[Web07] Mark Weber. Yoneda structures from 2-toposes. Applied Categorical
Structures, 15(3):259–323, 2007.

[Wit22] Ludwig Wittgenstein. Tractatus logico-philosophicus. London:
Routledge, 1981, 1922.

[Wyl91] Oswald Wyler. Lecture Notes on Topoi and Quasitopoi. World
Scientific, 1991.

[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,
1965.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Introduction
	Fibrations
	Categories: notation and underlying theory
	Categories
	Functors and natural transformations
	2-categories
	Logical environment

	Motivation
	Main definitions
	On the fibers
	On cartesian liftings
	Characterizing fibrations

	The 2-category of fibrations
	Fibrations and pseudofunctors
	Split fibrations and the fibered Yoneda lemma
	Right adjoint splitting
	Left adjoint splitting

	Faithful fibrations and the theory of doctrines
	Primary
	Elementary
	Existential, universal

	Opfibrations, bifibrations

	Categorized judgemental theories
	Categorized judgemental theories
	Notions of substitution

	Judgement calculi
	Prolegomena
	Syntax
	Judgements
	Rules
	Policies
	On substitution

	Categorized dependent types theories
	From natural models to (categorical) dtts
	Judgemental dtts vs comprehension categories
	Dictionary
	Context extension and type dependecy
	Dependent type theories with -types
	Dependent type theories with (extensional) Id-types
	A categorical definition of type constructor
	Examples: unit types and -types
	The internal logic of a topos – externally

	Categorized first-order logic
	Dictionary
	From properties to rules
	Formal structural rules
	Formal rules for connectives
	Substitution
	Formal rules for quantifiers
	Cut elimination

	Future developments

	Fibrations for dependent types
	Of judgements and types
	The category of contexts
	What are we doing?

	A biadjunction between comonads and adjunctions
	Morphisms of adjunctions and of comonads
	Biadjunctions between comonads and adjunctions
	The biadjunction in the loose case

	Comparing type-theoretic comprehensions
	Comprehension categories
	Categorized dependent type theories
	Weakening and contraction comonads
	wcComonads v comprehension categories
	wcComonads v cDTTs
	Examples
	Main theorem

	Properties of comprehension categories
	The empty context
	Lax, pseudo, strict
	Properties of categorical models of dependent types
	Discrete vs full split
	Splitting a wc-comonad

	Subtyping
	Comma objects induced by a cDTT
	Rules for subtyping
	An example: semantic subtyping

	Case study: CE-systems
	Type constructors in a cDTT
	Comparing CE-systems to cDTTs
	Constructors for free

	Future developments

	Fuzzy dependent types
	Basic enriched category theory
	Monoidal categories
	Enriched categories
	Enriched functors and natural transformations
	Forgetful into CAT
	Representable V-functors
	Let us end with V

	Propositions and types (and opinions)
	The category of fuzzy sets
	Measuring fuzziness
	Fuzzy sets
	Enriching over fuzzy sets

	Substitution in the enriched setting
	From syntax to semantics and back
	Reading type theory into a category
	Reading fuzzy type theory into a category

	Rules for fuzzy type theory
	On definitional equality
	Certain equality
	Skeletons
	Fuzzy equality
	The trivial option
	In conclusion

	Future developments

	Acknowledgements
	Bibliography

