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Abstract
As opposed to the 3D cubic grid, the body-centered cubic (BCC) grid has some favorable topological properties: each set of
voxels in the grid is a 3-manifold, with 2-manifold boundary. Thus, the Euler characteristic of an object O in this grid can
be computed as half of the Euler characteristic of its boundary ∂O . We propose three new algorithms to compute the Euler
characteristic in the BCC grid with this surface-based approach: one based on (critical point) Morse theory and two based
on the discrete Gauss–Bonnet theorem. We provide a comparison between the three new algorithms and the classic approach
based on counting the number of cells, either of the 3D object or of its 2D boundary surface.

Keywords Digital topology · Euler characteristic · Body Centered Cubic (BCC) grid · Morse theory · Discrete Gauss-Bonnet
theorem

1 Introduction

The Euler characteristic is a basic yet important, locally
computable topological descriptor of both continuous and
discrete shapes. It is equal to the alternating sum of (inde-
pendent) i-dimensional holes. For shapes in 3D, it is equal
to the number of connected components minus the number
of tunnels plus the number of cavities. It can be computed as
the alternating sum of the number of i-cells in a cell decom-
position of the shape.

The commonly used 3D cubic grid has some unfavor-
able geometric and topological properties, mainly due to
the existence of three different types of adjacencies between
the cubes. This causes many image processing algorithms to
become more involved, needing more computation [22]. The
body-centered cubic (BCC) grid is one feasible alternative to
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the traditional 3D cubic one, with many topological advan-
tages. It has been effectively used in computer graphics [3, 10,
13], discrete geometry [9], tomographic reconstruction from
projections [4], physically-based simulations [25], voxeliza-
tion [15], distances by neighborhood sequences [36] and in
various other fields including discretization, ray tracing and
ray casting, volume rendering and repairing [7, 10, 13, 16,
17, 32]. A software system for processing and viewing 3D
data on this grid has also been developed [29].

The BCC grid is a tessellation of the space R
3 through

(space-filling) truncated octahedra. Two voxels in the BCC
grid are either disjoint, or they share a whole face. This
ensures that the boundary ∂O of an object (a finite set of
voxels) O in the BCC grid is always a 2-manifold (and O is
a 3-manifold). Therefore, the Euler characteristic of O can
be computed as half the Euler characteristic of its boundary
∂O , which is likely to have significantly fewer cells than O
in many practical cases.

Here, we address the computation of the Euler character-
istic in the BCC grid with this surface-based approach. Apart
from the known algorithm based on counting the boundary
cells, we propose to use two frameworks for computing the
Euler characteristic of a polyhedron (the boundary ∂O of an
object O) in this grid.

The first framework is the piecewise linear [1] critical
point Morse theory [30, 33], which provides relationships
between the topology of a manifold M and the critical points
of a scalar field f defined on M . The second is the discrete
version of the Gauss–Bonnet theorem, which states that the
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sum of angular vertex deficits in a polyhedron is equal to
2π times its Euler characteristic. We propose two algorithms
based on this framework.

We provide a detailed comparison of the proposed algo-
rithms, and a comparison of them with the algorithm imple-
menting the classic approach based on counting the number
of cells, in a volume-based or surface-based version (i.e., on
the 3D object or on its 2D boundary).

In particular, one of the two new algorithms based on the
Gauss–Bonnet theorem is the fastest surface-based method,
with execution times equal to about 40% of the naive 2D cell
counting. The surface-based approach to the Euler character-
istic computation is convenient over the volume-based one
when the number of boundary faces is less than 25% (if we
include the cost of boundary extraction) or less than 66% (if
we consider only the Euler characteristic computation) than
the number of voxels composing the object.

2 Background Notions

We give some basic notions on 3D digital topology [20, 24],
theBCCgrid [19], the Euler characteristic [31],Morse theory
[30, 33] and the discrete Gauss–Bonnet theorem [23, 35].

2.1 Basic Notions

A k-cell inRn (with 0 ≤ k ≤ n) is a homeomorphic image of
the closed unit k-ball {p ∈ R

k : ||p|| ≤ 1}. A cell k-complex
Γ is a collection of i-cells, with max{i} = k, that fit nicely
together: the boundary of each cell and the intersection of
any two cells (if non-empty) is composed of cells of lower
dimension. We are interested in the cases n = 3 and k = 2, 3
that are used to represent solid objects and surfaces in R3.

A subset I ⊆ R
n is a k-manifold (with boundary) if each

of its points has a neighborhood homeomorphic to R
k (or

to R
k+ = {(x1, . . . , xk) ∈ R

k : xk ≥ 0}). In R
3, we are

interested in 3-manifolds with boundary, representing a solid
object, and 2-manifolds, representing surfaces. The bound-
ary surface of a 3-manifold object is a (closed) 2-manifold
without boundary.

The set of points in a cell complex Γ in R
3 is denoted as

|Γ |. If |Γ | is a manifold, we say that Γ is a manifold cell
complex.

2.2 The Cubic Grid

The 3D cubic grid is the regular tessellation of R
3 into

closed unit cubes centered at points in Z
3, with faces par-

allel to the coordinate planes [20]. Three types of adjacency
relation are defined between the cubes in the grid, depend-
ing on their intersection. Two cubes are face-, edge-, or
vertex-adjacent if they share at least one face, edge or ver-

Fig. 1 a The centers of cubes of two interlaced cubic grids (rescaled
by factor 2), one composed of points with even and the other composed
of points with odd Cartesian coordinates (in different colors). b BCC
voxels centered at those points

tex, respectively. They are strictly edge- or vertex-adjacent if
they are edge- or vertex-adjacent but are not face- or edge-
adjacent, respectively. Connectivity relation is the transitive
closure of adjacency.

A (binary) object O is a finite collection of cubes in the
cubic grid. The cubes in O are called black. The cubes in the
complement of O are calledwhite. Connected components of
O are themaximal connected subsets of O with respect to the
chosen adjacency. An object O is called well-composed [26]
if it has no critical vertices (incident with exactly two strictly
vertex-adjacent black or exactly two strictly vertex-adjacent
white cubes) and no critical edges (incident with exactly two
strictly edge-adjacent black and exactly two strictly edge-
adjacent white cubes).

For an object O , the associated cubical complex Q is a
cell 3-complex that consists of the cubes in O together with
all of their square faces, edges and vertices. An object O is
well-composed if and only if |Q| is a 3-manifold. The two
definitions of well-composed 3D objects (discrete, through
the critical configurations and continuous, through the notion
of a manifold) are equivalent [2].

2.3 The BCC Grid

The body-centered cubic (BCC) [19] grid is a Voronoi tes-
sellation of R3 associated with points in (2Z)3 ∪ (2Z+ 1)3,
which can be seen as the centers of cubes of two interlaced
cubic grids, rescaled by factor 2. The cubes of the first (sec-
ond) grid are centered at points with even (odd) Cartesian
coordinates (see Fig. 1a). The voxel of the BCC grid is a trun-
cated octahedron, with eight regular hexagonal faces and six
square faces, 36 edges and 24 vertices (see Fig. 1b).

An object O in the BCC grid is defined similarly to an
object in the cubic grid: it is a finite set of (black) voxels in
the grid. Its associated cell 3-complex Q is composed of all
voxels in O and all their faces, edges and vertices.

The BCC grid has only one type of adjacency relation:
if two voxels share a vertex or an edge, they also share a
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Fig. 2 Two BCC voxels which are not disjoint share an entire a square
or b hexagonal face

face (see Fig. 2). Due to this property, there are no critical
configurations in the BCC grid, and every object in this grid
is well-composed. The shared face of two adjacent voxels
may be hexagonal or square, and the two voxels are called
hex-adjacent and quad-adjacent, respectively.

2.4 The Euler Characteristic

The Euler characteristic is a basic topological (homologi-
cal) invariant, extensively used inmany application domains,
such as topological data analysis, image processing and pat-
tern recognition and classification, to name just a few. It can
be defined in several equivalentways, andondifferent spaces,
e.g., topological manifolds, cell complexes or polyhedra.

For a cell 3-complex Γ with c0 vertices, c1 edges, c2 faces
and c3 3-cells (voxels), the Euler characteristic χ(Γ ) is equal
to

χ(Γ ) = c0 − c1 + c2 − c3 (1)

For a general 3-complex Γ , this definition assumes that
two cells are adjacent if they share at least one vertex. If
applied to a cubical complex Q, it assumes vertex-adjacency
for Q.

Alternatively, if Γ has β0 connected components, β1 tun-
nels and β2 cavities, the Euler characteristic χ(Γ ) is equal
to β0 − β1 + β2 [21]. A cavity is formally a bounded con-
nected component of the background, and intuitively a hole
inside the object, completely surrounded by it. A tunnel is
intuitively a hole traversing the object from side to side, while
a formal definition requires notions from homology theory.
Intuitively, the number of tunnels is equal to the maximal
number of non-separating cuts that can bemade in the object.

In 3D, there is a connection between the Euler character-
istic of a manifold 3-complex Γ and the Euler characteristic
of its boundary ∂Γ [5, 14, 28, 31], namely

χ(Γ ) = χ(∂Γ )/2 (2)

and the Euler characteristic of ∂Γ can be computed as

χ(∂Γ ) = c0 − c1 + c2 (3)

where, here, c0, c1 and c2 denote the number of vertices,
edges and faces of ∂Γ .

2.5 Morse Theory

Morse theory studies the relationship between the topological
shape of a manifold and (the critical points of) a function
defined on the manifold, both in the continuous [30, 33] and
in the piecewise linear [1, 11] setting.

For a C2-differentiable real-valued function f defined
over a closed compact manifold domain M ⊆ R

d , a point
p ∈ M is a critical point of f if all first order partial deriva-
tives of f (in a suitable coordinate system around p) vanish
at p. The function f is aMorse function if the Hessianmatrix
Hessp f of the second derivatives of f at p is non-singular.
Usually, it is supposed that there are no two critical points
with the same function value. This property allows analyzing
the topology changes at each critical point separately.

The number of negative eigenvalues of Hessp f is called
the index of a critical point p. The corresponding eigenvec-
tors point in the directions inwhich f is decreasing. A critical
point p is a minimum or a maximum if it has index 0 or d,
respectively. Otherwise, if the index of p is λ, 0 < λ < d, p
is a λ-saddle.

Let us consider a closed orientable 2-dimensional man-
ifold M in R

3, which is the boundary of a 3-manifold Γ ,
i.e., M = ∂Γ . On M , there are three types of critical points:
minima,maxima and saddles. The topology (homotopy type)
of the lower level sets M≤α = {x ∈ M : f (x) ≤ α} of f
changes only at the critical points.

For example, let M be a (hollow) torus with horizontal
axis of symmetry and let f be the vertical elevation. This is
a 2-manifold without boundary and its Euler characteristic
is 0. Figure3 presents four stages of the evolution of the
lower level set (shown in shaded color) while increasing the
elevation. At the lowest point of M , the lower level set is
created, as it initially a 2-manifoldwith boundary, homotopic
to a disc (χ = 1). At the lower saddle, it becomes homotopic
to a cylinder (χ = 0). At the higher saddle, two boundary
circles of the cylinder touch to create a torus with a hole (χ =
−1). Until here the lower level set has been a 2-manifoldwith
boundary. The highest point closes up the surface creating the
internal cavity (χ = 0 again).

In summary, minima create new connected components
and maxima close off (create) cavities. Thus, each extremal
critical point increases the Euler characteristic by 1. Saddles
either merge two different connected components, or create
a hole (a tunnel) by merging two parts of the same connected
component. Thus, each saddle decreases the Euler character-
istic by 1.

Ifmλ denotes the number of critical points of f with index
λ, then the Euler characteristic χ(M) of M is given by

χ(M) =
d∑

λ=0

(−1)λmλ,
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Fig. 3 Evolution of the lower level set of a torus surface. At each stage, the current lower level set is shaded. The lower level set is homeomorphic
a to a disc, b to a cylinder, c to a torus with a hole, d to a torus

and, for a 2-manifold M ,

χ(M) = m0 − m1 + m2

i.e., the number of minima, minus the number of saddles,
plus the number of maxima.

2.6 The Discrete Gauss–Bonnet Theorem

The Gauss–Bonnet theorem gives a connection between
the Gaussian curvature on a manifold M and its topology
expressed through its Euler characteristic. It states that

∫

M

KG dA = 2πχ(M),

where M is a closed 2-manifold without boundary, KG is its
Gaussian curvature and the integral is a surface integral over
M [35].

The Descartes theorem gives a connection between the
angles of the faces of a polyhedron P and its topology. It
states that, if P is homeomorphic to the unit 2-sphere S2,
then

∑

v∈P

δ(v) = 4π = 2πχ(S2),

where v is a vertex of P and the angular deficit δ(v) is the
amount by which the sum of the face angles at v differs from
2π , i.e.,

δ(v) = 2π −
∑

v∈ f

α(v, f ),

where f are the faces incident to the vertex v and α(v, f ) is
the internal angle of f at v.

Thediscrete versionof theGauss–Bonnet theoremextends
the Descartes theorem to arbitrary (manifold) polyhedra. It

states that

∑

v∈P

δ(v) = 2πχ(P),

where P is the given polyhedron [23] and v are the vertices
of P . Intuitively, the Gaussian curvature in the interior of
the faces and edges of P is equal to zero. The curvature is
concentrated at the vertices of P and is equal to the vertex
deficit. It follows that

χ(P) = 1

2π

∑

v∈P

δ(v) (4)

2.7 Relation Between BCC and Cubic Grids

As common 3D acquisition devices provide data in a cubic
grid, it is necessary to convert them to the BCC grid. This
can be done in different ways.

A naive conversion can be performed in two ways: either
we keep only cubes with all even or all odd coordinates and
expand them to BCC voxels, or we insert a new datum at
each cube vertex (with interpolated value) and place a BCC
voxel at each vertex and each cube center. In the first case,
we have half the resolution and we loose data, while in the
second case we double the resolution. However there is no
warranty that the Euler characteristic is preserved.

A method has been proposed in [7] which performs the
conversion in the second way (i.e., by doubling the resolu-
tion), but choosing the color assigned to the cube vertices
in such a way to preserve the Euler characteristic of the
original cubic object according to vertex-adjacency or face-
adjacency. Alternatively, Edelsbrunner and Kerber [12] have
proposed a method transforming each cubic voxel into a
(combinatorial) BCC voxel, by slightly shrinking it from one
diagonal direction. The resolution is the same as the origi-
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nal cubic grid, but in general the Euler characteristic is not
preserved.

3 RelatedWork

A lot of algorithms have been proposed for the computa-
tion of the Euler characteristic of 3D objects in the cubic
grid. The main drawback of this grid is that the value of the
Euler characteristic depends on the adjacency model con-
sidered (classically vertex-adjacency or face-adjacency, but
other adjacencymodels have been proposed aswell [34, 37]),
and it is unique only for 3-manifold objects. Here, we briefly
review only the algorithms for computing the Euler charac-
teristic in the cubic grid that are based either on the discrete
version of the Gauss–Bonnet theorem, or on Morse theory.

The algorithm by Chen and Rong [6] works on a well-
composed object O , with manifold boundary ∂O . Each
vertex in ∂O is incident to three, four, five or six bound-
ary faces. The sets of such vertices are denoted M3, M4, M5

and M6, and the numbers of such vertices are |M3|, |M4|,
|M5| and |M6|, respectively. Since each boundary face is a
square, and each face angle is π/2, the deficit of each bound-
ary vertex v incident to k boundary faces, 3 ≤ k ≤ 6, is

δ(v) = 2π − kπ/2.

Thus, the vertices incident to four boundary faces do not
affect theEuler characteristic, and the discreteGauss–Bonnet
theorem implies that

χ(∂O) = (|M3| − |M5| − 2|M6|)/4.

The algorithm by Imiya and Eckhardt [18] makes a finer
classification of the vertices in the boundary of a well-
composed object O to obtain the same formula.

The algorithm by Lee at al. [27] works for objects with
face-adjacency (or with vertex-adjacency, by considering the
complement of the object), not necessarily well-composed. It
is based on smoothing the black cubes (slightly inflating them
and rounding the corners and edges) and applying the con-
tinuous Gauss–Bonnet theorem. It reduces to using a lookup
table with vertex contributions to χ(O) for each possible
configuration of 2 × 2 × 2 cubes.

The algorithm by Čomić and Magillo [8] is based on
counting only the boundary faces and vertices. The vertex
count of the vertices where ∂O is non-manifold is adjusted
depending on the chosen adjacency relation (face- or vertex-
adjacency).

4 Algorithms for the Computation of the
Euler Characteristic in the BCC Grid

We describe five algorithms to compute the Euler character-
istic of an object in the BCC grid. The first two algorithms

are the classic ones based on cell counting. The other three
algorithms are new: one is based onMorse theory and critical
points, and two algorithms are based on summing angles.

Our implementation of all algorithms uses the 4-valued
coordinate system proposed in [7]. In it, every voxel, face,
edge and vertex in the BCCgrid is represented by four depen-
dent coordinates, whose sum is zero. Of the four coordinates
of a BCC voxel centered in the first interlaced cubic grid, two
belong to Z8 and two to Z8 + 4; for a BCC voxel centered in
the second interlaced cubic grid, two coordinates belong to
Z8 + 2 and two to Z8 + 6. The coordinates of a face are the
average of the coordinates of its two incident BCC voxels.
The coordinates of an edge (shared by two hex- and one quad-
face) are the average of the coordinates of its two incident
hex-faces. The coordinates of a vertex are the average of the
coordinates of its four incident BCC voxels. All adjacency
and incidence relations are retrieved by arithmetic operations
on the four coordinates of the involved cells.

The input object O is given as a list of (black) BCC vox-
els. In addition, each voxel of (the portion of) the BCC grid
containing O is marked as black or white. In this setting,
in order to find, for example, the black voxels adjacent to
a given voxel x , we access the 14 neighbors of x and test
their color in constant time. The surface ∂O , needed by the
boundary-based algorithms, is represented as a list of faces.

4.1 Algorithm Based on Counting Cells

The straightforward classic approach simply computes the
alternating sum of the number of i-cells. It admits a volume-
based version, which computes the Euler characteristic of a
three-dimensional object O in the BCC grid with Formula
(1), and a surface-based version, that does it by computing
the Euler characteristic of the boundary surface ∂O of O
with Formula (3).

4.1.1 Volume-Based Version (VOL)

This algorithm that we denote as VOL counts each black
voxel and its faces, edges and vertices, paying attention to
count a face, edge or vertex in just one of the voxels contain-
ing it.

Our implementation scans the black voxels and processes
each one. Processing of a voxel x consists of the following
actions:

– count x and mark it;
– access the 14 adjacent voxels of x , and check the config-

uration. Based on the following quantities:

– N4 and N6, the number of quad- and hex-faces,
respectively, of x , whose other incident voxel is black
and already marked; we call them black faces;
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– N6,6, the number of edges of x , shared by two hex-
faces, such that their two incident voxels, different
from x , are black and already marked;

– N4,6, the number edges of x , shared by a quad- and a
hex-face, such that their two incident voxels, different
from x , are black and already marked;

– N4,6,6, the number of vertices of x (each shared by
one quad- and two hex-faces of x) such that their
three incident voxels, different from x , are black and
already marked;

– count 14 − N4 − N6 faces for x (from the 14 faces of x ,
subtract the ones already counted in the adjacent black
voxels);

– count 36−4N4−6N6+N6,6+N4,6 edges for x (from the
36 edges of x , subtract the ones belonging to black faces
to avoid counting them twice, but those edges shared by
two black faces must not be subtracted twice),

– count 24 − 4N4 − 6N6 + 2(N6,6 + N4,6) − N4,6,6 ver-
tices for x (from the 24 vertices of x , subtract the ones
belonging to black faces, with similar considerations as
for edges, but a vertex may be shared by up to three black
faces).

4.1.2 Surface-Based Version (SUR)

This version, that we denote as SUR assumes that the bound-
ary surface of the object (consisting of hexagonal and square
faces) is available. The algorithm performs a loop on input
boundary faces. For each face f , it counts the face f itself
and potentially counts each edge and vertex of f . Suitable
attention is payed to count each edge or vertex only at one
of the faces it belongs to. For such purpose, in our imple-
mentation we consider the lexicographic (total) order of the
face coordinates. An edge e is counted only if the current
boundary face precedes the other boundary face incident in
e, and a vertex v is counted only if the current boundary face
is minimum among the boundary faces incident in v.

Thanks to the fact that ∂O is 2-manifold (each edge
belongs to two faces), we could count 1/2 for each edge
of a face. Nevertheless, a mechanism such as the total order
is still necessary to count the vertices correctly.

4.2 Algorithm Based onMorse Theory (MOR)

The new algorithm based on Morse theory, that we denote
asMOR, computes the Euler characteristic of the boundary
∂O by recording the changes in the lower level sets with a
suitable elevation function f , defined in such a way that no
two vertices have the same function value (as unicity is a
usual requirement for Morse functions, see Sect. 2.5).

This is done by considering the lexicographic order of
the (z, y, x) triplets obtained from the coordinates of all the

vertices, and function f maps each vertex onto its “eleva-
tion” defined as its position in the sorted list of all vertices.
Intuitively, this is equivalent to sweeping ∂O through a set
of parallel almost horizontal planes moving in the direction
of the positive z axis. Such planes are tilted slightly so that
the plane encounters one vertex at a time among the ones
with a given z. The change of the Euler characteristic when
sweeping over a vertex v depends on the relative position
(elevation) of the neighbors of v. Each vertex v in ∂O is
adjacent to either three or four other vertices in ∂O , and it is
processed as follows:

– If all neighbors come after v (they are higher than v w.r.t.
the elevation function f ), then v creates a new compo-
nent of the lower level set, and the Euler characteristic is
increased by 1.

– If all neighbors come before v (they are lower than v w.r.t.
f ), then v closes off a cavity in the lower level set, and
the Euler characteristic is also increased by 1.

– If some neighbors come before v and some after v (some
are higher and some are lower than v w.r.t. f ), and the
ones coming before (after) v are consecutive around v,
then v is a regular vertex inducing no change in the Euler
characteristic of the lower level set.

– If v has four neighbors in ∂O , which are alternating
before-after-before-after v w.r.t. f , then v either merges
two different connected components, or it creates a tunnel
by connecting two pieces of the same connected compo-
nent. The Euler characteristic of the lower level set is
decreased by 1.

The justification for such increments is given in Sect. 2.5.
The implementation first loops on the faces of the given

object boundary ∂O , extracts the vertices of each hex-face
(this guarantees to get each vertex at least once) and puts them
into an array. Then, the array is sorted lexicographically and
duplicates are removed.

Before starting themain loop on the sorted vertices,χ = 0
is set. Then, a sweep over the vertices of ∂O , contained in the
sorted array, is performed. These are the actions performed
while sweeping over a vertex v:

– Get the (at most four) boundary faces incident in v;
– For each incident boundary face f , get the vertices

w1, w2 preceding and following v along the boundary
of f . If w1 < v < w2 or w1 > v > w2 in the lexico-
graphic order, then record one switch;

– Let s be the total number of recorded switches at all inci-
dent boundary faces of v (s is even and 0 ≤ s ≤ 4). If
s = 0 then increment χ ; if s > 2 then decrement χ ;
otherwise, leave χ unchanged.
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Fig. 4 The object composed of one voxel is swept by moving a plane
which stops at the vertices

Figure 4 shows how the algorithm works on a small input
consisting of just one voxel. Here, each vertex has three
neighbors, so it cannot have more than two sign switches.
Initially χ = 0. For the first vertex with z = −1, e.g., A,
all neighbors are not yet swept, there are no switches and χ

increases to 1. The other vertices with z = 0 have one or
two swept neighbors, therefore two switches and χ is not
changed. The same happens for all other vertices, with the
exception of the last swept vertexwith z = 1. For the last one,
e.g., E , all neighbors are already swept, there are no switches
and χ increases to 2. Therefore, χ(O) = χ(∂O)/2 = 1.

The type of the change in χ induced by each vertex v is
determined locally, as it depends only on the neighbors of v

in ∂O and their relative position with respect to v.

4.3 First Algorithm Based on the Discrete
Gauss–Bonnet theorem (GB1)

This algorithm implements Formula (4): it computes and
sums the contributions κ(v) = δ(v)/2π of each vertex v,
i.e., its angle deficit divided by 2π . In order to determine the
contributions, we classify the vertices on the boundary ∂O
of O based on the local configuration of the incident voxels,
into four classes:

1. M1 is the set of vertices incident to one voxel in O ,
2. Mq

2 is the set of vertices incident to two quad-adjacent
voxels in O (e.g., the four blue vertices in Fig. 5b),

3. Mh
2 is the set of vertices incident to two hex-adjacent

voxels in O (e.g., the six green vertices in Fig. 5c),
4. M3 is the set of vertices incident to three voxels in O

(e.g., the red vertex in Fig. 5d).

We compute the contribution κ of each vertex in ∂O to
the Euler characteristic χ(∂O) as follows:

1. A vertex v ∈ M1 is incident to one quad-face and two
hex-faces, so
κ(v) = 1

2π · (2π − (2 · 2π
3 + π

2 )) = 1
12 .

(a) (b) (c) (d)

Config. M1 Mq
2 Mh

2 M3 χ(∂O)
(a) 24 0 0 0 1

1224 = 2
(b) 40 4 0 0 1

1240− 1
34 = 2

(c) 36 0 6 0 1
1236− 1

66 = 2
(d) 46 2 8 2 1

1246− 1
32− 1

68 + 1
122 = 2

Fig. 5 An object O composed of a a single voxel, b two quad-adjacent
voxels, c two hex-adjacent voxels, d two quad-adjacent voxels and a
third voxel hex-adjacent to both. Vertices belonging to M1, M

q
2 , M

h
2

and M3 are depicted in black, blue, green and red, respectively. The
table shows the number of vertices in each set and the computation of
the Euler characteristic of ∂O

2. A vertex v ∈ Mq
2 is incident to four hex-faces, so

κ(v) = 1
2π · (2π − (4 · 2π

3 )) = − 1
3 .

3. A vertex v ∈ Mh
2 is incident to two quad-faces and two

hex-faces, so
κ(v) = 1

2π · (2π − (2 · 2π
3 + 2 · π

2 )) = − 1
6 .

4. A vertex v ∈ M3 is incident to one quad-face and two
hex-faces, so
κ(v) = 1

2π · (2π − (2 · 2π
3 + π

2 )) = 1
12 .

Then, χ(∂O) = ∑
v∈∂O

κ(v).

In Fig. 5, we show the computation of the Euler character-
istic according to the above formula on some examples, all
having the Euler characteristic χ(∂O) equal to 2.

The algorithm that we denote as GB1 visits all vertices
in ∂O , classifies them according to the M set they belong
to, and iteratively adds the corresponding contribution of the
vertex to χ .

For convenience, the implementation computes the quan-
tity 12χ and, at the end, divides it by 12. Initially, 12χ is
set to zero. Then, the algorithm loops on the given faces of
∂O . For each face f , it gets its vertices and, for each vertex
v of f , if v is not marked, it computes the contribution of
v and marks it. Vertex marking ensures that each vertex is
considered only once.

4.4 Second Algorithm Based on the Discrete
Gauss–Bonnet Theorem (GB2)

The second algorithm that we denote as GB2 also refers to
Formula (4), but uses the fact that the sum of the angles over
the vertices in ∂O is equal to the sum of the angles over
the faces in ∂O . For quad-faces, this sum is 2π , and for hex
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Block Casting Duck Fertility Hand Skull Spring Teapot

Fig. 6 Shapes whose BCC discretizations have been used in the experiments. In addition, a solid ball Ball and a hollow ball Bubble have been used

Table 1 Information about the
discretized shapes composing
the first test set used in the
experiments. N denotes the side
of the reference grid, nO the
number of black voxels, n∂O the
number of boundary faces,
r = n∂O/nO , and r × N

Object N nO r r × N Object N nO r r × N

Block 50 33,742 1.139 56.95 Hand 50 16,870 1.342 67.10

100 269,430 0.569 56.90 100 134,917 0.676 67.60

150 911,502 0.380 57.00 150 455,364 0.451 67.65

200 2,160,012 0.287 57.40 200 1,079,177 0.338 67.60

250 4,217,120 0.229 57.25 250 2,103,947 0.271 67.75

Casting 50 8712 4.011 200.55 Skull 50 31,021 2.089 104.45

100 69,197 2.052 205.20 100 247,644 1.049 104.90

150 229,415 1.400 210.00 150 835,959 0.700 105.00

200 545,201 1.050 210.00 200 1,981,223 0.525 105.00

250 1,069,139 0.837 209.25 250 3,870,233 0.420 105.00

Duck 50 63,287 0.672 33.60 Spring 50 2944 4.213 210.65

100 506,274 0.338 33.80 100 23,510 2.129 212.90

150 1,708,533 0.225 33.75 150 79,307 1.425 213.75

200 4,049,806 0.169 33.80 200 188,129 1.070 214.00

250 7,909,964 0.135 33.75 250 367,342 0.857 214.25

Fertility 50 13,631 1.763 88.15 Teapot 50 27,117 0.760 38.00

100 109,258 0.886 88.60 100 216,884 0.383 38.30

150 368,651 0.593 88.95 150 835,959 0.224 33.60

200 874,053 0.445 89.00 200 1,734,889 0.192 38.40

250 1,707,078 0.356 89.00 250 3,388,194 0.153 38.25

faces, it is 4π . Then,

2πχ(∂O) = ∑
v∈∂O

δ(v)

= ∑
v∈∂O

(2π − ∑
v∈ f

α(v, f ))

= ∑
v∈∂O

2π − ∑
v∈∂O

∑
v∈ f

α(v, f )

= 2πc0 − ∑
f ∈∂O,v∈ f

α(v, f )

= 2πc0 − 2πcq2 − 4πch2 .

The same formula could be obtained from the known rela-
tion χ(∂O) = c0−c1+c2 = c0−c1+cq2 +ch2 by noting that
each edge is shared by two faces, because ∂O is manifold.
Therefore, 2c1 = 4cq2 + 6ch2 and χ(∂O) = c0 − cq2 − 2ch2 .

The algorithm visits all faces in ∂O and counts the number
cq2 of quad-faces and the number ch2 of hex-faces. It also
counts the number c0 of vertices in ∂O , by counting, for
each face, all its vertices which are not yet marked, and then

marking them. Then, the Euler characteristic is computed as

χ(∂O) = c0 − cq2 − 2ch2 .

For example, in Fig. 5b we have 44 vertices, 10 quad-faces
and 16 hex-faces; therefore, χ(∂O) = 44 − 10 − 32 = 2.

4.5 Computational Complexity

We evaluate the time complexity of the algorithms in the
worst case. We denote with nO the number of voxels in the
object O and with n∂O the number of faces in its boundary
surface ∂O .

Algorithm VOL is in O(nO) and SUR is in O(n∂O),
because they perform a constant amount of work for each
voxel in O , and for each face in ∂O , respectively. SUR does
not need to compute the sorted sequence of faces in the lexi-
cographic order as it just tests whether one face comes before
or after another (adjacent) one.
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Fig. 7 Running times of the boundary-based algorithms SUR, MOR, GB1 and GB2. Times are in milliseconds
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Fig. 8 Running times ofGB2 and ofGB2+BND (on y-axis) compared
to the running time of VOL (on x-axis). The dots corresponding to the
same test objects at different resolutions are connected by segments
(resolution increases from left to right)

Algorithm MOR is in O(n∂O log(n∂O)) due to the pre-
liminary sorting of the boundary vertices in the lexicographic
order, which dominates overall time complexity.

Algorithms GB1 and GB2 are in O(n∂O). For example,
GB1 scans the faces of ∂O , gets the (four or six) vertices
of each face, for each vertex v gets the incident faces of
v in the BCC grid (they are four hex-faces and two quad-
faces) and counts the ones belonging to ∂O (this is done in
constant time because we mark the faces of ∂O) to compute
the contribution κ(v). In total, GB1 visits ≤ 6n∂O vertices
and their ≤ 36n∂O incident faces, that is O(n∂O).

5 Experiments and Results

We implemented all the algorithms for computing the Euler
characteristic of an object in the BCC grid, described in
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Fig. 9 The ratios of running times of GB2 and of GB2+BND over the running time of VOL as functions of r = n∂O/nO . The right image is a
detail of the left one, focusing on r < 1

Sect. 4, namely algorithms VOL, SUR, MOR, GB1 and
GB2.

We also implemented an algorithm BND to extract the
boundary surface of a given BCC object, which is needed to
produce the input for surface-based algorithms to compute
the Euler characteristic (i.e., all the above ones, but VOL).

The algorithms have been coded in C language and run
on a PC equipped with an Intel CPU i7-2600K CPU at 3.4
Gigahertz with 32 Gigabytes of RAM.

Our experiments are aimed at:

1. Comparing the four surface-based algorithms among
them, identifying the most efficient one.

2. Comparing the surface-based and the volume-based
approach to the Euler characteristic computation, identi-
fying the conditions under which the former or the latter
is more efficient.

5.1 Comparing the Four Boundary-Based Algorithms

Our test set is obtained by discretizing some shapes from the
Digital Shape Workbench,1 shown in Fig. 6. Such shapes are
given as tetrahedral meshes filling an object, or as triangle
meshes bounding it. All the shapes have been discretized by
first rescaling them so that their bounding box fits a cubic
grid of side N (i.e., N 3 cubes) and then considering the BCC
grid, where a BCC voxel is centered at each cube center and
at each cube vertex. A BCC voxel has been set to black if and
only if its center lies inside the object. The used grid sides
are N = 50, 100, 150, 200, 250.

1 http://visionair.ge.imati.cnr.it/ontologies/shapes/.

Table 1 summarizes the information about the resulting
BCC images: the object name, the grid side N , the number
nO of black voxels, and the ratio r = n∂O/nO (where n∂O is
the number of boundary faces). As the volume of an object
grows roughly with N 3 and the area of its boundary surface
with N 2, the ratio r decreases with resolution and is inversely
dependent on the grid side N . The last column in Table 1
shows the value of r × N , which is roughly constant for each
shape.

The running times, in milliseconds, are shown in Fig. 7.
As expected, the running times are linearly dependent on
the size n∂O of the boundary surfaces, with a constant that
is roughly 0.0062 for SUR, 0.0056 for MOR, 0.0059 for
GB1and0.0024 forGB2 (with variations involving the fourth
decimal digit). Therefore, each of the three new boundary-
based algorithms represents an improvement over the classic
one SUR based on cell counting.

The fastestmethod isGB2, i.e., the second algorithmusing
the Gauss–Bonnet theorem. The running time ofGB2 is less
than 39% of SUR, less than 44% ofMOR, and less than 42%
ofGB1. AlgorithmsMOR andGB1 are not much faster than
SUR, with the former slightly faster than the latter (95% and
96%, respectively).

5.2 Comparison with the Volume-Based Approach

As expected, the running times ofVOL are linearly depen-
dent on the number nO of black voxels, with a constant
roughly equal to 0.0016 (with variations involving the fifth
decimal digit).

We compare the fastest boundary-based algorithm, i.e.,
GB2, with the volume-based one VOL, with the aim of
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Fig. 10 Running times of the fastest boundary-based algorithm GB2 (red), the algorithm for extracting the boundary surface (orange), and the
volume-based algorithm for Euler computation VOL (yellow). Times are in milliseconds

understanding under which conditions the former is conve-
nient over the latter. If the boundary surface is either given,
or has to be extracted for other purposes, it is sufficient that
the running time of GB2 is smaller than the running time
ofVOL. Otherwise, it is necessary that the sum of execution
times ofGB2 andof boundary extractionBND is smaller than
VOL. Figure10 shows the above running times, obtained on
the same test set used in Sect. 5.1. Referring to Fig. 10, we
compare the bottom yellow rectangle (VOL) with either the
red rectangle (GB2) or the union of the red and orange rect-
angles (GB2+BND), i.e., the left part of the top rectangle, or
the entire top rectangle.

For an easier comparison, Fig. 8 plots the running times
of VOL on the x-axis and of GB2 and GB2+BND on the y-
axis. A line connects the five resolutions of each test object.

The cases in whichGB2 (orGB2+BND) is faster than VOL
are the dots lying below the line y = x .

The boundary-based approach to Euler computation is
more convenient than the volume-based onewhen the bound-
ary surface is small compared to its enclosedvolume (in terms
of the number of cells), i.e., when the ratio r = n∂O/nO
is small. The plots in Fig. 9 show the ratio of running times
GB2/VOL and (GB2+BND) /VOL as a functionof r . Indeed,
Fig. 9 shows a linear dependency on r , with factor � 1.5
for GB2/VOL and � 4.1 for (GB2+BND)/VOL. GB2 is
faster than VOL when r < 0.66. The total running time
GB2+BND, including boundary extraction, is smaller than
that of VOL when r < 0.25.

Small values of r aremore likely to happenwhen the shape
is “fat” and when the resolution of the discretization (the
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Fig. 11 Hollow spheres with three different widths (the inner radius
is 92%, 68%, 36% of the outer radius, respectively). The shapes are
shown with reference cubic grid side N = 25

Fig. 12 Configuration of M3 isolated BCC voxels, with M = 3

size N of the grid) is high. Fat objects (e.g., Duck or Teapot)
have r < 0.66 for (almost) all values of N and r < 0.25
for N ≥ 150. Objects with thin or elongated parts, such as
Casting and Spring, never have r < 0.66 in our experiments.
In Sect. 5.3 we will analyze the relation between the shape of
an object and the ratio r , influencing the relative performance
of the algorithms.

5.3 Analysis of the Impact of the Object Shape

In Sect. 5.2 we noted that the boundary-based algorithm
GB2 outperforms the volume-based oneVOLwhen the ratio
r = n∂O/nO is small enough. To further analyze the rela-
tion between the shape of an object, the resolution of the
discretization, and the ratio r , we built three artificial test
sets:

Fig. 13 The two different discretization schemes for hollow spheres
BubbleA and BubbleA’. At the lower resolution N = 25 the width is
one voxel and 8% of the outer radius. At double resolution N = 50, the
width is two voxels and still 8% of the outer radius in the first scheme.
In the second scheme, the width remains one voxel and becomes 4% of
the outer radius

1. A set of disjoint BCC voxels. This is the object with
the largest boundary surface with respect to its volume.
The ratio is r = 14 because all faces of each voxel
lie on the boundary. Our isolated voxels are arranged
in a regular pattern. Considering a reference cubic grid
of side N , they are located at the centers of the cubes
with even position in all three coordinate axes. So, the
number of black BCC voxels is M3 with M = N/2.
The test objects, called Voxels, have been generated for
N = 10, 20, 40, 60, 80, 100, 120, 140, 160. Figure12
shows a smaller example, with N = 6 and M = 3.

2. Four (hollow) spheres with different width: 8%, 32%,
64% and 100% of the outer radius. We denote such
objects as BubbleA, BubbleB, BubbleC, and Ball, respec-
tively. The last one is a solid spherewith no cavity, and it is
the objectwith the smallest boundary surfacewith respect
to its volume. The other three hollow spheres correspond
to a decreasing ratio r and are shown in Fig. 11. Such
spheres have been discretized, as done for the shapes in
Sect. 5.1, with reference grid of side N = 25, 50, 75,
100, 125, 150, 200. The width of the hollow spheres
remains a fixed percentage of the outer radius and spans
a larger number of voxels at higher resolution.

3. Another three hollow spheres, called BubbleA’, Bub-
bleB’, BubbleC’, with the same width as the above ones
at the base resolution (N = 25), but using another
discretization scheme at higher resolutions: the width
(difference between outer and inner radius) remains con-
stant in terms of the number of voxels, at all resolution.
The cavity gets larger at higher resolutions. Figure13
illustrates the two discretization schemes.

In Voxels, the number n∂O of boundary faces is 14 times
the number nO of black voxels, so the running times of
both GB2 and VOL are linear in nO . The ratio of running
times GB2/VOL is slightly decreasing as nO grows (from
23 with N = 10 and 125 voxels, to 21 with N = 160 and

123



Journal of Mathematical Imaging and Vision

0 100 200 300 400 500 600 700 800 900

VOL time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
G

B
2 

or
 (

G
B

2+
B

N
D

) 
tim

e
104

GB2
GB2+BND
y=x

Fig. 14 Isolated voxels. The ratios of running times of GB2 and of
GB2+BND as a function of the running time of VOL

Table 2 Information about the BCC objects representing solid and hol-
low spheres. N denotes the side of the reference grid, nO the number
of black voxels, n∂O the number of boundary faces, r = n∂O/nO , and
(for the first discretization scheme) r × N

N nO r r × N

Ball 25 16,361 0.771 19.274

50 131,019 0.389 19.441

75 441,711 0.259 19.400

100 1,047,289 0.194 19.384

125 2,045,557 0.155 19.398

150 3,535,559 0.129 19.395

175 5,612,135 0.111 19.391

200 8,376,753 0.097 19.395

N nO r r × N

BubbleA 25 3686 6.336 158.410

50 29,182 3.220 160.997

75 97,682 2.158 161.849

100 231,938 1.616 161.641

125 452,886 1.294 161.757

150 783,734 1.077 161.528

175 1,242,630 0.924 161.663

200 1,853,562 0.809 161.859

BubbleB 25 11,296 1.624 40.590

50 89,970 0.826 41.309

75 302,848 0.552 41.392

100 717,906 0.414 41.368

125 1,402,624 0.331 41.372

150 2,424,482 0.276 41.353

175 3,847,716 0.236 41.361

200 5,743,214 0.207 41.367

Table 2 continued

N nO r r × N

BubbleC 25 16,022 0.844 21.090

50 128,182 0.428 21.402

75 431,990 0.285 21.372

100 1,024,294 0.214 21.372

125 2,000,582 0.171 21.387

150 3,457,894 0.146 21.385

175 5,489,138 0.122 21.376

200 8,192,746 0.107 21.385

N nO r

BubbleA’ 25 3686 6.336

50 15,416 6.319

75 34,370 6.472

100 62,144 6.406

125 97,490 6.404

150 140,840 6.404

175 189,862 6.477

200 248,468 6.473

BubbleB’ 25 11,296 1.624

50 53,354 1.627

75 126,916 1.618

100 231,938 1.616

125 368,332 1.616

150 537,898 1.611

175 735,448 1.616

200 965,530 1.616

BubbleC’ 25 16,022 0.844

50 96,692 0.742

75 247,942 0.727

100 470,240 0.722

125 762,898 0.721

150 1,127,096 0.720

175 1,560,886 0.719

200 2,064,188 0.719

512K voxels). This probably depends on the hidden con-
stants, and on the larger amount of fixed work in VOL, that
becomes relevant for small nO . The ratio of running times
(GB2+BND)/VOL ranges from 55 to 60.5, with similar, but
more noisy, variations when increasing N . These behaviors
are plotted in Fig. 14.

Table 2 summarizes the information for the (hollow)
spheres with the two discretization schemes, showing the
same information as Table 1.

For Ball and BubbleA, BubbleB, BubbleC, the behavior of
r is similar to the shapes in Table 1, i.e., r is roughly inversely
proportional to the grid side N . For BubbleA’, BubbleB’,
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Fig. 15 Running times for the solid sphere Ball and the three hollow
spheres BubbleA,B,C with the first discretization scheme. a The ratios
of running times ofGB2 and ofGB2+BND as a function of the running

time of VOL. b The ratios of running times of GB2 and ofGB2+BND
over the running time of VOL as functions of r = n∂O/nO (detail for
r < 1)

BubbleC’, instead, r is almost constant w.r.t. the resolution
N .

The running times ofVOL confirm to be linear in the num-
ber nO of black voxels,with amultiplicative factor� 0.0016.
The running times of GB2 are roughly linear in the number
n∂O of boundary faces, with a factor that is slightly smaller
for Ball, BubbleA, BubbleB, BubbleC (0.0021–0.0022) than
for BubbleA’, BubbleB’, BubbleC’ (0.0023–0.0025).

Confirming the results inSect. 5.2,GB2 is faster thanVOL
when r < 0.7 and GB2+BND is faster than VOL when
r < 0.25. The plots in Figs. 15 and 16 compare the running
times of GB2 and GB2+BND, with the running times of
VOL.

In Ball, r = 0.77 at the lowest resolution, and at higher
resolutions it ranges from 0.39 to 0.15; therefore, GB2 is
almost always the best algorithm. In the hollow spheres Bub-
bleA, BubbleB, BubbleC, r becomes< 0.7 at a resolution that
is coarser if the inner cavity is smaller. This confirms that the
boundary-based approach is preferable for fat objects.

In BubbleA’, BubbleB’, BubbleC’, the ratio r is almost
constant w.r.t. the resolution, and so is the ratio of running
times of GB2 and (GB2+BND) over that of VOL. For Bub-
bleA’ andBubbleB’, the running time ofGB2 is about 9 times
and: 2.2-2.3 times that of VOL, respectively. For BubbleC’
the two running times are almost equal (GB2 being slightly
slower).

The value of the ratio r = n∂O/nO , i.e., the size of the
boundary surface of an object O over its inner volume, is the
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Fig. 16 Running times for the three hollow spheres BubbleA’,B’,C’
with the second discretization scheme. The ratios of running times of
GB2 and of GB2+BND as a function of the running time of VOL

key point to determinewhether the boundary-based approach
or the volume-based one will be more efficient.

If the surface of the object is already available, we can
compute r and, based on its value, select the appropriate
algorithm for computing the Euler characteristic.

As the value of the ratio r is inversely dependent on the
grid resolution N , this property suggests that the availability
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of 3D images with higher and higher resolution will make
the surface-based approach more convenient in the future.

6 Concluding Remarks

We explored the computation of the Euler characteristic of a
3D object with the surface-based approach, i.e., by process-
ing only the boundary cells of the cell 3-complex associated
with the object, rather than all cells. This requires that the
input object is well-composed, and therefore, we considered
objects in the BCC grid. We described the classic method
based on cell counting and three new ones: one based on an
alternative definition of the Euler characteristic provided by
Morse theory, and two based on the discrete Gauss–Bonnet
theorem.

Among the proposed methods, the one based on discrete
Gauss–Bonnet theorem and cycling on faces, outperforms
the classic 2D cell counting algorithm by a factor 0.4 for
the tested data sets. Experiments have also shown that the
boundary-based approach is faster than the classic volumetric
one when the number of boundary cells is less than 66% the
number of interior cells (or less than 25%, if the boundary
has to be extracted just for this purpose), which is likely to
happen if the represented 3D shape has no thin parts and the
discretization has a sufficient resolution.

The algorithms proposed in this paper are not limited to
objects in the BCC grid. The same approaches can be applied
to well-composed objects in grids of any type (including
well-composed cubic ones), and in general to 3-manifold
polyhedral objects. For example, the Gauss–Bonnet theorem
based on faces for a well-composed cubic object would com-
puteχ(∂O) as c0−c2 (as already noted in [8]).We expect that
similar results will be obtained experimentally, perhaps with
different ratios for discriminating the case when a surface-
based computation of the Euler characteristic performs better
than a volume-based one.
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