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Introduction
The origin, propagation, and interaction of high-energy Cosmic Rays (CRs) with the at-

mosphere are not yet fully understood. In particular, we lack precise measurements of the CR
hadronic interactions in the very forward region. This work focuses on the investigation of
the CR secondary particle properties via the study of high-energy atmospheric muons. Muon
detection is performed underwater with the KM3NeT neutrino telescopes.

The KM3NeT research infrastructure comprises two neutrino telescopes at the bottom of
the Mediterranean Sea. The KM3NeT/ARCA telescope is in construction off-shore the coast
of Sicily, Italy, at a depth of ∼3.5 km. Its primary scientific aim is to study high-energy
cosmic neutrinos in the TeV-PeV range. The KM3NeT/ORCA detector has a smaller and
denser configuration with respect to KM3NeT/ARCA since its primary goal is to investigate
atmospheric neutrino oscillations and neutrino mass hierarchy which requires a lower energy
threshold (GeV) for neutrino detection. The telescope is located around 40 km away from
Toulon, off the coast of France, at ∼2.5 km depth.

Only muons with TeV energies and above at sea level are able to reach the depths of the
KM3NeT detectors. This energy range is about 3 orders of magnitude higher than for the
muons detected in Extensive Air Shower (EAS) experiments. Thus, the KM3NeT measurement
is complementary to the investigations of the so-called muon puzzle, i.e. deficit of GeV muons
detected at the ground with respect to the calculations with known CR flux and hadronic
interactions. In particular, the most of low energy muons are produced in the meson decays in
the lower atmosphere, while the most energetic muons originate from the very first interactions
of CRs with the atmosphere nuclei.

This work comprises five chapters excluding the introduction and conclusion sections. The
first chapter is devoted to the overview of the CR measurements and the EAS description. The
energy spectrum of CRs, their origin and acceleration mechanism are discussed first. Then, the
results from direct and indirect CR experiments are presented. The chapter ends with the EAS
description and the introduction to the muon puzzle.

In the second chapter, the KM3NeT neutrino telescopes are discussed. In particular, the
detection principle used in KM3NeT and the telescope design are described. Other large-volume
neutrino telescopes are also mentioned briefly.

The atmospheric muon simulation for the KM3NeT experiment is presented in the third
chapter. During my PhD, I was one of the developers of atmospheric muon simulation software
for KM3NeT. The chapter starts with the CORSIKA software description that was used for
the EAS simulations. Then, the muon propagation in water, the simulation of the Cherenkov
radiation and detector response, and the event reconstruction algorithms used in KM3NeT are
described. The reconstruction capabilities of the KM3NeT detectors are also discussed. Finally,
the CR energy spectrum as seen by the KM3NeT telescopes is presented.

In the fourth chapter, the framework that I developed for the MUPAGE parametrization
tuning on CORSIKA is presented. CORSIKA provides atmospheric muons at sea level, which
can be propagated till the detector, performing the full MC simulation of EAS development
through the atmosphere. The main drawback of this approach is high CPU time. To reduce
CPU time requirement, the simulation of atmospheric muons in KM3NeT is based on the fast
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MC generator MUPAGE. It generates the muon bundle kinematics features at a certain sea
depth and zenith angle based on parametric formulas. Values of the parameters were originally
obtained starting from a full MC simulation performed with the HEMAS package and fitting
the results to MACRO measurements. I have developed a framework to adjust the MUPAGE
parameters using the CORSIKA simulations with the most recent physics models available, both
for the hadronic interaction description (Sibyll 2.3d) and for the CR mass composition (GSF).

The last chapter is devoted to the comparison of the KM3NeT data with the MC simulation
which includes the aforementioned models. First, the TeV muon flux at sea level resulting from
the CORSIKA simulations is compared to the data from ground-based CR experiments. Then,
the KM3NeT capabilities to reconstruct the muon energy and direction are discussed. After
that, the KM3NeT data is compared to the MC simulations. Several systematic uncertainties
are considered in the comparison: the uncertainty on CR flux and its composition, on the
high-energy hadronic interaction model, on light absorption length in seawater, and on the
quantum efficiency of the KM3NeT photomultiplier tubes. A mismatch between the data and
MC predictions is observed which goes beyond the uncertainties considered. The discrepancy is
then discussed in details together with the known results from EAS experiments and from the
IceCube neutrino telescope.
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1 Cosmic Rays and Extensive Air Showers

Cosmic Rays (CRs) are ionized nuclei, mainly protons, that hit the Earth’s atmosphere at
a rate of about 1000 particles per square meter per second [1]. They have been extensively
studied for more than 100 years and a number of milestone discoveries in physics, such as the
discovery of positrons [2] and muons [3], have been made possible thanks to CRs. Their history
starts back in 1912 with the discovery of Victor Hess [4]. Three years before Hess’ publication,
Theodor Wulf measured the rate of ionization near the top of the Eiffel Tower using a portable
electroscope [5]. The expectation was that the radiation originates from the Earth and, hence,
the ionization rate was expected to decrease with height. Indeed, the rate decreased at the top
of the Eiffel Tower but much less than anticipated. In order to further test the hypothesis about
the radiation origin, Victor Hess made a series of balloon flights, the highest flight was at an
altitude of 5 km. He found that the ionization rate first decreased with height and then began to
rise rapidly. The Hess results were later confirmed by Werner Kolhörster in a number of flights
up to 9200 m in altitude [6]. Fig. 1.1 illustrates the results of the ionization measurements done
by Hess and Kolhörster.

Figure 1.1: Dependence of the ionization on the altitude above the ground as measured during
the Hess (light blue points) and Kolhörster (dark blue points) flights. The figure is
taken from [7].

1.1 Energy spectrum

The energy of CRs, E, covers a wide range of more than 12 orders of magnitude, from less
than a GeV up to more than 1011 GeV. The all-particle spectrum together with the individual
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Chapter 1. Cosmic Rays and Extensive Air Showers

fluxes of nuclei up to 100 TeV is presented in Fig. 1.2. The flux was multiplied by E2.7 to
compensate for its fast drop with energy.

Figure 1.2: All-particle flux of CRs (open symbols) as measured by the HAWC [8], IceCube [9],
KASCADE-Grange [10, 11], and Piere Auger [12, 13] experiments. The coloured solid
symbols illustrate the fluxes of individual elements, protons (red), helium (yellow),
oxygen (green), and iron (blue), that were measured by the direct CR experiments,
AMS [14, 15], CREAM [16, 17], and HEAO [18]. The black solid line is the empirical
fit of the data [19]. The figure is taken from [20].

In general, the spectrum follows a power law shape with a differential spectral index between
2.7 and 3.3 [21] and with two known transition regions. There is a softening of the spectrum
at the energies around 3 PeV, known as the knee. The second transition, the so-called ankle,
is at the energies around 3 EeV where the spectrum becomes harder again. Some books report
also the third region with the spectrum steepening around 100 PeV, the so-called "second knee",
which is believed to be accompanied by a transition to heavy primaries [22].

The reason for the first transition region remains unclear. The possible causes for the knee
region are the transition from the supernovae to other galactic CR accelerators [23], propagation
effects [22], or the end of the spectrum of galactic CR sources [1].

The reason for the ankle region is also not clearly identified. It may indicate the transition to
CR particles that originate from extra-galactic sources [24].

Also, there is a cut-off at the end of the energy spectrum, around 50 EeV. One of the ex-
planations for the cut-off is the Greisen-Zatsepin-Kuzmin (GZK) effect [25, 26]. The GZK
effect implies that ultra-high energy protons start to interact with the microwave background
at the energies of about 70 EeV [1] producing pions via a ∆-resonance. Hence, the particles
lose their energy in each interaction until the energy is lower than the ∆-resonance produc-
tion threshold which leads to the suppression of the flux. The energy at which the integral
flux drops by a factor of two with respect to the no-cut-off scenario is E1/2 = 53 EeV assum-
ing the GZK effect. The Pierre Auger Observatory measured the E1/2 value and the result is
E1/2 = 22 ± 1 (stat.) ± 3 (syst.) EeV [27], lower than the GZK prediction. Therefore, it is

7



Chapter 1. Cosmic Rays and Extensive Air Showers

still not clear whether the cut-off is caused by the GZK effect alone or by its combination with
other processes, such as the limited acceleration energy or a mixed CR mass-composition at the
sources [28].

The main questions that arise about CRs are their origin, acceleration mechanism, and mass
composition. The first two questions are discussed in Sec. 1.2 and Sec 1.3, correspondingly.
The composition of CRs is considered within the results from the direct, Sec. 1.4, and indirect
experiments that explore Extensive Air Showers (EAS) to study CRs, Sec. 1.5.

1.2 Origin of Cosmic Rays
Since CRs are charged particles they are deflected in the magnetic fields during their propa-

gation from the sources to the Earth. The CR flux observed on the Earth is very isotropic up
to ultra-high energies. At the energies above ∼1018-1019 eV, there are observations of the CR
anisotropies reported by the Telescope Array [29] and Pierre Auger Observatory [30]. The possi-
bility to track back the particle paths and identify the sources even for ultra-high energy CRs is
still an open question since the extragalactic magnetic fields are poorly known [22]. Therefore,
the exact origin of CRs is still under debate and there are only possible candidates that may
accelerate particles up to the measured CR energies.

The maximum acceleration energy of the potential CR sources can be estimated using the
so-called Hillas criterion [31]. The criterion states that a charged particle is able to escape a CR
accelerator if its gyroradius, rg, is larger than the size of the accelerator. The gyroradius, also
known as the Larmor radius, is the radius of a particle’s circular motion in the homogeneous
magnetic field with strength B: rg = p/qB, where p is the particle momentum and q is its
charge. Hence, in order to be able to escape the cosmic accelerator, the particle must have
sufficiently high energy. If the size and magnetic field strength of the potential CR source are
known then it is possible to estimate up to which energy the particle can be accelerated.

The Hillas criterion allows an estimation of possible CR sources for different energy regions
of the CR spectrum, Fig. 1.3. The possible galactic CR sources illustrated on the plot are
pulsars, such as neutron stars [32] and white dwarfs [33], sun spots (for low-energy CRs) [34],
microquasars (binary system involving a black hole and a companion star) [35], interplanetary
medium [36], supernova remnants [37], galactic disc [38] and halo [39]. Also, there are several
extragalactic candidate sources, in particular active galactic nuclei [40], gamma ray bursts [41],
blazars [42], lobes of radio galaxies [43], galaxy clusters [44], wind from starburst galaxies [45],
and intergalactic medium [46].
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Chapter 1. Cosmic Rays and Extensive Air Showers

Figure 1.3: The Hillas plot in its modern adaptation. The figure shows the upper limits of the CR
energy that can be reached in different sources. The limits depend on the size of the
cosmic object and on its magnetic field strength. The red-dashed lines illustrate the
knee and ankle transition regions and the GZK cut-off for proton CRs. The dotted
gray line is the upper limit from synchrotron losses in the sources and interactions
with the cosmic photon background. The green dot represents the size and the
magnetic field strength of the LHC experiment. This figure is taken from [47].

1.3 Acceleration mechanism

Exact mechanisms that can explain how CRs gain their energies for the whole spectrum still
remain unclear. One possible and commonly used model of CR acceleration is the so-called Fermi
mechanism. It was first proposed by Enrico Fermi in 1949 to explain the origin of CRs [48]. The
mechanism is based on the interactions ("encounters") between charged particles and magnetic
fields, which can lead to the iterative energy gain of the particles. There are the first- and
second-order Fermi acceleration mechanisms, that differ in the way particles are scattered and
accelerated.

In his original paper, Fermi considered the charged particle interactions with the magnetized
interstellar clouds. This is now known as the second-order Fermi acceleration mechanism which
is discussed here firstly in Sec. 1.3.1. The first-order mechanism involves interactions of particles
with a large plane shock front, Sec. 1.3.2.

1.3.1 Second-order Fermi acceleration

Scheme of the second-order acceleration mechanism is illustrated in Fig. 1.4 [1]. A charged
particle with initial energy E1, in the lab frame, encounters with a cloud of magnetized plasma
that moves at a speed V⃗ . The particle enters the cloud at an angle θ1 and leaves it at an angle
θ2 with respect to the cloud’s moving direction.
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Chapter 1. Cosmic Rays and Extensive Air Showers

Figure 1.4: Sketch of the second-order Fermi acceleration mechanism for the charged particle
with initial energy E1 encountering with the magnetized cloud of a speed V⃗ . The
figure is taken from [1].

In order to estimate the energy difference before and after the interaction, it is useful to
recalculate the particle energy in the cloud reference frame, i.e. the frame where the magnetized
plasma is at rest. This energy, E′

1, is given by [49]:

E′
1 = E1 − (V⃗ · p⃗)√

1 − V 2/c2 =
E1 − V

c pc cos θ1√
1 − V 2/c2 , (1.1)

where p⃗ is the particle momentum. Denoting 1/
√

1 − V 2/c2 = γ and V
c = β, and assuming that

the particle is highly-relativistic so that E1 ≈ pc, Eq. 1.1 becomes

E′
1 = γE1(1 − β cos θ1). (1.2)

Since all the interactions in the cloud magnetic field are elastic, the particle energy after
leaving the cloud remains the same, E′

2 = E′
1. The final energy in the lab frame after the

encounter is then:

E2 = γE′
2(1 + β cos θ′

2) = γ2E1(1 − β cos θ1)(1 + β cos θ′
2). (1.3)

Hence, the relative difference between the final and initial energy is

∆E

E1
= γ2(1 − β cos θ1)(1 + β cos θ′

2) − 1 = 1 − β cos θ1 + β cos θ′
2 − β2 cos θ1 cos θ′

2
1 − β2 − 1. (1.4)

In order to estimate the average energy difference, the result obtained in Eq. 1.4 must be
averaged over the possible incoming, cos θ1, and outgoing, cos θ′

2, directions. All the scatterings
in the cloud magnetic field are assumed to be isotropic, therefore the probability per unit solid
angle, dP/dΩ2, that the particle leaves the cloud at an angle θ′

2 is the same for each angle:

dP

dΩ2
= constant = k. (1.5)

10



Chapter 1. Cosmic Rays and Extensive Air Showers

Hence, the average value, < cos θ′
2 >, is obtained as

< cos θ′
2 >=

∫
(cos θ′

2
dP

dΩ2
)dΩ2

/ ∫
( dP

dΩ2
)dΩ2

< cos θ′
2 >=

∫ 2π
0 dϕ

∫ 1
−1 k cos θ′

2d cos θ′
2∫ 2π

0 dϕ
∫ 1

−1 kd cos θ′
2

= 0.

(1.6)

The probability that the particle enters the cloud at a solid angle Ω1 is proportional to the
rate of collisions between the particle and the cloud which depends on their relative velocity:

dP

dΩ1
∼ v − V cos θ1, (1.7)

with v being the particle velocity. The average value of cos θ1 is then

< cos θ1 >=
∫ 2π

0 dϕ
∫ 1

−1 k cos θ1(v − V cos θ1)d cos θ1∫ 2π
0 dϕ

∫ 1
−1 k(v − V cos θ1)d cos θ1

. (1.8)

Dividing nominator and denominator by c and assuming that the particle is highly-relativistic
so that v/c ≈ 1, Eq. 1.8 turns into

< cos θ1 >=
∫ 1

−1 cos θ1(1 − β cos θ1)d cos θ1∫ 1
−1(1 − β cos θ1)d cos θ1

= −1
3β. (1.9)

Incorporating the results of Eq. 1.6 and Eq. 1.9 into Eq. 1.4 and assuming that the clouds
are non-relativistic (1 − β2 ≈ 1), the average relative energy gain per each encounter in the
second-order Fermi mechanism is

<
∆E

E1
>=

1 + 1
3β2

1 − β2 − 1 ≈ 4
3β2. (1.10)

Since the random velocities of interstellar clouds in the galaxy and the diffusion velocities
of supernova remnants are very small, β ∼ 10−4 and β ∼ 10−3 − 10−2, correspondingly [21],
the second-order mechanism is not efficient enough to explain the measured CR spectrum. A
linear energy gain is needed which occurs during the particle interactions with shock waves as
described below.

1.3.2 First-order Fermi acceleration

The first-order Fermi mechanism implies that the charged particle interacts with a shock
front, Fig. 1.5. The front velocity in the lab frame is −u⃗1 and the shocked gas moves away from
the front with relative velocity u⃗2, |u2| < |u1|.
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Chapter 1. Cosmic Rays and Extensive Air Showers

Figure 1.5: Scheme of the first-order Fermi mechanism. The particle interacts with the shock
front. The figure is taken from [1].

The calculation of the relative difference in the particle energy before and after scattering
on the shock front is the same as in Sec. 1.3.1 and it leads to Eq. 1.4. In this case, V⃗ is the
speed of the shocked gas in the lab frame, V⃗ = −u⃗1 + u⃗2. The main difference between the two
mechanisms is the calculation of the angular averages. In case of the plane shock front, which is
assumed to be infinite, the particle always faces it from the upstream side, π/2 ≤ θ1 ≤ 3π/2, and,
thus, −1 ≤ cos θ1 ≤ 0, and it leaves the shock front in the opposite direction, −π/2 ≤ θ′

2 ≤ π/2
(0 ≤ cos θ′

2 ≤ 1). The probability that the particle leaves the shock front at a solid angle Ω2 is
determined as the normalized projection of an isotropic flux onto a plane:

dP

dΩ2
= cos θ′

2. (1.11)

Hence, the average value of cos θ′
2 is

< cos θ′
2 >=

∫ 2π
0 dϕ

∫ 1
0 (cos θ′

2)2d cos θ′
2∫ 2π

0 dϕ
∫ 1

0 cos θ′
2d cos θ′

2
= 2

3 . (1.12)

The distribution of cos θ1 for the plane shock is also the same projection, therefore,

< cos θ1 >=
∫ 0

−1(cos θ1)2d cos θ1∫ 0
−1 cos θ1d cos θ1

= −2
3 . (1.13)

Finally, the average energy gain in the first-order Fermi mechanism is obtained omitting the
squared β terms. The energy gain is linear in β:

<
∆E

E1
>=

1 + 2
3β + 2

3β + 4
9β2

1 − β2 − 1 = 4
3β. (1.14)

1.3.3 Power-low energy spectrum
Both acceleration schemes lead to a power-low spectrum for CRs. As was shown above, the

energy of a particle increases proportionally to its initial value, ∆E = ξE. Another important
assumption is that the energy gain process is repeated several times. After n interactions, the
particle energy becomes

En = E0(1 + ξ)n. (1.15)
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The number of interactions needed to reach the energy En is then given by

n = ln
( E

E0

)/
ln(1 + ξ). (1.16)

Assuming that the probability to remain in the acceleration region after one encounter is p,
the proportion of particles accelerated up to energies greater than En is

N(≥ En) ∝ pn. (1.17)

Inserting the Eq. 1.16 into the Eq. 1.17, the energy distribution is obtained:

N(≥ E) ∝ p
ln( E

E0
)/ ln(1+ξ) =

( E

E0

)ln p/ ln(1+ξ) =
( E

E0

)−γ
, (1.18)

where γ = ln(1/p)
/

ln(1 + ξ). Hence the CR spectrum at the sources is

(dN

dE

)
source ∝

( E

E0

)−(γ+1)
. (1.19)

Therefore, the Fermi acceleration mechanism leads to the observed power-low spectrum of
CRs. A value of γ is around one for the supersonic shock of a monoatomic gas as predicted
by the kinetic theory of gases [50]. In order to estimate the CR spectrum observed on the
Earth, one needs to take into account also the propagation effects which modify the spectrum
proportionally to E−δ [21]:

(dN

dE

)
Earth ∝

(dN

dE

)
source × E−δ ∝

( E

E0

)−(γ+δ+1)
. (1.20)

A value of δ can be obtained from the measurements of the boron-to-carbon ratio in CRs [22].
This value is around 0.3 − 0.6 so the final value of the spectrum power is ≈ −(2.3 − 2.6), in
agreement with the measured value mentioned in Sec. 1.1. Therefore, the first-order Fermi
acceleration mechanism predicts not only the power-law shape of the CR spectrum but also a
theoretical value of the power close to the observed one.

The Fermi mechanism can explain the CR spectrum below the knee (∼ 106 GeV) assuming
SNR as the CR accelerators [1]. For the higher energies, however, additional theories are required
such as the particle acceleration through electromagnetic mechanisms associated with time-
varying magnetic fields [22].

1.4 Direct CR experiments
The CR flux at the energies below a few hundred TeV is high enough to perform direct mea-

surements. For instance, the flux at around 100 GeV is about two particles per square meter per
steradian per second. Thus, it is possible to measure CRs directly before they interact with the
Earth’s atmosphere. The precise measurements of CRs with energies below 1 TeV/nucleon are
carried using detectors with magnetic spectrometers located at the International Space Station,
e.g. AMS [14], or on satellites, e.g. PAMELA [51]. For the higher energies, a calorimeter detec-
tor system without a magnetic spectrometer is used that allows a larger geometrical acceptance,
e.g. the CREAM experiment uses this technology [16]. It was placed on a large balloon and
conducted its measurements during several flights over Antarctica. The result obtained by the
CREAM experiment is the CR spectrum from 1 GeV up to 100 TeV.
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Fig. 1.6 illustrates the CR composition as measured by several direct experiments, AMS [14,
15], ATIC [52], BESS [53], CREAM [16], CRN [54], HEAO [18], HESS [55], JACEE [56],
PAMELA [51], RUNJOB [57], and TRACER [58]. The most abundant CRs are protons, about
90% of the total flux, helium constitutes another 9% and the rest are heavier nuclei.

Figure 1.6: Fluxes of CR nuclei as a function of an energy per nucleus as measured by several
direct experiments. The top right sub-plot shows the ratio of protons to helium
nuclei as a function of rigidity. The figure is taken from [59].

1.5 Extensive Air Showers

The CR flux at the energies above 1 PeV is less than a few tens of particles per square meter
per year. Hence, in order to measure such a low flux, either a large aperture or a long time
exposure is required. Neither of these is possible with the direct CR detectors. Thus, they are
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replaced by the indirect ground-based observatories that may cover up to several thousands of
km2 [12] or by the underground/underwater experiments [60, 61, 62, 63]. The showers are the
cascades of particles initiated by high-energy CRs interacting in the upper atmosphere. EAS
are of particular interest of the KM3NeT experiment since they are the sources of high-energy
muons detected by the telescopes.

There are three components of EAS: electromagnetic, muonic, and hadronic. A sketch that
illustrates a shower cascade is presented in Fig. 1.7.

Figure 1.7: Sketch of an EAS cascade. Particles that constitute the electromagnetic, hadronic,
and muonic components are shown in red, blue, and green, correspondingly.

The electromagnetic component consists of electrons, positrons, and photons that are pro-
duced in the decays of muons and neutral pions. Photons with energies higher than two electron
rest masses may produce an electron-positron pair in the vicinity of an atomic nucleus. Leptons
lose their energy due to radiation processes like Bremsstrahlung which leads to the emission of
more photons. Hence, there is a cascade of secondary particles, called electromagnetic cascade.

The muonic component of EAS consists of muons that penetrate deeper into the atmosphere
than the electrons and photons since the muon bremsstrahlung cross-section is smaller. The
muon cascade can extend over several kilometers and can be detected on the ground [64]. High-
energy muons may penetrate also few kilometres below the sea level and can be detected by the
KM3NeT telescopes. These muons are the main research subject of this work.

The hadronic component includes protons, neutrons, pions, kaons, and heavier hadrons and
they are responsible for most of the energy transfer from the primary CRs to the atmosphere.
The hadronic cascade feeds the electromagnetic part of the shower, primarily by photons from
the decay of neutral pions. The charged pions and kaons decay into muons and feed the muonic
component.
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1.5.1 Description of Extensive Air Showers
The development of EAS can be described by means of coupled differential equations [20].

The equations represent the evolution of the density, n, of particles of a certain type, k, as a
function of slant depth, X:

dn

dX
= −( 1

λint,k(E) + 1
λdec,k(E, X))n(E, X) − d

dE
(µk(E)n(E, X))

+
∑

l

∫ ∞

E
dEl

cl→k(El, E)
λint,l(El)nl(El, X) +

∑
l

∫ ∞

E
dEl

dl→k(El, E)
λdec,l(El, X)nl(El, X) .

(1.21)

Here, λint,k(E) and λdec,k(E, X) are the interaction and decay lengths, correspondingly. They
depend on the particle energy, E, and, in the case of the decay length, on the slant depth
traveled. The function µk(E) incorporates the energy losses due to ionization. The last two
terms describe gains in the particle density from interactions and decays of particles of type l,
which depend on the transfer probabilities cl→k (for interactions) and dl→k (for decays).

The equations offer exact solutions if all relevant processes are implemented. Assuming an
initial condition from the energy spectra of cosmic nuclei, nk(E, 0), the particle densities can
be calculated for an average air shower, e.g. with the MCEq software [65]. Shower-to-shower
fluctuations can be accounted for with Monte Carlo methods, e.g. CORSIKA [66].

Two main observables that are used for the CR composition measurements with indirect
experiments are the depth of the shower maximum where the maximal number of charged
particles is reached, Xmax, and the number of muons in the shower, Nµ. The values of these
observables depend on the type of nucleus that initiated the shower. This is discussed below in
Sec. 1.5.2 within the Heitler-Matthews model [67].

1.5.2 The Heitler-Matthews model
In order to have an insight into how the EAS properties depend on the type of primary without

the need to solve the cascade equations, the qualitative approach is useful to be considered. Such
an approach that is often used for the EAS development description [20] is the Heitler-Matthews
model [67].

The model implies that the shower contains only neutral, π0, and charged, π±, pions. Neutral
pions are assumed to decay immediately into photon pairs. Charged pions undergo further
interactions until their energy becomes equal to the critical energy, Ec, i.e. when the decay
length is equal to the interaction length. At that point, the cascade development stops, and all
the charged pions that remain in the shower decay into muons.

Energy is assumed to be distributed equally between all the pions in each step. The number
of particles produced in each interaction is ntot and the fraction of charged pions produced is α.
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Figure 1.8: Scheme of the EAS development in the Heitler-Matthews model. The shower is
initiated with a primary of energy E0. The total number of pions in i-th step is
denoted as N

(i)
particles, and the number of charged pions is n

(i)
π± .The energy remaining

in the hadronic (charged pions) component of cascade in i-th step is E
(i)
hadronic.

Number of muons in EAS

Under the aforementioned assumptions, the number of muons in the proton-induced shower
can be calculated, Np

µ. First, the total number of shower generations, kc, should be obtained. The
shower development stops when Eπ± = Ec. The energy remaining in the charged pion component
of the shower after kc steps is αkcE0, and the number of charged pions is Nµ = (αntot)kc . Hence,
the final energy of each pion is Eπ± = αkcE0/(αntot)kc . Therefore, equating this energy to the
critical energy, the number of shower generations is obtained:

αkcE0/(αntot)kc = Ec

⇒ kc = ln(E0/Ec)
ln ntot

(1.22)

The number of charged pions after kc steps can be then calculated:

Np
µ(E0) = (αntot)kc(E0)

ln(Np
µ(E0)) = kc(E0) ln(αntot)

ln(Np
µ(E0)) = β ln(E0/Ec),

(1.23)

where β = ln(αntot)
ln(ntot) ≈ 0.82 − 0.95 from full Monte Carlo (MC) simulations [1]. Finally, exponen-

tiating the last part of Eq. 1.23, Np
µ is obtained:

Np
µ(E0) = (E0/Ec)β. (1.24)

In order to calculate the number of muons from other primary nuclei, the superposition model
is assumed. The shower initiated by a nucleus with A nucleons is treated as A independent
showers with energies EA = E0/A. Since the number of muons non-linearly depends on primary
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energy (Eq. 1.24), showers of the same energy induced by different nuclei can be distinguished.
The number of muons from the primary nucleus with A nucleon is

NA
µ (E0) = A × Np

µ(E0/A)

NA
µ (E0) = A × (E0/A

Ec
)β

NA
µ (E0) = A(1−β) × Np

µ(E0).

(1.25)

Therefore, the EAS initiated by nucleon with A nucleus has A(1−β) times more muons than
the shower induced by a proton with the same energy.

Fig. 1.9 shows the average difference in the number of muons that reach the sea level originating
from the proton and iron showers. The plot was obtained with MCEq software [65] using the
Sibyll 2.3c model for the hadronic interactions. The difference is around 40% on the PeV and
EeV scales.

Figure 1.9: Number of muons reaching the sea level from proton (blue curve) and iron (orange
curve) showers as a function of primary energy. The bottom plot show the ratio of
the number of muons originating from the iron shower with respect to the proton
shower.

Depth of the shower maximum

Using the Heitler-Matthews model, it is also possible to estimate another observable that is
often measured by indirect experiments for the composition studies, the depth of the shower
maximum, Xmax. The shower maximum is defined as the stage of the shower development
where the maximum number of charged particles is produced. In the Heitler-Matthews model,
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the maximum number of changed pions is reached after kc generations. Hence, the depth of
shower maximum induced by a proton with energy E0 is

Xp
max(E0) = kcλint = ln(E0/Ec)

ln(ntot)
λint, (1.26)

where λint is the charged pion interaction length in the air. The Xmax value for the shower
that was initiated by the nucleus with energy E0 and with A nucleon can be estimated using
the superposition model described above. In that case, the depth of the shower maximum is
equivalent to the one of the proton shower with energy E0/A:

XA
max(E0) = Xp

max(E0/A) = ln(E0/(AEc))
ln(ntot)

λint

XA
max(E0) = ln(E0/Ec)

ln(ntot)
λint − λint

ln(ntot)
ln(A)

XA
max(E0) = Xp

max(E0) − Dp ln(A),

(1.27)

where Dp(E0) = dXp
max(E0)

d ln E0
is the so-called elongation rate for the proton shower that is usually

estimated from the full MC simulations.
The difference in the Xmax values for the proton and iron showers is plotted in Fig. 1.10. On

average, the proton showers develop deeper in the atmosphere by about 150-100 g cm−2 with
respect to the iron showers of the same energy at the PeV-EeV scale.

Figure 1.10: The difference in the values of the shower maximum depth between the proton and
iron showers, Xp

max−XF e
max. The results were obtained for four different hadronic in-

teraction models, Sibyll 2.1 [68] (blue curve), Sibyll 2.3d [69] (red curve), QGSjetII-
04 [70] (purple curve), and EPOS-LHC [71] (green curve). The figure is taken
from [69].
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1.5.3 Experimental results

The all-particle spectrum obtained with the indirect CR experiments is shown in Fig. 1.2. The
results of the CR composition measurements by the EAS detectors are presented in Fig. 1.11.
The indirect CR experiments are sensitive to logarithmic mass number, ln A, rather than A,
since the composition observations are based on the EAS properties (Xmax and Nµ) which
fluctuate from shower to shower and these fluctuations are larger than the average values of
these observables for the neighboring elements [19].

Interpretation of the results of indirect CR experiments relies on air shower simulations. The
core feature of the simulations is the model of the high-energy hadronic interactions. The
dominating hadronic collisions in EAS are those with small momentum transfer, which cannot
be calculated with perturbative quantum chromodynamics. Also, the collisions lay in the very
forward region of rapidities which is only partially covered by the accelerator experiments.
Hence, the hadronic models rely necessarily on the extrapolations of the existing experimental
results [20]. Therefore, the uncertainty of the mass composition measurements with the EAS
detectors is dominated by the systematics. The uncertainties are shown as bands in Fig. 1.11.

The results presented in the figure were obtained with the pre-LHC hadronic interaction
models. The uncertainties are expected to be reduced using the recent models. However, it
is known that the models still cannot describe the detected muon content of EAS [20]. This
discrepancy is known as the muon puzzle and it is discussed in more details in Sec. 1.6.

Figure 1.11: The experimental results of the CR mass composition measurements with the EAS
detectors using the two mass-sensitive variables, Xmax and Nµ . The yellow (green)
band shows show the uncertainties of the mass composition measurements using
Xmax (Nµ). The figure is taken from [20].

1.6 The muon puzzle
Ground-based CR experiments are able to measure the GeV muons of EAS. In 2015 the

Pierre Auger Observatory (PAO) reported that the measured number of muons is larger than
the one predicted by the current theoretical models [72]. Although, the PAO results were not
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the first claiming that this discrepancy is present, e.g. [73, 74], but their studies were the first
nearly model-independent with well-controlled systematics and post-LHC hadronic models. This
observation triggered other experiments to perform follow-up measurements or to re-analyze
previously collected data, and several of them confirmed the PAO results [75, 76, 77].

This muon deficit in the shower simulations was called "the muon puzzle". Having the contri-
butions from several experiments and the data that covers a wide CR energy range, the Working
group on Hadronic Interactions and Shower Physics (WHISP) was formed to review the existing
results involving members of eight experimental collaborations [78]. In order to combine the
measurements from different experiments, WHISP introduced the z-value which can be com-
puted using the results obtained by every experiment and corresponding MC simulation with
different hadronic interaction models:

z = ln⟨Nµ⟩ − ln⟨Nµ⟩p

ln⟨Nµ⟩Fe − ln⟨Nµ⟩p
. (1.28)

Here, ⟨Nµ⟩ is the average measured number of muons in a certain primary energy interval,
⟨Nµ⟩p and ⟨Nµ⟩Fe are the muon numbers obtained from the MC simulations for the same energy
interval assuming pure proton and pure iron composition of the flux, correspondingly. If there
is no discrepancy between the data and simulations then the value of z is in between 0 and 1
since proton and iron are the limits of the CR mass composition range. If the z-value exceeds
1 that means that there are more muons observed in the data in comparison to the simulations
which cannot be explained by the physical CR flux composition. This excess was indeed found
for several experiments and hadronic models, Fig. 1.12.

Figure 1.12: The z-value distributions obtained for the different experiments and hadronic in-
teraction models. The discrepancy starts to emerge for the primary CR energies
around 10 PeV. The figure is taken from [20].

One of the main goals of this work is to investigate if there is a discrepancy in the muon content
predicted by the recent theoretical models and the one observed by the KM3NeT telescopes.
The underwater or underground experiments measure muons with higher energies with respect
to the ground-based detectors. Muons must have sufficient energy at sea level to be able to
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travel several kilometers of overburden. In the case of the KM3NeT experiment, this low-energy
threshold is around 500 GeV with the majority of muons having energies in the TeV range as
discussed in Chapter 3. Also, the CR energy range of the KM3NeT telescopes differs from the
one in which the ground-based detectors are operating. Therefore, the KM3NeT results can
provide important additional input for the studies of theoretical models that aim to describe
CRs.
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2 The KM3NeT neutrino telescopes

The KM3NeT research infrastructure comprises two neutrino telescopes at the bottom of
the Mediterranean Sea [79]. The telescope detection technology and the design are the same
for both detectors but the scientific goals are different thanks to the difference in the detector
geometries. Both telescopes are still under construction but they are already taking data and
the first physics results were already obtained [80].

As of June 2023, the KM3NeT Collaboration includes around 250 members from more than
50 institutes. The map that shows the location of the KM3NeT institute members and the sites
of the two telescopes is illustrated in Fig. 2.1.

Figure 2.1: Location of the KM3NeT Collaboration institutes. The full KM3NeT members
are shown with a bright orange color, and the associated members are reported
with a pale color. The sites of the KM3NeT telescopes are indicated as yellow
points. The yellow point near the coast of Greece is the proposed position of the
possible third KM3NeT site. This picture is taken from the KM3NeT official website,
https://www.km3net.org/.

This chapter starts with a description of the detection principle that is exploited in the
KM3NeT experiment, Sec. 2.1. The detector design is discussed in Sec. 2.2. Topological sig-
natures of the events that are registered by the KM3NeT detectors are reported in Sec. 2.3.
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Finally, a brief discussion of the other neutrino telescopes is presented in Sec. 2.4

2.1 Detection principle

2.1.1 Cherenkov radiation

The particle detection in KM3NeT is based on the observation of the Cherenkov radiation [81].
The phenomenon occurs when a charged particle travels through a medium transparent to light
at a speed that is greater than the speed of light in that medium.

The Cherenkov radiation is a joint emission of atoms of the medium located along the tra-
jectory of the particle and polarized by its electric field. The wavefront of the radiation is the
surface of a cone, the vertex of which is the particle, and the axis is its trajectory. The schematic
illustration of the Cherenkov radiation induced by a charged particle with a speed v⃗ is presented
in Fig. 2.2. This figure can be used to calculate the opening angle of the cone, θCh. The spherical
wave emitted at point A reaches point B when a charged particle is at point C. Therefore, the
cosine of θCh is

cos θCh = AB

AC
= tcn

tv
= 1

βn
, (2.1)

where t is the time needed for the particle to travel the distance AC and the wave to travel AB,
n is the medium refractive index, and β = v/c is the ratio of the velocity, v, of the charged
particle to the speed of light in vacuum, c. The seawater refractive index is around 1.38 [82].
Hence, the angle of the Cherenkov cone for relativistic particle (β ≈ 1) in seawater is 43.6◦. The
Cherenkov light wavelength in water lays in the visible blue - ultraviolet part of the spectrum.

Figure 2.2: Sketch of the Cherenkov radiation. Charged particle (red circle on the plot) travels
with a speed, v⃗, that is greater than the speed of light in the medium. The angle
of the Cherenkov radiation cone is denoted as θCh. Emitted Cherenkov light is
illustrated as light blue circles.

The overwhelming majority of charged particles that are detected by the KM3NeT neutrino
telescopes are atmospheric muons. These muons originate from EAS that are caused by the
interactions of CRs with the atmosphere as discussed in Chapter 1. High-energy (TeV) muons
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may travel several kilometers in water and reach the depth of the KM3NeT telescope. The
mean free path length of muons in water as a function of their energy is presented in Fig. 2.3.
Detailed discussion on the muon energy losses in water is reported in Chapter 3. The study of
atmospheric muons is the main subject of this work since these particles provide information
about the CR properties.

For neutrino studies, however, atmospheric muons are the main source of background. The
neutrino observations are possible thanks to the charged particles that originate from the neu-
trino interactions with matter in the telescope sensitive volume or its vicinity. The neutrino
interactions are discussed in Sec. 2.1.2.

Figure 2.3: Mean free path of muons in water as a function of their energy (green line). The
paths of other charged particles that are produced in the neutrino interactions are
shown for comparison: the purple line is for tau leptons, and the red and blue lines
are for the electromagnetic and hadronic showers, correspondingly. This figure is
taken from [22].

2.1.2 Neutrino interaction with matter
Interactions of neutrinos with matter occur through the exchange of weak bosons. The

interactions may happen due to the exchange of the charged bosons, W ±, the so-called Charge
Current (CC) interactions, or via the exchange of the neutral boson, Z0, the Neutral Current
(NC) interactions. In the CC reactions, a charged lepton of the corresponding neutrino flavour
is produced. As for the NC reactions, the final state lepton remains the neutrino of the same
flavour. Examples of the CC and NC interactions are presented in Fig. 2.4.
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Figure 2.4: Feynman diagrams for the CC (left plot) and NC (right plot) muon neutrino inter-
actions. The figure is taken from [21].

For the neutrino energies in the range that is of interest in the KM3NeT experiment (GeV-
PeV), several interaction categories can be distinguished that are briefly described below. The
cross-section for these processes is shown in Fig. 2.5.

Elastic and quasielastic scattering

The interaction between neutrino and an entire nucleon can lead to elastic scattering, causing
the release of a nucleon or multiple nucleons from the target. In the case of CC neutrino
scattering, this process is called quasielastic scattering, while in the case of NC interactions, it
is known as elastic scattering [83].

Resonance production

Excitation of the target nucleon by incoming neutrino may lead to the formation of baryon
resonances (∆ or N∗) [84]. The resonances decay into different combinations of nucleons and
mesons.

Deep inelastic scattering

Neutrinos with energies above 10 GeV start to interact with the constituents of nucleons,
quarks and gluons, which may lead to the formation of jets and hadronic showers [85].
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Figure 2.5: Total neutrino (right plot) and antineutrino (left plot) cross sections for the CC
interactions divided by neutrino energy (solid line). The data points are shown
with different markers. Lines represent the contributions from different processes:
quasielastic scattering (dashed), resonance production (dot-dashed), and deep in-
elastic scattering (dotted). The figure is taken from [83].

2.2 Detector design
2.2.1 PMTs of the KM3NeT experiment

In the KM3NeT experiment, photons of the Cherenkov light are detected by an array of
three-inch PhotoMultiplier Tubes (PMTs). The PMTs have a convex bialkali photocathode,
with a diameter of 80 mm, and a 10-stage dynode structure. Around the head of each PMT,
polished metal rings are placed at an angle of 45 degrees providing a 92% reflectance for photons
in the wavelength range 375-500 nm. The metal rings allow to increase the photon acceptance
by 20-40%, with most of the gain attained in the forward direction [86].

When a photon hits the PMT’s photocathode, it can be absorbed and release an electron
through the photoelectric effect. The probability of the photoelectric effect to occur for a certain
PMT is called quantum efficiency. The efficiency of PMTs used in the KM3NeT telescopes
(Hamamatsu PMTs [87]) is shown in Fig. 2.6. The first released electron is then accelerated
by an electromagnetic field towards the PMT dynode and causes the emission of additional
electrons. There are ten dynodes in total in Hamamatsu PMTs with the electric potential
increasing from one dynode to the next. Thus, the interactions of electrons with each dynode
lead to a cascade of electrons, and the original signal is amplified by a factor of more than
106 [87]. The amplified electron cascade reaches the anode that generates an output electrical
pulse. If the amplitude of the pulse exceeds the predefined threshold then the signal is recorded.
In particular, the beginning time of the signal and the timespan in which the amplitude was
over the threshold (Time-Over-Threshold, ToT) are saved. This information together with the
information about which PMT has recorded the signal is called a "hit".
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Figure 2.6: Quantum efficiency of the KM3NeT PMTs as a function of the light wavelength.
Each green line corresponds to one of the 56 PMTs used in the measurements. The
black line is the mean value for each wavelength. The vertical error bars indicate
one standard deviation. The figure is taken from [87].

For the KM3NeT PMTs, the time interval between the moment a photon interacts with the
photocathode until the cascade of electrons reaches the anode is around 30 ns [87]. This interval
is referred to as the transit time of a PMT. The left plot in Fig. 2.7 illustrates the probability
density function representing the transit time distribution for a typical KM3NeT PMT. The
spread around the average transit time, known as the transit time spread, is about 2 ns. This
spread is the main source of uncertainty in determining the arrival time of photons.

In addition to the main peak, there is a secondary peak in the transit time distribution
occurring between 40 and 65 ns. This peak is caused by delayed pulses, originating from a
secondary electron that back-scatters from the first dynode [87]. The back-scattered electron is
then re-accelerated towards the first dynode, resulting in a delayed pulse, typically characterized
by a lower amplitude compared to the main pulse. Another reason for the delayed pulse is
photoelectrons emitted from a location on the photocathode where the electric field strength is
relatively weak. Consequently, the released photoelectrons experience a significantly longer drift
time. Also, there is a pulse with a small amplitude and a brief transit time in the transit time
distribution, named prepulse. It occurs when photons release a photoelectron from one of the
first dynodes, rather than from the photocathode.

A typical PMT pulse, as measured in a laboratory, is shown on the right plot in Fig. 2.7. The
horizontal line represents the predefined threshold voltage.
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Figure 2.7: The left figure represents the transit time distribution of the KM3NeT PMTs. The
right figure shows the typical recorded PMT pulse. The figures are taken from [88].

A set of signal hits which are pair-wise causally connected form a "cluster". If a sufficiently
large cluster is found the event is triggered. In order to reduce the trigger rate due to pure
noise and reduce computing time, the triggers take into account the fact that the hit probability
decreases with distance away from the photon emission position. This is implemented by assum-
ing a maximal photon travel distance. This reduces the number of DOMs to be considered and
the maximal allowed time window for causally connected hits. Hence, an improvement of the
signal-to-noise ratio compared to the general causality relation can be obtained. Depending on
the assumed event topology, the relations that follow from causality, i.e. the matching condition
for clustering, are different for the track-like and shower-like events that are described below in
Sec. 2.3.

2.2.2 Digital Optical Module
The PMTs are placed in a pressure-resistant 17-inch diameter glass sphere, called Digital

Optical Module (DOM) [79], Fig. 2.8. Each DOM houses 31 PMTs and their associated readout
electronics. The PMTs are arranged in five rings of six PMTs and a single PMT at the bottom
(south pole) of the DOM pointing downwards.

In addition to the PMTs, every DOM contains calibration tools, power-related electronics,
and a Central Logic Board (CLB). The CLB collects all information produced by the PMTs and
other instruments such as piezo sensors, compass/tiltmeters, nanobeacons, humidity sensors, and
temperature sensors, and transmits it to the control station [89]. Piezo sensors which receive
acoustic signals from acoustic emitters placed on the sea floor together with compass/tiltmeters
serve as instruments for the DOM position calibration [86]. Nanobeacons are used in order to
calibrate the detector elements in time [82].

The usage of multi-PMT DOMs instead of traditional optical modules with single large PMTs
like the ones used in ANTARES [90] or IceCube [91] brings several advantages. The multi-PMT
configuration allows a larger photo-cathode area per DOM and wider angular coverage. Also, it
is possible to better eliminate the background by using the coincidences between different PMTs
inside each DOM, which is essential for the core-collapse supernova studies [86].
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Figure 2.8: Picture of the KM3NeT DOM fixed on the two parallel Dyneema® ropes. This
picture is taken from the KM3NeT official website, https://www.km3net.org/.

2.2.3 Detection Unit

A detection unit (DU) consists of a pair of long Dyneema® ropes with 18 DOMs attached
to them trough titanium collars. The DU is secured to the sea floor with an anchor and it has
a buoy at the top to keep the DU in a vertical position. The anchor is the interface with the
seabed infrastructure housing an interlink cable and a base module. The module is connected
to a cable running to shore using a network of junction boxes.

The vertical spacing between the DOMs and the horizontal distance between each DU is
different for the KM3NeT/ARCA and KM3NeT/ORCA telescopes as described below.

2.2.4 Configuration of the KM3NeT telescopes

The KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss) telescope is being
built near the coast of Sicily (Italy), about 100 km offshore Portopalo di Capo Passero. Its main
scientific goal is to study the high-energy cosmic neutrinos in the TeV-PeV range [92]. In its final
configuration, the KM3NeT/ARCA detector will consist of two so-called "building blocks", each
comprising 115 DUs. The horizontal spacing between the DUs is around 90 m and the distance
between the DOMs on each DU is 36 m. The radius of the one KM3NeT/ARCA building block
is ∼500 m.

The KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) detector is smaller
and denser with respect to KM3NeT/ARCA since its main goal is the study of atmospheric
neutrino oscillation and neutrino mass hierarchy [93]. Hence, a lower energy threshold (GeV)
for the neutrino detection is needed. The detector is located offshore the coast of France, about
40 km away from Toulon. The KM3NeT/ORCA telescope will comprise one building block with
115 DUs. The distance between the DUs is around 20 m and the DOMs on each DU are 9 m
apart.

The KM3NeT/ARCA and KM3NeT/ORCA telescopes in their final configurations are sketched
in Fig. 2.9. The location of DUs that were installed as of August 2023 relative to one building
block configuration is shown in Fig. 2.10: 21 DUs installed with 19 taking data in KM3NeT/ARCA,
and 16 DUs out of 18 DUs deployed are taking data in KM3NeT/ORCA. The analysis presented
in this work was performed with the data taken by the KM3NeT/ARCA and KM3NeT/ORCA
telescopes in six DU configuration at each site. In the following, this configuration is denoted
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as ARCA6 and ORCA6 for two detectors, correspondingly. The ARCA6 and ORCA6 detector
layouts are presented in Fig.2.11.

Figure 2.9: Sketch of the KM3NeT telescopes. The top part of the figure shows the two
KM3NeT/ARCA building blocks while the central bottom part illustrates the
KM3NeT/ORCA detector. Vertical lines are the DUs. Every sphere represents
a DOM, the buoy and the base module are shown in yellow at the top and bottom
of the DUs, correspondingly. The Eiffel Tower is shown for the size comparison.

Figure 2.10: Installed DUs of the KM3NeT/ARCA (left plot) and the KM3NeT/ORCA (right
plot) telescopes as of August 2023. DUs that take data are shown in green, DUs
that were installed but currently experience issues with the data acquisition are in
red. CTF stands for a cable termination frame and JB denotes a junction box [79].
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Figure 2.11: The KM3NeT/ARCA (left figure) and the KM3NeT/ORCA (right figure) detector
configuration which were used in this work. Working DUs are shown as green circles.
Blue rectangle is a cable termination frame and orange rhombus is a junction box.

2.3 Event topology

Different types of particles produce varying event signatures inside a detector. Here below
different event topologies are discussed.

Track-like events

The track-like events correspond to muons crossing the sensitive volume of the detector. The
events that are the golden channel for neutrino studies are muon tracks induced by the CC
interactions of muon (anti-)neutrinos. Reconstruction of the direction of such events is precise
since they leave a long track inside the detector and the Cherenkov light produced by their
passage triggers many PMTs. Although, the energy reconstruction is less accurate since not all
the particle energy is deposited inside the detector. The direction and energy reconstruction
capabilities are discussed in Chapter 3.

Other particles which also leave the track-like signatures in the KM3NeT telescopes are at-
mospheric muons. The study of these particles is the main goal of this thesis.

The track-like event signatures are illustrated on the first two schemes of Fig. 2.12.

Shower-like events

Shower-like (or cascade-like) events are caused by the NC interactions of neutrinos of all three
flavours and by the CC interactions of the electron neutrinos. In both cases, the electromagnetic
shower from the hadronic cascade is created and can be detected by the PMTs. The energy of
the shower-like events is well reconstructed since the energy deposit is fully contained in the
detector. The direction reconstruction is less precise though since the shower-like events usually
trigger only the neighbouring DOMs. The shower-like event topology is presented in the third
scheme of Fig. 2.12.

Also, there is another class of events caused by the CC interaction of the high-energy (PeV) tau
neutrinos with matter [94]. Such interactions are characterized by the double-cascade signature.
Firstly, the tau neutrino CC interaction leads to the tau lepton production and the hadronic
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cascade. Then, the high-energy tau lepton travels some distance in water (∼50 m for 1 PeV tau
lepton as shown in Fig. 2.3) before it decays producing another cascade. If the distance between
the two cascades is long enough for their separation then the so-called "double-bang" event can
be identified as shown in the very right plot in Fig. 2.12.

Figure 2.12: Topologies of the events that can be detected by the KM3NeT neutrino telescopes.

Algorithms that are used in the KM3NeT experiment to reconstruct the aforementioned events
are discussed in Chapter 3.

2.4 Other neutrino telescopes
Besides the KM3NeT experiment, there are several large-volume detectors that aim to mea-

sure the neutrino properties using Cherenkov radiation. These telescopes are discussed briefly
here below. Together with the KM3NeT project, these experiments comprise the Global Neu-
trino Network that aims for a closer collaboration and a coherent strategy among the large-
volume neutrino telescopes [95].

ANTARES

The ANTARES neutrino telescope [90] is the predecessor of the KM3NeT project. It was also
located in the Mediterranean Sea near the coast of France, close to the site of the KM3NeT/ORCA
detector. ANTARES was operational in its full configuration from May 2008 until February
2022. The detector was comprised of 12 DUs and had an instrumented volume of more than
0.01 km3. Each DU included up to 75 optical modules with a single 10-inch PMT. The successful
deployment and operation of the ANTARES telescope demonstrated the viability of conducting
neutrino studies with large-volume detectors in the deep sea.

Baikal-GVD

The Baikal-GVD neutrino telescope is currently under construction in Lake Baikal in Rus-
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sia [96]. The detector design includes clusters of eight DUs each. Every DU is composed of 36
single PMT optical modules. The deployment of the facility began in the spring of 2015. The
first construction phase is planned to be finished in 2024 with 15 clusters deployed, the detector
will reach an effective volume of 0.75 km3.

IceCube

The IceCube neutrino observatory is located deep in the Antarctic ice at the South Pole [97].
The IceCube detector is continuously taking data in its full configuration since 2011. The
telescope is comprised of 5160 optical modules with a single PMT in each. The modules are
placed on 86 vertical DUs located at depths between 1450 m and 2450 m. IceCube includes
also a smaller and denser array of optical modules that allows measuring neutrinos with lower
energies (> 10 GeV), called DeepCore [98]. Additionally, an array of Cherenkov tanks filled with
clear ice is located at the surface for the EAS detection, IceTop [99].
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3 Simulation of atmospheric muons for the
KM3NeT neutrino telescope

The simulation of muons for the KM3NeT experiment starts in the upper layers of the
atmosphere and ends deep underwater. It can be divided into five steps. The first step is to
simulate the interactions of the primary CRs with the air nuclei and the subsequent propagation,
interaction, and decay of the secondary particles. The result is the muon distribution at sea
level. This step is performed with the full MC simulation code, CORSIKA [66]. The description
of the CORSIKA simulation is presented in Sec. 3.1-3.3.

The second step of the simulation is the propagation of muons in water down to the KM3NeT
detectors, Sec. 3.4. The third one is the generation of the Cherenkov light from muons and its
detection by the telescope PMTs, Sec. 3.5. Then, the detector response to the light is simulated
together with the optical background, Sec. 3.6. Finally, the reconstruction of muon tracks is
performed, Sec. 3.7. Results of the atmospheric muon simulations are reported in Sec. 3.8.

3.1 CORSIKA simulation
CORSIKA version 7.7410 was used for the MC simulation of EAS. It was initially developed

to perform simulations for the KASCADE experiment [100] at Karlsruhe. Nowadays, CORSIKA
is a simulation tool used by many experiments that perform the CR studies [62, 101, 64].

There are several inputs that are needed for the CORSIKA simulation. Firstly, the properties
of the primaries have to be specified. In particular, the nuclei that will be assumed as primary
CRs, their energy, the zenith angle range, and the number of showers to generate, Sec. 3.1.1.
Secondly, there are models that describe the interactions and atmosphere density profile that
must be specified, Sec. 3.1.2 and Sec. 3.1.3, correspondingly.

3.1.1 Properties of the primaries
Muons detected by the KM3NeT telescopes originate from the interactions of primary CRs

that have energies in a certain range. The CR energy range is limited on the lower end of
the spectrum since muons from EAS must have sufficient energy to reach the depths of the
detectors. This energy is around 500 GeV [102] and the vast majority of muons reaching the
KM3NeT detectors has energies in the TeV range. Hence, the lower limit on the primary energy
was set to 1 TeV per nucleon in the simulation. Fig. 3.1 shows the sea level flux of muons that
reach the ORCA6 detector as a function of their energies. The highlighted area indicates the
90% fraction of events counting from the maximum of the distribution. The energy range of the
fraction spans from 0.8 TeV to 4.5 TeV. The upper limit arises due to the fast decrease of the
CR flux with the energy.
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Figure 3.1: Sea level rate of generated muons that reach the ORCA6 depth as a function of
their energy. The highlighted area illustrates the energy range (0.8 - 4.5 TeV) that
includes a 90% fraction of events.

Five nuclei were used as primaries in the simulation: hydrogen (1
1H), helium (4

2He), carbon
(12

6C), oxygen (16
8O), and iron (56

26Fe). Other primaries were taken into account by enlarging the
flux weights of C, O, and Fe according to the flux of nuclei that were missing in the simulations.

The primary energy range of the simulations was divided into 3 sub-ranges (named "TeV_low",
"TeV_high", and "PeV") to have sufficient statistics in each sub-range. A summary of the
production energy ranges is reported in Table 3.1. The number of generated showers in each
production and per each primary is listed in Table 3.2.

Nucleus Energy range [TeV]
TeV_low TeV_high PeV

p 1 - 6 6 - 1.1 × 103 1.1 × 103 - 9 × 104

He 4 - 10 10 - 1.1 × 103 1.1 × 103 - 9 × 104

C 12 - 30 30 - 1.1 × 103 1.1 × 103 - 9 × 104

O 16 - 30 30 - 1.1 × 103 1.1 × 103 - 9 × 104

Fe 56 - 100 100 - 1.1 × 103 1.1 × 103 - 9 × 104

Table 3.1: Energy range of primaries used in the CORSIKA simulation.

Nucleus Number of generated showers
TeV_low TeV_high PeV

p 3 × 109 3 × 109 4 × 107

He 2 × 109 2 × 109 4 × 107

C 1 × 109 7.5 × 108 2.5 × 107

O 1 × 109 7.5 × 108 2.5 × 107

Fe 5 × 108 2 × 108 2 × 107

Table 3.2: Number of showers generated in the simulation.
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3.1.2 Hadronic interaction models
In CORSIKA, the URQMD (Ultra-relativistic Quantum Molecular Dynamics) 1.3 model [103]

was used to perform the elastic and inelastic interactions of hadrons below 80 GeV in air. As
described in Sec. 3.1.1, the low-energy threshold for muons at the sea level is around 500 GeV.
Hence, the low-energy interaction model is of less importance.

Interactions of hadrons with protons and nuclei are well studied up to several hundreds of
GeV (in target rest frame) at fixed target detectors [69]. For the higher energies, it is necessary
to rely on model extrapolations from collider experiments. Muons that are reconstructed in
the KM3NeT telescopes originate from primary CRs with energies starting from several TeV
up to PeV as discussed below in Sec. 3.8. The LHC energy of 13 TeV in the center-of-mass
frame corresponds to the target rest frame energy of 90 PeV which is above the upper threshold
of the KM3NeT energy range that contains 90% of events. Hence, one might assume that all
the properties of the interactions of protons with air nuclei have been already measured and
that there should be no tensions and uncertainties caused by the interaction models. However,
this is not true. Most LHC experiments focus their instrumentation on the mid-rapidity region
where new heavy particles such as the Higgs boson are best observed. But muons that are seen
by the KM3NeT detectors lay in the very forward region of rapidities. Fig. 3.2 demonstrates
pseudorapidity values of muons reaching the ORCA6 (left) and ARCA6 (right) telescopes. Pseu-
dorapidity converges to the definition of rapidity for highly relativistic particles. On the figure
below, it is defined as η = − ln[tan( θ

2)], where θ is the angle between the primary particle and
secondary muon at the sea level. The peak of the distributions is located at η ≈ 9.
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Figure 3.2: Pseudorapidity distribution of muons reaching the ORCA6 (left plot) and ARCA6
(right plot) detectors. The value of pseudorapidity is derived using the angle between
the primary nuclei and muons at the sea level.
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Figure 3.3: Acceptances in terms of pseudorapidity of the LHC experiments ALICE [104],
ATLAS [105], LHCf [106], CMS with its CASTOR forward calorimeter [107],
TOTEM [108], and LHCb [109] with forward scintillators HeRSCheL [110]. In the
legend, a tracker follows individual particles in a magnetic field, a counter measures
particle densities in η-intervals. Muon stands for a special muon tracker, PID refers
to the ability to identify individual particles, ECal and HCal are electromagnetic
and hadronic calorimeters, respectively. The figure is taken from [20].

In Fig. 3.3, the acceptances of the LHC experiments as a function of pseudorapidity is shown.
As it can been seen from this plot, the LHC experiments cover the pseudorapidity region above 8.
However, none of the experiments has been designed to perform precision tracking and particle
identification at forward rapidities higher than 5. Moreover, the most common interaction in
an air shower is π − N, and the most important first interaction is p − N. These reactions are
different from both p − p and p − Pb which measurements had been performed at LHC in Run
1 and 2. Hence, there is still a remaining uncertainty in the extrapolation of the inelastic cross-
section from p − p to p − air as demonstrated in Fig. 3.4 [20]. This uncertainty could be reduced
with future data from p − O and O − O collisions that were proposed for Run 3 of LHC [111].
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Figure 3.4: Number of charged particles obtained with different hadronic generators as a function
of pseudorapidity in p − p interactions at 13 TeV (top plot) and p − O at 10 TeV
(bottom plot). Models are in agreement at a level below 5% for p − p collisions at
mid-rapidity, but the spread in p−O collisions is 50%. The figure is taken from [20].

There are several post-LHC high-energy hadronic interaction models available in CORSIKA,
namely EPOS [71], QGSJETII-04 [70], Sibyll 2.3d [69], and DPMJET III [112]. Among these
models, only the DPMJET III and Sibyll 2.3d include the charm hadron production which
is essential for some KM3NeT analyses, e.g. search for the prompt muon component in the
atmospheric muon flux [113]. However, DPMJET III was still under development at the time of
writing this work. Hence, the Sibyll 2.3d model was chosen for the simulations. Differences in
the high-energy muon flux induced by choosing the different hadronic interaction models were
treated as systematic uncertainties.

Core features of Sibyll are based on the dual parton model [114] and the minijet model [115].
Its basic goal is to account for the main features of strong interactions and hadronic production
as needed for understanding air-shower cascades. Therefore, it focuses on the description of
particle production at small angles and on the flow of energy in the projectile direction. Rare
processes, such as the production of particles or jets at large transverse momentum or electroweak
processes, are either included approximately or neglected.

3.1.3 Atmosphere

The atmosphere is divided into five layers in CORSIKA. The atmospheric overburden as a
function of the altitude above the sea level, T (h) [g/cm2], is parametrized in each layer. For the
first four layers, T (h) is parametrized as an exponential function:
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T (h) = ai + bi · e
− h

ci , 1 ≤ i ≤ 4, (3.1)

while in the fifth layer the T (h) dependence is linear:

T (h) = a5 − b5 · h

c5
. (3.2)

Here, i is the layer number, and ai, bi, and ci are the fitting parameters.
NRLMSIS-2.0 [116] was used as an atmosphere model and its data were fitted to get the values

of parameters. Since the atmospheric conditions vary depending on time and location, the fit
was performed on the model predictions averaged over 3 years period (2019-2021) and over the
ORCA and ARCA sites. Each of the 5 CORSIKA atmosphere layers was fitted separately. Each
of the fits was bound at least from one side due to the requirement that the global T (h) function
must be continuous. The result is presented in Fig. 3.5. Values of fitted parameters are reported
in Table 3.3. The atmosphere fit was performed by another colleague with whom the author of
this thesis was developing the atmospheric muon simulation software in KM3NeT.
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Figure 3.5: Fit of the atmospheric overburden, T , taken from the NRLMSIS-2.0 model as a
function of the altitude, h, with Eq. 3.1 and 3.2. The figure is taken from [117]
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Layer number Height Fitted a value Fitted b value Fitted c value
1 0 - 17.5 km -58.45 10.71 × 102 8.65 × 105

2 17.5 - 45 km 0.50 13.81 × 102 6.23 × 105

3 45 - 73 km -0.015 4.50 × 102 7.90 × 105

4 73 - 101.3 km -4.29 × 10−5 5.71 × 103 5.99 × 105

5 101.3 - 125 km 3.0 × 10−3 -38.86 -1.41 × 1011

Table 3.3: Values of the parameters resulting from the T (h) fit.

3.2 Cosmic Ray composition model
The most recent model of the CR mass composition is the Global Spline Fit (GSF) [19].

The model is a purely data-driven parametrization of the CR flux with the only assumption
that the flux is smoothly varying. The parametrization is done with a linear combination of
B-splines [118]. The GSF does not assume the flux components with power-law shape and
rigidity-dependent cutoffs in contrast to other mass composition models [119, 120]. Hence, it
does not try to explain the physical origin of the data, but describes the measurements.

The flux of primary nuclei is divided into four mass groups in the GSF model. The groups are
split in roughly equal ranges in logarithmic mass number, ln A, following measurements from
EAS experiments. The groups are named after the element that has the largest contribution
on the total flux in each group, the so-called leading element. There are the proton (Z = 1),
helium (Z = 2), oxygen (3 ≤ Z ≤ 10), and iron (11 ≤ Z ≤ 28) mass groups.

The differential flux of the leading element as a function of rigidity, JL(R), is parametrized by
a linear combination of splines. The splines are fitted to the data to get the coefficient values.
The data is the combination of results obtained by the direct, HEAO [18], PAMELA [51, 121],
AMS-02 [14, 15], CREAM-I and II [16, 17], and indirect, ARGO-YBJ [122], TUNKA [123, 124],
IceCube [9], KASCADE-Grande (KG) [10, 11], Telescope Array (TA) [125], and the Pierre Auger
Observatory (Auger) [12, 13], CR experiments.

Fluxes of other nuclei within each group as a function of rigidity, Ji(R), are recalculated
keeping the ratio, fiL, to the leading element flux, JL(R), constant: Ji(R) = fiL × JL(R). This
approximation is motivated by the low-energy data from the direct CR experiments. Fig. 3.6
demonstrates that the fluxes of elements within the mass group have roughly the same shape so
fiL can be treated as a constant.
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Figure 3.6: Fluxes of primaries as a function of rigidity as measured by the direct CR experi-
ments. Pale colors show the fluxes of sub-leading group elements. The figure is taken
from [19].

Since there are 5 primaries simulated in CORSIKA and 28 primaries available in the GSF
model, the following approach was used to include all available nuclei. The proton and helium
wCR weights are taken directly from the GSF tables. The carbon wCR weight is the sum of the
GSF weights of nuclei with Z from 3 to 6, the oxygen weight is wCR = ∑10

Z=7 wZ
CR, and the iron

weight is wCR = ∑28
Z=11 wZ

CR.
In Fig. 3.7, the total flux of primaries and the individual fluxes of nuclei used in the simulations

as a function of primary energy, E, are shown. The flux was multiplied by E2.6 to compensate
for a fast drop of the flux with energy. The shaded areas illustrate the flux uncertainties reported
in the GSF model.
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Figure 3.7: Total flux of primaries (blue line) together with the individual fluxes of the proton
(red), helium (yellow), carbon (light green), oxygen (dark green), and iron (purple)
primaries. Shaded areas represent the uncertainties from the GSF model.
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3.3 Event weighting scheme
In order to have the flux of muons, one needs to assume a certain model of the CR mass

composition as described in Sec. 3.2. The model defines a CR flux weight, wCR, for each
primary that depends on the type of nuclei and on the energy, Epr. The unit of the wCR weight
is GeV−1· m−2· sec−1· sr−1. In order to have the rate of events [s−1], the so-called generation
weight must also be taken into account. The generation weight is defined as

wgen = S · Iθ · IEpr · Eγ
pr. (3.3)

Here, S [m2] is the sum of projected areas of the top and side of the detector can, cylinder
surrounding the detector that is used as a generation surface. The can height and radius are
larger than the detector dimensions by 4 light absorption lengths in the seawater (70 m × 4) to
account for the light emitted by muon before reaching the detector. Iθ = 2π(cos θmin − cos θmax)
[sr] is the angular phase space factor with θmin (θmax) being the minimum (maximum) zenith
angle of simulation, and IEpr is the energy phase space factor which is calculated as

IEpr =
∫ Emax

Emin
E−γ

pr dEpr =


E1−γ

pr |max−E1−γ
pr |min

1−γ if γ ̸= 1
ln(Epr|max

Epr|min
) if γ = 1,

(3.4)

where γ is the simulation spectral index. The unit of the generation weight is GeV · m2· sr.
Then, to have the rate of muons, one needs also to account for the number of generated showers,
ngen showers, per each primary and sub-production used in the CORSIKA simulation, the sub-
productions were described in Sec. 3.1.1. Therefore, the final weight that must be applied to
the events is

w = wCR · wgen
ngen showers

[sec−1]. (3.5)

3.4 Muon propagation in water
CORSIKA simulation output is a binary Fortran file containing the distribution of muons at

sea level. In order to propagate muons in water down to the KM3NeT detector cans, the gSeaGen
code [126] was used. The code was modified for the muon propagation with PROPOSAL [127]
since originally gSeaGen was developed as a GENIE-based [128] application for the neutrino
simulation.

PROPOSAL is a MC code for the propagation of leptons and gamma-rays through media. It
calculates the final position, direction, and energy of a particle given the corresponding initial
condition and the distance of the propagation in the medium. Processes that determine the
muon energy losses and scattering are described below.

Ionization losses in water are dominant for muons with energies less than ∼ 100 GeV, while
the radiative losses prevail at higher energies, the left plot in Fig. 3.8. The energy loss rate per
unit of path length may be expressed as −dE/dx = a(E) + b(E)E, where a(E) incorporates
the losses due to ionization, and b(E) is the energy-scaled contribution from radiative processes.
This equation illustrates the fact that, unlike the ionisation losses, the radiative losses increase
proportionally with energy. Radiative losses include bremsstrahlung [129], e+/e− pair produc-
tion [130], and photo-nuclear interactions [131]. The contributions of each processes to the b(E)
term are shown on the right plot in Fig. 3.8. Despite the energy loss calculations, PROPOSAL
also takes into account the Landau–Pomeranchuk–Migdal effect [132].
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Figure 3.8: Left: mean muon energy losses in water. Curve a represents the ionization losses,
curve b shows the radiative ones, and c are the total energy losses. Right: con-
tributions to the radiative energy losses in water: a - e+/e− pair production, b -
bremsstrahlung, c - photonuclear interactions, and d - sum of the radiative losses.
The figure is taken from [133].

3.4.1 Ionization

Energy loss due to ionization per unit of length is described by the Bethe-Bloch formula:

⟨−dE

dx
⟩ = K

Z

A

1
β2 [12 ln 2mec2β2γ2Qmax

I2 − β2 − δ

2 + 1
8

Q2
max

(γmc2)2 ] +
∣∣∣∣∆dE

dx

∣∣∣∣ . (3.6)

Here K = 4πNAr2
emec2, NA is Avogadro’s number, re is the classical electron radius, mec2

is the electron mass, Z and A are the charge and the atomic mass of medium, β = v/c and
γ = 1/

√
1 − β2 are the usual kinematic variables. Qmax is the kinematic maximum possible

electron recoil kinetic energy, I is the mean excitation energy, δ includes the density-effect
correction, ∆dE

dx stands for the high-energy corrections. Parameters describing ionization energy
losses of muons in water that were used in PROPOSAL are reported in Table 3.4 [134]. The
density effect correction is calculated using Sternheimer’s parametrization [135]:

δ =


2(ln 10)x − C if x ≥ x1,

2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1,

δ0102(x−x0) if x < x0,

(3.7)

where x = log10(βγ), C = −C reported in Table 3.4.

Mass density Mean excitation energy Density correction constants
ρ [g/cm3] I [eV] a ms x0 x1 C δ0
1.03975 75.0 0.09116 3.4773 0.2400 2.8004 -3.5017 0

Table 3.4: Parameters describing ionization energy losses of muons in the seawater.
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3.4.2 Bremsstrahlung

During the propagation of a charged particle in a medium, it is scattered in the electric fields
of atomic nuclei and electrons. Acceleration and deceleration of a particle lead to electromagnetic
radiation which is called Bremsstrahlung.

Bremsstrahlung cross section for electrons was obtained by Bethe and Heitler [136]. In order
to calculate the cross sections for muons, it is necessary to take into account nuclear screening
which was first done consistently by Petrukhin and Shestakov [137]. More recent calculations
done by Kelner et al. [129] were used as input for PROPOSAL in this work.

The differential cross section includes bremsstrahlung from a nucleus and electrons. For the
nucleus, the cross section is expressed as follows:

dσ

dν

∣∣∣∣
brems, nucl

= α(2Z
me

Mµ
re)2(4

3 − 4
3ν + ν2)Φ(δ)

ν
. (3.8)

Here ν is the fraction of the muon energy transferred to a photon, α is the fine structure
constant, Mµ is the muon mass,

Φ(δ) = ln( BMµZ−1/3/me

1 + δ
√

eBZ−1/3/me
) − ∆n(δ), (3.9)

where B = 182.7 (B = 202.4 for hydrogen), e is Euler’s number, δ = M2
µν/2E(1−ν), and ∆n(δ)

is the nuclear screening correction factor:

∆n(δ) = ln( Dn

1 + δ(Dn
√

e − 2)/Mµ
), where Dn = 1.54A0.27. (3.10)

The cross section for the bremsstrahlung from electrons is given by:

dσ

dν

∣∣∣∣
brems, elec

= αZ(2 me

Mµ
re)2(4

3 − 4
3ν + ν2)Φin(δ)

ν
, (3.11)

with

Φin(δ) = ln( Mµ/δ

Mµδ/m2
e +

√
e

) − ln(1 + me

δBZ−2/3√
e

), (3.12)

where B = 1429 (B = 446 for hydrogen), and δ = M2
µν/2E(1 − ν), as above.

3.4.3 Pair production

High-energy muons in the electric field of a nucleus produce virtual photons that lead to the
production of electron-positron pairs. This process has an energy threshold since the photon
energy must be greater than two electron masses. The differential cross section of the pair
production was obtained by Kokoulin and Petrukhin and it is widely used in muon transport
calculations. The full expression for the cross section can be found in [130].

3.4.4 Photonuclear interactions

Photonuclear interactions emerge due to the muon interaction with nuclei via the exchange
of a virtual photon. The cross section that was used in PROPOSAL for this process was taken
from the Abramowicz and Levy work [131].
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3.4.5 LPM effect
Due to the low longitudinal momentum transfer between the nucleus and the fast particle,

bremsstrahlung is not instantaneous but occurs over a finite formation zone [138]. During
this time, external influences can perturb the fast particle and suppress the photon emission. It
affects first the radiation of soft photons and is, therefore, most important for the bremsstrahlung
energy loss. Hence, the standard Bethe and Heitler formula for the cross section no longer holds
and has to be modified. Initially, Landau and Pomeranchuk studied the suppression effect by
multiple scattering using a semiclassical argument [132]. Later, Migdal presented a full quantum
treatment [139]. The calculation for the standard rock shows that the effect becomes noticeable
at muon energy of 10 PeV and leads to a 10% decrease of the bremsstrahlung cross section at
103 PeV [140]. Therefore, this effect is of a less importance for the KM3NeT atmospheric muon
simulations.

3.4.6 Water composition
The relative content of the seawater components is listed in Table 3.5. This is a standard water

composition that is used in the KM3NeT simulations. The composition was taken from [141]
corrected for the salinity at the ANTARES site [142]. The ANTARES location was nearby to the
ORCA detector, the salinity at the ARCA site differs from the ANTARES one at a level below
1% [143, 144]. In the recalculations to correct for salinity, the content of all the elements except
for hydrogen and oxygen was multiplied by a factor corresponding to the relative difference in
salinity. However, the sea salt sulfate was neglected. Hence, also the relative content of oxygen
should be recalculated properly. In this thesis work, the recalculation was performed using a
more recent seawater composition [145]. The resulting chemical composition is presented in
Table 3.6.

H O Na K Mg Ca Cl S
2.0 1.00884 0.00943 0.000209 0.001087 0.000209 0.01106 0.00582

Table 3.5: Relative content of the seawater elements used in PROPOSAL. The content of hydro-
gen atoms is predefined to be equal to 2, the content of other elements is calculated
relative to hydrogen.

H O Na K Mg Ca Cl S
2.0 1.0024 0.00962 0.000209 0.001083 0.000211 0.01119 0.000579

Table 3.6: Recalculated content of the seawater elements. The recalculation was performed with
the more recent seawater composition [145]. Also, it properly treats oxygen content
enlargement due to the presence of sulfate in the seawater.

A test was performed in order to evaluate the influence of the new water composition on the
simulation results. Also, it was noticed that a more recent value of the water mean excitation
energy exists, I = 79.7 eV [134], instead of I = 75.0 eV as mentioned above. Hence, this value
was also changed for the test.

Muons with initial energies from 1 TeV up to 10 TeV with a step of 500 GeV were propagated
down to 2 km depth in water. The propagation was done with PROPOSAL using two different
compositions mentioned above. The energy losses of muons were compared in two cases, the
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results are presented in Fig. 3.9 left. The plot shows the ratio of the average energy losses of
muons in the seawater with the new chemical composition and the mean excitation energy with
respect to the standard KM3NeT water, vertical error bars represent the statistical errors. The
same test was repeated for 3 km water depth, Fig. 3.9 right. The difference in both cases was
found to be below 0.5%, so the original simulation results can be used.
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Figure 3.9: Impact of the seawater composition difference on the mean energy losses of muons
traveling 2000 m (left figure) and 3000 m (right figure) as a function of initial energy.
The relative differences induced by the new composition are below 0.5% in both cases.

3.5 Light generation

The light generation step of the simulation chain includes the particle propagation inside the
can and the simulation of the Cherenkov light reaching the PMTs. There are two main programs
used in the KM3NeT experiment for these simulations. The first one is called KM3Sim and it uses
the GEANT4 package [146] for particle propagation. The simulation with GEANT4 is precise
but also highly CPU-time consuming since it includes various energy loss processes and tracks all
the particles. An alternative internal KM3NeT software is JSirene, which uses tabulated values
of the probability density function (PDF) of the arrival time of light and the interpolation
methods [147]. The light from a muon includes that of a minimum ionizing particle, δ-rays, and
Bremsstrahlung showers. In this work, the JSirene simulation tool was used for light generation.
The output of the light generation step is the information on the hit times of Cherenkov photons
on the PMT photocathodes.

Simulation of light depends on the water properties. In particular, it depends on the light
absorption and scattering lengths that are discussed below.

The light absorption length has been measured by the NEMO Collaboration at the "KM4"
site [148]. The measurements were performed for attenuation and absorption, independently,
using two different light paths and spanning the light spectrum over nine different wavelengths
(412, 440, 488, 510, 532, 555, 650, 676, and 715 nm). The "KM4" site is 80 km offshore Capo
Passero (36◦2’N, 16◦00’E) which is nearby to the ARCA location, the length at the ORCA site
was assumed to be the same. The measurements were performed also in 5 different periods and
about ±10% variation is seen in the absorption length distribution at 400-500 nm [148]. This is
taken into account for the final data/MC comparison performed in this work, Chapter 5. The
points below the NEMO results in Fig. 3.10 (below 412 nm) are coming from the ANTARES
test device with 3-inch PMT [149] and from the Smith & Baker work [150]. Points at 290 nm
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and 720 nm were added artificially. The average absorption length of photons with a wavelength
of 440 nm is around 67 m.

The model used in the simulations for the light scattering description is the so-called ANTARES
water model (which is also known as partic-0.0075). It includes two components: Rayleigh scat-
tering which is the elastic scattering of light by particles that are typically much smaller than
the wavelength of the light [151] and the scattering on large particles such as dust. The latter
is described by Mie’s solution of the Maxwell equations [152].

Figure 3.10: Light absorption (blue points) and scattering (red dashed line) lengths in seawater
as a function of the photon wavelength. The figure is taken from the KM3NeT
internal document.

3.6 Detector response simulation
The next step of the simulation chain is to model the detector response including the envi-

ronmental optical background. The background includes the contribution from β-decays of 40K,
bioluminescent light [153], and other radioactive decays of nuclei in the DOM glass and water.
For the simulation of response to the incoming photons, the characteristics of PMTs and the
effects of front-end electronics are taken into account. The trigger-level simulation is usually
performed in a so-called run-by-run approach, i.e. the simulation is subdivided into batches
corresponding to the actual data-taking periods in order to reproduce the time variability of
the detector conditions. In particular, the position and orientation of PMTs and values of PMT
quantum efficiencies are considered individually for each run in the simulation. The background
event rates are also extracted from the data.

3.7 Reconstruction
In a broad sense, the reconstruction is a fit of a model to the data. The same reconstruction

algorithms are applied to both, the real data and the MC simulations. Neutrino interacting with
matter produce two different event topologies. In this work, the track-like event reconstruction
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arising from the secondary muon tracks is described in more details since this algorithm is used
to reconstruct the atmospheric muons. A description of the shower-like event reconstruction can
be found in [154].

3.7.1 Track reconstruction

The track reconstruction is performed in five consequent steps, the so-called reconstruction
chain, that allows to estimate the direction and the energy of the muon tracks. The chain was
developed within the Jpp software framework [155] widely used in the KM3NeT experiment
for different purposes. The first three steps of the chain aim to reconstruct the position and
direction of the track and the last two estimate the track length and energy. Names of the steps
are given in the scheme below.

JMuonPrefit → JMuonSimplex → JMuonGandalf → JMuonStart → JMuonEnergy

JMuonPrefit

The muon trajectory is described by its direction and position at each point in time, resulting
in 5 independent parameters. The main difficulty in trajectory reconstruction is the non-linearity
of the problem. In order to reduce the problem to the linear one, different track directions are
assumed and the remaining unknown parameters are, thus, the position of the muon at a given
time.

JMuonPrefit performs an initial fit by considering N track direction hypotheses covering the
whole solid angle of the sky with a predefined step. This process assumes a direction and fits
the position of the muon and the time at which it crosses a reference plane perpendicular to
the muon direction. The iterative procedure aims to minimize the χ2 which is calculated based
on the time difference between the expected arrival time of a photon and its actual arrival time
and is normalized to an assumed time resolution. A specified number of the best fits, usually
40, is saved by JMuonPrefit and then passed on to JMuonSimplex for the next step of the muon
trajectory reconstruction.

JMuonSimplex

An intermediate fit of the muon trajectory is performed with JMuonSimplex. It uses the
best-fit solutions from JMuonPrefit and performs the further minimization of the photon arrival
time residuals via an algorithm called Powell’s method [156].

JMuonGandalf

JMuonGandalf is the main part of the muon trajectory reconstruction. It takes the fits from
JMuonSimplex, performs a scan around the corresponding track hypothesis, and minimizes a
chi-square function in terms of the track direction and position. The method of chi-square esti-
mation relies on the semi-analytical arrival time distributions. These distributions describe the
number of photo-electrons detected by PMT taking into account its position and orientation
with respect to the muon track. Various factors are considered when determining the arrival
time distributions, such as the PMT’s quantum efficiencies, transit-time spreads, and angular
acceptances. The distributions take into account the light produced by different sources, in-
cluding direct and single scattered Cherenkov light, emission from electromagnetic and hadronic
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showers, the light produced by delta-rays created along the track, and the light due to the energy
loss of a muon. For the transmission of light, the wavelength-dependent effects of dispersion,
absorption, and scattering in the medium are considered. The angular acceptance and the quan-
tum efficiency of the PMTs are also taken into account. The arrival time distributions are used
to define the PDFs which determine the chance to observe a first photo-electron at a relative time
with respect to the arrival time expectation for a direct hit caused by an unscattered Cherenkov
photon. Fig. 3.11 shows the PDF distributions obtained for 1 TeV muon passing the PMT at a
distance of closest approach of 50 m for different relative orientations of the PMTs.

Figure 3.11: The PDFs obtained for a 1 TeV muon track located at 50 m from the PMT for
different relative orientations.

Using the PDFs described above, the likelihood functions under two hypotheses are defined.
The H1 hypothesis implies that a track particle is responsible for a given cluster of hits within
the detector, while the H0 hypothesis assumes that the hit pattern was caused by background
radiation only. The natural logarithm of a ratio of two likelihood functions asymptotically follows
a chi-square distribution according to Wilks’ theorem [157]. JMuonGandalf finds a minimum of
this function that corresponds to the track which is most compatible with the signal hypothesis
and least with the background-only model. The final chi-square value corresponding to the
obtained minimum is saved and is used to define the quality metric, Q = −χ2, of the fit.

JMuonStart

JMuonStart uses back-projection of hits onto the track under the Cherenkov angle to deter-
mine the starting position of the muon trajectory. The first associated emission point which
exceeds the random background level is selected as the start position.

JMuonEnergy

JMuonEnergy evaluates the muon energy. The evaluation is based on the minimization of
a likelihood function in terms of the track energy. The function consists of a sum over the
logarithm of the hit and no-hit probabilities in a cylinder surrounding the muon track. For each
PMT in the cylinder, the number of photon hits induced by the background from 40K decays,
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by delta-rays, by electromagnetic showers, and by the ionization and radiative energy losses of
the muon are estimated from the tabulated PDFs. The probability that the i-th PMT observes
n hits is given by the Poisson distribution,

P (n; µi(E)) = µi(E)n

n! e−µi(E), (3.13)

where µi is an expected number of hits on the i-th PMT as a function of the muon energy, E.
Therefore, the probability that there are no hits observed is

P (n = 0; µi(E)) = e−µi(E), (3.14)

and the probability to have at least one hit on the i-th PMT is

P (n > 0; µi(E)) = 1 − P (n = 0; µi(E)) = 1 − e−µi(E). (3.15)

The likelihood as a function of the energy, L(E), is minimized using an M-estimation method.
The likelihood is defined differently for energy reconstruction in ORCA and ARCA. In ORCA,
the null M-estimator is used and L(E) is defined as

LORCA(E) = −
N∑

i=1
ln[(1 − 2e−µi(E))In>0 + e−µi(E)]. (3.16)

Here N is the total number of PMTs inside the cylinder, In>0 equals 1 if n > 0 and equals 0
otherwise.

For ARCA, it was shown that the energy evaluation algorithm performs better using a sum
over Lorentzian functions, ρ(x) = 1 + 1

2x2, to determine the likelihood:

LARCA(E) =
N∑

i=1

[
1 + 1

2ln2[(1 − 2e−µi(E))In>0 + e−µi(E)]
]
. (3.17)

3.7.2 Reconstruction performance
The capabilities to reconstruct the muon properties are discussed in Chapter 5. Here, the

neutrino reconstruction performance is considered. Fig. 3.12 demonstrates the median angular
resolution of the ORCA detector with 115 lines as a function of neutrino energy. Four different
classes of events are considered, the charged current (CC) interactions of electron and muon
neutrino and the corresponding anti-neutrino. The resolution is better than 15 degrees for neu-
trino energies above 5 GeV. The energy resolution of the ORCA detector in its full configuration
is shown in Fig. 3.13. The left plot on the figure shows the true vs reconstructed energy dis-
tribution for the track-like events from the muon neutrino CC interactions, the right plot on
the same figure was obtained for the shower-like events resulting from the electron neutrino
CC interactions. The energy resolution is Gaussian-like with ∆E/E ≈ 25% for the shower-like
events. The energy resolution for the track-like events is lower, ∆E/E ≈ 35%, since muon tracks
are not always fully contained inside the instrumented volume. The red diagonal line indicates
perfect energy reconstruction.
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Figure 3.12: Angular resolution for the CC muon (blue) and electron (red) events reconstructed
with ORCA115. The figure is taken from [93]

Figure 3.13: Energy resolution obtained for the ORCA115 detector for the track-like (left plot)
and shower-like (right plot) events as a function of neutrino energy. The figure is
taken from [93]

The reconstruction performance for the angular resolution of the ARCA detector in its full
configuration is shown in Fig. 3.14. The red line on the left plot demonstrates the angular
resolution as a function of neutrino energy for the track-like events, the resolution is below 1◦

for neutrino energy above 1 TeV. The green line is the average angle between the parent neutrino
and secondary muon. The shaded areas correspond to 1 σ deviation from the average values.
The black dashed line is the IceCube performance [158] shown for comparison. The ARCA
angular resolution for the shower events is shown on the right part of Fig. 3.14. The AAshower
fit is the standard KM3NeT reconstruction algorithm while the timing information algorithm is
the improved one [159]. The energy reconstruction performance for the track (shower) events is
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shown on the left (right) of Fig. 3.15. The energy resolution obtained for the track-like events
is 0.27 units in log10(Eµ) for 10 TeV ≤ Eµ ≤ 100 PeV. The shower-like events resolution for the
energy reconstruction is around 10% for events above 70 TeV.

Figure 3.14: Angular resolution with the 2 full building blocks of ARCA for the tracks (left plot
taken from [160]) and showers (right plot taken from [159]).

Figure 3.15: The energy reconstruction performance with the completed ARCA detector. The
left plot presents the energy reconstruction of the tracks, the right one is for the
showers. The figure is taken from [79].

3.8 Results of the atmospheric muon simulations

The top (bottom) plot in Fig. 3.16 demonstrates the rate of events reconstructed with the
ORCA6 (ARCA6) detector as a function of the primary energy. The highlighted area indicates
the 90% fraction of the total number of events counting from the maximum of the distribution.
The corresponding energy range spans from 3 to 350 TeV for ORCA6 and from 4 TeV to 1 PeV
for ARCA6. The same plot but for the full ORCA (ARCA) detector configuration is presented
on top (bottom) of Fig. 3.17. The energy ranges for the completed detectors are 3 − 250 TeV
for ORCA115 and 6 TeV − 1 PeV for ARCA115.
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As it can be seen from the figures below, most of the events detected by the KM3NeT telescopes
originate from proton and helium nuclei. Detailed comparisons of the simulation result with the
real data are presented in Chapter 5.
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Figure 3.16: Event rate of the atmospheric muon events reconstructed with the ORCA6 (top
plot) and ARCA6 (bottom plot) detectors as a function of the primary CR energy.
The highlighted area corresponds to the 90% fraction of events.
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Figure 3.17: Atmospheric muon rates reconstructed with the ORCA (top plot) and ARCA (bot-
tom plot) detectors in their completed configurations.
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4 Tuning of the MUPAGE parameters on the
CORSIKA simulation

This chapter describes the framework that the author of this work developed for the MU-
PAGE [161] parameters tuning on the CORSIKA full MC simulation [66].

4.1 Motivation

CORSIKA provides the full simulations of EAS as described in Chapter 3. However, the main
drawback of using the full simulation is that it is highly CPU time-consuming. The KM3NeT
telescopes are currently under construction and the new detector configurations arise every sea
campaign. Hence, the simulations must be redone for every new detector layout. Moreover, the
software is being modified and improved continuously which in its turn requires new simulations
to be performed for every new software release. Finally, the KM3NeT simulations are based
on the so-called Run-by-Run (RbR) approach, i.e. the simulations are subdivided into batches
corresponding to the actual data-taking periods in order to reproduce the time variability of the
detector conditions. In particular, the calibrated position and orientation of PMTs and values
of PMT quantum efficiencies are considered individually for each run in the simulation. The
RbR simulations are not possible with CORSIKA due to the large CPU time needed for the full
MC simulations.

To fulfill these requirements, the KM3NeT simulation of atmospheric muons is based on the
fast MC generator originally developed for the ANTARES neutrino telescope [90], MUPAGE
(Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes) [161].
MUPAGE generates the muon bundle properties for a certain sea depth and zenith angle based
on parametric formulas. The formulas describe the flux of the single and multiple muons in
the bundles, the differential energy spectrum, and the distance of muons from the bundle axis.
Values of the parameters were initially obtained by fitting the muon distributions at different
depths resulting from the HEMAS full MC simulation [162]. In this work, a framework was
developed in order to tune the MUPAGE parameters using the CORSIKA simulation software
and the most recent models available that describe the high-energy hadronic interactions, Sibyll
2.3d [69], and CR flux, GSF [19].

4.2 Muon propagation in water

The CORSIKA simulation code was used to obtain muon distributions at the sea level orig-
inating from CR showers. As it was described in the Chapter 3, there is a dedicated internal
KM3NeT software for the muon propagation in water, gSeaGen [126]. However, it is only
possible to propagate muons down to the detector cans with gSeaGen, while the MUPAGE
parametrization is obtained by fitting the muon distribution at the plane perpendicular to the
EAS axis. To take into account these differences, the CaP (CORSIKA and PROPOSAL) code
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was developed in this work. The CaP results helped to resolve the issues that were present in
the standard KM3NeT software for the atmospheric muon simulations.

4.2.1 The CaP code
The CaP software reads CORSIKA binary output files, propagates muons down in seawater

using PROPOSAL v6 [127], and saves the output in the standard KM3NeT data format. This
subsection describes the propagation geometry used in CaP.

The shower axis intersects the sea-surface at (0, 0, 0) point in the CORSIKA coordinate
system, muons are located around the shower axis at the surface which is tangential to the
Earth’s curvature, Fig. 4.1.

Figure 4.1: Sketch of the CORSIKA coordinate system. The shower axis is shown as a red arrow,
the atmospheric muons are purple arrows.

The origin of the CaP coordinate system is the Earth center and the z-axis points to the sea
surface, opposite to the CORSIKA z-axis. The goal is to rotate each shower so that the shower
axis intersects the CaP z-axis at (0, 0, R−d) point, the green circle in Fig. 4.2. Here R = 6371.3
km is the Earth radius and d is the propagation depth. The first step of the rotation is to find
an intersection point between the original shower axis and a sphere with a radius of R − d, the
red circle in Fig. 4.2.
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Figure 4.2: The shower rotation geometry used in CaP. The red arrow is the shower direction
from the CORSIKA simulations and the green arrow is the rotated shower.

The equation that describes the sphere with a radius of R − d is

x2 + y2 + z2 = (R − d)2. (4.1)

The shower axis line is


x = αxt,

y = αyt,

z = R + αzt,

(4.2)

where αx, αy, and αz are direction cosines of a primary and t is a parameter. Hence, in order
to find the intersection point, x, y and z coordinates in Eq. 4.1 must be replaced with the
corresponding coordinates from Eq. 4.2:

(αxt)2 + (αyt)2 + (R + αzt)2 = (R − d)2 ⇒{
t1 = −Rαz −

√
(Rαz)2 − [R2 − (R − d)2]

t2 = −Rαz +
√

(Rαz)2 − [R2 − (R − d)2]
(4.3)

The smaller value of the two solutions is t1 because αz is always negative since the EAS are
downward-going. The t1 value is chosen for the further calculations since an intersection point
closer to (0, 0, R − d) is needed. Therefore, the coordinates of u⃗ and v⃗ in Fig. 4.2 are known,
u⃗ = (αxt1, αyt1, R + αzt1) and v⃗ = (0, 0, R − d).

Hence, sine and cosine of an angle between u⃗ and v⃗, the rotation angle φ, can be calculated
as
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cos φ = u⃗ · v⃗

||u⃗|| · ||v⃗||

sin φ = ||u⃗ × v⃗||
||u⃗|| · ||v⃗||

.

(4.4)

The rotation axis is determined as a cross product of u⃗ and v⃗,

a⃗ = u⃗ × v⃗

||u⃗ × v⃗||
. (4.5)

Matrix for rotation around the vector a⃗ by the angle φ is given by the Rodrigues’ rotation
formula [163]:

R =

 cos φ + a2
x(1 − cos ϕ) axay(1 − cos φ) − az sin φ axaz(1 − cos φ) + ay sin φ

ayax(1 − cos φ) + az sin φ cos φ + a2
y(1 − cos ϕ) ayaz(1 − cos φ) − ax sin φ

azax(1 − cos φ) − ay sin φ azay(1 − cos φ) + ax sin φ cos φ + a2
z(1 − cos ϕ)


Starting positions and directions of primaries and muons are then recalculated using the R

matrix. Hence, the shower is rotated so that it intersects the plane perpendicular to its direction
at a given depth and all the muons are rotated accordingly.

4.2.2 Statistics of the muon simulation
Atmospheric muons were propagated down in water up to 7 depths, from 2000 to 3500 m

with a step of 250 m. Fig. 4.3 shows the flux of muons at 3500 m depth as a function of the
primary energy for the five different nuclei that were used in the CORSIKA simulations. As
can be seen from the plot, the statistics are enough for the whole energy range and for every
primary.
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Figure 4.3: Flux of muons at 3500 m.w.e depth as a function of the primary energy for five nuclei
used in the simulations.

4.3 The MUPAGE tuning

In order to obtain new values of the MUPAGE parameters, histograms of the muon properties,
e.g. flux of single muons, were fitted with the corresponding MUPAGE function.

4.3.1 Flux of single muons

Underwater muon flux is parametrized in MUPAGE using the following function:
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Φ(m; h, θ) = K(h, θ)
mν(h,θ) . (4.6)

Here m is the multiplicity (number of muons in the bundles), h is depth in km.w.e, θ is zenith
angle, K and ν are free parameters.

As a first step, the flux of single muons (m = 1) as a function of the cosine of the zenith angle
was fitted. In this case, Eq. 4.6 becomes:

Φ(m = 1; h, θ) = K(h, θ) = K0(h) cos θ · eK1(h) sec θ. (4.7)

The fit was performed at seven values of vertical depth, from 2 km down to 3.5 km with a
step of 0.25 km. The bin size of cos θ was set to 0.025. An example of the fit at 2 km depth is
shown in Fig. 4.4.
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Figure 4.4: Single muon flux as a function of zenith angle at 2 km depth fitted with Eq. 4.7.
Blue points represent the CORSIKA distribution, the red line is the MUPAGE fitting
function.

Values of the parameters K0 and K1 depend on depth which is described by the following
MUPAGE functions:

K0(h) = K0a · hK0b , (4.8)
K1(h) = K1a · h + K1b. (4.9)

The K0(h) and K1(h) fit results are shown in Fig. 4.5. A list of the new K parameters
compared with the nominal ones is reported in Table 4.1.
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Figure 4.5: Left (right) plot shows the parameter K0 (K1) values as a function of depth fitted
with Eq. 4.8 (Eq. 4.9). Blue points represent the parameter values obtained from the
single muon flux fit at the 7 depths mentioned above. The red line is the MUPAGE
function used for the fit, the green line is the same function but with the nominal
MUPAGE parameters.

Name Nominal Value Fitted value
K0a 7.20 ×10−3 7.98 ×10−3

K0b -1.927 -1.896
K1a -0.581 -0.606
K1b 0.034 -0.110

Table 4.1: List of the nominal and fitted values of the parameters that describe the flux of single
muons.

In order to check whether the new parametrization of single muon flux describes the corre-
sponding CORSIKA distribution, a ratio between the MUPAGE function and the CORSIKA
flux was obtained. Examples for 2 and 3.5 km depths are shown in Fig. 4.6. The MUPAGE re-
sults with the tuned parameters agree with the CORSIKA distributions, the largest discrepancy
is for the very inclined muons.
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Figure 4.6: Ratios of the single muon zenith flux distribution from the CORSIKA simulation
(blue points) with respect to the nominal (green line) and the fitted (red line) MU-
PAGE functions at 2 (left plot) and 3.5 km (right plot) depths.

4.3.2 Flux of multiple muons

In order to obtain new values of the parameters that describe the number of muons in the
bundles, flux of muons as a function of multiplicity was fitted with Eq. 4.6, where K parameter
was fixed to the value calculated with the new parametrization obtained in Sec. 4.3.1. Hence,
the fitting function had only one free parameter, ν.

Multiplicity distributions were produced for several cosines of the zenith angle at each of the
seven depths mentioned above. The same step in cos θ space was used as for the single muon
flux histograms, resulting in 40 histograms at each depth. The multiplicity fitting range was
set from 2 up to 100 muons in the bundles. An example of the fit of vertical muon bundles
(0.975 ≤ cos θ ≤ 1.0) at 2 km depth is presented in Fig. 4.7.
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Figure 4.7: Flux of vertical muon bundles (0.975 ≤ cos θ ≤ 1.0) as a function of multiplicity at
2 km depth (blue points) fitted with Eq. 4.6 (red line).

At a given depth, MUPAGE parametrizes ν as a function of cos θ:
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ν(h; θ) = ν0(h) · eν1(h)/ cos(θ). (4.10)

Therefore, the fit of the parameter ν values as a function of cos θ was performed at each depth.
Fig. 4.8 illustrates the fit for 2 km depth. The fit result is the ν0 and ν1 values at each depth.
Due to the lack of statistics for inclined muons with cos θ < 0.2, the fit range was restricted to
0.2 <= cos θ <= 1.0 (0.25 <= cos θ <= 1.0 for 3.5 km depth).
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Figure 4.8: The parameter ν dependence on cos θ at 2 km depth (blue points) fitted with Eq. 4.10
(red line).

The ν0 and ν1 depth dependence is parametrized as

ν0(h) = ν0a · h2 + ν0b · h + ν0c, (4.11)
ν1(h) = ν1a · eν1bh. (4.12)

The ν0(h) and ν1(h) fit results are shown in Fig. 4.9.
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Figure 4.9: Left (right) plot demonstrates the parameter ν0 (ν1) values obtained from the ν(θ)
fit (blue points) fitted with Eq. 4.11 (Eq. 4.12). The fitted function is shown in red,
the nominal MUPAGE function is in green.
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The nominal and new values of MUPAGE parameters which describe the muon multiplicity
are listed in Table 4.2.

Name Nominal Value Fitted value
ν0a -7.71 × 10−2 -6.48 × 10−2

ν0b 0.524 0.433
ν0c 2.068 2.475
ν1a 0.030 0.043
ν1b 0.470 0.476

Table 4.2: List of the nominal and fitted values of the multiplicity parameters.

Examples of a ratio of the MUPAGE function with the nominal and fitted parameter values
with respect to the CORSIKA multiplicity distribution for the vertical muon bundles (0.975 ≤
cos θ ≤ 1.0) reaching 2 km and 3.5 km depths are plotted in Fig. 4.10. Ratios for inclined muon
bundles with 0.5 ≤ cos θ ≤ 0.525 are shown in Fig. 4.11. The MUPAGE functions with the
new parameter values are in good agreement with the CORSIKA distributions. The nominal
functions significantly overestimate the CORSIKA multiplicity distributions.

10 20 30 40 50 60 70 80 90 100
multiplicity

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10]
-1

sr
-1 s

-2
F

lu
x 

[m

CORSIKA

Fitted function

Nominal function

 = 0.9875, GSFθ2.079 km.w.e., cos 

10 20 30 40 50 60 70 80 90 100
multiplicity

0

1

2

3

4

5

6

7

8

9

10

co
rs

ik
a

m
up

ag
e 

fu
nc

tio
n Fitted ratio

Nominal ratio

10 20 30 40 50 60 70 80 90 100
multiplicity

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10]
-1

sr
-1 s

-2
F

lu
x 

[m

CORSIKA

Fitted function

Nominal function

 = 0.9875, GSFθ3.639 km.w.e., cos 

10 20 30 40 50 60 70 80 90 100
multiplicity

0

1

2

3

4

5

6

7

8

9

10

co
rs

ik
a

m
up

ag
e 

fu
nc

tio
n Fitted ratio

Nominal ratio

Figure 4.10: Ratio of the CORSIKA multiplicity distribution (blue points) for the vertical muon
bundles (0.975 ≤ cos θ ≤ 1.0) at 2 km (left plot) and 3.5 km (right plot) depths with
respect to the nominal (green line) and the fitted (red line) MUPAGE functions.

65



Chapter 4. Tuning of the MUPAGE parameters on the CORSIKA simulation

10 20 30 40 50 60 70 80 90 100
multiplicity

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10]
-1

sr
-1 s

-2
F

lu
x 

[m

CORSIKA

Fitted function

Nominal function

 = 0.5125, GSFθ2.079 km.w.e., cos 

10 20 30 40 50 60 70 80 90 100
multiplicity

0

1

2

3

4

5

6

7

8

9

10

co
rs

ik
a

m
up

ag
e 

fu
nc

tio
n Fitted ratio

Nominal ratio

10 20 30 40 50 60 70 80 90 100
multiplicity

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10

5−10]
-1

sr
-1 s

-2
F

lu
x 

[m

CORSIKA

Fitted function

Nominal function

 = 0.5125, GSFθ3.639 km.w.e., cos 

10 20 30 40 50 60 70 80 90 100
multiplicity

0

1

2

3

4

5

6

7

8

9

10

co
rs

ik
a

m
up

ag
e 

fu
nc

tio
n Fitted ratio

Nominal ratio

Figure 4.11: Multiplicity distributions of inclined muon bundles, 0.5 ≤ cos θ ≤ 0.525, (blue
poins) compared to the fitted (red line) and nominal (green line) MUPAGE func-
tions at 2 km (left plot) and 3.5 km (right plot) depths.

4.3.3 Energy spectrum of single muons
The energy distribution of single muons is parametrized in MUPAGE as

dN

d(log10Eµ) = G · EµeβX(1−γ)[Eµ + ϵ(1 − e−βX)]−γ . (4.13)

Here Eµ [TeV] is the muon energy, X = h/ cos θ [km.w.e] is the slant depth, and ϵ, β, γ are
free parameters. The constant G is a normalization factor:

G = 2.3 · (γ − 1) · ϵ(γ−1) · e(γ−1)βX · (1 − e−βX)(γ−1). (4.14)

To obtain the new values of the single muon energy parameters, the normalized energy distri-
butions were fitted with Eq. 4.13 at 40 different values of cos θ at each of the seven depths. The
fitting range was set to 1 GeV <= Eµ <= 10 TeV. The value of the parameter β was fixed to
β = 0.420 [km.w.e]−1 = 4.2 × 10−4 [hg · cm−2]−1 following the MUPAGE paper approach [161].
Hence, the two free parameters of the fit are γ and ϵ. Example of the fit of vertical muons
(0.975 ≤ cos θ ≤ 1.0) at 2 km depth is shown in Fig. 4.12.
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Figure 4.12: Fit of the CORSIKA simulation energy distribution of vertical muons at 2 km depth
(blue points) with Eq. 4.13 (red line).

The parameter γ does not depend on the zenith angle in MUPAGE. Therefore, for every depth
the γ distribution over cos θ was fitted with a straight line, the fitting range was the same as
mentioned in Sec. 4.3.2. Fig. 4.13 shows the fit results for 2 km depth. The γ(cos θ) fit does
not describe the energy fit result. However, this does not affect the final agreement between the
tuned MUPAGE and the CORSIKA simulation results as shown below in Sec. 4.4.
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Figure 4.13: Fit of the γ parameter values as a function of cos θ (red line) resulting from the
single muon energy fit at 2 km depth (blue points). The green line was obtained
with the nominal values of the parameters. The γ parameter is assumed to be
independent of cos θ so the fitting function is a straight line.

After obtaining values of the parameter γ at each depth, its depth dependence was fitted using
the corresponding MUPAGE function (see Fig. 4.14 for the fit result):

γ(h) = γ0 · ln(h) + γ1. (4.15)
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Figure 4.14: Fit of the parameter γ depth dependence (blue points) with Eq. 4.15 (red line).
The green line represents the γ(h) function with the parameter values fixed to the
nominal ones.

Dependence of the parameter ϵ on cos θ at a given depth is parametrized in MUPAGE as

ϵ(h; θ) = ϵ0(h) · sec θ + ϵ1(h) (4.16)

The result of the parameter ϵ(cos θ) fit at 2 km depth is shown on Fig. 4.15.
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Figure 4.15: Fit of the parameter ϵ dependence on cos θ (blue points) with Eq. 4.16 (red line) at 2
km depth. The green line is the nominal MUPAGE function shown for comparison.

The fit result of the ϵ0 and ϵ1 depth dependence is plotted on Fig. 4.16. The following
MUPAGE equations were used in the fit:

ϵ0(h) = ϵ0a · eϵ0bh, (4.17)
ϵ1(h) = ϵ1a · h + ϵ1b. (4.18)

68



Chapter 4. Tuning of the MUPAGE parameters on the CORSIKA simulation

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
depth [km w.e]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 v
al

ue
0∈

 / ndf 2χ  9.488 / 5
 0a∈  0.0002834± 0.0004417 
 0b∈  0.2118± 1.288 

 / ndf 2χ  9.488 / 5
 0a∈  0.0002834± 0.0004417 
 0b∈  0.2118± 1.288 

fit result
)θ(cos∈

Fitted function

Nominal function

(h) fit, GSF0∈

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
depth [km w.e]

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

 v
al

ue
1∈

 / ndf 2χ  15.68 / 5
 1a∈  0.004392±0.0236 − 
 1b∈  0.01074± 0.7648 

 / ndf 2χ  15.68 / 5
 1a∈  0.004392±0.0236 − 
 1b∈  0.01074± 0.7648 

fit result
)θ(cos∈

Fitted function

Nominal function

(h) fit, GSF1∈

Figure 4.16: The ϵ0 (left plot) and ϵ1 (right plot) values obtained from the ϵ angular dependence
fit at each depth (blue points). The values were fitted with Eq. 4.17 and Eq. 4.18
correspondingly, red lines. The same functions with the nominal MUPAGE param-
eter values are plotted in green.

A list of the parameters which describe the single muon energy distribution is reported in
Table 4.3.

Name Nominal Value Fitted value
β (fixed) 0.420 0.420

γ0 -0.232 -0.343
γ1 3.961 3.991
ϵ0a 0.0304 0.0004
ϵ0b 0.359 1.288
ϵ1a -0.0077 -0.0236
ϵ1b 0.659 0.765

Table 4.3: List of the nominal and fitted parameters that are used in the MUPAGE functions
that describe the energy spectrum of single muons.

Fig. 4.17 illustrates the ratios of the normalized single muon energy distribution from the
CORSIKA simulation with respect to the nominal and fitted MUPAGE functions for vertical
muons at 2 and 3.5 km depths. The ratio is close to one in the energy range from 10 GeV up to 1
TeV for both the nominal and the fitted functions. The functions underestimate the CORSIKA
energy distribution for Eµ < 10 GeV and overestimate it for Eµ > 1 TeV. The ratio is better for
more vertical muons with 0.5 ≤ cos θ ≤ 0.525, Fig. 4.18.
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Figure 4.17: Normalized energy spectrum of vertical (0.975 ≤ cos θ ≤ 1.0) single muons from the
CORSIKA simulation (blue points) compared to the corresponding nominal (green
line) and fitted (red line) MUPAGE functions at 2 (left plot) and 3.5 km (right
plot) depths.
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Figure 4.18: Ratios of the CORSIKA energy distribution (blue points) and the MUPAGE func-
tions (green - nominal, red - fitted) for inclined muons with 0.5 ≤ cos θ ≤ 0.525.
The left plot shows the results for 2 km depth, the right one is for 3.5 km.

4.3.4 Lateral spread of multiple muons in the bundles
The MUPAGE function that describes the normalized muon lateral distribution in a plane

perpendicular to the bundle axis is

dN

dR
= C

R

(R + R0)α
, (4.19)

where dN is the number of muons in dR lateral distance interval, R0 and α are parameters,
and C is the normalization factor, C = (α − 1)(α − 2)Rα−2

0 . The average value of the radial
distribution < R > depends on R0 and α: < R >= 2R0/(α − 3). Following the MUPAGE
paper, the parameter < R > was used in the fit. The dependence of < R > on depth, zenith
angle, and multiplicity is factorized into two variables, ρ(m, h) and F (θ):

< R >= ρ(m, h) · F (θ). (4.20)
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The fit was performed for seven depths, 3 multiplicities (2, 3, and ≥ 4 muons in the bundles),
and 10 values of θ, from 0 to π/2 radians. In the following formulas, the variable M is used,
which is defined as

M = m, if m ≤ 3,

M = 4, if m ≥ 4.
(4.21)

Since < R > is assumed to be independent of the zenith angle up to ∼ 50◦, the lateral
distribution was fitted for the vertical muon bundles first, ignoring F (θ). Thus, the fitting
formula has 2 free parameters, α and ρ:

dN

dR
= C

R

(R + R0)α
= 0.5(α − 1)(α − 2)(α − 3)ρα−2 R

(R + 0.5(α − 3)ρ)α
. (4.22)

The result of the lateral spread fit of the vertical (0.0 ≤ θ ≤ 0.157 radians) bundles containing
2 muons at 2 km depth is presented in Fig. 4.19.
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Figure 4.19: Fit of the CORSIKA lateral distribution of vertical muons from the bundles con-
taining 2 muons at 2 km depth (blue points) with Eq. 4.22 (red line).

At a given multiplicity, the parameter α dependence on depth which is expressed in MUPAGE
as

α(M ; h) = α0(M) · eα1(M)h. (4.23)

For each of the three multiplicities, the α depth dependence was fitted with Eq. 4.23 (see
Fig. 4.20 for the fit result for M = 2).
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Figure 4.20: Fit of the parameter α dependence on depth for M = 2 (blue points) with Eq. 4.23
(red line). The green line is for the function with the nominal MUPAGE parameters.

The function that describes dependence of the parameters α0 and α1 on multiplicity is

α0(M) = α0a · M + α0b,

α1(M) = α1a · M + α1b.
(4.24)

The α0(M) and α1(M) fit results are on Fig. 4.21.
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Figure 4.21: Results of the α(h) fit for three multiplicities, blue points. The red line is the fit
of the results with Eq. 4.24. The green line is the same function but with the
parameters that are kept nominal.

.

As for the parameter ρ, at a given multiplicity it depends on h as

ρ(M ; h) = ρ0(M) · hρ1(M). (4.25)

Fig. 4.22 shows the fit result for M = 2.
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Figure 4.22: Fit of the parameter ρ dependence on depth for M = 2 (blue points) with Eq. 4.25
(red line). The nominal MUPAGE function is the green line.

For a given h, the parameter ρ0 linearly depends on M (Eq. 4.26) while ρ1 is considered to
be independent of M (Eq. 4.27). Fig. 4.23 shows the ρ0(M) and ρ1(M) fit results.

ρ0(M) = ρ0a · M + ρ0b, (4.26)
ρ1(M) = ρ1. (4.27)
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Figure 4.23: The ρ0(h) and ρ1(h) values (blue points) fitted with Eq. 4.26 and Eq. 4.27, corre-
spondingly. The red lines are the fitted functions, the green lines are the nominal
functions.

.

The parameters ρ and α that were fitted above describe the radial distribution of muons in
the vertical bundles. Zenith dependence of < R > is parametrized in MUPAGE as

F (θ) = 1
e(θ−θ0)f + 1

. (4.28)

73



Chapter 4. Tuning of the MUPAGE parameters on the CORSIKA simulation

However, the CORSIKA simulation results show that the average value of the radial distance
slightly increases with θ which cannot be described with Eq. 4.28 (see Fig. 4.24 for M = 2 at 2
km depth). Hence, the value of the parameter θ0 was fixed to 10 in order to have < R > value
independent of θ, and the parameter f was fixed to the nominal value.
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Figure 4.24: Average value of the radial distance as a function of θ for 2 km depth and for M = 2,
blue points. The green line is the nominal MUPAGE function, the red line is the
same function but with θ0 value fixed to 10.0.

List of the parameters that describe the lateral spread distribution is available in Table 4.4.

Name Nominal Value Fitted value
ρ0a -1.786 -2.126
ρ0b 28.26 27.22
ρ1 -1.06 -1.03
θ0 1.3 10.0
f 10.4 10.4

α0a -0.448 -1.104
α0b 4.969 7.493
α1a 0.0194 0.0794
α1b 0.276 0.099

Table 4.4: The nominal and fitted MUPAGE parameters for the lateral spread of muons in the
bundles.

The ratio of the CORSIKA lateral distribution and the MUPAGE functions for vertical (0.0 ≤
θ ≤ 0.157 radians) muon bundles with M = 2 at 2 and 3.5 km depths is shown in Fig. 4.25.
The ratio for the inclined bundles with 0.628 ≤ θ ≤ 0.785 radians is reported on Fig. 4.26. The
fitted functions does not follow the CORSIKA distributions for the inclined muons since the
MUPAGE function cannot describe < R > (θ) dependence. However, this discrepancy does not
affect the final tuning results.
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Figure 4.25: Ratio of the CORSIKA normalized lateral distribution (blue points) and the corre-
sponding nominal (green line) and fitted (red line) MUPAGE functions for vertical
muon bundles (0.0 ≤ θ ≤ 0.157 radians) with M = 2 at 2 (left plot) and 3.5 (right
plot) km depths.
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Figure 4.26: Lateral distribution ratios for the inclined muon bundles, 0.628 ≤ θ ≤ 0.785 radians.
The color scheme is the same as in the ratio plot above.

4.3.5 Energy spectrum of multiple muons in the bundles

The energy spectrum of multiple muons in the bundles is described in MUPAGE by the
same function as for the single muons, Eq. 4.13. The parameter β is also fixed to β =
0.420 [km.w.e]−1 = 4.2 × 10−4 [hg · cm−2]−1. The parameters γ and ϵ depend on the verti-
cal depth h, the zenith angle θ, the bundle multiplicity M , and the radial distance R of the
muons from the bundle axis.

The fit did not converge for all the histograms, only the successful fit results were used in the
following.

As a first step, the energy spectrum of muons was fitted with Eq. 4.13. The fit was performed
at 7 depths, 4 intervals of the zenith angle (0◦ − 20◦, 20◦ − 40◦, 40◦ − 60◦, and 60◦ − 80◦), 3
values of M (2, 3, and 4), and six intervals of R (0−5 m, 5−10 m, 10−15 m, 15−25 m, 25−45
m, ≥ 45 m). Therefore, 504 histograms were fitted. An example of the fit at 2 km depth for the
bundles with 0◦ ≤ θ ≤ 20◦, M = 2, and 0 ≤ R ≤ 5 m, is shown in Fig. 4.27.
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Figure 4.27: Energy spectrum of muons in the bundles with 0◦ ≤ θ ≤ 20◦, M = 2, and 0 ≤ R ≤
5m at 2 km depth (blue points) fitted with Eq. 4.13 (red line).

The parameter γ is assumed to be independent of θ, hence for each h, M , and R, the parameter
γ over θ distributions were fitted with a straight line, see Fig. 4.28 for h = 2.079 km.w.e, M = 2,
0 ≤ R ≤ 5 m fit result.
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Figure 4.28: The parameter γ values obtained from the energy spectrum fit of muons in the
bundles at 2 km depth with M = 2, 0 ≤ R ≤ 5 m (blue points) fitted with a
constant function (red line). The nominal function is plotted in green.

The parameter γ dependence on R is expressed as

γ(h, M ; R) = a(h) · R + b(h, M) · (1 − 0.5eq(h)R). (4.29)

An example of the γ(R) fit for 2 km depth and M = 2 is shown in Fig. 4.29. The γ(R) fit did
not converge for all the histograms.
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Figure 4.29: The parameter γ dependence on the distance of muons from the bundle axis (blue
points) fitted with Eq. 4.29 (red line). The green line is the nominal function.

The parameter a does not depend on M in MUPAGE so its values at a given depth for different
multiplicities were fitted with a straight line. The fit for 2 km depth is in Fig. 4.30.
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Figure 4.30: The values of the parameter a for different M at 2 km depth, blue points. The
values were fitted with a straight line shown red. The green line shows the nominal
function.

The dependence of the parameter a on depth is linear,

a(h) = a0 · h + a1. (4.30)

The a(h) fit result is in Fig. 4.31.
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Figure 4.31: Results of the a(M) fit. The fit converged only at 4 depths hence there are only 4
blue points. The points were fitted with Eq. 4.30, red line. The Eq. 4.30 with the
nominal a0 and a1 values is shown in green.

The parameter b depends on both depth and multiplicity, its depth dependence is

b(M ; h) = b0(M) · h + b1(M). (4.31)

An example of the parameter b fit over h for M = 2 is in Fig. 4.32.
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Figure 4.32: Fit of the parameter b dependence on depth (blue points) with Eq. 4.31 (red line).
The green line shows the nominal MUPAGE function.

Dependencies of both b0 and b1 on M are linear, Eq. 4.32 and 4.33. Fig. 4.33 shows the fit
results.

b0(M) = b0a · M + b0b, (4.32)
b1(M) = b1a · M + b1b. (4.33)
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Figure 4.33: Left (right) plot illustrates the parameter b0 (b1) fit over multiplicity with Eq. 4.32
(Eq. 4.33). The values of the parameters are shown in blue. The red (green) line is
the fitted (nominal) MUPAGE function.

The parameter q does not depend on multiplicity (see Fig. 4.34 for 2 km depth fit) and linearly
depends on depth:

q(h) = q0 · h + q1. (4.34)
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Figure 4.34: The parameter q values over M (blue points) fitted with a straight line (red) at 2
km depth. The nominal function is shown in green.

The q(h) fit results are in Fig. 4.35.
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Figure 4.35: Fit of the parameter q dependence on depth (blue pints) with Eq. 4.34 (red line).
The green line is for the MUPAGE function with the nominal parameters.

Regarding the parameter ϵ, it is assumed to be independent of M , hence for every h, θ, and
R, the values of ϵ over M were fitted with a straight line (Fig. 4.36 illustrates one example of
the fit).
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Figure 4.36: The ϵ(M) values from the energy fit of the bundles at 2km depth with 0◦ ≤ θ ≤ 20◦

and 0 ≤ R ≤ 5m, blue points. The red (green) line is the fitted (nominal) function.

The parameter ϵ depends on the zenith angle which is parametrized as

ϵ(h, R; θ) = c(R, h) · θ + d(R, h) (4.35)

Fig. 4.37 shows the ϵ(θ) fit result for 2 km depth and 0 ≤ R ≤ 5 m. The fit did not converge
due to the incorrect error estimation of the second point. The error is estimated from the ϵ(M)
fit which did not correctly converge and resulted in too small error value. Hence, the ϵ(θ) fit
tends to pass through the second point which leads to the wrong fit results.
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Figure 4.37: Values of the parameter ϵ from the energy spectrum fit of the bundles at 2 km
depth with M = 2 and 0 ≤ R ≤ 5 m as a function of θ (blue points) fitted with
Eq. 4.35 (red line). The nominal function is shown in green.

The parameters c and d depend on h and R. For the radial distance dependence, the
parametrization is the following (the fit results for 2 km depths are on Fig. 4.38 and 4.39):

c(h; R) = c0(h) · ec1R (4.36)
d(h; R) = d0(h) · Rd1(h) (4.37)
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Figure 4.38: Fit of the c(R) values (blue points) with Eq. 4.36 (red line) at 2 km depth. The
green line shows the nominal MUPAGE function.
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Figure 4.39: The values of the parameter d as a function of the radial distance at 2 km depth,
blue points. The red line is the d(R) dependence fit with Eq. 4.37. The green line
is the same function but with the nominal values of the parameters.

The parameter c0 depends on h linearly, while c1 is independent of h:

c0(h) = c0a · h + c0b (4.38)
c1(h) = c1 (4.39)

The c0(h) and c1(h) fit results are on Fig. 4.40.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

h [km.w.e.]

0

1

2

3

4

5

6

7

8

9

10

 v
a
lu

e
0

c

 / ndf 2χ  8.182 / 2
   

0a
c  0.4105± 0.1045 

   
0b

c   1.31±0.1603 − 

 / ndf 2χ  8.182 / 2
   

0a
c  0.4105± 0.1045 

   
0b

c   1.31±0.1603 − 

fit result

c(R)

Fitted function

Nominal function

(h) fit, GSF
0

c

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

h [km.w.e.]

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

 v
a
lu

e
1

c

 / ndf 2χ  11.65 / 3

    
1

c  0.01516±0.03225 − 

 / ndf 2χ  11.65 / 3

    
1

c  0.01516±0.03225 − 
fit result

c(R)

Fitted function

Nominal function

(h) fit, GSF1c

Figure 4.40: Left (right) plot shows the c0(h) (c1(h)) distribution (blue points). The distribu-
tions were fitted with Eq. 4.38 and Eq. 4.39 correspondingly, red lines. The green
lines are for the nominal functions.

Finally, the parameters d0 and d1 dependence on h is linear (the fit results are on Fig. 4.41):

d0(h) = d0a · h + d0b (4.40)
d1(h) = d1a · h + d1b (4.41)
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Figure 4.41: The left plot shows the parameter d0(h) dependence (blue points) fitted with
Eq. 4.40 (red line). The green line is the nominal function. The right plot il-
lustrates the fit of d1(h) dependence with Eq. 4.41, the color scheme is the same as
for the left plot.

Ratios of the CORSIKA simulation energy spectrum of muons from the bundles at 2 and 3.5
km depths with 0◦ ≤ θ ≤ 20◦, M = 2, and 0 ≤ R ≤ 5m with respect to the nominal and fitted
MUPAGE functions are presented on Fig. 4.42. Ratios for the bundles with the same properties
but with 10 ≤ R ≤ 15m are on Fig. 4.43.
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Figure 4.42: Ratio of the muon energy spectrum from the CORSIKA simulation for the bundles
with h = 2.079 km.w.e. (left plot) and h = 3.639 km.w.e. (right plot), 0◦ ≤ θ ≤ 20◦,
M = 2, and 0 ≤ R ≤ 5m (blue points) with respect to the nominal (green line) and
fitted (red line) MUPAGE functions.
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Figure 4.43: The CORSIKA energy spectrum of muons from the bundles with h = 2.079 km.w.e.
(left plot) and h = 3.639 km.w.e. (right plot), 0◦ ≤ θ ≤ 20◦, M = 2, and 10 ≤ R ≤
15m, blue points. The fitted MUPAGE function is shown in red, the nominal one
is in green.

The ratio of the CORSIKA simulation results with respect to the MUPAGE functions is
better for the nominal parameters due to the problems with the fit. Some MUPAGE functions
does not describe the corresponding CORSIKA distributions which leads to the incorrect fit.
Therefore, the parameters describing the energy spectrum of multiple muons in the bundles were
kept nominal.

4.4 CORSIKA and MUPAGE comparison at the reconstruction level

In order to check whether the tuned MUPAGE describes the CORSIKA simulation at the
reconstruction level, the reconstructed zenith angle and muon energy distributions resulting
from the CORSIKA simulation and the MUPAGE one were compared. Also, two distributions
containing the observables whose values are often used as the quality and anti-noise cuts were
produced: the quality of the reconstruction (likelihood) and the number of photons (hits) on
PMTs used in the reconstruction.

In general, the tuned MUPAGE follows the CORSIKA distribution for both the ORCA6
and ARCA6 detectors. Hence, the tuned MUPAGE can be used as a faster alternative to the
CORSIKA full MC simulation. The tuned MUPAGE results can be considered as the ones
obtained with CORSIKA without the need to perform the full simulation several times.

The framework developed in this work is provided to the KM3NeT Collaboration as the
internally available code with all necessary documentation. This allows this work to be continued
in the near future by the collaborators in order to extend the analysis for the larger and better
KM3NeT detectors.

4.4.1 ORCA6

The results of the MUPAGE and CORSIKA comparisons for the ORCA6 detector at re-
construction level are presented below. The plot numbers and the χ2/ndf values between the
histograms which represent the tuned MUPAGE distributions and the CORSIKA ones for dif-
ferent observables are reported in Table 4.5.
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Observable name Figure χ2/ndf value
Reconstructed zenith 4.44 1.86
Reconstructed energy 4.45 1.99

Likelihood of the reconstruction 4.46 1.40
Number of hits 4.47 1.20

Table 4.5: The MUPAGE and CORSIKA comparison at the reconstruction level for ORCA6.
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Figure 4.44: The rate of muons reconstructed with the ORCA6 detector as a function of the
zenith angle. The blue (red) points represent the CORSIKA (MUPAGE tuned on
CORSIKA) simulation. The nominal MUPAGE provides the distribution shown in
green points. The ratios between the MUPAGE and CORSIKA are on the bottom
plot.
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Figure 4.45: Ratio for the ORCA6 reconstructed energy distribution; blue points - CORSIKA,
red points - MUPAGE tuned on CORSIKA, and green points - nominal MUPAGE.
The ratios between the MUPAGE and CORSIKA are on the bottom plot.
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Figure 4.46: The event rate as a function of the reconstruction likelihood for the ORCA6 tele-
scope. The red points were obtained using MUPAGE tuned on CORSIKA, the
blue points are the results of the CORSIKA simulations, the green points are the
nominal MUPAGE. The MUPAGE/CORSIKA ratios are on the bottom plot.
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Figure 4.47: Comparison of the number of hits used in the reconstruction resulting from the
CORSIKA simulation (blue points) and the tuned MUPAGE one (red points) for
the ORCA6 detector. The nominal MUPAGE is shown in green for comparison.
The ratios between the MUPAGE distributions and the CORSIKA one is on the
bottom plot.

4.4.2 ARCA6
The results of the MUPAGE and CORSIKA comparisons for the ARCA6 detector at the

reconstruction level are listed in Table 4.6.

Observable name Figure χ2/ndf value
Reconstructed zenith 4.48 0.70
Reconstructed energy 4.49 1.74

Reconstructed likelihood 4.50 2.31
Reconstructed number of hits 4.51 2.74

Table 4.6: The plot numbers and the χ2/ndf values for the corresponding MUPAGE and COR-
SIKA histograms for ARCA6.
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Figure 4.48: The CORSIKA (MUPAGE tuned on CORSIKA) zenith angle distribution for the
ARCA6 detector, blue (red) points. The nominal MUPAGE is in green. The
MUPAGE/CORSIKA ratios are on the bottom plot.
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Figure 4.49: The ARCA6 event rate as a function of the reconstructed energy for the CORSIKA
(blue points) and the tuned MUPAGE (red points) simulation results. The ratios
between the MUAPGE and CORSIKA distributions are on the bottom plot, the
green points represent the nominal MUPAGE.
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Figure 4.50: The likelihood distribution ratio for the ARCA6 telescope; blue points - CORSIKA,
red points - MUPAGE tuned on CORSIKA, green points - nominal MUPAGE.

0 50 100 150 200 250 300 350 400
Reco number of hits

6−

10

5−

10

4−

10

3−

10

2−

10

1−

10

 b
in

⋅
s
e

c
 

e
v
e

n
ts

CORSIKA

MUPAGE tuned on CORSIKA

Nominal MUPAGE

ARCA6, reco level

0 50 100 150 200 250 300 350 400
Reco number of hits

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
O

R
S

IK
A

M
U

P
A

G
E

MUPAGE tuned on CORSIKA

Nominal MUPAGE

Figure 4.51: The number of hits used in the reconstruction resulted from the CORSIKA (blue
points), the tuned (red points) and nominal (green points) MUPAGE simulations.
The MUPAGE/CORSIKA ratios are on the bottom plot.
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5 Comparison of the KM3NeT data with the
MC simulations

This chapter is devoted to the comparison of the MC simulations with the KM3NeT data col-
lected by the ORCA6 and ARCA6 telescopes. The simulations include the Sibyll 2.3d model [69]
used for the description of hadronic interactions and GSF [19] used as the model for the mass
composition of the CR flux. The simulations were performed with MUPAGE [161] tuned on
CORSIKA [66]. The motivation to use MUPAGE instead of the full MC simulations and the
tuning procedure are described in Chapter 4. The proof that the tuned MUPAGE correctly
reproduces the CORSIKA results is presented in the same Chapter.

This chapter starts with a description of the sea level flux of high-energy muons, Sec. 5.1. The
data detected by the KM3NeT telescopes contain also pure background events which include the
decays of 40K and the bioluminescent light [153]. In order to remove such events from the data
sample, anti-noise cuts were applied, whose description is reported in Sec. 5.2. The muon energy
and direction reconstruction performances are described in Sec. 5.3. Sec. 5.4 is devoted to the
studies of systematic uncertainties considered for this analysis. Comparison of the KM3NeT
data with the MC simulations is presented in Sec. 5.5. Finally, the discussion of the results is
reported in Sec. 5.6.

5.1 Sea level flux of TeV muons

As it was discussed in Chapter 3, muons must have sufficient enough energy at sea level to
be able to reach the depth of the KM3NeT telescopes (∼2 km for the top part of ORCA and
∼2.8 km for ARCA). Considering energy losses needed to be able to propagate to such depths,
the sea level energy of muons detectable by the KM3NeT experiment lays in the TeV range.
This muon energy is about 3 orders of magnitude higher than for the muons detected in EAS
experiments. Thus, the KM3NeT measurement is complementary to the so-called muon puzzle,
i.e. deficit of GeV muons detected on the ground as discussed in Chapter 3.

Measurements of the high-energy muon flux can be performed at sea level up to several
TeV [164]. This threshold depends on the maximum detectable momentum of the spectrometer
defined by the relative momentum resolution [165].

There are several experiments that were able to directly measure the TeV muon flux at sea
level. A summary of the data from such experiments was provided in [166]. Fig. 5.1 shows the
sea level muon flux resulting from the CORSIKA simulations used in this work for the MUPAGE
tuning compared to the real data from the ground-based experiments. The data points shown in
the figure are from the experiments mentioned in [166]: the Nottingham CR spectrometer [167]
(Baber et al. points in the plot), the Nottingham spectrometer in its updated configuration [168]
(Rastin points in the plot), the Durham CR spectrograph [169] (Hayman et al. points in the
plot), and the Durgapur CR spectrograph [170] (Nandi et al. points on the plot).

Another data points that are shown in Fig. 5.1 are the results of the L3+C (also known as
L3+cosmic) experiment [165]. The overview paper [166] does not include the L3+C measure-
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ments since they were obtained after the paper had been published. The L3+C results are
the most precise measurements of the high-energy muon flux at sea level. The experiment is
discussed briefly here below.

The L3 detector was located at the LEP collider experiment at CERN [171]. The experimental
points used in this work for the comparison with the CORSIKA simulations are the ones obtained
with the upgraded setup of the L3 detector, known as L3+C (or L3+cosmic) [165]. The L3 muon
detector is comprised of large drift chambers arranged concentrically around the LEP beam line.
The chambers were located inside the 7800-ton magnet providing a 0.5 T field. On top of the
detector, outside of the magnet, an array of scintillators for the measurements of the muon
arrival time was placed. Above the scintillator array, the shielding of the 30 m stratified rock
overburden was used for the absorption of most of the charged air-shower particles other than
muons. By subtracting the muon arrival time from the arrival times of the drift electrons at
the sense wires, a track position in each chamber could be reconstructed with a precision of
about 60 µm in the bending plane and 1 mm in the non-bending plane. The L3+C experiment
measured the vertical muon spectrum at sea level up to the momentum of 3 TeV. The average
momentum value of the highest momentum bin was estimated to be at 1.6 TeV.

Fig. 5.1 includes also the comparison to two analytical models, Gaisser [1] and Bugaev [172],
and to the fit of the MACRO data [60].

The Gaisser model considers the production of muons from the two-body decays of pions
and kaons and assumes a primary CR flux of the form N0E−γ , where N0 = 1.8 cm−2 sr−1 s−1

GeVγ−1 is the normalisation factor and γ = −2.7 is the spectral index of the CR flux [173]. The
Gaisser calculations lead to the following formula for the differential muon spectrum at sea level
(the formula is written in a form used in [22]):

dNµ

dEµ
= KE−γ

µ ( Aπ

1 + Bπ/ϵπEµ cos θ
+ AK

1 + BK/ϵKEµ cos θ
). (5.1)

Here, Eµ is the muon energy, K is the normalisation factor, Aπ and AK are the coefficients
that depend on the ratio of muons produced by pions and kaons, θ is the muon zenith angle,
ϵπ = 115 GeV and ϵK = 850 GeV are the pion and kaon decay constants, correspondingly: if the
particle energy is E ≫ ϵπ (E ≫ ϵK) then the pion (kaon) decay process is strongly suppressed
with respect to the interaction. This formula is valid when muon decay is negligible (Eµ > 100
GeV) and the curvature of the Earth can be neglected (θ < 70◦). Values of the coefficients can
be derived from MC computations, numerical approximations or experimental data. Values of
these coefficients reported in the original Gaisser work are KAπ = 0.14 cm−2 sr−1 s−1 GeV−1,
AK/Aπ = 0.054, and Bπ = BK = 1.1. The Gaisser formula with the aforementioned coefficient
values fixed is shown as a red line in Fig. 5.1.

The same formula described above was used in the fit of the MACRO data [60]. The coefficients
Bπ, BK , and the ratio AK/Aπ were fixed to the same values as in the Gaisser model. The free
parameters of the fit were A0 = KAπ and γ. The MACRO fit result was A0 = (0.26 ± 0.01)
cm−2 sr−1 s−1 GeVγ−1 and γ = 2.78 ± 0.01. The MACRO fit result without the errors included
is shown as a purple line in Fig. 5.1.

The Bugaev model predicts the differential muon flux at sea level as a function of muon
momentum, p, for p > 1 GeV/c. The calculation of the muon production and propagation
through the atmosphere is based on the standard continuous loss approximation [172]. The
muon flux is described by the same formula but with different coefficient values for four different
momentum ranges. The Bugaev formula for the vertical sea level muon flux is
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dNµ/dp = Cp−(γ0+γ1 log p+γ2 log2 p+γ3 log3 p), (5.2)
where C and γi (i = 1, 2, 3) are the coefficients whose values for four momentum ranges are
reported in Table 5.1. The Bugaev function is plotted as a green line in Fig. 5.1.

Momentum range [GeV/c] C [cm−2 sr−1 s−1 GeV−1] γ0 γ1 γ2 γ3
1 - 9.2765 × 102 2.950 × 10−3 0.3061 1.2743 -0.2630 0.0252

9.2765 × 102 - 1.5878 × 103 1.781 × 10−2 1.7910 0.3040 0 0
1.5878 × 103 - 4.1625 × 105 14.35 3.6720 0 0 0

> 4.1625 × 105 103 4 0 0 0

Table 5.1: Values of parameters used in Eq. 5.2 for the vertical muon energy spectrum at sea
level.
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Figure 5.1: The sea level flux of muons as predicted by the CORSIKA simulations used in
this work (blue points). The x-axis range covers the 99% fraction of single muon
events detected by the ORCA6 and ARCA6 telescopes. The CORSIKA results
are compared to two analytical models: the Gaisser model [1] (red line) and the
Bugaev model [172] (green line), and to the fit of the MACRO data [60] (purple
line). Results from the ground-based experiments shown on the plot are from [165]
(black points), [168] (dark blue point), [167] (dark green point), [169] (orange point),
and [170] (yellow point).

In general, CORSIKA underestimates the sea level muon flux with respect to both models
considered and to the MACRO fit result. The discrepancy is at a level of 30%. The first L3+C
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data point and the results from Rastin, Hayman et al., and Nandi et al. are also above the
CORSIKA predictions by ∼20-30%. However, the Baber et al. and the second L3+C points are
in agreement with the CORSIKA predictions and in disagreement with the models considered.

Given the limited muon momentum resolution, there is no data available from the ground-
based experiments for the muon energies above 3 TeV. There are the experimental results of
the sea level muon flux also for higher energies but they are based on the underground mea-
surements [174]. The sea level muon flux is unfolded using the underground muon spectrum
detected in these experiments. The unfolding is based on the muon survival probability which
is derived from MC simulations.

The model used in this work, Sibyll 2.3d with GSF, was also compared to the data from
ground-based observatories and to other MC simulations in [175] using the MCEq software [65].
In the official MCEq release, the Sibyll 2.3d and GSF models are not available, the authors of
the aforementioned paper modified the MCEq code themselves (one of the authors is also the
MCEq developer). The observed discrepancy between the models and the real data is ∼30%
(Fig. 5.2), at the same level as the discrepancy between the CORSIKA full MC simulations and
the analytical models shown in Fig. 5.1. The BESS results that are shown in Fig. 5.2 are not
included in Fig. 5.1 since they lay in the energy range below that of the muons detected in the
KM3NeT experiment.

One of the main goals of this chapter is to investigate whether the discrepancy holds also
for high-energy muons detected underwater as predicted for muons at sea level or if there is
no tension between the KM3NeT data and MC simulations. The answer to this question is
provided in Sec 5.5.
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Figure 5.2: Vertical sea level muon spectrum predicted by the MCEq simulations [65] compared
with the real data collected by the Bess [176] (red points) and L3+cosmic [165]
(black points) experiments. GSF [19] was used as CR mass composition model
for the simulations obtained with Sibyll 2.1 [68] (blue line) Sibyll 2.3d [69] (pur-
ple line), and DDM [177] (blue line). The Sibyll 2.1 predictions in combination
with Zatsepin–Sokolskaya (ZS) primary spectrum [178] are shown as the orange line.
Theoretical predictions obtained by Bugaev, Misaki, and Naumov (BMN) [172] are
plotted as the brown-dashed line. The bottom plot shows the flux ratio with respect
to the DDM model. This figure is taken from [175].

5.2 Selection of the anti-noise cuts

In the data collected by the KM3NeT telescopes, there are events that are not included in
the atmospheric muon simulations. These events are pure background noise which includes the
decays of 40K and the light from bioluminescence [153]. They are usually characterized by a
number of PMT hits that is less than the one for the atmospheric muon events. A definition of
the PMT hit may be found in Chapter 2. Also, the value of reconstruction likelihood (Chapter
3) for the background noise is usually lower. Hence, in order to exclude such events from the
data, cuts on the likelihood, L, and the number of PMT hits, nhits, were applied. The L and
nhits distributions from the data and MC produced without the cuts are presented in Fig. 5.3
for ORCA6 and in Fig. 5.5 for ARCA6. The cuts were determined in a way to remove regions
where visually MC lacks events, the data/MC ratio behaves differently compared to the rest
of the parameter space. Based on the distributions shown in Fig. 5.3 and Fig. 5.5, the same
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cuts were chosen for the ORCA6 and ARCA6 detectors: L > 50 and nhits > 20. The same
distributions after applying the cuts are shown in Fig. 5.4 and Fig. 5.6.
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Figure 5.3: The data (black points) and MC simulation (blue points) distributions for the like-
lihood (left plot) and the number of hits (right plot) produced without any cuts
applied for the ORCA6 detector. The bottom plot shows the data/MC ratio.
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Figure 5.4: Comparison between the data (black points) and MC (blue points) in terms of the
likelihood (left plot) and the number of hits (right plot) for the ORCA6 detector
after applying the anti-noise cuts, L > 50 and nhits > 20. The ratio between the
data and simulations is presented on the bottom plot.
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Figure 5.5: Reconstructed likelihood (left plot) and the number of hits (right plot) distributions
obtained for the ARCA6 telescope. No cuts were applied here. The black points
demonstrate the data while the blue ones are for the simulations. The data/MC
ratio is on the bottom plot.
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Figure 5.6: Results of the application of the cuts (L > 50 and nhits > 20) on the ARCA6 data
(black points) and simulations (blue points). The likelihood distribution is shown
on the left and the number of hits one is on the right. The bottom plots show the
data/MC ratio after applying the cuts.

In general, the cuts might introduce a discrepancy between the MUPAGE tuned on CORSIKA
and the CORSIKA simulations. In order to check if the MUPAGE and CORSIKA agreement
holds after applying the cuts, the same comparisons as discussed in Chapter 4 were repeated
choosing only the events with L > 50 and nhits > 20. The results are presented in Fig. 5.7
(ORCA6) and Fig. 5.8 (ARCA6). MUPAGE still agrees well with the CORSIKA results. The
plots demonstrate the zenith distributions solely since these are the only distributions that were
used for the final results as described below in Sec. 5.3.
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Figure 5.7: Comparison of the CORSIKA simulation results (blue points) with the MUPAGE
tuned on that simulation (red points) after applying the cuts, L > 50 and nhits > 20,
for the ORCA6 detector. The bottom plot shows the ratio between the MUPAGE
tuned on CORSIKA and the CORSIKA simulations.
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Figure 5.8: Agreement between the CORSIKA (blue points) and MUPAGE (red points) zenith
distributions for ARCA6 after applying the cuts. The tuned MUPAGE over COR-
SIKA ratio is on the bottom plot.
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5.3 Muon reconstruction performance
This section describes the performance of the reconstruction algorithms which aim to estimate

the muon direction and energy. The performance estimation is needed to choose only the
parameter regions with well-reconstructed muon properties. The reconstruction algorithms are
described in Chapter 3.

5.3.1 Direction reconstruction
To evaluate the direction reconstruction capabilities, the true and reconstructed muon zenith

angles, θ, were used. The true zenith angle is the one of the muon bundle on the detector can, all
the muons are assumed to be collinear with the bundle axis in MUPAGE. The reconstructed angle
is instead obtained from the JMuon algorithm described in Chapter 3. Fig. 5.9 compares the
MC true cos θ distribution (blue points) with the reconstructed one (red points) for the ORCA6
detector. The discrepancy starts to emerge for events with cos θ < 0.5. The reason for this
discrepancy is that the flux dependence on the true cos θ is very steep and few well-reconstructed
events at cos θ < 0.5 are dominated by a fraction of mis-reconstructed vertical muons. The
KM3NeT angular resolution is at sub-degree level, so the fraction of mis-reconstructed events
is small, however the number of vertical muons is several orders of magnitude higher. Hence, it
was decided to use only muons with cos θ > 0.5 for the final data/MC studies. The same plot
but for the ARCA6 telescope is shown in Fig. 5.10. Well-reconstructed muons are those with
cos θ > 0.6.
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Figure 5.9: Distribution of the muon bundle zenith angle on the can ("true" in the legend,
blue points) compared to the reconstructed zenith angle obtained with the JMuon
algorithm ("reco" in the legend, red points) for the ORCA6 detector. The well-
reconstructed muons are those with cos θ > 0.5. The bottom plot shows the ratio of
the distributions.
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Figure 5.10: The zenith angle reconstruction performance for the ARCA6 detector. The well-
reconstructed region is 0.6 < cos θ < 1. The definitions of the "true" and "reco"
events are reported in the text.

5.3.2 Energy reconstruction

Estimation of the energy reconstruction performance is less straightforward since there is
no direct access to the true muon energy. In the MC files, there is the reconstructed energy
and the true energy of muons on the can. The reconstructed energy is the one that the muon
had at the position where the first light seen by PMTs was emitted. Hence, the comparison of
the reconstructed energy with the true energy on the can is not appropriate since the particles
have lost part of their energy while traveling in water between the point on the can and the
point where the first detected light was emitted. Thus, the muon energy on the can has to be
corrected (decreased) using the distance between the two aforementioned points in order to get
the estimation of the true muon energy. This re-calculation was performed using the Klimushin,
Bugaev, Sokalski parameterization [133] that describes the muon energy losses in water.

Results for the ORCA6 detector are presented in Fig. 5.11. Since the JMuon algorithm
reconstructs the muon bundle as one particle, only muon bundles containing one muon were
used in the plot. The reconstructed energy is shown in red, the muon energy on the can is
in green, and the corrected (re-calculated) one is in blue. The reconstructed and corrected
energy starts to agree for high-energy muons with E > 10 TeV, while for lower-energy particles
the discrepancy is large. Fig. 5.12 demonstrates the energy reconstruction performance for the
ARCA6 detector. The disagreement is substantial in the whole energy range.

Due to the disagreement of the reconstructed energy with respect to the true energy, only
zenith distributions in the well-reconstructed cos θ ranges were used for the final analysis.
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Figure 5.11: Estimation of the JMuon algorithm performance for the single muon energy recon-
struction. The reconstructed energy is shown as red points, the energy of single
muons on the can is in green, and the re-calculated energy is in blue.
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Figure 5.12: The single muon energy reconstructed with the ARCA6 detector (red points) com-
pared with the muon energy on the can (green points) and the re-calculated muon
energy (blue points).

The different shapes of the reconstructed energy distributions for the ORCA6 and ARCA6
telescopes may be explained by the different detector geometries.

For muon energies below 100 GeV, the muon energy losses are almost proportional to the trav-
elled distance (∼0.25 GeV per meter) so muon behaves as a minimum ionizing particle [133].
For 100 GeV muon, the track length is about 400 m which is actually longer than the sensi-
tive size of the ORCA detector especially considering slightly inclined muons that do not pass
through the whole vertical length of the detector which is ∼300m. So even for perfectly working
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reconstruction algorithms, muons with energies of 100 GeV are in the "gray" zone where it is
not possible to properly measure their energies with ORCA.

For the ARCA6 detector, muons below 100 GeV are almost never reconstructed due to the
sparser module distribution with respect to ORCA. For muons above 100 GeV, the contribution
of the radiation losses becomes important and, thus, the energy reconstruction can be per-
formed by measuring the muon energy losses per unit length (dE/dx) which becomes roughly
proportional to the muon energy.

The detector configurations that were used in this work include 6 DUs (see Chapter 2 for
the DU definition) for the ORCA and ARCA telescopes. The reconstruction performance is
expected to improve for larger detectors.

5.4 Systematic uncertainties estimation
Systematic uncertainties considered in this work include that on the CR flux (Sec. 5.4.1), the

light absorption length in seawater (Sec. 5.4.2), the PMT quantum efficiency (Sec 5.4.3), and the
high-energy hadronic interaction model (Sec. 5.4.4). The CR flux uncertainties were estimated
using the CORSIKA full MC simulations. All the other uncertainties mentioned were evaluated
with the MUPAGE tuned on CORSIKA.

5.4.1 Cosimc Ray flux uncertainty
As it is described in Chapter 3, GSF [19] was chosen as the model for the CR flux. This

model includes the uncertainty on the total flux as a function of primary energy which is used
for the systematics studies described below.

Additionally, the GSF model provides the uncertainty on each of the four so-called mass
groups which was also considered in this analysis. The groups are split in roughly equal ranges
in logarithmic mass. The mass groups description is reported in Chapter 3.

Finally, since there are 5 primaries simulated in CORSIKA (p, He, C, O, and Fe) and 28
primaries available in the GSF model, the following approach was used to include all the nuclei
available in GSF. The proton and helium flux weights, wp

CR and wHe
CR, are taken directly from

the GSF table containing the flux values for each nucleus. The carbon wC
CR weight is the

sum of the GSF weights of nuclei with Z from 3 to 6, wC
CR = ∑6

Z=3 wZ
CR, the oxygen weight

is wO
CR = ∑10

Z=7 wZ
CR, and the iron weight is wFe

CR = ∑28
Z=11 wZ

CR. In principle, this weight
assignment to C, O, and Fe is arbitrary. The uncertainty induced by the different assignments
is studied in the last part of this section.

Total flux

The total flux uncertainty calculation was performed using the limits on the all-particle flux
available in the GSF model and keeping the CR composition unchanged. In order to incorporate
these limits into the CORSIKA simulations, the composition weights were rescaled so that the
sum of the weights is equal to the corresponding flux limit, lower and upper.

Results of the total flux uncertainty estimation are presented in Fig. 5.13 (the left plot is for
ORCA6, and the right plot is for ARCA6). The blue points on the plots correspond to the
results obtained with the average total flux, the red points were obtained for the lower limit,
and the purple ones show the results for the upper limit.

The relative uncertainties were fitted with inclined lines. The results of the fit are presented
in Fig. 5.14. The relative uncertainty is at a level of 6-8%.
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Figure 5.13: Estimation of the systematic uncertainty on the total CR flux taken from the GSF
model. The results with the average flux are shown in blue, the lower (upper) flux
limit is the red (purple) points.
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Figure 5.14: Fit of the ratio of the simulation results obtained with modified total flux with
respect to the average flux. The left (right) top plot shows the fit result for the
ORCA6 (ARCA6) upper uncertainty. The lower uncertainty fit results are presented
on the bottom plots.

Uncertainty on the CR composition

The uncertainties on the CR composition were also calculated using the ranges on the fluxes
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for each mass group in the GSF model. In practice, the light (proton) and heavy (iron) com-
ponents of the flux were varied within their uncertainties while keeping the total flux value
unchanged. At first, the proton flux was assigned to its maximum value within uncertainty.
Fluxes of other primaries were recalculated, starting from iron, in order to have the same av-
erage value of the total flux. Then, the same procedure was repeated but with the iron flux
enlarged and other primary fluxes decreased. The results of this uncertainty calculation are at
a level of 6-7%, the left plot on Fig. 5.15 is for ORCA6 and the right one is for ARCA6.

In order to get the function that describes these uncertainties, the latter were fitted with
inclined lines. The fit results are in Fig. 5.16.
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Figure 5.15: The zenith distribution obtained with the average CR flux (blue points) and the
maximum proton flux (purple points) and iron flux (red points) within their uncer-
tainties while keeping the total flux unchanged. The left plot represents the ORCA6
results, the right one is for the ARCA6 detector.
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Figure 5.16: Uncertainty induced by varying the proton and iron flux weights fitted with in-
clined lines. The ORCA6 fit results are shown on the left part of the figure; upper
uncertainty is on the top, and lower uncertainty is on the bottom. The right part
demonstrates the ARCA6 fit results.

Flux weight assignment

In order to have the average CR flux, the weight assignments to C, O, and Fe were wC
CR =∑6

Z=3 wZ
CR, wO

CR = ∑10
Z=7 wZ

CR, and wFe
CR = ∑28

Z=11 wZ
CR correspondingly, as described above. A

test was performed in order to estimate the bias introduced by that particular weight assignment.
The two edge cases were considered. The first one was to assign larger weights to lighter
primaries, "weights towards lighter primaries" on Fig. 5.17, and the second one was to enlarge the
weights of the heavier primaries, "weights towards heavier primaries" on the same figure below.
In the first case, the following weight assignment was chosen: wp

CR = wZ=1
CR , wHe

CR = ∑5
Z=2 wZ

CR,
wC

CR = ∑7
Z=6 wZ

CR, wO
CR = ∑25

Z=8 wZ
CR, and wFe

CR = ∑28
Z=26 wZ

CR. The weight towards heavier
primaries scheme implies wp

CR = wZ=1
CR , wHe

CR = wZ=2
CR , wC

CR = ∑6
Z=3 wZ

CR, wO
CR = ∑8

Z=7 wZ
CR,

and wFe
CR = ∑28

Z=9 wZ
CR.
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Figure 5.17: Scheme of the CR flux weight assignment.

The upper uncertainty due to the different scheme of the flux weight assignment is 3% and
the lower one is 0.5% for both the ORCA6 (left part of Fig. 5.18) and the ARCA6 (right part
of Fig. 5.18) detectors. The fit of the uncertainties is presented in Fig. 5.19.
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Figure 5.18: Uncertainty induced by the different primary weighting schemes. The average flux
is shown in blue, the purple points represent the flux towards lighter primaries, and
the red points represent the flux towards heavier primaries. The results for the
ORCA6 detector are on the left plot, the ARCA6 results are on the right one.
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Figure 5.19: The ORCA6 (left) and the ARCA6 (right) flux assignment uncertainties fitted with
inclined lines. The top part of the figure illustrates the upper uncertainties fit, the
bottom part is for the fit results of the lower uncertainties.

5.4.2 Light absorption length in seawater

As discussed in Chapter 3, the light absorption length that is used in the KM3NeT simulations
is the result of the measurements of the NEMO Collaboration at the “KM4” site [148]. They
reported the variation of the light absorption length in time at a level of ±10% for 400-500 nm
wavelength.

In order to estimate the effect of the uncertainty known from the measurements of light ab-
sorption length on the final simulation results, the MC simulations with two modified absorption
lengths (increased and decreased by 10%) were performed. Then, the ratios between the MC
simulations with the standard absorption length and with the modified ones were obtained.

Fig. 5.20 left (right) illustrates the result for the ORCA6 (ARCA6) telescope. The ORCA6
uncertainty is 5%, while the ARCA6 one is 10-20%. The difference in the uncertainty values
is due to the different detector geometries, the ORCA6 detector layout is denser and light
travels less path in water with respect to the ARCA6 telescope. Hence, the influence of different
absorption length values is less pronounced in ORCA6.

To obtain the function that describes the uncertainty on the light absorption length, the
ORCA6 relative uncertainties were fitted with straight lines while the ARCA6 ones, σ(cos θ),
were fitted with the following custom function:

σ(cos θ) = p0
e(cos θ−p1)∗p2 + 1

, (5.3)
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where p0, p1, and p2 are free parameters. The fit results are in Fig. 5.21.
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Figure 5.20: Systematic uncertainty due to the measurements of the light absorption length in
seawater for the ORCA6 (left) and ARCA6 (right) detectors. The blue points
demonstrate the MC simulation results obtained with the nominal value of the
absorption length. The red (purple) points represent the results obtained with the
absorption length decreased (increased) by 10%.
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Figure 5.21: The ratio between the MC simulation results with the modified absorption length
and with the nominal one. The left (right) top part of the figure shows the fit of the
ratio that evaluates the upper uncertainty for the ORCA6 (ARCA6) telescope. The
left (right) bottom part corresponds to the ORCA6 (ARCA6) lower uncertainty fit.
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5.4.3 PMT efficiency values
Values of the quantum efficiencies of the KM3NeT PMTs are believed to be known with 10%

precision. The MC simulations were repeated with the PMT efficiency values increased and
decreased by 10% for the evaluation of the corresponding systematics. The simulation results
with the modified values of PMT efficiencies together with the nominal simulations are presented
in Fig. 5.22. The discrepancy is 5% for ORCA6 and 10-30% for ARCA6. Also in this case, the
larger uncertainties for the ARCA6 telescope can be explained by its geometry, i.e. spatial
distribution of DOMs in ARCA is less dense than in ORCA.

The uncertainties were fitted with the same functions as described above in the systematics
evaluation induced by the light absorption length, see Fig. 5.23 for the results.
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Figure 5.22: The zenith angle distribution of muons obtained with the MC simulations using the
modified values of PMT efficiency (the red points - efficiency decreased by 10%, the
purple points - increased by 10%) and with the nominal simulations (blue points).
The left plot is for ORCA6, and the right one is for ARCA6.
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Figure 5.23: Fit results of the ORCA6 and ARCA6 relative uncertainties on the PMT efficiency
values, the left and right parts of the figure correspondingly. The top (bottom) part
is for the upper (lower) uncertainty.

5.4.4 Hadronic interaction model

The uncertainty induced by the differences in the high-energy hadronic interaction models
was estimated using the MCEq software [65]. The program provides the flux of muons at sea
level given the hadronic interaction model. Three post-LHC models were used for the muon flux
calculation, namely EPOS-LHC [71], QGSJETII-04 [70], and Sibyll 2.3c [179]. The CORSIKA
simulation results were obtained with the Sibyll 2.3d [69] model for the interactions. This model
is not present in the MCEq, the latest Sibyll version available is 2.3c. Hence, Sibyll 2.3c was
used for the uncertainty estimation.

The relative lower and upper uncertainties as a function of the muon energy at the sea level
are plotted in Fig. 5.24. The lower (upper) uncertainty was calculated as the ratio between the
hadronic interaction model that provides the maximum (minimum) flux value for the certain
muon energy with respect to the flux value averaged over the results obtained with the three
models considered.

To evaluate the uncertainty for the KM3NeT simulation results, the flux of muons that reach
the ORCA6 and ARCA6 detector cans as a function of their energy at sea level was used.
Fig. 5.25 demonstrates such fluxes for the ORCA6 (left plot) and the ARCA6 (right plot)
detectors. The uncertainty value was obtained by convolution of the results in Fig. 5.24 with
the muon fluxes plotted in Fig. 5.25. The lower and upper uncertainties for the ORCA6 (ARCA6)
detector are at a level of 3% (4%).
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Figure 5.24: Estimation of the systematic uncertainty on the hadronic interaction models. The
plot demonstrates the relative lower and upper uncertainties as a function of muon
energy at sea level.
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Figure 5.25: Flux of the atmospheric muons that reach the ORCA6 (left plot) and the ARCA6
(right plot) detector cans as a function of their energy at sea level. The highlighted
area indicates the 90% fraction of events counting from the maximum of the distri-
bution, 0.8-4.5 TeV for ORCA6 and 1.1-7.9 TeV for ARCA6.

5.5 Muon flux detected by the KM3NeT telescopes and the
CORSIKA simulations

The final result of this analysis is the comparison of the KM3NeT data with the MC simula-
tions including all the systematic uncertainties described above. The statistical and systematic
uncertainties were added in quadrature. The uncertainties from different systematic effects were
summed up linearly. The relative systematic error in each bin was estimated by evaluating the
corresponding uncertainty fit function in the center of the bin.

The data and MC comparisons together with the uncertainties are plotted in Fig. 5.26 for the
ORCA6 detector and in Fig. 5.27 for the ARCA6 one. Uncertainty bands for the ratio between
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data and MC (bottom plots in Fig. 5.26 and Fig. 5.27) were calculated using the estimated
MC uncertainties described above. The lower (upper) limit of the band that is shown on the
data/MC ratio plot is obtained using the upper (lower) limit of the corresponding uncertainty
band for the MC muon flux. For instance, the relative upper uncertainty on the CR flux applied
to vertical muons simulated for ORCA6 is 13%. This corresponds to the relative lower limit of
the CR flux uncertainty band of the data/MC ratio of 1/1.13 ≈ 0.88. The value of the data/MC
ratio for vertical muons in ORCA6 is 1.40. Hence, the lower limit of the CR flux uncertainty
band for the ratio is 1.23. The same procedure is applied to all the uncertainty bands on the
ratio plots.
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Figure 5.26: Comparison of the data (black points) and MC simulation results (blue points) for
the atmospheric muons in terms of the zenith angle distribution for the ORCA6
telescope. The simulations include statistical uncertainties that are shown as black
vertical lines. The systematic uncertainties are shown as cumulative bands that
include uncertainty on the CR flux (red band), the light absorption length (green
band), the PMT efficiency (purple band), and the hadronic interaction models (light
blue band). The discrepancy is at a level of 40% and cannot be compensated by
including all the uncertainties considered.
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Figure 5.27: The atmospheric muon flux as a function of the cosine of the zenith angle resulting
from the MC simulations (blue points) and the ARCA6 data (black points). The
colored bands indicate the uncertainties that are described in the text.

5.6 Discussion of the results

5.6.1 Ratio between the data and simulations

The MC simulations underestimate the data for both the ORCA6 and ARCA6 detectors. The
discrepancy for the ORCA6 telescope goes beyond the uncertainties considered in this work. The
ratio between the data and simulations is flat in the considered zenith angle range. There are
40% more muons in the data with respect to the simulations.

The ARCA6 comparison plot illustrates that there is also tension between the data and
MC even though the uncertainties are larger than for ORCA6. The shape of the ARCA6
data/MC ratio is not flat in contrast to the ORCA6 result. One would expect similar results
for both detectors for the same slant depths. Depth of the top part of the ORCA6 detector
is dtop

ORCA = 2.25 km, while the ARCA6 detector is located deeper with the top part being at
dtop

ARCA = 2.8 km. Hence, the similar results are expected for the ARCA6 cos θ value, cos θARCA,
corresponding to the lower ORCA6 cos θ value, cos θORCA = cos θARCA · (dtop

ORCA/dtop
ARCA). For

example, the ARCA slant depth at cos θARCA = 1 corresponds to the same slant depth for ORCA
at cos θORCA = 0.8, and the ratios for this cos θ values are 1.45 and 1.40, correspondingly. This
is in rough agreement if one considers the fact the energy threshold is higher in ARCA. However
for lower values of cos θ, e.g. cos θARCA = 0.9 and cos θORCA = 0.72, the ratio becomes 1.6 and
1.4, correspondingly, so the difference is growing.
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One of the possible explanations for the non-flat ARCA ratio opposite to the flat ORCA ratio
and the mismatch in the ratio values between the detectors could be related to the detector
response simulation uncertainties, and in particular, water properties. If one increases the
length by 10% and repeats the comparison for the ARCA6 detector, Fig. 5.28, then the ratio
becomes flat and at a level of 40%, the same as for the ORCA6 telescope. The same change of
the water properties for the ORCA detector modifies the result by ∼5% as shown in Fig. 5.20
left and does not change the shape of the ratio. It is quite realistic, however, that the water
properties are not the same at both detector sites.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
θReco cos 

1−
10

1

 s
r

⋅
s
e

c
 

e
v
e

n
ts

data

MC, nom_abs_len

MC, abs_len = 1.1*nom_abs_len

ARCA6

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
θReco cos 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
C

d
a

ta

data / MC nom_abs_len

data / MC abs_len = 1.1*nom_abs_len

Figure 5.28: The muon zenith angle distribution obtained from the simulations with the nominal
absorption length (blue points) and with the one increased by 10% (red points).
The results are compared to the ARCA6 data (black points). The data/MC ratio
with the modified length has a trend and value similar to the ORCA6 ratio.

5.6.2 Spectral index of the CR flux

As it can be seen from Fig. 5.26, the ratio between the data and simulations is flat in the
considered region of the cos θ space for ORCA6. Since the cos θ distribution represents the
overburden that muons have to travel in water to reach the detector, the flat ratio indicates
that the shape of the simulated muon energy distribution at sea level is correct even if there is
a discrepancy in the normalisation. And since the shape of the sea level muon energy spectrum
depends on the primary CR flux, it may be stated that the GSF model predictions are in
agreement with the KM3NeT data.

The 90% interval of events reconstructed in ORCA6 originate from primaries with energies lay-
ing in 3-350 TeV region as discussed in Chapter 3. In that energy range, the GSF approximation
for the flux may be considered as a power-law spectrum and can be fitted with the corresponding
function. Fig. 5.29 shows the result of the fit. The flux was multiplied by the squared value
of the primary energy for a better visual representation. The considered uncertainties (vertical
error bars) are taken from the GSF model. The fitting function was A · E−α, where A is the
flux normalisation and α corresponds to the spectral index: γ = −2 + α. Therefore, the fitted
value of the spectral index is −2.607 ± 0.006.
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Figure 5.29: The GSF approximation for the all-particle CR flux. The flux is multiplied by the
primary energy squared for a better visual representation. The GSF prediction is
fitted with a power-law function in the energy range of the ORCA6 telescope.

The IceCube Collaboration has also published the results on the characterization of the muon
flux properties deep under ice [62]. One of the results is the comparison of the data with the
simulations in terms of the muon zenith distribution. Fig. 5.30 illustrates the ratio of the data
with respect to the simulations for two different data samples. The left plot on this figure is
for the trigger level data and the right one is for the high-quality data sample. The simulations
were performed with CORSIKA using Sibyll 2.1 (pre-LHC) hadronic interaction model [68] and
two CR flux models, H3a [120] (green points on the figure below) and GST [119] (grey points).
The two aforementioned flux models provide very similar results as can be seen in Fig. 5.30.

Even though the models are different with respect to the ones used in this work, there is also
an underestimation of the muon flux in the simulations with respect to the data. As reported
by IceCube, the absolute value of the ratio is not a relevant quantity for the evaluation in their
work due to the systematic uncertainties on the photon yield and on the CR flux. On the
other hand, the shape of the ratio may serve as an estimation of the CR flux spectral index as
discussed above. In order to obtain the index which corresponds to the flat data/MC ratio, they
performed a fit of the toy model simulations to the data in each of the two data samples. The
fitted spectral indices are 2.715 for the trigger level data and 2.855 for the high-quality sample.
The ratio of the IceCube data to the MC simulations with the fitted spectral indices is also
shown in Fig. 5.30.
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Figure 5.30: The ratio between the IceCube data and simulations for two different data samples.
The left plot shows the ratio for the trigger level data, and the right one is for the
high-quality data sample. The figure legend is described in the text. This figure is
taken from [62].

The IceCube fit result disagrees with the spectral index of the GSF model (γ = −2.607) which
gives the flat data/MC ratio for the ORCA6 telescope (Sec. 5.6.2). The H3a model that was used
in the IceCube work does not provide the constant ratio between their data and simulations.
But this model is, in fact, very similar to the GSF one. Fig. 5.31 illustrates the comparison of
the GSF and H3a models for the primary CR energy range which is of interest in the KM3NeT
and IceCube experiments. The two bottom plots on the same figure are the comparison of
the model predictions for the proton (left plot) and helium (right plot) fluxes, which are the
most dominant primaries for both the KM3NeT and IceCube detectors [62]. The H3a and GSF
predictions agree also for these fluxes.
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Figure 5.31: The GSF model of the CR flux compared to the H3a flux. The top plot shows the
total flux predictions of these models and their ratio. The left (right) bottom plot is
for the proton (helium) flux. The H3a fluxes are shown as red lines, the GSF average
fluxes are in blue. The GSF lower and upper limits on the fluxes are also included
in the plots and shown as the light blue and dark blue lines, correspondingly.

Differences in the results obtained by the KM3NeT and IceCube Collaborations may be ex-
plained by the systematics of two detectors and by the different hadronic interaction models
used, Sibyll 2.1 [68] in the case of IceCube and Sibyll 2.3d [69] for KM3NeT. Fig. 5.32 shows
the vertical atmospheric muon flux at sea level for high-energy muons obtained with the MCEq
software. Since there is no Sibyll 2.3d model available in the public MCEq release, Sibyll 2.3c
was used instead. In fact, the flux obtained with Sibyll 2.3c is ∼10-15% lower with respect to
the Sibyll 2.1 one. Therefore, the larger data/MC discrepancy obtained in this work for the
KM3NeT data is partially caused by the different hadronic model used.
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Figure 5.32: Vertical sea level muon flux produced with the MCEq software. Two hadronic
interaction models were used: Sibyll 2.3c (blue line) and Sibyll 2.1 (orange line).
The bottom plot shows the ratio between the two models. Sibyll 2.1 predicts a
larger flux of muons with respect to Sibyll 2.3c.

5.6.3 Discrepancy between the data and simulation at sea level and underwater

As discussed in Sec. 5.1, CORSIKA with Sibyll 2.3d and GSF underestimates the sea level
muon flux predicted by the analytical models and measured by several the ground-based ex-
periments. The disagreement is at a level of ∼30%. The discrepancy between the data and
simulations for the underwater muon flux seen by the ORCA6 telescope is around 40%, Sec. 5.5.
That indirectly confirms that the KM3NeT simulations describe the muon propagation in water,
the light generation, the detector response, and the muon reconstruction with a precision better
than 10%. The 10% disagreement may be explained by the uncertainties on the light absorption
length in seawater and the detector response simulation, green and purple bands on Fig. 5.26
and Fig. 5.27. The sum of the two aforementioned upper uncertainties is around 10% for the
ORCA6 telescope and 20-40% for the ARCA6 detector.

5.6.4 Fluctuations in the number of muons in EAS

The Pierre Auger Observatory (PAO) has reported the measurements of the fluctuations in
the number of muons in EAS produced by Ultra-High Energy (UHE) CRs (E > 1018 eV) [180].
This measurement was found to be in agreement with the MC simulations using the recent high-
energy hadronic interactions models: EPOS-LHC [71], QGSJetII-04 [70], and Sibyll 2.3d [69].
Fig. 5.33 shows the PAO result together with the predictions of the three models mentioned
above. The simulations were performed assuming the pure proton (red lines) and pure iron
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(blue lines) composition of the CR flux. The data points fall within the range of the proton and
iron limits.

Figure 5.33: Relative fluctuations in the number of muons as a function of the CR primary energy
measured by the PAO experiment (black points). Statistical errors are shown as the
vertical lines, systematic uncertainties are represented by the square brackets. The
red (blue) lines illustrate the predictions of the three hadronic models mentioned
in the text assuming the pure proton (iron) composition of the CR flux. The gray
band is also the prediction from the three hadronic models but given the mass
composition measured using the depth of the shower maximum (Xmax). This figure
is taken from [180].

The fluctuations in the muon number are believed to be mainly determined by the first
interaction of the CR primaries with the atmosphere [181]. Hence, the possible cause of the
mismatch between the simulation and data for the number of GeV muons detected on the
ground (the muon puzzle) might be a small accumulative effect over many generations of EAS,
or it is a very particular modification of the first interaction that may change the muon number
without the impact on the fluctuations [180].

Muons detected by the KM3NeT telescopes originate from the first interactions of particles in
EAS so these detectors provide direct probe of such interactions. But, as it was demonstrated
in this work, there is a discrepancy between the KM3NeT data and the Sibyll 2.3d hadronic
model. Therefore, it is important to notice that even though the hadronic models are able to
describe the fluctuations of the muon number for UHE CRs (EeV range), they fail to describe the
absolute number of TeV muons originating from the first interactions for the lower CR energies
(TeV - few PeV range) as measured by the KM3NeT detectors.
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Conclusions
The KM3NeT neutrino telescopes are valuable instruments to study CR properties. The

telescopes are under construction at the bottom of the Mediterranean Sea near the coast of
France (KM3NeT/ORCA) and Italy (KM3NeT/ARCA) at the depths of ∼2.5 km and ∼3.5 km,
correspondingly. Having several kilometers of water overburden, only the high-energy (TeV)
atmospheric muons are able to reach the depths of the KM3NeT detectors. Therefore, the
KM3NeT measurement of the underwater muon flux is an additional input to the results from the
ground-based EAS experiments which detect the lower energy (GeV) muons. The pseudorapidity
of muons detected with the KM3NeT telescopes lays in the very forward region. This region
is not fully covered by the existing accelerator experiments which makes the KM3NeT results
useful also for the hadronic interaction studies.

In this work, the simulation of atmospheric muons for the KM3NeT experiment was performed.
This simulation was compared with KM3NeT data from the partially deployed detectors already
taking data underwater. The simulation included the most recent models available: Sibyll 2.3d
for the high-energy hadronic interaction and GSF for CR flux. During my PhD, I contributed to
the development of atmospheric muon simulation software for the Cherenkov neutrino telescopes.
In particular, I developed an alternative code for the muon propagation in water that allowed
to cross-check the standard KM3NeT software and resolve the issues it was affected by.

I developed a framework to tune the parameters of the fast muon generator MUPAGE on
the CORSIKA full MC simulations that includes the recent models mentioned above. The
framework results demonstrated that the tuned MUPAGE represents the CORSIKA results and
can be used as a fast alternative to the full MC simulations. The fast generation allows the
simulation of muons with the same statistics as in the real data. This goal is not achievable
with the full simulations and the CPU resources available.

Then, I performed studies on systematic uncertainties. The uncertainties include that on CR
flux and its composition, high-energy hadronic interaction model, light attenuation length in
seawater, and detector response simulation.

Finally, I compared the KM3NeT data with the MC simulations including all systematic
uncertainties mentioned above. The comparison revealed the discrepancy between the real data
and the MC predictions for the underwater muon flux. There are ∼40% more muons in the data
with respect to MC. Hence, the mismatch is of the same order as for the GeV muons at sea level
(the muon puzzle). Muons detected with KM3NeT originate from the very first interactions of
CRs in the atmosphere, while GeV muons at sea level are mostly originate in the lower parts
of the atmosphere after several steps of the EAS cascade development. Thus, the measurement
performed in this work provides new insights and the test-bench for possible solutions to the
muon puzzle.

The KM3NeT detectors are rapidly growing. The detector performance for the atmospheric
muon detection grows both in terms of statistics, but also, what is more important for this
study, it improves in the quality of the muon track reconstruction. More energy is absorbed
in the detector volume and more light is emitted, which allows better direction and energy
reconstruction. The framework developed during my thesis is provided to the Collaboration
as the internally available code with all necessary documentation. This allows this work to be
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continued in the near future by the collaborators in order to extend the analysis for the larger
and better KM3NeT detectors.

The main KM3NeT goals are related to the neutrinos detection and, in this aspect, the atmo-
spheric muons are only background. Its precise knowledge improves, however, the systematics of
the main physics analysis. Also atmospheric muons are the most copious events and, thus, they
provide a facility for the reconstruction code tests and the detector response studies. Therefore,
better knowledge about true flux of these events allows to tune the other detector properties.
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