SWACSM Abstract

The Effectiveness of Running Power as a Metric of Exercise Intensity During Running Interval Training

ERIC LAMBERT¹, DUSTIN W. DAVIS², MATAHN A. BLANK², TASHARI A. CARBALLO², ELIAS M. MALEK², KATHRYN A. LAVIN², THEA S. SWEDER², NICOLE ARGUETA¹, MARCUS M. LAWRENCE ${ }^{1}$, JAMES W. NAVALTA ${ }^{2}$, FACSM, \& JEFF C. COWLEY ${ }^{1}$
${ }^{1}$ Department of Kinesiology and Outdoor Recreation; Southern Utah University; Cedar City, UT; ${ }^{2}$ Department of Kinesiology and Nutrition Sciences; University of Nevada, Las Vegas; Las Vegas, NV.

Category: Undergraduate

Advisor / Mentor: Lawrence, Marcus (marcuslawrence@suu.edu)
ABSTRACT
Wearable power meters are increasingly popular among runners with Coros and Stryd offering running power as a real-time, trackable of a metric. PURPOSE: This study compared running power (RP) to physiological measures, heart rate (HR) and oxygen consumption $\left(\mathrm{VO}_{2}\right)$, across high and low intensity running intervals. METHODS: Thirteen adult participants ($\mathrm{n}=6$ male; height $=174.9 \pm 6.9 \mathrm{~cm}$; mass $=72.5 \pm 12.0 \mathrm{~kg}$) were equipped with a Stryd 27 RP meter, a Polar H10 HR monitor, and a Cosmed K5 portable metabolic unit. Participants' self-selected RP was obtained during a $10-\mathrm{min}$ run on an indoor track (10 laps/mile). After resting for five minutes, participants ran another 10 min, alternating between equal intervals of RP 20\% higher and 20% lower than self-selected RP: $120 \mathrm{~s} \times 2,60 \mathrm{~s} \times 2,30 \mathrm{~s} \times 4$, and $15 \mathrm{~s} \times 8$. All devices were started simultaneously before each run. RP (W/kg) was sampled at 1 Hz . $\mathrm{HR}(\mathrm{bpm})$ and $\mathrm{VO}_{2}(\mathrm{~mL} / \mathrm{kg} / \mathrm{min})$ were sampled at 0.1 Hz throughout the interval run. Data were analyzed from the 60 s mark through the end of the run. HR and VO_{2} data were interpolated to 1 Hz , and cross correlations (max lag $=60 \mathrm{~s}$) were used to compare RP, HR, and VO_{2} (mean values in Table 1). RESULTS: There were weak to moderate correlations between RP and $\mathrm{VO}_{2}(r=0.351$; lag $=-29.1 \mathrm{~s})$, RP and $\mathrm{HR}(\mathrm{r}=0.475$; lag $=9.38 \mathrm{~s}$), and HR and $\mathrm{VO}_{2}(r=0.572$; lag $=-29.1 \mathrm{~s}$; Table 2). CONCLUSION: HR showed the strongest correlation and smallest time delay with RP. This may be practically useful because HR data is more readily available to runners than VO_{2}. However, the correlation is only moderate. While related, the three metrics of running intensity are fundamentally different. When exercising at a moderate intensity, changes in HR or VO_{2}, which take seconds to minutes to stabilize, may be less evident than changes in mechanical power, which are immediate. Thus, it is possible that HR and VO_{2} would show a stronger relationship with RP across intervals longer than the 120 s maximum observed here. While RP can be a useful metric, it may not be informative about physiological responses to running especially over short intervals or when running at high intensity.

Table 1. Averages during the interval run.

	HR (BPM)	$\mathbf{V O}_{\mathbf{2}}$ (ML/KG/MIN)	RP (W/KG)
MEAN	169.1	36.6	3.0
SD	16.2	7.0	0.6

Table 2. Average Cross Correlations

	\mathbf{r}	Lag (s)	\mathbf{r} (lag = 0)
RP \& HR	0.475	9.4	0.424
RP \& VO 2	0.351	-29.1	-0.0306
HR \& VO	2	0.572	-29.1

