The Effectiveness of Running Power as a Metric of Exercise Intensity During Running Interval Training

ERIC LAMBERT¹, DUSTIN W. DAVIS², MATAHN A. BLANK², TASHARI A. CARBALLO², ELIAS M. MALEK², KATHRYN A. LAVIN², THEA S. SWEDER², NICOLE ARGUETA¹, MARCUS M. LAWRENCE¹, JAMES W. NAVALTA², FACSM, & JEFF C. COWLEY¹

¹Department of Kinesiology and Outdoor Recreation; Southern Utah University; Cedar City, UT; ²Department of Kinesiology and Nutrition Sciences; University of Nevada, Las Vegas; Las Vegas, NV.

Category: Undergraduate

Advisor / Mentor: Lawrence, Marcus (marcuslawrence@suu.edu)

ABSTRACT

Wearable power meters are increasingly popular among runners with Coros and Stryd offering running power as a real-time, trackable of a metric. PURPOSE: This study compared running power (RP) to physiological measures, heart rate (HR) and oxygen consumption (VO₂), across high and low intensity running intervals. METHODS: Thirteen adult participants (n = 6 male; height = 174.9 ± 6.9 cm; mass = 72.5 ± 12.0 kg) were equipped with a Stryd 27 RP meter, a Polar H10 HR monitor, and a Cosmed K5 portable metabolic unit. Participants' self-selected RP was obtained during a 10-min run on an indoor track (10 laps/mile). After resting for five minutes, participants ran another 10 min, alternating between equal intervals of RP 20% higher and 20% lower than self-selected RP: 120 s x 2, 60 s x 2, 30 s x 4, and 15 s x 8. All devices were started simultaneously before each run. RP (W/kg) was sampled at 1 Hz. HR (bpm) and VO₂ (mL/kg/min) were sampled at 0.1 Hz throughout the interval run. Data were analyzed from the 60 s mark through the end of the run. HR and VO₂ data were interpolated to 1 Hz, and cross correlations (max lag = 60 s) were used to compare RP, HR, and VO₂ (mean values in Table 1). **RESULTS**: There were weak to moderate correlations between RP and VO₂ (r = 0.351; lag = -29.1 s), RP and HR (r = 0.475; lag = 9.38 s), and HR and VO₂ (r = 0.572; lag = -29.1 s; Table 2). CONCLUSION: HR showed the strongest correlation and smallest time delay with RP. This may be practically useful because HR data is more readily available to runners than VO₂. However, the correlation is only moderate. While related, the three metrics of running intensity are fundamentally different. When exercising at a moderate intensity, changes in HR or VO₂, which take seconds to minutes to stabilize, may be less evident than changes in mechanical power, which are immediate. Thus, it is possible that HR and VO₂ would show a stronger relationship with RP across intervals longer than the 120 s maximum observed here. While RP can be a useful metric, it may not be informative about physiological responses to running especially over short intervals or when running at high intensity.

 Table 2. Average Cross Correlations

	HR	VO ₂	RP				
	(BPM)	(ML/KG/MIN)	(W/KG)		r	Lag (s)	r (lag =
MEAN	169.1	36.6	3.0	RP & HR	0.475	9.4	0.424
SD	16.2	7.0	0.6	RP & VO ₂	0.351	-29.1	-0.030
I				HR & VO ₂	0.572	-29.1	0.331