
MOHAMED KHIDER UNIVERSITY - BISKRA

FACULTY OF SCIENCE AND TECHNOLOGY

DEPT. ELECTRICAL ENGINEERING

DIVISION OF ELECTRONICS

Ref: ....................

rks� - rSy� dm�� T`�A�

Ay�w�wnkt��¤ �wl`�� Tyl�

Ty¶A�rhk�� TFdnh�� �s�

�y�¤rtk�³� Tb`J

.................... :��rm��

Thesis title:

Moving Object Detection based on RGBD
Information

By

IHSSANE HOUHOU

A thesis submitted to the Department of Electrical Engineering in candidacy for the
Degree of Doctorate (3rd Cycle) in Electronics (Biometrics and Surveillance).

Members of the jury:

President: Pr. Salim Sbaa Prof University of Biskra
Supervisor: Pr. Athmane Zitouni Prof University of Biskra
Co-Supervisor: Pr. Yassine Ruichek Prof University of Technology of Belfort-Montbéliard
Examiner: Dr. Soraya Zehani MCA University of Biskra
Examiner: Dr. Messaoud Hettiri MCA University of Eloued

2022/2023



DEDICATION

This work is dedicated
to

My beloved parents.
My dear brothers and sisters.

My teachers.
All the ones I care about.

i



ACKNOWLEDGEMENTS

First, I thank Allah the Almighty for guiding me through this path.
Nothing I made by myself but with HIS Almighty blessing.

I gratefully acknowledge my supervisor, professor Athmane Zitouni,
and my co-advisors, professor Yassine Ruichek and professor Abdelmalik
Taleb-Ahmed. This project would be nothing without their help, support,
and companionship throughout these years.

I would like to thank the defense committee, who dedicated their time
to reading and examining this thesis and making it more valuable to the
scientific community.

I would thank professor Salah Eddine Bekhouche and professor Mo-
hamed Kas for their collaboration and contribution to this study. My
thanks also go to our lab mates from LESIA (University of Biskra) and the
EPAN team from CIAD (University of Technology Belfort-Montbéliard).
Especially Fahad Lateef, Abderrazak Chahi, and Ibrahim Kajo.

I also thank the Algerian Ministry of Higher Education and Scien-
tific Research for funding the scholarship PNE (Programme National
Exceptionnel). Also, the Faculty of Science and Technology, University
of Biskra, for providing the internship programs.

My special thanks to my family for their support and prayers. To
my father Abdelkarim, who taught me how to be a real man. To my
dear mother Naima, who has the Paradise beneath her feet. To my dear
brothers and sisters whom I care about, especially my precious twin
brother Mohcine.

ii



ABSTRACT

Abstract

This thesis is targeting the Moving Object Detection topic, more specifically, the
Background Subtraction. In this study, we proposed two approaches using color and
depth information to solve the background subtraction. The following two paragraphs
will give a brief abstract for each approach.

In this research study, we propose a framework for improving traditional Background
Subtraction techniques. This framework is based on two data types: color and depth; it
stands for obtaining preliminary results of the background segmentation using Depth
and RGB channels independently, then using an algorithm to fuse them to create the
final results. The experiments on the SBM-RGBD dataset using four methods: ViBe,
LOBSTER, SuBSENSE, and PAWCS, proved that the proposed framework achieves
an impressive performance compared to the original RGB-based techniques from the
state-of-the-art.

This dissertation also proposes a novel deep learning model called Deep Multi-Scale
Network (DMSN) for Background Subtraction. This convolutional neural network is
built to use RGB color channels and Depth maps as inputs with which it can fuse
semantic and spatial information. Compared with previous Deep Learning Background
Subtraction techniques that lack information due to their use of only RGB channels,
our RGBD version can overcome most of the drawbacks, especially in some particular
challenges. Further, this study introduces a new protocol for the SBM-RGBD dataset
regarding scene-independent evaluation, dedicated to Deep Learning methods to set up
a competitive platform that includes more challenging situations. The proposed method
proved its efficiency in solving the background subtraction in complex problems at
different levels. The experimental results verify that the proposed work outperforms the
state-of-the-art on SBM-RGBD and GSM datasets.
Keywords: Computer vision, Moving object detection, Background subtraction, Tradi-
tional approaches, Deep learning, DMSN, Scene-independent evaluation.
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لملخص: ا  

 

تستهدف هذه الأطروحة موضوع "الكشف عن الأجسام المتحركة" ، وبشكل أكثر تحديدًا "طرح الخلفية".  

الفقرتان    طرح الخلفية.  مشاكل   في هذه الدراسة ، اقترحنا طريقتين تستخدمان معلومات اللون والعمق لحل 

 .لكل نهج ملخصًا موجزًا تمثلان التاليتان 

 

  نهج طرح الخلفية. يعتمد هذا ال  التقليدية في مجال   تقنيات ال لتحسين    نهجا في هذه الدراسة البحثية ، نقترح  

الخلفية    طرحالنتائج الأولية لستخراج  لى اعدراستنا    رتكزاللون والعمق. ت  هي  ،على نوعين من البيانات 

إنشاء النتائج النهائية.  وة لدمجها  بشكل مستقل ، ثم استخدام خوارزمي و اللون  العمق    معلومات باستخدام  

بيانات  مجموعة  على  التجارب  طر SBM-RGBD أثبتت  أربع  هي:باستخدام   ، ViBe،LOBSTER  ق 

SuBSENSE    وPAWCS، اساسا   حقق أداءً رائعًا مقارنة بالتقنيات الأصلية المستندةت  هالمقترح   طريقة أن ال  

 .على المعلومات اللون فقط

 

 Deep Multi-Scale Network (DMSN)  يسمى  الرسالة أيضًا نموذجًا جديدًا للتعلم العميق تقترح هذه  

وخرائط    RGBالـ استخدام قنوات ألوانخصيصا من اجل  لطرح الخلفية. تم تصميم هذه الشبكة العصبية  

كمدخلات  بحيث العمق  التقنية  يمكن  ،  والمكانية   لهذه  الدلالية  المعلومات  في    دمج  تحديده  المراد  للجسم 

اعتمادها  . بالمقارنة مع تقنيات الطرح الخلفية السابقة للتعلم العميق التي تفتقر إلى المعلومات بسبب  المشهد 

  ة قادر  RGBDالـ تنا التي تعتمد على معلومات خاصهذه التقنية    فقط ، فإن إصدارعلى المعلومات اللونية  

التحديات. علاوة  معينة من  ، خاصة في أنواع  التي تواجه التقنيات السابقة  ى التغلب على معظم العيوب عل

بيانات  التقييم  "ـ، فيما يتعلق بSBM-RGBDالـ على ذلك ، تقدم هذه الدراسة بروتوكولًا جديدًا لمجموعة 

المشهد  العميق"المستقل عن  التعلم    تنافسية تتضمن مواقف   قاعدةلإنشاء    ، وذلك، والمخصص لأساليب 

طرح الخلفية في المواقف    مجالكفاءتها في    (DMSN)  . أثبتت الطريقة المقترحةواقعية  أكثر   وتحديات 

النتائج التجريبية من أن العمل المقترح يتفوق على أحدث ما توصل    أكد على مستويات مختلفة. توالمعقدة  

تقنيات   إليه الخلفيةفي    من  البيانية في مجال طرح  المجموعات  بين اشهر   و SBM-RGBD ،اثنين من 

GSM . 

 

، المناهج التقليدية، التعلم  هالرؤية الحاسوبية، كشف الأجسام المتحركة، طرح الخلفي  الكلمات المفتاحية: 

 ، التقييم المستقل عن المشهد. DMSNميق، الع
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1.1 Overview

1.1.1 Background Subtraction

Our human body is designed in such a manner that it collects information from the
environment to cope with several challenges facing us in daily life. This information is
solicited using the five senses (vision, hearing, smell, taste, and touch). The visual sense
is the one that captures the most significant amount of information which can exceed 10
Mb of data per second[1]. Indeed, using cameras to mimic how the human eyes work
and capture such amounts of data is helpful for many tasks nowadays using technology
based on Artificial Intelligence (AI), which we simply call Computer Vision (CV).

One of the well-known applications in Computer Vision is Background Subtraction
(BS). Background subtraction is a research topic where the main goal is to separate the
moving objects from the static ones in a video frame sequence. It is an essential step in
most computer vision systems that are based on object detection.

Background
Subtraction

Input Output

Figure 1.1: Background subtraction mechanism.

Background subtraction has been one of the prevalent topics for the last decades,
dedicated to the evolution of applied intelligence technology. Since that, this topic
has seen progress thanks to many types of research for better performance and has
contributed to many applications related to security, safety, autonomous vehicles, and
more. Background subtraction is essential for such applications; it simplifies the treated
scene from complex, colorful images full of unnecessary data to a sequence of binary-
labeled frames that illustrates the moving objects and eliminates the static objects
from the scene, i.e., each pixel of these frames either labeled with a value of "1"

as a part of the Foreground objects or with a value of "0" a part of the Background
objects. These results obtained from the background subtraction operation will give
the complete system (autonomous vehicle, for example) the ability to perform better
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and cope with Real-Time applications. Figure 1.1 illustrates the main objective of a
background subtraction system.

We believe that the use of background subtraction goes way back several decades to
the author Potter [2], the first who mentioned the two main terms related to background
subtraction: Segmentation and Motion. His study is based on detecting moving objects
using two consecutive frames, which is actually inspired by previous research claiming
that many animals do not see the static objects, but only the moving ones [3]. Where the
fundamental approach of a background subtraction system can be explained as follows:

Reference frame

Current frame

BGS result

Final result

Background
subtraction

Thresholding

Post-processing

Figure 1.2: The basic system of background subtraction.

Let’s suppose f t1 and f t2 are two images taken from the same scene in two different
moments, t1 and t2. Assuming f t1 as a reference frame containing only static objects.
Applying a pixel-wise comparison between this frame and another frame from the
same sequence that includes new object(s) results in canceling the stationary elements,
keeping only nonzero values corresponding to the non-stationary components.

This explained operation can be defined as:

pbgt2(x, y)=
{

1 i f
∣∣p f t2(x, y)− p f t1(x, y)

∣∣> T
0 otherwise

(1.1)
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Where pbgt2(x, y) is the pixel value at the moment t2 and the position (x, y) from the
background subtraction result frame. p f t1(x, y) and p f t2(x, y) are the pixel value in the
two different moments t1 and t2, at the same position (x, y) from the reference frame
and the current frame, respectively. Note that T is the threshold, where: 0< T < 255.

Figure 1.2 illustrates, visually, the basic system of background subtraction. Note
that some noise will occur in the resulting frame after the thresholding. Using post-
processing operations such as connecting contours, filling holes, and/or other known
filters will remove the salt noise and unwanted parts.

Although the approach just described is essential, it is commonly employed as the
backbone of imaging systems meant to identify patterns in controlled environments,
including parking spaces, buildings, as well as other fixed locales. Therefore, this thesis
will go through very advanced techniques that solve more complex scenarios.

1.1.2 Depth extraction

As standard users, everyone is familiar with digital camera devices such as Digital
Single-Lens Reflex (DSLR), Mirrorless, and Phone cameras. This ordinary tool provides
gray-scaled or colored images. These kinds of cameras are often used for research and
applied technologies (Surveillance, Autonomous cars... etc.), and they are called Red
Green Blue (RGB) cameras, referring to their functioning mechanism. On the other hand,
there are different kinds of cameras that are generally not used for the same purpose as
RGB cameras. These ones are mainly dedicated to research and technology applications.
In this study, we will build our proposed methods to use the Depth information, which
will be extracted using unique cameras or frameworks.

Figure 1.3: The difference between RGB images and Depth maps
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Depth cameras are equipped with sensors to give some geometrical information
about the scene, which can help solve some issues with systems that rely only on RGB
data. A depth image is constructed of pixel values for depth (different than the RGB
values), which are proportional to the estimated distance between the depth camera
and the corresponding point in the real scene (see Figure 1.3). Here, we explain some
different approaches to extracting Depth information to give the reader an overview of
this subject:

Stereo vision: Which is actually based on the approach of the human eyes. This
method requires two ordinary cameras placed and calibrated to spot the scene from
two different angles simultaneously. The two corresponding frames will be processed
using a stereo-to-depth algorithm based on the calibration of the setup of the equipment.
Figure 1.4 gives an example of how the setup should be.

Figure 1.4: Stereo Vision setup example.

Time-of-Flight (ToF): This model of depth cameras is based on transmitter-receiver
Infrared (IR). Its approach is to calculate the IR time of flight Camera-Object-Camera,
then estimate the distance between the camera and the targeted objects. Figure 1.5
explains more about the ToF method.
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Figure 1.5: Time-of-Flight setup example.

Structured Light: This approach is basically built with a projector that sends an
invisible structured light on an object. These structured lights will be captured by a
special sensor/camera. After that, the algorithm will create a depth map based on the
curves that appear on the targeted objects. Figure 1.6 illustrates more about how this
technique works. It is worth mentioning that Microsoft used this approach to build their
famous XBOX camera, the Microsoft Kinect.

Figure 1.6: Structured Light setup.
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1.2 Purpose of study and research objectives

This thesis is dedicated to creating a novel method to improve the background
subtraction performance for better Computer Vision systems in the future. Our study
should rely on the two main research branches in the field: (i) Traditional and (ii)

Deep-Learning. Further, the data in the background subtraction is essential to have an
efficient model; using multiple data sources will help our proposed system reach the
desired performance. However, the evaluation protocol has to be reasonable to ensure
the effectiveness of the proposed approach.

1.3 Problematic

Background subtraction is a domain that became more attractive in the late nineties
when Stauffer and Grimson proposed the Mixture of Gaussians [4]. Since then, sev-
eral datasets and competitions have been created in this field to offer new challenges.
Although most of these datasets are overrated by advanced new techniques, some cate-
gories are still unbeatable even by recent Deep Learning approaches. These challenging
categories, such as illumination changes, depth camouflage, intermittent motion, and
more, give competitive scenes that cannot be easily handled. We believe these scenarios
require an advanced technique that extracts more features and eliminates unnecessary
information from the scene. Hence, utilizing more than one source of data will pro-
vide much recognition for our system rather than using only color images like most
state-of-the-art approaches.

The second major problem in background subtraction is related to the protocol
followed to evaluate the approaches. Using a scene-dependent protocol will lead to an
unfair evaluation. Scene-dependent protocol stands for training (or creating) a model
from a set of frames chosen from one video and then evaluating that model using the
remaining frames from the same video. This causes the Training/Testing overlapping,
mainly in the Deep Learning techniques.

The state-of-the-art methods are based on building a model from a frame reference or
temporal history (multiple frames). Only a few techniques can provide background sub-
traction without using any references; nevertheless, they use scene-dependent evaluation.
This approach will lead to a model that can not be effective for real scenarios.

This study aims to create a method to solve these major problems based on the
existing state-of-the-art techniques and the latest approaches from traditional and Deep
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Learning research studies.

1.4 Contributions

The aim of this thesis is the investigation and development of background subtraction.
Our main contributions are listed as follows:

• An in-depth survey about background subtraction.

• Proving the importance of using Depth information for background subtraction.

• Providing a new framework for background subtraction using RGBD information
based on the traditional approaches.

• Providing a novel model of Deep Learning for background subtraction using
RGBD information.

• Proposing a new protocol for the SBM-RGBD dataset that guarantees a fair
evaluation process for Deep Learning methods.

1.5 Thesis structure

The rest of this thesis is organized as follows:
In Chapter 2, we provide an in-depth literature review of background subtraction.

This chapter will start by summarizing the most-used datasets in the literature. Then a
brief description of the evaluation metrics used to evaluate the background subtraction
methods. A detailed presentation of the current work, the latest updates in the field, and
a comparison between the different existing approaches are given. A brief conclusion
will summarise the chapter at the end. Chapter 3 is devoted to our contribution related
to traditional approaches. This chapter starts with explaining our very first contribution,
the use of the Multi-Scale Resolution (MSR) in background subtraction. Later in the
same chapter, we present the color-depth information fusion framework, applied to the
ViBe-based approaches. We organized this chapter by giving each contribution three
sections, a description of the approach, a performance evaluation, then conclusions.
In the end, a general conclusion of the Chapter is given. Chapter 4 is reserved for our
contribution related to deep learning-based approaches. It starts with introducing a novel
CNN-based architecture that fuses color and depth information to apply the background
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subtraction. Then, a detailed description of the proposed scene-independent protocol is
provided. Experiments and evaluations of the proposed method are analyzed. Later, the
chapter conclusion is presented at the end. The last chapter is a general conclusion of
our work and an envisioning for some future works.
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2.1 Introduction

In the world of technology, where computer vision has become a giant industry,
the moving object detection and background subtraction fields took the researchers’
attention. The last decades have witnessed a lot of research and studies dedicated to
these domains. Indeed, datasets, challenges, and compositions are continuously rising
to seek the ideal approach that solves most of these problems and can be applied in real
scenarios.

We present an in-depth literature overview on background subtraction in this chapter.
The first section will summarize the most often used datasets in this field. The type of
data used by the owners and the represented categories for each dataset are provided.
The metrics used to evaluate the background subtraction techniques are briefly described.
We then give a complete description of the previous work, as well as the most recent
developments in the area and a comparison of the many available approaches. Later,
some limitations and general thoughts about the field are given. At the end of the chapter,
there will be conclusions and a quick summary.

2.2 Datasets

Several datasets have been created in the past to evaluate background subtraction
methods. In this chapter, we attend to cite the frequently used ones. We have chosen
this list of datasets based on the variety of challenges, the type of data provided, and the
amount of data offered by the dataset founders.

2.2.1 RGB-based datasets

2.2.1.1 CDNET

The Change Detection NET benchmark dataset1. To the best of our knowledge, it
is the most significant benchmark that targets background subtraction. Two successful
projects, Goyette et al. [5] (2012) and Wang et al. [6] (2014), have been launched
to create a solid base for researchers to work on motion detection with an enormous
amount of data and various real scenarios.

In total, CDnet 2012 and its extended version CDnet2014, built by 13 experts from 7
different universities, captured and then manually segmented and labeled more than 70

1http://changedetection.net/
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Table 2.1: Change detection dataset

Category Challenges and properties Number of videos Input example
Groundtruth
example

badWeather

• Outdoor

• Winter storm conditions

• Traffic & pedestrians

4

baseline

• Indoor/outdoor

• Subtle background motion

• Traffic & pedestrians

4

cameraJitter

• Indoor/outdoor

• Unstable cameras

• Traffic & pedestrians

4

dynamicBackground

• Outdoor

• Strong background motion

• Traffic, boats, & pedestri-
ans

6

intermittentObjectMotion

• Indoor/outdoor

• Parking & abandoned ob-
jects

• Cars & pedestrians

6

lowFramerate

• Outdoor

• Low Frame-Rate (0.17 to 1
fps)

• Traffic, boats, & pedestri-
ans

4

nightVideos

• Outdoor

• Night videos

• Traffic

6

PTZ

• Outdoor

• Background motion

• Traffic & pedestrians

4

shadow

• Indoor/outdoor

• Strong and soft moving
shadows

• Traffic, bikes & pedestri-
ans

6

thermal

• Indoor/outdoor

• Far-infrared cameras

• Pedestrians & kayaks

5

turbulence

• Indoor/outdoor

• Turbulence background &
small moving objects

• Traffic

4
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000 frames. These frames are from 53 videos, divided into 11 categories; each category
contains from 4 to 6 videos, each video folder contains two sub-folders, input and
groundtruth, and two files named ’ROI.bmp’ and ’ROI.jpg’ illustrating the spatial region
of interest. Table 2.1 summarizes the dataset content.

2.2.1.2 LASIESTA

LASIESTA (Labeled and Annotated Sequences for Integral Evaluation of Segmen-
Tation Algorithms) [7]2 is a large dataset that combines pixel-level and object-level
annotation for moving object detection. It has six-pixel labels: Black for Background,
Red for the first moving object, Green for the second moving object, Yellow for the
third moving object, White for the moving objects remaining static, and Gray for the
uncertainty pixels. The LASIESTA dataset consists of 48 sequences covering several
scenarios from indoor and outdoor conditions. The majority of the videos are dedicated
to pedestrians, and only four sequences are related to car parking situations. Figure. 2.1
shows some frame samples.

Figure 2.1: Frame samples from LASIESTA dataset [7].

2https://www.gti.ssr.upm.es/data/lasiesta_database
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2.2.1.3 MarDCT

Maritime Detection, Classification, and Tracking (MarDCT)[8]3 is a dataset made
by a group of researchers from Italy. This dataset targets three main tasks of computer
vision: Detection, Classification, and Tracking. The detection dataset is dedicated to
background subtraction; it contains ten videos (RGB data) of small boats from the
city of Venice and six other videos of ships from the Mediterranean coast (Italy), plus
three videos (IR data) of other ships from the Northern Europe coast. The provided
data quality is mainly low; it includes vibrations and In/Out zooming of the scene.
The dataset contains several challenges, such as dynamic background, bootstrapping,
reflections, night/day scenes, and shadows, which are recommended to be used by
researchers seeking these kinds of environments to solve the background subtraction. In
Figure. 2.2 we represent some samples from the MarDCT dataset.

Figure 2.2: Color (RGB) frame samples and their corresponding groundtruth from the
MarDCT dataset.

3http://labrococo.dis.uniroma1.it/MAR/index.htm
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2.2.1.4 SBI & SBMnet

These two datasets are devoted to the background initialization and background
modeling methods, where the primary purpose of these methods is to extract the back-
ground scene from the image sequence. It stands for removing all the moving objects
and keeping only the static ones. The result will be an image representing the back-
ground scene, which will be used later in further applications, including background
subtraction. These datasets are represented as follows:

Scene Background Initialization (SBI) [9]4: It is a dataset that was created for the
Scene Background Modeling and Initialization (SBMI2015) workshop[10]. It contains
fourteen different scenarios that differ between Outdoor-Indoor scenes and Pedestrians-
Vehicles as foreground objects. These sequences are extracted from seven various
publicly frequently used datasets. Figure. 2.3 shows some samples from the SBI dataset.
Note that the groundtruth of background initialization is different than the background
subtraction; they are represented as an RGB frame that does not include any foreground
objects.

Figure 2.3: Samples from the SBI dataset.

4https://sbmi2015.na.icar.cnr.it/SBIdataset.html
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Scene Background Modeling (SBMnet) [11]5: It is a dataset that collects various
scenarios from sixteen existing datasets to set up a new benchmark devoted to the
background initialization task. This dataset consists of seventy-nine videos, divided into
eight categories; each category represents a kind of challenge. This dataset also provides
videos with different light settings, resolutions, lengths, and frame rates, allowing
researchers to have a wide range of challenges. Figure. 2.4 shows some samples from
the SBMnet dataset.

Figure 2.4: Samples from the SBMnet dataset.

5http://scenebackgroundmodeling.net/
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2.2.2 RGBD-based datasets

2.2.2.1 SBM-RGBD

SBM-RGBD[12]6, is a dataset made for the SBM-RGBD Challenge in 2017. This
dataset is a combination of five different small datasets [13–17], making it one of the
most used and variegated ones, especially when it comes to background subtraction
based on using Depth information. The SBM-RGBD dataset targets indoor environments
where many challenges are related to critical situations such as overlapping, illumination,
shadows, and others. The presence of Depth maps along with the RGB information in
this dataset allows researchers to study the fusion of these two pieces of information and
solve many scenarios that are considered difficult to handle using only one source of
data. The depth maps provided by the dataset founders are extracted from the Microsoft
Kinect camera.

This dataset contains seven categories; each category has from four to six video
sequences (33 videos in total), and each sequence has two kinds of input information
(RGB and Depth), including the corresponding groundtruth for results evaluation. The
length of these sequences varies between 70 and 1400 frames per video. The seven
categories provided in this dataset represent seven different challenges: Illumination
Changes, Color Camouflage, Depth Camouflage, Intermittent Motion, Out of Sensor
Range, Shadows, and Bootstrapping (See Table. 2.2). The groundtruth is made based
on the concept of the ChangeDetection dataset. It has four pixel-wise value labels: 0
for Background, 85 for Outside Region of Interest, 170 for Unknown, and 255 for
Foreground. (See Figure. 2.5)

Figure 2.5: SBM-RGBD groundtruth description.

6https://rgbd2017.na.icar.cnr.it/SBM-RGBDdataset.html
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Table 2.2: SBM-RGBD dataset

Category Challenges and properties Number of videos RGB example Depth example
Groundtruth
example

Bootstrapping

• Foreground objects in all
frames

• Low light conditions

• Some background regions
stay hidden

5

Color Camouflage

• Background/foreground
color similarity

• Some scenes include light-
ing contrast

• Some scenes include inter-
mittent motion

4

Depth Camouflage

• Background/foreground dis-
tance similarity

• Some scenes include light-
ing contrast

• Some scenes include inter-
mittent motion

4

Illumination Changes

• Difficult lighting conditions
& sudden illumination
changes

• Some scenes include inter-
mittent motion

• Some scenes does not in-
clude foreground objects

4

Intermittent Motion

• Abandoned objects

• Background objects start
moving

• Some scenes include color
and distance similarity

6

Out of Sensor Range

• Failure to measure depth in
some regions

• Some scenes include reflec-
tive surfaces

• Some scenes include color
and distance similarity

5

Shadows

• Foreground object shadows

• Lighting contrast

• Some scenes include color
and distance similarity

5
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2.2.2.2 GSM

GSM[13]7 is a small dataset that provides seven videos. Each video presents a
particular category: BootStraping, Color camouflage, Depth camouflage, Sleeping,
Shadows, TimeOfDay, and LightSwitch; these categories are well described in the
previous Section 2.2.2.1.

Figure 2.6: Frame samples from GSM dataset, from up to bottom, Cespatx_ds, Sleep-
ing_ds, Shadows_ds, BootStraping_ds, Despatx_ds, LS_ds, TimeOfDay_ds, respec-
tively. Color frame, Depth map, and the groundtruth, from left to right respectively.

In fact, the GSM dataset videos are included in the SBM-RGBD dataset. The length
of the sequences varies between 200 and 1231 frames per each. The frame size is
fixed to 640 X 480 for all sequences. This dataset is a better choice to challenge deep
learning networks using a small amount of data. The founder of GSM provides two

7http://gsm.uib.es
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types of data, color and depth information. The groundtruth is labeled following the
ChangeDetection dataset. Frame samples of color, depth and groundtruth from each
sequence are presented in Figure 2.6.

2.3 Evaluation metrics

The F-score, or the F-measure, is the most frequently used metric for background
subtraction in the state-of-the-art. It is based on several indicators such as True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). These
indicators are computed from the comparison between the estimated results and the
provided Groundtruth, as follows:

• TP: The pixels which are foreground, and classified as foreground.

• TN: The pixels which are background, and classified as background.

• FP: The pixels which are background, but classified as foreground.

• FN: The pixels which are foreground, but classified as background.

Fscore = 2.
Pr.Re

Pr+Re
(2.1)

Where Recall (Re) and Precision (Pr) are computed as follows:

Re = TP
TP +FN

(2.2)

Pr = TP
TP +FP

(2.3)

2.4 Existing works

In recent decades, computer vision has been an active research area with vast
and quick development in several applications such as robotics, autonomous cars,
surveillance, and so on. This magnificent evolution results from many factors that have
an impact on improving the performance of the new approaches and overcoming their
drawbacks in this field. Background subtraction has become fertile ground in computer
vision due to the limitless challenges that provoke researchers to seek and propose new
solutions. This section will summarize the most well-known and very recent methods
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that may be interesting for the new researchers in this domain. These methods can be
categorized into many kinds of classes, but we preferred to split them into two kinds of
approaches: (i) Traditional-based techniques (Modeling and clustering); (ii) CNN-based
techniques.

2.4.1 Traditional approaches

As we mentioned at the beginning of the previous chapter, the initial idea of back-
ground subtraction goes back to 1975 of the last century [2]; from then until now, any
unsupervised method based on subtraction, modeling, statistics, and/or clustering is
considered a traditional (or classical) approach.

Mixture of Gaussians (MoG) [4] is one of the most well-known classical approaches
for background subtraction. This method is based on statistics; it consists of modeling
each individual pixel into color intensities using a Mixture of Gaussian probability
density functions. Due to its background model update system, this method is one of
the early approaches that handle multiple challenges in background subtraction, such as
light changing, shadows, objects overlapping, etc. It has been improved many times; one
of the most riveting studies is presented by Pakorn and Richard [18]; it is an improved
version dedicated to better detection in the shadow category to prevent labeling the
shadow as a moving object. At the same time, the authors consider the processing speed
to make this method run for real-time detection. Later, Zoran [19] added a new important
feature for the GMM since it is considered a parametric approach; this new version
includes a constant update for the parameters and improves selecting the proper amount
of components for each pixel. The next version of GMM was presented by Lee[20], who
presented an efficient technique to balance the model convergence speed and stability. In
a new paper, again, Zoran and Ferdinand [21] presented a new improvement developing
their previous work [19] by creating a new formula to automatically update the GMM
parameters. Some interesting studies also included Fuzzy Logic for improving the MoG
approach. Zhao et al.[22] used T2-FGMM supported by Markov Random Field (MRF)
to solve dynamic backgrounds such as waving trees and water rippling. T2-FGMM also
has been improved by Darwich et al.[23], involving more extra steps to make accurate
decisions named IV-FGMM. Figure 2.7 tells the differences between the classical GMM,
T2-FGMM, and IV-FGMM algorithms.

One of the critical limitations of the traditional background subtraction approaches
back then was the presence of the parameters adjustment process. Some studies pre-
sented automatic approaches to handle this issue; on the other hand, several studies
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appear to introduce a new concept: non-parametric methods. Researchers were de-
veloping these approaches to generate a new scheme that can help the user interact
less with the systems in multiple scenarios. Using statistical estimation based on local
intensity observations, Elgammal et al.[24] proposed Kernel Density Estimation (KDE)
Background Subtraction as a non-parametric approach. This method is based on lo-
cal intensity observations and estimates the background probability statistically at the
pixel-level. This method was an inspiration for the following background subtraction
approaches. Hanzi and David [25] proposed a non-parametric method that provides
three tasks: Background subtraction, Segmentation, and Tracking objects. Their targets
focused on handling multiple conditions at a time and solving the problem of human
segmentation occlusion. Figure 2.8 shows the main steps of their proposed method.

Figure 2.8: The framework presented by Hanzi and David[25].

Most methods in the last decade are considered non-parametric because of the
evolutionary ideas presented in the previous two studies. Bin and Piotr [26] presented a
new method that contains twenty-one parameters. These parameters are fixed to cope
with several situations to solve the background subtraction. This study aims to produce
a method that proportionally provides real-time performance with high accuracy. Later,
Graciela and Mario I. proposed AAPSA [27], a complex framework (represented in
Figure 2.9) that contains several steps, including two background models with three
inputs, Analysis of Specialized Modules (ASM), then an output that feeds the system



2.4. EXISTING WORKS 24

again to update the background model. This approach performed well in two public
datasets at that time using the same parameter values.

Figure 2.9: The AAPSA framework presented by Graciela and Mario I.[27].

On the other hand, clustering was an effective tool to improve background subtrac-
tion performance. CodeBook by Kim et al.[28] was one of the first and most well-known
methods based on creating the background model from a set of frames in the learning
phase. We can simply explain the way of creating a CodeBook background model.
The model has the exact size of the video frames, and each pixel will be represented
separately in this model by a victor named: CodeBook. Each CodeBook may contain
between 1 to N CodeWords (N is the number of the learning frames). Figure 2.10
explains how the CodeBook model should be constructed. Later, during the testing
phase, the algorithm will compare the built model to the current frame and estimate the
background. At the same time, an updating process is applied to re-adapt the current
model with the new situations appearing in the scene. The background model is fre-
quently updated based on the number of appearances and duration of the objects from
the previous testing frames.

Olivier and Marc [30] presented an approach called ViBe, which is considered one of
the simplest methods in the background subtraction field. It is a pixel-based method that
creates a background model containing the intensity information for each pixel position.
Compared to other methods, this was the first approach to creating the background
model from the first frame using a random strategy that uses the pixel neighbors. This
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Figure 2.10: An example of the CodeBook background model[29].

background model also is frequently and randomly updated after each newly treated
frame during the testing phase. This method has many chances to be improved, which
makes it a fascinating technique for researchers. Many other approaches were inspired
by CodeBook and ViBe such as [31–35]. One of the most recent studies that were
inspired by the ViBe approach is the one proposed by Wang et al.[36]. Their approach,
V-ViBe, is dedicated to detecting veins of palms, back of hands, and fingers using
background subtraction. The main improvement is represented in creating two kinds of
background sample sets, one is static, and the second is dynamic. Then in the step of
pixel values comparison, they used two radios, R1 and R2, and the Euclidean distance to
determine the matching points for the output results and update the background model.
Figure 2.11 explains the differences between the original method ViBe and the proposed
version V-ViBe, specifically in the level of comparison and updating process. Figure
2.12 summarizes the proposed framework of this method.

Figure 2.11: The difference between the comparison process of ViBe (left) and V-ViBe
(right)[36].
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Figure 2.12: The proposed framework by Wang et al.[36].

However, most of the techniques were based on RGB channels or Gray-scale data.
Some studies appeared to point out the ability to use other kinds of data that may
provide useful information about the scene. Heikkila and Pietikainen [37] used the LBP
calculation of the RGB frame as an input for their system. The background model in
this method, Texture-Based MODeling (TBMOD), is built on a group of adaptive LBP
histograms for each pixel (see Figure 2.13). Next, in the background detection process,
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each pixel from the current frame will then be compared to the corresponding group of
LBP histograms from the background model using the histogram intersection.

Figure 2.13: LBP calculation[37].

The TBMOD method has been an inspiration for utilizing other helpful descriptors in
the background modeling field. SeungJong and Moongu [31] proposed a new framework
based on three primary information: pixel texture Scene Adaptive Local Binary Patterns
(SALBP), pixel color RGB and region appearance. This framework is represented in
Figure2.14, which shows the four main steps of this scheme to reach the final results (Pre-
processing, Background modeling, Background subtraction, and Model maintenance).
This framework also involves some updated features from the CodeBook method [28].

Guillaume-Alexandre et al.[38] proposed another interesting descriptor named
LBSP. Figure 2.15 perfectly explains the thorough process of change detection using
LBSP. It shows an example of the outcomes of four distinct binary operations on image
regions (B and NF). Bc and NFc represent the center pixels of sections B and NF,
respectively. The pixels surrounding the center of the areas B and NF are denoted by
Bn and NFn, respectively. The first and second columns at the bottom of the figure
employ comparisons to produce binary representations of the regions using intra-region
operations in one case and both intra-region and inter-region operations in the other. The
third and fourth columns employ absolute difference thresholding to construct binary
representations utilizing intra-region operations in one case and both intra-region and
inter-region operations in the other. A threshold of 5 is utilized in all cases. Because
of its pixel-based design, LBSP may be computed both inside an area in an image
and across regions between different images or two regions within the same image to
capture variations in intensity and texture. These features made the LBSP valuable to
be adapted in future background subtraction approaches.
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Figure 2.15: An example to understand the LBSP process[38].

SuBSENSE[33, 34] is one of the well-known approaches in the background subtrac-
tion domain. This method is characterized by the feature of automatic adjustment of the
parameters, which makes it a non-parametric approach that solves multiple scenarios,
but mostly it was made to target Camouflage and IlluminationChange categories. The
main framework of this method is to build a background model that consists of two
pieces of information, 8-bit RGB intensities, and 16-bit LBSP binary strings, then using
Hamming distance to determine if the corresponding pixel from the current frame is
considered as a background or foreground pixel. More details about the framework of
this approach are presented in Figure2.16.

Figure 2.16: SuBSENSE framework [33].

The same authors proposed a developed version of SuBSENSE which was then
named PAWCS[35, 39]. This new version is based on building the model from a
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triplet of Color-LBSP-Persistence for each pixel. This triplet is defined as Background
Words (BWs). The Persistence is inspired by the Maximum Negative Run-Length
(MNRL) from the CodeBook method, which determines the less important BWs to be
eliminated from the background model and keeps only the most important ones. This
adapted feature plus the internal parameters update caused more complexity compared
to SuBSENSE but definitely assured better precision in different stages. Figure 2.17
shows the PAWCS framework in a simplified diagram.

Figure 2.17: PAWCS framework [35].

Machine learning has also made significant contributions to the background subtrac-
tion area in the last few years. By including Kernel Density Approximation (KDA) and
Support Vector Machine (SVM) into their model, Bohyung and Larry[40] proposed a
technique that uses color, gradient, and Haar-like characteristics, solving three main
challenges in the field: Spatio-temporal variations, shadow, and illumination changes.
The authors simplify the training approach used in this method in Figure 2.18, where the
background modeling is achieved using KDA, then the background/foreground classifier
is built based on SVM. Despite using a one-dimensional KDA to overcome the slow
performance, the complexity of this approach keeps it far from real-time performance.

Figure 2.18: The framework used in Bohyung and Larry [40] paper.
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Maddalena and Petrosino [41] used Artificial Neural Network (ANN) to build the
background model on their proposed method, Self-Organizing Background Subtraction
(SOBS). This method stands for representing each pixel by multiple neurons to store as
much information about the scene; an example of the background model initialization is
represented in Figure 2.19. The authors consider this method a self-organizing approach,
referring to its ability to adapt to dynamic scenarios automatically. This technique uses a
different color space instead of RGB to build the background model. They consider the
Hue-Saturation-Value (HSV) because they mention that it allows for the expression of
colors as a human eye experience. This approach process is simplified in the following
algorithm (presented in the original paper):

Algorithm 1: SOBS (Self-Organizing Background Subtraction)[41]

Figure 2.19: An example to go from 2x3 image to 6x9 neuronal map structure[41].
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The same authors upgraded their approach, called SOBS_CF[42]. This new version
has two additional features compared to the original approach. One is related to incor-
porating spatial coherence, exploiting the contiguous pixel intensity difference. The
second is to automatically update the background model using a novel Fuzzy approach
proposed by the authors.

Maddalena and Petrosino again proposed a new version of SOBS under the SBM-
RGBD challenge in 2017[12], named RGBD-SOBS[43]. This last version proves the
additional value that can be provided by the depth maps along with the RGB color
information to deal with some specific challenges such as illumination changes and
shadows. These challenges are hard to handle when it comes to an approach that relies
only on RGB channels. The new proposed algorithm is presented as follows:

Algorithm 2: RGBD-SOBS[43]

More related works on traditional RGBD-based approaches for background sub-
traction connect directly with our main study in this thesis. The authors in [44] used
a ToF camera called Photonic Mixer Device (PMD), which provides three kinds of
information in three parallel matrices (distance, amplitude, and intensity), plus the
Grayscale information provided by an RGB camera. The principle of their method is
to extract the background subtraction from each matrix individually and then apply
specific logical operations between them to reach the final results. Figure2.20 illustrates
the followed framework proposed by the authors.

Ottonelli et al. proposed in their paper[45] another schema to fuse color and depth
information. It stands for considering both background subtraction results of RGB and
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Figure 2.20: The proposed framework from Leens et al. [44]. Where, G.R. stands for
Geodesic Reconstruction and T&I stands for Transformation and Interpolation.

Depth independently, plus a grayscale version of the RGB frame, then computing a
Depth-based CF, and finally applying an “OR” logical operation between the CF and
the RGB background subtraction result followed by a noise removal. The authors of
this paper used the ViBe technique to extract the preliminary background subtraction
results, as we can notice in Figure 2.21, which explains the global framework. Figure
2.22 illustrates the CF utility in this framework.

Figure 2.21: The proposed framework by Ottonelli et al. [45].

Figure 2.22: The CF explanation by Ottonelli et al.[45]. Where, S represents the “Sub-
traction mask”, AF stands for “Averaging filter”, D stands for “Depth enhanced mask”
and TH is the decision threshold in pixel unit.
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Huang et al.[46], proposed a framework that also uses the ViBe approach to extract
the background separately from RGB and Depth information, then apply a weighted
formula to fuse these results, followed by an adaptive refinement with Spatio-temporal
consistency based on edge detection, and finally update the background model with the
original ViBe updating technique. The proposed framework is represented in Figure2.23.

Figure 2.23: The proposed framework by Huang et al. [46].

2.4.2 CNN-based approaches

Deep Learning has recently proven to be one of the top solutions for various tasks.
Background subtraction is one of the fields where Deep Learning succeeded in the
majority of datasets and competitions [6, 9, 12, 47]. Braham and Van Droogenbroeck
[48] pioneered the use of Convolutional Neural Networks (CNN) in background sub-
traction. The ConvNet architecture is very similar to the handwriting digit classification
LeNet-5[49]. This network was appropriate for the Background Subtraction task. Its
main framework is to choose a background reference from the tested video and a set
of frames from the same video that include moving objects plus their corresponding
groundtruth. These three inputs are given to the CNN network to create a background
model that will be used later for the testing phase. An illustration of the ConvNet model
is presented in Figure 2.24.

Zeng and Zhu [50] used a U-Net-kind architecture, named MFCN, inspired by the
Fully Convolutional Networks (FCN)[51]. As illustrated in Figure 2.25, the skipping
convolutional layers and the additional operations linking the encoder-decoder on dif-
ferent stages make the feature extraction more efficient to build an effective background



2.4. EXISTING WORKS 35

Figure 2.24: The model of ConvNet as represented in [48].

model. The interesting feature of this architecture is that, it does not require a reference
frame to detect the background. However, the followed training protocol causes Train-
ing/Testing overlapping that affects the final results. This flop can be easily detected in
the framework illustrated by the authors in the original paper (See Figure 2.26), where
they split the frames of the same video for training and testing.

Figure 2.25: The MFCN model [50].
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Figure 2.26: The MFCN framework [50].

Zhao and Basu[52] created a new approach named Deep Pixel Distribution Learning
(DPDL). This approach uses the model of ConvNet[48] in the deep learning modeling
stage. This method contains two blocks: The first one is the features generation pixel
distribution, using a technique named RPoTP. The second block is to feed the network
model with these features and build a model that will be used later for solving the
background subtraction. An illustration of this approach is presented in Figure 2.27;
where the input to arithmetic distribution layers for learning distributions is a histogram
of subtractions between a pixel’s current observation and its past counterparts. A
convolutional operation is used to integrate the output histograms of the arithmetic
distribution layers, which are then fed into a classification architecture including a fully
connected layer for classification, a Rectified Linear Unit (Relu) layer, and a convolution
layer.

Figure 2.27: The RPoTP framework [52].
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This approach (RPoTP) has been developed by the same authors in their next
study[53]. This improved version, D-DPDL, has a more advanced RPoTP technique
for feature generation where the authors focused on making the features dynamically
generated during the training to prevent the network from over-fitting the pattern implied
in random permutations. Also, to reduce the noise, they proposed a Bayesian refinement
model for post-processing. Figure 2.28 summarizes the pipeline proposed by the authors
in the original paper.

Figure 2.28: The D-DPDL pipeline [53].

Lim and Keles [54] proposed the FgSegNet, in which they use different scales of the
same frame input to obtain information diversity. This architecture assures the parallel
convolutional filters to scan the entire foreground object rather than just a tiny part,
which makes the model absorb more features of the scene. An upgraded version, named
FgSegNet V2 [55], was made by the same authors, where they improved the Feature
Pooling Module (FPM) with two additional skip connections containing convolutional
and global average pooling layers. The authors also avoided the 3-scaled feature to
gain less complexity and speed up the process. These modifications make significant
improvements and put the FgSegNet V2, again, in the top-ranked methods among
all previous methods on the Change Detection challenge[6]. The difference between
FgSegNet and FgSegNet V2 architectures is illustrated in Figure 2.29 from the original
papers.

The same model (FgSegNet V2) inspired Liu et al. [56] to propose a background
subtraction method based on multispectral images and deep learning. Simply, the
authors extracted three channels of the multispectral images provided by the chosen
dataset, then created a model (inspired by FgSegNet V2) that can adapt with this kind
of information to be used later for the background subtraction operation. Figure 2.30
shows the proposed model mentioned in the authors’ paper.
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Figure 2.29: The difference between FgSegNet and FgSegNet V2 architectures [54, 55].

Figure 2.30: Multispectral background subtraction architecture[56].
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As one of the first studies to apply Deep-Learning (DL)-based background subtrac-
tion on unseen videos, Tezcan et al. [57, 58] used a new fully-convolutional neural
network named BSUV-Net. In this study, they used as inputs: the current frame and
two other frames considered as background samples (the recent frame and another
one with no foreground objects) plus a foreground probability map for each frame
obtained from applying semantic segmentation (See Figure 2.31). However, the inputs
used for this model in order to perform the background subtraction required a reference
frame. We can argue that using a reference frame will give the system a preview of the
targeted scenario because this frame has to be chosen by the user to be a reference of
how the background should be. This approach may cause low performance in many
scenarios, especially Bootstrapping category, where there will be moving objects in all
the sequence’s frames.

Figure 2.31: The BSUV-Net architecture [57].

Generative Adversarial Networks (GANs)[59] have also been applied in background
modeling. GANs are built of two main parts; both of them are CNN-based models. The
first model is named the generator, and the second one is the discriminator. The generator
is made to generate new examples; these examples (named the fake data) will then
go through the discriminator along with the dataset examples (named the real data)
to define if the generator is making more similar examples compared to the dataset
examples or not depending on the critical setup level made by the user.

Bakkay et al. [60] proposed a new approach for background subtraction using GANs.
In the generator encoder, they used eight convolutional layers followed by six RESidual
neural NETwork (ResNet) blocks. On the other hand, the decoder consists of eight
deconvolutional layers. Figure 2.32 shows an overview of the proposed framework
and the proposed architecture of the BScGAN approach. This method, BScGAN, also
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takes into consideration some reference frames to help the model solve the background
subtraction, which is one of the cons that we mentioned before.

Sultana et al.[61] proposed a framework named DCP. It is based on two mod-
els: context prediction initialization and fine texture optimization. They also used the
Modified Poisson Blending (MPB) technique for better context prediction. This study is
a combination of many techniques; we consider it one of the most complex approaches:
Pre-processing using Optical Flow (OF), context estimation using GANs based on
AlexNet, Texture optimization using VGG-19, post-processing using MPB, then a clas-
sical foreground detection boosted with some morphological operations to optimize the
results. A simplified presentation from the original paper in Figure 2.33 is presented to
explain the proposed framework.

Figure 2.33: The DCP framework[61].

Moreover, most background subtraction studies focus on natural videos. Yu et al.

[62] went through both natural videos (obtained by regular cameras) and Very High
Resolution (VHR) optical remote sensing videos. Their proposed approach is based on
Conditional Generative Adversarial Networks (CGAN) and Domain-Adversarial Neural
Networks (DANN), and it has two main sections as any GANs model. The first is the
generator based on ResNet-50 with additional layers such as deconvolution (transposed
convolution). The inputs used to the generator are three, one is the current frame, the
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second is a reference frame, and the third is a SuBSENSE[33] foreground mask of the
current frame as leverage for the background generating. The discriminator section
consists of six successive convolutional layers with a stride of two, ending with a fully
connected layer. Figure 2.34 shows the generator and the discriminator architectures.

Figure 2.34: The CGAN-BS framework[62].

Patil et al. [63] proposed a novel GANs-based model that uses temporally sampled
multiple frames and spatial features at multiple scales to predict the foreground seg-
mentation from unseen videos. This approach shows an innovative feature extraction
method, as illustrated in Figure 2.35. The authors used multiple encoder-decoder (Three)
associated with skip connections, and each encoder-decoder produces a background
subtraction frame directed to the discriminator (only the result frame) and the next
encoder-decoder (associated with three RGB frames as reference frames). The same
authors proposed a similar method which is also a GANs-based approach. This time,
Patil et al.[64] succeeded in creating a framework with less complexity where they used
only one frame instead of multiple frame references. This method considers the first
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frame as a reference frame, which is a disadvantage that commonly affects the back-
ground subtraction process in the Bootstrapping category. Another contribution added
to this study is the proposed Multi-scale Temporal Edge Aggregation (MTPA) network.
They used three MTPAs to process the features sent through the skip connections from
the encoder heading to the decoder; These MTPAs are also connected to each other, as
illustrated in Figure 2.36.

Figure 2.35: The generator architecture presented by Patil et al. [63].

Figure 2.36: The generator architecture presented by Patil et al. [64].
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Recently, Sultana et al. [65] proposed a novel approach named MOS-GAN. It is a
background initialization method that uses three loss functions in the training phase and
also includes a back-propagation in the testing phase that is also based on three loss
terms. The Generator consists of a reshape step then five successive deconvolutional lay-
ers. On the other hand, the Discriminator consists of five convolutional layers followed
by a fully connected layer. Figure 2.37 shows the training and the testing pipeline, and
the architecture of the generator and the discriminator.

Figure 2.37: The MOS-GAN as presented by Sultana et al. [65].

Sultana et al. [65], proposed another GANs-based approach named M-cGAN. The
generator of this approach is built based on a modified U-net, where the network input
and output match the video frame size; and the network layers are contracted using
convolutional (encoder) and deconvolutional (decoder) layers from down-sampling to
up-sampling the path of the feature; in addition, skip connections are added between the
encoder and the decoder; where the generator loss is a combination of Least Squares
Loss (LSL), Reconstruction Loss (RL), and Content Loss (CL). On the other side, the
discriminator is built of four convolutional layers to down-sample the input into a single
feature map where the discriminator operates the final decision. The discriminator has
only one loss function which, is the LSL. On the other side, the authors proposed what
they called the RLNA, which provides the CL error to the generator network. The
RLNA architecture is a down-sampling network constructed of four blocks; each block
consists of two convolutional layers and one max-pooling layer (see Figure 2.38). The
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Figure 2.38: The RLNA architecture [65].

authors summarised their proposed framework in one figure, as illustrated in Figure
2.39.

However, despite the attention given to the CNN background subtraction approaches,
few CNN-based approaches use depth information or color-depth (Red Green Blue
Depth (RGBD)) fusion for background subtraction. To the best of our knowledge, we
have found only three noticeable DL studies that give their attention to this approach.

Wang et al. [66] proposed BGSNet-D. This CNN-based method uses only depth
information to extract the background subtraction. The proposed architecture is a down-
sampling network that successively consists of three convolutional layers and three
fully-connected layers. This network receives two images as inputs, the first is the
current frame, and the second is a reference frame (in this case, it is the first frame of
the video). This study also introduces a pre-processing technique to reduce depth data
noise caused by the limitation of the depth sensors. An overview of the the BGSNet-D
approach is presented in Figure 2.40.

Sultana et al. [67] presented an arXiv pre-print introducing a novel GANs-based
approach that considers two information data (color and depth) for solving background
subtraction. Following the steps illustrated in Figure 2.41, the proposed framework
consists of two phases: training and testing. The first phase is divided into two main
parts, one is devoted to the RGB generator training, and the second is for the Depth
generator training separately. The second phase is divided into three parts; the first is to
generate the background (4) and extract the BS (5) from a triplet that contains: the RGB
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Figure 2.39: The M-cGAN framework as presented by Sultana et al. [65].

Figure 2.40: The BGSNet-D framework as presented by Wang et al. [66].
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current frame (1), its Motion mask extracted via OF (2), and their multiplication (3);
the second part is for generating the background (7) and extracting the BS (10) from the
Depth frame; the third part of this phase is the fusion of the two extracted BS, (5) and
(10), using pixel by pixel addition.

Figure 2.41: The ForeGAN-RGBD framework as presented by Sultana et al. [67].

The third method from the state-of-the-art that fuses color and depth information is
named CGAN-RGBD. Sultana et al.[68] proposed a CGAN-based approach consisting
of a Unet-kind architecture for the generator that contains a series of convolutional layers
(encoder) followed by a series of deconvolutional layers (decoder); skip connections are
added on different levels between the encoder and the decoder (see Figure 2.42); on
the other hand, an FCN is built as a discriminator, which consists of four convolutional
layers. In this study, the authors used a different technique compared to the previous one
(ForeGAN-RGBD[67]); they used only one generator and one discriminator fed by the
color and depth information of the current frame to extract the background subtraction.
Figure 2.43 gives an overview of the proposed framework as presented in the original
paper.

Figure 2.42: The CGAN-RGBD generator as presented by Sultana et al. [68].
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Figure 2.43: The CGAN-RGBD framework as presented by Sultana et al. [68].

2.5 Limitations and general thoughts

Despite the superiority of the latest methods created in the field of background
subtraction, we ought to mention three common cons that have been widely arising in
the state-of-the-art to create a common ground for the next generation of the background
subtraction approaches:

• Temporal history and background reference: Here, the approaches need to
be fed at least with one frame as a historical reference to build the background
model, either with a background reference frame (Empty frame) that does not
contain any foreground objects, which is often selected manually from among the
video frames, or created using one of the background estimation techniques.

• Seen and Unseen scenarios: When the background methods based on models
were trained on a set of frames, these frames are randomly or manually selected
from the same video used for the testing phase. Like building a background model
based on several images taken from the first frames of the testing video.

• Robustness and efficiency: The methods are built to solve one specific scenario
(video-based or category-based) instead of building one model that solves many
scenarios simultaneously.

The limitations of state-of-the-art techniques based on RGB information motivated
us to consider also depth information, as some existing works, and build an RGBD model
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capable of improving background subtraction performance (overall and for specific
challenges). On the other hand, the original protocol adopted by the state-of-the-art
methods is saturated, reaching ∼ 99% (except for two specific videos) over the F-score

metric due to the overlapping between the training and testing splits and/or the use of
reference frames. This fact led us to adopt the SIE protocol for the SBM-RGBD dataset,
which will be explained later in the next chapters of this thesis. This new protocol offers
a fair comparative evaluation that can be adopted by the next upcoming approaches.

2.6 Conclusion

In this chapter, we represented the most valuable datasets used in background
subtraction. These datasets hand over the necessary scenarios to challenge the motion
detection methods. Some of these datasets provide color information and some others
provide depth information in addition, which can be beneficial to introducing RGBD-
based techniques. Also, we explained the F-score evaluation metric. The F-score metric
is the most common metric used to evaluate the background subtraction performance.
The third section of this chapter was dedicated to the existing work related to our
study. We divided this section into three main subsections: Traditional-based techniques,
Deep-learning-based techniques, and then we explained the limitations, talked about
some new ideas, and proposed some solutions thoughts.
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3.1 Introduction

This chapter contains a detailed description of the proposed approaches (related to
traditional existing works) of our study. This chapter is divided into two main parts, the
first section will be dedicated to the usage of MSR (or image pyramid) in background
subtraction as a pre-processing and post-processing technique in order to improve
the performance of future works. Then, we will introduce the proposed RGBD-based
background subtraction framework, which is created as a robust method to improve
object detection for several techniques. Both sections contain the approach explanation
details, the tests and experiments, and also the results discussions.

3.2 Multi-Scale Resolution for background subtraction

In this section, we proposed to use the MSR in order to reduce the noise from the
input frames and increase the frame rate of the background subtraction process. This
approach is built to be used in future works along with color and depth information
fusion. We chose the SuBSENSE technique as known as one of the most effective
traditional approaches in background subtraction. Fig. 3.1 illustrates the proposed
framework using MSR.

Final results

RGB Sequence

SuBSENSE

Multi-scale 
resolution
(Reducing)

Multi-scale 
resolution
(Expanding)

Figure 3.1: The proposed framework based on the MSR
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3.2.1 The SuBSENSE Approach

Pierre-luc et al. [34] proposed a new method called SuBSENSE, which refers to (Self-
Balanced SENsitivity SEgmenter). It is a pixel-level modeled using a spatiotemporal
feature descriptor and is considered as a non-parametric approach while it uses a
feedback strategy to adjust the input parameters. As referred in the original papers
[34, 35], the SuBSENSE approach was inspired by ViBe [69], but instead of using
only color information, the SuBSENSE uses color and Local Binary Similarity Pattern
(LBSP) pixel representations to classify whether the pixel belongs to the background or
foreground.

The equation (3.1) describes the way of storing the color-LBSP pixel representations
in the background model. The background model B contains pixel models which each
contain a set of N recent background samples [35].

B(x)= {B1(x),B2(x), ...,BN(x)} (3.1)

These samples are matched with their respective observation I t(x) on the input frame
at time t, to classify the pixel as foreground (1) or background (0) at the x coordinate, as
following:

St(x)=
{

1 M{dist(I t(x),Bn(x))< R,∀n}< Mmin

0 otherwise
(3.2)

Where the output segmentation map is noted as St(x), dist(I t(x),Bn(x)) presents
the distance between I t(x), the current observation, and Bn(x), the given background
model. While this distance will be compared to the maximum distance threshold R.
The model will be very precise in classifying pixels as background successfully in the
case of a small maximum distance threshold. On the other hand, a large maximum
distance threshold will cause a complex detection when it comes to foreground objects
that look very similar to the background, but also it will give us better resistance against
irrelevant changes. M and Mmin are respectively the number of matching counted and
the minimum number of matches required for a background classification. For further
information, we recommend readers to check [34, 35, 70].

3.2.2 Multi-Scale Resolution (Image Pyramid)

During the background subtraction process, we notice that the input images, in
some cases, could have more details than we want; these details should be eliminated to
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prevent the process’s delay time and provide free memory space. In these cases, it is
better to use a method that reduces such unnecessary details. One of these techniques,
called Image Pyramid, is the main of this technique in our study, which is to reduce the
image size so we will have the essential information and less noisy details to do our
processing smoothly in real-time and with better performance. There are many kinds of
image pyramids, such as the Gaussian pyramid, Laplacian pyramid, and image pyramid,
using interpolation or filtering. For more details about the image pyramids and their
types, please check [71–73].

In this study, based on state of the art, we chose to use the bilinear image pyramid.
As we mentioned in the beginning, we use this method before and after the selected
approach means that we reduce the size of the input frames, then after applying the
process, we expand the size of the output frames to reach the original frame size, which
depends on which level we chose to use. Thus, To reduce the image size is to create
a new image pixel by pixel; each pixel of the new image represents an interpolation
between a set of neighbor pixels from the original image. On the other way, to expand
the image size is to create a new image pixel by pixel; each pixel of the new image
represents an interpolation between four pixels from the original image, which also
depends on how much we want to reduce or expand the image. We can resume all this
as simply as described in Fig. 3.2, where we can see two examples of the two parts of
the process, the first is how reducing four pixels into one pixel, and the second example
is expanding four pixels to sixteen pixels.

Figure 3.2: MSR explanation (in general): (a) Reducing the size. (b) Expanding the size.
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3.2.3 Performance Evaluation

In Fig. 3.1, we simplified the framework and the way of using the image pyramid.
Each input frame will be down-scaled to a specific level and fed to the SuBSENSE to
extract the background subtraction results; these preliminary results will be up-scaled
to the original size to obtain the final results. We mentioned in previous sections to
reduce the frame size for two reasons. The first is to reduce the noise caused by the
small movements in the background of the scene. The second is to increase the frame
rate of the original approach, which is one of the widely famous reasons for using image
pyramids in computer vision applications. In our experiments, we used four scale levels
(including the original level) to define the better level we could use for our work and
reach the best performance with the highest frame rating possible. As we can notice in
Fig. 3.3, the more we go down, the more blurry the image quality will get, which causes
low performance.

Table 3.1: F-score calculation

Categories
Original First Second Third

SuBSENSE level level level
badWeather 0.86 0.86 0.82 0.70
baseline 0.96 0.94 0.78 0.27
cameraJitter 0.83 0.76 0.70 0.51
dynamicBackground 0.82 0.89 0.67 0.30
intermittentObjectMotion 0.61 0.54 0.25 0.03
lowFramerate 0.67 0.71 0.46 0.16
nightVideos 0.49 0.51 0.43 0.19
PTZ 0.39 0.11 0.09 0.21
shadow 0.95 0.95 0.89 0.53
thermal 0.69 0.63 0.61 0.41
turbulence 0.87 0.90 0.44 0.13
Average F-Score 0.74 0.71 0.56 0.31
Average processing speed (nf/s) 3 12 47 161

The dataset CDNET 2014 contains 11 categories; each category has 4 to 6 video
sequences, and each sequence has its own ground truth to evaluate the results. Table 3.1,
includes the F-score average calculation, category-based and overall. Also, we men-
tioned the total average frame number per second in order to see the difference in
processing time compared to the original method. These results show that the more
we reduce the size, the better our frame rate will achieve. But it also depends on the
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F-score calculation. In some categories such as baseline, cameraJitter, intermittentO-

bjectMotion, PTZ, and thermal, the original method of SuBSENSE was performing
better than all other levels. In the badWeather and shadow, the first resolution level
was competitive with the original approach. In the remaining categories, dynamicBack-

ground, lowFramerate, nightVideos, and turbulence. we notice that level one from our
method outperforms the original SuBSENSE and all the other resolution levels.

3.2.4 Conclusions

This study proved that the use of the image pyramid, in some cases, can improve
the performance and give us better results with good executing time compared with the
original work of the SuBSENSE method. Our method performance was not as expected
in some video categories from the CDNET dataset. On the other hand, the performance
is acceptable compared to the original approach. The better results achieved using
our technique are in the following categories: turbulence, lowFramerate, nightVideos,
and dynamicBackground. This explains that the proposed framework using the image
pyramid performs well in such scenes with some noise from small movements in the
background, making it more static and smooth, leading to better detection.

3.3 RGBD ViBe-based background subtraction

In this section, we propose a framework for improving Background Subtraction
techniques. This framework is based on two types of data, RGB and Depth. This study
stands for obtaining preliminary results of the background segmentation using Depth
and RGB channels independently, then using an algorithm to fuse them to create the
final results.

3.3.1 The proposed framework

This framework is inspired by many state-of-the-art methods that use RGBD in-
formation to solve Background Subtraction, such as [44, 74, 75]. These RGBD-based
studies prove the efficiency of using depth information in different cases using different
approaches. The proposed framework provides another novel approach that is less
complex and more efficient compared to the previous ones. Using the Depth maps
along with the RGB channels affords more information about the scene, specifically
about some challenges related to illumination, color overlapping, or reflections such
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as ColorCamouflage, IlluminationChanges categories where most of the RGB-based
approaches have failed in solving such situations. The proposed framework is presented
in Fig. 3.4.

Figure 3.4: The proposed framework for background subtraction based on RGBD
information.

The idea behind this approach is to extract the background-foreground segmentation
using two different paths, one comes from using the RGB information and the other
comes from using Depth information. These operations are applied separately by using
one of the recent state-of-the-art techniques to obtain what we call, preliminary results.
These preliminary results will be then fused pixel-to-pixel to generate the final results
of the background subtraction.

This approach is made to benefit from the advantages of both information to improve
the performance. As known, the RGB-based methods are performing better in such
challenges as DepthCamouflage, where the targeted moving object and the background
are at the same distance point from the camera sensor. This fools most algorithms that
use only Depth information, leading them to detect these separated objects as one single
object; also, Depth-based approaches are performing better in other challenges such as
ColorCamouflage, IlluminationChanges, and Shadows. Where all these challenges are
difficult to handle with RGB-based strategies. This difficulty comes from the following
properties for each category: ColorCamouflage, which includes scenarios where the
moving object has the same color as the background, which can be detected as one
moving object or as background in some other cases; IlluminationChanges, which
includes scenarios with unstable lighting situations. This will cause a lot of false
positives as a result of detecting light as a new moving object in the scene; Shadows,
including scenarios where the moving object has a raw shadow that can fool the model
into seeing it as a moving object.

Figure 3.5 shows some examples of these challenges that we aim to handle using
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our proposed method. In the ColorCamouflage example, one can clearly notice that the
Depth information is differentiating the grey box from the background compared to
the RGB image. In the DepthCamouflage example, one can see that the RGB image
shows the difference between the person and the chair, but from the Depth map, both of
them have the same distance from the camera. The last example is from the Shadows

category; the shadow of the box is detected by the RGB camera but is ignored by the
Depth camera.

Figure 3.5: Some frame samples from SBM-RGBD Dataset, to illustrate the challenging
categories. From left to right, ColorCamouflage, DepthCamouflage, and Shadows

Therefore, to handle such challenges, we study the possible cases that lead to better
results. We created Algorithm. 3, aiming to solve this situation with minimum effort
and less complexity. The algorithm stands for comparing pixel-to-pixel the preliminary
results obtained from both RGB-based and Depth-based approaches (probably from the
same method). Hence, four statuses will be concluded from this comparison, taking into
account the binary kind of background subtraction results (Background = 0, Foreground
= 1).

The first two statuses are occurring when the RGB and Depth background subtraction
preliminary results have the same value (0 or 1). It means when the RGB and Depth
lead to the same result in one specific pixel, either classify it as a background (0) or a
foreground (1) pixel; The third and the fourth statuses are occurring when the RGB and
Depth background subtraction preliminary results have opposite values.
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Algorithm 3: The Fusion Operation
Data:
rgb_bg ← RGB Result Frame;
d_bg ← Depth Result Frame;
[J,K]← Size(d_bg);
bg_mask ← Zeros([J,K]);

1 for j = 1 : J do
2 for k = 1 : K do
3 if rgb_bg( j,k)== 1 && d_bg( j,k)== 1 then
4 bg_mask( j,k)= a;

5 if rgb_bg( j,k)== 0 && d_bg( j,k)== 0 then
6 bg_mask( j,k)= b;

7 if rgb_bg( j,k)== 1 && d_bg( j,k)== 0 then
8 bg_mask( j,k)= c;

9 if rgb_bg( j,k)== 0 && d_bg( j,k)== 1 then
10 bg_mask( j,k)= d;

In order to give further clarification about Algorithm 3, we should mention that
J and K are the size of the frame; RGB(orD)_BG( j,k) is the pixel value located in
position ( j,k) from the RGB (or Depth) background subtraction result; bg_mask( j,k)

is the final pixel result located in the same position ( j,k). In order to define the a, b, c,
and d values, we studied the possibilities of the decisions that can be effective for our
approach. First, we examined the a and b decision cases when the same values are given
from both sides (RGB and Depth) to consider them as a confirmation of each other.
Second, we run a test to define the values of c and d to conclude the final operation
that can be applied between the background subtraction preliminary results of RGB and
Depth. More details will be explained in the experiments where we will study all cases
and conclude the chosen operation.

3.3.2 Experiments and discussions

This subsection describes three main parts, experiments, the illustration and discus-
sion of the results, and the conclusion. In this subsection, we will explain the footsteps
we followed, starting from the proposed framework presented at the beginning of this
section, to choosing the correct values for Algorithm. 3 until the results extraction and
evaluation. The experiments presented here are essential to understanding how this
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framework works and how we evaluated the methodology process.
Following the proposed framework presented in Fig. 3.4 and the Algorithm. 3

from Chapter 3, the statuses of a and b are considered as a co-validation between the
RGB and Depth background results. Hence, if the pixel is detected as a background
from both RGB and Depth, the final result will be a background. Vice versa, if the
pixel is detected as a foreground from both RGB and Depth, the final result will be
foreground. This hypothesis has been proved using the ViBe[69] method by calculating
the error ratio between the cases where the RGB and Depth results are identical, and the
groundtruth. Thus, we use the two following equations, Foreground Error Ratio (FErR)
and Background Error Ratio (BErR):

FErR = FF
TF

·100 (3.3)

BErR = FB
TB

·100 (3.4)

where False Foreground (FF) is the number of the background miss-classification
pixels reported in the final results; the False Background (FB) is the number of the fore-
ground miss-classification pixels reported in the final results; the Total Foreground (TF)
and Total Background (TB) are the total correct number of foreground and background
pixels respectively.

Table 3.2 represents the calculation of FErR and BErR per category and overall the
SBM-RGBD Dataset. The calculations prove that the risk of having wrong decisions
linked to the co-validation based on the a and b values is small compared to having a
correct decision. On the other hand, where the preliminary results of RGB and Depth
have opposite decisions, we run a test that considers the F-score as feedback information
to our system while trying the possibilities on c and d from Algorithm. 3 to conclude
the final form of the fusion operation in the proposed framework. The test results are
illustrated in Table 3.3 proving that using a fixed value for c and d equal to 1 is the
outstanding option for the proposed framework. These results surprisingly conclude
that the fusion operation in our system is the OR logical operator.

The visual comparison presented in Fig. 3.6 and Fig. 3.7 show the effectiveness of the
proposed framework on the ViBe and PAWCS, respectively. The quantitative evaluation
using F-score illustrated in Table 3.3 proves the improvement provided by the proposed
approach in overall and category-based evaluation using the SBM-RGBD dataset. The
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Table 3.2: Possibilities of foreground-foreground and background-background effects.

Dataset categories FF TF FErR FB TB BErR

Bootstrapping 640888 1595516 40.17 132098 10680989 1.24
ColorCamouflage 23222 2146839 1.08 48618 21143837 0.23
DepthCamouflage 12070 2882381 0.42 8403 49345914 0.017
IlluminationChanges 91983 1973768 4.66 158969 23563132 0.67
IntermittentMotion 1782325 5685471 31.35 102816 81317838 0.13
OutOfRange 296220 2974936 9.96 13336 49510346 0.03
Shadows 101033 3014480 3.35 5388 21962588 0.03

Overall 2947741 20273391 14.54 469628 257524644 0.18

Table 3.3: The F-Score Calculation for the four c/d possible combinations (tested on
ViBe)

Dataset Categories RGB Depth
RGB-Depth Fusion

c=1 and d=1 c=1 and d=0 c=0 and d=1 c=0 and d=0

Bootstrapping 0.4045 0.2958 0.3813 0.5270 0.5345 0.5035
ColorCamouflage 0.4063 0.8271 0.8808 0.8511 0.6825 0.7908
DepthCamouflage 0.6452 0.4520 0.8047 0.6194 0.6953 0.6847
IlluminationChanges 0.3915 0.4278 0.4492 0.4246 0.3941 0.3895
IntermittentMotion 0.5695 0.4478 0.6084 0.6096 0.3899 0.3768
OutOfRange 0.7928 0.3926 0.6828 0.4158 0.7165 0.3824
Shadows 0.6824 0.7663 0.8364 0.8551 0.6956 0.6490

Overall 0.5633 0.5087 0.6573 0.6130 0.5806 0.5271

Table 3.4: The F-Score Calculation for ViBe-based techniques on SBM-RGBD Dataset

Dataset categories
ViBe[69] LOBSTER[70] SuBSENSE[34] PAWCS[35]

RGB RGBD RGB RGBD RGB RGBD RGB RGBD

Bootstrapping 0.4045 0.3813 0.6026 0.4722 0.5076 0.3576 0.5895 0.5581
ColorCamouflage 0.4063 0.8808 0.5736 0.9219 0.6231 0.9053 0.6056 0.8237
DepthCamouflage 0.6452 0.8047 0.7955 0.8718 0.7484 0.8486 0.8796 0.8904
IlluminationChanges 0.3915 0.4492 0.4630 0.4596 0.4679 0.4603 0.4516 0.4529
IntermittentMotion 0.5694 0.6084 0.5412 0.6275 0.5809 0.6545 0.6382 0.6614
OutOfRange 0.7928 0.6828 0.8372 0.7506 0.8310 0.7694 0.8623 0.8194
Shadows 0.6824 0.8364 0.8850 0.8794 0.9246 0.9409 0.9447 0.9573

Overall (Average) 0.5633 0.6573 0.6727 0.7057 0.6715 0.7007 0.7102 0.7376
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results evaluation explains that using the 1 value for c and d helps the system prevent
the False Positive (FP) detection. These exciting results motivate us to test our proposed
framework using some SOTA methods. Table 3.4 illustrates the F-score calculation of
the results extracted using ViBe and three other methods: LOBSTER [70], SuBSENSE
[33, 34], and PAWCS [35, 39]. These methods are inspired by the ViBe method, which
we call the ViBe-based methods. The results evaluation confirms the efficiency of the
proposed framework on all the tested techniques. The F-score measurement reached
∼ 10% of improvement on ViBe and ∼ 3% on the remaining methods. One can notice
that the most significant enhancement is detected in the ColorCamouflage category,
which is a fact that when the background has the same color as the moving object, it
will cause a misunderstanding of the scene and cause false detection (precisely False
Positive). However, one of the drawbacks of our framework is the misleading caused
by the Depth information. This case is noted in the OutOfRange category where the
moving object is too far (or too close) from the camera, which leads to massive false
detection coming from the depth background subtraction results.

Table 3.5 shows the detailed F-Score measurement for each video on the SBM-
RGBD dataset. The pattern seen through the mentioned table confirms the efficiency
provided by the proposed approach. The targeted categories such ColorCamouflage,
have proven the theoretical assumption that Depth can correct the behavior of the
system for better results. Shadows category also shows the stability driven by the
methods of our proposed framework if we compare the total average of all videos.
However, the provided data from the SBM-RGBD dataset is not always stable. The
Depth information is not accurate for all given frames. This factor has a negative impact
on the proposed method’s performance. As an example, we should drive attention to the
IlluminationChange category, which is one of the targeted categories. The Depth maps
of this category have many cases of the out-of-range depth sensor and also some depth
camouflage scenes which switch the IlluminationChange from a target category to a
very challenged category for the Depth-based approach. Further, one can notice that the
proposed approach does not improve the performance in the Bootstrapping category. In
fact, the four tested techniques (RGB and RGBD versions) are not performing well in
such a category related to the background initialization. The ViBe-based approaches use
the first frame to create the background model, while the Bootstrapping category has
moving objects in all its frames. The IntermittentMotion is considered as an unbiased
category to predict theoretically the performance using its data. However, the results
proved the positive impact of the Depth information on this category except for a few
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Table 3.5: The video-based F-Score calculation for ViBe-based techniques on SBM-
RGBD Dataset

Dataset ViBe[69] LOBSTER[70] SuBSENSE[34] PAWCS[35]

Category Video RGB RGBD RGB RGBD RGB RGBD RGB RGBD

Bootstrapping

adl24cam0 0.4232 0.3251 0.7081 0.5309 0.4096 0.2803 0.3147 0.2130
bear_front 0.4324 0.4660 0.6495 0.6609 0.3741 0.4608 0.4717 0.4772
BootStrapping_ds 0.3515 0.2644 0.4861 0.2943 0.6983 0.3309 0.8831 0.8900
fall01cam0 0.4726 0.5110 0.5938 0.4540 0.6711 0.4846 0.7978 0.7804
fall20cam0 0.3435 0.3377 0.4644 0.4152 0.3735 0.2373 0.4800 0.4301

ColorCamouflage

Cespatx_ds 0.6203 0.8423 0.8748 0.9544 0.9488 0.9518 0.8524 0.8759
colorCam1 0.1410 0.9829 0.1058 0.9826 0.0778 0.9819 0.0304 0.6757
colorCam2 0.2463 0.9654 0.2442 0.9493 0.7758 0.9413 0.7751 0.9309
Hallway 0.6125 0.7328 0.7300 0.7999 0.6888 0.7475 0.7643 0.8123

DepthCamouflage

DCamSeq1 0.8810 0.9145 0.8952 0.9218 0.8871 0.9134 0.8781 0.8966
DCamSeq2 0.7637 0.7455 0.8218 0.7458 0.7258 0.6746 0.8774 0.8856
Despatx_ds 0.5823 0.9424 0.9063 0.9505 0.9432 0.9454 0.8069 0.8225
Wall 0.3508 0.6193 0.4077 0.8723 0.4310 0.8637 0.9560 0.9567

IlluminationChanges

ChairBox 0.6679 0.8771 0.8940 0.9298 0.9181 0.9358 0.8453 0.8869
genSeq1 0.8978 0.9190 0.9526 0.9081 0.9533 0.9063 0.9612 0.9246
Ls_ds 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TimeOfDay_ds 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IntermittentMotion

abandoned1 0.3112 0.1996 0.4383 0.5292 0.6565 0.7181 0.7333 0.7363
abandoned2 0.9187 0.9463 0.9365 0.9001 0.3602 0.8817 0.4409 0.7101
movedBackground1 0.7103 0.5590 0.5834 0.4424 0.6670 0.4485 0.4338 0.4114
movedBackground2 0.4208 0.4938 0.4887 0.5027 0.6959 0.5577 0.6861 0.5804
Shelves 0.4701 0.6642 0.4882 0.5685 0.4243 0.4941 0.6498 0.6422
Sleeping_ds 0.5936 0.7832 0.8106 0.8132 0.7258 0.8366 0.8851 0.8877

OutOfRange

MultiPeople1 0.9002 0.4559 0.9396 0.4294 0.8304 0.4128 0.9297 0.6764
MultiPeople2 0.9577 0.8435 0.9675 0.8670 0.8771 0.7922 0.9420 0.8665
TopViewLab1 0.7156 0.7662 0.8231 0.8633 0.8211 0.9154 0.7711 0.8610
TopViewLab2 0.7437 0.7704 0.8028 0.8607 0.8707 0.9177 0.9148 0.9286
TopViewLab3 0.6502 0.5726 0.7414 0.7317 0.7482 0.8081 0.7538 0.7642

Shadows

fall01cam1 0.7929 0.4844 0.9151 0.6911 0.9559 0.9316 0.9754 0.9591
genSeq2 0.8742 0.9414 0.9225 0.9418 0.9359 0.9395 0.9618 0.9577
Shadows_ds 0.2981 0.9252 0.8422 0.9485 0.9074 0.9592 0.8159 0.9595
shadows1 0.6859 0.9287 0.8282 0.9242 0.8619 0.9450 0.9874 0.9608
shadows2 0.7583 0.8984 0.8757 0.8922 0.9524 0.9299 0.9828 0.9494

cases which we think it is related to the provided data. The OutOfRange category is
expected to be one of the hardest challenges for our proposed method. The results are
not clearly proving that expectation but the unstable behavior for all tested methods
can prove that it is not the right choice to use Depth information in such a category
at least to ensure a stable performance that can be improved lately. DepthCamouflage

as well as one of the serious challenges for Depth-based methods, but in this study
we notice that the performance either remains stable or performs better while using
Depth information. However, these unexpected results can be explained by investigating
the different scenarios of this category. It is hard to make this category without the
interference of other challenges. It is noticeable that most frames provided in the
DepthCamouflage category have color camouflage especially the Wall video which
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makes the more promising scene for our proposed method.

3.3.3 Conclusion

This section proposed a framework that uses two information (RGB and Depth) to
solve the background subtraction. The experimental evaluation applied to the SBM-
RGBD dataset proved the efficiency of this framework in overall-based and category-
based evaluation. The remarkable improvement is noted in the ColorCamouflage cat-
egory. This framework is also considered as a robust approach regarding the notable
improvement of the results in different methods: ViBe, LOBSTER, SuBSENSE, and
PAWCS. The evident limitation of this study is in the OutOfRange category, where
the depth information is unreliable. In future work, the use of pre-processing and post-
processing with the replacement of the depth maps with another kind of information
(e.g., descriptors) can improve the performance. Using another mechanism that pre-
vents the misleading of the Depth information can also outcome the limitations of the
proposed framework.

3.4 Conclusion

In this chapter, a detailed description was given to explain two proposed approaches
for background subtraction. These frameworks are considered traditional techniques,
apart from the supervised CNN-based ones. The first system is based on the use of
Multi-scale resolution. This technique is chosen in order to eliminate the noise from the
scene and to speed up the process for real-time system support. The second approach
is a framework that uses color and depth information to improve the accuracy of four
ViBe-based approaches. This method is built to overcome some well-known drawbacks
in the background subtraction field, such as color camouflage, illumination changes,
and shadows categories.
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4.1 Introduction

In this chapter, the first section is a detailed description of a novel deep learning
model for background subtraction. This deep learning network is built to use color
and depth information to solve many challenging scenarios in the field. The following
section of this chapter is devoted to explaining a proposed protocol for the SBM-RGBD
and GSM datasets. Along with the description of the deep learning method and the new
protocol, this chapter includes the experiments and the performance evaluation for the
proposed approach tested on the original and the proposed protocol.

4.2 The proposed method: Deep Multi-Scale Network
(DMSN)

4.2.1 Introduction

This section proposes a novel deep learning model called Deep Multi-Scale Network
(DMSN) for Background Subtraction. This convolutional neural network is built to use
RGB color channels and Depth maps as inputs with which it can fuse semantic and
spatial information. In comparison with previous deep learning background subtraction
techniques that lack information due to their use of only RGB channels, our RGBD
version is aiming to overcome most of the drawbacks, especially in some particular
kinds of challenges that are hard to handle by the RGB-based methods.

4.2.2 The proposed framework

Our proposed framework is illustrated in Fig. 4.1, it is divided into two phases: (i)
The training phase and (ii) The testing phase. First, we must provide three inputs for the
first phase: RGB frames extracted from a standard camera, their corresponding depth
maps extracted from a Microsoft Kinect depth camera, and the ground truth. It is worth
noting that we do not use the raw depth maps; they are pre-processed by normalizing
the pixel values between 0 and 255. After preparing the data, we feed these inputs into
our training system to build the background model of our proposed network. The testing
phase follows, in which we use the trained model to apply the background subtraction
operation on the input frames using color and depth information.
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Background Subtraction Result

RGB Sequence

Depth Sequence

Training DMSN
Trained Model

Ground-truth 

Sequence

Training Inputs

DMSN
Trained Model

Depth Frame RGB Frame

Training Phase Testing Phase

Figure 4.1: The proposed Framework

4.2.3 The proposed architecture

The proposed DMSN architecture is presented in Fig. 4.2. This architecture is
inspired by several recent studies such as [54, 76, 77]. The main goal of this architecture
is to extract different features from RGB channels and Depth maps, which will provide
more discriminative information about the challenging scenes. The proposed network
consists of two parallel encoders running together towards a decoder, with intermediate
layers for multi-cross features between Encoder/Decoder. The two parallel encoders are
built from VGG-16[78]. The first encoder is dedicated to the RGB channels, and the
second is dedicated to the Depth map. These two VGG streams are similar; the only
difference is the input size, i.e., the number of channels.

The VGG-based feature extraction proved to compute relevant feature maps thanks
to its successive convolution with a maintained receptive field. It allows in-depth convo-
lutional transformation without downsampling the input. The multi-modal background
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subtraction based on RGB and the corresponding depth can be implemented through
stacking the inputs or feeding them to individual encoding streams. Stacking the inputs
offers low computational complexity but at the cost of non-efficient feature extraction.
In addition, both inputs will be encoded on the first convolution only, and the rest
of the model processes it as one input leading to a waste of relevant features. In our
model, we adopted dedicated streams to emphasize the feature extraction of each input
independently from the other one since they do not share the same space. This fact helps
each VGG encoder to compute semantic-wise representations of the RGB and Depth
images on a set of low-resolution feature maps (512 filters of 1520). Afterward, our
model merges the extracted RGB and depth maps combining the discriminant feature
that can be found on the RGB space with depth ones for more accuracy. We believe
that the depth information is helpful in solving many challenges related to foreground
classification such as the camouflage, from which many RGB-approaches are suffering.
The foreground extraction problem is addressed as a pixel-wise classification problem
justifying the employment of the complete VGG-16 feature extraction stage.

Each encoder consists of five groups of Convolutional-MaxPooling layers. As
known, the deeper we go into convolution, the more semantic information we learn
about the pixel; this is called the "What is it!" information. On the other hand, going
deeper into convolution will affect the learning of spatial details negatively. This spatial
information is called the "Where is it!" information. In order to conserve both, we use
the skip-connections through convolution and Contrast Feature Extractor (CFE) after
each MaxPooling layer [54], where the CFE is, the input I minus the Average Pooling
(AP) of the same input: CFE(I)= I−AP(I). These features are placed straight into the
decoder by using depth Concatenation layers. This operation leads to avoiding the lack
of information, keeping the system aware of the pixel class, and saving more information
about the pixel location in the frame. The use of adaptation-based convolution before
the CFE comes from the non-homogeneity of the computed filter maps from RGB
space compared to the depth one, which may confuse the model on the decoding stage.
Moreover, both encoded filters will be adapted to fit the binary space targeted as output
by our model. This fact helps the decoder to focus more on the up-scaling of the
feature rather than making complex feature transformations. On the other hand, the
CFE operation consists mainly in selecting the prominent information based on the
intensity, which represents an effective transformation toward features binarization. Our
decoder benefits from a light configuration thanks to the architecture of the encoding
streams and their collaboration. Its task is focused on up-sampling the concatenated
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encoder-filters until reaching the targeted output size. Further analysis, through an
ablation study, is provided in 4.4.1.3 to show the importance of the dual-encoders and
Intermediate Layers.

The decoder section is a series of deconvolutional and depth concatenation layers.
Each depth concatenation layer receives five inputs (four inputs for the first concatena-
tion layer) as illustrated in Fig.4.2. In the end, we placed a Convolution layer followed by
SoftMax activation function to extract the probability map, which is evaluated through
a Cross-Entropy Loss (CEL) based on two classes (background and foreground) as a
final step. The loss function is constructed as follows. Let us consider the split S of the
inputs Im and the predicted outputs Om, as follows: S = {(Im,Om),m = 1, ..., M}, where
Om = {on,n = 1, ..., N}. M and N denote the total number of images in the Mini-batch
size, and the total number of pixels in one image, respectively. The state of on can
be one of the two categories: Background or Foreground. The loss function can be
expressed as follows:

CEL =− 1
M

M∑
m=1

(α.
∑

o∈O f

log(P(Om))+ (1−α).
∑

o∈Ob

log(1−P(Om))) (4.1)

Where α is the ratio between the number of background elements |Ob| and the total
number of elements of the label mask |O|, as well (1−α) will be dependent on the
number of foreground elements |O f | and the total number of elements of the label mask
|O|. Here, α= |Ob|/|O| and (1−α)= |O f |/|O|. Pm is the output of the Softmax operation
of the last convolutional layer output. The training of the proposed model is done with
the Adam optimization algorithm, using Mini-batches of 1 sample. The Initial-Learning-
Rate is set to 10−4, it drops every five epochs by a factor of 10−1. The network weights
are initialized using VGG-16 pre-trained model. The data is divided into two parts
during training: 80% for training and 20% for validation, and shuffled for each epoch to
avoid using the same data in the validation process. The training ends when the stability
of the loss stays for 30 epochs of patience. For further details, Table 4.1 provides more
information about each layer (Type, Stride, Padding, and Activations).
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Table 4.1: DMSN Network Details

Encoder (RGB and Depth)

Type Stride Padding Activations

Input RGB(Depth) - - 480x640x3(1)
Convolution 1 1 480x640x64
Convolution 1 1 480x640x64
Max Pooling 2 0 240x320x64
Convolution 1 1 240x320x128
Convolution 1 1 240x320x128
Max Pooling 2 0 120x160x128
Convolution 1 1 120x160x256
Convolution 1 1 120x160x256
Convolution 1 1 120x160x256
Max Pooling 2 0 60x80x256
Convolution 1 1 60x80x512
Convolution 1 1 60x80x512
Convolution 1 1 60x80x512
Max Pooling 2 0 30x40x512
Convolution 1 1 30x40x512
Convolution 1 1 30x40x512
Convolution 1 1 30x40x512
Max Pooling 2 0 15x20x512

Intermediate Layers (RGB and Depth)

Type Stride Padding Activations

Convolution 1 1 240x320x128
Average Pooling 1 1 240x320x128
Convolution 1 1 120x160x128
Average Pooling 1 1 120x160x128
Convolution 1 1 60x80x128
Average Pooling 1 1 60x80x128
Convolution 1 1 30x40x128
Average Pooling 1 1 30x40x128
Convolution 1 1 15x20x128
Average Pooling 1 1 15x20x128

Decoder

Type Stride Padding Activations

Depth Concatenation - - 15x20x512
Deconvolution 2 1 30x40x128
Depth Concatenation - - 30x40x640
Deconvolution 2 1 60x80x256
Depth Concatenation - - 60x80x768
Deconvolution 2 1 120x160x384
Depth Concatenation - - 120x160x896
Deconvolution 2 1 240x320x512
Depth Concatenation - - 240x320x1024
Deconvolution 2 1 480x640x640
Convolution 1 0 480x640x1
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4.3 The proposed protocols: Scene independent
protocols

4.3.1 Introduction

The protocols followed by most of the state-of-the-art methods and especially deep
learning methods for background subtraction have been controversial recently. The
selection of Training/Testing frames is making an exciting debate that concerns Scene

Dependent and Scene Independent evaluation [57, 58, 79, 80]. This issue has been
discussed in detail by Mandal and Vipparthi[79]. The authors named two kinds of
scenarios: (i) Scene Dependent Evaluation (SDE), (ii) Scene Independent Evaluation
(SIE). They proved that their proposed protocol (SIE) is more challenging and trustful
due to its imperative to sustain non-overlapping between the training and testing splits.
Moreover, our study is based on two datasets from which we listed in the literature review
chapter. These two datasets are matching the requirements of our study. According to
the literature, these datasets are the only ones that provide the two types of information
needed in our work: RGB frames from a standard camera and Depth maps extracted
from a Microsoft Kinect camera. In addition, each sequence in these datasets has its
corresponding set of Groundtruth that is needed for supervised training and results
evaluation.

4.3.2 Scene Independent Evaluation protocol for SBM-RGBD

This protocol stands for taking one video from each category for the test phase and
using the remaining videos for the training phase. The SIE protocol scenario can be
implemented regarding two strategies. The first one is Category-wise training which
leads to one trained model for each category. The second one is Complete dataset

training, which leads to only one trained model for the whole dataset. The second
strategy is more challenging and computationally low as compared to the first one.
Moreover, the Category-wise training requires a large amount of data per category that
can not be granted all the time, as in the case of the SBM-RGBD dataset. On the other
hand, the GSM dataset provides one video per category, allowing only the Complete

dataset training. Therefore, this study considered the SIE protocol with Complete

dataset training on the SBM-RGBD and GSM benchmarks.
To the best of our knowledge, this is the first study that applies the SIE protocol on

the SBM-RGBD dataset. Since that, we proposed a strategy to set a united ground for
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Table 4.2: SIE protocol for SBM-RGBD

Category Video S1 S2 S3 S4 S5 S6

Bootstrapping

adl24cam0 Tr Ts Tr Tr Tr Ts
bear_front Tr Tr Ts Tr Tr Tr
BootStrapping_ds Ts Tr Tr Tr Tr Tr
fall01cam0 Tr Tr Tr Ts Tr Tr
fall20cam0 Tr Tr Tr Tr Ts Tr

ColorCamouflage

Cespatx_ds Ts Tr Tr Tr Ts Tr
colorCam1 Tr Tr Ts Tr Tr Ts
colorCam2 Tr Tr Tr Ts Tr Tr
Hallway Tr Ts Tr Tr Tr Tr

DepthCamouflage

DCamSeq1 Ts Tr Tr Tr Ts Tr
DCamSeq2 Tr Ts Tr Tr Tr Ts
Despatx_ds Tr Tr Ts Tr Tr Tr
Wall Tr Tr Tr Ts Tr Tr

IlluminationChanges

ChairBox Ts Tr Tr Tr Ts Tr
genSeq1 Tr Tr Tr Ts Tr Ts
Ls_ds Tr Ts Tr Tr Tr Tr
TimeOfDay_ds Tr Tr Ts Tr Tr Tr

IntermittentMotion

abandoned1 Tr Tr Ts Tr Tr Tr
abandoned2 Tr Tr Tr Ts Tr Tr
movedBackground1 Tr Tr Tr Tr Ts Tr
movedBackground2 Tr Tr Tr Tr Tr Ts
Shelves Ts Tr Tr Tr Tr Tr
Sleeping_ds Tr Ts Tr Tr Tr Tr

OutOfRange

MultiPeople1 Ts Tr Tr Tr Tr Ts
MultiPeople2 Tr Ts Tr Tr Tr Tr
TopViewLab1 Tr Tr Ts Tr Tr Tr
TopViewLab2 Tr Tr Tr Ts Tr Tr
TopViewLab3 Tr Tr Tr Tr Ts Tr

Shadows

fall01cam1 Tr Ts Tr Tr Tr Ts
genSeq2 Tr Tr Ts Tr Tr Tr
Shadows_ds Ts Tr Tr Tr Tr Tr
shadows1 Tr Tr Tr Ts Tr Tr
shadows2 Tr Tr Tr Tr Ts Tr
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the following upcoming studies. This strategy is explained in Table 4.2. Our target is
to test the maximum possible cases to avoid bias or manipulated evaluation. We set up
six possible splits, where the number of splits is based on the category with the most
number of videos (in this case, it is the IntermittentMotion category, which consists of
six videos). The Testing(Ts)/Training(Tr) videos were selected randomly for each split,
from S1 to S6. Therefore, each split consists of twenty-six videos for training and seven
videos for testing.

4.3.3 Leave One Video Out protocol for GSM

The GSM dataset is considered as a small dataset compared with the SBM-RGBD.
However, we choose to use it for our experiments in order to test our deep learning
proposed method in the case of a small amount of data. This will explain if the model
can be trained with this minor quantity of information or if it requires more data to
be well-trained. The GSM dataset contains seven categories with one video per each.
Hence, we followed the LOVO protocol of seven splits as listed in Table 4.3.

Table 4.3: LOVO protocol for GSM

Video S1 S2 S3 S4 S5 S6 S7

BootStrapping_ds Ts Tr Tr Tr Tr Tr Tr
Cespatx_ds Tr Ts Tr Tr Tr Tr Tr
Despatx_ds Tr Tr Ts Tr Tr Tr Tr
Ls_ds Tr Tr Tr Ts Tr Tr Tr
Shadows_ds Tr Tr Tr Tr Ts Tr Tr
Sleeping_ds Tr Tr Tr Tr Tr Ts Tr
TimeOfDay_ds Tr Tr Tr Tr Tr Tr Ts
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4.4 Experiments and performance evaluation

This section shows in detail, the results obtained following the framework presented
in the previous sections. The experiments and evaluations presented in this section are
based on the original state-of-the-art protocol and then on the proposed protocol to
explain the necessity of proposing a new protocol for the field.

4.4.1 Results and discussion

This section will aggregate two types of evaluations to check the efficiency of the
proposed method: The F-score measurement for the quantitative evaluation, which
focuses on pixel-wise information by comparing the results and the ground truth as
explained in Section 2.3, using Equation(2.1); Then, the visual evaluation, which is
not as effective as the quantitative evaluation to differentiate between the methods
performing nearly at the same level, but in some cases, it can bring attention to many
hidden spots that could explain much about the behave of the method.

In this study, together with the proposed method, we have also implemented four
existing techniques in pursuance of fair comparative evaluation: MFCN [50], FgSeg-

Net_S[54], FgSegNet_M [54] and FgSegNet_v2[55]. The reasons behind choosing these
methods are: (i) They are the top four methods in the stat-of-the-art. (ii) These methods
take into account one of the most critical limitations mentioned in Subsection 2.5;
they are flexible in following the SIE protocol to avoid the training/testing overlapping
problem. (iii) Less complexity for implementing them, thanks to the MFCN authors
who gave a detailed explanation in their original paper, as well as the FgSegNet authors
for sharing their code online.

4.4.1.1 Experiments on SBM-RGBD dataset

This subsection is divided into two parts: (i) Experiment using the original protocol
(ii) Experiment using the SIE protocol. Table 4.4 shows the overall F-score based on
the original protocol. The F-score values conclude two main points: 1) The proposed
method performs perfectly and competitively compared to the top four SOTA methods;
2) The original protocol is saturated. The F-score reaches ∼ 99% on all the videos
except on Ls_ds and TimeOfDay_ds ones, which lead to F-score equal to zero due to
the absence of foreground objects in these two videos. This saturation is caused by the
overlapping between Training/Testing splits using the original protocol strategy. This
problem has already been discussed in the Subsection 4.3.1. This situation requires a
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new protocol imposing non-overlapping between training/testing splits, and allowing
the background model learns within a more realistic experimental setup. Following the
SIE protocol (see Table 4.2), the background model will be tested on unseen videos
that are different from the training ones. Considering the SIE protocol, we keep one
video out from each category for the testing phase and use the remaining videos for
training the models. The training phase generates one model (Mi) for each split (Si)
independently.

Table 4.4: F-score on SBM-RGBD dataset (original protocol).

Method F-score(Overall)
BSABU[81] 0.85
RGBD-SOBS[43] 0.86
SCAD[82] 0.88
FgSegNet_S[54] 0.89
FgSegNet_M[54] 0.90
FgSegNet_v2[55] 0.91
MFCN[50] 0.91
DMSN (Proposed method) 0.91

We run the test on the forty-two Ts selected videos, using the corresponding model
for each split to obtain the background subtraction for all sequences. Since the model
yields are pixels with values that vary between 0 and 255, later we apply a threshold on
each pixel value to obtain its final class, either Background or Foreground. However, it
is notable in Fig. 4.3 that the threshold impact is not significant whereas the pixel output
values converged to the edges (0 or 255). Nevertheless, the proposed network surpasses
the tested methods over all the threshold values from 0.1 to 0.8. Table 4.5 introduces
further details about quantitative evaluation from two perspectives, i.e., category-based
and overall the SBM-RGBD dataset. As an accurate approach to measure the overall
F-score, we insist to consider the average on all the threshold values (from 0.1 to 0.8),
all the splits (from S1 to S6), and all the categories, respectively. We believe that this
measurement approach is an outstanding way to distinguish the robust method from
the others. The proposed method proves its efficiency compared to the state-of-the-art
methods, where the improvement has reached ∼ 3% in overall. At the Category-based
evaluation level, we find the proposed method has outranked all the tested methods
in three out of seven categories (Bootstrapping, IlluminationChanges, and Intermit-

tentMotion), ranked the second in ColorCamouflage, and the third for remaining ones
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(DepthCamouflage, OutOfRange, and Shadows). Indeed, these achievements validate
the idea of including depth maps along with the RGB channels, since using only the
color information will unequivocally occur many false detections in such circumstances,
e.g., The sudden change in the illumination or an overlap of two (or more) objects having
the same color, one is stationary, and the other is moving. Many of these drawbacks can
be addressed by using depth information that is not affected by these scenarios. Besides,
despite the non-use of temporal history or background reference, the proposed method
still has a remarkable accomplishment in the Bootstrapping category compared to the
other methods, where this category consists of videos that include foreground objects
from the first frame till the last one, which considered as a challenging scene for all
methods, including the techniques that utilize frame referencing from the same video of
the testing. The only flop was in the DepthCamouflage category, which is logically due
to the misleading information from the Depth maps; when two objects (or more) have
almost the same distance from the camera, where one of them is moving the other is
static, this will occur false detections.

Table 4.5: F-score on SBM-RGBD dataset.

Dataset categories FgSegNet_S FgSegNet_M FgSegNet_v2 MFCN DMSN
[54] [54] [55] [50] (Proposed)

Bootstrapping 0.6639 0.6655 0.7270 0.7172 0.7692
ColorCamouflage 0.4632 0.3985 0.4307 0.4420 0.4442
DepthCamouflage 0.8013 0.7855 0.7245 0.7359 0.7383
IlluminationChanges 0.5341 0.5490 0.5498 0.5385 0.5701
IntermittentMotion 0.8061 0.8196 0.7210 0.8336 0.8536
OutOfRange 0.7760 0.9233 0.9206 0.8972 0.9118
Shadows 0.7994 0.6634 0.7969 0.7016 0.7783

Overall (Average) 0.6920 0.6864 0.6958 0.6952 0.7236

Furthermore, four samples from the tested videos are presented in Figure. 4.4. From
a visual perspective, it is evident that the proposed method overcomes most of the
false detections. We should mention that the bottom row illustrates a sample from
the TimeOfDay sequence, which is included in the IlluminationChanges category; this
sequence does not contain foreground objects which affects the F-score measurement
making it equal to zero. However, referring to the stat-of-the-art and the dataset website,
including this sequence in the quantitative evaluation is mandatory. This kind of video
is essential to test the performance in illumination change, where it is clear that our
proposed method performs well in such scenarios.
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(a) F-score for the 1st Split (S1)
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(b) F-score for the 2nd Split (S2)
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(d) F-score for the 4th Split (S4)
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(e) F-score for the 5th Split (S5)

0,6200

0,6400

0,6600

0,6800

0,7000

0,7200

0,7400

0,7600

0,7800

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S4

FgSegNet_S FgSegNet_M FgSegNet_v2 MFCN DMSN

0,7000

0,7200

0,7400

0,7600

0,7800

0,8000

0,8200

0,8400

0,8600

0,8800

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S5

FgSegNet_S FgSegNet_M FgSegNet_v2 MFCN DMSN

0,6600

0,6700

0,6800

0,6900

0,7000

0,7100

0,7200

0,7300

0,7400

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

S6

FgSegNet_S FgSegNet_M FgSegNet_v2 MFCN DMSN
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Figure 4.5: F-score calculation at different thresholds on SBM-RGBD for each split (S1
to S6).
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Deeper into results illustration, Figure 4.5 shows the F-score measurement through
the tested threshold values (from 0.1 to 0.8) for each split as divided and explained
in Table 4.2. The results show that the proposed model DMSN is leading in most of
the splits (S1, S3, S5, and S6). However, it is placed second and third in S4 and S2,
respectively. These promising achievements explain the stability of the performance pro-
vided by the proposed model compared to the other tested models. The FgSegNet_S for
example, shows a great achievement in S2, but its performance dramatically decreases
in S6, which makes it less trustfully compared to our proposed method.

4.4.1.2 Experiments on GSM dataset

The same findings were observed through the evaluation analysis on the GSM dataset,
which was challenging as we had to build our model from a small number of videos.
Table 4.3 explains the Leave One Video Out (LOVO) protocol that has been followed in
this study. We will generate seven different models referring to seven splits (from S1 to
S7) in this case. Fig. 4.6 illustrates the F-score measurement at different threshold values,
where the proposed method outperforms the state-of-the-art methods generally at all the
threshold values. Table 4.6 reports the average of the F-score measurement considering
all the threshold values. The proposed model surpasses the state-of-the-art methods in
overall with a ratio difference of ∼ 2% compared to the next best-performing method.
One can notice the efficiency provided by the DMSN model on the Bootstrapping_ds

video where the ratio difference reached ∼ 9% compared to the next best performing
method. Nevertheless, the potency is still competitive in the remaining videos compared
to the tested techniques, this proves the robustness and performance stability provided
by the DMSN model, in all kinds of scenarios. The visual evaluation presented in Fig. 4.7
gives more details about the model performance. Particularly, referring to the two videos
(Ls_ds and TimeOfDayds) that can not be quantitatively evaluated as a result of having
only one class along their frame sequences (Background). These two sequences do
not contain any foreground objects, which affects the F-score measurement, as we
mentioned earlier about the SBM-RGBD, referring to the IlluminationChanges category.
The visual results show the precision of reducing the false detections, primarily false
positives and providing better performance. The last two rows explain the behavior
of the proposed method in the illumination change scenarios, in which the sample of
the third row includes a scene of an office exposed to unpredictable lighting from the
window, and the fourth row is an office that has a blinked LED lamp.
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Table 4.6: F-score on GSM dataset.

Dataset categories FgSegNet_S FgSegNet_M FgSegNet_v2 MFCN DMSN
[54] [54] [55] [50] (Proposed)

Bootstrapping_ds 0.6673 0.7504 0.6276 0.0001 0.8461
Cespatx_ds 0.9058 0.9250 0.9211 0.8847 0.9049
Despatx_ds 0.8784 0.9073 0.9194 0.8760 0.9080
Ls_ds 0.0000 0.0000 0.0000 0.0000 0.0000
Shadows_ds 0.8237 0.7091 0.8063 0.6526 0.7968
Sleeping_ds 0.9264 0.8679 0.8880 0.8551 0.8726
TimeOfDay_ds 0.0000 0.0000 0.0000 0.0000 0.0000

Overall (Average) 0.6002 0.5943 0.5936 0.4669 0.6183

4.4.1.3 The Ablation Study

This subsection presents two experiments to highlight the impact of different parts
composing the proposed architecture. The first experiment is evaluating the Deep Multi-
Scale Network with a Single Stream Encoder (DMSN_SSE), where the RGB and Depth
inputs are concatenated on the channel dimension, then fed to one single VGG-16
encoder instead of two encoders as in the proposed DMSN. The second experiment
concerns the Intermediate Layers illustrated in Fig. 4.1 and Table 4.1, considering three
configurations. The first one is Deep Multi-Scale Network Without Intermediate Layers
(DMSN_WIL), where the skipping connections are directly connected from the two
encoders to the decoder without intermediate layers. The second configuration is Deep
Multi-Scale Network, RGB Without Intermediate Layers (DMSN_RGB_WIL), where
we removed the intermediate layers between the RGB encoder and the decoder while
keeping them on the depth encoder side. The third configuration is Deep Multi-Scale
Network, Depth Without Intermediate Layers (DMSN_D_WIL); it is the opposite of
the DMSN_RGB_WIL.

Table 4.7 lists the recorded F-scores from experiment 1 and experiment 2 (with the
three configurations) on both datasets.

The results from Experiment 1 show the importance of using two encoder streams
for each input instead of merging them into one single encoder. We believe that us-
ing one single encoder may mislead the encoder, preventing the model from being
correctly trained; this is due to the dissimilar types of the inputs, which should be
encoded separately and differently, allowing more relevant feature extraction. On the
other hand, the results related to Experiment 2 highlight the proposed method perfor-
mances with and without the Intermediate Layers following the three configurations
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Table 4.7: F-score from experiment 1 and experiment 2.

Experiments Configurations F-score(Overall)
SBM-RGBD GSM

Expt.1 DMSN_SSE 0.61 0.47

Expt.2
DMSN_WIL 0.27 0.35
DMSN_RGB_WIL 0.70 0.57
DMSN_D_WIL 0.72 0.50

Proposed DMSN 0.72 0.62

as depicted in Table 4.7. The DMSN_WIL configuration suffered a major drop over
the F-score on both datasets, proving the need for the Intermediate Layers within
the skip-connections. Moreover, enabling them in only one of the encoders improves
the performance significantly, as stated for DMSN_RGB_WIL and DMSN_D_WIL
configurations. Furthermore, as proposed in our DMSN model, enabling them in both
encoders guarantees more performance and stability. Therefore, we disclose that the
Intermediate Layers placed between the two encoders and the decoder are conservative
to the spatial features coming from each Max-Pooling layer.

4.4.1.4 Implementation and Processing Speed

Our experiments are implemented using Python 3.6, Keras 2.3, Tensorflow-gpu
2.1, and Cuda 10.1 installed on a machine built with Intel i9 CPU 9th generation and
GeForce RTX 2080 GPU under Windows 10 operating system. The processing speed of
our tests is four frames per second for videos with a resolution of 640 x 480. We would
also like to mention that the code source of the proposed method is available online at:
https://github.com/ihssanehouhou/DMSN.

4.5 Conclusion

In this chapter, we proposed a novel deep learning model named DMSN (Deep
Multi-Scale Network) that is VGG16-based. This model uses RGBD information and
feature multi-scale extraction to solve diverse scenarios in background subtraction
without using a background model initialization. We proposed also a new protocol
for the SBM-RGBD dataset based on SIE in pursuance of a fair competitive analysis.
The reported experiments show that our proposed model surpasses the state-of-the-art

https://github.com/ihssanehouhou/DMSN
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upon two datasets, SBM-RGBD and GSM. The proposed method is performing better
in particular scenarios such as Bootstrapping, IntermittentMotion and, Illumination-

Changes. However, DepthCamouflage scenes are more challenging for our model due
to the misleading information provided by the depth maps. In future work, we will
focus on improving the model to reduce the potential effect of the depth information
misleading. Further, considering other pre-trained models instead of the VGG-16 could
be beneficial in improving the overall performance.
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This chapter concludes together the study by reviewing the main findings in regard
to the research goals and queries, as well as the significance and contribution thereof. It
also discusses the limitations and includes recommendations for further studies.

5.1 Conclusions

At the beginning of this thesis, we explained how important to use multiple kinds of
input information to improve the background subtraction techniques. Our focus area
was targeting the use of color and depth information along. Based on the literature,
some of the traditional approaches have already adopted this idea and proved its effi-
ciency. However, to the best of our knowledge, the use of Depth maps along with RGB
channels through double-stream encoders has not been included in deep-learning-based
techniques.

In this study, we aimed to propose novel RGBD-based frameworks in both branches
of this ax of research, traditional and deep learning. The results of this study indicate
that depth information (Depth maps) has a significant effect when paired with color
information (RGB channels). Moreover, this research also aimed for a better evaluation
of the background methods, which led us to propose a new protocol based on SIE.
The findings show that based on this protocol, we can build models that can be more
practical in real scenarios.

Our motivation to work on traditional approaches was the fact that they are unsu-
pervised methods. At this point, we proposed a paradigm that employs two types of
information (RGB and Depth). This framework is dedicated to the ViBe-based traditional
background subtraction methods. The experimental assessment of the SBM-RGBD
dataset demonstrated the framework’s effectiveness in both overall and category-based.
The ColorCamouflage category is one of the targeted categories; it shows a significant
improvement due to the additional information provided by the depth maps. This frame-
work is also regarded as a reliable strategy for significantly improving outcomes in a
variety of techniques, including ViBe, LOBSTER, SuBSENSE, and PAWCS.

However, the achievements that we have accomplished using this framework still
have some limitations. The traditional approaches have more complexity and a low
frame rate as an inverse relation compared to the performance. Moreover, traditional
techniques’ efficiency is related to the use of reference frame(s), which drives the
method to perform only at a specific scenario, i.e., the one linked to the reference frame.
The evident limitation of the proposed traditional framework is the performance on the
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OutOfRange category, where the Depth information here is unreliable.
Some proposed solutions can be helpful for developing this approach to overcome

the limitations. Using low frame resolution will speed up the process. At the same time,
it can reduce the unnecessary information that can be destructive in this case. Other
data, like descriptors, or another depth extractor device/technique, will overcome the
misleading prevented by the depth information using the Microsoft-Kinect camera in
some scenes, such as the previously mentioned category (OutOfRange).

Despite the mentioned limitations, the traditional methods can always be valuable
and practical for non-complex applications which do not include frequent moving
backgrounds or require fast decisions.

As the second major objective of this study, we shifted our attention to CNN-based
approaches. We aimed for a model to solve the background subtraction problem using
color and depth information. The results of the original protocol indicated that our
model achieves auspicious performance compared to the literature. On the other hand,
our aim to build an effective model is related to the evaluation technique that we follow,
which directed us to propose a new protocol to cope with realistic-kind challenges. This
new protocol allows a fair evaluation and builds a competitive platform for the next
generation of CNN-based background subtraction methods.

This section suggested a new VGG16-based deep learning model called DMSN
(Deep Multi-Scale Network). This model solves several cases in background subtraction
without requiring frame references by using RGBD information. This approach is
premised on the principle of extracting multi-scale features. In the interest of fair,
competitive analysis, and due to the performance saturation caused by the original
protocols, we also presented a novel protocol based on SIE. This protocol is dedicated
to the deep-learning-based approaches to set up a competitive platform that includes
more challenging situations and avoids the original protocol gaps.

The experiments reveal that our suggested model outperforms the state-of-the-art in
several categories, such as Bootstrapping, IntermittentMotion, and IlluminationChanges.
These two first categories contain the most challenging scenarios for the methods that are
based on frame references to initialize the background model. This makes our proposed
method perform better in such scenes due to the new approach we proposed to create
our model using the SIE-based protocol. On the other hand, using depth information
along with color information helps the model solve the IlluminationChanges category
challenges better than the RGB-based techniques from state-of-the-art. Besides, based on
our literature study, no deep learning model was built to use color and depth information
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in parallel to solve background subtraction. Hence this study was the first to initiate this
kind of CNN-based model using RGBD with double-stream encoders in this field.

However, the proposed model shows less efficiency in DepthCamouflage and Out-
OfRange scenarios. These categories are more problematic for our model due to the
deceptive data provided by the depth maps. For this matter, we can propose a pre-
processing for the depth maps to overcome this limitation. This pre-processing should
determine the state of the depth information by indicating if the provided data include
some properties of these mentioned categories. Thereafter, we can make the model
decision rely more on the color information. Moreover, using other sources to extract
reliable depth maps is also considered as a practical option to solve this issue.

5.2 Future perspectives

This research can be further developed by considering some of the following sug-
gestions.

We believe that the proposed approaches can be applied to outdoor scenes, but
this depends on the availability of the required data for this task. Since our proposed
methods target indoor scenarios, researchers interested in our study can also implement
them for outdoor scenarios. Moreover, autonomous cars seem like a fascinating topic
for future works, with additional challenges besides the outdoor environment, such as
moving camera scenarios and object-kind variety.

From a theoretical perspective, we expect the two proposed approaches (traditional
and deep-learning) to be as effective and compatible with other applications and/or with
the use of different kinds of data as well. The success of this hypothesis only depends
on providing two types of information. As we built our proposed methods on color
and depth information, other research can consider using another kind of combination
between descriptors (Local Binary Patterns (LBP), Local Phase Quantization (LPQ), or
Binarized Statistical Image Features (BSIF), etc.), color, and/or depth. Also, different
color spaces or some recent feature extractors may be recommended to have better
performance.

The fact that the proposed protocol based on the SIE opened up room for more
improvement in deep learning approaches and the two-stream concept presented in
the CNN-based approach proves its effectiveness, our following study will invest in
utilizing the double streams in deep learning networks. Since our CNN-based method
uses only one scene out of two types of information, our future work will consider two
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consecutive frames instead of a color-depth combination. This will allow the model
to learn from the variation between these two frames and make a decision based on
that. This proposition may include the previous suggestions mentioned earlier in this
section.
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