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GENERAL INTRODUCTION

This thesis is dedicated to the development and application of a Copula-based approach

for modeling multi-dimensional dependence in data. The theory of Copula has generated

enormous interest among researchers in various scientific fields. It is widely used in

the study of multidimensional data since it allows for easier estimation and description of the

distribution of random variables by estimating margins and Copulas separately. Our goal is to

examine the benefits of using Copulas in the field of data mining, specifically when it comes to

handling large data.

Problematic

Every Field has its hands wet with data, in the search of optimization and efficiency, but most of

the time useless and redundant observations are added to datasets, which can increase the time to

treat them, while also add inaccuracy to them, thus storage capacity growth almost exponentially.

This growth does not necessary indicate a gain of more information, since the accumulated data

is frequently poor quality, crude and contains irrelevant attributes. The presence of redundancy

in the datasets is often inconvenient in algorithm when dealing with data and modeling methods,

since it results in noise and misspecification for models parameters, which results in low accuracy

and bad performance of the model. The collection of these numerous data is increasing in quantity

and being expressed in more and larger dimensions. Besides, redundant information is present

in many attributes and may have an impact on other variables that are potentially relevant and

less present. In this case, important information risk of being drowned among many attributes

that all express the same idea of no interest to the user and its extraction is only possible if the

original data is cleaned and prepared.

Recent years have shown that authors are interested in using stochastic models in problem

solving for data pre-processing issues. Theoretically, most of these models call for certain assump-

tions about the dependencies between the data attributes. For that, a knowledge of the joint

probability distribution is required in order to model the dependency structure between these

variables. In this light, a number of methods have been put out in the scientific literature, some

of which have complex mathematical complications and less precised results.
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Motivations

As we have seen in the previous section, data pre-processing became a must, since most of data

contain noise and irrelevant attribute. For that, we are interested in reducing the dimensions of

large data using stochastic process and mathematical operations in this thesis. Dimensionality

Reduction methods are divided into two major types, feature selection and feature extraction.

Feature selection is a technique that clears and reduces redundancy by selecting only relevant

attributes from the data. While feature extraction is a technique that extracts important infor-

mation from the data by projecting the high dimensional data into a lower dimensional subspace

called the principal subspace. In this thesis, we developed two feature selection methods and

one feature extraction method, our goal is to suggest and investigate the possibility of producing

high-quality, multidimensional sample that capture only important information and relevant

attributes that hold the same information and statistical behavior as the original data. Therefore,

the main objective of this thesis are giving as follow:

• Detect inter-correlation and eliminate redundancy in multi-dimensional data.

• estimate the joint distribution function without the need to impose hypothesis about the

marginal distributions of the attributes.

• Develop new efficient methods to reduce the dimension of data using Copulas in the field of

Dimensionality Reduction.

• Utilise Copulas as a tool to detect irrelevant variables and eliminate it.

• Establish fast calculation methods for Dimensionality Reduction techniques.

Numerous experimental studies have demonstrated the shortcomings of several algorithms,

since it cannot handle treating extremely large volumes of complex and diverse data, such as

real-world data sets. As a result, statistical techniques are unable to overcome the numerical

challenges posed by the presence of irrelevant or redundant variables. In other words, the more

data are large, the hardest is to extract important information from it. Therefore, such issue is

managed by reducing the dimensions of these data. As a consequence, only relevant attributes

are selected for experimental studies. For that, Dimensionality Reduction intend to:

• Clean the data and prepare it for machine learning and modeling.

• Improve models performance by increasing the accuracy and the efficiency of the models.

• Reduce the dimensions of large data and reduce the memory complexity in the machine.

Hence, Dimensionality Reduction is an important step in data pre-processing and a must for

preparing the data to be modeled.

2
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Contributions

The contribution of this thesis is to develop new feature selection and extraction techniques as

a step of pre-processing, cleaning the data and preparing it to be modeled. The three methods

are based on Copulas distribution function, since Copulas help us to estimate the joint bivariate

probability distribution function without the need to estimate the marginals distributions, and

the fact that Copulas enable us to detect the inter-correlation and eliminate it. All the proposed

techniques are compared against well known methods, in term of reduction and computational

time, and also in term of efficiency by fitting the obtained results of reduction of each method to

several models and compare the accuracy of these models. A short description of each method is

as follow:

• BCFS: the first developed method named bivariate Copulas based Feature Selection

(BCFS) consists on eliminating the redundancy using correlation, we say that two at-

tributes are redundant if they hold the same information. In other words, if two attributes

are correlated we say that one of them is redundant and we eliminate one of these attributes.

This correlation is detected using bivariate Copulas and the elimination between the two

attributes is random. The proposed algorithm on the other hand is characterised with its

fast computational time, where the time complexity is given by O(m×nlogn). The method

is simulated using real-world datasets, and showed a good performance against well known

methods in term of reduction and accuracy of the models.

• GBCFS: the second developed method is an improvement of the first proposed technique

by treating the issue of the random elimination in BCFS. For that, a grouping technique

of the correlated attributes is proposed. This technique help us when it comes to choosing

which attributes to eliminate and to select for more reduction and reducing redundancy.

The technique showed good results against BCFS and other feature selection techniques

in term of reduction, computational time and accuracy of the models for each obtained

reduced data.

• BCFS-PCA: the last developed technique in this thesis is based on the BCFS and the most

used feature extraction technique the Principal Component Analysis (PCA). The method is

built under two stages. In the first stage, BCFS technique is applied to reduce redundancy.

While in the second stage, the PCA method is performed on the obtained subset of the

first stage. The intention of this method is to improve the performance of PCA reduction

and information extraction. This technique is compared against the baseline method PCA,

SVD, KPCA and another method that combines multivariate Copulas and PCA using

real-world datasets, and the classification accuracy of the new reduced data.

3
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Thesis Organisation

This thesis is constructed of two main parts, where the theoretical framework used in our research

is giving in two chapters in the first part. While the contribution and the practical work is giving

in format of two chapters in the second part of the thesis. Figure 0.1 shows how the manuscript

is organised and the link between the chapters.

Figure 0.1: Thesis organisation.

• Chapter 1 introduces the idea of our work, how the idea inspired us and how we developed

it.

• The second chapter gives an overview about the theory of Copulas, dependency and the

mathematical formula needed for our research.

• Chapter 3 explains the notion of Dimensionality Reduction, the state of the art of feature

extraction and feature selection, and what challenges authors are currently facing. We also

explain how researchers used Copulas to reduce the dimensions of large data, discuss their

methods, give a critical discussion and how our method deals with these issues.

• Our contribution is discussed in chapter 4 ans 5 in details.

• The last chapter presents a general conclusion of this thesis, where we outline certain

points that could inspire readers for future work.

4
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1
THE THEORY OF COPULAS

1.1 Introduction

The Copula notion was firstly introduced by Sklar in 1959 [82], its name comes from the

latin word “copũlae”, as an indication of coupling the marginal distribution functions.

They have been widely used in statistics for modeling dependencies, especially when it

comes to describe the nonlinear dependencies in computer science applications, since they are

used to cover the inconvenient of the distribution functions when it comes to modeling dependency

and separating the impact of dependence from the impact of marginal distributions in a joint

distribution.

This chapter focus on summarising the basic definition of the bivariate Copulas (2-dimensional

Copulas) needed for our research. For that, we define the following notions: I= [0,1] is the

unit segment, I2 = [0,1]× [0,1] is the unit square and for any 0 ≤ u1 ≤ u2 ≤ 1,0 ≤ v1 ≤ v2 ≤ 1,

D = [u1,u2]× [v1,v2] is a rectangular region in the unit square. The bivariate Copula is a special

case of the multivariate Copula, it focus on modeling the dependence between two random

variables instead of all variables at once as the case of multivariate Copula. For more details

about the multivariate Copulas, see [65].

Definition 1.1.1. Let G(u,v) be a function from I2 to I and D be a rectangular region of the unit

square.

• The G-volume of the region D is given as:

(1.1) VG(D)=G(u2,v2)−G(u1,v2)−G(u2,v1)+G(u1,v1).

• We say that G(u,v) is quasi-monotone,for any rectangular area D in the unit square, if its

G-volume is nonnegative.

5



CHAPTER 1. THE THEORY OF COPULAS

• G(u,v) is grounded on I2 if G(0,v)=G(u,0)= 0 for any u,v ∈ I.

• G(u,v) is 2-increasing if VG(D)≥ 0, for any rectangular area D in the unit square.

Definition 1.1.2. We say that C is a 2-dimensional Copula (bivariate Copula) in I2 if it satisfies

the following properties:

• C(0,v)= C(u,0)= 0, for any u,v in I.

• C(1,v)= v, C(u,1)= u, for any u,v in I.

• VC(D)≥ 0, for any rectangular region D ⊆ I2.

For a Copula C(u,v), the partial derivatives ∂C
∂u and ∂C

∂v exist for almost all u,v in I. Let’s say

that ∂2C
∂u∂v and ∂2C

∂v∂u are continuous and exist in I2. Then, the Copula density is defined as:

(1.2) c(u,v)= ∂2C
∂u∂v

= ∂2C
∂v∂u

.

The bivariate Copula is a cumulative distribution function with Uniform [0,1] margin, it is

used to describe the inter-correlation (dependency structure) between two random variables by

combining the bivariate distribution function with their one-dimension marginal distribution

function. Therefore, let u = FX (x) and v = FY (y) be distribution functions, then any Copula of the

form C(u,v)= C(FX (x),FY (y)) is a valid bivariate distribution function, and the inverse is also

true [82].

1.2 Sklar’s theorem

Following Sklar’s theorem [65], any bivariate joint distribution can also be written as univariate

marginal distribution functions (a unique Copula C in [0,1]), and standard uniform marginal

distributions which display the dependencies between the variables. this relationship is giving in

the following theorem.

Theorem 1.2.1. Let H be a joint distribution function with the FX and FY margins. Then a

Copula C exists such that for any x, y.

(1.3) H(x, y)= C(FX (x),FY (y)).

If FX and FY are continuous, C is unique. Otherwise, C is uniquely defined on Ran(FX )×
Ran(FY ), where Ran(FX ) and Ran(FY ) are respectively the ranges of FX and FY . In contrast,

the function H defined in (1.3) is a joint distribution function with margins FX and FY if C is a

Copula and FX and FY are distribution functions.
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For the proof of Theorem 1.2.1, see [65].

According to Sklar’s theorem, any Copula with marginal distributions as arguments is a valid

bivariate distribution, and every valid bivariate distribution may be represented as a Copula

of its marginals. It is always possible to separate the dependency structure from the univari-

ate marginals for the continuous case. Howerver, for the discrete one-dimensional marginal

distributions, we cannot assume that (1.3) is unique.

Corollary 1.2.1.1. Let H be a joint distribution function with margins FX and FY , C a Copula

defined as in (1.3), F (−1)
X (u) = inf {x ∈ R|FX (x) ≥ u} and F (−1)

Y (v) = inf {y ∈ R|FY (v) ≥ v}. Then, for

any u,v in [0,1]

(1.4) C(u,v)= H(F (−1)
X (u),F (−1)

Y (v)).

The formula giving in (1.4) presents the inversion method for constructing Copulas for joint

distribution functions in the case of continuous margins. For the case when FX and FY are

discrete marginal distributions, see [65].

If FX and FY are continuous marginal distributions, Copulas are either invariant or do not

change often for strictly monotone transformations of random variables [65].

Theorem 1.2.2. Let X and Y be continuous random variables with Copula CXY and marginals

of u,v in I2. Let a and b be strictly monotone on Ran(X ) and Ran(Y ), respectively.

• If a and b are strictly increasing, then

(1.5) Ca(X )b(Y )(u,v)= CXY (u,v).

• If a is strictly increasing and b is strictly decreasing, then

(1.6) Ca(X )b(Y )(u,v)= u−CXY (u,1−v).

• If a is strictly decreasing and b is strictly increasing, then

(1.7) Ca(X )b(Y )(u,v)= v−CXY (1−u,v).

• If a and b are strictly decreasing, then

(1.8) Ca(X )b(Y )(u,v)= u+v−1+CXY (1−u,1−v).

This Copula is named the survival Copula and will be defined by C and satisfies all Copula

properties. For proof, see [65]

Let X and Y be random variables with distribution functions FX (x) and FY (y), respectively.

The survival function is the probability that X occurs after time x, it is defined by SX (x) =
P[X > x] = 1−FX (x). Similarly, the survival function for Y is SY (y) = P[Y > y] = 1−FY (y) and

7
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the joint distribution is S(x, y)= P[X > x,Y > y]. According to Sklar’s theorem, in [65], authors

demonstrated that univariate and joint survival functions are connected as univariate and joint

distribution functions. For that, this relationship is expressed as follow:

(1.9) S(x, y)= C(SX (x),SY (y)).

Equation (1.10) is the product Copula Π. We say that X and Y are independent if and only if

its Copula is giving in (1.10).

(1.10) Π(u,v)= uv.

According to [33], the Copula C is the maximum Copula M, C(u,v) = M(u,v) = min(u,v), if Y

is a monotone increasing function of X . While we say C is the minimum Copula W, C(u,v) =
W(u,v)= max(u+v1,0), if Y is a decreasing function of X .

Theorem 1.2.3. For any Copula C and any u,v in I. The following inequalities maintain.

(1.11) W(u,v)≤ C(u,v)≤ M(u,v).

The functions W(u,v) and M(u,v) are named as the lower and upper Fréchet-Hoeffding Bounds,

respectively. For more details, see [40].

1.3 Measures of dependence

Classical measures of dependence face the challenge of including the joint distribution functions

in their structure. Fortunately, Sklar’s theorem (Theorem 1.2.1) allows us to overcome this

challenge and replace the joint distribution functions with Copulas. By doing so, it is possible

to fully remove the information from the random variable. This will reinstate the measure as

non-parametric [80], with the property of the invariance under monotonic transformations. As a

result, the measurement becomes a rank statistic, which can be taken as a more robust measure

of dependence [13]. In this section, we define the comment measures that are associated with

Copula. And the main measure used for our contribution.

The Pearson’s linear correlation coefficient is the most commonly used measure of dependence.

However, it is limited and fails to capture the dependency for most heavy tailed distributions.

Luckily, there exist other measures of dependence such as Kendall’s concordance and Spearman’s

rank correlation, they are concordance Copula-based measures. Other graphical methods to

describe the dependency between two variables are defined in [33] such as the χ-plot and K-plot.

1.3.1 Linear correlation

Definition 1.3.1. Let (X ,Y )t be a vector of random variables with nonzero finite variances. The

linear correlation coefficient ρ for (X ,Y )t is:

(1.12) ρ(X ,Y )= Cov(X ,Y )p
V ar(X )V ar(Y )

,

8



1.3. MEASURES OF DEPENDENCE

where Cov(X ,Y )= E[XY ]−E[X ]E[Y ] is the covariance of (X ,Y )t, V ar(X )= E[(X −E[X ])2] and

V ar(Y )= E[(Y −E[Y ])2] are the variances of X and Y , respectively.

The estimation of the linear correlation coefficient (1.12) is giving as:

(1.13) ρ̂(X ,Y )=

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

n∑
i=1

(yi − y)2

=

n∑
i=1

xi yi −nxy√
n∑

i=1
(xi − x)2

n∑
i=1

(yi − y)2

,

where x =
n∑

i=1
xi and y =

n∑
i=1

yi are the sample means of X and Y , respectively and n is the

sample size of a bivariate sample (xi, yi), i = 1, ...,n. The equation (1.12) of ρ, known as the linear

correlation coefficient has the following properties:

• −1< ρ(X ,Y )< 1.

• If |ρ(X ,Y )| = 1, then there is a perfect linear correlation between X and Y .

• ρ(X ,Y )= 0 if X and Y are independent. The inverse is not true.

• ρ(αx+β,γY +θ)= sgn(αγ)ρ(X ,Y ), where α, γ ∈R\{0}, beta and θ ∈R. This means that ρ is

invariant under strictly increasing linear transformations, where

(1.14) sgn(αγ)=
1 if αγ> 0,

−1 if αγ< 0 .

• X and Y are positively correlated if ρ(X ,Y )> 0.

• X and Y are negatively correlated if ρ(X ,Y )< 0.

• X and Y are linearly independent if ρ(X ,Y )= 0.

Pearson’s correlation coefficient is frequently used since it is calculated using basic distri-

butions parameters (means and variances). However, linear correlation is invariant under only

linear increasing transformations but not under general increasing transformations.

1.3.2 Measures of concordance

The measures of concordance are considered as non-parametric measures of dependence. The

most popular measures of concordance are Kendall’s tau τ and Spearman’s rho ρs, since they

overcome the drawbacks of linear correlation ρ and can capture the association for non-linear

correlation.

9
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Definition 1.3.2. Let (x, y)t and (x̃, ỹ)t be two observations of the vector (X ,Y )t of continuous

random variables. We say that (x, y)t and (x̃, ỹ)t are concordant if (x, y)(x̃, ỹ)> 0 and discordant if

(x, y)(x̃, ỹ)< 0.

Theorem 1.3.3. Let (X ,Y )t and (X̃ , Ỹ )t be independent vectors of continuous random variables

with distribution functions H and H̃ respectively, with the margins FX of X and X̃ and FY of

Y and Ỹ . Let C and C̃ be the Copulas of (X ,Y )t and (X̃ , Ỹ )t respectively. Therefore H(x, y) =
C(FX (x),FY (y)) and H̃(x, y)= C̃(FX (x),FY (y)). Let Q be the difference between the probability of

concordance and discordance of (X ,Y )t and (X̃ , Ỹ )t , i.e, let

(1.15) Q = P[(X − X̃ )(Y − Ỹ )> 0]−P[(X − X̃ )(Y − Ỹ )< 0],

then

(1.16) Q =Q(C, C̃)= 4
Ï

I2
C̃(u,v)dC(u,v)−1.

For the proof, see [21].

Corollary 1.3.3.1. Let C, C̃, and Q be as in the previous Theorem 1.3.3. We state that:

• Q(C, C̃)=Q(C̃,C), i.e. Q is symmetric in its arguments.

• If C ≺ C′,Q(C, C̃)≤Q(C′, C̃), i.e. Q is nondecreasing in each argument.

• Q(C, C̃)=Q(C, C̃), i.e. We can replace Copulas by survival Copulas in Q.

Definition 1.3.4. Let X and Y be two continuous random variables with the joint Copula C and

δ be a measure of dependence between X and Y . δ is a measure of concordance if it satisfies the

following properties:

. δ exists for every pair X, Y of continuous random variables.

. −1≤ δX ,Y ≤ 1,δX ,X = 1 and δX ,−X =−1.

. δX ,Y = δY ,X .

. If X and Y are independent, then δY ,X = δ∏ = 0.

. δ−X ,Y = δX ,−Y =−δX ,Y .

. If C and C̃ are Copulas such that C ≺ C̃, then δC ≤ δC̃.

. If (Xn,Yn) is a sequence of continuous random variables with Copulas Cn, and if Cn converges

pointwise to C, then limx→∞δCn = δC.

Definition 1.3.4 is taking from [76].

10
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1.3.2.1 Kendall’s tau τ

Kendall’s tau τ is the probability of concordance minus the probability of discordance [21]. Its

definition is giving as follow.

Definition 1.3.5. Let (X ,Y )t be a random vector. Kendall’s tau τ is defined by:

(1.17) τ(X ,Y )= P[(X − X̃ )(Y − Ỹ )> 0]−P[(X − X̃ )(Y − Ỹ )< 0],

where (X ,Y )t and (X̃ , Ỹ )t are independent copies.

Kendall’s tau τ can be estimated easily. Let A be the number concordant pairs and B the

number of discordant pairs, we also state that in the bivariate sample of size n, there are
(2
n
)

distinct pairs (x, y) and (x̃, ỹ). Therefore, Kendall’s tau τ can be estimated as follow:

(1.18) τ̂= A−B
A+B

=
(
2
n

)−1

(A−B).

Kendall’s tau τ is known as Copula-based measure of dependence. Which means that there is

a relationship between τ and Copulas, this relationship will allow us to estimate the Copula’s

parameter directly, as we will discuss it later. The following definition defines the relation between

Copula and Kendall’s tau τ.

Definition 1.3.6. Kendall’s tau for a random vector (X ,Y )t is defined as:

(1.19) τ(X ,Y )=Q(C,C)= 4
Ï

I2
C(u,v)dC(u,v)−1.

The integral above is the expected value of the random variable C(U ,V ), where U and V are

uniform margins with the joint distribution function C. This means

(1.20) τ(X ,Y )= 4E(C(U ,V ))−1.

1.3.2.2 Spearman’s rho ρs

Spearman’s rho ρs is another Copula-based measure of concordance. Its definition is giving as

follow.

Definition 1.3.7. Let (X ,Y )t be random variables. Spearman’s pho ρs formula is defined by:

(1.21) ρs = 3(P[(X − X ′)(Y −Y ′′)> 0]−P[(X − X ′)(Y −Y ′′)< 0],

where (X ,Y )t, (X ′,Y ′)t and (X ′′,Y ′′)t are independent copies.

From theorem 1.3.3 and definition 1.3.4, we get the following results.

11
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Theorem 1.3.8. For a random vector (X ,Y )t of continuous variables with Copula C. Then

Spearman’s rho ρs is defined by:

(1.22) ρs = 3Q(C,Π)= 12
Ï

I2
uvdC(u,v)−3= 12

Ï
I2

C(u,v)duduv−3,

thus, if X ∼ F1, Y ∼ F2, U = F1(X ) and V = F2(Y ), then

(1.23) ρs = 12
Ï

I2
C(u,v)duduv−3= E(UV )−1/4

1/12
= COV (U ,V )p

V ar(U)V ar(V )
= ρ(F1(X ),F2(Y )).

Theorem 1.3.9. Let X and Y be continuous random variables whose Copula is C, then Kendall’s

tau τ and Spearman’s rho ρs satisfy the properties in Definition 1.3.4 for a measure of concordance.

The proof of theorem 1.3.9 is available at [66]. This theorem demonstrates that both Kendall’s

tau τ and Spearman’s rho ρs are measures of concordance.

1.3.3 Tail dependence

Another common measure of dependence is tail dependence, it is a statistical concept that is

used to measure the degree of dependence between the extreme values of two random variables.

It is specifically designed to measure the dependence between the upper or lower tails of two

random variables. In other word, tail dependence are used to measure the probability that both

variables have extreme values at the same time. The two types of tail dependence are upper tail

dependence and lower tail dependence. Upper tail dependence measure the probability that both

variables have large values simultaneously. while lower tail dependence measure the probability

that both variables have small values simultaneously. In this section we give the basic formula of

the two coefficients motioned above. More details can be found in [65] [46]. They include many

examples and exercises to help readers better understand and apply these concepts.

The upper tail dependence coefficient λU is defined as:

(1.24) λU = lim
p→1

P(Y > F−1
Y (p)|X > F−1

X (p)),

where F−1
X (p) and F−1

Y (p) are the inverse cumulative distribution functions of X and Y , respec-

tively, and p is a probability level that approaches 1. While the lower tail dependence coefficient

λL is defined as:

(1.25) λL = lim
p→0

P(Y ≤ F−1
Y (p)|X ≤ F−1

X (p)),

where p is a probability level that approaches 0.

Intuitively, the upper tail dependence coefficient measures the probability that X is larger

than its expected value given that Y is larger than its expected value, as the probability level p

approaches 1. The lower tail dependence coefficient measures the probability that X is smaller

than its expected value given that Y is smaller than its expected value, as the probability level p

approaches 0.
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If both λU and λL are close to 1, it indicates strong tail dependence, meaning that the two

variables tend to have extreme values together. If both coefficients are close to 0, it indicates weak

tail dependence, meaning that the two variables are relatively independent in their extreme

values. If λU is close to 1 and λL is close to 0, it indicates that the two variables have only upper

tail dependence, while if λL is close to 1 and λU is close to 0, it indicates that the two variables

have only lower tail dependence.

Definition 1.3.10. Let X and Y be two random variable with margins FX and FY and C be the

joint Copula. The upper tail dependence coefficient can be expressed in term of Copula as follow:

(1.26) λU = lim
u→1

1−2u+C(u,u)
1−u

= lim
u→1

C(u,u)
1−u

.

Similary, The lower tail dependence coefficient can be expressed in term of Copula as follow:

(1.27) λL = lim
u→0

C(u,u)
u

.

Tail dependence are particularly useful in modeling extreme events, which can have a

significant impact on financial markets, insurance portfolios, and other applications where risk

management is important. By capturing the dependence structure in the tails of the distributions,

tail dependence can help to more accurately model the joint behavior of random variables and

better estimate the likelihood of extreme events. This can lead to more effective risk management

strategies and better decision-making in a variety of fields.

1.4 Families of Copulas

There are many families of Copulas that have been developed over the years, each with its own

unique characteristics and applications. We distinguish two type of Copulas.

1.4.1 Elliptical Copulas

Elliptical Copulas are a family of Copulas that have been extensively studied in the literature of

Copula theory. They are named after their characteristic elliptical shape and are popular because

of their simplicity and flexibility. These Copulas have many desirable properties, including the

ability to capture various types of dependence structures, such as positive or negative dependence,

tail dependence, and asymmetry. They are also flexible enough to be used in a wide range of

applications, including finance, insurance, engineering, and environmental studies.

There are many studies on the properties of elliptical Copulas, their applications, and their

estimation methods. The book [46] provides a comprehensive introduction to Copulas and their

applications. It includes a detailed discussion of elliptical Copulas and their properties. While

the paper [33] provides a detailed overview of Copulas, with a focus on their use in hydrology.
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Elliptical Copulas are characterized by their generator function, which is a radial function that

satisfies certain conditions. The most common generator functions for elliptical Copulas are the

Gaussian and t-generator functions. The Gaussian generator function gives rise to the Gaussian

Copula, while the t-generator function gives rise to the t-Copula. In the next subsections, we

will introduce the two most used elliptical bivariate Copulas, we refer to [65] and [46] for details

about these two Copulas and other elliptical Copulas.

1.4.1.1 Elliptical Distributions

Elliptical distributions are a family of probability distributions that exhibit a certain type of

symmetry and can be expressed as a transformation of a standard random vector. The name

"elliptical" comes from the fact that the contours of the distribution in the multivariate case form

ellipsoids. We will only introduce the needed background for this thesis. For more details see [51].

Definition 1.4.1. Let X be a n-dimensional random vector. The Probability Density Function

(PDF) of an elliptical distribution can be written as:

(1.28) ψ(X )= |Σ|−1/2 g((X −µ)Σ−1(X −µ)t),

where X is a n-dimensional random vector, µ is the mean vector, Σ is the covariance matrix, and

g(.) is a scalar function known as the generator function of the elliptical distribution.

The generator function determines the shape of the distribution and can take different forms

depending on the specific type of elliptical distribution. Some examples of elliptical distributions

include the Gaussian distribution (when the generator function is the exponential function),

the Student’s t-distribution (when the generator function is a power function), and the Laplace

distribution (when the generator function is the absolute value function). The multivariate

normal distribution Φ is a specific type of elliptical distribution, with the following PDF:

(1.29) φ(X )= 1√
(2π)n|Σ|

exp
{
−1

2
(
X −µ)

Σ−1 (
X −µ)t

}
.

Other examples of elliptical distributions include the multivariate t-distribution, which has a

PDF that is similar to the multivariate normal distribution but includes a degrees of freedom

parameter. The PDF of the multivariate t-distribution tν is given by:

(1.30) tν(x)= |Σ|− 1
2

Γ
(
ν+d

2

)
Γ

(
ν
2
)
(πν)

d
2

(
1+ X tΣ−1X

ν

)
,

where ν is the degrees of freedom parameter. and Γ is the Gamma function defined as:

(1.31) Γ(x)=
∫ ∞

0
tx−1e−tdt,

where x > 0.
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1.4.1.2 The Bivariate Gaussian Copula

The bivariate Gaussian Copula CGa
θ

is a Copula function that is mostly commonly used to model

the dependence between two random variables. Using (1.4), it can be defined as:

(1.32) CGa
θ (u,v)=Φθ(Φ−1(u),Φ−1(v)),

where u and v are the marginal distribution functions of the two random variables, Φθ is the

cumulative distribution function of the bivariate standard normal distribution with correlation

coefficient θ, and Φ−1 is the inverse of the standard normal cumulative distribution function.

The range of θ is [−1,1], where θ =−1 indicates perfect negative dependence, θ = 0 indicates no

dependence, and θ = 1 indicates perfect positive dependence. On the other hand, The Gaussian

Copula density is expressed as follow:

(1.33) cGa
θ (u,v)= φθ(s, r)

φ(s)φ(r)
,

where φθ(s, r) is the density function of the standardised bivariate normal distribution with

correlation θ and φ is the density of the standard normal distribution, s =Φ−1(u) and r =Φ−1(v).

Therefore, the equation (1.33) can be written explicity as follow:

(1.34) cGa
θ (u,v)= 1p

1−θ2
exp

[
−θ

2(s2 + r2)−2θsr
2(1−θ2)

]
.

Since Gaussian Copula belongs to the elliptical family, we state that it has radial symmetry,

that is C(u,v)= C(u,u). As a consequence, the upper and lower tail dependence coefficients are

equal. As we’ve said before, the Gaussian Copula have no tail dependence, ie:

(1.35) λU =λL = 0.

The relationship between Kendall’s tau and Copula’s parameter is given as follow:

(1.36) τ= 2
π

arcsin(θ).

While the Spearman’s rho ρs is given as follow:

(1.37) ρs = 6
π

arcsin(θ).

The formulas given in (1.36) and (1.37) can be used to model the inter-correlation between the

variables.

Simulation

• Choose a value for the correlation coefficient, θ, where −1≤ θ ≤ 1.
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• Compute the Cholesky decomposition of the correlation matrix Σ, which is a 2×2 matrix

with 1’s on the diagonal and θ as the off-diagonal elements. This yields to a lower triangular

matrix A such that Σ= AAt.

• Generate two independent standard normal random variables Z1 and Z2.

• Transform the random variables Z1 and Z2 using the Cholesky decomposition matrix A to

obtain the transformed variables X and Y as (X ,Y )t = AZ.

• Compute the Cumulative Distribution Function (CDF) of the standard normal distribution

for each transformed variable X and Y , i.e., U =Φ(X ) and V =Φ(Y ), where Φ(x) is the CDF

of the standard normal distribution.

• The resulting random vector (U ,V ) has a Gaussian Copula with correlation coefficient θ,

where U and V are uniformly distributed random variables on [0,1] and follow the Copula

distribution CGa
θ

.

(a) Copula (b) Density Copula

Figure 1.1: The Gaussian Copula plot with the paramater θ = 0.5
and normal margins, where n = 1000.

The corresponding R code of the simulation above of the Gaussian bivariate Copulas and the

plot shown in Figure 1.1 are giving in details in Appendix 4.4.

The bivariate Gaussian Copula is commonly used in various applications to model complex

dependence structures between two random variables. Unlike traditional linear models, such as

the Pearson correlation coefficient, it can capture dependencies that are not well represented by

linear relationships.

One advantage of the bivariate Gaussian Copula is that it is easy to implement and interpret,

and it allows for the use of standard statistical techniques for estimation and inference. However,

it may not be suitable for modeling non-Gaussian or heavy-tailed distributions, as it assumes

that the marginal distributions of the two variables are normal. In such cases, other types of

Copula functions, such as the t-Copula or the Clayton Copula, may be more appropriate.
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1.4.1.3 The Bivariate Student t-Copula

The bivariate Student Copula Ct
ν,θ is another elliptical Copula function that is used to model

the dependence between two random variables that follow a multivariate Student t-distribution.

Using the formula (1.4), it can be defined as:

(1.38) Ct
ν,θ(u,v)= Tν,θ(T−1

ν (u),T−1
ν (v)),

where u and v are the marginal distribution functions of the two random variables, Tν,θ is

the bivariate t-distribution with ν degrees of freedom parameter and the correlation parameter

θ between the two variables and T−1
ν is its inverse. The density of the Student t-Copula can be

expressed as:

(1.39) ct
ν,θ =

tν,θ(s, r)
tν(s)tν(r)

,

where s = T−1
ν (u) and r = T−1

ν (v). For that, using (1.30), it can be written explicitly as follow:

(1.40) ct
ν,θ(u,v)= Γ

(
ν+2

2
)
Γ

(
ν
2
)

p
1−θ2 Γ2

(
ν+1

2
)
[(

1+ s2

ν

)(
1+ r2

ν

)] ν+1
2

[
1+ s2+r2−2θsr

ν(1−θ2)

] ν+2
2

.

Similarly to the Gaussian Copula, the Student Copula is also has radial symmetry and the tail

dependence coefficients are equal. However, they exist. They are expressed as follow

(1.41) λU =λL = 2Tν+1(t),

where Tν+1 is the univariate Student distribution function with ν+1 degrees of freedom and

(1.42) t =−
p
ν+1

√
1−θ
1+θ .

Simulation

• Choose a value for the correlation coefficient, θ, where −1≤ θ ≤ 1 and the degree of freedom

ν.

• Set

(1.43) Σ=
(
1 θ

θ 1

)
.

• Compute the Cholesky decomposition L of the correlation matrix Σ.

• Generate two independent standard normal random variables Z1 and Z2.

• Generate a χ2 random variable s with ν degrees of freedom.
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• Compute the correlated standard normal random variables Y1 and Y2 as Y = LZ.

• Compute the correlated t-distributed random variables X1 and X2 as X =
√

ν
s Y .

• Transform X1 and X2 to t-distributed random variables U and V with ν degrees of freedom.

ie, set U = Tν(X1) and V = Tν(X2).

• The resulting random vector (U ,V ) has a Student Copula with correlation coefficient θ,

where U and V are uniformly distributed random variables on [0,1] and follow the Copula

distribution Ct
θ
.

(a) Copula (b) Density Copula

Figure 1.2: The Student Copula plot with the paramater θ = 0.5
and normal margins, where n = 1000.

The R code of the simulation above of the Student bivariate Copula and the corresponding

plot as shown in Figure 1.2 are given in details in Appendix 4.4.

The bivariate Student Copula allows for the modeling of heavy-tailed distributions and is more

robust to outliers compared to the bivariate Gaussian Copula. It also provides a more flexible

modeling approach since the degrees of freedom parameter ν can be estimated from the data.

However, the estimation of the bivariate Student Copula can be computationally intensive, and

the interpretation of the degrees of freedom parameter ν may not be straightforward. Additionally,

the bivariate Student Copula may not be suitable for modeling extreme values, as it assumes

that the tails of the distributions are symmetric.

Extensions of the bivariate Student Copula, such as the asymmetric Student Copula and the

skewed t-Copula, have been proposed to overcome some of these limitations and to provide a

more flexible modeling framework. See [46] and [33] for more details.

1.4.2 Archimedean Copulas

Bivariate Archimedean Copulas are useful when it comes to modeling the dependence between

two random variables with non-Gaussian distributions, where other types of Copulas may not
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be appropriate. The class of Archimedean Copulas has been named by Ling in [58], but it was

recognized by Schweizer and Sklar in [79]. It’s an important class of Copula because of the easy

way of constructing it. We will not include a lot of details about the Archimedean Copulas since

they were not used in the application chapters of this thesis. For more information about it, see

[65], [33] and [46]. The general form of a bivariate Archimedean Copula is given by:

(1.44) C(u,v)=ϕ−1(ϕ(u)+ϕ(v)),

where ϕ is called generator that it’s a continuous strictly decreasing convex function defined

from I to [0,∞] such that ϕ(1)= 0 and ϕ−1 be the inverse of ϕ and C be a Copula. If the second

derivative ϕ′′(t) exists, then the density of Archimedean Copula can be defined as:

(1.45) c(u,v)=−ϕ
′′(C(u,v))ϕ′(u)ϕ′(v)

(ϕ′(C(u,v)))3

There are several type of Archimedean Copulas, among them the Gambel CG
θ

, Clayton CC
θ

and

Frank CF
θ

Copulas. All of these Archimedean Copulas have useful properties that make them

popular choices for modeling dependence structures in multivariate and bivariate distributions.

In particular, they are computationally efficient and allow for easy estimation of parameters.

Their generators are given in Table 1.1, and the Copula formula is given in Table 1.2, where θ

is the Copula’s parameter for each Copula. While 1.3 present the density and Copula plots for

Gumbel, Clayton and Frank Copula with the parameters 1.3, 1 and −1 respectively.

Table 1.1: Generator of Archimedean Copulas.

Copula ϕ(t) ϕ−1(s) θ ∈

Gumbel (− log t)θ exp{−((− log(u))θ+ (− log(v))θ)
1
θ } [1,∞)

Clayton 1
θ
(t−θ−1) max{(1+θs)−1/,0} [−1,∞)\{0}

Frank − log( e−θt−1
e−θ−1 ) −1

θ
log[1+ e−s(e−θ−1)] R\{0}

Table 1.2: Archimedean Copulas formula.

Copula Cθ(u,v) cθ(u,v)

Gumbel exp−((log(u))θ+ ((log(v))θ))1/θ (uv)−1(log(u)log(v))θ−1(w2/θ−2 + (θ−1)w2/θ−2)Cθ(u,v)

Clayton max{(u−θ+v−θ−1)−1/θ,0} u(θ+1)(uv)θ
(uθ+vθ−(uv)θ)1/θ+2

Frank −1
θ

log[1+e−θ−(1−e−θu(1−e−θv))
1−e−θ ] θ(1−e−θ)e−θ(u+v)

(1−e−θ−(1−e−θu)(1−eθv))2
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CHAPTER 1. THE THEORY OF COPULAS

The relationships between the Copula’s generator and the measures of dependence permitted

us to compute the value assuming a Copula model (Gumbel, Clayton, . . . ). Genest and MacKay in

[34] demonstrated that the population version of Kendall’s tau is given by:

(1.46) τ= 1+4
∫ 1

0

ϕ(t)
ϕ′(t)

dt.

While the notion of tail dependence in term of Archimedean Copula’s generator is expressed in

the following theorems.

Theorem 1.4.2. Let C be be an Archimedean Copula with generator ϕ defined as follow:

(1.47) C(u,v)=ϕ−1(ϕ(u)+ϕ(v)).

If C has upper tail dependence, then ∂ϕ−1

∂t (0)=−∞ and its coefficient is given by:

(1.48) λU = 2−2lim
s→0

∂ϕ−1

∂t (2s)
∂ϕ−1

∂t (s)
.

However, if ∂ϕ−1

∂t (0) is finite, then C does not have an upper tail dependence.

Theorem 1.4.3. Let C be an Archimedean Copula with generator ϕ defined as in theorem 1.4.2,

then then the coefficient of lower tail dependence of the Copula C is given by

(1.49) λL = 2 lim
s→∞

∂ϕ−1

∂t (2s)
∂ϕ−1

∂t (s)
.

For the proof of these theorems, see [21].

Using (1.46), the measures of concordance Kendall’s tau τ and the coefficients of tail dependence

can be derived for the Archimedean Copulas families as shown in Table 1.3. We can see that the

Clayton Copula shows lower tail dependence and the Gumbel-Hougaard upper tail dependence.

However, and similarly to the Gaussian Copula, the Frank Copula does not show any tail

dependence.

Table 1.3: Measures of dependence for the Archimedean Copulas.

Copula τ λU λL Limiting and Special Cases

Gumbel θ−1
θ

2−2−1/θ 0 C1 =Π,C∞ = M

Clayton θ
θ+2 0 2−1/θ C−1 =W ,C0 =π,C∞ = M

Frank 1+ 4(D1
1(θ)−1)
θ

0 0 C−∞ =W ,C0 =π,C∞ = M

1D1(θ)= 1
θ

∫ θ
0

t
et−1 dt
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Figure 1.3: Archimedean Copulas, n=1000.

1.5 Empirical Copula

The empirical Copula is a non-parametric method for estimating the Copula function from data. It

is based on the idea of transforming the marginal distributions of a bivariate random variable into

uniform distributions and then computing the empirical distribution function of the transformed

data [22].

To estimate the empirical Copula, we start by considering a sample of n observations of a

bivariate random vector (X ,Y ). We assume that X and Y are continuous and have continuous

marginal distribution functions FX (x) and FY (y), respectively. We then transform X and Y into

uniform distributions U[0,1] using the marginal distribution functions, i.e.,

(1.50) Ui = FX (X i), i = 1,2, ...,n,Vi = FY (Yi), i = 1,2, ...,n.

We now form a new data set (Ui,Vi), and calculate the empirical distribution function of the

joint distribution of the transformed variables. This empirical distribution function is known as
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CHAPTER 1. THE THEORY OF COPULAS

the empirical bivariate Copula Ĉ, and is defined as:

(1.51) Ĉ(u,v)= 1
n

n∑
i=1
1Ui≤u,Vi≤v,

where 1i denotes the number of observations with Ui ≤ u and Vi ≤ v.

The empirical bivariate Copula Ĉ is a non-parametric estimator of the true Copula C, and

is consistent in the sense that it converges to the true Copula as the sample size n increases

to infinity. It is also known to be uniformly consistent, meaning that the maximum distance

between the empirical Copula and the true Copula converges to zero with probability one.

1.6 Conclusion

This chapter provided a brief discussion of the theory of bivariate Copulas and introduced

the mathematical formula needed for our research, which are presented in Chapters 3 and 4.

Additionally, Appendix 4.4 includes some R code to further explain how to simulate bivariate

Copulas. For a more detailed understanding of Copulas, we recommend consulting sources such

as [65] and [22].
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2
DIMENSIONALITY REDUCTION

2.1 Introduction

Throughout time, mathematicians found out that datasets don’t contain only relevant information,

it tend to be larger and more complex [31], and thus can be reduced. Therefore, the need for

powerful reduction tools and methods was rising, which gave birth to many efficient methods for

the Dimensionality Reduction process. These techniques aim to reduce the number of attributes

of datasets without losing relevant information about the data. They play an essential role in

the pre-processing steps, as they eliminate the redundancy and the noise of the data, improve

the classification accuracy and decrease the computational time, especially when working with

high-dimensional datasets, as it tend to be much more complicated than with low-dimensional

ones. While the choice of an appropriate Dimensionality Reduction technique for the data became

a must to attain the best model for the data, and the optimal accuracy [6]. Dimensionality

Reduction finds an essential purpose in statistics and machine learning, and as a result, it

has been developed for these fields and through them for decades. This made Dimensionality

Reduction methods a necessary tool for large data analysis, as they generate a smaller and less

noisy image of the large data that conserve its most important features. It was applied in different

fields as text [83], digital images [84], speech signals [11] and videos [67].

Authors divided the Dimensionality Reduction techniques into two different types, named feature

extraction and feature selection. These two patterns are described in details in the following

subsections.
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CHAPTER 2. DIMENSIONALITY REDUCTION

2.2 Feature extraction

Feature extraction is a technique that transforms the data by projecting a high-dimensional data

into a lower dimensional subspace called the principal subspace. This process generates new

features based on the raw data. The projection is done by algebraic transformation under an

optimization criteria [20] [93]. These methods make it possible to preserve the original relation

between features hence not loosing any important amount of information [1]. Feature extraction

searches for significant diminished structures of the data, this process guarantees capturing

more important information, with a reduced number of attributes compared to features selection.

Overall, feature extraction is a technique that may offers less overfitting and better accuracy

for classification, in contrast to feature selection technique. Despite that, feature extraction

techniques have their share of bad sides too. First of all, some of the extraction algorithms that

supposedly use non-linear methods, are unable to complete the mapping back from the high-

dimensional space to the low-dimensional one, making the training of some correct and useful

classification models impossible. Moreover, features extraction methods are often unsupervised,

so they lose their label information after the Dimensionality Reduction, which is essential for

certain type of applications in order to make a concluded prediction model. Also, since it produces

new and completely different features, we lose the data description linked to the original features,

and this can be a heavy drawback for many datasets [7] [18]. We distinguish two types of feature

extraction techniques: Linear and Non-linear techniques, to each its own characteristics.

2.2.1 Linear Dimensionaltiy Reduction techniques

The fact that linear Dimensionality Reduction methods work under simple geometric interpre-

tations, made them the key of analyzing high-dimensional data. They also preserve important

characteristics of the data, like the correlation, margin between the classes, and the covariance.

Thanks to that, linear Dimensionality Reduction has found many uses, such as : data compression,

cleaning noise, visualizing the data structure. Dealing with most data types with a bunch of

different methods available, gives linear Dimensionality Reduction a great complexity and a lot

of possibilities.

2.2.1.1 SVD (Singular Value Decomposition)

(SVD) [72] is an unsupervised linear feature extraction technique. It is one of the most known

tool in numerical algebra for data pre-processing and Dimensionality Reduction, because it’s

very adaptive and based on simple and interpretable linear algebra. This decomposition is done

by making a transformation that maps the data into a new more simple coordinate data. We

also find it in Fourier transformation (FFT) "data driven-transformation", machine learning like

ranking search results in the most relevant way which is used in search engines. It is the basis

for many facial recognition algorithms (identify faces in pictures).

24



2.2. FEATURE EXTRACTION

SVD works as follow, let X be a data matrix which is defined as a collection of column vectors

{X1, X2, ..., Xm}. SVD (Singular Value Decomposition) takes the matrix X and decompose it into

the product of three new matrices X =UΣV T , where U and V are the left and right matrices of

singular vector. These two matrices are orthogonal with dimensions n×m, and are hierarchically

ordered by importance, i.e. (U1 has more information than U2, U2 has more information than U3,

etc...), U contains information about the columns. While V holds the information about the rows.

Σ on the other hand is a diagonal non negative m× m matrix. Which is also hierarchically

ordered by importance and value (σ1 ≥σ2 ≥ ...≥σm ≥ 0). The SVD gives a unique result, and is

guaranteed to exist.

Choosing the number of vectors to retain, also known as the truncation value r, can be done

with different common methods. Like picking the r directly from the σ j plot as the elbow value,

where we retain only the singular values that are above that r. Or like capturing 90% or 99%

of the variance explained plot [9]. However, these methods are heuristic and most of the time

they don’t work well (a higher rank of r will result in more accuracy but a more complex model.

While a lower rank of r would give us less accuracy but with a less complex model). To deal with

that and get a balance between modeling complexity and accuracy, In [32], authors proposed an

optimal way to truncate, while having some assumptions on the data. They could look for the

best spot to retain the most information of X without over-fitting the data. They stated that the

data X can be written as:

(2.1) X = XTrue +γXNoise,

where XNoise is the noise present in the data matrix X , that XNoise is normally distributed

with a mean of 0 and a variance of 1, and γ is the noise coefficient. The r value this time is

obtained with the help of the median σmed of the values of σ in the matrix Σ, and the aspect ratio

β of the matrix X (the shape of the matrix), they infer that the max singular value of the noise

distribution named the threshold δ. While assuming that the value σmed is in the noise floor, will

give us the optimal rank of r, where:

(2.2)
δ= w(β)σmed,

w(β)= 0.56β3 −0.95β2 +1.82β+1.43,

where w represents the correction value of the aspect ratio β. The latter (based on the shape

of the data matrix) is defined as :

(2.3) β=


n
m if n < m,
m
n if n > m.

The Singular Value Decomposition SVD was applied in different fields, such as in gene

expression data [62], signal processing [92], [5] and in NLP [64].
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Constrained SVD was introduced (CSVD) [36] to deal with orthogonal and sparsity issue by

merging some constraints for more efficiency of the baseline method SVD. While in [45], authors

introduce a multi-level SVD based imputation method in order to improve the efficiency of the

pre-processing phase in various areas.

2.2.1.2 PCA (principal Components Analysis)

PCA is an unsupervised linear technique that uses eigenvectors to identify a set of uncorre-

lated attributes called Principal Components (PCs). This method is a data-driven hierarchical

coordinate system based on data that represents the statistical variation. It captures the maxi-

mum amount of variance in the data matrix X . It is known for being a powerful technique for

Dimensionality Reduction [47] and it is commonly used in data science and machine learning

applications. It first appeared in 1901 [70] and was developed by Hotelling [42], and it is still

frequently used today. In order to apply PCA on our dataset, we will be following these steps. Let

X be a matrix of n×m dimensions:

In the first step we calculate the mean of columns, which is defined as:

(2.4) xi = 1
n

n∑
i=1

xi j,

where xi j represents the observation of the ith row and the jth column of matrix X . The next step

consists on making mean-centered data, as defined in here:

(2.5) B = X − X ,

where X = {x1, x2, ..., xn}T , and then we compute the covariance matrix of the mean-centered data

B

(2.6) C = BTB.

This last step will lead us to the calculation of the eigen vectors and the eigenvalues, and also to

the construction of the Principal Components Matrix T, defined as :

(2.7)
T = BV ,

CV =V D,

where V and D are the matrices of eigen vectors and eigen values respectively, V is called the

loading matrix which describe the amount of variance of the data matrix X that the principle com-

ponents matrix V captures. The statistical representation T can also be achieved by calculating

the SVD of the mean subtracted data, where

(2.8) if B =UΣV T , then T =UΣ.
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Many truncation methods exist, and they are the same ones mentioned in the SVD section.

Another common rule called the kaiser rule [91]. It says that the eigenvalues shows how impor-

tant each component is and how much information it holds. It also says that an eigenvalue under

1 holds no more information than a single variable, and based on this rule, the PCA components

under 1 are ignored.

On the other hand, PCA suffers from the fact that each component is a linear combination of all

the original variables. Which made the interpretation of the results very difficult. To help with

that, a new method called Sparse Principal Component Analysis (SPCA) made its apparition. It

uses the LASSO (see section 2.3) to produce modified Principal Components with Sparse loadings

[96].

Rotation techniques were also introduced to support practitioners with interpreting the Principal

Components [47]. Neural Networks with Hebbian learning have been proposed for an adaptive

PCA [16]. But, the performance of these techniques is heavily dependent on the learning para-

meters, which require a lot of time to compute and to be determined. In [69], a new approach

was developed with the purpose of reducing the computation time, making it faster and easier,

titled “simple PCA”. It gives approximate solutions without the need of calculating a variance-

covariance matrix, and is independent on the learning parameters.

PCA still has other problems, like the use of an unsupervised algorithm, and it doesn’t take

advantage of the label information when classifying. Therefore, another technique was proposed

in [27], it is a discriminant analysis based on Fisher’s criterion, named “FDA”, with the aim to

maximize between-class scatter while minimizing it within-class. However, it is only suitable for

two-class classifications, and will find hard time facing multi-class problems. A newer method

called “LDA” was later published in [75], as an extension of FDA. It solves the multi-class issue,

but draws back when dealing with distributions more complex than Gaussian. And to overcome

that, [68] established in 2007 a pairwise formulation for LDA titled “Neighborhood Min-Max

Projection” (NMMP). Another problem with the LDA was that it needed a high enough amount

of train data to manage the Small Sample Size Problem (SSSP) [30], a necessity that causes

problems with small-scale data. But, it was dealt with later in [60], where authors proposed the

Angle Linear Discriminant Embedding (ALDE). One other problem with LDA was that it was

weak to outliers when it uses L2-norm in the objective function. [95] proposed a new formulation

to make the method more robust against them.

An extension of PCA using local linear approach named Local PCA (LPCA) [48] was proposed,

where results indicate higher overall performance of LPCA compared with PCA using speech

and image dataset. Generalized PCA (GPCA) was introduced to treat the large data space with

uncorrelated number of subspace [87]. Moreover, in [2], Constrative PCA was introduced aiming

for a lower dimensional system from the original data and to get better perception. It showed

good results in diffrent application fields. While SPCA was developed in [23], the technique uses

a hybrid process based on robust and scalable algorithm.
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2.2.1.3 Other linear Dimensionality Reduction techniques

An unsupervised linear Dimensionality Reduction technique was proposed [15], named Inde-

pendent Component Analysis (ICA). It models the data as a linear mixture of non-Gaussian

independent source and extracts the independent components from linear transformation of

the original data. Another unsupervised linear feature extraction technique based on the linear

approximation of non-linear Laplacian Eigen map was introduced under the name of Local

Preserving Projections (LPP) [39], with the goal to fix variation problems and achieve optimal

preservation of neighborhood structure of data.

In 2018, authors introduced a Locality-Regularized Linear Regression Discriminant Analysis

(LL-RDA) [44], that was made possible by maximizing and minimizing the inter-class and intra-

class reconstruction of local scatters respectively at the same time. While in [74], a new ICA
method using the Copula-based Hoeffeding’s measure of dependence was developed as a contrast

function and it was applied as pre-processing in time series clustering.

2.2.2 Non-linear Dimensionality Reduction techniques

But still after all, these linear methods couldn’t handle complex non-linear data. Which is why

non-linear Dimensionality Reduction techniques were needed and introduced. Lately, non-linear

Dimensionality Reduction techniques have been getting a great deal of attention, because they can

process complex non-linear data, unlike their linear counterparts. This gives them an upper hand

for real world applications as we often have to deal with complex and non-linear observations

[94] [55].

2.2.2.1 KPCA

The most known non-linear method is called KPCA [77]. It works when some datasets that aren’t

linearly separable, can be made so if their attributes are projected into a higher dimensional space.

Once there, we can apply PCA on these new linear attributes. By using arithmetic operations on

the original space, we can make the attributes become linearly separable in the new space. This

method works under the condition of minimizing the reconstruction error in the new attribute

space, for a centered dataset Φ(xi):

(2.9) min
t∑
i
∥Φ(xi)−UqUT

q Φ(xi) ∥ .

After projecting the data, we apply the SVD method on the centered features dataset Φ(X )

in the high-dimensional space, where Φ is the mapping of the original dataset and the data

projected in the higher dimensional space, therefore:

(2.10) Φ(X )=UΣV T ,
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where the eigen vectors of the covariance matrix are calculated using the following matrix

product:

(2.11) K =Φ(X )Φ(X )T .

And the eigen vectors using the dot product matrix as in PCA [78]. The only requirement is that

we calculate the dot product φ(xi).φ(x j) efficiently. A common method for doing so, is to use of the

Gaussian kernel scale of radial basis function as a way to describe locality between data points

[71]. this last is defined as:

(2.12) k(xi, x j)= exp(
− ∥ xi − x j ∥2

2σ2 ),

where σ is the width parameter of the function, that can be calculated using cross-validation.

For that, a precise rule indicates to start at the right side of the Scree Plot (the lowest eigen

values) and look at the points that fit (approximately) on a straight line, going to the left we

should look for the last point of that line, which will be our indicator of the number of components

to retain. This rule and the scree plot were proposed by Cattell (1966) [9] and revised by Cattell

and Jaspers (1967) [10].

However, KPCA suffers from extremely high computation time. Aiming to minimize that

Subset KPCA (SKPCA) was developed [88]. While others have found away to dynamically

replace old blocks of data under the name Block Adaptive KPCA (BAKPCA) [90].

2.2.2.2 Other non-linear Dimensionality Reduction techniques

Based on the specral theory, a non-linear dimentionality reduction technique was developed

named IsoMap (Isometric Mapping) [85]. This method aims to preserve the geodesic distances in

the lower-dimension. Another common unsupervised method is Locally Linear Embedding (LLE).

It focuses on preserving only local properties of the data. These techniques in addition to another

non-linear techniques were all studied against PCA [73]. They concluded that the non-linear

methods of Dimensionality Reduction are still unable to perform better than the original linear

technique PCA.

2.3 Feature selection

The other class of Dimensionality Reduction techniques is called feature selection. They are

filtration techniques that rank the datasets attributes in sort of which to keep and which to

eliminate. The most common selection techniques are the Sequential Backward SB and Forward

Selection FS, the Sequential Backward technique SB [61] takes all the datasets attributes and

start eliminating the irrelevant features one at a time based on the criterion function. While
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the sequential forward selection start with an empty set and sequentially select features to add

one by one. However, these techniques suffer from drawbacks, such as the large amount of time

complexity O(n2) as a consequence of the greedy sequential search method. for that, authors

proposed heuristic search methods. In [81], a genetic algorithm-based wrapped feature selection

for medical classification was proposed. They concluded that their approach outperformed other

methods in term of accuracy and algorithm running time. In [86], authors introduced a correlation-

based attribute selection using Genetic algorithm as an optimal search tool for selecting subset

of attributes. They proved that their approach is even more accurate when dealing with large

datasets. There have been also work involving SVD for feature selection, as in [57], where authors

proposed sparsified SVD to reduce the dimensionality more with a lower computing time named

S2R method. In [37], authors introduced the StepWise selection (SW). The main approaches of

this method are the Forward Selection FS, Sequential Backward SB and a combination of the

two, it makes a base model and then allows features to enter and leave it one at a time following

some criteria [53], until the program settles on a model that it finds best. It will then return the

results as a set of features to keep. Another powerful technique named LASSO technique was

proposed, it sums the absolute values of the model parameters, then regularizes them down until

some of the variables coefficients reach zero. Once the process is done, the variables that still

have a non-zero coefficient are chosen to be part of the final model [28]. The LASSO method can

be formulated as the following optimization problem:

(2.13) minimize||Y − Xβ||2 +λ||β||1,

where Y is the response variable, X is the design matrix of predictors, β is the vector of coefficients,

and λ is the penalty parameter. The l1 norm penalty in the second term promotes sparsity by

encouraging many coefficients to be exactly zero, leading to a simpler and more interpretable

model. However, the lasso method also has some limitations and challenges, such as: the optimal

value of λ depends on the data and the goals of the analysis, and may require cross-validation or

other tuning methods to be determined.

Similar method had been proposed in [19] named Least Angle Regression (LARS), and had

been applied as a Dimensionality Reduction technique since then [59], where standard Least-

Squares (LS) forward selection has the potential to be too greedy, and LARS tackles this issue

by making it simple to specify the LASSO sequence of variables to enter the model.

2.4 Copulas based Dimensionality Reduction

Over the last few years, researchers showed interested in feature selection using Copulas func-

tions. A greedy supervised feature selection method using multivariate Copula based mutual in-

formation was proposed [54], they compared their results against well-known mutual information-

based feature selection methods. It displayed better performance in term of classification accuracy
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and its noise tolerance property. In [63], authors developed a Copula-based Random Forest RF
method to select the relevant features. After that, the selected features were classified to a

label-valued outcome using a Random Forest RF algorithm. Similar work had been proposed to

improve the the principal component analysis (PCA) method for Dimensionality Reduction [8]

MC-PCA, where they fitted the data to the multivariate Copulas and simulate new data from

it, the simulated data is then be reduced using PCA method. They concluded that their method

enhance the performance of the principal component analysis method. However the efficiency is

not tested and a classification accuracy of the obtained PCs is required.

The major problem in dealing with high-dimensional data is to find a way to measure depen-

dence between variables without imposing constraints to estimate the marginal distributions. To

deal with that, authors introduced An unsupervised linear Dimensionality Reduction method

based on Copulas and LU- decomposition (LU-C) in [43]. This technique was introduced to

measure the dependence between variables without the need to estimate marginal distribution

in order to detect and eliminate redundant data, increase learning accuracy and improve decision

making process with maintaining of the integrity of the original data. They used statistical and

classification techniques to improve the effectiveness of their method, statically by measuring

the standard deviation of reduced datasets, and classification by fitting the reduced data to the

models: ANN, k-Nearest Neighbors (k-NN) and Naive Bayesian (NB). The goal of this paper is

to develop sampling based Dimensionality Reduction technique that can deal with very high-

dimensional datasets by taking account the heterogeneous aspects of the data and the integrity

of the original information. This approach provides a way to use binary linear programming

formulation to find a lower linear space of dimensions (column X j) of the original matrix for

maximization of redundant column. To identify and remove redundant variables from datasets,

the authors introduced the following technique: Let X be a dataset defined in n×m matrix,

X i and X j are the ith row and jth column of matrix X and let Y =Y1,Y2, ...,Ym be the decision

variables that:

(2.14) Yi =
{

1 if the redundancy of dimension X j is detected,

0 else.

Using the Gaussian Copula defined in chapter 1, they measured the dependence (the correlation

matrix Σ with m×m dimensions) between the columns and eliminate dependent columns (if Y j=1,

Y will be m×m data matrix containing 0/1 indicators) of the main matrix X and a threshold

value of Σ is used to compare the dimensions {X1, X2, ..., Xm}. The optimal solution to reduce the

dimensionality is to maximize the number of columns that will be eliminated, i.e the objective

function is presented as follow:

(2.15) Max(
m∑

j=1
(Y j)),Y j ∈ {0,1}, j = 1, ...,m.
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Under the following constraints:

(2.16)


∑

k∈Bc

αk Xk = 0 ⇐⇒ αk 6= 0,∀k ∈ Bc,

Bc = { j ∈ {1, ...,m}/yj = 0},

Y j ∈ {0,1},∀ j ∈ {1, ...,m},

where (m−k) presents the deleted dimensions, k the dimension of the subspace of Bc and α is a

vector representing the coefficients of the linear combination of dimensions. The first constraint

verifies the linear independence of the column X i, i = 1, ...,k belonging to the subset Bc, the

second one shows that for i = 1, ...,k, X i is not redundant and the third constraint shows that Y j

is the m-dimensional vector of binary decision variables. The method that the authors proposed is

divided into two steps, step one consist on constricting the dependent sample subsets Si,(i=1,...,k′),

as follow:

1. Calculate the empirical Copula to visualize the dependence.

2. Determine the theoretical Copula using the data based on scatter plot of the empirical

Copula and the marginal distributions of the datasets.

3. Analyze the dependence between the variables using the Copula’s parameter and regroup

dimensions having the strong correlation relationship (the correlation parameter (|θ| > 0.7)

in each sample subset Si,(i=1,...,k′).

To define the coefficients of linear sample combinations and come up with a low linear space

(X i,i=1,...,k) of the original matrix, in Step 2, the authors proposed the LU-decomposition (forward

substitution) to solve the linear system equations α×S′ = C, where C is a column vector in the

dependent sample subsets Si,(i=1,...,k′), α j is an output vector representing the coefficients of the

linear combination of dimensions and S′
i,(i=1,...,k′−1) is a lower triangular matrix without column

C, this system is defined as:

α1

α2
...

αn




x11

x21 x22
...

...
. . .

xn1 xn2 . . . xnn

=


c1

c2
...

cn

 .

Therefore,

(2.17)


α1 = c1

x11
,

αi = 1
xii

[ci −
i−1∑
j=1

α jxi j], i = 2, ...,n.

The authors used 4 real-world datasets available in [17], to apply their approach and compare

it with knowing Dimensionality Reduction techniques. Also, to improve the efficiency of the
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proposed technique, they used statistical and classification methods. The first dataset (Pima

Diabetes Database) contains 2 variables present the result of diabetes test where 268 (34.9%)

tested positive and 500 (65.1%) tested negative. The second dataset (waveform Database) is

presented in a matrix with 33367×21 where the variables are between 0 and 6. The third dataset

(Human activity recognition using smart phone) presents a result of an experiment and it contains

two different matrix with 7352×128 and 7352×384 dimensions, each matrix will be reduced

separately. The fourth dataset (Thyroid disease diagnosis problem) contains measurements of the

thyroid gland hormones presented in a matrix with 7200×561. To better visualize the dependence,

the authors calculated the empirical Copula and plotted the result for the 5 different datasets

and using the goodness-of-fit test, they concluded that all the datasets have the same distribution

as the Gaussian Copula and it will be used as the theoretical Copula in their approach. The

authors used several techniques to reduce the dimensionality and their approach in order to

compare between the results of reduction obtained from the different technique, these results are

presented in the table below:

Table 2.1: Dimensionality Reduction results (number of columns reduced).

SVD PCA SPCA LU-C
Pima Diabetes 0 4 2 5

Waveform 5 15 15 17
Human Activity 1 23 102 93 107
Human Activity 2 112 337 338 339
Thyroid Disease 180 500 519 520

The truncation of the three features extraction is made as follow: the r value for SVD is

selected by capturing the only positive non-zero eigen-values on the diagonal matrix, while the

Kaiser rule is used for PCA, and for SPCA, the reduction process is performed by retaining the

number of non-zero loadings and the percent of explained variance. From Table 2.1, SVD gives

the lowest number of Dimensionality Reduction, while SPCA and PCA work very well and have

good result. However the proposed approach LU-C provides the best results of reduction with

the 5 different datasets and it overcome the weakness of the other techniques. To describe the

performance of the Dimensionality Reduction for all the methods, the authors used standard

deviation of a set of results as a statistical precision tool, they concluded that the proposed ap-

proach performed better than the other 3 methods because it has the smallest bias and standard

deviations are more stable, also it overcome the weakness of SVD and PCA when we are deal-

ing with large database. To improve the effectiveness of dimentionality reduction and compare

the proposed approach with the other methods, the authors used classification models ANN, K-
NN and NB and they concluded that their approach yields the highest precision and lowest recall.

LU-C shows good results and reduces a high amount of redundancy compared to other power-

ful techniques. However, in the second stage of this technique, authors used LU-decomposition as
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a tool to find the coefficients of linear sample combinations, this method gives a good solution

but includes a lot of operation (n2 operation), which takes time and past by a lot of operations,

especially in the data setting. Also, the method doesn’t covers non-linear dependency, which

can lead to redundancy and noise in data. Additionally, LU-C is not reproducible since the data

used are modified (the used datasets doesn’t have the same dimensions as in [17]). Beside that,

statistical precision is not suitable for feature selection techniques, since the input and output

variables are the same. On the other hand, LU-C is an unsupervised feature selection technique

compared against the feature extraction methods SVD, PCA and SPCA. The choice of truncation

for SVD is not optimal, authors may consider using the technique explained in (2.2). Beside that,

the comparison would be more appropriate to be performed against feature selection techniques

since LU-C is a feature selection technique, such as: LASSO, SW and LARS.

2.5 Conclusion

This chapter gave a general overview about most common feature extraction and selection

techniques to reduce dimensions of large data, and also, how authors used Copulas in the

pre-processing field. We’ve seen that each method has strengths and weakness. Our goal is to

overcome their weakness. Therefore, 2 feature selection techniques are proposed in the next

chapter (chapter 3), and another feature extraction technique is proposed in chapter 4.
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3
FEATURE SELECTION BASED ON BIVARIATE COPULAS

3.1 Introduction

After we’ve learnt in the previous chapter how different Dimensionality Reduction techniques

work, and the theory behind them. We’ll have a much more practical approach in this chapter.

Aiming to demonstrate the benefits of our 2 proposed approach: Bivariate Copulas-based Feature

Selection (BCFS) and Grouped Bivariate Copulas-based Feature Selection (GBCFS). To do so,

these methods are compared against similar well known methods. We take a more in-depth look

at the algorithms behind the approaches, and apply all the former methods on different real life

datasets. We then sort the results in order to observe their perks and strong points, how they

face each individual dataset, and how they perform in real life situation. A discussion to analyse

the results and to compare the methods will conclude the chapter while achieving its goal.

3.2 BCFS

Starting by the first proposed approach BCFS. As we explained in section 2.4, the Dimensionality

Reduction technique based on Copulas and LU-decomposition (LU-C) proposed in [43] gives

good results against well-known methods. However it includes a complex optimization problem

and passes by a lot of operations, this leads to a long processing time (O(m2n2) ). To improve

that we propose a new filtering method with less complex model and time complexity, it is built

using an algorithm programmed in R, and uses bivariate Copula as a tool to detect redundancy

between each two attributes in order to eliminate one of them. BCFS will have to outperform

other methods of Dimensionality Reduction by having more accuracy, and better reduction of the

data.
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3.2.1 The method

This section focuses on introducing the BCFS technique using the bivariate Copulas and the

algorithm behind it.

Let X be the input matrix of n× m dimensions containing redundant variables. In order to

transform the matrix X ’s attributes into random variables between [0,1]. We use the pseudo

observation transformation defined in (3.1) by forcing the variates to fall inside the open unit

hypercube.

(3.1) ui j =
r i j

n+1
,

where i ∈ {0, ...,n}, j ∈ {0, ...,m} and r i j denotes the rank of X i j among all Xk j, where k ∈
{0, ...,n}. Next, in order to visualize the dependency between the pairs attributes, we use (1.51) to

calculate and plot the bivariate empirical Copulas for each pair of attributes After that we follow

these steps:

1. Determine the bivariate theoretical Copulas for each pair using the data based on the

scatter plot of the bivariate empirical Copula and the marginal distributions of the datasets.

2. Pick the first pair of attributes.

3. Calculate Kendall’s tau τ.

4. Deduce the bivariate theoretical Copula’s parameter using (1.36).

5. Eliminate one of the correlated attributes if |θ| >= 0.5, where θ is the Copula’s parameter.

Otherwise skip to the next pair of attributes and go back to step 3.

6. After all the attributes are tested, we get a new reduced data as output with uncorrelated

attributes holding the same information as the input matrix.

Algorithm 1: Dimensionality Reduction using BCFS.
Input: Dataset matrix X .
Output: Matrix of reduced dataset X .

1 begin
θ=NULL.
for i := 1 to m do

2 for j := 1 to m do
3 θi j = sin(π/2×τi j).
4 if |θi j| >= 0.5 then
5 Delete one of the attributes.

6 end
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Figure 3.1: Flowchart of BCFS.

Figure 3.1 and Algorithm 1 represent the BCFS method. Taking as an input the data matrix.

This algorithm checks for inter-correlation between two attributes and eliminate one attribute

each time correlation is detected.

The choice of which attribute to eliminate between the two is random, as the first one detected

will be directly flagged for elimination. We then apply the same procedure to all the possible pairs,

leaving us with new relevant and uncorrelated datasets representing the same information as the

input matrix. We used the relationship given in (1.36), because the Gaussian Copula correspond

to our dataset (see section 3.4 for more details).

To improve our algorithm, and to reduce its time complexity, we use a method proposed in

[50] and has been described with more details in [3] and [14] named Fast Kendall’s tau instead

of the commonly used method for calculating the Kendall’s tau τ (time complexity of O(n2)). It

uses a process called sorting by exchanging that decreases the time complexity to O(n logn). The

equation of Fast Kendall’s tau is presented in (3.2).

(3.2) τ= 4A
n(n−1)

−1,
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where A defines the concordant pairs. This leads to an initial time complexity of O(m2n logn) for

the entire Algorithm 1. But, due to the nature of this algorithm, the time complexity is variable

and decreases each time an attribute is eliminated. The memory complexity on the other hand is

O(m×n). In Figure 3.2, we can see an illustration of how our approach BCFS treats the data,

using the matrix X as an input for Algorithm 1, we eliminate k redundant attributes where

1≤ k ≤ m−1. As an output we get a reduced and relevant data where 1≤ l ≤ m−k.

Figure 3.2: Illustration of BCFS.

3.3 GBCFS

In this section, we discuss the second proposed approach GBCFS in more details published in

[24], and see how the mathematical assets are combined with our program to achieve the desired

outcome.

3.3.1 The method

Let X be a matrix of n×m dimensions. GBCFS is an optimization work of the previous method

BCFS. This time, instead of directly deleting one of the detected correlated attributes (as we’ve

seen in the previous section), we take one given attribute Xk, where k ∈ {1, ...,m}, and group all

attributes that are correlated with it. We then do the same for the rest of k ∈ {1, ...,m}, and class

all these groups in one vector. Afterwards, we choose the largest group (the one containing the

most correlated elements) and eliminate all attributes correlated with Xk from the data matrix

X , we then redetermine the next largest group and keep deleting until no correlation is left in

the data. The whole process follows these steps:

1. Determine the bivariate theoretical Copulas for each pair of attributes.

2. Measure the bivariate theoretical Copula’s parameter θ between the attribute Xk where

k ∈ {1, ...,m} and the rest of the attributes {X1, ..., Xk−1, Xk+1, ..., Xm}.

3. If |θ| >= 0.5 (correlation detected), store the correlated attributes with Xk in Gk, where Gk

is the group of the attributes that are correlated with Xk, and G represents all the groups

of the correlated attributes.
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4. Pick the largest group in G, named G l .

5. Eliminate all the attributes in the data matrix X and the groups G, which were selected in

the group G l .

6. If there are groups left in G, go back to step 4, otherwise go to the next step.

7. Obtain a new uncorrelated output matrix X of n× (m− p) dimensions, where p is the

number of deleted attributes after all the process is done, this new matrix holds the same

information as the input matrix X .

In step 1, in order to fit the data to the theoretical Copula, the attributes must be random

variables between [0,1]. To do so, we use (3.1) (as in BCFS technique). While in step 2, the

Copula’s parameter is determined using the relationship between Kendall’s tau τ and the

Copula’s parameter. For a less time complexity, (3.2) is used (as in BCFS technique).

Algorithm 2 and Fig 3.3 clarify the proposed method GBCFS, taking as an input a large data

Algorithm 2: Dimensionality Reduction using GBCFS.
Input: Dataset matrix X .
Output: Matrix of reduced dataset X .

1 begin
G <−m×m matrix.
θ=NULL.
l=NULL.
for i := 1 to m do

2 for j := 1 to m do
3 Calculate the Copula’s parameter θi j.

if |θi j| >= 0.5 then
4 G i j = j

5 for i := 1 to m do
6 Pick G l the largest group in G.

for j := 1 to m and j ∈G l do

7 eliminate X j from X .
eliminate G j from G.

8 end

matrix Xnm containing redundant attributes, and an output of only relevant data matrix Xn(m−p)

clear of p redundant features, and holding the same information as the input large data matrix

X . The time complexity of this algorithm is equal to O(m2nlogn), with memory complexity of

O(m×n).
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Figure 3.3: Illustration of GBCFS.
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3.4 Experimental results

The aim of this section is to show the performance of the two proposed method BCFS and GBCFS
by implementing it to real world datasets, we firstly apply the methods, and then compare it

against each other and other methods introduced in chapter 2, which are, the unsupervised

technique LU-C, and the supervised techniques: LASSO, SW and LARS in term of reduction

and classification accuracy. All results shown below were taken out from simulations run on

RStudio using R version 4.1.3 [9] (64bit), and a PC with the following specs: CPU: Intel Core

i5-9300H (4 Cores, 8 Threads, up to 4.10 GHz), RAM: 8GB DDR4 (2666 MHz), GPU: GTX 1050,

Disk: SSD and OS: Win 10 (64bit). The datasets Ionosphere, Sonar, Wpbc and Waveform were

selected from UCI machine repository [17]. While Scene datasets was obtained from LIBSVM

repository. A short description about the data is given in Table 3.1.

Table 3.1: Summary of the used datasets.

Data No. rows No. of attributes No. of class
Ionosphere 351 34 2

Sonar 208 60 2
Wpbc 198 32 2

Waveform 5000 50 3
Scene 2407 294 14

3.4.1 Fitting to Copulas

Starting from step 1 of our method as shown in Figure 3.1 and 3.3, we fit our data to several

Copulas using the package "Copula" [41]. Figures 3.4, 3.5,3.6, 3.7 and 3.8 represent the scatter-

plots of the empirical Copula generated using (1.51) (3.4a,3.5a, 3.6a, 3.7a and 3.8a), of the

theoretical Gaussian Copulas generated using (1.32) (3.4b,3.5b, 3.6b, 3.7b and 3.8b), and of the

Gaussian density Copulas using (1.34) (3.4c,3.5c, 3.6c, 3.7c, 3.8c) for the Ionosphere, Sonar, Wpbc,

Waveform and Scene datasets respectively. From these scatter-plots, we can assume that the

Gaussian Copula is the most suitable for these five datasets. To confirm our theory, we run the

goodness of fit test [35] on the bivariate empirical Copulas and the bivariate theoretical Gaussian

Copulas. This process verifies that our choice of Copulas is the most appropriate for all the

datasets.
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(a) Empirical Copula. (b) Normal theoretical Copula. (c) Normal Copula density.

Figure 3.4: The attributes pair (X4, X22), θ = 0.655 of Ionosphere dataset.

(a) Empirical Copula. (b) Normal theoretical Copula. (c) Normal Copula density.

Figure 3.5: The attributes pair (X7, X15), θ = 0.377 of Sonar dataset.

(a) Empirical Copula. (b) Normal theoretical Copula. (c) Normal Copula density.

Figure 3.6: The attributes pair (X6, X25), θ =−0.055 of Wpbc dataset.
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(a) Empirical Copula. (b) Normal theoretical Copula. (c) Normal Copula density.

Figure 3.7: The attributes pair (X1, X2), θ =−0.007 of Waveform dataset.

(a) Empirical Copula. (b) Normal theoretical Copula. (c) Normal Copula density.

Figure 3.8: The attributes pair (X1, X2), θ = 0.940 of Scene dataset.

3.4.2 Dimensionality Reduction

After selecting the best Copula for our data, we apply the two Algorithms 1 and 2, we use the

package "pcaPP" [26] to perform the fast Kendall’s tau τ in order to increase the algorithm’s

speed. We run the other unsupervised reduction method: LU-C technique, and the supervised

methods: LASSO, SW and LARS using the package "lars" [38], where the hyper-parameter is

tuned by selecting the smallest rmse for each model using 10 cross-validation method, and the

StepWise selection SW with the best model criteria [53]. In order to investigate the efficiency of

the proposed method, we compute the running time for each methods. The obtained results are

given in Tables 3.2 and 3.3 for the unsupervised and supervised methods respectively.

Table 3.2: Dimensionality Reduction using unsupervised methods.

Datasets
Original data GBCFS BCFS LU-C

D D T D T D T
Ionosphere 34 7 0.134s 11 0.132s 22 0.259s

Sonar 60 20 0.279s 25 0.200s 37 1.423s
Wpbc 32 7 0.092s 9 0.060s 14 0.250s

Waveform 50 27 1.579s 28 1.461s 38 7m 9s
Scene 294 30 36.44s 40 10.18s 104 25m 47s
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Table 3.3: Dimensionality Reduction using supervised methods.

Datasets
Original data LASSO SW LARS

D D T D T D T
Ionosphere 34 14 0.0508s 21 0.558s 14 0.149s

Sonar 60 27 0.131s 24 0.476s 28 0.217s
Wpbc 32 10 0.056s 15 0.255s 10 0.125s

Waveform 50 33 0.056s 29 3.162s 32 0.142s
Scene 294 128 20.28s 68 35.10s 134 24.17s

3.4.3 Classification accuracy

After reducing the dimensions, three classification models were used to demonstrate the perfor-

mance of the proposed approaches BCFS and GBCFS, and also the other methods. These models

are: “Artificial Neural Network ANN” [4], “Random Forest RF” [56] and “AdaBoost AB”. This

simulation was achieved using the following R packages: “neuralnet” [29], “caret” [52], “dplyr”

[89] and “fastAdaboost” [12]. The reduced data are normalized and shuffled to reduce the risk of

over-fitting, and the models are performed using 10 folds cross-validation in order to obtain the

most verifiable results. Table 3.4 summaries the obtained mean accuracy values of the 10-folds

for each model.

Table 3.4: The Values of model accuracy.

Models Data Original GBCFS BCFS LU-C LASSO SW LARS

ANN

Ionosphere 0.834 0.918 0.891 0.858 0.850 0.854 0.849
Sonar 0.719 0.806 0.816 0.726 0.790 0.775 0.769
Wpbc 0.742 0.871 0.824 0.773 0.751 0.695 0.751

Waveform 0.832 0.835 0.833 0.824 0.827 0.814 0.820
Scene 0.628 0.665 0.656 0.604 0.625 0.635 0.617

RF

Ionosphere 0.926 0.923 0.934 0.918 0.932 0.923 0.931
Sonar 0.827 0.808 0.827 0.802 0.800 0.798 0.803
Wpbc 0.793 0.808 0.803 0.798 0.793 0.763 0.793

Waveform 0.816 0.827 0.826 0.818 0.820 0.824 0.816
Scene 0.708 0.754 0.735 0.668 0.708 0.702 0.717

AB

Ionosphere 0.911 0.920 0.931 0.914 0.918 0.909 0.910
Sonar 0.779 0.812 0.831 0.800 0.802 0.765 0.798
Wpbc 0.693 0.799 0.792 0.785 0.726 0.718 0.726

Waveform 0.826 0.852 0.840 0.812 0.826 0.824 0.816
Scene 0.631 0.644 0.636 0.612 0.622 0.589 0.599

3.4.4 Discussion

After running our two algorithms (BCFS and GBCFS), we get the results given in Table 3.3.

They indicate that BCFS eliminated a lot of redundant attributes in a low amount of time. It

deleted 23 attributes from the Ionosphere datasets, 35 attributes from the Sonar datasets, 23
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attributes from the Wpbc datasets, 22 attributes from the Waveform datasets and 254 attributes

from the Scene datasets. Leading us to a new reduced matrix of 11, 25, 9, 28 and 40 dimensions

for those datasets respectively. On the other hand, GBCFS reduced a large amount of redundancy

in also a low amount of time. As it eliminated 27 attributes from the Ionosphere datasets, 40

attributes from the Sonar datasets, 25 attributes from the Wpbc datasets, 23 attributes from

the Waveform datasets and 264 from the Scene datasets. Leaving us only with 7, 20, 7, 27

and 30 relevant attributes for those datasets respectively. Table 3.4 shows the accuracy of the

results obtained above. It demonstrates the efficiency of both BCFS and GBCFS, as we notice

an improvement in the accuracy compared to the original data for most of the simulation values

in all three different classification models for 2 and multi-class datasets.

Alongside our methods, we ran four other feature selection techniques in the simulations in order

to compare the reduction results and the efficiency. As shown in Table 3.2 and 3.3, these methods

reduced an important amount of redundancy. However, GBCFS reduced the most, thanks to its

advantages over the other methods. Which consists on the fact that BCFS and LU-C methods

eliminate the attributes randomly and GBCFS doesn’t. While LASSO, LARS technique and SW
selection are supervised methods and the proposed techniques aren’t. We also notice that the

supervised techniques are fast for small and large data, where their time complexity depends

on tuning the hyper-parameter. Contrarily to LU-C method, as LU-C technique has the highest

computational time of O(m2n2). In Table 3.4, we can observe a higher accuracy on most models

with the GBCFS method, indicating an improvement after the reduction of attributes. We do

notice some falling behind in few accuracy values indeed, but the difference is really small, and

the majority of values are higher with the GBCFS. From this point, we can affirm with confidence

that the proposed methods BCFS and GBCFS are efficient techniques for reducing dimensions,

and improving the accuracy of the classification models. It also reduce the computational time of

the models since it provide us with a smaller and more relevant version of the data.

3.5 Conclusion

In this chapter, we proposed two new unsupervised non-linear filtering feature selection tech-

niques under the name of BCFS and GBCFS. This techniques eliminate redundant attributes of

large data based on inter-correlation, which is detected using bivariate Copulas. The proposed

method GBCFS is an improvement of BCFS technique, as it offers a non-random elimination

of attributes, which is determined in a way to optimize and achieve better results. GBCFS was

compared against BCFS, LU-C, LASSO, LARS and SW selection in term of Dimensionality

Reduction and computational time by applying them on five real-world datasets, and in term of

accuracy using different classification models. The results indicate that GBCFS performs better

in most situations. We see an improvement in the quality of reduction since we introduced the

grouping algorithm, providing us with more reduction as well as a better accuracy than BCFS
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method (which means increased efficiency), and making this method the best in most of the

obtained results. Despite not being the highest in very few classification results, it stays really

close to the best, and it is a negligible drawback compared to the important gain in Dimensionality

Reduction. All of this made GBCFS the right method to optimize the pre-processing step in data

mining, by capturing only relevant information and cleaning the data from redundancy, which in

turn improves data analysis, machine learning algorithms, and the performance of models with

an important computational time.
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FEATURE EXTRACTION BASED ON BIVARIATE COPULAS

4.1 Introduction

Beside the two feature selection techniques BCFS and GBCFS, we developed an unsupervised

feature extraction technique named BCFS based PCA (BCFS-PCA) published in [25]. The

method aims to improve the perfomance of PCA in term of reduction and information extraction.

The proposed method is compared against the baseline method PCA and another method that

combines multivariate Copulas and PCA to see how it improves PCA, and also against the

feature extraction technique SVD and KPCA, where these four last methods are introduced

in chapter 2. The comparison is made using real world data according to the Dimensionality

Reduction, and the classification accuracy using Random Forest RF model of the new reduced

data.

4.2 Methodology

This section aims to explain the steps we followed for the proposed technique. The method

consists on following a two-stages process by combining BCFS and PCA for Dimensionality

Reduction BCFS-PCA. We start by the BCFS technique to select only relevant attributes. For

that, a theoretical bivariate Copula estimation for each two attributes of the data matrix X is

needed. We choose the bivariate Gaussian Copula expressed in (1.34), which corresponds to our

experimental results. The correlation coefficients between the variables are estimated using

(1.36).

This relationship facilitates the definition of the inter-correlation between the variables as

explained in chapter 1, which leads to eliminating correlated attributes and reduces redundancy

in the data X. After that, the second stage consist on performing the PCA method to the reduced
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data using BCFS technique, as explained in subsection 2.2.1.2. An illustration of the proposed

method is given in Figure 4.1.

Figure 4.1: An illustration of BCFS-PCA.

4.3 Experimental results

In order to investigate the performance of the the proposed technique BCFS-PCA against MC-
PCA, PCA, SVD and KPCA, we implemented it to two real-world datasets (small and large

data). Then, the obtained Principal Components are compared with the help of the diagram scree

plot, but also with their accuracy value through the Random Forest RF classifier.

4.3.1 Small data

In this part, we used a small data for a more in-depth look into the correlation matrix and the

process of the selection of variables for both methods BCFS-PCA and MC-PCA, which is much

clearer in a data with less attributes.

Decathlon2 dataset: The Decathlon2 dataset is a matrix of 27 observations and 13 at-

tributes available in the package "factoextra" [49], where the last attribute corresponds to the

class column. This attributes present athletes performance during two sporting meetings, where

the columns from 1 to 10 define the scores of the athletes for the 10 decathon events. The next

2 attributes correspond to the rank and the points earned respectively, and the final column

contains a category variable for the athletic event: 2004 Olympic Game and 2004 Decastar.

4.3.1.1 Fitting to Copulas

Using the package "Copula" [41], we fit the data to different Copulas. Figures 4.2a, 4.2b and 4.2c

show the plots of the empirical Copula density, the Gaussian theoretical Copula and the Gaussian

empirical Copula of the decathlon2 dataset, which illustrate a good fit to the Gaussian Copula for

this data. In order to confirm that, a goodness of fit test [35] is performed on the multivariate

estimated Gaussian Copula, and each estimated bivariate Gaussian Copula.

Table 4.1 presents the correlation matrix of the Gaussian Copula corresponding to our dataset.

These coefficients were obtained using (1.36). BCFS reduces dimensions by eliminating the

correlated attributes from the original dataset. Therefore, using the correlation matrix, the

method eliminates these 7 redundant attributes: {X2, X4, X5, X6, X7, X11, X12}, leading to a new
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reduced matrix with 5 columns: {X1, X3, X8, X9, X10}. On the other hand, the MC method elimi-

nates the non correlated attributes from the generated data of the Gaussian Copula, based on

the estimated correlation matrix. It deletes the variables: {X9, X10} and selects the correlated

variables: {X1, X2, X3, X4, X5, X6, X7, X8, X11, X12}.

(a) Empirical Copula. (b) Normal theoretical Copula.

(c) Normal Copula density.

Figure 4.2: The attributes pair (X1, X6), θ = 0.697 from ”decathlon2” dataset.
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Table 4.1: Estimated Gaussian Copula’s parameter for Decathlon2 datasets.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X1 1 -0.71 -0.36 -0.32 0.54 0.70 -0.28 0.10 -0.16 -0.16 0.41 -0.78
X2 1 0.36 0.22 -0.50 -0.58 0.18 0.07 0.09 0.31 -0.53 0.66
X3 1 0.64 -0.12 -0.21 0.73 -0.23 0.48 -0.03 -0.58 0.74
X4 1 -0.25 -0.17 0.46 -0.57 0.20 -0.19 -0.50 0.51
X5 1 0.70 -0.14 0.13 0.12 0.23 0.45 -0.54
X6 1 -0.42 0.06 0.28 -0.12 0.37 -0.55
X7 1 -0.39 0.27 0.07 -0.61 0.56
X8 1 0.02 0.39 -0.04 -0.01
X9 1 -0.04 -0.40 0.44
X10 1 -0.30 0.01
X11 1 -0.76
X12 1
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4.3.1.2 Performing PCA.

After fitting the data to the corresponding Copula, and reducing the dimensions, we proceed to

the next step and perform PCA to the reduced data using both methods and the original dataset,

and also SVD and KPCA. Table 4.2 and Figure 4.3 represent the ratios of population variance

related to principal components and the scree plot respectively.

(a) BCFS-PCA. (b) PCA.

(c) MC-PCA.

(d) SVD. (e) KPCA.

Figure 4.3: Scree plot of decathlon2 datasets.
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Table 4.2: PCs of Decathlon2 datasets.

PC1 PC2 PC3 PC4 PC5
BCFS-PCA 1.3270483 1.1504737 0.9452370 0.7582466 0.6685374

PCA 2.27262402 1.32180748 1.29068176 1.04960508 0.78881606
MC-PCA 2.2878610 1.5811571 0.9888946 0.7331171 0.5447678

SVD 4225.095 82.89466 24.13306 22.39354 11.95112
KPCA 0.03703705 0.03703704 0.03703704 0.03703704 0.03703704

PC6 PC7 PC8 PC9 PC10
BCFS-PCA / / / / /

PCA 0.76774029 0.63021515 0.53611073 0.45157436 0.38070509
MC-PCA 0.4462264 0.3371441 0.3046095 0.1864597 0.1146765

SVD 6.430171 2.286536 1.604018 1.133431 0.8659114
KPCA 0.03703704 0.03703704 0.03703704 0.03703704 0.03703704

PC11 PC12
BCFS-PCA / / /

PCA 0.27450132 0.00512123 /
MC-PCA / / /

SVD 0 0.7247563 0.1520537 /
KPCA 0.03703704 0.03703704 ...
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4.3.1.3 Classification accuracy

In order to measure the performance of our approach against the other methods, we perform a

classification method for accuracy. We do that by using the model Random Forest RF [56] through

the package "caret" [52]. We firstly shuffle and normalize the reduced datasets to minimize the

risk of over-fitting, RF is then performed under 10 folds cross-validation to obtain the most

truthful results. The accuracy values of the models are given in Table 4.3, and plotted to visualize

the performance in Figure 4.4.

Table 4.3: RF accuracy of decathlon2 dataset.

No. attributes BCFS-PCA PCA MC-PCA SVD KPCA
1 0.6333 0.5185 0.4814 0.5701 0.5073
2 0.7037 0.4667 0.556 0.6583 0.6416
3 0.7167 0.5667 0.4583 0.6667 0.6583
4 0.7583 0.6917 0.4417 0.6833 0.7083
5 0.8148 0.6833 0.5083 0.7333 0.6917
6 / 0.7250 0.5750 0.7167 0.6667
7 / 0.7917 0.6417 0.7500 0.7250
8 / 0.7750 0.5083 0.8083 0.7333
9 / 0.7407 0.5167 0.7750 0.7000

10 / 0.7778 0.5583 0.8000 0.7250
11 / 0.7917 / 0.7333 0.7167
12 / 0.8083 / 0.7917 0.7667
... / / / / ...
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Figure 4.4: Accuracy of decathlon2 dataset.

4.3.2 Large data

To see how the method performs on larger data, we introduce the next dataset:

Sonar datasets: The "Sonar" data is composed of 111 patterns available at [17], obtained by

bouncing Sonar signals off a metal cylinder from different angles. The "Sonar.rocks" data contains

97 other patterns obtained from rocks instead. Each pattern is described by 60 numbers ranging

from 0.0 to 1.0. The label associated with each observation contains the letter "R" for rock and
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"M" for the metal cylinder. The labels numbers on the other hand, are in an increasing order

depending on the aspect angle.

4.3.2.1 Fitting to Copulas

As we did for decathlon2 datasets, we fit the data to the corresponding Copula which in this case

is the Gaussian Copula. Figures 4.5c, 4.5b and 4.5a represent the plots of the Gaussian Copula

density, theoretical Copula and the empirical Copula of the Sonar datasets for the couple (X2, X3).

While Table 4.4 shows the reduction results after applying the BCFS and MC method.

(a) Empirical Copula. (b) Normal theoretical Copula.

(c) Normal density Copula.

Figure 4.5: The attributes pair (X2, X3), θ = 0.659 from ”Sonar” dataset.

Table 4.4: Selected variables for Sonar dataset.

Datasets Original data BCFS MC
Sonar 60 25 54
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4.3.2.2 Performing PCA

In this part, we apply PCA to the output of both BCFS and MC. Table 4.5 and Figure 4.6

show the ratios of the population of the Principal Components, and the scree plot, using the five

methods BCFS-PCA, PCA, MC-PCA, SVD and KPCA respectively.

Table 4.5: PCs of Sonar datasets.

PC1 PC2 PC3 PC4 PC5
BCFS-PCA 2.4446911 1.8391889 1.4040616 1.2486493 1.0824996

PCA 3.49398540 3.36724365 2.26494881 1.84594534 1.73327666
MC-PCA 3.36788430 3.26025401 2.40882551 1.74063719 1.50395664

SVD 40.62628292 10.70937595 8.55873747 5.22294450 4.38161550
KPCA 0.072314673 0.049871618 0.021547068 0.016311559 0.013741493

PC6 PC7 PC8 PC9 PC10
BCFS-PCA 1.0429182 1.0007814 0.9504712 0.9073542 0.8734395

PCA 1.56172889 1.40263862 1.35199094 1.24079676 1.22256345
MC-PCA 1.45839122 1.31614855 1.25237476 1.14865434 1.12353354

SVD 4.01841431 3.95531866 3.08788940 2.84903749 2.63780853
KPCA 0.011535316 0.010854956 0.007850860 0.006113269 0.005425382

PC11 PC12 PC13 PC14 PC15
BCFS-PCA 0.8234273 0.8084142 0.7373793 0.7316819 0.6882025

PCA 1.11587102 1.06826681 1.02381040 0.96077600 0.92556913
MC-PCA 1.03029094 1.01924852 0.96477626 0.93419626 0.91377904

SVD 2.44678089 2.27954487 2.07433464 1.86076429 1.78354939
KPCA 0.005085615 0.004663958 0.004291771 0.003362361 0.002964842

PC16 PC17 ...
BCFS-PCA 0.6779643 0.6597789 ...

PCA 0.90364549 0.86067703 ...
MC-PCA 0.85950587 0.82533601 ...

SVD 1.67637642 1.61361118 ...
KPCA 0.002652953 0.002523338 ...
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(a) BCFS-PCA. (b) PCA.

(c) MC-PCA.

(d) SVD. (e) KPCA.

Figure 4.6: Scree plot of Sonar datasets.

4.3.2.3 Classification accuracy

In order to compare the five methods, we fit the PCs obtained from the Sonar large data to the

classification model "Random Forest" RF, and we measure the accuracy for each selected PCs
(the same method and packages we used for decathlon2 dataset are applied in this case). The

results are given in Table 4.6 and Figure 4.7.
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Table 4.6: RF accuracy of Sonar dataset.

No. of PCs BCFS-PCA PCA MC-PCA SVD KPCA
1 0.6273 0.5556 0.4340 0.6005 0.6093
2 0.6490 0.6058 0.4904 0.6305 0.6345
3 0.7692 0.7307 0.4952 0.6936 0.6303
4 0.8365 0.7307 0.5527 0.7639 0.7501
5 0.8413 0.8077 0.5048 0.7937 0.8123
6 0.8125 0.7885 0.4615 0.7787 0.7837
7 0.8221 0.8125 0.5000 0.7749 0.8067
8 0.8317 0.7981 0.4856 0.7640 0.8175
9 0.8125 0.7981 0.4760 0.7637 0.8035
10 0.8269 0.8173 0.5144 0.8044 0.8079
11 0.8223 0.8368 0.5590 0.7542 0.8169
12 0.8361 0.8127 0.5234 0.7782 0.8175
13 0.8175 0.8166 0.5088 0.7635 0.8164
14 0.8177 0.8142 0.5483 0.7743 0.8066
15 0.8328 0.8130 0.5563 0.8081 0.8027
16 0.8421 0.8181 0.5531 0.7790 0.8129
17 0.8232 0.8166 0.5160 0.7648 0.8216
18 0.8229 0.8174 0.5879 0.7803 0.8139
19 0.8170 0.8035 0.5726 0.8179 0.8025
20 0.8261 0.8186 0.5667 0.8175 0.8213
... ... ... ... ... ...
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Figure 4.7: Accuracy of Sonar dataset

4.3.3 Discussion

1. Decathlon2 datasets: After applying the Dimensionality Reduction method BCFS, we

applied PCA on the 5 features selected of the BCFS method. The proposed method is

compared against MC-PCA, and the baseline methods PCA, SVD and KPCA. The acquired

PCs are given in Table 4.2. Based on the Kaiser rule [91], the eigenvalues show how

important each component is and the amount of information it holds. It also states that
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an eigenvalue with a value less than 1 holds no more information than a single variable.

Following that statement, only 2 PCs are selected in BCFS-PCA, 3 PCs in MC-PCA, and

4 PCs in PCA method. For SVD technique, the truncation value r is obtained using (2.2)

explained in chapter 2. The captured PCs correspond to the values of eigenvalues larger

or equal to the threshold δ= 9.1542 in Table 4.2. In other words, only 5 PCs are selected.

For KPCA, only 3 PCs are selected using the elbow rule explained in chapter 2. Figure 4.8

illustrates the truncation, where the selected PCs correspond to the eigenvalues above the

the truncated red line.

(a) BCFS-PCA. (b) PCA.

(c) MC-PCA.

(d) SVD, δ= 9.1542. (e) KPCA.

Figure 4.8: Selected PCs for decathlon2 datasets.
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After extracting the PCs, a classification accuracy analysis is performed to compare the

different methods, where the results are given in 4.3 and Figure 4.4. We notice that MC-
PCA gave a low accuracy for several selected PCs, and did not increase the performance of

PCA method. Howerver on the other hand, BCFS-PCA showed a higher accuracy compare

to the four methods under different number of selected PCs for the model RF.

(a) BCFS-PCA. (b) PCA.

(c) MC-PCA.

(d) SVD, δ= 1.1893. (e) KPCA.

Figure 4.9: Selected PCs of Sonar datasets.

2. Sonar datasets: The first stage of the proposed method BCFS selected 25 attributes out of
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60, as it eliminated 35 redundant attributes. The MC method on the other hand eliminated

only 6 attributes and selected 54 variables. In the second stage, and after applying PCA on

the results acquired from stage one, we get the PCs given in Table 4.5. By applying the

same truncation methods used for decathlon2 datasets, we conclude that we can select only

7 PCs using BCFS-PCA, 12 PCs using PCA and MC-PCA methods, 20 PCs using SVD
with a threshold equal to δ= 1.1893, and 13 PCs using KPCA. The truncation is shown in

Figure 4.9

Table 4.6 shows the accuracy values obtained after fitting the PCs to RF. We can observe

that the BCFS-PCA outperformed the other four methods for various numbers of selected

PCs. However, it should be noted that MC-PCA indicated low values of accuracy, hence it

did not improve the performance of PCA at all.

The achieved results show that BCFS-PCA not only selects less attributes and eliminates more

redundancy, but also enhances the extracted PCs in term of classification accuracy and modeling,

for both small and large data.

4.4 Conclusion

The main goal of this chapter is to improve the performance of the feature extraction method

PCA, by reducing as much irrelevant features as possible. The method is an enhancement of

the baseline technique PCA, that combines it with the Dimensionality Reduction method BCFS.

It demonstrated better results in clearing redundancy compared to MC-PCA, PCA, SVD and

KPCA, but also in improving the classification model RF. Using real-world datasets as a sample

for the experimental results, BCFS-PCA selected the minimum number of attributes, and had a

higher efficient accuracy on the model RF for different amounts of selected PCs. For that reason,

BCFS-PCA is an ideal method to optimize the data pre-processing, as it enhances data analysis

by extracting the strictly needed information only. This implies more optimized machine learning

algorithms, and better performance of models with a significant computational time.
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APPENDIX

Code

Simulation of the Gassian bivariate Copula.

The following R code correspond to the simulation of the bivariate Gaussian Copula giving in

chapter 1 on page 15 with normal margins.

#Set the seed for reproducibility.
>set.seed(180)
#Choose a value for the correlation coefficient, theta, where -1 <= theta <= 1.
>theta <- 0.5

# Compute the Cholesky decomposition of the correlation matrix Sigma.
>Sigma <- matrix(c(1, theta, theta, 1), ncol = 2)
>A <- chol(Sigma)

# Generate two independent standard normal random variables Z1 and Z2.
>Z <- matrix(rnorm(n = 1000*2), nrow = 2)

# Transform the random variables Z1 and Z2 using the Cholesky decomposition matrix A.
> X <- A %*% Z

# Compute the cumulative distribution function (CDF) of the standard normal
distribution for each transformed variable X and Y.

>U <- pnorm(X[1,])
>V <- pnorm(X[2,])

>Gauss.cop1<- cbind(U,V)

# Print the first five rows of the bivariate Gaussian Copula.
>head(Gauss.cop1)

U V
[1,] 0.3745051 0.6559069
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[2,] 0.8727994 0.4487043
[3,] 0.2657744 0.2967683
[4,] 0.5969068 0.2609988
[5,] 0.6884883 0.4078758
[6,] 0.2457123 0.4702010

Copula visualization

The plot of the Gaussian Copula with θ = 0.5 presented in Figure 1.1a is generated using the

following code:

# Plot the Gaussian Copula.
>plot(U, V, xlab = "U", ylab = "V")

While the corresponding density Copula presented in Figure 1.1b is obtained using the following

code:

# Create a Gaussian Copula object with the specified correlation.
>norm.cop <- normalCopula(param = theta, dim = 2)

# Plot the Gaussian Copula density.
>persp(norm.cop,dCopula, xlab ="U", ylab = "V" , zlab="c(U,V)")

Using the estimated Kendall’s tau.

The relationship between kendall’s tau τ and the Copula’s parameter θ giving in (1.36), allows us

to obtain a more suitable Copula. To do so, we follow this code:

# Set the seed for reproducibility.
>set.seed(180)

# Generate a 1000 x 2 matrix of standard normal random variables.
Z <- matrix(rnorm(n = 1000*2), ncol = 2)

# Compute the Kendall’s tau correlation coefficient between the two variables.
>tau <- cor(Z, method = "kendall")[1,2]

# Compute the Copula parameter theta from the Kendall’s tau correlation coefficient.
>theta <- sin((pi/2) * tau)

# Create a normal Copula object with the computed parameter theta.
>Gauss.cop2 <- normalCopula(dim = 2, param = theta)

# Generate 1000 samples from the normal Copula.
>u <- rCopula(1000, Gauss.cop2)

64



4.4. CONCLUSION

# Print the first five rows of the bivariat e Gaussian Copula.
>head(u)

[,1] [,2]
[1,] 0.940995038 0.07102679
[2,] 0.513410765 0.58586152
[3,] 0.866764730 0.79797598
[4,] 0.009021473 0.46479192
[5,] 0.394972091 0.60580576
[6,] 0.309862720 0.03904465

For Spearman’s rho ρ we use the same code, however we change these two lines in the

previous code using (1.37):

>rho.s <- cor(Z, method = "spearman")[1,2]
>theta <- sin((pi/6) * rho.s)

Comparison

Now, let’s compare between these two gaussian Copulas and see which one suits the data better.

#Calculating Kendall’s tau of the 2 normal samples.
>tau<-cor(Z,method="kendall")
> tau

[,1] [,2]
[1,] 1.000000000 -0.006094094
[2,] -0.006094094 1.000000000

#Calculating Kendall’s tau of the 2 first generated Gaussian Copula "Gauss.cop1"
samples.

>cor(Gauss.cop1,method = "kendall")
U V

U 1.0000000 0.3064104
V 0.3064104 1.0000000

#Calculating Kendall’s tau of the 2 second generated Gaussian "Gauss.cop2" Copula
samples (using Kendall’s tau).

>cor(u,method = "kendall")
U V

U 1.0000000 0.3170531
V 0.3170531 1.0000000
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We can see that the estimated value of correlation obtained using Kendall’s tau "Gauss.cop2"

is closer to the correlation between the normal distributed couples (Z1, Z2). This means that

Kendall’s tau is key find when it comes to estimating the Copula’s parameter.

Simulation of the bivariate t-Copula.

The bellow R code correspond to the simulation of the bivariate Student Copula giving in chapter

1 on page 17 with normal margins.

#For same sample of Z.
>set.seed(180)
# Set correlation coefficient and degrees of freedom.
>theta<- 0.5
>nu <- 3

# Correlation matrix Sigma.
>Sigma <- matrix(c(1, theta, theta, 1), ncol=2)

# Cholesky decomposition L of correlation matrix Sigma.
>L <- chol(Sigma)

# Simulate independent standard normal random variables.
>Z <- matrix(rnorm(n = 1000*2), ncol = 2)

# Simulate chi-squared random variable.
>S <- rchisq(n=1000, df=nu)

# Compute the correlated standard normal random variables Y1 and Y2.
>Y <- Z %*% t(L)

# Compute the correlated t-distributed random variables X1 and X2.
>X <- sqrt(nu/S) * Y

# Transform X1 and X2 to t-distributed random variables U and V.
>U <- qt(pt(X[,1], df=nu), df=nu)
>V <- qt(pt(X[,2], df=nu), df=nu)

# Combine U and V into a matrix.
>t.cop1 <- cbind(U,V)

# Print the six first values of U and V.
>head(t.cop1)

U V
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[1,] -0.3312392 0.08440337
[2,] 5.2889578 5.51481815
[3,] 0.6981046 -0.35067600
[4,] -0.2097863 -0.22959658
[5,] -0.9390116 -1.07764164
[6,] -0.7998438 -0.41368443

Copula visualization

The plot of the Student Copula with θ = 0.5 presented in Figure 1.2a is obtained using the same

code of Gaussian Copula, i.e:

# Plot the sample.
>plot(U, xlab="U", ylab="V")

Similarly, the density plot of the Student Copula shown in Figure 1.2b is generated using the

same code of plotting the Gaussian Copula. However, the "tCopula" function is used instead of

"normalCopula", i.e:

# Create a Student Copula object with the specified correlation theta and the degree
of freedom nu.

>st.cop <- tCopula(param = theta, dim = 2,df=nu)

# Plot the Student Copula density.
>persp(st.cop,dCopula, xlab ="U", ylab = "V" , zlab="c(U,V)")

Using the estimated Kendall’s tau.

In order to estimate the t-Copula’s parameter, and as we did for the Gaussian Copula. We use

(1.36). The code goes as follow:

# Set the seed for reproducibility.
set.seed(180)

# Generate a 1000 * 2 matrix of standard normal random variables.
>Z <- matrix(rnorm(n = 1000*2), ncol = 2)

# Compute the Kendall’s tau correlation coefficient between the two variables.
>tau <- cor(Z, method = "kendall")[1,2]

# Compute the Copula parameter theta from the Kendall’s tau correlation coefficient.
>theta <- sin((pi/2) * tau)

# Create a normal Copula object with the computed parameter theta.
>t.cop2 <- tCopula(dim = 2, param = theta)
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# Generate 1000 samples from the normal Copula.
>u <- rCopula(1000, t.cop2)

# Print the first five rows of the bivariate t-Copula.
>head(u)

[,1] [,2]
[1,] 0.90917508 0.101969239
[2,] 0.52273411 0.642276741
[3,] 0.91158510 0.856908103
[4,] 0.08188587 0.476154696
[5,] 0.44346909 0.556955628
[6,] 0.08123545 0.001859567

Comparison

In order to compare between the two Copulas, and as we did for the Gaussian Copula. We

calculate the correlation using kendall’s tau of the obtained samples from "t.cop1" and "t.cop2",

and see which value is closer to the correlation value between Z1 and Z2 "tau".

#Calculating Kendall’s tau of the 2 normal samples.
tau<-cor(Z,method="kendall")
> tau

[,1] [,2]
[1,] 1.000000000 -0.006094094
[2,] -0.006094094 1.000000000

#Calculating Kendall’s tau of the 2 first generated Student Copula "t.cop1" samples.
>cor(t.cop1,method = "kendall")

U V
U 1.0000000 0.2693213
V 0.2693213 1.0000000

#Calculating Kendall’s tau of the 2 second generated Student "t.cop2" Copula samples
(using Kendall’s tau).

>cor(u,method = "kendall")
[,1] [,2]

[1,] 1.00000000 -0.02005205
[2,] -0.02005205 1.00000000

It is clear that "t.cop2" is more suitable for the random variables Z1 and Z2 compared to

"t.cop1".
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GENERAL CONCLUSION

The most powerful trait of machine learning is that the machine can be built to make very

complex decisions just by learning them from real life data, which due to its source, is filled with

inconsistency, redundancy, and noise. However, if we seek high-quality decisions, we must provide

high-quality data. Luckily, data pre-processing was made to ensure this essential condition, it’s

an operation that cleans the input data through many steps before we use it for the learning.

One of the most crucial steps in pre-processing is the Dimensionality Reduction, which aims to

eliminate noise and undesired redundancy by removing irrelevant or redundant information

from the data. Therefore, the major goal of this thesis is to deal with this issue and derive new

Dimensionality Reduction techniques by eliminating the redundant attributes using sampling

methods. The introduced techniques in chapter 3 and 4 are based on the theory of Copula, since

this latter provide us with the possibility to detect redundancy and eliminate it using the cor-

relation between the variables without the need to impose constraints to specify the types of

marginal distributions

The first proposed technique named Bivariate Copulas based Feature Selection BCFS introduced

in section 3.2 is a Dimensionality Reduction method that eliminates redundancy by modeling

correlation using Copulas. BCFS Indicated good results against the unsupervised feature selec-

tion technique LU-C and the supervised feature selection techniques LASSO, SW and LARS,

due to its low time complexity (Om2n logn) and being able to capture more redundancy and

eliminate it. Also, it improved the models accuracy using several data and outperformed the

baseline methods. However, this technique eliminates redundancy randomly as we explained in

section 3.2. To deal with that, we optimized the technique by proposing another Dimensionality

Reduction technique named Grouped Bivariate Copulas based Feature Selection GBCFS. The

technique is introduced in details in section 3.3. GBCFS showed better results compared to

BCFS and the other techniques in term of reduction and elimination of noise and redundancy.

As a result, it improved the models accuracy for almost all the datasets.

Another Dimensionality Reduction technique was proposed in chapter 4 under the name BCFS-
PCA. It is a feature extraction technique that combines the BCFS method proposed in chapter 3

and the feature extraction method PCA introduced in chapter 2. The established approach is an

improvement of PCA. The achieved results indicate that not only BCFS improved the reduction

of PCA, but, BCFS-PCA outperformed the linear feature extraction techniques MC-PCA, SVD
and the non-linear feature extraction technique KPCA for small and huge data. Also, in term of
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accuracy using Random Forest RF model.

The obtained results in chapter 3 and 4 imply that copula is a powerful tool when it comes to

data pre-processing and machine learning, due to its capacity of capturing non-linear dependence

easily, without using marginal distribution. However, handling all attributes at once can lead

us to better results using multivariate analysis instead of bivariate analysis, therefore, future

work will focus on developing a new unsupervised filtering technique using multivatiate Cop-

ulas instead, it will allow as to treat all the attributes at once using the multivariate Copulas

correlation matrix. We will also focus on using the other type of Copulas such as Student Copula

and Archimedean copulas. One can also use the theory of Copula to improve the other feature

extraction techniques as we did for PCA.
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ABSTRACT

The task of modeling high dimensional datasets has become increasingly difficult and
challenging due to the large amount of redundancy present in the data. This redundancy
often leads to the presence of noise and inaccurate data modeling and analysis results.

While numerous statistical methods have been proposed to address this problem, many of them
involve multiple operations and have high time complexity, often resulting in poor classification
performance. To deal with that, in this thesis, three Dimensionality Reduction based on the
inter-correlation between the huge data attributes are proposed, where this correlation is modeled
using the theory of Copulas. The first two Dimensionality Reduction techniques aim to reduce
redundancy by selecting only relevant attributes. While the third proposed technique is a feature
extraction process that combines Principal Component Analysis PCA and the bivariate Copulas.
All these techniques are performed using real-world datasets and compared against powerful
Dimensionality Reduction methods in term of reduction, information capturing and models
accuracy of the obtained reduced data to evaluate the effectiveness of each technique.

Keywords
Copulas, Feature Selection, Feature Extraction, Dimensionality Reduction, Inter-correlation,
PCA.
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RÉSUMÉ

La tâche de modélisation des données de haute dimension est devenue de plus en plus
difficile en raison de la grande quantité de redondance présente dans les données. Cette
redondance conduit souvent à la présence de bruit et à des résultats de modélisation

et d’analyse de données inexactes. Bien que de nombreuses méthodes statistiques aient été 
proposées pour résoudre ce problème, beaucoup d’entre elles impliquent plusieurs opérations et 
ont une complexité temporelle élevée, ce qui se traduit souvent par de mauvaises performances 
de classification. Pour résoudre ce problème, dans cette thèse, trois techniques de réduction des 
dimensions basées sur l’intercorrélation entre les attributs des grosses données sont proposées, 
où cette corrélation est modélisée à l’aide de la théorie des copules. Les deux premières tech-
niques de réduction des dimensions visent à réduire la redondance en ne sélectionnant que les 
attributs pertinents. Tandis que la troisième technique proposée est un processus d’extraction des 
caractéristiques qui combine l’analyse en composantes principales (ACP) et les copules bivariées. 
Toutes ces techniques sont réalisées à l’aide données réels et comparées à des méthodes puissantes 
de réduction des dimensions en termes de réduction, de capture d’information et d’exactitude des 
modèles des données réduites obtenues pour évaluer l’efficacité de chaque technique.

Keywords
Copules, Selection des Caractéritiques, Extraction des Caractéristiques, Réduction des Dimen-
sions, Intercorrélation, ACP.
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الملخص

99

 مھمة تصمیم نماذج لمجموعات بیانات عالیة الأبعاد أصبحت مھمة صعبة وتحدي متزاید بسبب الكم الھائل من التكرار
 الموجود في البیانات، الذي یؤدي في كثیر من الأحیان إلى وجود ضوضاء ونتائج تحلیلیة غیر دقیقة للبیانات. وعلى

 الرغم من اقتراح العدید من الطرق الإحصائیة لحل ھذه المشكلة، فإن العدید منھا یتطلب عملیات متعددة ولھا تعقید عالي،
 مما یؤدي في كثیر من الأحیان إلى أداء ضعیف للتصنیف. وللتعامل مع ھذه المشكلة، یتم في ھذه الرسالة اقتراح ثلاث

 تقنیات لتخفیض الأبعاد بناءً على الترابط بین سمات البیانات الكبیرة، حیث یتم تمثیل ھذا الترابط باستخدام نظریة
 الكوبولاس. تھدف التقنیات الأولى والثانیة إلى تقلیل التكرار عن طریق اختیار السمات ذات الصلة فقط. فیما یتعلق

 بالتقنیة الثالثة المقترحة، فإنھا عملیة استخراج للمیزات تجمع بین تحلیل العناصر الرئیسیة والكوبیولا ثنائیة المتغیرات.
 یتم تنفیذ كل ھذه التقنیات باستخدام مجموعات بیانات من العالم الحقیقي ومقارنتھا مع طرق قویة لتقلیل الأبعاد من حیث

الحد من الأبعاد والتقاط المعلومات ودقة النماذج التي تم الحصول علیھا من البیانات المخفضة لتقییم فعالیة كل تقنیة

9

الكلمات المفتاحیة
. الكوبولاس، استخراج المیزات، تقلیل الأبعاد، ترابط،تحلیل العناصر الرئیسیة 

.
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