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 ملخص

استقرارًا لنظام وأكثر اقتصادا وأماناً  تشغيل ة مهمة لتحقيق حالةسأل( مORPD) الارتكاسية للاستطاعة الأمثلالتوزيع يعد 

 الداله بتقليلك و ذل مامعقدة لتحديد متغيرات التحكم المثلى لمختلف معدات النظ صياغتها كمسألةالكهربائية. يتم  تاشبكال

لة سأتلفة في حل م. تم اقتراح العديد من التقنيات للتغلب على التعقيدات المخالتشغيل قيودمع الأخذ بعين الاعتبار  الهدف

ORPDة صعبة. يمثل التوازن بين هاتين الخاصيتين مشكلالاستغلالستكشاف وو هما الا لبحثتين لآليب ، والتي تتميز 

ة ( باعتبارها خوارزميABCخوارزمية مستعمرة النحل الاصطناعية ). أثبتت المسألة لحجودة للحل أفضل  للتوصل

الأساسي  ABCعند الاستغلال حيث يصبح تحسين إصدار  ةفيضع أنها جيدة في الاستكشاف وبمشهورة  معروفة و

بحث  والتي تتمتع بأفضل قدرة حديثاً،قائمة على سرب تم تطويرها  جديدةهي خوارزمية  (SSAخوارزمية )ضرورياً. 

 هجين جمنه وتطبيق تطوير تم ، البحث هذا في  كل تكرار لاكتشاف الحلول الواعدة. الحلول فيمحلية باستخدام أفضل 

 خوارزمية استغلال قدرة تعزيز المقترح النهج يحاول. ORPD مشكلة لحل SSA و ABC خوارزميات على يعتمد جديد

ABC باستخدام SSA .كفاءة من التحقق يتم ABC-SSA قياسية أربعة شبكات اختبار باستخدام ,IEEE 30bus  

,IEEE 57bus IEEE 118 bus   و على النطاق الواسع IEEE 300 busالأخذ بعين الاعتبار دوال  خلال من وذلك

 ليالك والانحراف (،Ploss) الاستطاعة الفعالة ضياعات إجمالي ذلك في بما ORPD الخاصة بمسألة الشهيرة الهدف

 تم يالت المحاكاة نتائج أثبتت. التحميل قضيب( VSI) الجهد استقرار ومؤشر المقنن الجهد مقدار من( TVD) للجهد

 مت التي الأخرى الأمثلة تقنياتالو SSA و ABC من كفاءة كثرالأ يه ةالمقترح ABC-SSA طريقة أن إليها التوصل

 .محور البحث الأدبيات في مؤخرًا تطويرها

( Ploss)الاستطاعة الفعالة  ضياعات ،إجمالي( ORPD) الارتكاسية للاستطاعة الأمثلالتوزيع : المفتاحيه الكلمات

 سرب خوارزمية و الهجينة الاصطناعية النحل ،مستعمرة( VSI) الجهد استقرار ،مؤشر( TVD) للجهد الكلي ،الانحراف

 (.ABC-SSA) سالب

Abstract 

Optimal Reactive Power Dispatch (ORPD) is an important task for achieving more 

economical, secure and stable state of the electrical power system. It is expressed as a 

complex optimization problem that is stated to identify the optimal control variables of 

various regulating equipments for minimizing an objective function under constraints. Many 

meta-heuristic techniques have been proposed to overcome various complexities in solving 

ORPD problem, which are characterized by exploration and exploitation of the search 

mechanism. The balance between these two characteristics is a challenging problem to attain 

the best solution quality. The Artificial Bee Colony (ABC) algorithm as a reputed meta-

heuristic has proved its goodness at exploration and weakness at exploitation where the 

enhancement of the basic ABC version becomes necessary. Salp Swarm Algorithm (SSA) is a 
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newly developed swarm-based meta-heuristic, which has the best local search capability by 

using the best global solution in each iteration to discover promising solutions. In this 

research, a novel hybrid approach based on ABC and SSA algorithms (ABC-SSA) is 

developed and applied for solving ORPD problem. The proposed approach tries to enhance 

the exploitation capability of the ABC algorithm using SSA. The efficiency of ABC-SSA is 

investigated using four standard test systems IEEE 30bus, IEEE 57bus, IEEE 118bus and 

large-scale IEEE 300bus and that by considering the famous objective functions in ORPD 

problem including total transmission active power losses (Ploss), Total Voltage Deviation 

(TVD) from the rated voltage magnitude and the Voltage Stability Index (VSI) of load buses. 

The reached simulation results have proved that the proposed ABC-SSA is more efficient 

overcoming ABC, SSA and other recently developed meta-heuristic optimization techniques 

in the literature. 

Key words: Optimal reactive power dispatch (ORPD), Total transmission active losses 

(Ploss), Total voltage deviation (TVD), Voltage stability index (VSI), Hybrid artificial bee 

colony and salp swarm algorithm (ABC-SSA). 

 

Résumé 

La répartition optimale de la puissance réactive (ORPD) est une tâche importante pour 

atteindre un meilleur état d’économie, de sécurité et de stabilité du système de l’énergie 

électrique. Il s'agit d'un problème d'optimisation complexe qui vise à identifier les variables 

de contrôle optimales des différents équipements de régulation du réseau afin de minimiser 

une fonction objective sous contraintes. De nombreuses techniques méta-heuristiques ont été 

proposées pour surmonter les diverses complexités dans la résolution du problème ORPD, qui 

sont caractérisées par l'exploration et l'exploitation du mécanisme de recherche. L'équilibre 

entre ces deux caractéristiques est un défi à surmonter pour aboutir à une meilleure qualité de 

solution. L'algorithme de la colonie Artificiel des Abeilles (Artificial Bee Colony - ABC) est 

une méthode méta-heuristique réputée, s'est avéré efficace en matière d'exploration et faible 

en matière d'exploitation, ce qui rend nécessaire l'amélioration de la version de base de 

l'algorithme ABC. L'algorithme Salp Swarm (SSA) est une méta-heuristique nouvellement 

développée, basée sur un essaim, qui possède la meilleure capacité de recherche locale en 

utilisant la meilleure solution globale à chaque itération pour découvrir des solutions 
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prometteuses. Dans ce sujet de recherche, une nouvelle approche hybride basée sur les 

algorithmes ABC et SSA (ABC-SSA) est développée et appliquée pour résoudre le problème 

ORPD. L'approche proposée tente d'améliorer la capacité d'exploitation de l'algorithme ABC 

en utilisant SSA. L'efficacité de l'ABC-SSA est examinée en utilisant quatre réseaux 

électriques d'essai standard : IEEE 30 bus, IEEE 57 bus, IEEE 118 bus et IEEE 300 bus à 

grande échelle, en tenant compte des célèbres fonctions objectives du problème ORPD, 

notamment les pertes totales de puissance active de transmission (Ploss), l'écart total de 

tension (TVD) par rapport à l’amplitude de tension nominale et l'indice de stabilité de la 

tension (VSI) des jeux de barres de charge. Les résultats de simulation obtenus ont prouvé que 

l'ABC-SSA proposé est plus efficace que l'ABC, le SSA et d'autres techniques d'optimisation 

méta-heuristiques récemment développées dans la littérature du domaine d’application. 

Mots cles : Répartition optimale de la puissance réactive (ORPD), pertes actives totales de 

transmission (Ploss), déviation totale de la tension (TVD), indice de stabilité de la tension 

(VSI), algorithme hybride de colonie d'abeilles artificielles et d'essaim salpêtre (ABC-SSA). 
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CHAPTER 1 

INTRODUCTION 

The Optimal Reactive Power Dispatch (ORPD) is an optimization problem recognized as 

an important tool in the electrical power engineering area, to manage reactive power in 

electrical networks. The main objective of ORPD is to assess the optimal operating state of 

the electrical power grid based on the criteria of economy, service quality and security. 

Economy and service quality require appropriate voltage control at all buses of the system 

with tolerable limits to ensure proper reactive power flows and minimal active transmission 

losses. On the other hand, the security of the power system requires sufficient voltage levels 

and reactive reserves to prevent voltage stability failures and to maintain the integrity of the 

power grid in a safe state when critical unforeseen events occur. Power grid security control 

can be performed by improving the voltage stability margin reflected by the Voltage Stability 

Index (VSI) or minimizing the Total Voltage Deviation (TVD) from the rated voltage 

magnitude. The aforementioned goals of ORPD problem can be achieved through the optimal 

adjustments of all kinds of control variables in the power system given by the voltage 

magnitude at all buses of generation (continuous control variables), tap setting transformers 

and reactive power from volt-amper reactive (VAR) compensators (discrete control variables). 

By combining these two types of control variables, the ORPD becomes a Mixed Integer 

Nonlinear Programming (MINLP) optimization problem. The mono-objective resolution of 

ORPD is stated for minimizing the transmission power active losses (Ploss), reduce the TVD or 

improve the VSI related to load buses, while accomplishing the satisfaction of predefined 

operational constraints related to the physical system. Generally, the classifications of the 

optimization problems are done according to the mathematical features of the fitness function, 

constraints and control variables. The problem formulation of any optimization problem can 

be thought of as a sequence of steps [1]. These steps are: 

 Formulating objective functions 

 Choosing the design variables (control and state variables) 

 Formulating constraints 

 Setting up variable limits 

 Choosing an optimization technique to solve the problem 
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 Solving the problem in order to obtain the optimal solution. 

In literature, many classical optimization methods have been applied to solve the ORPD 

problem. Linear Programming (LP), Nonlinear Programming (NLP) [1] and Newton method 

[2] were among the presented techniques in literature. Unfortunately, these conventional 

methods present some drawbacks in dealing with non-convex and MINLP optimization 

problems considering non-differentiable objective functions and constraints. These methods 

have also proved premature convergence trapping in local optima by solving complex 

optimization problems. Recently, computational intelligence methods have been imposed as 

an alternative to the classical optimization techniques called meta-heuristics, which are based 

on mimicking physical or biological phenomena and their main advantage concerns the ability 

in dealing with combinatorial and non-convex optimization problems. Another interesting 

feature is that, no requirements are imposed for these methods to get differentiable 

mathematical constraints and objective functions. Many meta-heuristic optimization 

techniques have been developed in recent years, and each of them is inspired according to a 

natural phenomenon. Some of them have been widely employed in solving the ORPD 

problem, such as Genetic Algorithms (GA) [3], Particle Swarm Optimization (PSO) [4], 

Artificial Bee Colony (ABC) [5], Firefly Algorithm (FA) [6], Gravitational Search Algorithm 

(GSA) [7], and  Whale Optimization Algorithm (WOA) [8]. 

There  is no guarantee for a particular meta-heuristic algorithm to reach a perfectly 

optimal solution, and none of them can solve all optimization problems effectively referring 

to the No Free Lunch (NFL) theorem [9]. Therefore, wide research works have been 

elaborated to enhance the search capability of some meta-heuristics in solving ORPD 

problem. Generally, meta-heuristics are judged by their two search mechanisms: search space 

exploration called diversification and best solutions exploitation named intensification, where 

the balance between these two mechanisms is a challenging goal to get a better near optimal 

solution. To reach this goal, a hybrid model is adopted by combining two meta-heuristic 

methods to profit from the advantages of both methods and accordingly attain better solution 

quality than using each one separately [10-12],  In this regard, extensive competitive research 

works have been carried out in the last decade for enhancing the solution quality of ORPD 

problem. The research presented  in [13] proposes a Hybrid Firefly Algorithm (HFA), which 

begins the exploration by the conventional FA method and ends by exploitation the Nelder 

Mead simplex method. This paradigm allows the HFA to escape from premature convergence 
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of the original FA. In [14] , a combination of GSA and Sequential Quadratic Programming 

(SQP) and presented as (GSA-SQP) has been implemented as an efficient hybrid algorithm to 

solve ORPD problem in the case of IEEE 30 bus test system. This approach tends to avoid a 

premature convergence of GSA without trapping in local optima. In [15], a Modified 

Imperialist Competitive Algorithm (MICA) was hybridized with the Invasive Weed 

Optimization  (IWO) method to improve the optimal solution of the ORPD problem 

compared to that of the original ICA or IWO method. In the aim to surmount the early 

convergence problem of the PSO algorithm, the authors in [16] suggest a more effective 

alternative method by hybridizing the basic PSO and Ant Lion Optimizer (ALO) algorithm 

named PSO-ALO with no significantly undermining the fast convergence of (PSO) technique. 

This hybrid approach has proved its success in improving ORPD solution since it finds a 

better objective functions than most competitive optimization techniques.  

To this end, this research contributes to the ongoing research by developing a hybrid 

approach based ABC algorithm and SSA (ABC-SSA) for the optimal solution of the ORPD 

problem. The main advantage of the developed approach is to profit from both superiorities of 

the ABC and the SSA algorithms, mainly exploration and exploitation, respectively. To the 

best of our knowledge, this is the first time that this hybrid approach ABC-SSA is developed 

and applied to the solution of the ORPD problem. Various test systems are implemented such 

as IEEE 30 bus, IEEE 57 bus, IEEE 118 bus and large system IEEE 300 bus to confirm the 

validity of the proposed hybrid ABC-SSA in finding a better solution than using one method 

at a time and over the proposed hybrid techniques in literature. The simulation results 

obtained using ABC-SSA are compared to those of other recently published techniques in 

literature for the same problem. The presented comparison proves the robustness of this 

hybrid technique under different case studies on various scales of power systems. The 

presented technique promotes its extension to other complex optimization fields.    

1.1 Motivation 

In the last few decades, (ORPD) has received great attention and it has become a tool for 

improving the economy and security of power system operation. The ORPD, which is a non-

linear, non-convex and non-differentiable optimization problem, aims at minimizing the 

objective functions such as voltage stability and real power losses and power system via the  

adjustments of control parameters like generators voltages, switchable (VAR) sources, 
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transformer tap settings etc. in a power system while satisfying equality and inequality 

constraints [7]. 

Reactive power requirement changes continuously with load and system configuration. 

The change in reactive power causes voltage variations in the system. Any change in the 

system formation or power demands may result in a change in voltage levels in the system. 

Injecting reactive power into the power system raises voltages while absorbing the reactive 

power from the system lowers voltages. The main task of a power system is to sustain the 

load bus voltages within the nominal range for consumer satisfaction especially in a 

deregulated or restructured power industry. Despite the importance of deregulation which 

includes but is not limited to removal or reduction of government control over the power 

industry and electricity price reduction etc., it leads to expansion and reconfiguration of the 

power system. This situation, if not properly handled, can lead to huge active power 

transmission line losses. These power transmission losses lead to power shortage, voltage 

collapse, and electrical blackouts which affect the economic growth of the country. For a 

reliable operation of any power system, the active power transmission losses are to be 

minimized. This situation can be improved by the system operator through the reallocation of 

reactive power generation in the system by modeling it as an ORPD optimization problem, 

with the active power transmission loss as the objective function [17]. 

1.2 Objectives 

The following are the objectives of the research: 

 Resolve the optimal reactive power allocation problems by meta-heuristic 

optimization algorithm namely Artificial Bee Colony based Salp Swarm Algorithm 

(ABC-SSA). 

 To explore the advantages and disadvantages of ABC and SSA optimization 

techniques. 

 To explore the applications of the ABC and SSA optimization techniques in solving 

the ORPD problems. 

 To design a hybrid method of ABC with SSA optimization techniques to extend the 

ABC capabilities and improve its accuracy in solving ORPD problems. 

 To demonstrate the application and implementation of the hybridized ABC-SSA 

algorithm in solving ORPD problems for active power transmission loss minimization 

minimized Voltage Deviation and improvement of the voltage stability. 
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 To compare the results from the above and draw conclusion 

1.3 Organization of the thesis 

With this in mind, this thesis comprises four chapters: 

 Chapter 1: The  first  chapter  provides  the  general overview  of  the  study  

by  discussing  the  research  background,  problem  statement, research objectives, 

scope, and significance of the research. 

 Chapter 2: Presents generalities on the electrical network, the modeling of the 

power elements of an electrical network, the formulation of the power flow problem 

and the different types of objective functions. 

 Chapter 3: presents in detail the most used meta-heuristics and we focus on 

those that we have studied in the context of this thesis, it also describes ABC and SSA 

pseudo-code and their basic principles. Also presented in this chapter are the details of 

the contribution (the hybridization between the two methods ABC and SSA). 

 Chapter 4: Hybrid ABC-SSA Model describes the hybridization of the ABC 

with the SSA algorithm including its motivations. The approach was carefully 

designed to achieve a better and quality optimized result. Standard IEEE 30 bus, IEEE 

57 bus, IEEE 118 bus and large system IEEE 300 bus were used to validate the 

robustness, accuracy and efficiency of the proposed approach. The simulation results 

and analysis of the test function optimization and ORPD problem were presented and 

compared with other results in the literature. Finally, the thesis ends with a general 

conclusion that summarizes the outcomes of the research and outlines the 

contributions of this research to the development of power systems. 
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 CHAPTER 2 

Optimal Reactive Power Dispatch  

Introduction 

For the formulation of the ORPD problem, we give in this chapter a general overview of 

the Modeling of the electrical network by exposing the power flow methods to describe: 

 The physical limits: tap transformers, reactive power regulators and automatic 

voltage regulators (related to the inequality constraints). 

 the power balance (active and reactive) highlighting the constraints of equality  

 Technical data of lines, transformers, loads and generators for power flow 

analysis. 

2.1 Electrical Network 

The main role of the electrical network or transmission network is to link the large 

consumption centers and the production means. This role is particularly important because 

electrical energy cannot be stored on a large scale at present. 

A transmission system must be operated in a particular way, it must be operated within the 

authorized operating limits. These limits or constraints on the network are expressed by 

maximum or minimum values on certain network variables (frequency, power flow on lines 

or voltage level transformers, etc.). If these limits are exceeded, the system may become 

unstable. 

The transmission capacity constraints are mainly related to the maximum power flows that 

can flow on each of the network elements. These capacity constraints are of particular 

importance in power systems because power flows are difficult to control and follow paths 

governed by Kirchhoff laws. 

2.2 Electrical Systems 

There are many things to know about the power system to improve it, such as: power 

plants or energy sources, transmission network, power consumption, power consumption 

fluctuations, power system balance, thermal limits of power lines in normal operation, voltage 

performance, these elements give a very clear picture of the power system status [18]. Figure 
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2.1 presents a schematic diagram of the principle of electricity generation, transmission and 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 The production  

Electric energy is produced in the power plant with the help of generators at a voltage 

level of ≤ 20000 volts. For technical and environmental reasons (emissions), the power plants 

are usually located far away from urban areas. 

The passage of electric current in the lines of the electrical network generates energy 

losses due to the resistance of these lines. 

2.2.2 The transport 

Once generated, the electricity must be transported to the various locations where it is 

used via transmission lines. The high voltage transmission lines are supported by large steel 

towers. 

The electrical energy then arrives at a substation (transformer and distribution station), 

which converts the high voltage to medium voltage, before being distributed to the 

distribution network. 

 

Figure 2.1 Schematic diagram of the principle of electricity generation, transmission and 

distribution 

 

 
Production plant Transformer station 

Transformer station HV/MV 

distribution substation 

Subscriber metering panel 

Transformer station MV/LV 

Outgoing lines 
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Low Voltage 

Subscriber connection 

Transmission line  

(High Voltage) 

Distribution line  

(Medium Voltage) 
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However, some operating centers do not have transmission lines. The electrical energy is 

sent directly to the distribution network, after undergoing a transformation to MV. This 

depends on the location of the plant and the power to be transmitted. 

2.2.3 The distribution 

Medium-voltage (MV) line outlets run from the substation (which is part of the 

transmission system) to surrounding towns. 

The current trend is to standardize MV voltages to 30,000 volts. The power lines of the 

distribution network can be overhead (suspended by electric poles: concrete, wood or metal), 

or underground (buried in the ground). 

The medium voltage (MV) is then transformed into low voltage (LV) by MV/LV 

transformer stations installed in different locations. 

Subscriber connections are connected from the low voltage lines coming from these 

transformers. Voltages are currently standardized at 230 volts for single-phase connections, 

and 230/400 volts for three-phase connections (230 volts between one phase and neutral, 400 

volts between two different phases). 

Each subscriber connection is equipped with an electrical meter to measure energy 

consumption. 

2.3  Power transmitted by a power line [19] 

Electrical energy is carried by power lines of limited capacity because of the thermal 

limits of the cables, the voltages applied to the terminals, and the angle of loading (𝛿). The 

powers transmitted by a radial electric are given by the following formulas: 

Looking at figure 2.2 which shows an electric line feeding a load (P +jQ), admitting that 

the resistance of the line is very low compared to the reactance, the impedance: 𝑍𝑠 = 𝑗𝑋𝑠 
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Taking the voltage at the load terminal as the phase reference figure 2.2.b and not 

considering the resistance Rs, the current will be in phase with Vr, and the power required by 

the load will be given by the following equations: 

𝑆𝑟 = 𝑃 + 𝑗𝑄 = 𝑉𝑟𝐼𝑟
∗ , with  𝐼𝑟 =

𝑉𝑠−𝑉𝑟

𝑍𝑠
 

𝑃 =
𝑉𝑠 . 𝑉𝑟
𝑋𝑠

sin 𝛿 
(2.1) 

𝑄 =
𝑉𝑠 . 𝑉𝑟
𝑋𝑠

cos 𝛿 −
𝑉𝑟

2

𝑋𝑠
 

 

(2.2) 

The relationship between the voltage at the load bus and the load current I is described by 

the straight line in figure 2.3 called the system load line which is defined by the equation of a 

straight line passing through Vs and having slope -Zs : 

𝑉𝑠 − 𝑉𝑟 = 𝑍𝑠 ∗ 𝐼      →         𝑉𝑟 = −𝑍𝑠 ∗ 𝐼 + 𝑉𝑠 

 

 

 

 

 

Figure 2.2 electrical line feeding a load 

 

 

 

 

(a) Transmission line single-phase diagram 
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(b) : Voltage diagrams 
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The need to maintain the voltage across the load to allow maximum power to be 

transmitted is easily demonstrated: If the load varies and no precautions are taken to keep the 

voltage Vr equal to Vs then from the phase diagram in figure 2.2.b : 

𝑉𝑟 = 𝑉𝑠 cos 𝛿 

Replacing in equation (2.1) will give: 

𝑃 =
𝑉𝑠

2

𝑋𝑠
sin 𝛿. cos 𝛿 =

𝑉𝑠
2

2𝑋𝑠
sin 2𝛿 

In this case it can only carry a maximum power for an angle 𝛿 = 45°. 

Equal to: 𝑃𝑚𝑎𝑥 =
𝑉𝑠

2

2𝑋𝑠
 

In the case where the voltage Vr is kept equal to Vs we can have, from the equation (2.1), a 

maximum power: 𝑃𝑚𝑎𝑥 =
𝑉𝑠

2

𝑋𝑠
. 

2.4 Voltage Drop 

 

Figure 2.3 System load line 

 

 

Capacitive load inductive load 

𝑉𝑠 

l or Q 

𝑉𝑟  

System load line 
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Voltage drop is the decrease of electrical potential along the path of a current flowing in 

an electrical circuit. Current flow in the line causes a voltage drop. The voltage is then lower 

at the end of the line than its origin, and the more the line is loaded in transit of power, the 

greater the voltage drop will be. 

Voltage drop is calculated by the following formulation: 

∆𝑉 = 𝑉1 − 𝑉2 = 𝑍 ∗ 𝐼 (2.3) 

The vector relation is then written: 

𝑉1̅ = 𝑉2̅ + 𝑅𝐼 ̅ + 𝑗𝐿𝜔𝐼 ̅ = 𝑉2̅ + 𝑅𝐼 ̅ + 𝑗𝑋𝐼 ̅ (2.4) 

By projection along the horizontal and vertical axes, we obtain two real equations: 

𝑉1 cos 𝛿 = 𝑉2 + 𝑅𝐼 cos𝜑 + 𝑋𝐼 sin𝜑 (2.5) 

𝑉1 sin 𝛿 = −𝑅𝐼 sin𝜑 + 𝑋𝐼 cos𝜑   (2.6) 

Squaring and then summing these two expressions, we get: 

𝑉1
2 = 𝑉2

2 + 𝑅2𝐼2+𝑋2𝐼2 + 2(𝑅𝑉2𝐼 cos 𝜑 + 𝑋𝑉2𝐼 sin𝜑) (2.7) 

It is then possible to replace the different terms of this expression by using the powers: 

With 𝑃 = 𝑉2𝐼 cos𝜑 the single-phase active power consumed by the load, 𝑄 = 𝑉2𝐼 sin𝜑 

the single-phase reactive power called by the load,   𝑃𝐽 = 𝑅𝐼2 the losses by Joule effect in the 

line and 𝑄𝐿 = 𝑋𝐼2 the reactive power consumed by the line reactance, it becomes: 

𝑉1
2−𝑉1

2 = 𝑅𝑃𝐽 + 𝑋𝑄𝐿 + 2(𝑅𝑃 + 𝑋𝑄) (2.8) 

(𝑉1−𝑉2)(𝑉1 + 𝑉2) = 𝑅𝑃𝐽 + 𝑋𝑄𝐿 + 2(𝑅𝑃 + 𝑋𝑄) (2.9) 

Noting: 

𝑉 = (𝑉1 + 𝑉2)/2  and  ∆𝑉 = (𝑉1 − 𝑉2)  the voltage drop, we obtain : 

∆𝑉

𝑉
=

1
2𝑅𝑃𝐽 +

1
2𝑋𝑄𝐿 + 𝑅𝑃 + 𝑋𝑄

𝑉2
 

(2.10) 

In a well-dimensioned transmission network, the Joule effect losses in the lines usually 

represent a few percent of the total transmitted power. If we consider a case where the 

reactive power consumption of the line compared to the transmitted power is low, we obtain 

the following simplified relation: 
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∆𝑉

𝑉
=

𝑅𝑃 + 𝑋𝑄

𝑉2
 

 

(2.11) 

 

2.5 Modeling the power elements of an electrical network 

To calculate the optimization of power flow, some components in the electrical network 

affect this calculation, it is important to know its model such as power generators, electrical 

loads, transmission lines, power transformers, and static compensators. 

2.5.1 Power generator  

A generator is a device that converts motive power (mechanical energy) into electrical 

power. Sources of mechanical energy include steam turbines, water turbines, gas turbines, 

wind turbines and the power of the sea waves. Generators provide almost all of the power for 

the electrical grids. 

The generator's current injectors and terminal voltage and their control is mainly related to 

the injection of reactive power to the generation buses. 

The active power output of the generator is controlled through the turbine control which 

must be kept within the capacity of the turbine-generator system. 

2.5.2 Transmission lines 

The transmission of electrical power is the process of moving electrical power in bulk 

from a generating base, to the consumer. The inter-connected lines that make this movement 

possible are called a transmission network. These cables differ from each other in terms of 

voltage resistance. 

The transmission lines are designed with a π model, this model contains series and shunt 

elements, are defined for a line connected between buses i and j- the π-model is shown in 

figure 2.4 
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Figure 2.4 π-model of a power line. 

The following equation gives the complex expression of the series impedance: 

𝑧𝑖𝑗 = 𝑟𝑖𝑗 + 𝑗𝑥𝑖𝑗 (2.12) 

 

with:  

𝑦𝑖𝑗 =
1

𝑧𝑖𝑗
=

𝑟𝑖𝑗

𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 − 𝑗
𝑥𝑖𝑗

𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 = 𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗  
(2.13) 

𝑦𝑖𝑗0 =
𝑔𝑖𝑗0 + 𝑗𝑏𝑖𝑗0

2
 

(2.14) 

where: 

𝑟𝑖𝑗  The equivalent series resistance of the line. 

𝑥𝑖𝑗 The equivalent inductive reactance of the line. 

𝑔𝑖𝑗0  Equivalent transverse conductance of the line at node i. 

𝑏𝑖𝑗0  Capacitive susceptance of the line at node i 

In most cases, the conductance value is so small that it can be neglected. 

2.5.3 Power transformer 

Transformers play an important role in controlling the active and reactive power in the 

transmission line. The basic principle of operation is to vary the modulus or phase shift of the 

voltage, which allows control of the active and reactive power in the transmission line. 

Therefore, there are two types of transformers: the voltage regulator transformer with a load 

tap changer (figure 2.5) and the phase-shifting transformer ( figure 2.6). Following figure 2.7 

gives the schematic of this model [18] [20] : 
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Figure 2.5 Equivalent diagram of transformer with on-load tap-changer 

 

 

Figure 2.6 Equivalent diagram of phase-shifting transformer 

 

Figure 2.7 Equivalent diagram of a transformer: π-model 
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with: 

𝑦𝑖𝑗 = 𝑦𝑡𝑁𝑖𝑗 (2.15) 

𝑌𝑖0 = 𝑦𝑡(1 − 𝑁𝑖𝑗) +
𝑦𝑖𝑗0

2
 

(2.16)  

𝑌𝑗0 = 𝑦𝑡𝑁𝑖𝑗(𝑁𝑖𝑗 − 1) + 𝑁𝑖𝑗
2
𝑦𝑖𝑗0

2
 

(2.17) 

where  

𝑧𝑡   =𝑟𝑡 + 𝑗𝑥𝑡  (with |𝑧𝑡| =
𝑉𝑐𝑐𝑉𝑄𝑛𝑖

2

100𝑆𝑛
), 𝑌𝑡=

1

𝑧𝑡
 , 𝑟𝑡 = ∆𝑃𝑐

𝑉𝑛𝑖
2

𝑆𝑛
2 10−3 and  𝑥𝑡 = √𝑧𝑡

2 − 𝑟𝑡
2 

𝑧𝑡     the equivalent series impedance 

𝑦𝑡  series admittance 

𝑟𝑡  equivalent resistance of the transformer 

𝑥𝑡  equivalent inductive reactance of the transformer 

𝑣𝑐𝑐  short-circuit voltage in (pu) 

𝑆𝑛  nominal apparent power of the transformer 

𝑉𝑛𝑖   nominal simple voltage of the transformer 

∆𝑃𝑐  active power losses in the transformer windings 

𝑦𝑖𝑗0
   the admittance in derivation given by 𝑦𝑖𝑗0 = 𝑔𝑖𝑗0 + 𝑗𝑏𝑖𝑗0 with 𝑏𝑖𝑗0 = −

𝑖0𝑆𝑛

100𝑉𝑛𝑖
2  and 

𝑔𝑖𝑗0 = ∆𝑃𝑓
10−3

𝑉𝑛𝑖
2  

𝑖0  no-load magnetizing current of the transformer in (pu) 

∆𝑃𝑓  active no-load losses of the transformer 

𝑁𝑖𝑗 =
𝑉𝑖

𝑉𝑗
  the nominal transformation ratio 

2.5.4 Electrical loads 

The loads are often substations that supply the distribution networks, they are statically 

modeled as negative power injectors in the bus bars. The connection of the load to the 

network is made through a load tap transformer that keeps the voltage level constant, this 

means that the active and reactive powers of the load can be represented by constant values 

[18]. 
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Figure 2.8 The load model. 

𝑆𝐿𝑖 = 𝑃𝐿𝑖 + 𝑗𝑄𝐿𝑖 (2.18) 

Where 

𝑆𝐿𝑖   The complex power of the load 

𝑃𝐿𝑖  The active power 

𝑄𝐿𝑖 The reactive power (can be positive or negative depending on whether the load is 

inductive or capacitive). 

2.5.5 Shunt elements 

Shunt elements are distributed elements in the electrical network that play the role of 

compensating reactive energy in order to control the tension. Capacitors and inductors are 

placed at several points in the electrical network, and they are studied, of course, in order to 

supply or absorb reactive energy. In the case where Qc is positive at a point of the electrical 

network, the shunt compensator is capacitive and supplies reactive power at this point. If Qc it 

is a negative, the conversion compensator is inductive and absorbs the excess reactive energy. 

This step of modeling the line and its elements is essential for the calculation of the main 

equations of the network, especially the nodal admittance matrix 

2.6 Power flow  

In power systems, many problems affect the main goal of keeping the power system 

functional in its normal state. Among these problems is the power flow problem. 

The study of the load flow allows having the solution of the quantities of an electrical 

network in regular and irregular operation to ensure an efficient operation, i.e. in conformity 

with the technical standards. These quantities are the voltages at the nodes, the powers 

injected at the nodes, and those that transit in the lines. The losses and currents are deduced 

from them. The power flow studies allow to plan the construction and the extension of the 

electrical networks as well as the management and the control of these networks. 

 i 𝑃𝐿,𝑖𝑄𝐿,𝑖  
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2.6.1 General concept of power flow 

The power flow problem is solved for the steady state determination of the complex 

voltages at the network busses, from which the active and reactive power flows in each line 

and transformer are calculated.  

The set of equations represents the electrical network and is non-linear in nature. In the 

practical methods of power flow calculation, the configuration of the network and the 

properties of its equipment are used to determine the complex voltage at each node. On the 

other hand, the symmetry between the three phases of the three-phase system of the electrical 

network is perfect. 

2.6.2 Objectives of the power flow study 

The objective of power flow is to ensure the balance between the production and demand 

of electric energy (the improvement of electricity expenditure, energy production according to 

need), not to exceed the limit values (the theoretical stability, according to the good duration 

of use), it is necessary to keep the bus-bar voltages between the theoretical limits, using the 

power control and network planning (from load calculation).Increase the security of operation 

of networks by a good strategy of power flow before the disturbances. 

2.7 Nodal admittance matrix   

The large, interconnected AC power system (network) consists of numerous power 

stations, transmission lines, and transformers. Shunt reactors and capacitors and distribution 

networks through which loads are supplied. All this leads to a high voltage, largely 

interconnected AC power transmission system, and the assessment of the steady state 

behavior of all the components of the network acting together as a system requires computer-

based large-scale system analysis of the network model. In a computer-based power system 

analysis, the network model takes on the form of Bus Admittance Matrix[𝑌𝐵𝑈𝑆]. [𝑌𝐵𝑈𝑆] is 

often used in solving load flow (or complex power flow) problems. Its widespread application 

in power system computations is due to its simplicity in data preparation and the ease with 

which it can be formed and modified for any network change (e.g. addition or tripping of line 

etc.). [𝑌𝐵𝑈𝑆]  Matrix is highly sparse and facilitates minimum computer storage as well as 

reduces computer operation time. 
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In the nodal analysis of an electrical network, it is common to use branch admittances 

(𝑦𝑖𝑗  ) rather than branch impedances. For an isolated line as shown in Figure 2.9 [21, 22]. 

 

 

 

 

where : 

Vi and Vj  are the voltages at the buses i and j, respectively,  

Iij is the current circulating from node i to node j. In a complex network, the nodes being 

numbered 0, 1, 2, …, N, (N = the number of nodes in the network) 

𝐼𝑖𝑗 = 𝑦𝑖𝑗(𝑉𝑖 − 𝑉𝑗) (2.19) 

The node 0 is the reference node, the injected current Ii being equal to the sum of all the 

currents leaving the node i (by Kirchoff’s current law (KCL)), we can write: 

𝐼𝑖 = ∑𝐼𝑖𝑗 = ∑ 𝑦𝑖𝑗

𝑛

𝑗=0

𝑛

𝑗=0

(𝑉𝑖 − 𝑉𝑗) 
 

(2.20) 

 

The following is a simple 3-bus system as shown in Figure 2.10. 

 

 

 

 

 

 

 

Now applying Kirchoff's law (KCL) to independent buses 1 to 3, we obtain: 

 

Figure 2.9 Illustration of an isolated bus. 
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i j 

𝑦𝑖𝑗  

 

Figure 2.10 Admittance Schema of a 3-bus system. 
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𝐼1 = 𝑦10𝑉1 + 𝑦12(𝑉1 − 𝑉2) + 𝑦13(𝑉1 − 𝑉3)  

 

𝐼2 = 𝑦20𝑉2 + 𝑦12(𝑉2 − 𝑉1) + 𝑦23(𝑉2 − 𝑉3)  

 

0 = 𝑦13(𝑉3 − 𝑉1) + 𝑦23(𝑉3 − 𝑉2)                 

 

Node 0, which is usually considered as ground, is considered a reference node. 

Can be simplified the above node equations in the following manner: 

𝐼1 = 𝑌11𝑉1 + 𝑌12𝑉2 + 𝑌13𝑉3   

𝐼2 = 𝑌21𝑉1 + 𝑌22𝑉2 + 𝑌23𝑉3  

𝐼3 = 𝑌31𝑉1 + 𝑌32𝑉2 + 𝑌33𝑉3  

with: 

𝑌11 = 𝑦10 + 𝑦12 + 𝑦13  

𝑌22 = 𝑦20 + 𝑦21 + 𝑦23  

𝑌33 = 𝑦13 + 𝑦23  

𝑌12 = 𝑌12 = −𝑦21  

𝑌13 = 𝑌31 = −𝑦13  

𝑌23 = 𝑌32 = −𝑦23   

And 𝐼3 = 0  

 

For an n-bus electrical network, these equations in matrix form can be expressed as 

follows: 

[
 
 
 
 
 
𝐼1
𝐼2
.
.
.

𝐼𝑁]
 
 
 
 
 

=

[
 
 
 
 
 
𝑌11     𝑌12     .        𝑌1𝑁

𝑌21     𝑌22    .        𝑌2𝑁

.          .          .         .

.          .         .          .

.           .        .          .
𝑌𝑁1    𝑌𝑁2     .        𝑌𝑁𝑁]

 
 
 
 
 

[
 
 
 
 
 
𝑉1

𝑉2

.

.

.
𝑉𝑁]

 
 
 
 
 

 

 

 

(2.21) 

Or : 

[𝐼] = [𝑌𝐵𝑈𝑆][𝑉] (2.22) 
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Finally this matrix [𝑌𝐵𝑈𝑆] is called bus admittance matrix, [𝑌𝐵𝑈𝑆] is a square matrix of 

order n × n, and symmetrical, since𝑦𝑖𝑗 = 𝑦𝑗𝑖. The elements of [𝑌𝐵𝑈𝑆] are important and 

therefore defined as follows: 

𝑌𝑖𝑖   : The diagonal element, it is the sum of all admittances connected to it. And it can be 

expressed as: 

𝑌𝑖𝑖 = ∑𝑦𝑖𝑗

𝑛

𝑗=0
𝑗≠𝑖

 
(2.23) 

 

𝑌𝑖𝑗 : The off-diagonal element, it is equal to the negative of admittance between nodes i and j, 

and it can be expressed as: 

𝑌𝑖𝑗 = −𝑦𝑖𝑗  (2.24) 

2.8 Power flow calculation methods 

There are several methods of calculating power flow, but we will mention only the three most 

important ones: 

2.8.1 Newton-Raphson Method  

Because of its quadratic convergence, Newton's method is mathematically superior to the 

many methods in the literature and is less prone to divergence with ill-conditioned problems. 

For large power systems, the Newton-Raphson method is found to be more efficient and 

practical. The number of iterations required to obtain a solution is independent. The governing 

equation in any multi-bus network, using nodal admittance matrix form, is given by [21, 23]: 

𝐼𝑖 = ∑𝑌𝑖𝑗𝑉𝑗

𝑁𝐵

𝑗=1

 

(2.25) 

Where: 

𝐼𝑖   the current entering into bus i. 

NB The total number of buses. 

In the equation above, j includes the bus i, and the power flow formulations are usually 

expressed in polar form because the real power and voltage magnitude are specified for the 

PV buses. The equations in polar coordinates are usually expressed in the following form: 
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𝑉𝑖 = |𝑉𝑖|∠𝛿𝑖 = |𝑉𝑖|(cos 𝛿𝑖 + 𝑗 sin 𝛿𝑖) = |𝑉𝑖|𝑒
𝑗𝛿𝑖  (2.26) 

𝑌𝑖𝑗 = |𝑌𝑖𝑗|(cos𝛼𝑖𝑗 + 𝑗 sin 𝛼𝑖𝑗) = |𝑌𝑖𝑗|𝑒
𝑗𝛼𝑖𝑗  (2.27) 

Where  

Yij/𝛼ij = Magnitude/angle of admittance matrix element between buses i and j 

𝛿𝑖/𝛿𝑗 = Voltage angle of bus-i and bus-j, respectively.
 

When expressing eq. (2.25) in polar form, we have: 

𝐼𝑖 = ∑|𝑌𝑖𝑗||𝑉𝑗|∠𝛼𝑖𝑗 + 𝛿𝑗

𝑁𝐵

𝑗=1

 

(2.28) 

The bus power at bus-i is given by: 

𝑃𝑖 − 𝑗𝑄𝑖 = 𝑉𝑖
∗𝐼𝑖 = 𝑉𝑖

∗ ∑𝑌𝑖𝑗𝑉𝑗

𝑁𝐵

𝑗=1

 

(2.29) 

Substitution of the polar forms of Vi and Yij in Eq. (2.29): 

𝑃𝑖 − 𝑗𝑄𝑖 = ∑|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗|

𝑁𝐵

𝑗=1

𝑒𝑗(𝛼𝑖𝑗−𝛿𝑖+𝛿𝑗) 

(2.30) 

Since from trigonometry: 

𝑒𝑗(𝛼𝑖𝑗−𝛿𝑖+𝛿𝑗) = cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) + 𝑗 sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) (2.31) 

Hence substitution of Eq. (2.30) in Eq. (2.31) yields, after separating the real and 

imaginary components, these equations (2.32) and (2.33) represent a set of nonlinear 

simultaneous equations in polar form for each bus in the power system network. 

𝑃𝑖 = ∑|𝑉𝑖|

𝑁𝐵

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)  (2.32) 

𝑄𝑖 = − ∑|𝑉𝑖|

𝑁𝐵

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) 

  

(2.33) 
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The study of the load flow of an electrical network involves solving these equations for 

voltage amplitudes |𝑉|and voltage phase angles 𝛿 . The voltage amplitude and the phase angle 

of the loose or oscillating bus voltage are specified and fixed for a network with NB-bus, so a 

number of 2 (NB-1) nonlinear equations must be solved for this system [21]. For small 

variations of 𝛿  and|𝑉|, a linear relationship is obtained by forming the partial differential 

equations as follows: 

∆𝑃𝑖 = ∑
𝜕𝑃𝑖

𝜕𝛿𝑗
∆𝛿𝑗

𝑁𝐵

𝑗=1

+ ∑
𝜕𝑃𝑖

𝜕|𝑉𝑗|
∆|𝑉𝑗|

𝑁𝐵

𝑗=1

 

(2.34) 

Equation (2.34) is applicable to all bus types except the slack bus. 

Also: 

∆𝑄𝑖 = ∑
𝜕𝑄𝑖

𝜕𝛿𝑗
∆𝛿𝑗

𝑁𝐵

𝑗=1

+ ∑
𝜕𝑄𝑖

𝜕|𝑉𝑗|
∆|𝑉𝑗|

𝑁𝐵

𝑗=1

 

(2.35) 

For all non voltage-controlled buses, equation (2.35) is valid. Thus, for an NB-bus system 

(with no voltage-controlled buses), we can write these equations as follows: 

[
 
 
 
 
 ∆𝑃2

(𝑘)

.

.

.

∆𝑃𝑁𝐵
(𝑘)

]
 
 
 
 
 

[
 
 
 
 
 ∆𝑄2

(𝑘)

.

.

.

∆𝑄𝑁𝐵
(𝑘)

]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝜕𝑃2

(𝑘)

𝜕𝛿2
       ⋯        

𝜕𝑃2
(𝑘)

𝜕𝛿𝑁𝐵.
.
.

𝜕𝑃𝑁𝐵
(𝑘)

𝜕𝛿2
      ⋯        

𝜕𝑃𝑁𝐵
(𝑘)

𝜕𝛿𝑁𝐵

𝜕𝑄2
(𝑘)

𝜕𝛿2
       ⋯        

𝜕𝑄2
(𝑘)

𝜕𝛿𝑁𝐵.
.
.

𝜕𝑄𝑁𝐵
(𝑘)

𝜕𝛿2
      ⋯       

𝜕𝑄𝑁𝐵
(𝑘)

𝜕𝛿𝑁𝐵

    

|

|

|

|

𝜕𝑃2
(𝑘)

𝜕|𝑉2|
       ⋯        

𝜕𝑃2
(𝑘)

𝜕|𝑉𝑁𝐵|
.
.
.

𝜕𝑃𝑁𝐵
(𝑘)

𝜕|𝑉2|
      ⋯        

𝜕𝑃𝑁𝐵
(𝑘)

𝜕|𝑉𝑁𝐵|

𝜕𝑄2
(𝑘)

𝜕|𝑉2|
       ⋯        

𝜕𝑄2
(𝑘)

𝜕|𝑉𝑁𝐵|
.
.
.

𝜕𝑄𝑁𝐵
(𝑘)

𝜕|𝑉2|
      ⋯       

𝜕𝑄𝑁𝐵
(𝑘)

𝜕|𝑉𝑁𝐵| ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
[
 
 
 
 
 ∆𝛿2

(𝑘)

.

.

.

∆𝛿𝑁𝐵
(𝑘)

]
 
 
 
 
 

[
 
 
 
 
 ∆|𝑉2

(𝑘)|
.
.
.

∆|𝑉𝑁𝐵
(𝑘)|]

 
 
 
 
 

 

Also equations (2.34) and (2.35) can be expressed: 

∆𝑃𝑖 = ∑𝐽1(𝑖,𝑗)∆𝛿𝑗 + ∑𝐽2(𝑖,𝑗)∆|𝑉|𝑗

𝑁𝐵

𝑗=1

𝑁𝐵

𝑗=1

 

 

(2.36) 
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∆𝑄𝑖 = ∑𝐽3(𝑖,𝑗)∆𝛿𝑗 + ∑𝐽4(𝑖,𝑗)∆|𝑉|𝑗

𝑁𝐵

𝑗=1

𝑁𝐵

𝑗=1

 

 

(2.37) 

In its matrix form, it can be represented as follows: 

[
∆𝑃
∆𝑄

] = [
𝐽1 𝐽2
𝐽3 𝐽4

] [
∆𝛿

∆|𝑉|] (2.38) 

Or, in abbreviated form: 

[
∆𝑃
∆𝑄

] = [𝐽] [
∆𝛿

∆|𝑉|] 

The Jacobian matrix [J] elements are obtained by the partial derivatives of (2.32) and 

(2.33), concerning ∆δi and ∆|𝑉𝑖| as shown below: 

For quadrant [J1]:  

J1 is of the order of [NB-1]×[NB-1] 

Diagonal elements: 

  
𝜕𝑃𝑖

𝜕𝛿𝑖
= ∑ |𝑉𝑖|

𝑁𝐵
𝑗=1
𝑗≠𝑖

|𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗−𝛿𝑖 + 𝛿𝑗)  
(2.39) 

Off − diagonal elements: 

𝜕𝑃𝑖

𝜕𝛿𝑗
= −|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗−𝛿𝑖 + 𝛿𝑗)  (2.40) 

For quadrant [J2]: 

J2 is of the order of [NB-1]×[NB-1-m], if m buses of the system are voltage-controlled 

Diagonal elements: 

𝜕𝑃𝑖

𝜕|𝑉𝑖|
= 2|𝑉𝑖||𝑌𝑖𝑖| cos𝛼𝑖𝑖 + ∑ |𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑁𝐵
𝑗=1
𝑗≠𝑖

  (2.41) 

Off − diagonal elements: 

𝜕𝑃𝑖

𝜕|𝑉𝑗|
= |𝑉𝑖||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)  (2.42) 

For quadrant [J3]: 

J3 is of the order of [NB-1-m]×[NB-1] 

Diagonal elements: 

𝜕𝑄𝑖

𝜕𝛿𝑖
= ∑ |𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑁𝐵
𝑗=1
𝑗≠𝑖

  (2.43) 
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Off − diagonal elements: 

𝜕𝑄𝑖

𝜕𝛿𝑗
= −|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)     𝑖 ≠ 𝑗 (2.44) 

For quadrant [J4]: 

J4 is of the order of [NB-1-m]×[NB-1-m] 

Diagonal elements: 

𝜕𝑄𝑖

𝜕|𝑉𝑖|
= −2|𝑉𝑖||𝑌𝑖𝑖| sin 𝛼𝑖𝑖 + ∑ |𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑁𝐵
𝑗=1
𝑗≠𝑖

  (2.45) 

Off − diagonal elements: 

𝜕𝑄𝑖

𝜕|𝑉𝑗|
= −|𝑉𝑖||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) 𝑖 ≠ 𝑗 (2.46) 

The Jacobian matrix [J] is of order [2(NB − 1) − m] × [2(NB − 1) − m]. When the Jacobian 

elements have been formulated, the steps for calculation of the Newton power flow solution 

are as follows: 

Step 1 Start the process by scanning all the data input 

Step 2 Create the Y-bus matrix and initialize for all load buses, |𝑉𝑖
(0)

= 1.0| (pu) and 

𝛿𝑖
(0)

= 0 (rd) and for voltage-regulated buses, 𝛿𝑖
(0)

= 0 (rd). 

Step 3 Calculate the real and reactive powers from (2.32) and (2.33), for the load buses 

and ΔPi(k) and ΔQi(k) which are the differences between the calculated and 

predicted values, given by: 

∆𝑃𝑖
(𝑘)

= 𝑃𝑖𝑠𝑐ℎ
− 𝑃𝑖𝑐𝑎𝑙

(𝑘)
  (2.47) 

∆𝑄𝑖
(𝑘)

= 𝑄𝑖𝑠𝑐ℎ
− 𝑄𝑖𝑐𝑎𝑙

(𝑘)
  (2.48) 

 

Step 4 Calculate Pi (k) and ΔPi (k) from (2.32) and (2.47), respectively, and it is for 

voltage-controlled buses.  

Step 5 Verify ΔPi (k) ≤ 휀 and ΔQi (k) ≤ 휀 for all buses if they are less than the specified 

accuracy or not : 
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|∆𝑃𝑖
(𝑘)

| ≤ 휀 

|∆𝑄𝑖
(𝑘)

| ≤ 휀 

If these measurements are less than the specified accuracy, go to step 10, if not, go 

to step 6. 

Step 6 Compute the elements in the Jacobian matrix (2.39)-(2.46), using the estimated 

voltages and calculated powers. 

Step 7 Solve directly the simultaneous linear equation (2.38) by optimized triangular 

factorization and Gaussian elimination. 

Step 8 Update the bus voltage magnitude and phase angles as follows: 

𝛿𝑖
(𝑘+1)

= 𝛿𝑖
(𝑘)

+ ∆𝛿𝑖
(𝑘)

  (2.49) 

|𝑉𝑖
(𝑘+1)

| = |𝑉𝑖
(𝑘)

| + ∆|𝑉𝑖
(𝑘)

|  (2.50) 

 

Step 9 Return to step 3. 

Step 10 Obtain output results. 

2.8.1.1 Advantages of the Newton-Raphson method 

The advantages of the Newton method are well known: 

 The execution time of the power flow calculation program is greatly reduced. 

 The size of the occupied memory is also reduced. 

 The convergence will be very fast. 

 The procedure is repeated until ∆𝑃𝑖
(𝑘)

 and ∆𝑄𝑖
(𝑘)

for all bar sets are within the 

specified tolerances. 

2.8.1.2 The Inconvenience of the Newton-Raphson method 

The inconveniences of the Newton method are well known[24]: 

 The algorithm is not globally convergent 
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 If f is not strictly convex, the algorithm does not necessarily generate directions of 

descent of f  

Notice: In the literature, various modifications of the Newton method have been made to 

improve its unfavorable aspects. 

2.8.1.3 Flowchart of Newton-Raphson method 

The flowchart of the Newton-Raphson method is presented in Figure 2.11 as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Flowchart of Newton-Raphson method.  
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 2.8.2 Gauss-Seidel method: 

This method consists in sequentially removing each node and updating its voltage 

according to the available values of all the voltages. In general, we compute the vector x that 

satisfies the nonlinear system [25]: 

𝑓(𝑥) = 0 (2.51) 

We can formulate equation (2.48), as the fixed point problem, hence: 

𝑥 = 𝑓(𝑥) (2.52) 

The solution is obtained iteratively, from an initial value𝒙𝟎 : 

𝑥𝑘+1 = 𝑓(𝑥𝑘) (2.53) 

For the concrete case of load sharing, the solution of the nodal equation (2.54) is such that: 

𝑉𝑖 =
1

𝑌𝑖𝑖
[
𝑃𝑖 − 𝑗𝑄𝑖

𝑉𝑖
∗ − ∑𝑌𝑖𝑗 . 𝑉𝑗]

𝑛

𝑗≠𝑖

 
(2.54) 

𝑉𝑖
𝑘+1 =

1

𝑌𝑖𝑖
[
𝑃𝑖 − 𝑗𝑄𝑖

(𝑉𝑖
𝑘)∗

− ∑𝑌𝑖𝑗 . 𝑉𝑗
𝑘+1 + ∑𝑌𝑖𝑗 . 𝑉𝑗]

𝑛

𝑗≠𝑖

𝑖−1

𝑗=𝑖

 

(2.55) 

The iterative process is obtained when the following expression is satisfied: 

𝑚𝑎𝑥|𝑉𝑖
𝑘+1 − 𝑉𝑖

𝑘| ≤ 휀 (2.56) 

The process can be accelerated, by decreasing the number of iterations, by introducing an 

acceleration factor α: 

𝑉𝑖,𝑎𝑐𝑐𝑙
𝑘+1 = 𝑉𝑖

𝑘 + 𝛼(𝑉𝑖
𝑘+1 − 𝑉𝑖

𝑘) (2.57) 

2.8.3 Fast Decoupled Method of Power Flow 

In general, for a given electrical network, the active power is less sensitive to a change in 

the voltage amplitude than to its phase. Then the elements of J2 and J3 are almost zero. The 

same thing, the reactive power being less sensitive to a change of the voltage phase than to its 

amplitude, the elements of J3 are almost zero. Equation (2.38) thus becomes: 
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[
∆𝑃
∆𝑄

] = [
𝐽1 0
0 𝐽4

] [
∆𝛿

∆|𝑉|] (2.58) 

Then: 

∆𝑃 =   [𝐽1 ]∆𝛿    (2.59) 

                 ∆𝑄 =   [𝐽4 ]∆|𝑉|    
 

(2.60) 

The above two systems equations are decoupled in the sense that the voltage-angle 

corrections (∆δ) are obtained using the real power mismatches (∆P) only while the voltage-

magnitude correction (∆ |V|) is obtained using only the reactive power mismatches (∆Q).  

Because of that it requires less time to solve compared to N-R method. 

For a transmission line, the following approximations can be considered as: 

 The differences between voltage angles, i.e., (δj – δi) being very small 

cos(𝛿𝑗 − 𝛿𝑖) ≈ 1;      sin(𝛿𝑗 − 𝛿𝑖) ≈ (𝛿𝑗 − 𝛿𝑖) 

 For transmission lines X/R ratio is high, so the line susceptances 𝐵𝑖𝑘  become 

much larger than the line conductances 𝐺𝑖𝑘  and hence 

𝐺𝑖𝑗 sin(𝛿𝑗 − 𝛿𝑖) ≪ 𝐵𝑖𝑗 cos(𝛿𝑗 − 𝛿𝑖) 

 Under steady-state operation, the reactive power injected into any bus (𝑄𝑖 ) is 

much less than the reactive power that would flow if all the lines connected with 

that bus was short-circuited to reference. This gives: 

𝑄𝑖 ≪ |𝑉𝑖|
2𝐵𝑖𝑖 

The diagonal elements of J1 reconsidered by Eq (2.39) may be written as: 

𝜕𝑃𝑖

𝜕𝛿𝑖
= ∑|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) − |𝑉𝑖|

2|𝑌𝑖𝑖| sin 𝛼𝑖𝑖

𝑁

𝑗=1

 

        

(2.61) 

From Eq. (2.33) and (2.61), it can be written as: 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −𝑄𝑖−|𝑉𝑖|

2|𝑌𝑖𝑖| sin 𝛼𝑖𝑖 
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         = −𝑄𝑖 − |𝑉𝑖|
2𝐵𝑖𝑖 (2.62) 

Above-listed approximation,𝑄𝑖 ≪ |𝑉𝑖|
2𝐵𝑖𝑖reduce the above equation as: 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −|𝑉𝑖|

2𝐵𝑖𝑖 
(2.63) 

Further simplifcation is obtained by considering |𝑉𝑖|
2 ≈ |𝑉𝑖|which yields 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −|𝑉𝑖|𝐵𝑖𝑖 

(2.64) 

The off-diagonal elements of J1 as given by (2.40) may be written as: 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) 

                               = −|𝑉𝑖𝑉𝑗|{𝐵𝑖𝑗 cos(𝛿𝑗 − 𝛿𝑖) + 𝐺𝑖𝑗 sin(𝛿𝑗 − 𝛿𝑖)} 

(2.65) 

where  

𝐵𝑖𝑗 = |𝑌𝑖𝑗| sin 𝜑𝑖𝑗 and 𝐺𝑖𝑗 = |𝑌𝑖𝑗| sin 𝜑𝑖𝑗 

Using the practical approximations listed above, Eq. (2.65) can be written as: 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −|𝑉𝑖||𝑉𝑗|𝐵𝑖𝑗 

(2.66) 

Further simplifcation is obtained by assuming |𝑉𝑗|≈ 1 

𝜕𝑃𝑖

𝜕𝛿𝑖
= −|𝑉𝑖|𝐵𝑖𝑗 

(2.67) 

Similarly, the diagonal elements of J4 described by (2.45) may be written as: 

𝜕𝑄𝑖

𝜕|𝑉𝑖|
= −|𝑉𝑖||𝑌𝑖𝑗| sin(𝛼𝑖𝑖) −∑|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑁

𝑗=1

 

 

(2.68) 
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                       = −|𝑉𝑖||𝑌𝑖𝑗| sin(𝛼𝑖𝑖) + 𝑄𝑖  

Again using the approximations listed above, Eq. (2.68) is written as: 

𝜕𝑄𝑖

𝜕|𝑉𝑖|
= −|𝑉𝑖|𝐵𝑖𝑖 

(2.69) 

And using the approximations listed above, the off-diagonal elements of J4 described by 

(2.46) may be written as: 

𝜕𝑄𝑖

𝜕|𝑉𝑗|
= −|𝑉𝑖|𝐵𝑖𝑗 

(2.70) 

Thus, Eqs. (2.59) and (2.60) take the following form: 

[∆𝑃]

|𝑉𝑖|
= −𝐵′[∆𝛿] 

(2.71) 

[∆𝑄]

|𝑉𝑖|
= −𝐵′′[∆|𝑉|] 

 

(2.72) 

Where B′ and B′′ are the imaginary part of the YBus matrix and both are generally 

symmetrical and sparse with nonzero elements. The elements are constant and 

they need to be triangularized and rearranged just once at the start of the cycle. The 

order of the matrix B′ is (N - 1) while for B′′ it is (N – 1 - m), but both are real. N 

being the number of total buses while m is the number of voltage-controlled buses. 

When there is no phase-shifting transformer, B′ and B′′ are symmetric. The convergence is 

geometric and convergence may ordinarily be obtained for normal power 

a system within five iterations. In the fast decoupled power flow solutions, the new 

estimated bus voltage magnitudes and phase angles are given by: 

|𝑉𝑖
(𝑘+1)| = |𝑉𝑖

(𝑘)| + ∆|𝑉𝑖
(𝑘)| (2.73) 

𝛿𝑖
(𝑘+1)

= 𝛿𝑖
(𝑘)

+ ∆𝛿𝑖
(𝑘)

 (2.74) 

∆𝛿 = −|𝐵′|−1
∆𝑃

|𝑉|
 

(2.75) 
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∆|𝑉| = −|𝐵′′|−1
∆𝑄

|𝑉|
 

(2.76) 

The speed of iterations of the decoupled method is much faster than the N–R 

method. Also storage requirements are less. Hence, this method is usually 

called as fast decoupled load flow (FDLF) method. 

2.9 Optimal Power Flow 

The optimal power flow (OPF) was first introduced by Carpentier in 1962 [1]. The goal of 

OPF is to find the optimal settings of a given power system network that optimize the system 

objective functions such as total generation cost, system loss, bus voltage deviation, emission 

of generating units, number of control actions, and load shedding while satisfying its power 

flow equations, system security, and equipment operating limits. Different control variables, 

some of which are generators ’ real power outputs and voltages, transformer tap changing 

settings, phase shifters, switched capacitors, and reactors, are manipulated to achieve an 

optimal network setting based on the problem formulation [21]. 

In the literature, there are several techniques for solving the problem of optimal power 

flow. The most popular solving techniques are, analytical methods and meta-heuristic 

methods, from these two methods, several methods are derived. The classical or analytical 

method transforms the electrical network into a mathematical model in the form of a set of 

often very large non-linear equations. This method seems more interesting but its biggest 

limitation comes from the enormous computing power required which does not allow the use 

of too detailed models, making the solution unsuitable for use for a real power grid. Meta-

heuristic methods are optimization algorithms aimed at solving difficult optimization 

problems. They are often inspired by natural systems [26]. 

2.9.1 Definition of the optimization  

         An optimization problem is defined as the search for the minimum or the maximum 

(the optimum) of a given function. We can also find optimization problems for which the 

variables of the function to be optimized are constrained to evolve in a certain part of the 

search space.  

          So to optimize is to minimize or maximize a function by respecting some 

precondition. This function called "Objective" can be a cost (minimization), profit 
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(maximization), and production (maximization). The objective functions are various as well 

as the constraints (conditions) according to the problem to be optimized. 

2.9.2 Optimization problems 

The formulation of the optimization problems remains very ambiguous because of the 

diversity of vocabularies and the possible confusion that this could generate. We have agreed 

to adopt the following vocabulary: 

 A mono-objective optimization problem is defined by a set of variables, an objective 

function, and a set of constraints. 

 A multiobjective optimization problem is defined by a set of variables, a set of 

objective functions, and a set of constraints. 

 The state space, also called the search domain, is the set of domains defining the 

different variables of the problem. 

 The variables of the problem also called design or decision variables can be of 

various natures (real, integer, boolean. etc.) and express qualitative or quantitative 

data, in this thesis we are interested to the real case. 

 The objective function or even (Total Active Transmission Losses, Voltage 

Deviation, Voltage Stability Index) defines the goal to be achieved, we seek to 

minimize or maximize it. A multimodal function has several minima (local and 

global). While a unimodal function has only a minimum, the overall minimum. 

 The set of constraints is usually a set of equalities or inequalities that the variables in 

the state space must satisfy. These constraints limit the search space. Optimization 

methods search for a point or a set of points in the search space that satisfy the set of 

constraints, and that maximize or minimize the objective function.  

2.9.3 Global optimum, local optimum 

Let PO be a mono-objective optimization problem and C the set of admissible solutions of 

the problem. Figure 2.12 presents the optimum global vs optimum local. 

 If we can prove that ∀ 𝑥 ∈ 𝐶, 𝑓(𝑥𝑔) < 𝑓(𝑥), then we will say that  xg is the 

global optimum (minimum) of the problem PO. 
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 If there is a set 𝑉 ∈ 𝐶 , containing xloc, such as ∀ 𝑥 ∈ 𝑉 , 𝑓(𝑥𝑙𝑜𝑐) < 𝑓(𝑥), 

with 𝑥 ≠ 𝑥𝑙𝑜𝑐, then we will say that 𝑥𝑙𝑜𝑐 is a local optimum (minimum) of the PO 

problem [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9.4 The ORPD problem formulation 

Generally, the ORPD problem is stated in the following manner: 

    Minimize F(x, u) 

Subject to: {
𝑔(𝑥, 𝑢) = 0

𝑢(𝑥, 𝑢) ≤ 0
 (2.77) 

𝑥 = [𝑉𝐿1 …𝑉𝐿𝑁𝐿𝐵
, 𝑄𝐺1 …𝑄𝐺𝑁𝐺

, 𝑆1 …𝑆𝑁𝑇𝐿] (2.78) 

𝑢 = [𝑉𝐺1 …𝑉𝐺𝑁𝐺
, 𝑇1 …𝑇𝑁𝑇 , 𝑄𝐶1 …𝑄𝐶𝑁𝐶

] (2.79) 

2.9.4.1 Objective functions 

In studies of optimal power flow, different objective functions can be minimized, which 

are: 

2.9.4.1.1 Total active transmission losses  

The mathematical expression of the active transmission losses in the electrical power 

 

Figure 2.12 Optimum global vs optimum local. 
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network is defined as follows [28]: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝑘 × (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)

𝑁𝑇𝐿

𝐾=1

 (2.80) 

2.9.4.1.2 Voltage deviation   

The Total Voltage Deviation (TVD) forms an important objective function for electrical 

network analysis and operation, it represents the sum of voltage magnitude deviations for all 

load buses concerning their desired values ( 𝑉𝐿
𝑟𝑒𝑓

=1.00 pu). The minimization of TVD 

improves voltage profile and enhances the security level of power systems, it is expressed as 

follows [11]: 

𝑇𝑉𝐷 = ∑|𝑉𝐿,𝑖 − 𝑉𝐿
𝑟𝑒𝑓|

𝑁𝐿𝐵

𝑖=1

 (2.81) 

2.9.4.1.3 Voltage stability index   

The improvement of the voltage stability is achieved through the minimization of the 

Voltage Stability Index (VSI) Lj given by the j-th load node of the electric power grid. In the 

purpose to enhance voltage stability and keeping the electric power grid so far away from the 

operating point which provokes the voltage collapse (by improving the stability margin), the 

maximum of Lj among all load buses is employed as an objective function to minimize for 

handling the ORPD issue. The voltage stability index Lj of  j-th load bus is defined as 

follows[29]: 

𝐿𝑗 = |1 − ∑ 𝐹𝑖𝑗
𝑉𝑖

𝑉𝑗
𝑖 ∠(𝛼𝑖𝑗 + (𝛿𝑖 − 𝛿𝑗))|            𝑖 = 1, 2, . . 𝑁𝐺       j=1, 2, .. NLB 

(2.82) 

where: 𝐹𝑖𝑗 = |𝐹𝑖𝑗|∠𝜃𝑖𝑗  

𝐹𝑖𝑗 = −[𝑌1]
−1[𝑌2] (2.83) 

 𝛿𝑖/𝛿𝑗 = Voltage angle of bus-i and bus-j, respectively.
 

Y1 

 

= Describes the sub-matrix linking the injection current vector and voltage 

vector of load nodes. 

Y2 = Describes the sub-matrix linking the injection current vector of load nodes 

and the voltage vector of generation nodes. 
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[
𝐼𝑃𝑄

𝐼𝑃𝑉
] = [

𝑌1      𝑌2

𝑌3     𝑌4
] [

𝑉𝑃𝑄

𝑉𝑃𝑉
]   (2.84) 

when the Lj value is closer to zero, the electric power grid is further stable. Represents an 

equation that maximizes a parameter: 

Lmax=max (Lj)                              where: j=1, 2…NLB (2.85) 

Lmax  the maximum value of Lj among all load buses. 

2.9.4.2 Operational Constraints  

2.9.4.2.1 Power Flow Equality Constraints 

The power flow for each node of an electrical power grid is characterized by the equality 

constraints expressed as follows: 

 

𝑃𝐺,𝑖 − 𝑃𝑙,𝑖 − ∑|𝑉𝑖|

𝑁𝐵

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| cos(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (2.86) 

𝑄𝐺,𝑖 − 𝑄𝑙,𝑖 − ∑|𝑉𝑖|

𝑁𝐵

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| sin(𝛼𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗) = 0  (2.87) 

2.9.4.2.2 Operating inequality constraints 

The mathematical form of inequality operating constraints is stated in the following 

manner: 

1. Constraints description of generator: The output voltage of each generator is 

characterized by its magnitude, which is limited by upper and lower limits 𝑉𝐺,𝑖
𝑚𝑖𝑛 and 

𝑉𝐺,𝑖
𝑚𝑎𝑥, respectively. 

The reactive power generation is also limited between lower and upper capacity limit 

𝑄𝐺,𝑖
𝑚𝑖𝑛 and 𝑄𝐺,𝑖

𝑚𝑖𝑛, respectively. 

{
𝑉𝐺,𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐺,𝑖 ≤ 𝑉𝐺,𝑖
𝑚𝑎𝑥

𝑄𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺,𝑖 ≤ 𝑄𝐺,𝑖

𝑚𝑎𝑥
              𝑖 = 1, 2, 3…𝑁𝐺 

(2.88) 

2. The tap setting Tk of transformers is imposed to the restrictions given by lower and 

upper boundary 𝑇𝑘
𝑚𝑖𝑛  and 𝑇𝑘

𝑚𝑎𝑥 , respectively. These limits  are mathematically 

given by : 
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{𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥                𝑘 = 1, 2, 3…𝑁𝑇  (2.89) 

3. The generated reactive power Qci from a capacitor bank is confined by two limits 

𝑄𝑐𝑖
𝑚𝑖𝑛 and Qci

max of lower and upper generation bound, respectively, and expressed as 

follows: 

{𝑄𝑐,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐,𝑖 ≤ 𝑄𝑐,𝑖

𝑚𝑎𝑥                𝑖 = 1, 2, 3…𝑁𝐶 (2.90) 

4. The power flow rate for each transmission line is confined by its transit capacity 

limit: 

{𝑆𝑙 ≤ 𝑆𝑙
𝑚𝑎𝑥                𝑙 = 1, 2, 3…𝑁𝑁𝑇𝐿 (2.91) 

   For limiting the dependent variables 𝑉𝐿𝑖 , 𝑄𝐺  and 𝑆𝑙 , we use the technique of penalty 

factors which prevents the considered dependent variable to go out of its limits (by ruling out 

the solutions providing the limit violations of the considered state variable) even if the 

objective function at these points gives a good solution. For this aim, we use an augmented 

objective function described by equation (2.86): 

𝐹𝑎𝑢𝑔 = 𝐹(𝑥, 𝑢) + 𝜆𝑉 ∑ ∆𝑉𝐿𝑖 +

𝑁𝐿𝐵

𝑖=1

𝜆𝑄 ∑∆𝑄𝐺𝑖 +

𝑁𝐺

𝑖=1

𝜆𝑆 ∑ ∆𝑆𝑙𝑖

𝑁𝑇𝐿

𝑖=1

 (2.92) 

where: 𝜆𝑉, 𝜆𝑄 and 𝜆𝑆are the factors of penalty. 

∆𝑉𝐿𝑖 = {

(𝑉𝐿𝑖
𝑚𝑖𝑛 − 𝑉𝐿𝑖)

2 𝑖𝑓 𝑉𝐿𝑖 < 𝑉𝐿𝑖
𝑚𝑖𝑛

(𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑎𝑥)2 𝑖𝑓  𝑉𝐿𝑖 > 𝑉𝐿𝑖

𝑚𝑎𝑥

0    𝑖𝑓  𝑉𝐿𝑖
𝑚𝑖𝑛 ≤  𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑖𝑛

 (2.93) 

∆𝑄𝐺𝑖 = {

(𝑄𝐺𝑖
𝑚𝑖𝑛 − 𝑄𝐺𝑖)

2 𝑖𝑓 𝑄𝐺𝑖 < 𝑄𝐺𝑖
𝑚𝑖𝑛

(𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑎𝑥)2 𝑖𝑓  𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥

0         𝑖𝑓 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤  𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑖𝑛

 (2.94) 

∆𝑆𝑙𝑖 = {
(𝑆𝑙𝑖 − 𝑆𝑙𝑖

𝑚𝑎𝑥)2 𝑖𝑓  𝑆𝑙𝑖 > 𝑆𝑙𝑖
𝑚𝑎𝑥

0    𝑖𝑓 𝑆𝑙𝑖
𝑚𝑖𝑛 ≤  𝑆𝑙𝑖 ≤ 𝑆𝑙𝑖

𝑚𝑖𝑛  (2.95) 

2.10 Optimal reactive power dispatch  

Optimal reactive power dispatch (ORPD), as one of the sub-problem of the optimal power 

flow (OPF) calculation, plays a significant role in power system operation. The main purpose 

of ORPD is to identify the optimal setting of control variables for minimization of the given 

objective functions while satisfying a series of system constraints over the entire dispatch 

period. Contain discrete variables such as tap positions of transformers and reactive 
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compensation capacity and continuous variables like generator voltages. Besides, system 

constraints are composed of two equality constraints and a set of inequality constraints. 

Hence, when regarded as an optimization problem, ORPD is a complex mixed integer 

nonlinear optimization problem and has gotten much attention over the last few decades [30]. 

ORPD optimization problem formulations differ greatly depending on the particular 

selection of variables, objective(s) and constraints. Because of the specialized nature of 

ORPD, formulation selection often has implications for both solution method design and 

solution accuracy. The two major types are Conventional and Evolutionary optimization 

techniques. 

Traditionally, conventional methods are effectively used to solve ORPD problems. They 

have been applied to solving ORPD problems to suit the different objective functions and 

constraints. These techniques are based on mathematical formulations which have to be 

simplified to get an optimal solution. The conventional methods have many drawbacks such 

as consuming a large amount of numerical iterations, and huge computations and therefore 

take large time to produce results without approximations and assumptions that lead to local 

optimum solutions. Therefore, these methods failed to handle the nonlinear and complex 

problems such as ORPD problem.  

To overcome the shortcomings of conventional techniques, evolutionary methods and 

their hybridized versions have been developed and applied to ORPD problems in the recent 

past. The major advantages of the evolutionary methods include: fast convergence rate, 

appropriate for solving non-linear optimization problems, ability to find global optimum 

solutions, suitable for solving multi-objective optimization problems, pertinent in finding 

multiple optimal solutions in a single simulation run and versatile in handling constraints 

[17]; [31]. 

2.11 Conclusion 

In this chapter, we have tried to give an overview of the definitions and the problem of 

power flow, and modeling of the power elements of an electrical network. 

Then the notion of the power flow is exposed, the different elements constituting the 

transport network are treated, and the formulation of the ORPD problem with its constraints is 
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well presented, this chapter is ended with a detailed presentation of different objective 

functions and their models.  
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CHAPTER 3 

The Meta-heuristics  

Introduction  

This chapter presents a brief discussion of both conventional and evolutionary techniques 

it presents reviews the ORPD problem as part of optimization problems encountered in 

electric power systems and some of the optimization techniques applied in solving the ORPD 

problem.  ABC, SSA, and hybridization of evolutionary techniques to solve the ORPD 

problem in the networks to reduce active power transmission line losses. This chapter also 

covers the hybridization tool used in this research and the proposed methodology for the 

hybridization. There are different methods by which these two optimization techniques can be 

hybridized to come up with a better method to solve the problem at hand. This chapter 

presents the hybridization of ABC and SSA to form ABC-SSA and the details of the proposed 

methodology. 

3.1 Conventional optimization techniques 

These methods were first introduced to solve in an exact way particular problems such as 

continuous and linear problems under linear constraints (Danzig's simplex algorithm), these 

methods have also been extended to discrete and mixed cases but only in the linear case. 

The main quality of deterministic global methods is that they do not require a starting 

point. These methods allow handling constraints well, unlike stochastic methods and can be 

applied to mixed problems (real, integer, and categorical variables). They guarantee to obtain 

a global solution to the problem.  However, it is important to know that global deterministic 

methods remain usable as long as the number of variables does not become too large. Beyond 

about twenty variables, they reach their limits [27].  

The development of conventional optimization techniques and their applications to solve 

ORPD problems are briefed here. 

In reference [32], used Dual Linear Programming (DLP) for minimizing the real power 

losses in the system. The constraints include the reactive power limits of the generators, limits 

on the load bus voltages, and the operating limits of the control variables, i.e., the transformer 
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tap positions, generator terminal voltages and switchable reactive power sources. Real power 

economic dispatch is accomplished by standard techniques. 

Reference [33] used the P-Q decomposition approach to formulate OPF based upon the 

decoupling principle well recognized in bulk power transmission load flow. This approach 

decomposes the OPF formulation into a P-problem (real power model) and Q-problem 

(reactive power model), thereby showing ORPD as a sub-problem of OPF. The Q-Problem is 

defined as the minimization of real power transmission line losses by optimally setting the 

generator voltages, transformer tap settings, and shunt reactive power compensations. The 

problem of enforcing state variables (inequality constraints) is included in the problem 

formulation by the use of penalty functions. This approach simplifies the formulation, 

improves computation time, and permits certain flexibility in the types of calculations desired 

(i.e. P-Problem, Q-Problem, or both). 

Burchett et al. [34] in their paper proposed a Quadratic Programming (QP) solution to the 

OPF problem. This method used the second derivatives of the objective function to find the 

optimal solution. This method is suitable for optimization problems with infeasible or 

divergent starting points. 

Lee et al. [35] broadly solved the optimal real and reactive power dispatch for the 

economic operation of power systems. The constraints are the operating limits of the control 

variables, power line flows, and bus voltages. The optimization problem is solved using the 

gradient projection method (GPM) which is used for the first time in the power systems study. 

The GPM allows the use of functional constraints without the need for penalty functions or 

Lagrange multipliers among other advantages. 

Mota-Palomino and Quintana [36] presented a Linear Programming based solution for the 

reactive power dispatch problem. The reactive power model of the fast decoupled load flow 

algorithm was used to derive linear sensitivities. A suitable criterion was suggested to form a 

sparse reactive power sensitivity matrix. The sparse sensitivity matrix was modelled as a 

bipartite graph to define an efficient constraint relaxation strategy to solve linearized reactive 

power dispatch problems. 

In reference [37], Nanda et al. developed Fletcher’s Quadratic Programming to solve the 

OPF problem. The algorithm decoupled the OPF problem into sub-problems with two 

different objective functions: minimization of generation cost and minimization of active 
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power transmission line losses. These sub-problems were solved to optimally set the control 

variables while restricting the system constraints without violations. This algorithm showed 

some potential for online solving of OPF problems. 

In [38], a penalty-based discretization algorithm. The algorithm handles the discreteness 

of shunt capacitors/reactors during the solution process of a Newton OPF without a 

combinatorial search. It can be easily incorporated with existing OPF programs in a 

straightforward manner. Tests on two actual systems show that the algorithm provides near-

optimal discrete solutions. 

Granville [39] presented an Interior Point Method (IPM) technique based on the primal-

dual method to solve the ORPD problem in large-scale power systems. In the problem 

formulation, the inequality constraints were eliminated by incorporating them as a logarithmic 

barrier function. The main feature of the IPM is: 

1) Insusceptibility of the size of the power system to the number of iterations 

2) Numerical robustness 

3) Effectiveness in solving ORPD problems in large-scale power systems Granville [39] 

presented an Interior Point Method (IPM) technique based on the primal-dual method to solve 

the ORPD problem in large-scale power systems. In the problem formulation, the inequality 

constraints were eliminated by incorporating them as a logarithmic barrier function.  

Reference [40] proposed a new Newton method approach to solve the OPF problem which 

incorporates an augmented Lagrangian function that has the function of combining all the 

equality and inequality constraints. The mathematical formulation and computation of the 

method are exploited using the sparsity of the Hessian matrix of the augmented Lagrangian. 

Optimal solutions were achieved by this method and can be utilized for an infeasible starting 

point as its set of constraints does not have to be identified. 

Momoh and Zhu [41] proposed an improved Quadratic Interior Point Method (QIPM) to 

solve the OPF problem. The proposed method has the features of fast convergence and a 

general starting point, rather than a selected good point as in the general IPM. 
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3.2 Evolutionary Optimization Techniques 

These non-deterministic methods use random number draws. They allow exploring the 

search space more efficiently. In the following, the focus will be on the meta-heuristic: 

The word meta-heuristic is derived from the composition of two Greek words: 

- Heuristics comes from the verb heuriskein (euriskein) and which means to find. 

- Meta which is a suffix meaning beyond, in a higher level. 

The first meta-heuristics date from the 1980s. They are generally used when classical 

methods fail. The term meta-heuristic is used in contrast to heuristics. Indeed, meta-heuristics 

can be used for several types of problems, while a heuristic is adapted to a given problem. 

Meta-heuristics have as common characteristics that they are stochastic, i.e. that part of the 

search is conducted randomly, and that they are inspired by analogies with reality: physics 

(simulated annealing,...), biology (evolutionary algorithms, tabu search,...) or ethology (ant 

colonies,...). In addition to this stochastic basis, meta-heuristics are generally iterative, i.e. the 

same search scheme is applied several times during the optimization, and direct, i.e. they do 

not use the gradient information of the objective function. They are particularly interesting 

because of their ability to avoid local optima, either by accepting a degradation of the 

objective function during their progress, or by using a population of points as a search 

method. Because of the abundance of research in this field, a large number of such methods 

exist. In the following, notably biological inspiration, can help in the design of new meta-

heuristics [27]. 

Of late, several artificial intelligence algorithms appear to solve ORPD problems 

efficiently without any requirements on the attributes of objective functions and variables, 

which aim to search for the global optimal solution of problems, even though they cannot 

always guarantee the global optimal solution, a suboptimal solution that is near the global 

optimal solution may also be found. There are three categories of artificial intelligence 

algorithms listed as follows [42]: 

3.2.1 Evolutionary Computation Techniques (EC): 

Reference [43] presented the application of the differential evolution (DE) algorithm for 

optimal settings of ORPD control variables. This algorithm is examined and tested on the 
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standard IEEE 30 bus test system with different objectives that reflect power losses 

minimization, voltage profile improvement, and voltage stability enhancement.   

Devaraj [44] presented an improved GA approach for solving the multi-objective reactive 

power dispatch problem. Loss minimization and maximization of the voltage stability margin 

were taken as the objectives. In the proposed GA, voltage magnitudes are represented as 

floating point numbers and transformer tap-settings, and the reactive power generation of a 

capacitor bank was represented as integers. This alleviates the problems associated with 

conventional binary-coded GAs to deal with real variables and integer variables. Crossover 

and mutation operators which can deal with mixed variables were proposed. 

3.2.2 Physical Heuristic Methods 

Song Woo Geem and Joong Hoon kim give a new heuristic algorithm HSA Harmony 

Search Algorithm [45] derived from an artificial phenomenon found in musical performance 

(for example, a jazz trio), namely the process of searching for better harmony (Music is one of 

the most satisfying processes generated by human endeavors). This method has been 

implemented the ORPD problem for the determination of the global or near global optimum 

solution in [46]. 

In [47], an efficient and reliable optimization procedure based on the behaviors of a swarm 

in nature, for solving multi-objective optimal reactive power dispatch problems, which 

minimizes transmission loss while maintaining the quality of voltages. The gravitational 

search algorithm is based on Newton’s law of gravity and the interaction of masses. In the 

algorithm, the searcher agents which are a collection of masses interact with each other using 

Newton’s laws of gravity and motion. 

3.2.3 Swarm Intelligence (SI) 

Abido [4], presents an efficient and reliable algorithm to solve the optimal power flow 

(OPF) problem. This method employs the particle swarm optimization (PSO) algorithm for 

optimal settings of OPF problem control variables. The incorporation of PSO as a derivative-

free optimization technique in solving OPF problems significantly relieves the assumptions 

imposed on the optimized objective functions. This application has been examined and tested 

on the standard IEEE 30 bus test system with different objectives. 
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Abbasy and Hosseini [48], applied Ant Colony Optimization (ACO) technique to solve the 

ORPD problem. The approach consisted of mapping the solution space on a search graph, 

where artificial ants walk. They proposed four variants of the ant systems: 1) basic ant system, 

2) elitist ant system, 3) rank-based ant system and 4) max-min ant system. They also 

portrayed that applying the elitist and ranking strategies to the basic ant system improves the 

algorithm's performance in every respect. 

In [49], a Gray Wolf Optimizer (GWO) algorithm (which was inspired by gray wolves’ 

leadership and hunting behavior) is presented to solve the ORPD problem. GWO is utilized to 

find the best combination of control variables such as generator voltages, tap changing 

transformers’ ratios as well as the number of reactive compensation devices so that the loss 

and voltage deviation minimizations can be achieved. 

The Whale Optimization Algorithm (WOA) [8], the meta-heuristic technique inspired by 

the bubble-net hunting technique of humpback whales, has been applied to solve the ORPD 

problem. The WOA method has been examined and confirmed on the IEEE 14 bus, and IEEE 

30 bus, in addition to a practical and large-scale Algerian electric 114 bus test system. 

3.3 Choice of an optimization method 

One may ask what is the purpose of classification of problem types and methods. This 

classification can be justified as when a user is confronted with a global optimization 

problem, the first thing to do is to properly define the problem, namely: 

 Assumptions on f (differentiability, convexity...). 

 Assumptions on the search domain, 

 Existence or not of constraints, what kind of constraints, 

 Cost of evaluating the function (CPU time, number of subprograms 

needed), 

 Ease of evaluation (access, explicit formula of f), 

 Precision available on the calculations, 

 Type of hardware used, 

 Time available to solve the problem. 

So, it can be seen that knowing a classification of problems and methods can facilitate the 

task of the user and guide him in his choice, which allows him to set his objectives 
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accordingly. Because it is better to have an approximate solution (with an insufficient 

precision) within a reasonable time than an exact solution (with the desired precision) outside 

the time limit in certain contractual cases. 

Unfortunately, no optimization method can efficiently handle all cases. Indeed, [50], has 

shown that if one considers all possible optimization problems, then no algorithm is better 

than another ("no free lunch theorems for optimization"). The choice of an algorithm cannot, 

therefore, be made by comparison on general test cases, but must also study problems 

representative of the applications envisaged. The comparison of local or global optimization 

algorithms can only take place once the problem being addressed, i.e. the objective function, 

has been specified. According to [51], optimization is not only a mathematical theory but also 

a kind of algorithmic kitchen where it is mainly the experience that guides the user in the 

choice of the algorithm to be implemented. To choose the most suitable method for a specific 

problem, the main characteristics taken into account are: 

 The ability to avoid local minima: It is according to the complexity of the problem 

that one can choose one or the other of the methods presented above. For example, if the 

objective function is convex, it is undoubtedly recommended to work with a local method that 

allows reaching the optimum quickly compared to the global optimization methods. However, 

if the objective function is multimodal it is probably not worth applying a local method and 

the use of global methods becomes necessary. Although here again several methods exist, in 

this section, the focus will be on the hybrid approaches to highlight their effectiveness and 

efficiency. 

 Robustness of an optimum: The robustness of an optimum is also a determining 

notion for designers, and must not be neglected when choosing the optimization algorithm. 

The shape to be optimized is modeled in a deterministic way; this shape is thus optimized by 

neglecting the uncertainties related for example to the manufacturing processes or the 

simplifications of the problem. To reduce the probability that the performance of the 

optimized shape is not verified in reality, a robust optimum must be sought. A robust 

optimum is a solution that is not very sensitive to uncertainties. 

 The ability to deal with single or multi-objective problems: Multi-objective 

optimization is a very active research field because the economic and industrial stakes are 

enormous. Multi-objective optimization methods provide the designer with a set of solutions 
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corresponding to as many trade-offs between the various antagonistic objectives of the 

problem, hence their importance. 

 The speed of convergence: That is to say, how many variables must be evaluated in 

order to converge towards a global optimum? The answer to this question lies in the 

compromise that must be found between exploration and exploitation. 

3.4 Exploration and exploitation of optimization algorithms 

For an optimization algorithm, exploration is its ability to explore the domain of variables 

to find the best valley, i.e. the one that contains the global optimum. Conversely, exploitation 

is its capacity to converge quickly to the minimum of a given valley from a starting point. 

The success and efficiency of a resolution technique depends most of the time on a trade-

off between exploration and exploitation. However, some methods use only one of these 

operators to reach the optimum. Thus, deterministic methods, exploiting the derivatives of the 

objective function and the constraints to reach quickly and precisely the local minimum 

closest to the starting point, favor exploitation at the expense of exploration. 

Any optimization algorithm must use these two strategies to find the global optimum: 

exploration to search for unexplored regions of the search space and exploitation to exploit 

the knowledge acquired at the points already visited and thus find better points. 

3.5 The Most used meta-heuristics 

Recognized for many years for their efficiency, meta-heuristics are a family of stochastic 

methods that consist in solving optimization problems. They generally exploit random 

processes in the exploration of the search space to cope with the combinatorial explosion 

generated by the use of exact methods. 

Their particularity lies in the fact that they are adaptable to a large number of problems 

without major changes in their algorithms, hence the term "meta". One of the advantages of 

these methods is their ability to optimize a problem with a minimal amount of information, 

but they do not guarantee the optimality of the best solution found. Only an approximation of 

the global optimum is given. Meta-heuristics are methods that have an iterative behavior, i.e. 

the same scheme is reproduced a certain number of times during the optimization, and they 

are direct, in the sense that they do not call upon the calculation of the gradient of the 

function. The user is certainly looking for fast and efficient methods, but he is also looking for 
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easy to-use methods. A major issue of met- heuristics is therefore to facilitate the choice of 

methods and to simplify their settings, in order to adapt them to the problems at hand. Meta-

heuristics are in permanent evolution. Many methods are proposed each year to improve the 

solution of the most complex problems. Because of this permanent activity, a large number of 

classes of meta-heuristics currently exist. The most common methods are simulated 

annealing, particle swarm optimization, ant colony algorithms, artificial bee colony, or the 

Salp swarm algorithm. The following section is dedicated to the presentation of these 

methods. 

3.6 Artificial bee colony algorithm  

Recently, the ABC algorithm inspired by the foraging behavior of honeybees to find and 

exploit the nectar of flowers has been extensively applied as an efficient population-based 

algorithm. Since its development by Karaboga in 2005 [52], it has gained great popularity to 

solve complex optimization problems in various fields of engineering, especially in electrical 

power system considering Economic Dispatch (ED) [53], Optimal Power Flow (OPF) [54] 

and ORPD [55] due to its sample implementation. Referring to a huge number of works 

regarding ABC algorithm applications, practical studies have brought into focus that this 

algorithm is weak in the exploitation of promising solutions and powerful in the exploration 

of search space [10, 11, 56]. Hence, improved versions of the ABC algorithm have been 

developed based literature review in with the aim to reinforce exploitation capacity. The 

presented research in  [56] proposes an improved version of the ABC the named  gbest-guided 

ABC (GABC) algorithm by incorporating the best overall solution (gbest) information into the 

solution-finding equation to enhance exploitation. A hybrid approach of the ABC algorithm 

and Grenade Explosion Method (GEM) has been suggested in 2015 by Zhang et al. [13] to 

make the ABC algorithm more effective in exploiting the promising solutions discovered by 

GEM. The ABC-GEM performance has been justified by relying on simulation results of the 

wide variety of benchmark functions. This hybrid technique was first applied in [14] to solve 

the OPF problem for multi-objective functions including total fuel cost, voltage deviation and 

voltage stability index, considering IEEE 30 bus and IEEE 57 bus test systems.           

The artificial bee colony algorithm as an interesting meta-heuristic optimization technique 

has proven its efficiency for solving various numerical optimization problems in the 

engineering area [54]. It has been inspired by the honey bees activities to collect the nectar of 

the food sources and share roles during the foraging process. The ABC algorithm considers 
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the food source position as a proposed solution in the search space, while the nectar quantity 

of food source corresponds to the fitness value of the potential solution. The hive population 

is divided in two groups of bees: employed and unemployed bees, where each group contains 

the half population of the hive. The employed bees are sent to search for food sources, while 

the unemployed bees, called onlooker bees, are waiting in the hive to receive information 

about food sources discovered by employed bees. Once onlooker bees have received 

information about food sources, they try to select the best ones among them (with a high 

quantity of nectar) to further explore the vicinity of the best food source positions (exploiting 

the best solutions). When a food source is exhausted, its employed bee changes its role to 

become a scout bee, which tries to find a new food source in another location. Three phases 

are performed to accomplish one cycle after the initialization phase of the population. A 

predefined number of cycles can be selected as the stopping criteria of the ABC algorithm 

[10, 52, 54]. 

 Initializing a population of solutions  

Initially, random positions of SN food sources are generated in the hive environment 

using the following equation: 

𝑥𝑖𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑅𝑛 . (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)  (3.1) 

where xj,max ,xj,min are, the upper and lower limits of j-th decision variable in the D-

dimensional search space respectively with i Є [1, 2, .. SN], j Є [1, 2,.. D], and Rn is a 

randomly generated number in the interval [0, 1]. 

 Exploiting Food Sources by Employed Bees 

After the initialization of food source locations, all employed bees are sent to discover 

the food sources in the neighborhood of the previously memorized food source positions. 

Each employed bee tries to find a food source around an old one in its memory. This behavior 

is modeled mathematically using the following equation:  

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝐾𝑗) (3.2) 

where 𝑣𝑖𝑗 and 𝑥𝑖𝑗 indicate the new and the old j-th variable related to the  i-th position of 

the food source, respectively, with iЄ{1,2,...SN} and j Є{1,2,…D}. 𝑥𝐾𝑗 is the j-th variable of 

the  k-th position of the food source chosen randomly. ∅𝑖𝑗  is a randomly generated real 
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number between -1 and 1. If 𝑣𝑖𝑗 in equation (3.2) violates its predefined limits, it is fixed to its 

violated limit. A greedy selection process is carried out to select between 𝑥𝑖 and 𝑣𝑖. 

 Exploiting food sources by onlooker bees 

Once the employed bees have accomplished their investigation phase, they will 

communicate with onlooker bees about all information on food sources, particularly, the 

positions and nectar quantities. Each onlooker bee must choose one food source based on the 

probability evaluation pi corresponding to this food source.  Using the probability of the 

roulette wheel, pi can be evaluated by the following expression:    

𝑃𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑗=𝑖

 (3.3) 

fitnessi:  Fitness value of solution i   

The vector from the population of solutions 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝐷]  is evaluated by 

calculating its corresponding objective function
 
𝑓(𝑥𝑖) = 𝑓𝑖  and the fitness function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 

is given by: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓(𝑥𝑖)
                             𝑖𝑓       𝑓(𝑥𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖))                      𝑖𝑓          𝑓(𝑥𝑖) < 0

 (3.4) 

The onlooker bee searches the neighborhood of selected food source position xi in order to 

produce a new candidate solution by changing one parameter in the vector xi using equation 

(3.2). The newly generated solution vi is evaluated by referring to equation (3.4). Then the 

greedy selection takes part again in this case, to retain the best solution and reject that of poor 

quality.  

 Exchanging role of the employed bee to a scout bee  

After the full exploitation of a food source, its corresponding employed bee becomes a 

scout bee and it will change the location to look for a new food source in the search space. 

This stage is reached when a proposed solution xi has not improved after a predetermined 

number of trials named "limit" and based on a Trial Counter (TC) corresponds to each 

potential solution. TCi of i-th solution is incremented by 1 if no improvement of this solution, 

else TCi is reset to zero. Thus, the new food source is generated randomly using equation 
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(3.1). The control parameter "limit" can be used as a key factor to avoid the ABC algorithm to 

be trapped in local minima during the search process. The ABC algorithm steps are illustrated 

below: 

Step 1: Set the ABC algorithm parameters SN, limit, D and maxCycle. 

Step 2: Creating an initial random population (food sources) using equation (3.1). 

Step 3: Evaluating each food source by determining the fitness value using equation 

(3.4) and reset TC to zero for each one. 

Step 4: Start Cycle =1. 

Step 5: Start the phase of employed bees. 

for  i =1 to SN 

        Discover a new food source position vi depending on the old one xi by 

applying equation (3.2) where (k≠i),    

        Evaluate each new food source using equation (3.4), apply the greedy 

selection to choose between xi and vi,    

        Increment TCi by 1 if no improvement of the i-th food source, else reset 

TCi to zero. 

 end for 

Step 6: Calculating the probability pi for each bee using equation (3.3). 

Step 7: Start the phase of onlooker bees. 

 for i=1 to SN 

     Generate a random value Rn 

      if  Rn<pi 

        Discover a new food source position vi depending on the old one xi by 

applying equation (3.2) where (k≠i),    

        Evaluate each new food source using equation (3.4), apply the greedy 

selection to choose between xi and vi,    

        Increment TCi by 1 if no improvement of the i-th food source, else reset 

TCi to zero. 

      end if 

 end for 

Step 8 : Start the scout bee phase 

  for i=1 to SN 

         if TCi> limit 

            Create a new food source emplacement xi using equation (3.2) 

          end if 

  end for 

Step 9 : Store the global best food source obtained until now. 

Step10: Verifying if Cycle>maxCycle, if yes exit by stopping the algorithm execution, 

otherwise do Cycle=Cycle +1 and go to step 5.  
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3.6.1 Flowchart of artificial bee colony (ABC) 

Figure 3.1 delineates the flowchart of the algorithm ABC as thus: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7  Salp swarm algorithm 

In the year 2017, a new meta-heuristic optimization technique named Salp Swarm 

Algorithm (SSA) has been developed and investigated for solving a set of standard real 

optimization problems [57]. In the previous study, SSA pointed out better performances 

considering quantitative and qualitative simulation outcomes on several benchmark functions. 

It has been inspired by navigating and foraging behaviors of salp swarms living in oceans. 
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Figure 3.1 Flowchart of ABC algorithm. 
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Based on the SSA applications in the OPF problem [58] and feature section (FS) [59],  the 

common assessment report of these applications highlights that the SSA is weak in 

exploration search mechanism and powerful in exploitation capability [59, 60].  

The imitation of the SSA is from the attitude of salps belonging to salpidae species, living 

in oceans and possessing a transparent body in the form of a barrel like a jelly-fish. The salps 

move with pumped water through their body to propel themselves forward Figure 3.2 (a). It is 

believed that the salps move so that they organize a salp chain in oceans and seas searching 

for the best sources of food as shown in Figure 3.2 (b). 

 

 

 

 

 

 

 
 

To model the salp chain behavior in the mathematical aspect, the salp swarm is partitioned 

into two sub-populations of leader and followers. By leading the salp chain, the leader tries to 

govern the displacement of the followers. Each follower of the salp chain tracks the path 

mapped by one leader. In a similar manner as other categories of optimization techniques 

founded on the swarm attitude, the salp position is expressed in the search space with D-

dimensions, where D reflects the number of control variables relating to the optimization 

problem. Consequently, Np positions of salps are memorized in a matrix X with two-

dimensions. By assuming that the target of the swarm is a food source designated by Fj, the 

salp chain attempt to reach it during the search process [57, 61].To deal with the update of the 

leader position, equation (3.5) can be suggested. 

𝑋𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)               𝑐3 ≥ 0.5

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2+𝑙𝑏𝑗)               𝑐3 ≤ 0.5
 (3.5) 

where  

 

Figure 3.2 (a) Individual salp, (b) swarm of salps (salps chain). 
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𝑋𝑗
1  = Leader position in j-th dimension relating to the first salp. 

𝐹𝑗  = The position occupied by the best food source in the dimension j at each 

iteration. 

𝑢𝑏𝑗and 

𝑙𝑏𝑗 

= Are the upper and lower limits in the dimension j of D-dimensional space, 

respectively. 

c2, c3:  = Two randomly generated numbers in the interval between 0 and 1. 

Equation (3.5) exposes the update of the leader position by referring to the food source 

position. The factor 𝑐1 represents the key factor in the harmonization between two important 

mechanisms of meta-heuristics exploration and exploitation during the research for good 

solutions specified in the following equation: 

𝑐1 = 2𝑒−(
4𝑙
𝐿

)
2

 (3.6) 

By considering: 

l: Current iteration, L: Maximum number of iterations. 

For updating the follower salp position, this task is accomplished according to the suggested 

equation (3.7). 

𝑋𝑗
𝑖 =

1

2
(𝑋𝑗

𝑖 + 𝑋𝑗
𝑖−1) (3.7) 

where the index i must be greater or equal to 2 and 𝑋𝑗
𝑖  depicts the i-th follower salp 

position in j-th dimension. By employing equation (3.5) and (3.7), the simulation process of 

salps in regrouped chains can be mimicked. Referring to mathematical inspiration, the 

principal steps of the SSA algorithm are shown below:  

Step 1: Set SSA parameters like as D, Np, ub, lb, L and initialize l=1. 

Step 2: Create a random population of solutions by initializing the positions of salps. 

Step 3: Evaluate the population for the objective function and find the best global 

solution F (food source). 

Step 4: Dividing the salp population in two sub-populations of leaders and flowers. 

Step 5: Updating iteration number l=l+1. 

Step 6: Calculate the constant c1 based equation (3.6), while c2 and c3 are generated 

randomly. 
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3.7.1  Flowchart of Salp Swarm Algorithm (SSA) 

Figure 3.3 shows the flowchart of the SSA algorithm as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flowchart of SSA. 

Step 7: Update leader and follower positions using equation (3.5) and equation (3.7), 

respectively.  

Step 8: Amending salp positions referring to lower and upper limits of variables.   

Step 9: Update the food source F. 

 Step 10: Verifying if l<L go to step 5, else extract the best global solution F and exit from 

the algorithm execution.  

Generate an initial population 

Start  

End  

Set the best salp as F 

Update c1 based on Eq (3.6)  

Update the position of the leader salp by Eq (3.5)  

  
Update the position of the follower salp by Eq (3.7) 

Update all salps to the predefined limit  

Adjust the parameters ( Np and L) 

Return the best Fj  

l=l+1 

l < L 

l=1 

Yes 

No 
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3.8  Hybrid ABC-SSA approach 

   All meta-heuristic optimization techniques try to balance between their two important 

mechanisms: exploration and exploitation. The exploration is related to the search capacity of 

the algorithm in finding encouraging new solutions, while exploitation is associated with the 

capability of the algorithm to discover an optimum near the best solution. Referring to 

equation (3.2), which describes the search mechanism of the ABC algorithm, the newly 

generated position 𝑣𝑖 (new solution) moves away from (or near) the old position (solution 𝑥𝑖) 

depending on the selection probability 𝑝𝑖  in equation (3.4). This behavior tends to improve the 

exploration capability. The main disadvantage affecting the ABC algorithm is the update of 

the position 𝑥𝑖  based on only one search equation (3.2) by changing one parameter (one 

variable related to this solution). In addition, when the greedy selection is applied between 𝑥𝑖 

and 𝑣𝑖, the bad solution is ignored without giving it more chance of exploitation. Therefore, 

the ABC method is good at exploration but poor at exploitation. The SSA uses equation (3.5) 

in order to update the position of the leader referring to the best solution Fj (food source), 

which enhances the exploitation capability to find promising solutions in the vicinity of the 

optimal solution found so far Fj. The hybrid ABC-SSA approach tries to improve the 

exploitation proficiency of the ABC algorithm by introducing the bad solutions Sni which 

have not been improved (extracted using greedy selection between 𝑥𝑖 and 𝑣𝑖 in the employed 

and onlooker bee phases) in SSA. In such a manner, these solutions are more exploited using 

the local search process by SSA in order to improve the solution quality of the optimization 

problem. The best global solution achieved by the ABC algorithm is stored as food source Fj 

in the SSA. To support all these stages, the hybrid ABC-SSA steps are described below: 

Step 1: Firstly, set the ABC algorithm parameters (N, D and maxCycle) and accomplish the 

ABC method steps (from step 2 until step 3). 

Step 2: Start Cycle =1. 

Step 3: Begin with step 4 until step 8 in the ABC steps (employed bees phase and onlooker bees 

phase). 

Step 4: Extracting the population of solutions Sni which has not been improved during ABC 

method and memorizing the best global solution achieved so far by ABC algorithm as 

best food source F_ABC. 

Step 5: Starting with SSA and evaluate the population of solutions Sni using equation (3.5). 

Step 6: Complete the same steps mentioned in the SSA method (from step 5 until step 9), and 
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memorize the best food source as F_SSA. 

Step 7: Compare between F_ABC and F_SSA and extract the best food source among them.  

Step 8: Check if Cycle<maxCycle, if Yes do Cycle =Cycel+1 and then go to step 3, else extract 

the best food source and exit from the program. 

 

3.8.1 Contribution structure of the ABC-SSA method 

 

For further clarification, Figure 3.4 illustrates the structure of the proposed ABC-SSA 

method: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2 Flowchart of Hybrid ABC-SSA Approach 

Figure 3.5 shows the flowchart of the ABC-SSA algorithm as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Structure of the ABC-SSA method. 
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Figure 3.5 Flowchart of the ABC-SSA algorithm. 
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3.9 Conclusion    

This chapter reviews the development and application of conventional and evolutionary 

optimization techniques to solve the ORPD problem by different authors in the power system 

area. In addition, it reviews the development and application of some hybrid methods to solve 

the ORPD. It also gives details of the application of ABC, as well as SSA in solving an ORPD 

problem. And presents the hybridization of ABC and SSA to form ABC-SSA and shows in a 

flowchart how they can be used to solve the ORPD problem. 
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CHAPTER 4 

Simulation Results and Analysis 

This chapter covers the hybridization tool used in this research and the proposed 

methodology for the hybridization. There are different methods by which these two 

optimization techniques can be hybridized to come up with a better method to solve the 

problem at hand. This chapter presents the hybridization of ABC and SSA to form ABC-SSA 

and the details of the proposed methodology. 

4.1 Simulation results and discussions  

To investigate the enhancement of the proposed ABC-SSA approach in solving the ORPD 

problem, four standard test systems are considered which are IEEE 30 bus, IEEE 57 bus, 

IEEE 118 bus, and IEEE 300 bus. The mono-objective optimization issue is stated by 

minimizing the total active power losses (Ploss), voltage stability index (L-index) or total 

voltage deviation (TVD). Table 4.1 presents the characteristics of the test systems. The 

software used is running under  MATLAB R2013a computing environment and applied on a 

2.40 GHz Pentium IV personal computer with 3GB RAM. The population size (NP), the 

maximum number of iterations (Max_iteration), and penalty factors 𝜆𝑉 , 𝜆𝑄  in Eq.Error! 

Reference source not found. for each test power system are given in Table 4.2. The optimal 

solution achieved by the developed algorithm (ABC-SSA) is selected for the best solution 

over thirty runs independently executed. 

  Table 4.1 Description of test power systems. 

Description 
IEEE 30 bus IEEE 57 bus IEEE 118 bus IEEE 300 bus 

Number of control 

variables 
19 25 77 190 

Number of 

Generators 
6 7 54 69 

Number of Taps 4 15 9 107 

Number of Q-shunt 9 3 14 14 

Equality constraints 60 114 236 530 

Inequality constraints 125 245 572 706 

Discrete variables 13 18 23 121 

Ploss (MW) 5.81 28.462 132.863 408.316 

TVD (pu) 0.5821 1.233 1.439 5.4286 
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Table 4.2 Control parameter settings of ABC, SSA, and ABC-SSA algorithms for test power 

systems 

 

4.2.IEEE 30 bus System 

The first test system implemented in the ORPD problem is that of IEEE 30 bus. It contains 

19 control variables including 6 for generator voltage magnitude outputs located in buses 1; 2; 

5; 8; 11 and 13, 4 for tap setting transformers connected between buses ([6–9], [6–10], [4–12] 

and [28–27]), and 9 for reactive power output from shunt capacitors in buses 10; 12; 15; 17; 

20; 21; 23; 24 and 29. The data base for this network is mentioned in [62], and the total real 

power demand is 2.834 (pu) at 100 MVA base. The limit of the control variables is shown 

in[62]. 

 

Figure 4.1 Single line diagram of IEEE 30 bus power system [63]  

Algorithm ABC, SSA, and ABC-SSA 

Parameters 𝝀𝑽 𝝀𝑸 N Max_iteration or maxCycle  

IEEE 30 bus 0.001 0.001 80 150 

IEEE 57 bus 20 20 150 300 

IEEE 118 bus 10 10 300 500 

IEEE 300  bus 102 10-6 500 500 
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4.2.1 Active Power Losses Minimization for IEEE 30 bus System 

In this case, Ploss is selected as an objective function to minimize and the best control 

variables resulting from ABC-SSA computing code running are shown in Table 4.3. The 

results established after the simulation phase by applying the ABC-SSA method are compared 

with those of other available methods in the literature as PSO[62], CLPSO[62], WOA[8], 

GSA-CSS, and IGSA-CS [30], as well as the implementation of the developed  approaches in 

this paper ABC-SSA. The minimum obtained Ploss from the ABC-SSA algorithm is 4.5578 

MW and it is less by 0.1152 MW (2.53%) than SSA, which gives 4.6730 MW. A statistical 

comparison is performed based on Table 4.4 proving the capability of ABC-SSA to overcome 

other optimization techniques reported in the same table. The convergence curves for ABC, 

SSA, and ABC-SSA methods are illustrated in Figure 4.2, which demonstrates that the new 

hybrid approach does not have any stagnations for the global best solution evolution as it does 

for SSA and ABC methods. This characteristic shows better performances of ABC-SSA in 

tackling premature convergence.  

 

Figure 4.2 Convergence curves for Ploss minimization, IEEE 30 bus. 
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Table 4.3 Simulation results using ABC-SSA and other optimization techniques for Ploss 

minimization IEEE 30 bus. 

Control variables  ABC-

SSA 

ABC SSA PSO[6

2] 

CLPSO[

62] 

WOA[8

] 

GSA_CSS[

30] 

IGSA_CSS 

[30] 

Generator voltage   

V1      1.1000 1.0578 1.1000 1.1000 1.1000 1.1000 1.108098 1.081281 

V2     1.0942 1.0565  1.0945 1.1000 1.1000 1.0963 1.071832 1.072177 

V5     1.0738 1.0236 1.0749 1.0867 1.0795 1.0789 1.049583 1.050142 

V8     1.0762 1.0176 1.0768 1.1000 1.1000 1.0774 1.049744 1.050234 

V11     1.1000 1.0426 1.0707 1.1000 1.1000 1.0955 1.087238 1.100000 

V13     1.1000 1.0686 1.0814 1.1000 1.1000 1.0929 1.073330 1.068826 

Transformer tap ratio 

T6−9      1.0684 1.0380 1.0147 0.9587 0.9154 0.9936 1.040 1.080 

T6−10      0.9000 1.0289 1.0036 1.0543 0.9000 0.9867 0.964 0.902 

T4−12.      0.9998 1.0755 1.0593 1.0024 0.9000 1.0214 1.020 0.990 

T28−27      0.9760 1.0396 1.0040 0.9755 0.9397 0.9867 0.972 0.976 

Capacitor banks   

QC−10      5.0000 2.7614 4.3881 4.2803 4.9265 3.1695 0.0255 0.00 

QC−12      5.0000 2.0468 4.3416 5.00 5.0000 2.0477 0.0335 0.00 

QC−15      5.0000 0.9966 2.6818 3.0265 5.0000 4.2956 0.0315 0.0380 

QC−17      5.0000 2.7687 1.6046 4.0365 5.0000 2.6782 0.0350 0.0490 

QC−20      5.0000 4.5165 1.4919 2.6697 5.0000 4.8116 0.0260 0.0395 

QC−21      5.0000 3.3702 2.7040 3.8894 5.0000 4.8163   0.0300 0.0500 

QC−23      3.8635 3.5046 2.7881 0.0000 5.0000 3.5739 0.0350 0.0275 

QC−24      5.0000 2.4227 4.3374 3.5879 5.0000 4.1953 0.0360 0.0500 

QC−29      3.1172 3.8632 2.4971 2.8415 5.0000 2.0009 0.0300 0.0240 

Ploss MW 4.5578 4.7157 4.6730 4.6282 4.5615 4.5943 4.79301 4.76601 

TVD (pu) 1.8117 0.4789 1.0592 1.0883 0.4773 - - - 

L-index (pu) 0.1169 0.1452 0.1277 0.1423 0.1230 - - - 

Table 4.4 Comparison of minimum real power losses for different methods for IEEE 30 bus 

system. 

Algorithms Ploss MW Algorithms Ploss MW 

MICA-IWO [15] 4.5984 LDI-PSO [64] 4.6124 

IWO [15] 4.6287 B-DE [64] 4.6124 

ICA [15] 4.6155 R-DE [64] 4.6675 

C-PSO [64] 4.6801 SFLA [64] 4.6148 

CI-PSO [64] 4.6124 ABC-SSA 4.5578 

4.2.2 TVD Minimization for IEEE 30 bus System  

In this case, TVD is the objective function to be minimized for the same IEEE 30 bus test 

network. Table 4.5 presents the results deduced from the simulation stage, which includes the 

best optimum (TVD) with the proposed ABC-SSA algorithm and the two implemented 

approaches ABC and SSA. A comparison is made with other optimization methods provided 

in the literature, like FA [13], HFA[13], PSO[62], and CLPSO[62]. Therefore, as shown in 

Table 4.5, there is a TVD improvement of 5.15% than the best result obtained by HFA [13] 

which gives 0.098 pu. Figure 4.3 illustrates the convergence characteristics of each method 
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confirming the fastest convergence rate of ABC-SSA in reaching the best global optimum. 

Table 4.5 Comparison of simulation results for IEEE 30 bus test power system with TVD 

minimization objective. 

 
Figure 4.3 Convergence curves for TVD minimization of IEEE 30 bus power system 

4.2.3 VSI Improvement for IEEE 30 bus system  

In order to enhance the margin stability of IEEE 30 bus system, the VSI given by max(L-

index) is minimized by applying the ABC-SSA. The simulation results are listed in Table 4.6 

and compared with those of ABC, SSA, GSA[7], and opposition-based gravitational search 

algorithm OGSA[65]. The optimal value of VSI using ABC-SSA is better than that of the 

OGSA method in the literature signalling a remarkable reduction (important improvement) 

equal to 9.82%. Figure 4.4 shows the variation of the voltage stability index. The good 

convergence property of ABC-SSA is noted from the figure by means of its ability to reach 

optimal solution. 
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ABC-SSA ABC SSA FA [13] HFA [13] PSO[62] CLPSO[62] 

Ploss MW 6.0744 6.0945 5.7451 6.3400 5.75 4.7075 4.6969 

TVD (pu) 0.0932 0.1097 0.1053 0.1157 0.098 0.2577 0.2450 
L-

index(pu) 

0.1369 0.1374 0.1367 - - 0.1273 0.1247 
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Table 4.6 Comparison of simulation results for IEEE 30 bus test power system with 

improvement of VSI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 IEEE 57 bus system 

IEEE 57 bus test system includes 80 transmission lines and seven generators on buses 1, 2, 

3, 6, 8, 9, 12, and 15 branches under the transformer. Reactive shunt power sources are taken 

into account on buses 18, 25, and 53. The total system demand is (12.508 + j3.364) pu to 100 

MVA basis. Other input data from the system are given in [66], and limits of the control 

variables are given in [67]. 

Algorithms ABC-SSA ABC SSA OGSA [65] GSA[7] 

Ploss MW 4.7173 5.4268 4.6581 5.9198 4.975298 

TVD (pu) 2.1341 1.8551 2.0349 1.9887 0.215793 

L-index(pu) 0.1120 0.1138 0.1139 0.1230 0.136844 

 

Figure 4.4 Convergence curves for VSI minimization of IEEE-(30buses) power system 
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Figure 4.5 Single line diagram of IEEE 57 bus test system [63] 

4.3.1 Active power losses Ploss minimization for IEEE 57 bus system  

The active transmission losses are minimized in this case for IEEE 57 bus test system by 

adjusting all control variables using the proposed method ABC-SSA, where Table 4.7 

indicates the optimal simulation results obtained for the objective function and control 

variables. A comparative review is assigned between the optimal solution using ABC-SSA 
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and that given by other optimization methods in the same literature like ABC, SSA, L-DE 

[23], BBO [24], and GSA [12] in Table 4.7. It can be recorded that the active power losses of 

22.6134 MW achieved by ABC-SSA is better than that of the other comparison methods, 

confirming that this novel optimization algorithm is more robust. A reduction in active power 

losses of 3.19% is achieved using the ABC-SSA approach versus the best solution obtained 

among the comparison techniques (ABC). Table 4.9 demonstrates the results achieved in the 

same literature and the comparison with the ABC-SSA method. Figure 4.7 represents the 

convergence graphs arising from ABC-SSA, ABC and SSA, which asserts the capacity of the 

suggested ABC-SSA technique in detecting the most qualified solutions in the search space 

and in converging with a faster manner than ABC, and SSA. Figure 4.6 shows the voltage 

profile of the three methods ABC-SSA, ABC, and SSA, when the optimal solution is reached 

for the current test system, noting that the voltage amplitude on all buses is within its allowed 

range with no violations beyond the allowed limits. The entries of Table 4.8 in this regard 

illustrate the actual values of reactive power generations in MVAR of the generating units 

versus the allowable limits, in which all generating reactive powers are within their limits 

Table 4.7 Comparison of simulation results for Ploss minimization in case of IEEE 57 bus 

system. 
Control variables  ABC-

SSA 
ABC SSA GSA[7] BBO[68] L_DE[69] 

Generator voltage  

𝑉1  1.1000 1.1000 1.1000 1.060000 1.0600 1.0397 

𝑉2  1.0901 1.0910 1.0906 1.060000 1.0504 1.0463 

𝑉3  1.0807 1.0825 1.0825 1.060000 1.0440 1.0511 

𝑉6  1.0774 1.0786 1.0736 1.008102 1.0376 1.0236 

𝑉8  1.0979 1.0956 1.0996     1.054955 1.0550 1.0538 

𝑉9  1.0650 1.0820 1.0710 1.009801 1.0229 0.94518 

𝑉12  1.0702 1.0901 1.0801 1.018591 1.0323 0.99078 

Transformer tap ratio 

𝑇4−18  0.9077 0.7285 0.9762 1.100000 0.96693 1.02 

𝑇4−18  1.0152 0.3201 0.9832 1.082634      
0.99022 

0.91 

𝑇21−20  1.0141 0.8644 0.9710 0.921987 1.0120 0.97 

𝑇24−26  1.0129 0.6107 1.0450 1.016731 1.0087 0.91 

𝑇7−29  0.9729 0.2245 1.0041 0.996262 0.97074 0.96 

𝑇34−32  0.9817 0.3963 0.9638 1.100000 0.96869 0.99 

𝑇11−41  0.9000 0.1285 1.0118      

1.074625 

0.90082 0.98 

𝑇15−45  0.9652 0.2605 0.9646 0.954340 0.96602 0.96 

𝑇14−46  0.9491 0.1609 0.9726       

0.937722 

0.95079 1.05 

𝑇10−51  0.9571 0.1746 1.0282 1.016790 0.96414 1.07 

𝑇13−49  0.9231 0.0184 0.9621 1.052572 0.92462 0.99 
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𝑇11−43  0.9545 0.1218 0.9464 1.100000 0.95022 1.06 

𝑇40−56  0.9978 0.5815 1.0042 0.979992 0.99666 0.99 

𝑇39−57  0.9652 0.4266 0.9595 1.024653 0.96289 0.97 

𝑇9−55  0.9698 0.3725 1.0451 1.037316 0.96001 1.07 

Capacitor banks 

𝑄𝐶−18  5.0000 1.0000 2.0440    0.07825 0.09782 0.00 

𝑄𝐶−25  5.0000 1.0000 1.9894 0.005869    0.05899 0.00 

𝑄𝐶−53  5.0000 1.0000 2.7681 0.046872 0.6289 0.00 

Ploss MW   22.5866 23.3301 23.4026   23.46119    24.544 27.81264 

TVD (pu)     3.2009 2.7278 2.0268 1.0883 - - 

L-index (pu)     0.2495 0.3498 0.2762 0.1423 - - 

 

 

Figure 4.6 Bus voltage profile for IEEE 57 bus power system 

 

Tableau 4.8 Reactive of production units in relation to their min / max permissible limits for 

test system IEEE 57 bus. 

 

 

 

 

 

 

 

0 10 20 30 40 50 60
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Bus

V
o

lt
a

g
e 

m
a

g
n

it
u

d
e(

p
u

)

 

 

SSA	

ABC

ABC-SSA

PV QGMIN ( MVAR ) QGMAX ( MVAR ) QG ( MVAR ) 

1 -200 300 34.9080 
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Table 4.9 Comparison of simulation results for IEEE 57 bus system with Ploss minimization. 
Algorithms Ploss  MW Algorithms Ploss MW 

L-SACP-DE [69]   27.91553 MICA_IWO [15] 24.25 

PSO-w  [69] 24.27052 PSO [70] 23.6266 

CGA[69]  25.24411 ICA [70] 23.5471 

AGA[69]  24.56484 PSO–ICA [70] 23.3535 

OGSA  [65] 23.43 SSA 23.0484 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 TVD Minimization for IEEE 57 bus system  

   In this subsection, the proposed ABC-SSA algorithm is utilized to minimize the TVD of 

IEEE 57 bus power system. The achieved results can be found in Table 4.10 the results 

 

Figure 4.7 Convergence curves for Ploss minimization, IEEE-(57buses) 
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achieved by ABC-SSA and some other state of the art algorithms such as ABC, SSA, and 

OGSA [17], have been tabulated. The value of TVD for ABC-SSA is better than other 

methods. From Table 4.10, it can be observed that ABC-SSA is able to improve the TVD by 

44.13 % with regard to initial TVD, compared to 1.34 % with OGSA [17]. Comparative 

ABC-SSA, ABC, and SSA-based convergence profiles of TVD (pu) for TVD minimization 

objective of this power system is presented in Figure 4.8. It may be noted from the figure that 

the proposed ABC-SSA based convergence profile of TVD (pu) for the TVD minimization 

objective of this test system is a more promising one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10 Comparison of simulation results for IEEE 57 bus test power system with TVD 

minimization objective (a) and improvement of VSI (b). 

Control 

variables  
(A) TVD (B) VSI 

Algorithms ABC-SSA ABC SSA OGSA [65] ABC-SSA ABC SSA 

Ploss MW    36.7318 39.3993 31.4210 32.34 23.0640    25.8623 25.1841 

TVD (pu) 0.6889 0.7125   0.7259 0.6982   7.7503     7.2551 3.4526 

L-index (pu)     0.2771   0.6825   0.2783 0.5123   0.1963     0.2210 0.2360 

 

Figure 4.8 Convergence curves for TVD minimization of IEEE-(57buses) power system. 
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4.3.3 VSI Improvement for  IEEE 57 bus system  

By running the ABC-SSA implemented for IEEE 57 bus system, VSI is minimized as an 

objective function. The best result of the optimal solution is assigned to the ABC-SSA by 

comparison with that of ABC and SSA based on Table 4.10. An improvement of the optimal 

VSI using ABC-SSA is equal to 11.18 % when it is compared to that of the best comparison 

approach ABC (0.1975). The convergence characteristic of VSI versus the number of 

iterations is depicted in Figure 4.9, which shows the fast and smooth convergence 

characteristics of ABC-SSA 

 
Figure 4.9 Convergence curves for VSI minimization of IEEE 57 bus power system 

4.4 IEEE 118 bus system  

To inspect the novel ABC-SSA algorithm and evaluate its robustness in solving the ORPD 

problem, a large test system IEEE 118 bus is used, where the optimization problem is 

dimensioned with 77 control variables including 54 for generator voltage magnitudes, nine 

transformer tap ratios and fourteen VAR compensation equipments. The system data base 

characteristics of transmission lines and buses, control variable bound limits and reactive 

power source limits are reported in [62].The total load of the system related to 100 MVA-base 

is shown below: 
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..42.42 upPlood    ,    ..38.14 upQlood   

The predefined total generations of active and reactive powers are: 

 

..7536.43 upPG  ,
..8192.8 upQG   

The total active and reactive transmission losses are indicated as below: 

  ..33357.1 upPloss  ,   ..5811.7 upQloss 

 

 

Figure 4.10 Single line diagram of IEEE 118 bus test system 
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4.4.1 Active power losses minimization for IEEE 118 bus system 

Table 4.11 shows the optimum of decision variables and minimal Ploss using the ABC-SSA 

approach. The best results achieved are compared with those of ABC, SSA, GSA [7], OGSA 

[65], PSO [62], and CLPSO [62]. The comparison description shows that the ABC-SSA can 

reach better optimal Ploss than its competitive algorithms cited above. This optimal solution is 

estimated at 121.9015 MW, thus, we notice that there is an improvement of (4.17%) compared 

to the better solution achieved by OGSA. Figure 4.11 illustrates the search mechanism profile 

of ABC-SSA compared to the two original approaches ABC and SSA in the search space 

concerning the control variables limits. It is clearly remarked that the ABC-SSA approach 

presents a smooth convergence curve than SSA and ABC algorithm. Figure 4.12 shows the 

voltage magnitude at each bus for the optimal state without any limit violations. To expose the 

reactive power generation profile for all generation buses, Figure 4.13 shows the reactive 

power generated from each generating unit resulting from the simulation phase for ABC, SSA 

and ABC-SSA. It is clearly noticed from Figure 4.13 that there are no violations of reactive 

power generation limits for all generating units.  

 

Figure 4.11 Convergence curves for Ploss minimization, IEEE 118 bus. 
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Table 4.11 Comparison of simulation results for IEEE 118 bus test system with PLoss 

minimization objective 

variables ABC-SSA ABC SSA GSA[7] OGSA [62] CLPSO 

[62]  

Generator voltage  

V1.p.u.  1.0040 0.9957 1.0125 0.9600 1.0350 1.0332 

V4.p.u.  1.0412 1.0363 1.0482 0.9620 1.0554 1.055 

V6.p.u.  1.0335 1.0219 1.0363 0.9620 1.0301 0.9754 

V8.p.u.  1.0700 1.0114 1.0436 1.0570 1.0175 0.9669 

V10.p.u.  1.1000 1.0527 1.0234 1.0885 1.0250 0.9811 

V12.p.u.   1.0255 1.0222 1.0307 0.9630 1.0410 1.0092 

V15.p.u.   1.0230 1.0153 1.0229 1.0127 0.9973 0.9787 

V18.p.u.   1.0270 1.0159 1.0208 1.0069 1.0047 1.0799 

V19.p.u.   1.0205 1.0147 1.0173 1.0003 1.9899 1.0805 

V24.p.u.   1.0372 1.0169 1.0073 1.0105 1.0287 1.0286 

V25.p.u.   1.0532 1.0220 1.0330 1.0102 1.0600 1.0307 

V26.p.u.   1.1000 1.0050 1.0437 1.0401 1.0855 0.9877 

V27.p.u.   1.0313 1.0249 1.0268 0.9809 1.0081 1.0157 

V31.p.u.   1.0254 1.0617 1.0395 0.9500 0.9948 0.9615 

V32.p.u.   1.0307 1.0357 1.0245 0.9552 0.9993 0.9851 

V34.p.u.   1.0281 1.0233 1.0256 0.9910 0.9958 1.0157 

V36.p.u.   1.0215 1.0208 1.0211 1.0091 0.9835 1.0849 

V40.p.u.   1.0120 0.9845 1.0217 0.9505 0.9981 0.983 

V42.p.u.   1.0283 0.9942 1.0331 0.9500 1.0068 1.0516 

V46.p.u.   1.0332 1.0388 1.0443 0.9814 1.0355 0.9754 

V49.p.u.   1.0481 1.0349 1.0591 1.0444 1.0333 0.9838 

V54.p.u.   1.0272 1.0403 1.0432 1.0379 0.9911 0.9637 

V55.p.u.   1.0234 1.0311 1.0377 0.9907 0.9914 0.9716 

V56.p.u.   1.0245 1.0333 1.0389 1.0333 0.9920 1.025 

V59.p.u.   1.0359 1.0120 1.0298 1.0099 0.9909 1.0003 

V61.p.u.   1.0163 1.0351 1.0299 1.0925 1.0747 1.0771 

V62.p.u.   1.0107 1.0318 1.0269 1.0393 1.0753 1.048 

V65.p.u.   1.0358 1.0635 1.0413 0.9998 0.9814 0.9684 

V66.p.u.   1.0376 1.0300 1.0442 1.0355 1.0487 0.9648 

V69.p.u.   1.0733 1.0136 1.0585 1.1000 1.0490 0.9674 

V70.p.u.   1.0323 1.0189 1.0231 1.0992 1.0395 0.9765 

V72.p.u.   1.0305 1.0606 1.0172 1.0014 0.9900 1.0243 

V73.p.u.   1.0327 1.0523 1.0413 1.0111 1.0547 0.9651 

V74.p.u.   1.0065 0.9838 0.9942 1.0476 1.0167 1.0733 

V76.p.u.   0.9952 0.9712 0.9835 1.0211 0.9972 1.0302 

V77.p.u.   1.0358 1.0144 1.0284 1.0187 1.0071 1.0275 

V80.p.u.   1.0475 1.0380 1.0459 1.0462 1.0066 0.9857 

V85.p.u.   1.0264 1.0231 1.0219 1.0491 0.9893 0.9836 

V87.p.u.   1.0599 0.9906 1.0261 1.0426 0.9693 1.0882 

V89.p.u.   1.0282 1.0559 1.0349 1.0955 1.0527 0.9895 

V90.p.u.   0.9938 1.0135 1.0015 1.0417 1.0290 0.9905 

V91.p.u.   0.9789 1.0456 1.0186 1.0032 1.0297 1.0288 

V92.p.u.   1.0117 1.0369 1.0250 1.0927 1.0353 0.976 

V99.p.u.   1.0319 1.0042 1.0261 1.0433 1.0395 1.088 
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V100.p.u.   1.0370 1.0125 1.0437 1.0786 1.0275 0.9617 

V103.p.u.   1.0282 1.0037 1.0333 1.0266 1.0158 0.9611 

V104.p.u.   1.0204 0.9986 1.0189 0.9808 1.0165 1.0125 

V105.p.u.   1.0214 1.0001 1.0152 1.0163 1.0197 1.0684 

V107.p.u.   1.0484 1.0184 1.0144 0.9987 1.0408 0.9769 

V110.p.u.   1.0224 1.0063 1.0102 1.0218 1.0288 1.0414 

V111.p.u.   1.0468 0.9952 1.0161 0.9852 1.0194 0.979 

V112.p.u.   1.0067 1.0281 1.0051 0.9500 1.0132 0.9764 

V113.p.u.   1.0377 1.0211 1.0471 0.9764 1.0386 0.9721 

V116.p.u.   1.0254 0.9837 1.0160 1.0372 0.9724 1.033 

Transformer tap ratio 

T8−5  0.9774 0.9445 0.9321 1.0659 0.9568 1.0045 

T26−25  1.1000 1.0045 1.0369 0.9534 1.0409 1.0609 

T30−17.  0.9951 1.0847 1.0096 0.9328 0.9963 1.0008 

T38−37  0.9980 1.0657 1.0008 1.0884 0.9775 1.0093 

T63−59  0.9801 1.0138 0.9835 1.0579 0.9560 0.9922 

T64−61  1.0280 0.9836 0.9759 0.9493 0.9956 1.0074 

T65−66  0.9957 1.0313 1.0266 0.9975 0.9882 1.0611 

T68−69  0.9089 1.0149 1.0095 0.9887 0.9251 0.9307 

T81−82  0.9694 1.0007 1.0092 0.9801 1.0661 0.9578 

Capacitor banks 

QC−5,P.U.   -40.0000 -

18.8083 

14.6915 0.00 _0.3319 0.0 

QC−34,P.U.      5.2718 6.5405 3.6618 7.46 0.0480 11.713 

QC−37,P.U.     -0.0000 -
14.4993 

15.5673 0.00 _0.2490 0 

QC−44,P.U.    10.0000 9.1786 6.6602 6.07 0.0328 9.8932 

QC−45,P.U.    10.0000 7.2490 4.7207 3.33 0.0383 9.4169 

QC−46,P.U.      5.3897 5.0803 4.6535 6.51 0.0545 2.6719 

QC−48P.U.      8.9735 6.6591 5.4113 4.47 0.0181 2.8546 

QC−74,P.U.    11.3409 6.5753 2.3982 9.72 0.0509 0.5471 

QC−79,P.U.    20.0000 6.5801 5.1644 14.25 0.1104 14.853 

QC−82,P.U.     20.0000 10.9532 4.8589 17.49 0.0965 19.427 

QC−83,P.U.    10.0000 5.4023 5.5445 4.28 0.0263 6.9824 

QC−105,P.U.      5.8203 12.6191 11.7043 12.04 0.0442 9.0291 

QC−107,P.U.      6.0000 2.4293 3.3340 2.26 0.0085 4.9926 

QC−110,P.U.      0.0000 4.2249 2.3279 2.94 0.0144 2.2086 

𝐏𝐋𝐎𝐒𝐒  MW 121.9015 126.111 124.528

6 

127.7603 126.99 130.96 

TVD(pu) 1.5292 1.7756  1.5435 1.0883 1.1829 - 

L-index (pu) 0.0589 0.0606 0.0601 0.1423 0.1400 - 
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Figure 4.12 Bus voltage profile for IEEE 118 bus power system for three methods (ABC-

SSA). 

 

Figure 4.13 Reactive of production units in relation to their min / max permissible limits for 

test system IEEE 118 bus. 

4.4.2 TVD minimization for IEEE 118 bus system 

Table 4.12 shows the ORPD solution using the ABC-SSA method in a large test system 
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IEEE 118 bus where the objective functions is to minimize the total voltage deviation. The 

optimal obtained TVD of 0.1718 p.u is compared with the optimal TVD of various methods 

ABC, SSA, OGSA [65], PSO[62], and CLPSO[62]. Based on this comparison, it is noticed 

that the ABC-SSA gives a better reduction rate of TVD than that of the best comparison 

approach OGSA  (0.3666 pu). Figure 4.14 illustrates the variation of the total voltage 

deviation. The well converged property of ABC-SSA is graphed from the figure by means of 

its ability to reach an optimal solution.  

Table  4.12 Comparison of simulation results for IEEE 118 bus test power system with TVD 

minimization objective. 

 

 

Figure 4.14 Convergence curves for TVD minimization of IEEE 118 bus power system 

4.4.3 VSI Improvement for IEEE 118 bus System 

In this subsection, the suggested algorithm ABC-SSA is used to minimize the VSI for a 

large test system of IEEE 118 bus. A comparative study of simulation results using ABC-SSA 

for this test system with those of ABC, SSA, OGSA, PSO, and CLPSO is executed and 

presented in Table 4.13. The optimal value of VSI using ABC-SSA is better than that of the 
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Algorithms ABC-SSA ABC SSA OGSA[65] PSO[62] CLPSO[62] 

Ploss MW 183.8585 142.0647 133.6188 157.72 132.16 132.06 

TVD (pu) 0.1718 0.8443 0.9678 0.3666 2.2359 1.6177 

L-index(pu) 0.0610 0.0611 0.0648 0.1562 0.1854 0.1210 
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OGSA method signaling a remarkable reduction (important improvement) equal to 16.05%, 

this best result was supported by a smooth convergence curve in Figure 4.15. 

 

Figure 4.15 Convergence curve for VSI minimization, IEEE 118 bus. 

Table  4.13 Comparison of simulation results for IEEE 118 bus test power system with the 

improvement of VSI. 

4.5 IEEE 300 bus System  

To test and prove the applicability of the ABC-SSA algorithm in more practical, 

complicated and large test systems, IEEE 300 bus is proposed which consists of large-

scale dimensions of control variables containing 190 control variables where their types 

are demonstrated in Table 1. The total load data are 235.258pu and 77.8797 pu for active 

and reactive power, respectively[71, 72]. The control variables restrictions are indicated in 

[67].  

For the first case of this test system application, the total active losses (Ploss) are 
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Algorithms ABC-SSA ABC SSA OGSA[65] PSO[62] CLPSO[62] 

Ploss MW   419.4706 163.3758  34.4736 295.112 133.08 132.08 
TVD (pu)     3.0706   2.3898   1.4727 1.4804 2.3262 2.8863 

L-index(pu)     0.0517   0.0534  0.0593 0.0600 0.1388 0.0965 
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minimized using the ABC-SSA algorithm. Table 4.14 reports the best results found by the 

ABC-SSA method and other optimization approaches such as ABC, SSA, SGA, and ALO 

methods. The optimal solution of the objective function (Ploss) was obtained with an 

improvement equal to 3.05 % when it is compared to that of the SGA method. The search 

mechanism for the optimal solution was clarified by a convergence curve in Figure 4.17 

related to the ABC-SSA, ABC, SSA. It is clearly remarked that the convergence profile 

using ABC-SSA is the promising one. Figure 4.16 exhibits the voltage profile when the 

optimal solution is achieved for the present test system, noting that the voltage magnitude 

at all buses is in its permissible range without any violations beyond the permissible 

limits. For the second case of this test system application, the total voltage deviation is 

selected as an objective function to minimize noting that there is an improvement of 

39.44% compared to the ABC method, Table 4.15 explains this remarkable improvement. 

Table 4.14 Comparison of simulation results for IEEE 300 bus with ploss minimization 
Results ABC-SSA ABC SSA SGA[67] ALO[73] 

Ploss MW   343.4272  364.347  353.886 357.10 384.922 

TVD (pu)    20.3408    1.5292  18.2697 15.744 - 

L-index (pu)     0.9003    0.8879    0.8340 - 0.3663 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure  4.16  Bus voltage profile for IEEE-(300buses) power system 

 

 

 

 

 

 

Figure 4.12 Bus voltage profile for IEEE-(300buses) power system 
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Table  4.15 Comparison of simulation results for IEEE 300 bus system with TVD 

minimization. 

 

 

 

 

 

 

 

 

 

 

TVD 

Algorithms ABC-SSA ABC SSA 

Ploss MW   411.0579 437.2808   430.7991 

TVD (pu) 4.1932 5.8468 7.5593 

L-index(pu) 0.9577 0.9765 18.6393 

 

Figure 4.17 Convergence curves for Ploss minimization IEEE-(300buses) 
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CONCLUSION 

 

a new hybrid optimization approach combining Artificial Bee Colony (ABC) and Salp 

Swarm (SSA) algorithms named (ABC-SSA) was developed and successfully employed for 

solving different problems of optimal reactive power dispatch (ORPD) with several types of 

complexities. The presented approach was examined and evaluated regarding different 

objective functions. The effectiveness and robustness of the novel ABC-SSA are investigated 

using four standard test systems IEEE. A comparison report of ABC-SSA with the original 

ABC and SSA algorithms is made based on convergence curves. A smooth convergence curve 

is devoted to the ABC-SSA approach when it is compared to that of basic ABC and SSA 

algorithms, which proves the capacity of the proposed approach to escape from the stagnation 

in local minima and to converge in a faster manner towards the global optimal solution. 

Another comparison survey of the ABC-SSA with different optimization techniques in the 

same literature is provided. The results of the simulation report prove that the ABC-SSA 

offers better performances than other comparison methods, indicating the robustness and the 

superiority of the ABC-SSA, which shows a remarkable exploitation capability by using the 

best solution (food source of SSA) at each iteration to achieve promising solutions. Thus, the 

ABC-SSA algorithm can be recommended as a promising optimization algorithm in solving 

other more complex optimization problems for engineering areas, particularly in electrical 

power systems.  

 

The main contributions in developing the presented hybrid ABC-SSA technique are as 

follows: 

 By using the ABC-SSA approach, a distinct solution quality improvement of 

ORPD problem when this solution is compared to that of the recently developed meta-

heuristic techniques in literature for the same test systems, where the ORPD is 

considered as a sub-problem of Optimal Power Flow (OPF) issue in electrical 

engineering.   

 A smooth convergence curve is devoted to the ABC-SSA approach when it is 

compared to that of basic ABC and SSA algorithms, which proves the capacity of the 

proposed approach to escape from the stagnation in local minima and to converge in a 

faster manner towards the global optimal solution.  
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 The ability of the proposed hybrid ABC-SSA approach to balance between the 

two searches mechanisms of meta-heuristics (exploitation and exploration) in order to 

reach better solution of ORPD problem.  

We suggest for further research on this field some of the areas of research such as: 

 This research considered only one function objective, further research needs to be 

done on adding Multi-objective optimization for solving an ORPD problem. 

 Application of the proposed (ABC-SSA) on real-world ORPD problems should 

also be investigated. 
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Appendices 

APPENDIX 1:  Standard IEEE-(30buses) test system data 

baseMVA = 100. 

% Type.... 

% 1 - Slack Bus. 

% 2 - PV Bus. 

% 3 - PQ Bus. 
% bus data 

bus_i Type Vsp Theta PGi QGi PLi QLi Qmin Qmax 

1 1 1.0600 0 0 0 0 0 -20 200 

2 2 1.0450 0 80 0 21.7000 12.7000 -20 100 

3 3 1.0000 0 0 0 2.4000 1.2000 0 0 

4 3 1.0000 0 0 0 7.6000 1.6000 0 0 

5 2 1.0100 0 50 0 94.2000 19.0000 -15 80 

6 3 1.0000 0 0 0 0 0 0 0 

7 3 1.0000 0 0 0 22.8000 10.9000 0 0 

8 2 1.0100 0 20 0 30.0000 30.0000 -15 60 

9 3 1.0000 0 0 0 0 0 0 0 

10 3 1.0000 0 0 0 5.8000 2.0000 0 0 

11 2 1.0820 0 20 0 0 0 -10 50 

12 3 1.0000 0 0 0 11.2000 7.5000 0 0 

13 2 1.0710 0 20 0 0 0 -15 60 

14 3 1.0000 0 0 0 6.2000 1.6000 0 0 

15 3 1.0000 0 0 0 8.2000 2.5000 0 0 

16 3 1.0000 0 0 0 3.5000 1.8000 0 0 

17 3 1.0000 0 0 0 9.0000 5.8000 0 0 

18 3 1.0000 0 0 0 3.2000 0.9000 0 0 

19 3 1.0000 0 0 0 9.5000 3.4000 0 0 

20 3 1.0000 0 0 0 2.2000 0.7000 0 0 

21 3 1.0000 0 0 0 17.5000 11.2000 0 0 

22 3 1.0000 0 0 0 0 0 0 0 

23 3 1.0000 0 0 0 3.2000 1.6000 0 0 

24 3 1.0000 0 0 0 8.7000 6.7000 0 0 

25 3 1.0000 0 0 0 0 0 0 0 

26 3 1.0000 0 0 0 3.5000 2.3000 0 0 

27 3 1.0000 0 0 0 0 0 0 0 

28 3 1.0000 0 0 0 0 0 0 0 

29 3 1.0000 0 0 0 2.4000 0.9000 0 0 

30 3 1.0000 0 0 0 10.6000 1.9000 0 0 

 
%Line data 

From 

Bus 

To 

Bus 

R 

pu  

X 

pu  

B/2 

pu  

X'mer 

TAP (a)  

1 2 0.0192 0.0575 0 1.0000 

1 3 0.0452 0.1652 0 1.0000 

2 4 0.0570 0.1737 0 1.0000 

3 4 0.0132 0.0379 0 1.0000 

2 5 0.0472 0.1983 0 1.0000 
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2 6 0.0581 0.1763 0 1.0000 

4 6 0.0119 0.0414 0 1.0000 

5 7 0.0460 0.1160 0 1.0000 

6 7 0.0267 0.0820 0 1.0000 

6 8 0.0120 0.0420 0 1.0000 

6 9 0 0.2080 0 1.0780 

6 10 0 0.5560 0 1.0690 

9 11 0 0.2080 0 1.0000 

9 10 0 0.1100 0 1.0000 

4 12 0 0.2560 0 1.0320 

12 13 0 0.1400 0 1.0000 

12 14 0.1231 0.2559 0 1.0000 

12 15 0.0662 0.1304 0 1.0000 

12 16 0.0945 0.1987 0 1.0000 

14 15 0.2210 0.1997 0 1.0000 

16 17 0.0824 0.1923 0 1.0000 

15 18 0.1073 0.2185 0 1.0000 

18 19 0.0639 0.1292 0 1.0000 

19 20 0.0340 0.0680 0 1.0000 

10 20 0.0936 0.2090 0 1.0000 

10 17 0.0324 0.0845 0 1.0000 

10 21 0.0348 0.0749 0 1.0000 

10 22 0.0727 0.1499 0 1.0000 

21 22 0.0116 0.0236 0 1.0000 

15 23 0.1000 0.2020 0 1.0000 

22 24 0.1150 0.1790 0 1.0000 

23 24 0.1320 0.2700 0 1.0000 

24 25 0.1885 0.3292 0 1.0000 

25 26 0.2544 0.3800 0 1.0000 

25 27 0.1093 0.2087 0 1.0000 

28 27 0 0.3960 0 1.0680 

27 29 0.2198 0.4153 0 1.0000 

27 30 0.3202 0.6027 0 1.0000 

29 30 0.2399 0.4533 0 1.0000 

8 28 0.0636 0.2000 0 1.0000 

6 28 0.0169 0.0599 0 1.0000 

 

APPENDIX 2:  Standard IEEE-(57buses) test system data 
% bus data 

bus_i Type Vsp Theta PGi QGi PLi QLi Qmin Qmax 

1 1 1.0400 0 128.9000 -16.1000 55.0000 17.0000 -200 300 

2 2 1.0100 0 0 -0.8000 3.0000 88.0000 -17 50 

3 2 0.9850 0 40.0000 -1.0000 41.0000 21.0000 -10 60 

4 3 0.9810 0 0 0 0 0 0 0 

5 3 0.9760 0 0 0 13.0000 4.0000 0 0 

6 2 0.9800 0 0 0.8000 75.0000 2.0000 -8 25 

7 3 0.9840 0 0 0 0 0 0 0 

8 2 1.0050 0 450.0000 62.1000 150.0000 22.0000 -140 200 

9 2 0.9800 0 0 2.2000 121.0000 26.0000 -3 9 

10 3 0.9860 0 0 0 5.0000 2.0000 0 0 
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11 3 0.9740 0 0 0 0 0 0 0 

12 2 1.0150 0 310.0000 128.5000 377.0000 4.0000 -150 155 

13 3 0.9790 0 0 0 18.0000 2.3000 0 0 

14 3 0.9700 0 0 0 10.5000 5.3000 0 0 

15 3 0.9880 0 0 0 22.0000 5.0000 0 0 

16 3 1.0130 0 0 0 43.0000 3.0000 0 0 

17 3 1.0170 0 0 0 42.0000 8.0000 0 0 

18 3 1.0010 0 0 0 27.2000 9.8000 0 0 

19 3 0.9700 0 0 0 3.3000 0.6000 0 0 

20 3 0.9640 0 0 0 2.3000 1.0000 0 0 

21 3 1.0080 0 0 0 0 0 0 0 

22 3 1.0100 0 0 0 0 0 0 0 

23 3 1.0080 0 0 0 6.3000 2.1000 0 0 

24 3 0.9990 0 0 0 0 0 0 0 

25 3 0.9820 0 0 0 6.3000 3.2000 0 0 

26 3 0.9590 0 0 0 0 0 0 0 

27 3 0.9820 0 0 0 9.3000 0.5000 0 0 

28 3 0.9970 0 0 0 4.6000 2.3000 0 0 

29 3 1.0100 0 0 0 17.0000 2.6000 0 0 

30 3 0.9620 0 0 0 3.6000 1.8000 0 0 

31 3 0.9360 0 0 0 5.8000 2.9000 0 0 

32 3 0.9490 0 0 0 1.6000 0.8000 0 0 

33 3 0.9470 0 0 0 3.8000 1.9000 0 0 

34 3 0.9590 0 0 0 0 0 0 0 

35 3 0.9660 0 0 0 6.0000 3.0000 0 0 

36 3 0.9760 0 0 0 0 0 0 0 

37 3 0.9850 0 0 0 0 0 0 0 

38 3 1.0130 0 0 0 14.0000 7.0000 0 0 

39 3 0.9830 0 0 0 0 0 0 0 

40 3 0.9730 0 0 0 0 0 0 0 

41 3 0.9960 0 0 0 6.3000 3.0000 0 0 

42 3 0.9660 0 0 0 7.1000 4.4000 0 0 

43 3 1.0100 0 0 0 2.0000 1.0000 0 0 

44 3 1.0170 0 0 0 12.0000 1.8000 0 0 

45 3 1.0360 0 0 0 0 0 0 0 

46 3 1.0500 0 0 0 0 0 0 0 

47 3 1.0330 0 0 0 29.7000 11.6000 0 0 

48 3 1.0270 0 0 0 0 0 0 0 

49 3 1.0360 0 0 0 18.0000 8.5000 0 0 

50 3 1.0230 0 0 0 21.0000 10.5000 0 0 

51 3 1.0520 0 0 0 18.0000 5.3000 0 0 

52 3 0.9800 0 0 0 4.9000 2.2000 0 0 

    53      3 0.9710      0          0          0 20.0000 10.0000      0      0 

    54      3 0.9960      0          0          0     4.1000 1.4000      0      0 

    55      3 1.0310      0          0          0     6.8000 3.4000      0      0 

    56      3 0.9680      0          0          0     7.6000 2.2000      0      0 

    57      3 0.9650      0          0          0     6.7000 2.0000      0      0 

 

%Line data 
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From 

Bus 

To 

Bus 

R 

pu  

X 

pu  

B/2 

pu  

X'mer 

TAP (a)  

1 2 0.0083 0.0280 0.0645 1.0000 

2 3 0.0298 0.0850 0.0409 1.0000 

3 4 0.0112 0.0366 0.0190 1.0000 

4 5 0.0625 0.1320 0.0129 1.0000 

4 6 0.0430 0.1480 0.0174 1.0000 

6 7 0.0200 0.1020 0.0138 1.0000 

6 8 0.0339 0.1730 0.0235 1.0000 

8 9 0.0099 0.0505 0.0274 1.0000 

9 10 0.0369 0.1679 0.0220 1.0000 

9 11 0.0258 0.0848 0.0109 1.0000 

9 12 0.0648 0.2950 0.0386 1.0000 

9 13 0.0481 0.1580 0.0203 1.0000 

13 14 0.0132 0.0434 0.0055 1.0000 

13 15 0.0269 0.0869 0.0115 1.0000 

1 15 0.0178 0.0910 0.0494 1.0000 

1 16 0.0454 0.2060 0.0273 1.0000 

1 17 0.0238 0.1080 0.0143 1.0000 

3 15 0.0162 0.0530 0.0272 1.0000 

4 18 0 0.5550 0 0.9700 

4 18 0 0.4300 0 0.9780 

5 6 0.0302 0.0641 0.0062 1.0000 

7 8 0.0139 0.0712 0.0097 1.0000 

10 12 0.0277 0.1262 0.0164 1.0000 

11 13 0.0223 0.0732 0.0094 1.0000 

12 13 0.0178 0.0580 0.0302 1.0000 

12 16 0.0180 0.0813 0.0108 1.0000 

12 17 0.0397 0.1790 0.0238 1.0000 

14 15 0.0171 0.0547 0.0074 1.0000 

18 19 0.4610 0.6850 0 1.0000 

19 20 0.2830 0.4340 0 1.0000 

21 20 0 0.7767 0 1.0430 

21 22 0.0736 0.1170 0 1.0000 

22 23 0.0099 0.0152 0 1.0000 

23 24 0.1660 0.2560 0.0042 1.0000 

24 25 0 1.1820 0 1.0000 

24 25 0 1.2300 0 1.0000 

24 26 0 0.0473 0 1.0430 

26 27 0.1650 0.2540 0 1.0000 

27 28 0.0618 0.0954 0 1.0000 

28 29 0.0418 0.0587 0 1.0000 

7 29 0 0.0648 0 0.9670 

25 30 0.1350 0.2020 0 1.0000 

30 31 0.3260 0.4970 0 1.0000 

31 32 0.5070 0.7550 0 1.0000 

32 33 0.0392 0.0360 0 1.0000 

34 32 0 0.9530 0 0.9750 

34 35 0.0520 0.0780 0.0016 1.0000 

35 36 0.0430 0.0537 0.0008 1.0000 
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36 37 0.0290 0.0366 0 1.0000 

37 38 0.0651 0.1009 0.0010 1.0000 

37 39 0.0239 0.0379 0 1.0000 

36 40 0.0300 0.0466 0 1.0000 

22 38 0.0192 0.0295 0 1.0000 

11 41 0 0.7490 0 0.9550 

41 42 0.2070 0.3520 0 1.0000 

41 43 0 0.4120 0 1.0000 

38 44 0.0289 0.0585 0.0010 1.0000 

15 45 0 0.1042 0 0.9550 

14 46 0 0.0735 0 0.9000 

46 47 0.0230 0.0680 0.0016 1.0000 

47 48 0.0182 0.0233 0 1.0000 

48 49 0.0834 0.1290 0.0024 1.0000 

49 50 0.0801 0.1280 0 1.0000 

50 51 0.1386 0.2200 0 1.0000 

10 51 0 0.0712 0 0.9300 

13 49 0 0.1910 0 0.8950 

29 52 0.1442 0.1870 0 1.0000 

52 53 0.0762 0.0984 0 1.0000 

53 54 0.1878 0.2320 0 1.0000 

54 55 0.1732 0.2265 0 1.0000 

11 43 0 0.1530 0 0.9580 

44 45 0.0624 0.1242 0.0020 1.0000 

40 56 0 1.1950 0 0.9580 

56 41 0.5530 0.5490 0 1.0000 

56 42 0.2125 0.3540 0 1.0000 

39 57 0 1.3550 0 0.9800 

57 56 0.1740 0.2600 0 1.0000 

38 49 0.1150 0.1770 0.0030 1.0000 

38 48 0.0312 0.0482 0 1.0000 

9 55 0 0.1205 0 0.9400 

 

APPENDIX 1:  Standard IEEE-(118buses) test system data 
% bus data 

bus_i Type Vsp Theta PGi QGi PLi QLi Qmin Qmax 

1 1 0.9550 0 0 0 51 27 -5 15 

2 3 0.9710 0 0 0 20 9 0 0 

3 3 0.9680 0 0 0 39 10 0 0 

4 2 0.9980 0 0 0 39 12 -300 300 

5 3 1.0020 0 0 0 0 0 0 0 

6 2 0.9900 0 0 0 52 22 -13 50 

7 3 0.9890 0 0 0 19 2 0 0 

8 2 1.0150 0 0 0 28 0 -300 300 

9 3 1.0430 0 0 0 0 0 0 0 

10 2 1.0500 0 450.0000 0 0 0 -147 200 

11 3 0.9850 0 0 0 70 23 0 0 

12 2 0.9900 0 85.0000 0 47 10 -35 120 

13 3 0.9680 0 0 0 34 16 0 0 
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14 3 0.9840 0 0 0 14 1 0 0 

15 2 0.9700 0 0 0 90 30 -10 30 

16 3 0.9840 0 0 0 25 10 0 0 

17 3 0.9950 0 0 0 11 3 0 0 

18 2 0.9730 0 0 0 60 34 -16 50 

19 2 0.9620 0 0 0 45 25 -8 24 

20 3 0.9580 0 0 0 18 3 0 0 

21 3 0.9590 0 0 0 14 8 0 0 

22 3 0.9700 0 0 0 10 5 0 0 

23 3 1.0000 0 0 0 7 3 0 0 

24 2 0.9920 0 0 0 13 0 -300 300 

25 2 1.0500 0 220.0000 0 0 0 -47 140 

26 2 1.0150 0 314.0000 0 0 0 -1000 1000 

27 2 0.9680 0 0 0 71 13 -300 300 

28 3 0.9620 0 0 0 17 7 0 0 

29 3 0.9630 0 0 0 24 4 0 0 

30 3 0.9680 0 0 0 0 0 0 0 

31 2 0.9670 0 7.0000 0 43 27 -300 300 

32 2 0.9630 0 0 0 59 23 -14 42 

33 3 0.9720 0 0 0 23 9 0 0 

34 2 0.9840 0 0 0 59 26 -8 24 

35 3 0.9810 0 0 0 33 9 0 0 

36 2 0.9800 0 0 0 31 17 -8 24 

37 3 0.9920 0 0 0 0 0 0 0 

38 3 0.9620 0 0 0 0 0 0 0 

39 3 0.9700 0 0 0 27 11 0 0 

40 2 0.9700 0 0 0 66 23 -300 300 

41 3 0.9670 0 0 0 37 10 0 0 

42 2 0.9850 0 0 0 96 23 -300 300 

43 3 0.9780 0 0 0 18 7 0 0 

44 3 0.9850 0 0 0 16 8 0 0 

45 3 0.9870 0 0 0 53 22 0 0 

46 2 1.0050 0 19.0000 0 28 10 -100 100 

47 3 1.0170 0 0 0 34 0 0 0 

48 3 1.0210 0 0 0 20 11 0 0 

49 2 1.0250 0 204.0000 0 87 30 -85 210 

50 3 1.0010 0 0 0 17 4 0 0 

51 3 0.9670 0 0 0 17 8 0 0 

52 3 0.9570 0 0 0 18 5 0 0 

53 3 0.9460 0 0 0 23 11 0 0 

54 2 0.9550 0 48.0000 0 113 32 -300 300 

55 2 0.9520 0 0 0 63 22 -8 23 

56 2 0.9540 0 0 0 84 18 -8 15 

57 3 0.9710 0 0 0 12 3 0 0 

58 3 0.9590 0 0 0 12 3 0 0 

59 2 0.9850 0 155.0000 0 277 113 -60 180 

60 3 0.9930 0 0 0 78 3 0 0 

61 2 0.9950 0 160.0000 0 0 0 -100 300 

62 2 0.9980 0 0 0 77 14 -20 20 

63 3 0.9690 0 0 0 0 0 0 0 
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64 3 0.9840 0 0 0 0 0 0 0 

65 2 1.0050 0 391.0000 0 0 0 -67 200 

66 2 1.0500 0 392.0000 0 39 18 -67 200 

67 3 1.0200 0 0 0 28 7 0 0 

68 3 1.0030 0 0 0 0 0 0 0 

69 2 1.0350 0 516.4000 0 0 0 -300 300 

70 2 0.9840 0 0 0 66 20 -10 32 

71 3 0.9870 0 0 0 0 0 0 0 

72 2 0.9800 0 0 0 12 0 -100 100 

73 2 0.9910 0 0 0 6 0 -100 100 

74 2 0.9580 0 0 0 68 27 -6 9 

75 3 0.9670 0 0 0 47 11 0 0 

76 2 0.9430 0 0 0 68 36 -8 23 

77 2 1.0060 0 0 0 61 28 -20 70 

78 3 1.0030 0 0 0 71 26 0 0 

79 3 1.0090 0 0 0 39 32 0 0 

80 2 1.0400 0 477.0000 0 130 26 -167 280 

81 3 0.9970 0 0 0 0 0 0 0 

82 3 0.9890 0 0 0 54 27 0 0 

83 3 0.9850 0 0 0 20 10 0 0 

84 3 0.9800 0 0 0 11 7 0 0 

85 2 0.9850 0 0 0 24 15 -8 23 

86 3 0.9870 0 0 0 21 10 0 0 

87 2 1.0150 0 4.0000 0 0 0 -100 1000 

88 3 0.9870 0 0 0 48 10 0 0 

89 2 1.0050 0 607.0000 0 0 0 -210 300 

90 2 0.9850 0 0 0 163 42 -300 300 

91 2 0.9800 0 0 0 10 0 -100 100 

92 2 0.9900 0 0 0 65 10 -3 9 

93 3 0.9870 0 0 0 12 7 0 0 

94 3 0.9910 0 0 0 30 16 0 0 

95 3 0.9810 0 0 0 42 31 0 0 

96 3 0.9930 0 0 0 38 15 0 0 

97 3 1.0110 0 0 0 15 9 0 0 

98 3 1.0240 0 0 0 34 8 0 0 

99 2 1.0100 0 0 0 42 0 -100 100 

100 2 1.0170 0 252.0000 0 37 18 -50 155 

101 3 0.9930 0 0 0 22 15 0 0 

102 3 0.9910 0 0 0 5 3 0 0 

103 2 1.0010 0 40.0000 0 23 16 -15 40 

104 2 0.9710 0 0 0 38 25 -8 23 

105 2 0.9650 0 0 0 31 26 -8 23 

106 3 0.9620 0 0 0 43 16 0 0 

107 2 0.9520 0 0 0 50 12 -200 200 

108 3 0.9670 0 0 0 2 1 0 0 

109 3 0.9670 0 0 0 8 3 0 0 

110 2 0.9730 0 0 0 39 30 -8 23 

111 2 0.9800 0 36.0000 0 0 0 -100 1000 

112 2 0.9750 0 0 0 68 13 -100 1000 

113 2 0.9930 0 0 0 6 0 -100 200 
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114 3 0.9600 0 0 0 8 3 0 0 

115 3 0.9600 0 0 0 22 7 0 0 

116 2 1.0050 0 0 0 184 0 -1000 1000 

117 3 0.9740 0 0 0 20 8 0 0 

118 3 0.9490 0 0 0 33 15 0 0 

 

%Line data 

From 

Bus 

To 

Bus 

R 

pu  

X 

pu  

B/2 

pu  

X'mer 

TAP (a)  

1 2 0.0303 0.0999 0.0127 1.0000 

1 3 0.0129 0.0424 0.0054 1.0000 

4 5 0.0018 0.0080 0.0010 1.0000 

3 5 0.0241 0.1080 0.0142 1.0000 

5 6 0.0119 0.0540 0.0071 1.0000 

6 7 0.0046 0.0208 0.0027 1.0000 

8 9 0.0024 0.0305 0.5810 1.0000 

8 5 0 0.0267 0 0.9850 

9 10 0.0026 0.0322 0.6150 1.0000 

4 11 0.0209 0.0688 0.0087 1.0000 

5 11 0.0203 0.0682 0.0087 1.0000 

11 12 0.0060 0.0196 0.0025 1.0000 

2 12 0.0187 0.0616 0.0079 1.0000 

3 12 0.0484 0.1600 0.0203 1.0000 

7 12 0.0086 0.0340 0.0044 1.0000 

11 13 0.0222 0.0731 0.0094 1.0000 

12 14 0.0215 0.0707 0.0091 1.0000 

13 15 0.0744 0.2444 0.0313 1.0000 

14 15 0.0595 0.1950 0.0251 1.0000 

12 16 0.0212 0.0834 0.0107 1.0000 

15 17 0.0132 0.0437 0.0222 1.0000 

16 17 0.0454 0.1801 0.0233 1.0000 

17 18 0.0123 0.0505 0.0065 1.0000 

18 19 0.0112 0.0493 0.0057 1.0000 

19 20 0.0252 0.1170 0.0149 1.0000 

15 19 0.0120 0.0394 0.0050 1.0000 

20 21 0.0183 0.0849 0.0108 1.0000 

21 22 0.0209 0.0970 0.0123 1.0000 

22 23 0.0342 0.1590 0.0202 1.0000 

23 24 0.0135 0.0492 0.0249 1.0000 

23 25 0.0156 0.0800 0.0432 1.0000 

26 25 0 0.0382 0 0.9600 

25 27 0.0318 0.1630 0.0882 1.0000 

27 28 0.0191 0.0855 0.0108 1.0000 

28 29 0.0237 0.0943 0.0119 1.0000 

30 17 0 0.0388 0 0.9600 

8 30 0.0043 0.0504 0.2570 1.0000 

26 30 0.0080 0.0860 0.4540 1.0000 

17 31 0.0474 0.1563 0.0199 1.0000 

29 31 0.0108 0.0331 0.0042 1.0000 
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23 32 0.0317 0.1153 0.0587 1.0000 

31 32 0.0298 0.0985 0.0126 1.0000 

27 32 0.0229 0.0755 0.0096 1.0000 

15 33 0.0380 0.1244 0.0160 1.0000 

19 34 0.0752 0.2470 0.0316 1.0000 

35 36 0.0022 0.0102 0.0013 1.0000 

35 37 0.0110 0.0497 0.0066 1.0000 

33 37 0.0415 0.1420 0.0183 1.0000 

34 36 0.0087 0.0268 0.0028 1.0000 

34 37 0.0026 0.0094 0.0049 1.0000 

38 37 0 0.0375 0 0.9350 

37 39 0.0321 0.1060 0.0135 1.0000 

37 40 0.0593 0.1680 0.0210 1.0000 

30 38 0.0046 0.0540 0.2110 1.0000 

39 40 0.0184 0.0605 0.0078 1.0000 

40 41 0.0145 0.0487 0.0061 1.0000 

40 42 0.0555 0.1830 0.0233 1.0000 

41 42 0.0410 0.1350 0.0172 1.0000 

43 44 0.0608 0.2454 0.0303 1.0000 

34 43 0.0413 0.1681 0.0211 1.0000 

44 45 0.0224 0.0901 0.0112 1.0000 

45 46 0.0400 0.1356 0.0166 1.0000 

46 47 0.0380 0.1270 0.0158 1.0000 

46 48 0.0601 0.1890 0.0236 1.0000 

47 49 0.0191 0.0625 0.0080 1.0000 

42 49 0.0715 0.3230 0.0430 1.0000 

42 49 0.0715 0.3230 0.0430 1.0000 

45 49 0.0684 0.1860 0.0222 1.0000 

48 49 0.0179 0.0505 0.0063 1.0000 

49 50 0.0267 0.0752 0.0094 1.0000 

49 51 0.0486 0.1370 0.0171 1.0000 

51 52 0.0203 0.0588 0.0070 1.0000 

52 53 0.0405 0.1635 0.0203 1.0000 

53 54 0.0263 0.1220 0.0155 1.0000 

49 54 0.0730 0.2890 0.0369 1.0000 

49 54 0.0869 0.2910 0.0365 1.0000 

54 55 0.0169 0.0707 0.0101 1.0000 

54 56 0.0027 0.0095 0.0037 1.0000 

55 56 0.0049 0.0151 0.0019 1.0000 

56 57 0.0343 0.0966 0.0121 1.0000 

50 57 0.0474 0.1340 0.0166 1.0000 

56 58 0.0343 0.0966 0.0121 1.0000 

51 58 0.0255 0.0719 0.0089 1.0000 

54 59 0.0503 0.2293 0.0299 1.0000 

56 59 0.0825 0.2510 0.0285 1.0000 

56 59 0.0803 0.2390 0.0268 1.0000 

55 59 0.0474 0.2158 0.0282 1.0000 

59 60 0.0317 0.1450 0.0188 1.0000 

59 61 0.0328 0.1500 0.0194 1.0000 

60 61 0.0026 0.0135 0.0073 1.0000 
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60 62 0.0123 0.0561 0.0073 1.0000 

61 62 0.0082 0.0376 0.0049 1.0000 

63 59 0 0.0386 0 0.9600 

63 64 0.0017 0.0200 0.1080 1.0000 

64 61 0 0.0268 0 0.9850 

38 65 0.0090 0.0986 0.5230 1.0000 

64 65 0.0027 0.0302 0.1900 1.0000 

49 66 0.0180 0.0919 0.0124 1.0000 

49 66 0.0180 0.0919 0.0124 1.0000 

62 66 0.0482 0.2180 0.0289 1.0000 

62 67 0.0258 0.1170 0.0155 1.0000 

65 66 0 0.0370 0 0.9350 

66 67 0.0224 0.1015 0.0134 1.0000 

65 68 0.0014 0.0160 0.3190 1.0000 

47 69 0.0844 0.2778 0.0355 1.0000 

49 69 0.0985 0.3240 0.0414 1.0000 

68 69 0 0.0370 0 0.9350 

69 70 0.0300 0.1270 0.0610 1.0000 

24 70 0.0022 0.4115 0.0510 1.0000 

70 71 0.0088 0.0355 0.0044 1.0000 

24 72 0.0488 0.1960 0.0244 1.0000 

71 72 0.0446 0.1800 0.0222 1.0000 

71 73 0.0087 0.0454 0.0059 1.0000 

70 74 0.0401 0.1323 0.0168 1.0000 

70 75 0.0428 0.1410 0.0180 1.0000 

69 75 0.0405 0.1220 0.0620 1.0000 

74 75 0.0123 0.0406 0.0052 1.0000 

76 77 0.0444 0.1480 0.0184 1.0000 

69 77 0.0309 0.1010 0.0519 1.0000 

75 77 0.0601 0.1999 0.0249 1.0000 

77 78 0.0038 0.0124 0.0063 1.0000 

78 79 0.0055 0.0244 0.0032 1.0000 

77 80 0.0170 0.0485 0.0236 1.0000 

77 80 0.0294 0.1050 0.0114 1.0000 

79 80 0.0156 0.0704 0.0094 1.0000 

68 81 0.0018 0.0202 0.4040 1.0000 

81 80 0 0.0370 0 0.9350 

77 82 0.0298 0.0853 0.0409 1.0000 

82 83 0.0112 0.0367 0.0190 1.0000 

83 84 0.0625 0.1320 0.0129 1.0000 

83 85 0.0430 0.1480 0.0174 1.0000 

84 85 0.0302 0.0641 0.0062 1.0000 

85 86 0.0350 0.1230 0.0138 1.0000 

86 87 0.0283 0.2074 0.0222 1.0000 

85 88 0.0200 0.1020 0.0138 1.0000 

85 89 0.0239 0.1730 0.0235 1.0000 

88 89 0.0139 0.0712 0.0097 1.0000 

89 90 0.0518 0.1880 0.0264 1.0000 

89 90 0.0238 0.0997 0.0530 1.0000 

90 91 0.0254 0.0836 0.0107 1.0000 
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89 92 0.0099 0.0505 0.0274 1.0000 

89 92 0.0393 0.1581 0.0207 1.0000 

91 92 0.0387 0.1272 0.0163 1.0000 

92 93 0.0258 0.0848 0.0109 1.0000 

92 94 0.0481 0.1580 0.0203 1.0000 

93 94 0.0223 0.0732 0.0094 1.0000 

94 95 0.0132 0.0434 0.0056 1.0000 

80 96 0.0356 0.1820 0.0247 1.0000 

82 96 0.0162 0.0530 0.0272 1.0000 

94 96 0.0269 0.0869 0.0115 1.0000 

80 97 0.0183 0.0934 0.0127 1.0000 

80 98 0.0238 0.1080 0.0143 1.0000 

80 99 0.0454 0.2060 0.0273 1.0000 

92 100 0.0648 0.2950 0.0236 1.0000 

94 100 0.0178 0.0580 0.0302 1.0000 

95 96 0.0171 0.0547 0.0074 1.0000 

96 97 0.0173 0.0885 0.0120 1.0000 

98 100 0.0397 0.1790 0.0238 1.0000 

99 100 0.0180 0.0813 0.0108 1.0000 

100 101 0.0277 0.1262 0.0164 1.0000 

92 102 0.0123 0.0559 0.0073 1.0000 

101 102 0.0246 0.1120 0.0147 1.0000 

100 103 0.0160 0.0525 0.0268 1.0000 

100 104 0.0451 0.2040 0.0271 1.0000 

103 104 0.0466 0.1584 0.0204 1.0000 

103 105 0.0535 0.1625 0.0204 1.0000 

100 106 0.0605 0.2290 0.0310 1.0000 

104 105 0.0099 0.0378 0.0049 1.0000 

105 106 0.0140 0.0547 0.0072 1.0000 

105 107 0.0530 0.1830 0.0236 1.0000 

105 108 0.0261 0.0703 0.0092 1.0000 

106 107 0.0530 0.1830 0.0236 1.0000 

108 109 0.0105 0.0288 0.0038 1.0000 

103 110 0.0391 0.1813 0.0231 1.0000 

109 110 0.0278 0.0762 0.0101 1.0000 

110 111 0.0220 0.0755 0.0100 1.0000 

110 112 0.0247 0.0640 0.0310 1.0000 

17 113 0.0091 0.0301 0.0038 1.0000 

32 113 0.0615 0.2030 0.0259 1.0000 

32 114 0.0135 0.0612 0.0081 1.0000 

27 115 0.0164 0.0741 0.0099 1.0000 

114 115 0.0023 0.0104 0.0014 1.0000 

68 116 0.0003 0.0040 0.0820 1.0000 

12 117 0.0329 0.1400 0.0179 1.0000 

75 118 0.0145 0.0481 0.0060 1.0000 

76 118 0.0164 0.0544 0.0068 1.0000 
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