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ABSTRACT

The agricultural greenhouse system has undergone significant developments in recent years.
Greenhouse microclimate is the phenomenon under study in this work. Its modelling and control
processes are complex tasks to be performed mainly due to the strong nonlinearity of the
phenomenon. In this thesis, a set of contributions in greenhouse microclimate modelling and
control, including implementing computational intelligence algorithms, have been accomplished.
The second chapter briefly describes the experimental greenhouses used in this thesis. Initially,
due to the lack of an experimental greenhouse, a wooden-structured polyethene-covered
greenhouse prototype was constructed and used as a small-scale nursery under arid climate
conditions (moderate desert climate) in Meziraa, Biskra, Algeria. A low-cost microcontroller-based
data acquisition system with a wireless connection was designed (hardware and software) and
installed in the greenhouse with several low-cost sensors. It was used to gather instant information
on the essential inside and outside climate variables. A dataset of five days was successfully
acquired for modelling, estimation and experimental validation purposes. Secondly, a metal-
structured polyethene-covered commercial-sized experimental greenhouse under Mediterranean
climate conditions was exploited. It is located at “Las Palmerillas” Experimental Station, a property
of the Cajamar Foundation in Almeria, Spain. It is equipped with all the necessary professional
sensors, actuators and data acquisition systems. A set of sufficient reliable datasets of fifteen days
were obtained in different agri-seasons and used for different purposes such as microclimate

modelling and control, online parameter estimation and real-time experimental validation.

In the third chapter, two contributions were achieved. Firstly, a grey-box model for greenhouse
temperature prediction under moderate desert climate conditions has been proposed. This
contribution stands on reformulating a white-box model to make it independent of the availability
of accurate values of the static parameters of its elements. The model has become less complicated
by alleviating the coupling between its parameters, which makes it easier for the identification
algorithm to find the optimal parameter values. A variant of the Particle swarm optimisation
algorithm (PSO) called Random Inertia Weight PSO (RIWPSO) was used to identify the parameters
of the proposed model by calibrating it against the experimental data. The constructed greenhouse
prototype has been used to validate the proposed temperature model. The simulation results show
that particle swarm optimisation has successfully achieved the desired optimality. The
experimental validation process has confirmed the suitability of this model to be implemented to
study and predict the greenhouse temperature, and it has emphasised the successful prediction
with satisfactory accuracy. Secondly, an enhanced variant of the bio-inspired metaheuristic Bat
Algorithm (BA) has been proposed and called the Random Scaling-based Bat Algorithm (RSBA).
The proposition includes modifying the exploitation of the standard BA by randomly making the
scaling parameter changes over the iterations. It has been dedicated to the same task of calibrating
the proposed thermal grey-box model. It has been assessed as the same as PSO, primarily on the
same simulated greenhouse temperature model with the assumed parameters. The simulation

results have shown the superiority of the proposed RSBA compared to the standard BA in terms
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of convergence and performance accuracy. To experimentally investigate the proposed RSBA
algorithm, the same experimental dataset from the greenhouse prototype has been used. The
obtained prediction results are found to be in good agreement with the measured ones, which show
the effectiveness of the proposed RSBA in identifying the real greenhouse thermal model. Finally,
a comparative study was conducted between the RSBA and the RIWPSO. The BA has shown a
faster convergence than PSO at the start of optimisation, but its convergence speed was reduced at
the end. BA and PSO have shown superb performance in accurately finding the optimal solutions.
However, PSO has shown a superior performance than BA in terms of time consumption regarding

the problem of interest.

Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of
the phenomenon and the uncertainty of the involved physical and non-physical parameters. The
uncertainty stems from the fact that most of these parameters are unmeasurable or difficult to
measure, and some are time-varying, signifying the necessity to estimate them. As the first
contribution in the fourth chapter of the thesis, a methodology for online parameter estimation is
proposed to estimate the time-varying parameters of a simplified greenhouse temperature model
for real-time model adaptation purposes. An online estimator is developed based on an enhanced
variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the
continuous adaptation of the internal air temperature model and the internal solar radiation sub-
model by estimating their parameters simultaneously by minimising a cost function, intending to
achieve global optimality. Constraints on the search ranges are imposed to respect the physical
sense. The adaptation of the models was tested with recorded datasets of different agri-seasons
and on a real greenhouse in real time. The evolutions of the time-varying parameters were
graphically presented and thoroughly discussed. The experimental results illustrate the successful
model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction
and 20 W m~2 for solar radiation simulation. It proves the usefulness of the proposed methodology

under changing environmental conditions.

Natural ventilation flux is an important variable to measure or estimate for its significant effect
on greenhouse microclimate modelling and control. It is commonly known that it can be
mathematically estimated depending on the type and dimension of the greenhouse and its vents
and, most importantly, on the vents opening percentage. However, most commercial greenhouses
are not equipped with an automatic vent opening system which obligates the grower to perform
manual control, in addition to the lack of vent position sensors, due to economic and management
reasons. It leads to the absence of the control signal variable representing the vents opening
percentage necessary for ventilation flux estimation. This issue has been encountered in this work
after attempting to implement the developed adaptive microclimate model based on the online
parameter estimator through an IoF2020 platform (internet of food and farm) in a set of commercial
greenhouses with manually controlled vents located in Almeria province, Spain. To cope with this
issue, the estimation of ventilation flux without using the vent opening percentage was
investigated. As a second contribution in the fourth chapter, a virtual sensor for greenhouse

ventilation flux estimation is proposed. It has been developed using a nonlinear autoregressive
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neural network with exogenous inputs based on principal component analysis using the available
measured data and the evolutions of the heat fluxes representing the greenhouse energy balance.
Preliminary results show an encouraging performance of the virtual sensor in estimating the

ventilation flux with a mean absolute error of 0.41 m3 s-.

Keywords: Protected agriculture, greenhouse system, evolutionary algorithms, online estimation,
model adaptation, machine learning, principal component analysis, artificial neural networks,
virtual sensors.
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RESUME

Le systéeme de serre agricole a connu des développements majeurs ces dernieres années. Le
microclimat en serre est le phénomene étudié dans ce travail. Son controle signifie essentiellement
et directement le contr6le de la croissance des cultures. La modélisation et le contréle du
microclimat en serre sont des taches difficiles a réaliser principalement en raison de la forte non-
linéarité du phénomene. Dans cette these, un ensemble de contributions a la modélisation et au
contrdle du microclimat a effet de serre, y compris la mise en ceuvre d'algorithmes d'intelligence
informatique, a été réalisée. Dans le deuxiéme chapitre, les serres expérimentales utilisées dans
cette thése sont brievement décrites. Initialement, en raison de 'absence d'une serre expérimentale,
un prototype de serre a structure en bois recouvert de polyéthylene a été construit et utilisé comme
pépiniere a petite échelle dans des conditions climatiques arides (climat désertique modéré) situé
a Meziraa, Biskra, Algérie. Un systéeme d'acquisition de données a faible coflit basé sur un
microcontréleur avec connexion sans fil a été congu (matériel et logiciel) et installé dans la serre
avec plusieurs capteurs a faible cofit. Il a été utilisé pour recueillir des informations instantanées
sur les variables climatiques intérieures et extérieures essentielles. Un ensemble de données de cinq
jours a été acquis avec succes pour étre utilisé a des fins de modélisation, de simulation et de
validation expérimentale. Deuxiemement, une serre expérimentale de taille commerciale
recouverte de polyéthylene a structure métallique dans des conditions climatiques
méditerranéennes a été exploitée. Il est situé a la station expérimentale « Las Palmerillas » qui est
une propriété de la Fondation Cajamar a Almeria, en Espagne. Il est équipé de tous les capteurs,
actionneurs et systemes d'acquisition de données professionnels nécessaires. Un ensemble
d'ensembles de données fiables et suffisants de quinze jours a été obtenu au cours de différentes
saisons agricoles et utilisé a différentes fins telles que la modélisation et le contr6le du microclimat,

l'estimation des parametres en ligne et la validation expérimentale en temps réel.

Dans le troisieme chapitre, deux contributions ont été obtenues. Premierement, un modele de
boite grise pour la prévision de la température des serres dans des conditions climatiques
désertiques modérées a été proposé. Cette contribution repose sur la reformulation d'un modele
boite blanche pour le rendre indépendant de la disponibilité de valeurs précises des parametres
statiques de ses éléments. Le modele est devenu moins compliqué en atténuant le couplage entre
ses parametres, ce qui permet a I'algorithme d'identification de trouver plus facilement les valeurs
optimales des parametres. Une variante de l'algorithme Particle Swarm Optimization (PSO) appelé
Random Inertia Weight PSO (RIWPSO) a été utilisée pour identifier les parametres du modele
proposé en le calibrant par rapport aux données expérimentales. Le prototype de serre construit a
été utilisé pour valider le modeéle de température proposé. Les résultats de la simulation montrent
que l'optimalité souhaitée a été atteinte avec succés en utilisant I'optimisation de l'essaim de
particules. Le processus de validation expérimentale a confirmé la pertinence de ce modele a mettre
en ceuvre pour étudier et prédire la température de la serre, et il a souligné la réussite de la
prédiction avec une précision satisfaisante. Deuxiemement, une variante améliorée de l'algorithme

métaheuristique de chauve-souris bio-inspiré (BA) a été proposée et appelée algorithme de chauve-
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souris basé sur l'échelle aléatoire (RSBA). La proposition comprend la modification de
l'exploitation du BA standard en faisant changer le parametre d'échelle de maniere aléatoire au
cours des itérations. Il a été consacré a la méme tache d'étalonnage du modele de boite grise
thermique proposé. Il a été évalué de la méme maniere que le PSO, principalement sur le méme
modele de température de serre simulée avec les parametres supposés. Les résultats de la
simulation ont montré la supériorité du RSBA proposé par rapport au BA standard en termes de
convergence et de précision des performances. Pour étudier expérimentalement 1'algorithme RSBA
proposé, le méme ensemble de données expérimentales du prototype de serre a été utilisé. Les
résultats de prédiction obtenus sont en bon accord avec ceux mesurés qui montrent I'efficacité du
RSBA proposé pour identifier le modele thermique réel de la serre. Enfin, une étude comparative
a été menée entre le RSBA et le RIWPSO. Le BA a montré une convergence plus rapide que le PSO
au début de I'optimisation mais sa vitesse de convergence a été réduite a la fin. BA et PSO ont tous
deux montré de superbes performances pour trouver les solutions optimales avec précision.
Cependant, PSO a montré une performance supérieure a BA en termes de consommation de temps

concernant le type de probleme d'intérét.

La modélisation du microclimat en serre est une tache difficile principalement en raison de la
forte non-linéarité du phénomene et de I'incertitude des parameétres physiques et non physiques
impliqués. L'incertitude vient du fait que la majorité de ces parametres sont non mesurables ou
difficiles a mesurer et certains d'entre eux sont variables dans le temps, signifiant la nécessité de
les estimer. Comme premiere contribution dans le quatrieme chapitre de la these, une
méthodologie pour l'estimation de parameétres en ligne est proposée pour traiter 'estimation des
parametres variant dans le temps d'un modéle simplifié de température de serre a des fins
d'adaptation de modele en temps réel. Un estimateur en ligne est développé sur la base d'une
variante améliorée de I'algorithme de chauve-souris appelée algorithme de chauve-souris basé sur
une échelle aléatoire. Il permet I'adaptation continue du modele de température de I'air interne et
du sous-modele de rayonnement solaire interne, en estimant leurs parametres au méme pas de
temps en minimisant une fonction de cofit, dans le but d'atteindre l'optimalité globale. Des
contraintes sur les plages de recherche sont imposées pour respecter le sens physique. L'adaptation
des modeles a ét€ testée avec des ensembles de données enregistrés de différentes saisons agricoles
et sur une vraie serre en temps réel. Les évolutions des parametres variant dans le temps ont été
présentées graphiquement et discutées en détail. Les résultats expérimentaux illustrent
l'adaptation réussie du modele, présentant une erreur moyenne de moins de 0.28 °C pour la
prévision de la température de l'air et de 20 W m™2 pour la simulation du rayonnement solaire.
Cela prouve l'utilité de la méthodologie proposée dans des conditions environnementales
changeantes. Le flux de ventilation naturelle est une variable importante a mesurer ou a estimer
pour considérer son effet significatif sur la modélisation et le contréle du microclimat des serres. I1
est communément connu qu'il peut étre estimé mathématiquement en fonction du type et de la
dimension de la serre et de ses évents, et surtout du pourcentage d'ouverture des évents.
Cependant, la plupart des serres commerciales ne sont pas équipées d'un systeme d'ouverture
d'évent automatique qui oblige le producteur a effectuer un contréle manuel, en plus de I'absence

de capteurs de position d'évent, pour des raisons économiques et de gestion. Ceci conduit a
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I'absence de la variable du signal de commande qui représente le pourcentage d'ouverture des
évents nécessaire a I'estimation du flux de ventilation. Ce probleme a été rencontré dans ce travail
apres avoir tenté de mettre en ceuvre le modele de microclimat adaptatif développé basé sur
l'estimateur de parametres en ligne via une plate-forme IoF2020 (internet de I'alimentation et de la
ferme) dans un ensemble de serres commerciales avec des évents controlés manuellement situés
dans la province d'Almeria, Espagne. Pour faire face a ce probleme, l'estimation du flux de
ventilation sans utiliser le pourcentage d'ouverture d'évent a été étudiée. Comme deuxieme
contribution dans le quatriéme chapitre, un capteur virtuel pour I'estimation du flux de ventilation
des serres est proposé. Il a été développé a l'aide d'un réseau autorégressif non linéaire a apports
exogenes basé sur une analyse en composantes principales utilisant les données mesurées
disponibles et les évolutions des flux de chaleur représentant le bilan énergétique de l'effet de serre.
Les résultats préliminaires montrent une performance encourageante du capteur virtuel dans

l'estimation du flux de ventilation avec une erreur absolue moyenne de 0.41 m® s™*.

Mots clé: Agriculture protégée, systeme de serre agricol, algorithmes évolutifs, estimation en ligne,
adaptation de modeles, apprentissage automatique, analyse en composantes principales, réseaux

de neurones artificiels, capteurs virtuels.



RESUMEN

La agricultura bajo invernadero ha experimentado importantes desarrollos en los ultimos afos.
Este trabajo se ha centrado en el modelado y control del clima interior del invernadero ya que afecta
directamente en el crecimiento del cultivo, por lo que si se controlan las variables climaticas se
puede controlar el crecimiento de las plantas. El problema del modelado de estas variables no es
sencillo ya que presentan una fuerte componente no lineal con todo lo que esto supone. En esta
tesis se han realizado un serie de contribuciones en esta linea utilizando técnicas de inteligencia

artificial.

La memoria de esta tesis se ha organizado de forma que en el primer capitulo se presenta el
problema, la motivacion y el contexto de esta investigacion, asi como un resumen de las principales
contribuciones. A continuacién, ya en el segundo capitulo, se describen brevemente los
invernaderos experimentales en los que se han realizado los ensayos presentados en esta tesis.
Inicialmente, debido a la falta de un invernadero experimental, se construydé un prototipo de
invernadero con estructura de madera y cubierta de polietileno y, se utiliz6 como un semillero a
pequenia escala en condiciones de clima arido (clima desértico moderado) ubicado en Meziraa,
Biskra, Argelia. Se disefid un sistema de adquisicién de datos basado en microcontroladores de
bajo coste con conexion inalambrica (hardware y software) al que se conectaron sensores también
de bajo coste. Se utiliz6 para recopilar informacion en tiempo real de las variables climaticas
internas y externas del sistema invernadero con fines de modelado, simulacién y validacién
experimental. Ya en condiciones reales, se realizaron ensayos en un invernadero experimental de
tamano comercial cubierto de polietileno, con estructura metalica, en condiciones climaticas
mediterraneas. Esta ubicado en la Estacion Experimental “Las Palmerillas” de la Fundacién
Cajamar en Almeria (Espafia). En este caso, esta equipado con todos los sensores, actuadores y
sistemas de adquisicion de datos profesionales y de investigacion necesarios. Se obtuvo un
conjunto de datos suficientes y confiables en diferentes campafias agricolas. Se utilizd para
diferentes propositos, como el modelado y control del microclima interior asi como la estimacién

de parametros en linea y la validacion experimental en tiempo real.

En el tercer capitulo se presentan dos contribuciones importantes de este trabajo. Por una parte,
se ha desarrollado y validado un modelo de caja gris para la prediccion de la temperatura del
invernadero en condiciones climaticas desérticas moderadas. Esta contribucion se basa en
reformular un modelo de caja blanca para hacerlo independiente de la disponibilidad de valores
precisos de los parametros estaticos de sus elementos. Este modelo es menos complicado al evitar
parte del acoplamiento entre sus parametros, lo que facilita que el algoritmo de identificacién
obtenga los valores optimos de los mismos. Se ha utilizado una variante del algoritmo de
optimizaciéon de enjambre de particulas (PSO) denominado Random Inercia Weight PSO
(RIWPSO) para identificar los pardmetros del modelo propuesto calibrandolo con los datos

experimentales. El prototipo de invernadero construido se ha utilizado para validar el modelo de
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temperatura propuesto. Los resultados de la simulaciéon muestran que la optimizacion deseada se
ha logrado con éxito mediante el uso de este tipo de técnicas. El proceso de validacién experimental
ha confirmado la idoneidad de este modelo para ser implementado tanto para analizar como
predecir, con una precision aceptable, la temperatura del invernadero. Por otra parte, se ha
propuesto una mejora al algoritmo metaheuristico bioinspirado en el comportamiento de los
murciélagos (BA), que se ha denominado algoritmo de murciélago basado en escala aleatoria
(RSBA). La propuesta incluye modificar la explotacion del BA estandar haciendo que los
parametros de escala cambien aleatoriamente a lo largo de las iteraciones. Se ha usado en la misma
tarea de calibrar el modelo de caja gris de temperatura propuesto. Los resultados de la simulacion
han demostrado un mejor comportamiento y desempefio de las técnicas RSBA frente al algoritmo
BA estandar en términos de convergencia y precision de rendimiento. Para corroborar estos
resultados experimentalmente, el algoritmo RSBA propuesto, se ha utilizado con el mismo
conjunto de datos del prototipo de invernadero, obteniéndose resultados de prediccion que se
encuentran en buena concordancia con los medidos lo que demuestra la bondad de las técnicas
RSBA desarrolladas para la identificaciéon del modelo de temperatura interior en el invernadero
real. Finalmente, se realizé un estudio comparativo entre la RSBA y la RIWPSO. El BA ha mostrado
una convergencia mas rapida que el PSO al inicio de la optimizacion, pero su velocidad de
convergencia se redujo al final. Tanto BA como PSO han demostrado un excelente desempefio para
encontrar las soluciones dptimas con precision. Sin embargo, PSO ha mostrado un desempeno

superior al BA en términos de coste computacional en cuanto al tipo de problema de interés.

Otra contribucién interesante y de mucha aplicacion practica, se muestra en el capitulo cuarto.
Como se ha comentado anteriormente, el modelado del microclima de invernadero es una tarea
complicada debido principalmente a la fuerte no linealidad del fendémeno y, a la incertidumbre de
los parametros involucrados en el proceso de modelado, ya que no se pueden medir directamente
y que son variables en el tiempo, por lo que es imprescindible estimarlos. Para ello, se propuso una
metodologia de estimacion de los parametros en linea para hacer frente a la obtencion de los
parametros variables en el tiempo de un modelo simplificado de temperatura de invernadero con
fines de adaptacién del propio modelo en tiempo real. Se desarroll6 un estimador en linea basado
en una variante RSBA presentada anteriormente, que ha permitido la adaptacion continua de los
modelos de temperatura y radiacion interior del invernadero, mediante la estimacién de sus
parametros en el mismo paso de tiempo minimizando una funcién de costo, con la intencién de
lograr una optimizacion global. Evidentemente, se impusieron unas restricciones en el espacio de
busqueda para respetar el sentido fisico de estos parametros. La adaptacion de los modelos se
validé en tiempo real con conjuntos de datos adquiridos en diferentes campafias agricolas y en el
invernadero comercial. La evolucion de cada uno de los parametros variables en el tiempo se
presentan graficamente y se discuten a fondo en este capitulo. Los resultados experimentales
muestran la exitosa adaptacion del modelo, presentando un error medio menor de 0.28 °C para la
prediccion de la temperatura del aire y 20 W m= para la simulacion de radiacion solar, lo que
demuestra la utilidad y bondad de la metodologia propuesta en condiciones ambientales reales y

cambiantes.
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Como tltima contribucion en este campo, el capitulo cuarto también muestra el desarrollo de
un sensor virtual del flujo de ventilacidon natural. Ya que es el principal actuador de refrigeracién
que se usa en los invernaderos ubicados en las latitudes que se han tratado en esta tesis.
Evidentemente se puede estimar matematicamente segtin el tipo y la dimension del invernadero y
sus ventilaciones, y lo mas importante del porcentaje de apertura de las mismas. Sin embargo, la
mayoria de los invernaderos comerciales no estdn equipados con un sistema automatico de
apertura de ventilacion, lo que obliga al productor a realizar un control manual; ademas de la falta
de sensores de posicién de ventilacién, por razones econdmicas y de gestion. Estas situaciones
provocan la ausencia de la variable de sefal de control que representa el porcentaje de apertura de
las ventanas necesario para la estimacion del flujo de ventilacion. Este problema se ha encontrado
en el desarrollo de esta tesis después de intentar implementar el modelo de microclima adaptativo
desarrollado basado en el estimador de parametros en linea a través de una plataforma IoF2020
(Internet for Farm and Foods) en un conjunto de invernaderos comerciales con ventilaciones
controladas manualmente ubicados en la provincia de Almeria, Espafia. Para hacer frente a este
problema, se analizo la estimacion del flujo de ventilacion sin utilizar el porcentaje de apertura de
ventilacion, y se propuso un sensor virtual para la estimacion esta variable. Se ha desarrollado
utilizando una red autorregresiva no lineal con entradas exdgenas basadas en el andlisis de
componentes principales (PCA) utilizando los datos medidos disponibles y las evoluciones de los
flujos de calor que representan el balance energético del invernadero. Los resultados preliminares
muestran un rendimiento alentador del sensor virtual en la estimacion del flujo de ventilacién con

un error absoluto medio de 0.41 m3 s~ L.

Palabras clave: Agricultura protegida, sistema de invernadero, algoritmos evolutivos, estimaciéon
en linea, adaptacion de modelos, aprendizaje automatico, analisis de componentes principales,

redes neuronales artificiales, sensores virtuales.
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Chapter I: Introduction

1.1 Research motivation

Nowadays, the world is witnessing serious issues with the change of climate, the increase in
population and the lack of resources. All the countries are investigating sustainable solutions in all
domains, especially in agriculture. Providing food for the growing population is one of the main
issues for sustainable development in the United Nations” 2030 agenda (Desa., 2016). Greenhouse
systems have become a prominent means in the agricultural field to fulfil the targeted sustainability.
The agricultural greenhouse is an enclosure generally based on a metal structure covered by a
transparent plastic or glass cover that allows solar radiation to pass through. Inside the enclosed
structure, an isolated environment is affected by a set of physical phenomenons representing the
heat and mass balance inside the greenhouse. It is created to suit the cultivated plant favourably
and it is commonly called the greenhouse microclimate. Modern agriculture is outstandingly
affected by the greenhouse system because it plays an essential role in enhancing the management,
qualities, and quantities of agricultural production. The optimisation of the greenhouse production
system is required to suit the increasing population and the strict standards of the local and
international markets. To tackle these agricultural necessities and achieve sustainability, the
continuous development of greenhouse systems is important. The fundamental level in the
management hierarchical structure of the greenhouse production system is the analysis, modelling,
estimation, prediction and control of greenhouse microclimate variables that strongly affect crop
growth and yield. Continuous adaptivity of the greenhouse system to the change of climate
conditions is an essential aspect to be achieved for the best continuous optimization of the studied
outputs. Efficiently fulfilling the continuous optimization based on adaptive models and controllers
for these challenging processes will tremendously help in leading the outcome to hit the largest

quantities, finest qualities with the lowest costs, as the ultimate target of the field.

I.2 Aim and objectives

The greenhouse microclimate consists of a set of physical phenomenons representing the heat
and mass balance inside the greenhouse. The elements of this balance are a set of commonly known
fluxes generated by a set of physical processes: Solar and thermal radiation, convection, conduction,
condensation, evaporation, transpiration, ventilation and infiltration (see Fig. 1). These processes
can be considered as the driving force of climate change inside the greenhouse (microclimate
change). Their change in turn urges the change of the essential microclimate variables measured by
sensors: Air temperature, relative humidity, global radiation, soil temperature, soil moisture, CO:

concentration, crop transpiration ...etc.

This work aims to develop an online parameter estimation technique as an adaptation tool for
real-time implementation as it appears in Fig. 2. The vision is to take advantage of the advancing
metaheuristic bio-inspired population-based algorithms by implementing them in an online
parameter estimation scheme. Continuous real-time adaptation is an essential aspect of
microclimate models and controllers for prediction and control optimization purposes. It permits
handling the multiple objectives of the greenhouse system. Since the management of the greenhouse

systems is two parts which are modelling and control, this work mainly aims to efficiently model



Chapter I: Introduction

y Outside
P a air
Sun ) Solar A

\

\___ radiation  * Convection « Ventilation
Thermal v * Condensation « Infiltration
radiation Thermal radiation
< >
oA
f \ A
* Convection > X
m':w'"’a"": « Condensation | Greenhouse
air1
AA
7\ & a om Infiltration « Convection
/| Thermai/Shade screens | =~ * Condensation
A
Thermal Convection
radiation Y v Thermal
Greenhouse rodiation
Air2

A *Convection

+Evaporation
& -\\. gt -< odotion
\ _ radiation tion
(ﬁ Sun ) < > fe

r Thermal
radiation

Figure 1. Relationship between greenhouse elements (Rodriguez et al., A, 2015).
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Figure 2. General greenhouse climate prediction and control scheme using online estimation

the essential climate variables inside the greenhouse and then apply some control techniques to the
obtained greenhouse model. The microclimate modelling stage includes implicitly the estimation of
a set of heat and mass fluxes for the prediction of the targeted climate variables in this work: inside

air temperature, inside solar radiation and CO: concentration. Advanced and intelligent methods
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such as metaheuristic bio-inspired optimization algorithms and artificial neural networks have been
used for modelling and control purposes and principal component analysis for data analysis
purposes. Based on the fact that the greenhouse systems are complicated and nonlinear, system
adaptivity is an important aspect that should be addressed to provide a robust tool against the
change of climate conditions inside and outside the greenhouse for the long-term successful
implementation of greenhouse models and controllers. The aim is to develop an online parameter
estimation method as an adaptation tool based on a metaheuristic optimization algorithm to be

dedicated for modelling and control purposes.
Finally, the objectives of this thesis can be summarized as follows:

Air temperature modelling and prediction using the acquired data using the prototype

2. Application of metaheuristic optimization algorithms for offline parameter estimation
in the context of model calibration.

3. Development of an online parameter estimator based on a metaheuristic bio-inspired
optimization algorithm to be used for continuous model adaptation.

4. Implementation of the developed online parameter estimator using experimental
datasets of different agri-seasons acquired from a commercial greenhouse.

5. Real-time implementation of the developed adaptive climate model on a commercial
greenhouse for the prediction of air temperature and the simulation of solar radiation

6. Development of a virtual sensor for ventilation flux estimation for greenhouses with

manual control of natural ventilation.

1.3 Research context

Greenhouse microclimate modelling and control are the fundamental aspects of the greenhouse
system. It has included extensive development and many outstanding results. In general, three
kinds of greenhouse models are recognized (Rodriguez et al.,, 2015): the physical-based model
(white-box model), the input-output based model (black-box model), and the grey-box model which
is a model where all the available knowledge of the process mechanisms is used to build a white-
box part, while the missing information is approximated by black-boxes fitted to the process data.
The advantage of the grey-box model over others is its advantage in addressing some of the most
restrictive factors of the white-box and black-box approaches, as it also seeks to combine the
advantages of both model types (Sjoberg et al., 1995). Greenhouse models are proposed for two
purposes: on one hand, the analysis of a certain physical phenomenon (Temperature, radiation,
humidity, transpiration, Coy, ...etc) which is the most complicated type of model. It has to be a
white-box model including all the needed sub-equations describing the majority of the physical
effects on the simulated target to avoid neglecting any of them. It can also be a grey-box model but
still has to be dependent more on the physical-based equations and it obliges having constraints on
the empirical parts of the model to ensure respecting the physical sense of the calculated information
leading to the simulated target. On the other hand, there are the simplified and pseudo-physical
models which are also considered grey-box models but they are commonly more useful for control

purposes. Some advanced and computational intelligence techniques were proposed in the
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literature (Sjoberg et al., 1995; Kennedy and Eberhart., 1995; Ali et al., 2015; Ali et al., 2018) and one
of them is proposed in this thesis in the context of making more use of those simplified models for
both purposes of greenhouse microclimate modelling, analysis and prediction (Guesbaya and
Megherbi., 2019).

The modelling of the microclimate variables inside the greenhouse has been studied in the
literature using different mathematical and data-driven models, simplified and complicated ones
(Fourati., 2014; Rodriguez et al., 2015; Ben Ali et al., 2018; Choab et al., 2019; Hoyo et al., 2019; Atia
and El-madany., 2017; Li et al., 2020; Laktionov et al., 2020). A simplified nonlinear grey-box model
is proposed in this thesis (Lamrani et al. 2001). It predicts the inside air temperature based on a set
of heat exchange processes generated by the differences in energy content between the inside and
outside air. This model was derived by reformulating a physical-based dynamic model. The
reformulation includes having new static parameters linearly dependent that have to be identified
with offline parameter estimation. This fact has led to obtaining a less complicated model that
requires less computational costs and, hence, a better chance to achieve successful air temperature
prediction. The model was experimentally validated in a constructed gable-shaped greenhouse
prototype that has been built to be used as a nursery, equipped with a designed microcontroller-
based low-cost data acquisition system. The lack of information on the system parameters is
considered a kind of uncertainty in greenhouse models. Thus, here we highlight the need for an
identification technique to solve this problem. Recently, considerable attention has been paid to
nature-inspired metaheuristic algorithms to solve optimization issues in many domains thanks to
their characteristics and efficient search methods. The particle swarm optimization (PSO) algorithm is
among those very common population-based stochastic algorithms (Yang, X. S, 2014). A variant of
PSO called the Random Inertia Weight particle swarm optimization algorithm (RIWPSO) has been
implemented in this study as a parameter identification technique for the static parameters of the
proposed grey-box model under arid desert climate conditions (Imran et al.,, 2013). In addition,
another metaheuristic bio-inspired algorithm that has been used for the same purpose is the Bat
algorithm (BA) (Yang, X. S, 2014). In another study, a variant of the BA called the random scaling-
based bat algorithm (RSBA) has been proposed and validated using the same prototype and datasets
(Guesbaya et al 2019). The idea behind the RSBA proposition is to adjust the scaling parameter to
make the step size have relatively large and small values to maintain an effective step size control
relative to the closeness of the optimal solution. A comparative study has been carried out at the
end on the performance of PSO and RSBA in identifying the parameters of the grey-box model in

the context of offline parameter estimation and greenhouse air temperature prediction.

To reach an accurate performance despite the high nonlinearity of the phenomena and the
presence of uncertainties, multi-input multi-output (MIMO) and multi-input single-output (MISO)
greenhouse models are usually calibrated using various offline optimisation or estimation
approaches based on either numerical or artificial intelligence algorithms (Hasni et al., 2011; Yu et
al., 2016; Sanchez-Molina et al., 2017) as in our proposed works (Guesbaya and Megherbi., 2019;
Guesbaya et al,, 2019). In all these cited works, datasets of only a few days were used in the
calibration phase and the validation was carried out in a short period of a specific agri-season. Thus,
for the long-term successful implementation of models during different agri-seasons, larger datasets
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have to be provided but even though, the results carried out could probably still be unreliable
because of the indispensable presence of time-varying parameters that depend on weather
conditions and the state of the crop (Cunha et al., 1997; Vanthoor et al., 2011; Pérez-Gonzalez et al.,
2018). The microclimate model has to consider the effect of those time-varying parameters that are
usually unmeasurable, or their measuring instrumentation or procedures are unaffordable (Choabet
al,, 2019; Guesbaya et al., 2019; Ma et al., 2019). The periodical offline calibration of the time-varying
parameters is a candidate solution but is commonly considered a laborious procedure that
consumes time and computational resources and requires at least a one-year dataset or large
datasets from every season (Rodriguez et al., 2015; Speetjens et al., 2009). Therefore, it is convenient
to develop an online parameter estimation technique to avoid the laborious periodical offline model
calibration and continuously adjust the time-varying parameters depending on the evolution of
climate conditions in real time. In this thesis, the presented problem has been addressed in the
context of achieving the continuous adaptivity of a greenhouse microclimate model in different agri-
seasons aiming to analyse the effect of the time-varying parameters and the optimal performance of

the adaptive microclimate model.

To sustain the best agricultural outcome, greenhouse ventilation flux is a very important
phenomenon that should be studied individually and controlled according to its vital role in
influencing the crop through most of the microclimate variables. To measure this variable, it is
necessary to use special anemometers such as ultrasound or thermal effect-based ones. Since the
installation of such sensors is unusual due to their high costs, ventilation flux can be estimated using
some proposed methods in the literature (Boulard et al.,, 1995; Kittas et al., 1997). However, the
common methods of estimating or predicting the greenhouse ventilation flux are all dependent on
the total surface of the openings of vents. This could be considered as a problem of high complexity
in greenhouses where the exact vents opening is unknown because it is performed manually by
growers. Manual control means the absence of the control signal which in turn means the lack of
the exact and continuous recording of vent opening percentage making it impossible to estimate the
ventilation flux based on the common explicit methods in hands which makes it a serious issue. As
far as we know, this problem was not investigated in the literature and for this reason, the present
work is focused on studying new possibilities to estimate the ventilation flux in greenhouses using
alternative techniques like artificial neural networks. This problem has been encountered on the
way to proving the robustness of the proposed RSBA-based online parameter estimator with
different commercial Mediterranean greenhouses connected by IoT at the IoF2020 platform
(Guesbaya et al, 2021; Guesbaya et al., 2021) and located in the surroundings of Almeria, Spain.
These commercial greenhouses lack the automatic control of vents as same as the majority of
commercial greenhouses worldwide. In this context, an attempt to develop a virtual sensor for
greenhouse ventilation flux estimation without the dependence on the vent position information
(Guesbaya et al., 2021) based on principle components analysis (PCA) and artificial neural networks
(ANN) is performed and some preliminary results have been presented in this thesis.
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I.4 Research scope

This PhD thesis has been accomplished within the framework of a set of projects and a long-

period scholarship which are presented as follows:

As a collaborator in CHROMAE Project (DPI2017-85007-R) entitled: Control and Optimal
Management of Heterogeneous Resources in Agro-industrial Production Districts
Integrating Renewable Energy. Funded by the Spanish Ministry of Science, Innovation and
Universities. Through direct collaboration with the research group of Automatic Control,
Robotics and Mechatronics (ARM) research group (TEP-197) at the University of Almeria.
URL: http://www2.ual.es/chromae/researchers/mounir-guesbaya/

As a beneficiary of the Algerian scholarship of “Exceptional National Program 2019/2020”
(PNE internship) funded by the Algerian Ministry of High Education and Scientific

Research.

As a member in “Projet de Recherche-Formation Universitaire” (PRFU project) entitled:
Application of intelligent techniques for modelling and control of mobile robots, renewable
energy  systems and  agricultural = greenhouses. @ Under the  reference:
A01L08UN070120180001. This project is funded by the Algerian Ministry of High Education

and Scientific Research.

1.5 Main contributions

Published works and achievements during the accomplishment of this PhD thesis are presented

as follows:

In the second and third chapters, three contributions are presented as follows:

Firstly, a gable-shaped small-scale greenhouse prototype was constructed to be used as a

nursery in an arid region Mziraa, Biskra, Algeria. It included designing a low-cost

microcontroller-based data acquisition system for the wireless monitoring of the prototype.

They have been used to acquire a modest dataset including climate variables from inside and

outside environments of the greenhouse prototype under moderate desert climate conditions.

This project was chosen as the best project in the exhibition of the International Symposium of
Technology and Sustainable Industry Development 2019 (ISTSID), El-Oued, Biskra, Algeria.

The successfully acquired dataset was used in the investigations of two international

conferences.

Related certificates and publications:

- Guesbaya, M. and Megherbi, H., 2019. “Un prototype de serre agricole a faible cofit
surveillé et contr6lé sans fil”. The International Symposium of Technology and
Sustainable Industry Development 2019 (ISTSID), El-Oued, Biskra, Algeria.

- (Guesbaya et al., 2019) Guesbaya, M. and Megherbi, H., 2019. Thermal modeling and

prediction of soilless greenhouse in arid region based on particle swarm optimization:
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Experimentally validated. International Conference on Advanced Electrical Engineering
(ICAEE), Algiers, IEEE.

- (Guesbaya et al.,, 2019) Guesbaya, M., Megherbi, H. and Megherbi, A.C., 2019. Random
scaling-based bat algorithm for greenhouse thermal model identification and
experimental validation. The 4" International Conference on Electrical Engineering and
Control Applications (ICEECA), Constantine, Springer, pp. 47-62

Secondly, a nonlinear grey-box model of greenhouse air temperature is proposed. It describes
the inside air temperature as a set of heat exchange processes generated by the differences in
energy content between the inside and outside air. This model was derived by reformulating a
physical-based model. The reformulation includes having new static parameters linearly
dependent that have to be identified based on offline parameter estimation using the acquired
dataset from the greenhouse prototype. A less complicated model has been derived to be used
for greenhouse air temperature prediction. The lack of information on the system parameters
is considered a kind of uncertainty in greenhouse models. For this issue, the commonly known
metaheuristic bio-inspired algorithm called the Random inertia weight particle swarm optimization
algorithm (RIWPSO) was chosen to be implemented to the proposed model for model

calibration as an offline parameter estimation method.
Related publications:

- (Guesbaya et al., 2019) Guesbaya, M. and Megherbi, H., 2019. Thermal modeling and
prediction of soilless greenhouse in arid region based on particle swarm optimization:
Experimentally validated. International Conference on Advanced Electrical Engineering
(ICAEE), Algiers, IEEE.

Thirdly, another well-known metaheuristic bio-inspired and population-based optimation
algorithm was also implemented in the proposed grey-box temperature model, called the Bat
Algorithm (BA). An enhanced variant of this algorithm is proposed in this thesis and called the
Random scaling-based bat algorithm (RSBA). It was used for the same purpose of identifying the
unknown values of the proposed static parameters of the model through an offline estimation
process. The RSBA was proven to have superior performance over the standard BA in terms of
accuracy and speed of convergence. Finally, a comparative study has been carried out between
the performance of RIWPSO and RSBA in identifying the parameters of the grey-box model
and the prediction accuracy of the different obtained greenhouse air temperature models. The
results have shown the superiority of the RIWPSO over the RSBA in solving the problem at
hand. However, the RSBA still could be more useful against other different problems such as
the online parameter estimation in real-time where the advantage of the early convergence to

optimality can be necessary due to time constraints.
Related publications:

- (Guesbaya et al., 2019) Guesbaya, M., Megherbi, H. and Megherbi, A.C., 2019. Random
scaling-based bat algorithm for greenhouse thermal model identification and
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experimental validation. The 4% International Conference on Electrical Engineering and

Control Applications (ICEECA), Constantine, Springer, pp. 47-62.

In the fourth chapter, two contributions are presented as follows:

In the first part of the fourth chapter of this thesis, a methodology for online parameter
estimation is proposed for greenhouse microclimate model adaptation purposes as one of those
possible greenhouse system optimizations. It is proposed as an alternative to the laborious
periodical offline calibration of the time-varying parameters which is commonly considered a
laborious procedure that consumes time and computational resources. Specifically, an online
parameter estimator is developed to achieve the real-time adaptation of a greenhouse
microclimate model and intends to thoroughly study the time-varying parameters, aiming for
optimal prediction performance. The online estimator works based on the RSBA as an
enhanced variant of the nature-inspired BA algorithm. The performance of the developed
online parameter estimator in adapting the greenhouse microclimate model has been evaluated
from both physical and statistical points of view. The evolution of the estimated time-varying
parameters has proven that transpiration parameters could be considered constants for
simplicity. However, the parameters of convection and conduction processes should be time-
varying. The resulting prediction error was very low less than 0.28 °C for air temperature
prediction and 20 Wm™2 for solar radiation simulation. Research works that include a
graphical illustration and a detailed discussion of the evolution of the time-varying parameters
have not been encountered in literature to be compared to the results presented in this paper.
The more accurate the model performance, the more accurate the yield control and the better

the economic profits quantitatively and qualitatively.
Related publications:

- Guesbaya, M., Garcia-Manas, F., Megherbi, H. and Rodriguez, F., 2022. Real-time
adaptation of a greenhouse microclimate model using an online parameter estimator
based on a bat algorithm variant. Computers and electronics in agriculture, 192,
p.106627.

In the second part of the fourth chapter of this thesis, a virtual sensor for greenhouse ventilation
flux has been developed based on PCA-NARX modelling following the methodology
explained in detail in the folds of this chapter. A dataset has been generated from a
Mediterranean multi-span greenhouse located at “Las Palmerillas” Experimental Station which
is a property of the Cajamar Foundation (36.79316 latitude, -2.72014 longitude). The dataset
includes a combination of measured microclimate variables and the evolutions of greenhouse
heat fluxes. The heat fluxes were estimated using an adaptive air temperature model due to its
capability of providing their optimal estimations with an error of <5% between a set of the same
tests and its reliability in estimating the greenhouse ventilation flux without installing
expensive sensors. All the obtained variables were firstly processed by: signal filtring,
centralization, reduction and standardisation. Secondly, the treated dataset was used to

generate the PCs for data reduction using PCA. These PCs are then considered the new inputs
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of the neural network. Thus, the network was trained based on the PCs to fit the target which
is the estimated heat loss using the opening percentage of the roof and side vents based on the
previously mentioned explicit approach. Finally, the estimated heat loss flux was used to
inversely calculate the ventilation flux representing the ultimate objective of the proposed
virtual sensing method. The validation of this developed virtual sensor has shown very

promising preliminary results.

Related publications:

- (Guesbaya et al., 2021) Guesbaya, M., Garcia-Mafias, F., Rodriguez, F., Megherbi, H.,
Ouamane, M, R. 2021. Virtual sensor for ventilation flux estimation in greenhouses. The XI

Iberian Congress of Agroengineering, Valladolid, Spain.

1.6 Outline of the thesis

This PhD thesis is organized into five chapters. The description of each of the following chapters
is briefly presented. An abstract is included at the beginning of each chapter to provide more
information about its content. In Chapter 1, factors of motivation, research objectives, research
context and main contributions of this dissertation are all presented. A list of the published main
contributions is also included. Chapter 2 overviews the greenhouse facilities used to acquire the
experimental datasets and perform the experiments. It illustrates the main characteristics of the used
greenhouse systems, as well as the collected experimental datasets. Chapter 3, describes the
proposed simplified grey-box thermal model, the used pseudo-physical model of greenhouse air
temperature and solar radiation. It also presents two metaheuristic bio-inspired algorithms and their
application for the offline estimation of model parameters for model calibration purposes. They are
the Random inertia weight particle swarm optimization algorithm (RIWPSO) and a variant of the Bat
algorithm (BA) proposed in this thesis and called the Random scaling-based bat algorithm (RSBA). This
was finalized by a comparative study of the performances of the algorithms in estimating the model
parameters and the models in predicting the greenhouse air temperature after a set of repetitive
experimental validation processes. In chapter 4, an online parameter estimator is developed as a
model adaptation technique based on the proposed RSBA. The online estimator was validated in
simulation with different datasets from different agri-seasons, and then, it was implemented in real
time with the commercial greenhouse system. Furthermore, a virtual sensor for greenhouse
ventilation flux estimation was developed as a supplement for the robustness of the RSBA-based
online parameter for commercial greenhouses with manual control of vents. Finally, the main

results, discussions, major conclusions and future perspectives are all drawn in Chapter 5.
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Chapter II: Description of experimental facilities

II.1 Introduction

This chapter briefly describes the experimental greenhouses used in this thesis. Initially, due to
the lack of an experimental greenhouse, a wooden-structured polyethene-covered greenhouse
prototype was constructed and used as a small-scale nursery under arid climate conditions
(moderate desert climate) located in Meziraa, Biskra, Algeria. A low-cost data acquisition system
was designed (hardware and software) and installed in the greenhouse with several low-cost
sensors to gather instant information on the essential inside and outside climate variables. A dataset
of five days was successfully acquired for modelling, simulation and experimental validation
purposes. Secondly, a metal-structured polyethene-covered commercial-sized experimental
greenhouse under Mediterranean climate conditions was exploited. It is located at “Las Palmerillas”
Experimental Station, a property of the Cajamar Foundation (36.79316 latitude, -2.72014 longitude)
in Almeria, Spain. It is equipped with all the necessary professional sensors, actuators and data
acquisition systems. A set of sufficient and reliable datasets of 15 days were obtained in different
agri-seasons and used for different purposes such as microclimate modelling, online parameter
estimation, real-time experimental validation and soft sensor development, as described in detail in

the following chapters.
I1.2 Greenhouse prototype
I1.2.1 Description of the greenhouse prototype

The experimental set-up has included the construction of a small-size gable-shaped (single-
span), wooden-structured greenhouse prototype as a nursery (Guesbaya and Megherbi., 2019). It is
covered by polyethene with 0.2mm of thickness as it appears in Fig. 3. A nursery is a kind of
greenhouse specialized for seedling nursing and management, designed to produce favourable
conditions for seedling until it becomes a ready healthy transplantable plant. It was implemented
in the municipality of M’ziraa, affiliated to Biskra province in Algeria (34°43'19.7” N 6°17'39.2” E),
which is characterized by its moderate desert climate in the winter season. The experimental nursery

has a wooden soilless floor that embraces 3 seedling bunches (45x20 cm) full of treated soil.

Figure 3. External and internal view of greenhouse prototype

12
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I1.2.2  Low-cost data acquisition system

The data acquisition system was designed in this work (see Fig. 4) based on the programmable
microcontroller-based board called Arduino Mega 2560. It gathers measurements from all the
installed sensors. The measurements are then sent to a personal computer via Wi-Fi with a
communication protocol called wuser datagram protocol (UDP) using another programable
microcontroller-based board called NodeMCU V0.1. Finally, the data is received and treated by
MATLAB to generate the initial dataset used in this study.

Figure 4. The developed low-cost data acquisition system. (a) Internal view; (b) External view

The required sensors have been installed and connected to the I/O pins of Arduino Mega. These
sensors are dedicated to obtain sufficient information about the instant state of the greenhouse
internal and external climate. Two DHT22 are installed indoor the greenhouse at a high of 0.3m and
outdoor the greenhouse at a high of 1.25m to measure air temperature, where the accuracy of
humidity is #5%RH and temperature accuracy is <+0.5°C. Both DHT22 sensors are equipped with a
low-cost design of a plate-shaped radiation shield (Holden et al., 2013). A low-cost pyranometer
based on BPW34 silicon photodiode with an accuracy of 2.3% error (Cekon et al., 2016) is installed
outdoor the greenhouse at a height of 1.4 m to measure the solar irradiation. Another low-cost
element is the anemometer based on a DC motor installed outside at a height of 1.55 m (Horsey.,
2016). MH-RD Rain module is also used to be warned from heavy rain. All the sensors are presented

in Fig. 5. The sensitiveness of each of the sensors are:

- The temperature measurement sensitiveness is about 0.1 °C
- The humidity measurement sensitiveness is about 0.1 %
- The pyranometer measurement sensitiveness is about 9.6 w/m?

- The anemometer measurement sensitiveness is about 0.47 m/s

I1.3 Commercial Mediterranean greenhouse
II.3.1 Structure and actuators

The greenhouse utilised in this work is presented in Fig. 6. It is a traditional Mediterranean
greenhouse, commonly named “Almeria-type” greenhouse. It is located at “Las Palmerillas”
Experimental Station which is a property of the Cajamar Foundation (36.79316 latitude, -2.72014
longitude), in Almeria, Spain, at an altitude of 151 m. The total surface of the greenhouse is 877 m?

13
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Figure 5. Sensors installed inside and outside the greenhouse prototype. (a) A designed low-cost BPW34 photodiode-based
pyranomter; (b) A designed DC motor-based wind-velocity sensor; (c) Rain sensor for Alarm system; (d) A hand-made plat-
shaped radiation shield for DHT22 inside and outside the greenhouse; () DHT22 temperature and humidity sensor.
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Figure 6. Greenhouse facilities used for the experimental tests with grown tomato crop. (a) greenhouse exterior view with
roof and sidewall vents; (b) interior view without second cover; (c) example of a commercial data acquisition device, and
inside temperature and humidity sensors; (d) interior view of roof vent; (e) interior view with the second cover installed; (f)

Tomato crop.

(37.80 m x 23.20 m) and it is protected by a polyethene cover. Under the cover, an approximate area
of 600 m? is reserved for tomato crops. The plants are cultivated in coconut coir bags aligned in rows

orientated from north to south with a slope of 1%.
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The greenhouse is equipped with several actuators to control the microclimate under the cover,
providing adequate conditions required by the plants for optimal crop growth. Thus, the
greenhouse facilities are complemented with a humidification and dehumidification system, a
carbon dioxide enrichment system, a pipe heating system based on a biomass boiler, and a natural
ventilation system, among others. For the natural ventilation system, five zenithal windows (8.36 m
x 0.73 m) are installed on the roof of the structure and two lateral windows (32.75 m x 1.90 m) are

situated along the north and south sidewalls of the cover.

I1.3.2  Data acquisition system

A wide set of sensors is deployed inside and outside the greenhouse to measure the climatic
variables affecting the crop every 30 seconds. An external weather station measures air temperature
and humidity, solar radiation, air CO2 concentration, and wind velocity. Inside the greenhouse, a
protected probe is employed to measure the inside air temperature and relative humidity (see Fig.
5c¢). Several sensors are installed in different rows of the crop to measure the air CO2 concentration,

the solar radiation under the cover and the temperature of the soil surface.

All the distributed sensors shown in Table 1 are connected to a series of data acquisition devices
(Compact FieldPoints, National Instruments, Austin, TX, USA), which transmit the measurements
through an Industrial Ethernet network to a supervisory and control data acquisition system
(SCADA) based on LabVIEW (National Instruments) (see Fig. 7).

Table 1. Greenhouse sensors specifications

Sensors Brand Model Precision Physical operational range
Outside and inside temperature and humidity =~ Campbell Scientific =~ HC2S3 +0.1°C -40 to 60 °C

Outside and inside global solar radiation Hukseflux LP02 <x1% 0 to 2000 Wm™2

Soil surface temperature Campbell Scientific 108 +0.7°C -5t0 95 °C

Outside and inside relative humidity Campbell Scientific HC2S3 +0.1 % 0to 100 %

Wind velocity Vector Instruments AI00L2/PC3  <2% 0to 75 m/s

Inside and outside CO, concentration E+E Elektronik EE820-C2 <£50ppm  0to 2000 ppm

The computational unit used for the real-time application is a computer located in the
experimental station near the greenhouse. The computer specifications are Intel Core i7-7700, quad-
core and 8 threads with 3.60 GHz (up to 4.20 GHz), 16 GB RAM DDR4 2133 MHz, and equipped
with Windows™ 10 64-bit, MATLAB R2017b and LabVIEW™ 2015.

I1.3.3 Maintenance and cultural tasks

During a crop season, different maintenance and cultural tasks are usually practised to the plants
to ensure a healthy evolution toward the desired growth yield. For this work, two types of
maintenance tasks were registered since they affect the state of the crop and/or they have an impact
on the greenhouse microclimate. An example of the type of maintenance task is the periodical
pruning of the plants’ leaves to reduce the crop leaf area index (LAI). Another type of cultural task
is related for example to the whitening of the cover and the necessity of regulating the solar radiation

transmission through the cover of the greenhouse. The whitening of the cover is usually performed
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FUNDAGION
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Figure 5. (a) A central unit for greenhouse monitoring and control; (b) Supervisory and control data acquisition system
(SCADA) based on LabVIEW.

in the months with the highest values of solar radiation (spring and summer) to reduce the net
radiation reaching the crop. For the autumn and winter period, the whitening is removed. Also,
during the coldest periods, a floating plastic cover can be installed inside close to the plants to
increase the crop isolation from external weather. All these tasks are considered in this work to

explain the recorded evolution of the greenhouse microclimate.

I1.4 Conclusions

Due to the lack of an experimental dataset for greenhouse climate modelling, a greenhouse
prototype was constructed and used under arid climate conditions in Meziraa, Biskra, Algeria. A
low-cost data acquisition system was designed and installed in the greenhouse prototype with
several low-cost sensors to gather instant information on the essential inside and outside climate
variables. A dataset of five days was successfully acquired and used to perform predictive
modelling.

After starting my research collaboration with the University of Almeria, a commercial-sized
experimental greenhouse under Mediterranean climate conditions was exploited. It is located at
“Las Palmerillas” Experimental Station in Almeria, Spain. It has all the required professional
sensors, actuators and commercial data acquisition systems. A set of sufficient and reliable datasets
of 15 days were obtained in different agri-seasons and used for different purposes, such as
microclimate modelling, online parameter estimation, real-time experimental validation and soft

sensor development.

The use of the greenhouses and the acquired datasets in investigations about adaptive and
predictive climate modelling using metaheuristic algorithms and machine learning techniques is
described in detail in the following chapters.
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Chapter III: Greenhouse climate modelling and offline calibration

III.1 Introduction

In this chapter, a set of contributions were achieved. Firstly, a grey-box model for greenhouse
temperature prediction under moderate desert climate conditions has been proposed. This
contribution stands on reformulating a white-box model to make it independent of the availability
of accurate values of the static parameters of its elements. The model has become less complicated
by alleviating the coupling between its parameters, which makes it easier for the identification
algorithm to find the optimal parameter values. A variant of the Particle swarm optimisation
algorithm (PSO) called Random Inertia Weight PSO (RIWPSO) was used to identify the parameters
of the proposed model by calibrating it against the experimental data. The greenhouse prototype is
located in M'ziraa, Biskra, Algeria, and the designed low-cost data acquisition system has been used
to validate the proposed thermal prediction method. The simulation results show that particle
swarm optimisation has successfully achieved the desired optimality. The experimental validation
process has confirmed the suitability of this model to be implemented to study and predict the
greenhouse temperature, and it has emphasised the successful prediction with satisfactory accuracy.
Secondly, an enhanced variant of the bio-inspired metaheuristic Bat Algorithm (BA) has been
proposed and called the Random Scaling-based Bat Algorithm (RSBA). The proposition includes
modifying the exploitation of the standard BA by making the scaling parameter randomly changes
over the iterations. It has been dedicated to the same task of calibrating the proposed thermal grey-
box model. It has been assessed as same as PSO, primarily on an assumed greenhouse thermal
model with known parameters. The simulation results have shown the superiority of the proposed
RSBA compared to the standard BA in terms of convergence and performance accuracy. The same
dataset from the greenhouse prototype has been used to experimentally investigate the proposed
identification method. The obtained prediction results are found to be in good agreement with the
measured ones, which show the effectiveness of the proposed RSBA in identifying the real
greenhouse thermal model. Finally, a comparative study was conducted between the RSBA and the
RIWPSO. The BA has shown a faster convergence than PSO at the beginning of optimisation, but its
convergence speed was reduced at the end. BA and PSO have shown superb performance in
accurately finding the optimal solutions. However, PSO has shown a superior performance than BA

in terms of time consumption regarding the problem of interest.

INI.2 Greenhouse air Temperature model

In general, the greenhouse microclimate system is divided into four homogeneous subsystems:
the cover, the internal air, the canopy and the soil. In this study, only two components are studied:
the cover and the internal air. As matter of fact, the greenhouse is used as a nursery, so the effect of
the canopy which is constituted of seedlings could be neglected and since these seedlings are
planted in bunches, the soil could also be neglected. The greenhouse temperature model is a mean
that quantitatively describes the energy exchanges (Ali et al., 2018). The dynamic temperature
behaviour is a combination of physical interactions, including conduction, convection, solar and
thermal radiation and infiltration as depicted in Fig. 8. These processes are mainly affected by the
outside environmental conditions and the structure of the greenhouse (Rodriguez et al., 2015). The

following assumptions have been taken into account:
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- The heat exchange of plants is neglected because the main idea was to model an empty
greenhouse. In a further step, the effect of the crop through latent heat of transpiration will
be included.

- The heat exchange between the soil and the inside air is neglected, due to the role of the
wooden floor as a separator.

- There is no stratification in greenhouse air temperature.

- The convective heat transfer coefficient and the absorbed solar radiation are uniform
throughout the cover.

- The temperature of the treated soil in seedling trays is not involved, because it has a small
effect compared with the other elements due to its small global surface

- The heat storage of plants, internal air and cover can be neglected, due to the quite small heat
capacities of these elements compared to existing heat fluxes.

- The greenhouse is East-West oriented.

125 cm ﬁ
100 cm
105 cm
65 cm
Pd & ..'\‘\‘- L ~
Long wave radiation Convection Infiltration Conduction

Figure 8. Heat fluxes interactions with greenhouse

II1.2.1 Physical-based model

A common simplified internal heat balance equation (Ali et al., 2018) is given by:

oV dTy
pa an dt

— Qsolar anv,cnd

Qloss _ chermal (IHl)

where t is the time in seconds, T;, is the internal air temperature (K), p, is the internal air density
(Kg m?), C, is the specific heat of the air (J Kg! K), V is the volume of the greenhouse (m?) and S;
is the floor surface (m?2).
The heat fluxes Q (W m?) are as follows:
Q%°!97 is the shortwave radiation absorbed by the greenhouse

Q™4 is the convection and conduction heat exchange rate

Q'°53, is the leakage rate of air through the greenhouse
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Qthermal s the longwave radiation absorbed by the greenhouse

The internal air density p, is considered to be variant with the change of the inside absolute
humidity. It has been approved by Iga et al. (2008) that it has a better effect on temperature
prediction than being a constant. It is given by:

Pa= Yo+ Hg (IIL.2)

where, y, is the dry air density (Kg m?) and H, is the absolute humidity (Kg m-), which has been
obtained by converting the relative humidity (Snyder., 2005), as follows:

_ (0.62198 B,)

“ Patm_Pw

(IL.3)

where, P, (kPa) is the atmospheric pressure, P, is the instant vapour pressure, calculated as

follows:

H,

B, = Pws'm

(IIL.4)
where, H, is the relative humidity of the greenhouse (%) and P, is the saturation vapour pressure
(kPa °C?); it is defined by:

(17.2694(Tin-273.15))

B, = 0.61078 ¢ Tin (II1.5)

The energy heat fluxes are defined in the sequel:
QSOlaT — ac TCI (III.6)

where, a, is the solar radiation absorptivity of the cover, 7. is the cover transmissivity, and I is the

external global solar radiation (W m=2).
Qevend = U(Ty, - Ta) (IL.7)

where, T, is the ambient temperature (K) and U is the overall heat transfer coefficient through the

greenhouse cover proposed by (Ghosal et al., 2005) and calculated as follows:

1 -1
U=[r—+r] (IIL8)

where, h, and h; are respectively, the convective heat transfer coefficients of the outside and inside
greenhouse cover (W m2 K1) (Lamrani et al., 2001, Guesbaya et al., 2019). They are computed by:
hy, = 28 +1.2W, (I11.9)

hi = 5.2+ Ty — T,|%% (IT1.10)

where, W, presents external wind velocity (m s7).
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where ACH is the number of air changes per hour (h).

where, Ty, is the sky temperature (K) (Guesbaya and Megherbi., 2019).

thermal = h (1 — t.)(Tiy, — Tsky) (II1.12)

Ty = 0.0552(T,)%S (IIL.13)

II1.2.2 Grey-box model

The above physical-based model includes static parameters (V, S¢, Yo, Patm, Cas @c, Te, ACH) and
dynamic ones (h,, h;) that have to be accurately known. In our case, the static parameters C,, a,, 7,
and ACH are not known accurately, which highlights the need for their identification. Nevertheless,
these parameters are non-linearly dependent on the physical model which will complicate the
identification process. To overcome this problem, we suggest in this work combining the dependent
static parameters into one parameter in every heat flux equation (Guesbaya and Megherbi., 2019).

This consideration has led us to reformulate the model as follows:

paSKdZ{;” — Qsolar _ anv,cnd _ Qloss _ chermal (HI.14)
f
Where,
Qsolar = Csotar
(IIL.15)
C _ aC TC
solar = ¢, (IIL.16)

anv,cnd = Cena,env U(Tym — To)

(I1.17)

C = —
cnd,cnv Ca (HI.18)

QlOSS — CloSS Pa (Tin — Ta)

(I1.19)

_ ACH
Coss = 530 (I11.20)

chermal = Cthermal hO (Tin - TSky)
(I1.21)
c _ a - Tc)

thermal = T (IL.22)
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After the above arrangement, we get four new static parameters that have to be identified, which

are: Cso1ars Conv,enar Cioss and Cepermgiand the other static parameters are fixed and given in Table 2.

Table 2. Input parameters used for computation

Symbol Value Unit Description

Sy 0.68 m? Greenhouse floor surface
v 0.76 m?3 Greenhouse volume

Yo 1.205 Kg m?3 The inside dry air density
Putm 101 kPa The atmospheric pressure

I11.2.3 Pseudo-physical model

The used greenhouse air temperature model is considered as a nonlinear simplified grey-box
model (Rodriguezet al., 2015). It includes empirical terms that physically represent heat flux

balances inside the greenhouse. The model is described based on the following differential equation:

dXT;
Cter dtm = Qsol,a + anv,ss,a - anv,cnd,ae - Qtrp,cr - Qvent,a (IH'23)
Cyol
Cter = Cspn Caen Ci (111.24)

area

where, XT;, represents the predicted inside air temperature of the greenhouse, calculated in K°. Cy,,
is the product of specific heat of air, air density and effective height of the greenhouse. Q refers to the heat
fluxes occurring inside the greenhouse in W m~2. Where, Qs is the solar radiation flux absorbed
by the air although it is inert to radiation, however, most of the simplified models consider this
assumption. Qgp,ssq i the convective flux between the soil surface and inside air. Qcnycndqe
represents the convective and conduction fluxes together between inside and outside air (at the
cover level). Q. describes the latent heat effect of crop transpiration. Qyentq is the heat lost by

natural ventilation. All the model parameters are described in Table 3 with their units.

To simplify and reduce the complexity of the model without neglecting the main interactions, it
is necessary to consider some empiric approximations based on the thermic components of the
greenhouse system. Thus, modelling the main fluxes can be achieved based on different empiric

combinations of equations. In this work, we use the following terms:
Qsota = Casw Ver.cr (1IL.25)

where V4, 4 is the greenhouse air absorption coefficient of the short-wave radiation. V., is the

internal solar radiation reaching the crop.

anv,ss,a = Ccnv,ss,a (D Tss - X Tin) (HI~26)
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Table 3. Nomenclature

Symbol Description Unit
Constant arameters
Cyor Greenhouse volume m3
Carea Greenhouse surface m?
Coen_n The vertical distance between the midpoints of the lateral and roof vents m
Coent Vent length m
Coenw Vent width m
Cspn Specific heat of air JkgtKt
Caen Air density kgm™3
Cextsw,cr Short wave crop extinction coefficient (Tomato crop in our case) )
Cy Gravity constant ms™2
Chven_tat Number of lateral vents )
Chven_roof Number of roof vents )
Disturbances
DT The soil surface temperature K°
DTyt The external air temperature K°
DLAI The leaf area index m? m2
DT, The crop temperature ce
Dys The wind velocity ms™t
Dy The external solar radiation ms™?
Time-varying parameters that have to be calculated
Vit vap The latent heat of evaporation J kg™t
Vipa vapor pressure deficit Hpa
Vyent flux The ventilation flux inside the greenhouse m3 st
Vien_area_roof The opening area of the roof ventilation m?
Vven_area_tat The opening area of the sidewall ventilation m?
Time-varying parameters that have to be estimated in real-time
Casw,a The greenhouse air absorption coefficient of the short-wave radiation )
Cenv,ssa Coefficient of convection between the soil surface and internal air )
Cenvendae Coefficient of convection and conduction between internal and external air )
Cy Transpiration coefficient dependent on the crop state and internal radiation )
CBd/n Transpiratiqn coefﬁcient dependent on the crop state and vapor pressure deficit kg2 bt kPa~!
for both periods diurnal and nocturnal
Coena The discharge coefficient )
Coenw The wind effect coefficient )
Cioss The ventilation loss through greenhouse air leakage m3s~t
Ceswev The cover solar transmission coefficient -)
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where Vi ssais the convection coefficient which is considered constant in most of the other
investigations. However, it is considered to be dynamic in this work and it has to be online

estimated.

anv,cnd,ae = Ccnv,cnd,ae (XTin - DTout) (IH~27)

where Vi cnaaeis the coefficient of the thermal loss considering convection and conduction
processes between internal and external air. It is considered to be dynamic in this work and it will

be estimated in real-time.

Crop transpiration is one of the main influential effects on inside air temperature. It is

represented by the following empirical equation (Rodriguez et al., 2015):

Qtrp,cr = Mtrp,cr Vlt,vap (II1.28)
Merpcr = Ca Vorer (1 — e(Cexter PLADY ¢ Vg DLAL - (I1129)
Viewap = 4185.5 % (597 — 0.56 * DT,,.) (11130)

where My, . is the crop evapotranspiration equation (Sanchez et al., 2012). In our case, it only
represents the transpiration process since the soil surface is mulched. V, (unitless) and Vg,
(kg™ h™' kPa™') are commonly considered as empirical constant parameters based on the
simplified version of the Penman-Monteith evapotranspiration equation. In our case, these two
parameters are considered as time-varying parameters and they are estimated in real-time. The
equation used to calculate V,,,,; can be found in the appendix in addition to other needed equations.

The crop temperature DT, is assumed equal to the inside air temperature XT;,.

The ventilation flux is calculated by Eq. II1.31 and the heat loss by ventilation is obtained based
on Eq. II1.32 as follows:

Vven,area,lat Vven,area,roof

2
2 2
\/(Vven,area,lat + Vven,area,roof )

XTi — DTM)
DTout

os (1I131)

(2 Cg Cven,h

Vvent,flux = Lyen,d

2
+ (Vven,area,lat Vven,area,roof

2 ) Cven,w Dwsz| + Vloss

(I11.32)

Csph
Qvent,a = Cden - Vvent,flux (XTin - DTout)

Carea

where Vyen areatat aNd Vyen area roof are the opening areas of the roof and sidewall ventilation,

calculated based on the control signals Uyen, expressed in (%) by the Egs. I11.33 and I11.34.

Uven_lat) (III 33)

Vven,area,lat = Cn,ven,lat Cven,l,lat Cven,w,lat ( 100

) Uyen, Uyen, T
Vven,a‘rea,roof = Cn,ven,roof ZCven,l,roof Cven,w,roof (Sln (( Velnorawf * venzmax> *m)) (IH34)
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where in our work, Ve, 4 and V¢, ,, which represent the discharge coefficient and the wind effect
coefficient respectively are considered as highly time-varying parameters (dur to wind effect) that
have to be online estimated. Moreover, Vj,ss represents ventilation loss through greenhouse air

leakage is also estimated in real-time based on the system needs.

I1I.3 Solar Radiation model

This simple model simulates the solar radiation passing through the cover and reaching the crop
(Rodriguezet al., 2015). It is executed in connection with the air temperature model as one of its sub-

equations based on a very simple empirical term described as follows:

Vsrer = Cesw,ev Dsre (II1.35)

where Vg, o, is the cover solar transmission coefficient which is used to be considered constant in
literature. In this work, it is considered as a time-varying parameter and will be online estimated for
adaptation purposes to any changes in greenhouse materials (cover, whitening, shading, dirt...etc).
Inhere, the estimation technique aims to minimise the error representing the difference between the
measured and simulated internal solar radiation variables. Furthermore, the estimation of the
radiation parameter at the same time step when also the estimation of air temperature model
parameters is performed will prove the capability of the proposed algorithm in handling multi-
objective problems of the greenhouse as a MIMO system.

I11.4 Model calibration

Model calibration is a prominent procedure that has to be performed by estimating the model
parameter values to fit the model to the characteristics of the greenhouse and the climate conditions
aiming for the optimal model output whether it is a simulation, estimation, prediction or control. In
our case, it is performed to the used grey-box models including empirical equations and parameters
in the context of offline parameter estimation based on metaheuristic optimisation algorithms as it

is described in the following stages.

I11.4.1 Metaheuristic optimisation algorithms:

This section presents the optimisation algorithms used for the calibration of the greenhouse

temperature models through a set of offline parameter estimation processes.

I11.4.1.1 Random inertia weight particle swarm optimisation algorithm

The PSO algorithm was first chosen to realise an off-line parametric identification of the
proposed grey-box model. It in described in Eq. IIL.14-II.22. PSO algorithm is a prominent
metaheuristic, bio-inspired and swarm-intelligence-based algorithm. It is based on imitating the
swarm behaviour in nature, such as the behaviour of the bird’s flock when searching for food. PSO

algorithm is widely used thanks to its ease of implementation and efficiency (Yang., 2014).
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The RIWPSO is the specific algorithm that has been used in this work (Guesbaya., 2019). It adjusts
the trajectories of individual agents, called particles. Each particle, have a precise position in the
search space and move at a certain velocity. The position of every particle presents the potential
values of the static parameters of the model that have to be identified (Csiqr» Cenv,cnas Cross and
Ctnerma) along with the iterations. The position (x?), the velocity (v') of the i*" particle and the inertia

parameter (w) are updated as follows (Imran., 2013):

xM(t+1) =x' @O +v'(t+1) (I11.36)
vit+ D) =w-vi(t)+C 1y (pi(t) - xi(t)) + C, 1, (p% — xi(1)) (111.37)
W = Wmin + Wmax = Wmin) " 13 (II1.38)

where, C; and C, are respectively the constants that affect the cognitive and the social behaviour of
particles. p' and p¢ are the best solution achieved by the i*"particle, and the whole swarm,

respectively

An algorithm has been implemented, to replace the parameter values out of the search range

[x}ins Xk ax] with random ones. It is given as follows:
If (' > xbgy) or (xt < xby;y,) then
X' = Xjpin + (Xhhax = Xinin) - Tand
The objective function to be minimised by the random inertia weight PSO algorithm is the

commonly used least-squares criterion, defined as:

J= ) Crea(® = Xem()’ (111.39)

i=1

where, X,oq; and xg;,, are respectively the real and simulated samples.

I11.4.1.2 Random scaling-based bat algorithm

This sub-section concerns the application of the proposed RSBA in an off-line parametric
identification process (Guesbaya., 2019). The problem of parameter identification in this paper
consists of finding the optimal static parameters (Cso1ar) Conv,ena» CiossaNd Cipermar) of the thermal
model described in Eq. II.14- 1I1.22, that fit the data samples of the inside air temperature of the

greenhouse.

BA is a bio-inspired population-based metaheuristic algorithm. It has been developed based on
bats behaviour of how they search for their targets using the echolocation capability (Yang., 2014).

Virtual bats are used in simulation and a set of bases are defined for clarification as follows:

- All bats sense distance and differentiate between prey and background barriers by using

echolocation.

- Bats fly randomly (Random walks technique) with velocity v; at position x;. The frequency

(or wavelength) of their emitted pulses is automatically adjusted.
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- The rate of pulse emission 7 can also be tuned automatically according to the closeness of

the target, or considered as a constant.

- The loudness can be considered variant, starting from a large positive value 4, to a

minimum value 4,,;, or it can also be a constant.

Bats position (solution) x{ and velocity v{ in a predefined d-dimensional search space are

updated according to the following equations:

fi = fmin + (fmax — frin)B (I11.40)
vit = vl + (xf - x)f; (111.41)
xft = xf + vt (111.42)

where, f; € [fimin fmax] is the randomly assigned frequency to each bat. § € [0,1] is a random
variable drawn from a uniform distribution, x, is the current global best solution which is selected

after comparing all the solutions of all the n bats.

When a solution is chosen among the current best solutions, a new solution for some bats
(according to pulse emission rate) is generated locally during the exploitation stage using random

walk based on the following equation:

Xpew = Xorqg + 0€tAt (111.43)
where, x,,.,, and x4 are respectively the new and the old best local solutions, €* € [-1, 1] is a random

number, ¢ is a scaling parameter to control the step size, and A is the average of loudness.

The scaling parameter is declared constant for the standard BA. It should be linked to the scalings
of the design variables of the problem under consideration (Yang., 2014). However, this is not
enough to reach the optimality, because when the optimal solution is near to be reached, the
constant step size of search (local random walk) remains relatively large even with the effect of
loudness on local search. It results in a reduction in convergence speed and low-accurate solution
as a sub-stagnation state at the end. Based on this fact, the scaling parameter ¢ has been proposed
to be (Guesbaya., 2019):

1. Fully responsible about step size control by eliminating the effect of loudness on local search

equation given by:
Xnew = Xoq + 0'€t (ITL.44)

2. Dynamically updated over iterations based on random scaling parameter mechanism, given by:

t+1

o = Omin T (O-max - Jmin)ﬁ (HI.45)

Where the scaling parameter 0 € [0pmin, Omaxl-

27



Chapter III: Greenhouse climate modelling and offline calibration

As in standard BA, the loudness A; and the pulse emission rate r; have to be updated as the
iterations proceed. The loudness generally decreases once a bat finds the target, whereas the rate of
pulse emission increases. They are updated based on the following equations:

AT = g A (111.46)

t+1

it = 11 = exp (—y v)]

where a and y are constants. For any 0 < a@ < 1and y > 0, the change in loudness and pulse rate is

directed as follows:

AL—>0, rf-71’ ast-ow

In order to replace the parameter values x{; out of the search range [max x;, min x;] with random
ones, an algorithm has been implemented, it is given as follows:
If (xf; > maxx;) or (x}; < minx;) then

t

X;j = minx; + (max Xj — min xj) -rand(0,1)

The objective function to be minimised by BAs is the commonly used least-squares criterion,

defined as:

N
] = Z(yrl;eal _y;gre)z (HI~47)
i=1

where, yi,q; and yi.. are respectively the real and the predicted data samples and N is the number

of data samples.

Based on the aforementioned assumptions and rules the essential stages of the proposed RSBA are

summarised as the schematic pseudo-code presented in Fig. 9.

Random Scaling-based Bat Algorithm

Initialize the bat population xi and vi(i = 1,2,...,n)
Initialize frequencies f;, pulse rates 7; and the loudness 4;
while (Current iteration < Maximum number of iterations)
Generate new solutions (positions) by frequency tuning
Update velocities and solutions Eqs. (I11.40-111.42)
if (rand > 1)
Select a solution among the best solutions
Generate a local solution around the selected best solution Eq. (I11.44)
Update scaling parameter value Eq. (I11.45)
end if
Generate a new solution by flying randomly
if (rand < A4; and f(x:) < f(x.))
Accept the new solutions
Increase 1; and reduce A; Eq. (I11.46)
end if
Find the current best x,
end while

Figure 9. Pseudo code of the proposed RSBA
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I11.4.2 Results and discussion

The aim of this section is three folds as illustrated in Fig. 10 and described in brief as follows:

I_——_——_——-I Greenhouse

Firstly, the investigation of the efficiency of the proposed RSBA against the standard BA
and the RIWPSO in a set of offline parameter estimation processes. The parameters to be
offline estimated are a set of values that have been logically assumed to create a simulated
greenhouse temperature model that was used in turn to obtain a simulated output that
represents the target in simulation. The purpose of this fold is to obtain the best search
control parameters of the RSBA and RIWPSO and make a comparative study between the
performances of all the used metaheuristic algorithms in optimally identifying the assumed
parameters.

Secondly, the implementation of the metaheuristic algorithm with the best performance in
the offline parameter estimation to calibrate the real temperature model using an
experimental dataset obtained from the constructed greenhouse prototype.

Finally, the calibrated grey-box temperature model will be experimentally validated using

a different experimental dataset to accurately predict the inside air temperature.

Random initialization of the data base
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\J
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(a) A generalized flowchart for the search stages of (c) Evaluation of the RIWPSO/RSBA swarms in the
RIWPSO or RSBA real thermal model

Figure 10. Offline parameter estimation methadology using the RIWPSO and RSBA for the calibration of the proposed

temperature model
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I11.4.2.1 Implementation of the grey-box temperature model
I11.4.2.1.1 Greenhouse experimental dataset

The database has been successfully acquired using the constructed greenhouse prototype
wirelessly monitored by the designed low-cost data acquisition system. It consists of measurements
of five successive days in the winter season ranging from 26 to 30 of January 2019, as it appears
in Fig. 11-12. The measuring step size is 1 sample/min, meaning that every day includes 1440
samples. The data of the five days have been divided into two parts; the data of the second and third
days have been used in the identification due to its climate diversification. This will ensure an
effective selection of model parameter values and flexibility of the prediction process for various
climate states (The second day has a calm climate, whereas the third day has a turbulent climate due
to wind fluctuations and clouds), as for the data of the remaining three days are kept for the
experimental validation (first day as a calm day and the fourth and fifth as turbulent days).
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I11.4.2.1.2 Simulation process

A simulated temperature grey-box model was obtained. It is a model with the same equations
as the original model but with assumed values of the static parameter and a simulated output based
on that. This aims to assess the RIWPSO and RSBA in calibrating the assumed temperature model
and finding the same assumed values of the simulated model. The success of this process with a
certain set of algorithm search settings means that the use of the same settings will be efficient in a

real process with the original model and using an experimental dataset.

A. Algorithm search specifications

The searching ranges of the model parameters are defined the same for all the used metaheuristic

algorithms as follows:
Csotar €[0,2.107*], Cenpyena €[0,2.1073], Cppss €[0,2.1073] and Cepermar €10, 2.107*].

The control parameters of the RIWPSO algorithm are: the number of particles of the swarm is

equal to 100 particles, the range of inertia is €[0,1], and the cognitive and the social behaviour
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coefficients (C;, C,) are respectively 2 and 1.5, and the tolerance has been specified to be equal to
10710,

The common control parameters between standard BA and RSBA are: the number of population
is n = 100 bats, the minimum and maximum frequency respectively are f,,;, = 0 and f;,,5, = 1.5,
the loudness of the initial bats is A?= 1, the rate of pulse emission of the initial bats is generated
randomly 7; € [0, 1] and r;? = 0.1, and the constants a =y =0.9. The scaling parameter of the standard
BA is constant 0 = 1072, Whereas the range of its variations regarding RSBA is [1077,1072].

The relative error criterion is considered to compare the parameter values estimated by the

metaheuristic algorithms and the optimal assumed ones. It is given by:

_ |psim - preall .

RE 100 (I11.48)

Preat

where, pyeq; is the assumed parameter value and py;;, is the parameter value optimised by the used
PSO algorithm.

B. Analysis of search dynamics

Five runs of the used RIWPSO algorithm have been achieved using the same control parameters
with different initial swarms. the evolution of the best fitness values along the iterations is illustrated
in Fig. 13.
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Figure 13. Evolution of the best fitness function values with different initial
swarms using RIWPSO
It can be noticed that the convergence is achieved for all the identification attempts before 220
iterations. The fastest run of RIWPSO has attained tolerance after 174 iterations. A successful

repetitive convergence appears in this series of RIWPSO-based identification processes.

The analysis is done based on ten runs for the standard BA and the RSBA. The results of
identification are analysed according to a limited number of iterations (500 iterations) and achieved
using different random initial populations. The evolution of the best fitness function values for all

the runs of BAs along the iterations are illustrated in Fig. 14.
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Figure 14. Evolution of the best fitness function values using the RSBA and BA

It can be noticed that standard BA seems to have a weak performance for all the runs in terms of
solutions precision. In contrast, RSBA runs have achieved better performance in terms of
convergence speed at the late stage and solution accuracy. Table 5 includes all the fitness function
values and illustrates that RSBA scored the best fitness value, as a result of the influence of random
scaling parameters on the local search step size. Moreover, it shows a good balance between
convergence speed and result quality. As a result, RSBA proves to be more efficient than the

standard BA in finding the parameters of the thermal model.

C. The evaluation of parameter values

The best-identified parameter values that produced the best fitness function values using both
the RIWPSO and RSBA are listed in Table 4 in contrast to their corresponding values and the relative
errors (the precent error). The evolution of the relative error of every optimised parameter r by the
RIWPSO is shown in Fig.15. The RIWPSO algorithm succeeded at the end in optimally finding the
assumed parameter values. It is commonly admitted that the acceptable identification result
corresponds to relative errors of less than 0.5%. Thus, the results show that the parameters have
been high-accurately found. The evolution of the relative error of every identified parameter value
from the best RSBA execution is shown in Fig. 16. It is clear that the RSBA also succeeded at the end
in optimally identifying the parameter values and it also illustrates the fast convergence of the RSBA

to the optimal values at a very early stage of the execution.

Table 4. Comparison between the assumed and the identified model parameter values

Assumed RIWPSO RSBA
Parameter
value Identified value Relative error (%) Identified value Relative error (%)
Csotar 5.8e-05 5.8e-05 4.23e-06 5.8e-05 6e-05
Cenpena 5.3e-04 5.3e-04 2.7e-05 5.3e-04 1le-03
Cioss 1.7e-04 1.69e-04 1.33e-04 1.69e-04 6.25e-03
Conormal 2.2e-05 2.19¢-05 7.67¢-06 2.19¢-05 5.37e-05
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Figure 15. Evolution of the relative error of every parameter using the RIWPSO
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Figure 16. Evolution of the relative error of every parameter from the best
identification run of the RSBA

It is shown in all cases that the value of C,; is the identified parameter with the lowest accuracy
due to its small effect on the output but still considered very satisfactory, in contrast to C¢permq and
Cso1ar Which are the most accurate identified parameters because of their strong effect on the inside
air temperature. All the identified values show errors of less than 0.5%. Hence, the results show that

the parameters have been successfully identified with satisfactory accuracy.

A comparison study has been conducted between the used metaheuristic algorithms. It can be
noticed that the enhanced RSBA has outperformed the standard BA. Furthermore, it can also be
noticed that the RIWPSO has outperformed the RSBA in terms of:

- Accuracy of the identified (offline estimated) parameters.

- Speed of the process where RIWPSO needed less than 180 iterations to reach the optimal

values.
The RSBA has a prominent advantage which is:

- The fast convergence to the optimal values at an early stage of the execution.
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Table 5. Best fitness function values of identification processes

Bat Algorithms
Identification Process
Standard BA RSBA

1*run 3.4003e-04 9.7949¢-08
2™ run 1.4187e-03 2.6286e-05
3" run 3.6587e-04 1.0008e-06
4% ryn 2.1736e-04 1.4771e-04
5" run 2.0633e-04 1.3245e-05
6" run 2.2142e-04 2.9300e-05
7" run 2.8384e-05 2.2254e-04
8" run 3.7457e-05 7.1692e-07
9" run 1.7585e-04 3.5900e-04
10" run 1.0056e-04 1.5055e-06

This proves the superiority of the RIWPSO over the RSBA in solving this studied problem. The
RSBA could be more useful than the RIWPSO against other different problems such as the online
parameter estimation in simulation or in real time, where the advantage of the early convergence

can be nessccary due to the time limits and constraints.
I11.4.2.1.3 Experimental validation process

This section aims to validate the simulation outcomes by implementing the proposed
temperature model, the RIWPSO and the proposed RSBA using the experimental dataset obtained
from the greenhouse prototype. The calibration of the real model has been achieved using the same
control parameters as for the identification of the simulated greenhouse model but this time, the

fitness function included the real inside air temperature of the real greenhouse prototype, not the
simulated one as in the previous section

A. Calibration of the real greenhouse model using RIWPSO and RSBA

The RIWPSO and RSBA-based model calibration processes of the temperature model has been
achieved using the same search control parameters as for the calibration of the simulated
temperature model. Whereas, in this section, the target is the offline model calibration and the
prediction of the real inside air temperature. The identified parameter values by both metaheuristic
algorithms using the data of the second and third days of the experimental database are listed in
Table 6. The results of offline model calibration and thermal prediction using the real identified

parameter are shown in Fig 17-18.
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Table 6. Identified parameter values of the real greenhouse model

Experimentally identified values by the Experimentally identified value using
Parameter
RIWPSO RSBA

Ceolar 6.834498105 6,83455 10~

Cenv,cnd 4.142013 107* 4,14191107*

Closs 2.556947 10~ 2,55726 10~

Cehermal 2.556266 1075 2,55627 107
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Figure 17. RIWPSO-based model calibration: the measured Figure 18. RSBA-based model calibration: the measured
and predicted inside temperature of the 2nd and 3rd days ~ and predicted inside temperature of the 2nd and 3rd days

The grey-box model has been experimentally validated using the real offline identified
parameter values found by both RIWPSO and RSBA, to predict the inside air temperature of the
first, fourth and fifth days of the available dataset. Fig 19-20 show the variation of the predicted and
measured temperature inside the greenhouse prototype. Five criteria are used to evaluate the
performance of the calibrated model: Mean Absolute Error (MAE), Max Absolute Error (MaxAE),
coefficient of determination (R?) and Model Efficiency (EF). They are calculated based on acquired data,
by comparing the predicted and the measured temperature using Eqs. I11.49-111.52.

1 n

MAE = ;Z|Tm(i) ~T,@)| (II1.49)
i=1

MaxAE = max |T,,, (i) — T, ()| (I11.50)

BT~ TGO -T) | (II1.51)

2 — S _
5 [Z?=1(Tm(i) - Tm) ' Z?:l(Tp ® - TP)
1 (Tn () — T)? = ZE1(Tp () — T ())?

T (T () — Tp)?

EF = (I11.52)

where, T, is the measured temperature, T,,is the mean value of the measured temperature, T, is the
predicted temperature, T,is the mean value of the predicted temperature and n is the number of

data samples.
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Table 7 presents the results of this statistical analysis that aims at evaluating the performance of
the calibrated models by both used metaheuristic algorithms. The surprising thing is that the
qualitative and quantitative results are the same which proves the efficiency and usefulness of both
RIWPSO and RSBA. The MAE shows a satisfactory evaluation represented by a very small difference
between the measured and predicted inside air temperature. We can also see that R? gives a very

high value for regression analyses meaning that 99.5% of the variance in the measured inside air

Table 7. Statistical evaluation of the performance of the calibrated models in predicting the inside air temperature

Criterion MAE R? EF MaxAE

RIWPSO 0.7937 0.9956 0.9951 3.3910

RSBA 0.7937 0.9956 0.9951 3.3910
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Figure 19. Experimental validation of the calibrated model using RSBA using a dataset of

the 1st, 4th and 5th days: measured and predicted inside air temperature
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Figure 20. Experimental validation of the calibrated model using RIWPSO using a
dataset of the 1st, 4th and 5th days
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temperature of the greenhouse prototype has been predicted by the real thermal model. Moreover,
EF shows a very good evaluation where the closer the value to 1, the more accurate the model. The
MaxAE shows that the biggest error value among all the data samples equals 3.39°C which is
logically small. The aforementioned evaluation criteria illustrate that the model is a promising tool

to study this phenomenon in terms of usefulness, efficiency and applicability.
IIL5 Conclusions

In this chapter, a grey-box model is proposed to simulate the temperature inside the greenhouse
in an arid region. The unknown parameters of this model have been identified using the Random
Inertia Weight PSO algorithm. The efficiency of this optimisation algorithm was assessed in
calibrating an assumed and a real temperature model. The simulation results using the assumed
greenhouse temperature have shown the usefulness of the used PSO algorithm in identifying the
model parameters with high accuracy. The calibrated model using the real greenhouse temperature
has been validated, and the results have shown a satisfactory fit between the measured and
predicted inside temperature. The proposed modelling methodology can be used for energy balance
studies of greenhouses. It could also be adopted as a tool to study different climate conditions or for
practical applications of control systems. This study paves the way for future investigations on
applying a cooling system to overcome the harsh summer climate of arid regions.

As a second contribution in this chapter, a variant of BA called RSBA has been proposed and
used to identify the parameters of the same temperature model. The proposed RSBA differ from the
standard BA in using a dynamic scaling parameter with a random mechanism. A comparative study
has been conducted between the proposed RSBA and the standard BA using an assumed output of
the temperature model with known parameters. By examining the search evolution and the
optimisation results, it has been found that the RSBA outperforms the standard BA, and its
exploitation capability has been enhanced. Specifically, the solution accuracy and the convergence
speed when the optimal solution is near to be found have been effectively increased. The RSBA was
then applied to identify a real greenhouse thermal model. The results of the identified model
validation using the experimental database exhibited a satisfactory fit between the measured and
predicted inside air temperature. This study paves the way for future investigation on developing
a novel mechanism that adapts the scaling parameter changes with the closeness to finding the

optimal solution.

Another comparative study has been conducted between the proposed RSBA and the used
RIWPSO. The results have shown the superiority of the RIWPSO over the RSBA in solving the
problem at hand. However, the RSBA could still be more useful than the RIWPSO against other
different problems, such as the online parameter estimation in simulation or in real-time, where the
advantage of the early convergence to optimality can be necessary due to the time limits and

constraints.
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Chapter IV: Climate model utility: Real-time model adaptation

IV.1 Introduction

Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of
the phenomenon and the uncertainty of the involved physical and non-physical parameters. The
uncertainty stems from the fact that most of these parameters are unmeasurable or challenging to
measure, and some are time-varying, signifying the necessity to estimate them. As the first
contribution in this chapter of the thesis, a methodology for online parameter estimation is
proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse
temperature model for real-time model adaptation purposes. An online estimator is developed
based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat
Algorithm. It allows the continuous adaptation of the internal air temperature model and the
internal solar radiation sub-model by estimating their parameters simultaneously by minimising a
cost function, intending to achieve global optimality. Constraints on the search ranges are imposed
to respect the physical sense. The adaptation of the models was tested with recorded datasets of
different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying
parameters were graphically presented and thoroughly discussed. The experimental results
illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air
temperature prediction and 20 W m~2 for solar radiation simulation. It proves the usefulness of the

proposed methodology under changing environmental conditions.

Natural ventilation flux is an important variable to measure or estimate for its significant effect
on greenhouse microclimate modelling and control. It is commonly known that it can be
mathematically estimated depending on the type and dimension of the greenhouse and its vents
and, most importantly, on the vents opening percentage. However, most commercial greenhouses
are not equipped with an automatic vent opening system which obligates the grower to perform
manual control, in addition to the lack of vent position sensors, due to economic and management
reasons. It leads to the absence of the control signal variable representing the vent opening
percentage necessary for ventilation flux estimation. This issue has been encountered in this work
after attempting to implement the developed adaptive microclimate model based on the online
parameter estimator through an IoF2020 platform (internet of food and farm) in a set of commercial
greenhouses with manually controlled vents located in Almeria province, Spain. To cope with this
issue, the estimation of ventilation flux without using the vent opening percentage was
investigated. A virtual sensor for greenhouse ventilation flux estimation is proposed as a second
contribution in this chapter. It has been developed using a nonlinear autoregressive network with
exogenous inputs based on principal component analysis using the available measured data and
the evolutions of the heat fluxes representing the greenhouse energy balance. Preliminary results
show an encouraging performance of the virtual sensor in estimating the ventilation flux with a

mean absolute error of 0.41 m3 s.
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IV.2 Real-time climate model adaptation

Online parameter estimation consists of estimating the values of the parameters of a model in
parallel with the operation of a real system, using the available data from the real system to achieve
the model adaptation. Very few proposals on online parameter estimation and model adaptation
techniques for greenhouse microclimate modelling have been reported in the literature (Pérez-
Gonzalez et al., 2018).

Metaheuristic optimisation algorithms seem to offer promising results. In recent years, the
popularity of nature-inspired optimisation algorithms is expanding, and these algorithms are
being developed at an increasing rate (Yang., 2014). One of these well-known algorithms is the bat
algorithm (BA), which has been enhanced in different ways (Yang and He, 2013). In this chapter,
an enhanced variant of BA, proposed in previous work (Guesbaya et al., 2019), called the random
scaling-based bat algorithm (RSBA), is used and it constitutes the core of the developed online
parameter estimator. The BA algorithm has been chosen for its simple application and robustness
thanks to its interesting features and for outperforming some well-recognised optimisation
algorithms such as genetic algorithms (GA), particle swarm optimisation (PSO), harmony search
(HS) and simulated annealing (SA) in handling complex optimisation problems (Khan and Sahai.,
2012). The proposal of this work is summarised in Fig. 21.

The main objective in this section of this chapter of the thesis is to deal with the need to
periodically adjust the values of the time-varying parameters of a simplified greenhouse
temperature model and its solar radiation sub-model by using online parameter estimation to reach
their optimal performance. Both microclimate variables were chosen to be studied due to their
significant and direct effect on crop growth. The online estimation methodology followed in this

work consists of two main stages:

(I) Pre-processing stage includes offline model calibration and model sensitivity analysis.
(I) Online parameter estimation stage includes simulations with datasets of different agri-

seasons and real-time implementation of a real greenhouse system.

Measured outputs

Inputs and

disturbances Greenhouse

1

Greenhouse microclimate model

Model outputs
The last P

measurements
required by the
estimator

Estimated model
parameters in
real-time

RSBA-based online
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Figure 21. Principle of the adaptation of a greenhouse microclimate model in real time using the

developed online parameter estimator
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IV.2.1 Materials and methods

IV.2.1.1 Greenhouse experimental datasets

In this work, three different datasets containing the greenhouse climate variables are used. Two
datasets were already acquired in different periods of the year. The third dataset was acquired
during the testing of the developed online estimator in real time. The period contained in all the
datasets was chosen to be 15 days because it is a sufficient period to catch the different dynamics of
the climate in the location of the greenhouse. The first and second datasets were acquired in the
transitional periods between seasons when the weather is more diversified. Although the sampling
time of the data acquisition system is 30 seconds, the datasets were recorded by measuring the
variables every one minute, which is sufficient for the model adaptation problem. The wind velocity
variable was filtrated using a low-pass filter. The first dataset was acquired during the transitional
period between the winter and spring seasons, starting from 27 March 2020 to 11 April 2020 (15
days, 21500 samples), as presented in Fig. 22. The second dataset was acquired during the
transitional period between the summer and autumn seasons, starting from 01 September 2020 to
15 September 2020 (15 days, 21500 samples) as presented in Fig. 23. The third dataset was acquired
during the winter season starting from 07 January 2021 to 22 January 2021 (15 days, 22000 samples)
as presented in Fig. 24.
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Figure 22. Dataset of the transitional period between winter and spring seasons starting from 27 March 2020
to 11 April 2020
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IV.2.1.2 Methodology for online parameter estimation

This section presents the proposed model adaptation methodology and the developed online

parameter estimator based on RSBA for greenhouse microclimate adaptive modelling purposes.

Implementation efforts have been focused on demonstrating the potential of the developed

estimator to achieve an optimal adaptation of the used microclimate model in real time according

to Fig. 21. The online parameter estimation enhances the accuracy of the internal air temperature

prediction and the internal solar radiation simulation at the same time step. The main stages of the

methodology and their purposes are illustrated in Fig. 25. All steps are explained in the following

points:

1.

1
Model calibration: Model ]
RSBA-based offline sensitivity
parameter identification analysis J

Offline model calibration: This stage consists of the application of the RSBA to calibrate the
greenhouse microclimate model with an offline parameter identification process using
recorded experimental data from the greenhouse. For this offline calibration, all the parameters
of the model are considered constant. The identified parameter values are calculated so that
they can be used in the next stages for the model sensitivity analysis and as initial parameter
values for the next online estimation processes using datasets of different seasons. The cost
function used in this stage to evaluate the calibration of the model is the Mean Square Error
(MSE).

Model sensitivity analysis: In this stage, the sensitivity of the model is studied to understand
the influence of its parameters. Two different sensitivity analyses are performed to compare
results when assuming constant versus time-varying parameters. On the one hand, it aims to
investigate how much each parameter affects the model outputs. On the other hand, using
different sets of parameter values with the same greenhouse climate dataset of one day helps
to examine the change in the model sensitivity affected by the time-varying parameter values.
These tests are also performed to facilitate the selection of the variation ratios for the

parameters, depending on how sensitive the model is toward each parameter.

Simulation of the online parameter estimation: In this stage, the model adaptation is performed
in simulation and the final structure of the developed online parameter estimator is
accomplished as illustrated in Fig. 26. It involves a combination of mechanisms that are
designed based on the results of the previous stages and some trial-and-error procedures. For

the estimation process, ten parameters of the greenhouse microclimate model are considered
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Figure 25. Proposed methodology for the adaptation of the greenhouse microclimate model using the developed

online estimator
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Figure 26. Online estimator mechanism and its application scheme for microclimate model adaptation in real time

time-varying. The microclimate model is effectively adapted by online estimating the values of
the time-varying parameters to minimise the cost function for this stage which is the Root Mean
Square Error (RMSE) representing the error between the real measured data and the model
output. The RMSE penalises errors greater than 1, which helps in avoiding undesirable large
error oscillations. The online estimation is performed with real datasets of different seasons to
assess the adaptation capability of the estimator against different climate conditions. The

proposed estimation mechanisms, settings and constraints are described as follows:

a. The air temperature model and solar radiation sub-model are adapted together as two
targets but with different execution times for their respective online parameter estimation

processes.

b. The online estimation processes for both models are performed based on two other
“virtual models” identical to the original ones. The “virtual models” are used to simulate
the previous scenario consisting of the n last time instants at [t —n, t] based on last
previous inputs, outputs and disturbances at [t — n, t]. This means that the selected n data
samples are used for the estimation process in a sub-algorithm with an identical
greenhouse microclimate model. This sub-algorithm is used as a testbed where all the
potential solutions (sets of parameter values) generated by the RSBA are evaluated to find
optimal values for the model parameters by minimising a cost function for the error
between the real n data samples and the model simulated variables. This aims to optimise
the performance of the “virtual models” in simulating the previous scenarios at [t — n,

t] according to a specific number of iterations; then adapting the original models by
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applying the best-estimated values of the time-varying parameters in real time at t before
predicting the next sample at (t + 1).

¢. The number n of previous time instants representing the last scenario at [t — n, t] can be
adjusted to suit the characteristics of each phenomenon to be simulated thanks to a rule-
based data selection algorithm. The rule-based data selection algorithm is programmed in
a nested way with the “virtual model” sub-algorithm to provide it with the previously
measured data that represents the selected past time instants.

d. The RSBA is used as it is proposed in (Guesbaya., 2019) except for the search ranges which
are originally constant but, in this work, most of them are programmed to be dynamic and
adaptive based on the physical nature of each parameter which determines how it varies
in time. As described in Fig. 27, the adaptive search range of each parameter j varies
between the boundaries of a larger range that represents the constraints for the adaptive
search range. Each adaptive search range at t is determined based on the previous best
parameter value according to a specific variation ratio £R;% of the best parameter value

itself (neighbourhood of variation) as presented in the following terms:

LB ' = Cf(1 = R%) (IV.53)
UB*' = Cf(1+ R%) (IV.54)

where LB [*' and UB [*" are respectively the new lower and upper boundaries of the
adaptive search range and Cf is the current value of the specific j** estimated parameter
att.

e. A set of constraints are defined to restrict each adaptive search range (see Fig. 27). They
are defined based on the common ranges mentioned in the literature for greenhouse
microclimate modelling (Rodriguez et al., 2015; Choab et al., 2019), the physical nature of
each parameter, and some trial-and-error procedures performed with the microclimate
model during the development of this tool. It is important to highlight that, at each time

instant, the parameters being estimated are only the ones related to an active physical
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Figure 27. The adaptation mechanism of the parameter search range with respect to its restriction
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process of the greenhouse microclimate at that moment t. For instance, the parameter
related to radiation is online estimated only when radiation is greater than 5 W m~2, the
parameters related to ventilation are online estimated only when the vents of the
greenhouse are open according to a control signal greater than 0%, and the parameters
related to transpiration are online estimated only when the crop exists in the greenhouse
with an LAT greater than 0.1 mfy,¢ Mz, ,nq- Otherwise, the values of those parameters are
constant, equal to the last estimated value when the corresponding physical process was

active.

4. Experimental implementation: The last stage is dedicated to the implementation of the
developed online parameter estimator on the greenhouse system in real time. It is considered
a crucial stage to validate the real-time adaptation of the greenhouse microclimate model

under real crop growth conditions.

IV.2.2 Results and discussion

This section presents the quantitative and qualitative results obtained for each development
stage of the explained online parameter estimator. The statistical criteria used to evaluate all the
results in the following sub-sections are: Mean Absolute Error (MAE), Max Absolute Error (MaxAE),
Coefficient of Determination (R?), Residual Error (RE), MSE and RMSE. For the simulation tests, the
computational unit utilised was a computer consisting of an Intel Corei7-4810MQ with an octa-core
processor, 2.8 GHz, 16 GB RAM DDR3 1600 MHz, running a Windows™ 10 64-bit with MATLAB
R2017b. The online parameter estimator has been coded, tested and executed in MATLAB.

IV.2.2.1 Pre-processing stage

In this stage, analysis of the model performance with constant parameters was conducted, the
most influential parameters on the output were observed, and the model sensitivity to time-varying

parameters was analysed.
A. Offline model calibration

The offline model calibration procedure to identify the values of all the parameters of the
greenhouse microclimate model can be found in (Rodriguez et al., 2015). Offline model calibration
based on the RSBA algorithm is performed intending to obtain the best possible prediction of the
internal air temperature and simulation of the solar radiation, assuming constant parameters.
Furthermore, the analysis aims to determine adequate search ranges for the parameters. The
prediction results with offline calibrated constant parameters will be compared to the prediction
results using the online estimated parameters to demonstrate the capability of the developed

estimator.

To offline calibrate the greenhouse model, two different datasets were used in this stage, one
from the winter-spring period (see Fig. 22) and another one from the summer-autumn period (see
Fig. 23). Three days of the winter-spring dataset (3¢, 4h and 5t days) were selected for the calibration
process as a climate-diversified target, and both complete datasets (15 days per each) were used for

validation. The simulation step time and prediction horizon were fixed as one minute. The settings
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of the RSBA were chosen based on the personal experience with the algorithm and some trial-and-
error processes, resulting as follows: the number of bats is 20, the maximum number of iterations is
500, the minimum and maximum frequency respectively are f,;, = 0 and f;,,4, = 2, the loudness of
the initial bats is AY= 1, the rate of pulse emission of the initial bats is ; = 0 and ¥ = 0.2 and the
constants a and y are equal to 0.8. The scaling parameter randomly variates in a range of o €
[1,1073].

The search ranges and the calibrated parameter values after the offline calibration are presented
in Table 8. The results of the offline calibration process of air temperature prediction and radiation
simulation are highlighted in Fig. 28 and Fig. 29, contained among the validation results of the
calibrated model using the complete dataset. It is observed that the model calibration process was
successful according to the acceptable fit between the measured variables and the outputs. Table 9
contains the statistical results with a MAE = 0.75 °C, MSE = 1.12 °C? and R? = 0.96.

Fig. 28 presents the graphical results of validating the offline calibrated air temperature model
with the complete winter-spring dataset. It can be noticed that the prediction accuracy for the air
temperature model in other days of the same dataset has decreased, showing larger errors between
the model outputs and measured variables. As shown in Table 9, the error increases even more in
the validation using the summer-autumn dataset (the graphical result is not presented), evidencing
an unsuccessful prediction for the offline calibrated model using a different dataset. Similar
conclusions concerning the validation of the calibrated radiation sub-model can be obtained
according to Fig. 29 and Table 10. The poorly simulated radiation thresholds in most of the days can
negatively affect the temperature prediction. Therefore, the long-term prediction of temperature
and simulation of radiation should be improved for the efficient applicability and usefulness of the

model, which highlights the necessity for a model adaptation method.
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Figure 28. Validation of the offline calibrated model of internal air temperature using the complete winter-spring dataset

Table 8. Search ranges and offline clibrated parameter values

Parameters Casw,a Ccnv,ssfa Ccnd—cnv,afe Ca CBd CBn Cven,d Cven,wd Closs Ctsw,cv
Range [0.1,09] [1,35] [1,30] [0.2,0.7] [ 4,26] [ 4,26] [15,35].10* [0.1,1] [0.1,1] [0.1,1]
Calibrated

0.42 13.43 10.32 0.26 8.27 10.28 0.0016 0.11 0.2 0.56

value
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Figure 29. Validation of the offline calibrated sub-model of internal solar radiation using the winter-spring dataset

Table 9. Statistical evaluation of internal temperature prediction: calibration process result and validation of the offline

calibrated model

MAE (°C) MSE (°C?)  RMSE (°C) MaxAE (°C) Interval (°C)
Calibration in winter-spring 0.75 1.12 1.06 3.88 [10.9,29.5]
Validation in winter-spring 0.98 1.78 1.33 6.39 [10.8,30]
Validation in summer-autumn 1.65 6.22 2.49 8.05 [19.7,39.3]

Table 10. Statistical evaluation of internal solar radiation simulation: calibration process result and validation of the offline

calibrated sub-model

MAE . MSE . RMSE (W m~2) MaxA}E2 Interveil2

Wm™) W2m™) Wm™) Wm™)
Calibration in winter-spring 19.72 1736.24 41.6 271.56 [0, 890]
Validation in winter-spring 29.37 3592.86 59.94 496.81 [0, 910]
Validation in summer-autumn 54.68 7826.46 88.4 299.73 [0, 530]

B. Model sensitivity analysis

In this section, a sensitivity analysis is performed for the air temperature model. Firstly, the
sensitivity of the model using constant parameters is investigated during the diurnal and nocturnal
periods as shown in Fig. 30. It can be noticed in the diurnal period analysis that C,sy 5 (unitless) is

the most influential parameter on the system, which is logical since it is related to solar radiation.
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Figure 30. Sensitivity analysis of the inside air temperature model. (a) the diurnal period; (b) the nocturnal period
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The transpiration parameters Cp (unitless) and Cg,(kg m~2h 1 kPa™!) have also noticeable
relevance, which is also logical according to the fundamental effect of the crop transpiration process.
Apart from the parameter Cepyss—a (W m™2 K1) related to the important effect of the soil surface
temperature, the rest of the parameters mostly have a non-relevant influence. In the nocturnal
period, it can be observed that only two parameters mainly affect the system: Ccpy g5, Which
explains the role played by the soil, as a heat accumulator during the day and as a heat releaser
during the night, and Cg_(kg m~% h™* kPa™"), which represents the effect of crop transpiration at
night.

Furthermore, the model sensitivity using time-varying parameters has been investigated. This
was achieved by performing three sensitivity analysis processes with a real dataset of 1440 samples
(1 day). The results are shown in Fig. 31 for three different sets of the main parameters presented in
Table 11. It can be concluded that different sensitivity responses can be obtained when using time-
varying parameters. Besides, it is noticed that increasing or decreasing the parameters C¢yy ss—a and
Cend—cnva—e (W m~2 K1) radically affects the model sensitivity, and they also alter the order of the
most influential parameters. This also can be seen as a logical influence since the convection and
conduction processes depend on temperature differences which are indirectly affected by all of the
climate variables. In contrast, changing the values of the rest of the parameters does not affect the
model sensitivity as much as Ccy ss—a and Cepg—cnv,a—e Which are considered as the most influencing

time-varying parameters according to this test.

The rest of the time-varying parameters C,e, 4 (unitless), Cyenwq (unitless), Cipsshw and Ciossw
(ms™!) representing ventilation coefficients have a less relevant influence whether on the model

output or the order of the most influential parameters. It is physically logical since it is known that
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Figure 31. Sensitivity analysis of the inside air temperature model according to different sets of parameters. (a) set 1; (b)
set 2; (c) set 3

Table 11. Different sets of parameters used for the model sensitivity analysis with time-varying parameters

Parameters Casw Cenviss—a Cend-cnva-e Ca Ceq Coend Crenwd
Set 1 0.59 3.88 1 0.42 14 0.0021 0.23
Set2 0.2 20 17 0.65 9 0.0024 0.6

Set 3 0.35 35 22 0.35 11 0.0027 0.4
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the heat loss due to ventilation has less effect on the inside air temperature compared to the rest of
heat fluxes, leading to conclude that the ventilation coefficients could be considered constants for
simplicity. However, since the ventilation is a rapidly varying flux due to the wind effect, the
ventilation parameters were considered time-varying to exploit all chances of model adaptation.
The air leakage coefficients Cys5;y, and Cipsspy wWere compensated by only one time-varying

parameter Cy,s; to be online estimated representing the heat loss due to air leakage in all scenarios.

IV.2.2.2 Online parameter estimation stage

The settings of the online estimator are chosen as follows. The execution time of the parameter

estimation process for each model is:

- 1 minute for the estimation of the parameters affecting the air temperature model. This time is
equal to the simulation step time of the model (sample-by-sample parameter estimation).

- 20 minutes for the estimation of the parameter affecting the solar radiation sub-model. It should
not be changed to a faster rate than this because it could generate an undesirable divergence in
the solar radiation simulation, in turn, negatively affecting the air temperature prediction.

The number ny of the previous time instants (last scenario) at [t — ny, t] to be evoked by each model

is selected as:

- ng,, =3 for the air temperature model adaptation. It is found that beyond this value,
undesirable fluctuations could be generated in the predicted variable, and below this value, the
information would not be sufficient for an efficient model adaptation process, leading to less
accurate prediction.

- 7Ny, = 60 for the solar radiation sub-model adaptation because its parameter varies very slow
in time.

The dynamic search ranges [LB;, UB;] used in the RSBA are adaptively updated based on the defined

variation ratio for each parameter as presented in Table 12. The search range of the time-varying

Table 12. Variation ratios for each parameter representing the adaptivity rates of the search ranges

Time-varying

parameters Variation ratios Physical characteristics and effect on the air temperature model

- Medium variation ratio affected by external climate and covering material.
Caswa +2% - Model sensitivity is high due to the direct effect of solar radiation on the inside
air, soil surface and crop.

- Very fast variation ratio affected directly by soil surface, inside and outside air
+10% temperature differences and indirectly by radiation, ventilation and transpiration.
- Model sensitivity is very high because they are the most influential parameters.

Ccnv,ss—a and

Ccnd—cnv,a—e

- Very slow variation ratio affected by crop transpiration process which follows
the slow crop growth evolution (LAI).

- Model sensitivity is medium, essentially affecting the inside air but with less
influence than solar radiation.

C, and Chy/n +0.2%

- Fast variation ratio affected by the opening of vents and wind velocity which
varies quickly.

- Model sensitivity is low but it has a fast effect, highly dependent on wind
velocity.

Cven,d' Cven,wd and Closs i’7%
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parameter Cigy v in the solar radiation sub-model is not adapted and is maintained constant at [0, 1].
This allows the estimator to directly reach the lowest or the greatest values in the search range in
case the shade screen or the cover whitening process are applied to or removed from the greenhouse.
Moreover, when the greenhouse cover is deteriorated or becomes stained, the radiation inside the
greenhouse can be correctly simulated thanks to the online estimation of Cygy cy in real-time. The
defined constraints to restrict each adaptive search range are presented in Table 13. They differ from
those used in the offline calibration for two parameters: C,y ss—a and Ceng—cny,a—e- These constraints
are enlarged because they are empirical parameters compensating several physical dynamics, and
also because they get saturated each time a smaller upper boundary is defined during trial and error
tests.

Table 13. Restrictions of the adaptive search ranges of each parameter

Parameters Casw,a Ccnv,ss—a Ccnd—cm:,a—e CA CBd CBn Cven,d Cven,wd Closs Ctsw,cv
Range [0.1, [0.2, [4, [4, [15, [0.1,

- . 1, 100 1,300 i 0.1, 1 0.1, 1
restriction 0.9] [ ] [ ] 0.7] 26] 26] 35]1.10* [ ] 1] [ ]

A. Simulation study

In this study, simulations of the online parameter estimation are conducted to assess the
adaption performance under changing climatic conditions and with different crop states. For this

purpose, recorded experimental datasets of two periods of different agri-seasons are used.

Fig. 32 and 33 present the graphical results after using the online parameter estimator with the
internal air temperature and internal solar radiation models using the dataset of the winter-spring

period. The corresponding heat fluxes evolution, the evolution of the estimated parameters and the
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Figure 32. Internal air temperature prediction using the online parameter estimation with winter-spring dataset
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Figure 33. Internal radiation simulation using the online parameter estimation with winter-spring dataset
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vents control signal are presented in Fig. 34, 35 and 36 respectively. The same test was performed
with the dataset of summer-autumn and its results are presented only numerically in Table 14. In
general, the graphical results show a very promising model performance based on the remarkable
accurate fit between the measured and the predicted or simulated variables in comparison to the

results of the offline calibrated model.

Statistical indices to evaluate the performance of both models are presented in Tables 14 and 15,
and the evolution of the residual error for air temperature prediction with both datasets is shown in
Fig. 37. Regarding the comparison of these results with the ones obtained with the offline calibrated
model, it can be observed that the performance with the adaptive model has highly improved thanks
to the online estimation of the parameters. For the air temperature model, the prediction using the
online parameter estimation with the winter-spring dataset presents a MAE = 0.22 °C, meaning that
the average error is decreased by 77.5%, which proves the high efficiency of the estimator, an MSE =
0.21 °C?, R? = 0.992 and a MaxAE = 4.68 °C as a sporadic value, since it surpassed 4 °C only once in

15 days. The online parameter estimator succeeded very quickly in adapting the model to suit the
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Figure 34. Heat flux evolution using online parameter estimation with the dataset of winter-spring period
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Figure 35. Variation of the online estimated parameters with the dataset of winter-spring period
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Figure 37. Evolution of the residual error of the air temperature prediction using online parameter estimation. (a) with

winter-spring dataset; (b) with summer-autumn dataset.

Table 14. Statistical evaluation of internal air temperature prediction using online parameter estimation in different
agri-seasons

MAE (°C) MSE (°C?) RMSE (°C) MaxAE (°C) Interval (°C)
Winter-spring dataset 0.22 0.21 0.46 4.68 [10.8, 30]
Summer-autumn dataset 0.27 0.23 0.48 5.57 [19.7,39.3]

Table 15. Statistical evaluation of internal solar radiation simulation using online parameter estimation in different
agri-seasons

MAE MSE MaxAE Interval
RMSE -2
(Wm2) (W2 m=) SEWm™) - wm-z) (Wm2)
Winter-spring dataset 19.81 2065.70 45.45 467.02 [0,910]
Summer-autumn dataset 8.15 318.7 17.85 201.05 [0, 530]

different climate conditions in less than 40 prediction steps (40 minutes) at the nocturnal period (see
Fig. 32). Furthermore, the air temperature prediction using the summer-autumn dataset presents a
MAE = 0.27 °C, meaning that the average error is decreased by 83.6%, a MSE = 0.23 °C?, R? = 0.995
and a MaxAE = 5.57 °C as an acceptable sporadic value that does not surpass 3 °C in most of the 15
days. The residual error evolution for the summer-autumn dataset (see Fig. 37b) shows in some days
a decrease in prediction accuracy compared to the residual error obtained with the winter-spring
dataset. Nonetheless, it is still considered much better than the result obtained with the offline
calibrated model. In this sense, this is a very promising response of the estimator, highlighting a
powerful capability which is that the user might be able to avoid the offline model calibration
process by directly applying the online estimator for such similar greenhouse facilities under similar
climate conditions. A resembling results enhancement is observed for the simulation of the internal
radiation with the online parameter estimator presenting an R* = 0.97. The statistical results present
a decrease in the average error by 32.56% with the winter-spring dataset which is considered as the

harshest one (especially in terms of solar radiation) and by 85.1% with the summer-autumn dataset.

Concerning the evolution of the heat fluxes with the online estimated parameters, Fig. 34 shows
logical amplitudes and variations according to the modelled physical behaviour and the physical
nature of each heat flux. Regarding the variation of the estimated parameters, it shows a good
tendency in terms of respecting the pre-defined search range constraints (search limits) and the

variation ratio of search ranges (Tables 12 and 13). It is highly interesting and important to
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investigate the dynamics of the estimated parameters to understand the model responses from a
physical point of view. Analysing the graphs of their evolution also helped in enhancing the
proposed online estimation mechanism and its specified settings and constraints. Furthermore, it
helped in determining the best settings with the continuous observation of parameters’ variations

through trial-and-error processes.

As for the evolution of the estimated parameters in Fig 35, it can be observed that: (i) The
parameters vary while respecting the restrictions defined for each parameter range. (ii) The values
of the parameters respect the defined variation neighbourhood +R;% according to their physical
nature. (iii) The values of the parameters change only when the corresponding physical process is
active, as explained in Section 1.2.2. (iv) There are no significant saturations along with the variations
of most parameters which explains the appropriate selection of the constraints of the search ranges.
(v) The evolutions of the convection and the thermal loss parameters C.py ss—a and Cepg—cnv,a—e ShOW
large variations up to 100 and 200 W m~2 K™%, respectively. It is physically logical because they are
coefficients of the heat fluxes Qcyss—a and Qeng—cnva-e that are calculated based on simplified
empirical equations compensating several physical dynamics which depend mainly on the state of
the fluid (laminar or turbulent regime) and other variables that all vary in time (Rodriguez et al.
2015). Mathematically, those equations consist of temperature differences multiplied by the
corresponding coefficients that directly affect the amplitude of the heat flux. Hence, since those heat
fluxes are the most influential ones besides Qs 5, the values of their coefficients should be large in
some periods to achieve the necessary balance between the different heat fluxes according to Eq.
II1.31. Furthermore, it can be proven that the evolutions of both parameters show two different
behaviours in the nocturnal and diurnal periods and also in the different seasons, which highlights
a possibility of calculating a set of different constant values for each period in each season. However,
considering them as constants is not recommended since it is proven that their evolution is fast and
largely varying and because it urges on performing a laborious periodical offline model calibration
demanding a minimum of a one-year dataset and leading in all cases to a loss of information and
consequently, less accurate model performance as observed in the offline calibration results. (vi) The
online estimation has proven that transpiration parameters could also be considered as constants
for simplicity due to their slow evolution. The rest of the parameters should be time-varying to

ensure the correct adaptation of the model.

Regarding the computational burden of the developed online estimator, it was found that the
average time consumed by one step of the online parameter estimation process with the air
temperature model is 2.03 seconds, and the average time consumed by one step of the online
parameter estimation process with the radiation sub-model is 0.0038 seconds. Thus, both estimation
processes are performed at the same time instant, in which the average total time consumption is
2.04 seconds, which only represents 3.4% of the total step time (60 seconds). The time consumption
of the developed parameter estimator scheme is suitable for real-time application. Moreover, it
leaves a sufficient time gap for the online parameter estimation of more microclimate models and

the online optimisation of controllers for greenhouse control applications.
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B. Experimental implementation in real time

The real-time implementation of the developed online estimator was performed on the
greenhouse system in the winter season. Specifically, the estimator was tested in the period starting
from 07 January 2021 to 22 January 2021 (15 days, 22000 samples). The real evolution of the climate
variables registered in this period is shown in Fig. 24. The application period presented some
cloudy, rainy and windy days, which are different from the usual weather in the region, and thus,
they are considered as a challenging microclimate scenario to be reproduced by the model due to
the strong variation of the external weather variables. Another detail to be considered as a challenge
for the developed estimator is that a second polyethene cover was installed inside the greenhouse
on top of the tomato crop (see Fig. 6b) to offer the plants more favourable climate conditions. The
impact of this second cover was not highly relevant since it did not cover all the greenhouse surface,
only the crop area but not the corridor, so, it did not create a second isolated environment inside the
greenhouse. Thus, its effect from a physical point of view was assumed to cause an additional

attenuation in solar radiation reaching the crop and a slight reduction in internal ventilation flux.

The estimator was executed in real time to online estimate the model time-varying parameters
sample by sample to adapt it to the real changing conditions. The aim of the test performed at the
real greenhouse is to investigate the capability of the online estimator in adapting the microclimate
model in real time, moreover, to test its robustness considering the effect of the second cover on the

internal air temperature and solar radiation.

Fig. 38 presents the graphical result of the inside air temperature prediction in real time using
the developed online parameter estimator. It can be observed that the fit between the predicted and
measured variables is impressive. The results are very satisfactory for all days: calm ones and even
for the rainy, cloudy and windy days as highlighted in Fig. 39 and Fig 40. Table 16 presents the
statistical evaluation results of the inside air temperature prediction using the online parameter
estimator in real time. It presents a MAE = 0.22 °C, a MSE = 0.18 °C?, R? = 0.992 and a MaxAE =
3.49 °C, which does not surpass 3 °C on most days. The residual error evolution for the estimation
in real time shown in Fig. 45a presents a better evolution than the corresponding to the air
temperature prediction obtained in Section 1.2.3.2. A with the winter-spring dataset. It can be
noticed that there are some peaks in the residual error during the transition from night to day (or
vice versa). It happens when the inside air temperature starts to increase (or decrease) rapidly due
to the solar radiation effect. It is also related to the change in C¢ng—cnva—es and Coswa values as a

response of the parameter estimator while adapting the model.
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Figure 38. Internal air temperature prediction using online estimation in real time from 07 January 2021 to 22 January 2021
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Figure 39. Air temperature prediction using online Figure 40. Air temperature prediction using online
parameter estimation in real time: two days with parameter estimation in real time: of two days with
calm climate conditions (zoomed in) turbulent climate conditions (zoomed in)

Fig. 41 shows the graphical result of the inside solar radiation simulation in real time exhibiting
the successful performance of the adaptive sub-model. The fit between the measured and simulated
variables is very satisfactory and radiation variations are well fitted presenting an R? = 0.99. It also
proves the estimator efficiency in adapting more than one model as a multi-objective task. The
corresponding statistical results are presented in Table 17. The evolution of the residual error using

the online estimator in real time is presented in Fig. 45b, showing a very promising result.

The real-time evolution of the heat fluxes is shown in Fig. 42. The first important aspect to be
mentioned is that it was assumed previously that the physical effect of the second cover could mean
more attenuation mainly on the radiation reaching the crop, and partly on the heat loss due to
natural ventilation. Thus, as a confirmation of the assumption, in comparison to the evolution of the
heat fluxes corresponding to the online estimation tests in the previous Section, it can be noticed
that: (i) The amplitude of the solar radiation heat flux Qg 5 is decreased averagely by 39.3% as a
main effect of the second cover. (ii) It can be graphically noticed that the amplitude of the heat loss
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Figure 41. Internal radiation simulation using the online estimation in real time from 07 January 2021 to 22 January 2021
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Figure 42. Heat flux evolution with parameter estimation in real time from 07 January 2021 to 22 January 2021
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flux due to natural ventilation Qyenta is also decreased, however, this is also dependent on wind

velocity.

As for the evolution of the estimated parameters in real time in Fig. 43, it shows a remarkable
resemblance with the evolution of parameters discussed in the previous section. Thus, these real-
time results can be considered as a validation for the conclusions in the previous section. The vents

control signal is presented in Fig. 44.

In this last stage, the real-time model adaptation was successfully achieved without changing
any settings of the online estimator, neither re-programming its algorithm nor applying new
mechanisms or restrictions. This proves the efficiency and robustness of the implemented online
parameter estimator against the uncertainties for the adaptation of the greenhouse microclimate

model. These results obtained for the real-time implementation can also be briefly analysed
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Figure 43. Variation of the estimated parameters in real time from 07 January 2021 to 22 January 2021
& 100
T 80— Uvent (%)]_|
2 0 i
3
€ 40— =
S 20| ﬁ ’j_LH ﬁ ’j_LH ﬂ ’j_LH ﬂ ’J_LH ﬂ ’J_LH ﬂ ’J_Lk ﬂ ]
2
) \ | L \ ! \ ! ! L
>
0 0.2 0.4 0.6 0.8 1 2 1.4 1.6 18 2

Time (min) «10%

Figure 44. Vents control signal (Vents opening percentage) recorded in real time from 07 January 2021 to 22 January 2021

5 \ \ \ \ \ \ \

. 3 Residual error (°C)
T 5 ‘ ﬂ ] b » [ i
g -1 s {\v k‘ ”JLP
o
5 s \ | \ \ \ \
Z 80
§ 60
o 40— |
= 20—
g 0 \/L—‘ W\— i \%/\'\—\)&'\A—JV\';M/\
80 (=
% 60 \ \ |

-80

0.4 0.6 0.8 1 1.2 2
Time (min) x10%

Figure 45 Evolution of the residual error with parameter estimation in real time. (a) air temperature prediction; (b) solar

radiation simulation

58



Chapter IV: Climate model utility: Real-time model adaptation

Table 16. Statistical evaluation of internal air temperature prediction using the online parameter estimator in real time

MAE (°C) MSE (°C?) RMSE (°C) MaxAE (°C) Interval (°C)

Winter season
0.22 0.18 0.43 3.49 [6.4,24.5]

(validation in real time)

Table 17. Statistical evaluation of internal solar radiation simulation using the online parameter estimator in real time.

MAE (W m~2) MSE (W?m™*) RMSE (Wm™?) MaxAE (Wm™2) Interval (W m™2)

Winter season
4.62 89.56 9.46 62.47 [0, 309]

(validation in real time)

comparatively with those previously published in other works. Among the different works cited in
this chapter including similar adaptation methods for first principles-based or pseudo-physical
models, very satisfactory results for air temperature and relative humidity prediction were
published in Pérez-Gonzélez et al. (2018). It presents a MSE = 5.64 °C? using a variant of PSO
algorithm and a MSE = 9.42 °C? using a variant of the DE algorithm which were considered as the
best reported results for a real-time test. They were obtained in a short period of 3 days (calm and
windy days) with a sampling time of one sample per one second (259200 samples). The experiments
were done in an empty greenhouse (absence of crop) and without ventilation (closed vents and fans
turned off). In comparison, as a substantial contribution and a distinctive aspect of this work, the
evolutions of the time-varying parameters are graphically presented and thoroughly explained from
a physical point of view. It is important to highlight the relevance of the achieved results since the
real-time experiment have been executed under more dynamic conditions, with a grown tomato
crop and with active actuators to regulate greenhouse natural ventilation. Accordingly, superior
results are obtained in this chapter in terms of internal air temperature prediction with a MSE =
0.18 °C? using the developed RSBA-based online estimator in real time during 15 days (calm, windy
and rainy days) with a sampling time of one sample per one minute (21500 samples).

IV.3 Virtual sensor for ventilation flux estimation

In this section of this chapter, a virtual sensor for greenhouse ventilation flux has been developed
based on PCA-NARX modelling following the methodology illustrated in Fig. 46. Two datasets have
been generated from a Mediterranean multi-span greenhouse located in Almeria, Spain (described
in Chapter II) including a combination of measured microclimate variables and the evolutions of
model heat fluxes. The model heat fluxes were calculated using an adaptive air temperature model
due to its capability of providing their optimal estimations (error of <5% between a test and another
under the same conditions) and reliable for estimating the greenhouse ventilation flux without
installing expensive sensors (described in Chapter III). All the obtained variables were firstly
processed by: signal filtring, centralisation, reduction and standardisation. Secondly, the treated
dataset was used to generate the PCs for data reduction using PCA. These PCs are then considered
the new inputs of the neural network. Thus, the network was trained based on the PCs to fit the

target which is the estimated heat loss using the opening percentage of roof and side vents based on
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Figure 46. The methodology for developing the PCA-NARX-based virtual sensor for greenhouse ventilation flux

the pre-mentioned explicit approach (Kittas., 1997). Finally, the estimated heat loss flux was used to
inversely calculate the ventilation flux representing the ultimate objective in the proposed virtual

sensing method. The validation of this developed virtual sensor has shown promising preliminary
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results and it has to be more investigated.

I1V.3.1 Materials and Methods

1V.3.1.1 Greenhouse microclimate dataset

The greenhouse microclimate dataset used in this work to design the virtual sensor of ventilation

flux consists of two combined parts which are:

Datasets combination

Usage of the remaining 25% of dataset

An experimental dataset collected from the greenhouse containing measured variables is
presented in Fig. 47. It includes: the wind velocity D, ., the difference between the internal

and external measured air temperature T;, qirf and as well as relative humidity Hgirg;ff-

A simulated dataset consisting of the estimated evolutions of the greenhouse heat fluxes is
presented in Fig. 48. It includes: Qso14, Qcnv,ss—ar Qend-cnv,a-es Qerper aNA Qpenq that were

estimated based on the equations of the adaptive air temperature model in which the
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Figure 47. Dataset of the measured microclimate variables in the transitional period between winter and spring seasons
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Figure 48. Dataset of the calculated greenhouse heat fluxes in the transitional period between winter and spring seasons

measured variables were supplied as inputs. Substantially, this was performed by executing

the model in two scenarios:

a. Using the available vents control signal as one of the model inputs to consider the explicit
effect of ventilation flux (calculated based on Eq. II1.31) on the heat loss flux (calculated
based on Eq. II1.32), and in turn, on the model heat balance. Thus, the calculated variables
of internal ventilation and heat loss fluxes are considered the real targets in designing the

virtual sensor of ventilation flux.

Without using the vents control signal which means that the ventilation flux and the heat
loss flux are not influencing explicitly (Indirect effect) heat balance of the air temperature
model (using the same Eq. II1.32 but with Q¢4 = 0). Since the used air temperature
model is adaptive thanks to the RSBA-online parameter estimator, the effect of the heat
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loss flux will be adaptively compensated by certain behaviours in the evolutions of the
other heat fluxes. This has led to an accurate prediction of internal air temperature which
is considered the criterion for successful estimation of heat fluxes. Thus, the estimated heat
fluxes in fact hold implicitly the ventilation flux information (ventilation effect).
Accordingly, the heat fluxes are considered useful data to be used as inputs for designing

the virtual sensor of ventilation flux.

All variables were processed by centralisation, reduction and standardisation and some of them

were filtered.

IV.3.1.2 Nonlinear autoregressive network with exogenous inputs

A discrete-time NARX model is used in this work. It consists of a recurrent dynamic network
with feedback connections including numerous layers of the network (Wang et al., 2017). This model

is defined by the following function:

Y(k) = f()/(k - 1): ---.}’(k - doutput)ru(k - 1). ---:u(k - dinput)) (IV’SS)

where y(k) is the greenhouse ventilation flux estimated by the model at the discrete-time step k, u
is the column vector of inputs, dinpye and dyyepye are the orders of the past inputs and outputs,
respectively, to be used for producing y (k). The NARX was chosen for its advantage in relating the
output to the past inputs and outputs.

IV.3.1.3 Principle components analysis

PCA is a multivariate technique that transforms a set of correlated variables into a smaller set of
uncorrelated variables, called principal components (PCs). The power of PCA is more apparent for
a larger number of variables. Several PCA applications in the field of greenhouse data analysis have
been investigated. In (He and Ma., 2010) the PCA was used to simplify the data samples and to
optimise the model learning speed for internal air humidity modelling. In (Pessel, N. and Balmat,
J.E., 2008), neural networks were combined with PCA to explain mathematically the redundancy
between variables in order to simplify the complex model by keeping the efficient one. In this
chapter, the PCA is used to choose the relevant information from the greenhouse microclimate

variables of the available dataset.

The starting point for PCA is the sample covariance matrix S. The covariance matrix for the p-

variable is calculated as follows:

1
— T
Slz X Slp
s=(: - (IV.57)
S1p Sp
X, = X = Xoan (IV.58)
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where n is the number of samples and X, is the centred data around the mean value and it is

calculated as follows:

Secondly, the obtained covariance matrix S is reduced to a diagonal matrix L by pre-multiplying
it and post-multiplying it by a particular orthonormal matrix U. It is calculated as follows:

UTsu =1L (IV.10)
where s? is the variance of the ith variable and s; ; is the covariance between the ith and jt" variables.

The diagonal elements of L are called the eigenvalues of S. The cumulative variance contribution

of each principal component is calculated with the next expression:

(IV.59)

The columns of U are called the eigenvectors, which represent the direction of maximal
variability for each variable. These vectors are used for analysing the correlation between variables.

Finally, the uncorrelated components Z are calculated as follows:
Z=U"X, (IV.60)

The PCA correlation circle is also used to study the relation between the inputs and the target
and to reveal any possible redundancy of data and avoid it by eliminating the variables that

approximately hold the same information.

I1V.3.2 Results and Discussion

This section presents the results and observations obtained from each stage of the
proposed methodology (see Fig. 46) and their corresponding discussion toward designing

and validating a virtual sensor for greenhouse ventilation flux.

IV.3.2.1 Principal component analysis application

The application of the PCA on the available dataset was performed for two purposes as described

in the following sub-section.
A. Data analysing

Initial PCs were generated based on the full dataset including the inputs (generated without
considering Vyep, 1y effect) and the target (generated with considering Vyep, f14x effect). Fig. 49 shows
the correlations between the PC1 and PC2 that hold the largest amount of information from the
original data via coordinates in a 2-dimensional plot. Based on the fact that the correlations are
proportional to the angle between vectors, it can be noticed that: (I) @,y , Which represents the target
has a strong positive correlation with Q¢ ¢y, Dwses Qsora aNd Ty giff Since their vectors are grouped
in the neutral quadrant; (I) Qcpy—cna-a-e and Hgir girf have much lower correlation since they are
orthogonal with the target; (III) Q;ny ss—q has a low but noticeable correlation with the target which

is negative since it is in the opposing quadrant.

63



Chapter IV: Climate model utility: Real-time model adaptation

Variable factor map

1.00

0.75

0.50

0.25

—

0.00

-0.25

-0.50

-0.75

-1.00

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Figure 49. Correlation circle between PC1 and PC2

The relation between the inputs and the target was also analysed with the Pearson correlation
coefficient using datasets of different climate conditions as illustrated in Table 18. It can be noticed
that: (I) Q¢yp o appears to be the most correlated variable in the different calm, windy and cloudy
days. This could be physically explained as a result of the direct effect of internal air temperature
and the indirect effect of relative humidity through vapour pressure deficit on crop transpiration.
(I) Both Ty girr and Hyirgir also have high positive and negative correlations, respectively, with
heat loss since ventilation flux affects them directly. (III) Q¢py—cnaa—e could also be considered as
one of the most correlated variables with the target based on the shown correlation values because
it is calculated based on Tg;y girf. (IV) Dy is known to be the main driving force of natural
ventilation in greenhouses but it shows a strong correlation only on the calm day, however, it is still
considered a useful input. (V) Qg4 has an interesting noticeable positive correlation especially on
the calm day. This could be considered an effect as a consequence of the model adaptation using the
RSBA-based online parameter estimator. Q;,; , has prominently compensated the implicit effect of
heat loss due to ventilation, because the model heat balance is influenced by Q;,; , more than the
other heat fluxes. It can be considered as the driving flux manipulated by the online estimator
according to the target (with respect to the physical constraints). (VI) Qcpyss—a has the weakest
correlation due to its relation with the soil surface temperature that changes slowly differently than

the rapidly varying ventilation flux, thus, it could be eliminated to lower the computational cost.

Table 18. Pearson-based correlation coefficients between the input variables and the target in different climate conditions

Climate Dws,e Tair,diff Hair,diff Qsol,u anv,ss—a anv—cnd,a—e Qtrp,cr
Calm 0.656 0.663 -0.627 0.736 0.069 0.476 0.809
Q Windy 0.367 0.397 -0.325 0.472 -0.256 0.264 0.516
ven,a
Cloudy 0.381 0.040 -0.138 0.475 0.025 0.325 0.708
All 0.357 0.669 -0.610 0.547 0.299 0.729 0.342
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B. Generating of principal components

Four new essential PCs are generated using the full dataset combining the two datasets from the
winter and spring seasons. In this case, the target Q. , has not been included because these PCs
are the ones to be used as inputs of the developed PCA-NARX model. Fig. 50 shows the specific
amount of information maintained by each PC and the total amount of information maintained by
all the PCs is 93.8% which is considered sufficient. It can be noticed that PC1 include the largest
amount of maintained information. The dimension of the dataset has been decreased from 7 to 4

variables.
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Figure 50. Amount of information maintained by the principal components constituting a low-dimensional dataset

IV.3.2.2 Virtual sensor design

The designed NARX model was trained using the generated PCs as inputs and the calculated
heat loss due to ventilation as a target. Several training processes were performed using 75 % of the
dataset for training and the remaining 25% for validation. The NARX model was trained using
different orders of feedback output parameters using the Scaled conjugate gradient
backpropagation (trainscg) as a training function and a tapped delay line with a delay from 0 to 5
samples at the input and also from 1 to 5 samples at the output. The best structure of the NARX
model included: 6 layers in total and 2 hidden layers, they consist of 4, 30, 50, 20, 1 and 1 neurons,

respectively, as is shown in Fig. 51. The simulation results after training are very satisfactory where

Hidden Layer 1

Hidden Layer 2 Hidden Layer 3 Output Layer

Input(t) Output(t)

Figure 51. NARX network structure
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the estimated variable follows the variations efficiently as it is qualitatively shown in Fig. 53. Settings
of the NARX model design were chosen in a way that helps to avoid the overtraining of the network
and enhances the generalisation in its dynamics, especially because only a short dataset was used
in this preliminary study of this problem. The quantitative result of this training process present a
mean absolute error MAE = 1.88 W m~2 which represents a percentage of 1.34 % in a variation
interval of [-2.98, 137.26], which is considered sufficient although the variations of the target are not
fully captured by the trained model.

1V.3.2.3 Virtual sensor validation

The best PCA-NARX model among the tested ones is selected to be the preliminary developed
virtual sensor for greenhouse ventilation flux in this work. The estimation of ventilation flux was
based on the calculated heat loss flux using the inverse formula of Q. , (inverse of Eq. II1.32). The
best PCA-NARX model was resulted after training and validating the network through a set of trial
and error processes in two cases:

1- Using a dataset combining both datasets obtained from different periods in winter and
spring seasons.

2-  Using only one dataset of the first period recorded in the winter season.

As presented in Table 19, the preliminary quantitative results using the combined dataset show
better performance than only using a separated dataset of one period presenting a MAE =
3.26 W m™2 for simulating the heat loss flux and leading to a MAE = 0.41 m3s™! which are both
considered very promising as preliminary results. Fig. 52 shows the qualitative results and

interesting performance of Q. , heat loss simulation can be observed in both diurnal and nocturnal

ven,a

periods and for both different datasets affected by the different vents control signals. Fig. 53 shows
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Figure 52. Estimated heat loss flux Qyen, as a target after training of the PCA-NARX model using the PCs as inputs

Table 19. Quantitative results of the validation process of the PCA-NARX virtual sensor

MAE Error persentage Variation interval
i Quena (W m™2) 3.26 3.93 % [0.08, 83.11]
Using the
combined dataset Vyen frux (M3s™1) 0.41 4.57 % [0.1, 5.96]
Only one dataset: Quena (W m™2) 6.27 547 % [0.14, 114.75]
from 27 March
2020 to 11 April Voen,frux (M3s™1) 0.95 14.23 % [0.1,12.74]
2020
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Validation process result
1 1 I

Heat loss flux, adaptive model Heat loss flux, PCA-NARX model ‘

100*‘

o
S

i
0 M‘%ﬁm@_ﬂ - I Y I

0 1000 2000 3000 4000

Heat loss (W m'z)

Ventilation flux, adaptive model Ventilation flux, virtual sensor‘

Ventilation flux (m3 5'1)

T
‘ From 27 March 2020 to 11 April 2020 ‘
1

1000 2000 3000 4000 5000
Time (min)

Persentage (%)
3
I

o

o

Figure 53. Validation of the virtual sensor for the estimation of ventilation flux Vyen aux based on the PCA-NARX model

the final qualitative results of Vi rp,x simulation as the targeted output of the virtual sensor that exhibits
an interesting performance. This supports the fact that the more diverse and large the dataset used for
training is, the more the dynamics of the resulting model are driven by the supplied data rather than
the bias parameters added by the ANN, and the more accurate the output is in terms of capturing
the variations in the target evolution. Simulating such a strongly nonlinear phenomenon with such
fast dynamics requires more than the provided information in this work. However, it is still

considered a preliminary result to help in leading to a better version of this solution.

IV.4 Conclusions

Greenhouse cultivation is always in need of continuous development and optimisation of
automatic systems. This work proposes a methodology for online parameter estimation for
greenhouse microclimate model adaptation as one of those possible greenhouse system
optimisations. It is proposed as an alternative to the periodic offline calibration of the time-varying
parameters, which is commonly considered a laborious procedure that consumes time and
computational resources. Thus, an online parameter estimator is developed in this chapter to
achieve the real-time adaptation of a greenhouse microclimate model and intends to thoroughly
study the time-varying parameters, aiming for optimal prediction performance. The more accurate
the model performance is, the more accurate the yield control, and the better the economic profits
are, quantitatively and qualitatively. The online estimator works based on the RSBA as an enhanced
variant of the nature-inspired BA algorithm. It has been developed in four phases: Firstly, an offline
model calibration using a real experimental dataset was achieved. Secondly, a sensitivity analysis
to investigate the influence of each parameter on the model outputs was performed, and it could be
concluded that the ventilation parameters can be considered constants for simplicity. Thirdly, an
online parameter estimation using real datasets of different agri-seasons was performed. The

performance of the developed online parameter estimator in adapting the greenhouse microclimate
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model has been evaluated from both physical and statistical points of view. The evolution of the
estimated time-varying parameters also proved that transpiration parameters could be considered
constants for simplicity. However, the parameters of convection and conduction processes should
be time-varying since they compensate for several physical dynamics, and their evolution is fast and
vastly varying according to their corresponding search ranges. Research works that include a
graphical illustration and a detailed discussion of the evolution of the time-varying parameters have

not been encountered in literature to be compared to the results presented in this chapter.

Qualitative and quantitative evaluation results show a very satisfactory performance of the

adaptive microclimate model and the online estimator in terms of:

- The accuracy in predicting the internal air temperature and simulating the internal solar
radiation is due to the successful microclimate model adaptation.

- The efficiency of the online parameter estimation mechanism respects the defined constraints,
in turn, the physical sense of the time-varying parameters.

- The robustness of the online estimator against:

- The changing weather conditions (calm, cloudy, rainy and windy days)

- The uncertainty after installing the second plastic cover.

- The limited total time consumption of every parameter estimation process allows for a future
adaptation of more microclimate models and controllers in real time.

- The successful adaptation of both models supports the possibility of using the developed
online estimator for the adaptation of a set of connected or interconnected microclimate models
representing a greenhouse MIMO model, for example, taking into account air temperature, air

humidity, solar radiation and CO2 concentration models, among others.

Finally, the real-time implementation of the proposed online estimator was tested in an
experimental greenhouse under Mediterranean climate conditions. The results exhibited an
outstanding performance of the estimator in adapting the models in different agri-seasons,
presenting an average error of less than 0.28 °C for air temperature prediction and 20 Wm™2 for solar
radiation simulation. It proves the successful adaptation methodology and the efficiency of the

developed online estimator for greenhouse microclimate model adaptation.

As a future perspective, the estimation mechanism can be improved by automating the selection
of the estimator settings in real-time. The methodology proposed in Section 3 could be applied to
adapt other models for different microclimate variables considering the greenhouse as a MIMO
system. Preliminary results show that the estimator could be applied without an initial offline
calibration stage to other similar greenhouses in different locations to study the variability of the
parameters and their dependence on the weather conditions, the type of greenhouse structure and
the dimensions of its actuators. In addition, its application could highly be possible in other fields,
to other time-delay systems and might also be possible with real-time operating systems.
Furthermore, a potential application for the developed online parameter estimator is related to

adaptive control and nonlinear control since these kinds of strategies usually trust the equations of
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a model to calculate a control signal. Therefore, the solution presented in this work could help to

improve the performance of automatic control strategies for greenhouses.

In greenhouses, the absence of measurements for the opening percentage of vents (vents control
signal) complicates the calculation of the ventilation flux. For this reason, a virtual sensor for
greenhouse ventilation flux has been proposed as the second contribution in this chapter. It is
designed based on a PCA-NARX model following the methodology illustrated in Fig. 46. A
measurements dataset generated from a Mediterranean multi-span greenhouse located in Almeria,
Spain, has been used. A complete dataset has been prepared by combining the measured
microclimate variables and the calculated heat fluxes of an adaptive air temperature model, all from
different periods of winter and spring seasons. A set of PCs was generated using PCA with the
dataset, leading to a significant data dimensional reduction. The resulting components are
considered the new inputs of the neural network, and the calculated heat loss flux due to natural
ventilation was considered a real target. Thus, the network was trained using the prepared inputs

to fit the real target to estimate the ventilation flux as the primary objective.

Preliminary quantitative and qualitative results have been obtained in this work. The validation
process of the developed virtual sensor has presented a MAE = 0.41 m3s™* which represents an
error percentage of 4.57% between the estimated ventilation flux without considering the vents
control signal and the calculated ventilation flux using the vents control signal. The qualitative result
shows that the variations of ventilation flux are captured acceptably by the virtual sensor even

though the vents control signal included different patterns.

As conclusions and future perspectives, the preliminary results obtained in this work support
the fact that developing a superior and reliable virtual sensor for long-term applications calls for

some essential requirements and potential procedures that could be highlighted as follows:

- A large database of at least one year or several datasets from different seasons have to
be provided, consisting of the needed measured and calculated variables representing
the inputs and the target for the proposed PCA-NARX model.

- More greenhouse environment dynamics (e.g., the difference between internal and
external CO2 concentration) should be analysed to obtain more correlated variables to

the greenhouse ventilation flux if they exist.

- The correlation between the target and the provided measured and calculated data has

to be more investigated from different perspectives using other data analysis techniques.

- Different structures of the NARX model and other data-driven modelling methods could

be investigated.

Based on the fact that the correlation between the inputs and the target can change depending on
the climate conditions (calm, windy and cloudy days, etc.), a classification technique and multiple

data-driven models can be obtained for each climate scenario for more accurate performance.
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Chapter V: Conclusion and Future perspectives

V.1 Conclusions

Following the defined objectives in the primary work plan, a set of contributions have been

successfully achieved in this thesis. They are briefly described as follows:

1.

A gable-shaped small-scale greenhouse prototype was constructed to be used as a nursery in
an arid region, Meziraa, Biskra, Algeria. It included designing a low-cost microcontroller-
based data acquisition system for the wireless monitoring of the prototype. They have been
used to acquire a modest dataset including climate variables from inside and outside
environments of the greenhouse prototype under moderate desert climate conditions. This
project was chosen as the best project in the exhibition of the International Symposium of
Technology and Sustainable Industry Development 2019 (ISTSID), EI-Oued, Biskra, Algeria.
The successfully acquired dataset was used in the investigations of two international

conferences.

A nonlinear grey-box model of greenhouse air temperature is proposed. It describes the
inside air temperature as a set of heat exchange processes generated by the differences in
energy content between the inside and outside air. This model was derived by reformulating
a physical-based model. The reformulation includes having new static parameters linearly
dependent that have to be identified based on offline parameter estimation using the acquired
dataset from the greenhouse prototype. A less complicated model has been derived for
greenhouse air temperature prediction. The lack of information on the system parameters is
considered a kind of uncertainty in greenhouse models. For this issue, the commonly known
metaheuristic bio-inspired algorithm called the Random inertia weight particle swarm
optimisation algorithm (RIWPSO) was chosen to be implemented in the proposed model for

model calibration as an offline parameter estimation method.

An enhanced variant of the Bat Algorithm (BA) is proposed in this thesis and also
implemented in the proposed grey-box temperature model. It is called the Random scaling-
based bat algorithm (RSBA). It was used to identify the unknown values of the proposed static
parameters of the model through an offline estimation process. The RSBA was proven to have
superior performance to the standard BA in terms of accuracy and speed of convergence.
Finally, another comparative study has been carried out on the performance of RIWPSO and
RSBA in identifying the parameters of the grey-box model and the prediction accuracy of the
different obtained greenhouse air temperature models. The results have shown the
superiority of the RIWPSO over the RSBA in solving the problem at hand. However, the
RSBA could still be more useful against other different problems, such as the online
parameter estimation in real-time, where the advantage of the early convergence to

optimality can be necessary due to time constraints.

A methodology for online parameter estimation is proposed for the adaptation of a
greenhouse climate model. It is proposed as an alternative to the laborious periodical offline

calibration of the time-varying parameters, which is commonly considered a laborious
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procedure that consumes time and computational resources. Specifically, an online parameter
estimator is developed to achieve the real-time adaptation of a greenhouse microclimate
model and intends to thoroughly study the time-varying parameters, aiming for optimal
prediction performance. The online estimator works based on the RSBA as an enhanced
variant of the nature-inspired BA algorithm. The performance of the developed online
parameter estimator in adapting the greenhouse microclimate model has been evaluated
from both physical and statistical points of view. The evolution of the estimated time-varying
parameters has proven that transpiration parameters could be considered constants for
simplicity. However, the parameters of convection and conduction processes should be time-
varying. Qualitative and quantitative evaluation results have shown a very satisfactory

performance of the adaptive microclimate model and the online estimator in terms of:

- The very low prediction error, which is less than 0.28 °C for air temperature

prediction and 20 Wm™2 for solar radiation simulation.

- The efficiency of the online parameter estimation mechanism respects the defined

constraints, in turn, respects the physical sense of the time-varying parameters.
- The robustness of the online estimator against:
- The changing weather conditions (calm, cloudy, rainy and windy days)
- The uncertainty after installing the second plastic cover.

- The limited total time consumption of every parameter estimation process allows for

a future adaptation of more microclimate models and controllers in real time.

- The successful adaptation of both models supports the possibility of using the
developed online estimator to adapt a set of connected or interconnected
microclimate models representing a greenhouse MIMO model, for example,
considering air temperature and air humidity, solar radiation and CO: concentration

models, among others.

Research works that include a graphical illustration and a detailed discussion of the
evolution of the time-varying parameters have not been encountered in literature to be
compared to the results presented in this paper. The more accurate the model performance,
the more accurate the yield control and the better the economic profits quantitatively and

qualitatively.

5. A virtual sensor for greenhouse ventilation flux has been developed based on PCA-NARX
modelling following the methodology explained in detail in the folds of this chapter. A
dataset has been generated from a Mediterranean multi-span greenhouse located at “Las
Palmerillas” Experimental Station, which is a property of the Cajamar Foundation (36.79316
latitudes, -2.72014 longitude). The dataset includes a combination of measured microclimate
variables and the evolutions of greenhouse heat fluxes. The heat fluxes were estimated using

an adaptive air temperature model due to its capability of providing their optimal estimations
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with an error of <5% between a set of the same tests and its reliability in estimating the
greenhouse ventilation flux without installing expensive sensors. All the obtained variables
were first processed by: signal filtring, centralisation, reduction and standardisation.
Secondly, the treated dataset was used to generate the PCs for data reduction using PCA.
These PCs are then considered the new inputs of the neural network. Thus, the network was
trained based on the PCs to fit the target, which is the estimated heat loss using the opening
percentage of the roof and side vents based on the previously mentioned explicit approach.
Finally, the estimated heat loss flux was used to inversely calculate the ventilation flux
representing the ultimate objective of the proposed virtual sensing method. The validation of

this developed virtual sensor has shown promising preliminary results.

V.2 Future perspectives

The proposed grey-box modelling methodology can be used for energy balance studies of
greenhouses. It could also be adopted as a tool to study different climate conditions or for practical
applications of control systems. This study paves the way for future investigations on applying a
cooling system to overcome the harsh summer climate of arid regions. The proposal of the RSBA
paves the way for future investigation on developing a novel mechanism that will make the scaling

parameter changes adaptatively with the closeness to finding the optimal solution.

Concerning the development of the RSBA-based online parameter estimator, the estimation
mechanism can be improved by automating the selection of the estimator settings in real-time. The
methodology proposed in Section 3 could be applied to adapt other models for different
microclimate variables considering the greenhouse as a MIMO system. Preliminary results show
that the estimator could be applied without an initial offline calibration stage to other similar
greenhouses in different locations to study the variability of the parameters and their dependence
on the weather conditions, the type of greenhouse structure and the dimensions of its actuators. In
addition, its application could highly be possible in other fields, to other time-delay systems and
might also be possible with real-time operating systems. Furthermore, a potential application for
the developed online parameter estimator is related to adaptive control and nonlinear control since
these kinds of strategies usually trust the equations of a model to calculate a control signal.
Therefore, the solution presented in this work could help to improve the performance of automatic

control strategies for greenhouses.

Regarding the developed ventilation flux virtual sensor, the preliminary obtained results
support the fact that developing a superior and reliable virtual sensor for long-term applications

calls for some essential requirements and potential procedures that could be highlighted as follows:

- A large dataset of at least one year or several datasets from different seasons has to be
provided, consisting of the needed measured and calculated variables representing the
inputs and the target for the proposed PCA-NARX model.
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- More greenhouse environment dynamics (e.g., the difference between internal and external
CO: concentration) should be analysed to obtain more correlated variables to the

greenhouse ventilation flux if they exist.

- The correlation between the target and the provided measured, and calculated data has to
be more investigated from different perspectives using other data analysis techniques.

- Different structures of the NARX model and other data-driven modelling methods could
be investigated.

Based on the fact that the correlation between the inputs and the target can change depending on
the climate conditions (calm, windy and cloudy days, etc), a classification technique and multiple

data-driven models can be obtained for each climate scenario for more accurate performance.

It could be very interesting to model other climate variables like humidity, CO2, and even crop
growth variables. Concerning the application of control techniques, the developed adaptive model
in this thesis can be of very efficient and reliable use as a greenhouse digital twin to test many control

strategies and methods.
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