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Abstract: In this work, we estimate the depth in which domestic waste are located in space
from a mobile robot in outdoor scenarios. As we are doing this calculus on a broad range of
space (0.3 - 6.0 m), we use RGB-D camera and LiDAR fusion. With this aim and range, we
compare several methods such as average, nearest, median and center point, applied to those
which are inside a reduced or non-reduced Bounding Box (BB). These BB are obtained from
segmentation and detection methods which are representative of these techniques like Yolact,
SOLO, You Only Look Once (YOLO)v5, YOLOv6 and YOLOv7. Results shown that, applying
a detection method with the average technique and a reduction of BB of 40%, returns the
same output as segmenting the object and applying the average method. Indeed, the detection
method is faster and lighter in comparison with the segmentation one. The committed median
error in the conducted experiments was 0.0298 ± 0.0544 m.
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1. INTRODUCTION

Numerous efforts have been made in recent years to try to
reduce the amount of waste produced in the European
Union (EU). According to Eurostat (2020), at the end
of 2020, 205.1 million tonnes of domestic waste were
produced. That is to say 465.31 kg per person per year.
This problem must be taken into account and solved in
order to achieve a better future for society. Using robotic
and artificial intelligence systems that allow domestic
waste to be categorized and manipulated may be a possible
solution. This is achieved by measuring the robot-object
distances to facilitate the robot’s approach maneuvers to
the domestic waste for further manipulation, although
these parts are outside of this work.

For this purpose, depth has to be calculated. We can find
several methods in the literature, such as in Liao et al.
(2017), Solak and Bolat (2018) and Sathyamoorthy et al.
(2021). In Liao et al. (2017) depth between 0.1 and 2.1
m is calculated using monocular images and scarce 2D
laser range data. Concretely, a residual of residual Neural
Network (NN) combines category and regression losses for
a continuous depth estimation. An error of 0.00442 m is
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produced. In Solak and Bolat (2018) depth between 0.4
and 1.8 m is calculated using a new hybrid stereovision-
based distance-estimation approach. After triangulating,
a look up table and a curve-fitting method are used. The
observed error was of 0.0266 m. In Sathyamoorthy et al.
(2021) it is determined whether two people maintain a
safe distance to avoid contagion from Coronavirus disease
(COVID-19). To do this, the detection of humans is done
using YOLOv3 and, subsequently, the shortest distance
is obtained as the depth. The error is 0.09 m for objects
between 0.5 and 4.0 m.

Once the technology to use is decided, several techniques
are used in Tornero et al. (2022), Nguyen et al. (2021),
Sathyamoorthy et al. (2021) and Hernandez-Vicen et al.
(2021) to get the depth in which an object is and its size.
In Tornero et al. (2022) they use a RGB-D camera from
which they get the depth image from the central point of
the object’s BB. It gives an average error of 0.14 ± 0.07
m in the X axis and 0.11 ± 0.06 in the Y axis in a range
of distances between 0.3 - 3.0 m. In Nguyen et al. (2021)
the noisy and background points are eliminated using a
clustering method and, after that, depth is calculated as
the mean value of the remaining pixels. However, this
method works at distances between 0.40 and 1.40 m, with
an error of no more than 0.028 m. In Sathyamoorthy et al.
(2021) after detecting the people, the image inside the BB
is obtained and the average of the 10% of the pixels with
the shortest distance is used as depth. In Hernandez-Vicen
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reduce the amount of waste produced in the European
Union (EU). According to Eurostat (2020), at the end
of 2020, 205.1 million tonnes of domestic waste were
produced. That is to say 465.31 kg per person per year.
This problem must be taken into account and solved in
order to achieve a better future for society. Using robotic
and artificial intelligence systems that allow domestic
waste to be categorized and manipulated may be a possible
solution. This is achieved by measuring the robot-object
distances to facilitate the robot’s approach maneuvers to
the domestic waste for further manipulation, although
these parts are outside of this work.

For this purpose, depth has to be calculated. We can find
several methods in the literature, such as in Liao et al.
(2017), Solak and Bolat (2018) and Sathyamoorthy et al.
(2021). In Liao et al. (2017) depth between 0.1 and 2.1
m is calculated using monocular images and scarce 2D
laser range data. Concretely, a residual of residual Neural
Network (NN) combines category and regression losses for
a continuous depth estimation. An error of 0.00442 m is
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produced. In Solak and Bolat (2018) depth between 0.4
and 1.8 m is calculated using a new hybrid stereovision-
based distance-estimation approach. After triangulating,
a look up table and a curve-fitting method are used. The
observed error was of 0.0266 m. In Sathyamoorthy et al.
(2021) it is determined whether two people maintain a
safe distance to avoid contagion from Coronavirus disease
(COVID-19). To do this, the detection of humans is done
using YOLOv3 and, subsequently, the shortest distance
is obtained as the depth. The error is 0.09 m for objects
between 0.5 and 4.0 m.

Once the technology to use is decided, several techniques
are used in Tornero et al. (2022), Nguyen et al. (2021),
Sathyamoorthy et al. (2021) and Hernandez-Vicen et al.
(2021) to get the depth in which an object is and its size.
In Tornero et al. (2022) they use a RGB-D camera from
which they get the depth image from the central point of
the object’s BB. It gives an average error of 0.14 ± 0.07
m in the X axis and 0.11 ± 0.06 in the Y axis in a range
of distances between 0.3 - 3.0 m. In Nguyen et al. (2021)
the noisy and background points are eliminated using a
clustering method and, after that, depth is calculated as
the mean value of the remaining pixels. However, this
method works at distances between 0.40 and 1.40 m, with
an error of no more than 0.028 m. In Sathyamoorthy et al.
(2021) after detecting the people, the image inside the BB
is obtained and the average of the 10% of the pixels with
the shortest distance is used as depth. In Hernandez-Vicen
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solution. This is achieved by measuring the robot-object
distances to facilitate the robot’s approach maneuvers to
the domestic waste for further manipulation, although
these parts are outside of this work.

For this purpose, depth has to be calculated. We can find
several methods in the literature, such as in Liao et al.
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produced. In Solak and Bolat (2018) depth between 0.4
and 1.8 m is calculated using a new hybrid stereovision-
based distance-estimation approach. After triangulating,
a look up table and a curve-fitting method are used. The
observed error was of 0.0266 m. In Sathyamoorthy et al.
(2021) it is determined whether two people maintain a
safe distance to avoid contagion from Coronavirus disease
(COVID-19). To do this, the detection of humans is done
using YOLOv3 and, subsequently, the shortest distance
is obtained as the depth. The error is 0.09 m for objects
between 0.5 and 4.0 m.

Once the technology to use is decided, several techniques
are used in Tornero et al. (2022), Nguyen et al. (2021),
Sathyamoorthy et al. (2021) and Hernandez-Vicen et al.
(2021) to get the depth in which an object is and its size.
In Tornero et al. (2022) they use a RGB-D camera from
which they get the depth image from the central point of
the object’s BB. It gives an average error of 0.14 ± 0.07
m in the X axis and 0.11 ± 0.06 in the Y axis in a range
of distances between 0.3 - 3.0 m. In Nguyen et al. (2021)
the noisy and background points are eliminated using a
clustering method and, after that, depth is calculated as
the mean value of the remaining pixels. However, this
method works at distances between 0.40 and 1.40 m, with
an error of no more than 0.028 m. In Sathyamoorthy et al.
(2021) after detecting the people, the image inside the BB
is obtained and the average of the 10% of the pixels with
the shortest distance is used as depth. In Hernandez-Vicen

et al. (2021) they use the depth estimation to compute the
size of an object in order to grasp it.

In this work, we propose a method for detecting domes-
tic waste in outdoor environments, by means of several
approaches which use the detected BB or the object’s
segmentation employing deep learning. Once detected or
segmented, with the aim of calculating the distance at
which it is located, we use several techniques such as the
shorter, median or average value of the pixels are employed
in order to get at which depth objects are. Moreover, we
aim to increase the detection range up to 6.0 m while
maintaining an error similar to the state-of-the-art work.

2. METHODOLOGY

2.1 Object Detection and Segmentation Methods

For finding the region of the image in which the object
is, several NN are used. Two kinds of NN have been
considered in this work, since a bunch of them segment
the objects, meanwhile other group just detect the BB.
The first kind is semantic segmentation with Yolact (Bolya
et al. (2019)), SOLO (Wang et al. (2020a)) and SOLOv2
(Wang et al. (2020b)). The second one is the semantic
detection with YOLOv5 (Jocher et al. (2022)), YOLOv6
(Li et al. (2022)) and YOLOv7 (Wang et al. (2022)).

These NN were trained to detect domestic waste with our
own dataset with a NVIDIA DGX-A100 Tensor Core GPU
with 40 GB of RAM memory. The result is classifying or
segmenting the objects in one of the following categories:
plastic, carton, glass and metal. The dataset is composed
of 6504 images in 11 different scenarios, having the same
number of samples for each category. We split it in train,
validation and test following the 70/20/10 proportion.
Results of the training process can be seen in Table 1 and 2.
Although having categories during the training, the aim of
the current research was getting the depth in which objects
are. That is the reason we omit the category part and just
detecting domestic waste with no categories. The furthest
labeled object is at approximately 6.0 m, so that is the
reason behind limiting the depth position of the objects in
this work.

Table 1. Semantic segmentation NN compari-
son.

Neural mAP mAP Recall Inference
network @0.75 @0.90 time (ms)

Yolact a 0.9749 0.6416 0.8880 17.64
Yolact b 0.9847 0.7105 0.9020 17.55
SOLO a 0.9562 0.6230 0.8811 38.75

SOLO light a 0.9271 0.5650 0.8583 30.74
SOLOv2 c 0.5450 0.2040 0.7950 22.38

SOLOv2 light a 0.9578 0.6170 0.8618 25.60

Note: [a] ResNet 50, [b] DarkNet 53, [c] ResNet 34

We choose the best two models in detection and segmenta-
tion tasks, considering those which have the highest Mean
Average Precision (mAP) and recall, and the lowest infer-
ence time and number of parameters. Our choice is clear in
the segmentation task (Yolact with DarkNet-53) but not in
the detection one. Because that, we picked YOLOv5-nano
and YOLOv5-small since they offer us a high mAP with
a small dataset (6504 images), low number of parameters

Table 2. Semantic detection NN comparison.

Neural mAP mAP Recall Parameters Inference
network @0.75 @0.90 (Million) time(ms)

YOLOv5-nano 0.9070 0.6538 0.8370 1.9 0.64
YOLOv5-small 0.9917 0.8371 0.9920 7.2 7.410
YOLOv5-large 0.9918 0.8747 0.9970 46.5 14.65
YOLOv6-nano 0.9630 0.7571 0.8970 4.3 7.96
YOLOv6-tiny 0.9740 0.7114 0.9070 15.0 8.26
YOLOv6-large 0.9790 0.8430 0.9320 58.5 14.65

YOLOv7 0.8234 0.5936 0.8100 36.9 11.10

and low inference time. Considering that, YOLOv5-large,
YOLOv6-large and YOLOv7 are discarded. These NN are
slower and need more computational resources compared
to YOLOv5-nano and YOLOv5-small.

2.2 LiDAR-Camera Fusion

Subsequent to the detection of an object in an outdoor
environment with the models of detection and segmenta-
tion selected in the previous Section 2.1, we implement
an object depth estimation method using the fusion of
an RGB-D camera and a LiDAR. A calibration of both
sensors is required to use the LiDAR data in conjunction
with the image from the RGB-D camera. Dhall et al.
(2017) presents a LiDAR-Camera calibration method that
determines the extrinsic parameters (cRl,

ctl) between the
sensors, which represent the rotation and translation ma-
trix between LiDAR and camera. These values are used to
convert the LiDAR point cloud to projected points on the
image plane. Once the extrinsic parameters are obtained,
we calculate the projections of the point cloud (Xl, Yl, Zl)
with (1), where ul and vl are the coordinates in pixels on
the image plane for width and height respectively and ⊙
represent the Hadamard product between the (u, v) and e
obtained from (2), where Mc is the camera’s intrinsic pa-
rameters matrix. In addition, (ul,vl) ∈ Z+, and are within
the range of the camera’s RGB-D image dimensions.

ul = u⊙ ( e )−1

vl = v ⊙ ( e )−1 (1)


u
v
e


= Mc


cRl

ctl
0 1


·
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(a) Point cloud on image (b) Point cloud interpolated

Fig. 1. LiDAR projected points with both normal and
interpolated state.

Fig. 1a shows the LiDAR projected points on the image
plane. Due to the low vertical density of the point cloud, we
interpolated the LiDAR data using Velasco (2022) method,
thus increasing the projected points to double, as shown in
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et al. (2021) they use the depth estimation to compute the
size of an object in order to grasp it.

In this work, we propose a method for detecting domes-
tic waste in outdoor environments, by means of several
approaches which use the detected BB or the object’s
segmentation employing deep learning. Once detected or
segmented, with the aim of calculating the distance at
which it is located, we use several techniques such as the
shorter, median or average value of the pixels are employed
in order to get at which depth objects are. Moreover, we
aim to increase the detection range up to 6.0 m while
maintaining an error similar to the state-of-the-art work.

2. METHODOLOGY

2.1 Object Detection and Segmentation Methods

For finding the region of the image in which the object
is, several NN are used. Two kinds of NN have been
considered in this work, since a bunch of them segment
the objects, meanwhile other group just detect the BB.
The first kind is semantic segmentation with Yolact (Bolya
et al. (2019)), SOLO (Wang et al. (2020a)) and SOLOv2
(Wang et al. (2020b)). The second one is the semantic
detection with YOLOv5 (Jocher et al. (2022)), YOLOv6
(Li et al. (2022)) and YOLOv7 (Wang et al. (2022)).

These NN were trained to detect domestic waste with our
own dataset with a NVIDIA DGX-A100 Tensor Core GPU
with 40 GB of RAM memory. The result is classifying or
segmenting the objects in one of the following categories:
plastic, carton, glass and metal. The dataset is composed
of 6504 images in 11 different scenarios, having the same
number of samples for each category. We split it in train,
validation and test following the 70/20/10 proportion.
Results of the training process can be seen in Table 1 and 2.
Although having categories during the training, the aim of
the current research was getting the depth in which objects
are. That is the reason we omit the category part and just
detecting domestic waste with no categories. The furthest
labeled object is at approximately 6.0 m, so that is the
reason behind limiting the depth position of the objects in
this work.

Table 1. Semantic segmentation NN compari-
son.

Neural mAP mAP Recall Inference
network @0.75 @0.90 time (ms)

Yolact a 0.9749 0.6416 0.8880 17.64
Yolact b 0.9847 0.7105 0.9020 17.55
SOLO a 0.9562 0.6230 0.8811 38.75

SOLO light a 0.9271 0.5650 0.8583 30.74
SOLOv2 c 0.5450 0.2040 0.7950 22.38

SOLOv2 light a 0.9578 0.6170 0.8618 25.60

Note: [a] ResNet 50, [b] DarkNet 53, [c] ResNet 34

We choose the best two models in detection and segmenta-
tion tasks, considering those which have the highest Mean
Average Precision (mAP) and recall, and the lowest infer-
ence time and number of parameters. Our choice is clear in
the segmentation task (Yolact with DarkNet-53) but not in
the detection one. Because that, we picked YOLOv5-nano
and YOLOv5-small since they offer us a high mAP with
a small dataset (6504 images), low number of parameters

Table 2. Semantic detection NN comparison.

Neural mAP mAP Recall Parameters Inference
network @0.75 @0.90 (Million) time(ms)

YOLOv5-nano 0.9070 0.6538 0.8370 1.9 0.64
YOLOv5-small 0.9917 0.8371 0.9920 7.2 7.410
YOLOv5-large 0.9918 0.8747 0.9970 46.5 14.65
YOLOv6-nano 0.9630 0.7571 0.8970 4.3 7.96
YOLOv6-tiny 0.9740 0.7114 0.9070 15.0 8.26
YOLOv6-large 0.9790 0.8430 0.9320 58.5 14.65

YOLOv7 0.8234 0.5936 0.8100 36.9 11.10

and low inference time. Considering that, YOLOv5-large,
YOLOv6-large and YOLOv7 are discarded. These NN are
slower and need more computational resources compared
to YOLOv5-nano and YOLOv5-small.

2.2 LiDAR-Camera Fusion

Subsequent to the detection of an object in an outdoor
environment with the models of detection and segmenta-
tion selected in the previous Section 2.1, we implement
an object depth estimation method using the fusion of
an RGB-D camera and a LiDAR. A calibration of both
sensors is required to use the LiDAR data in conjunction
with the image from the RGB-D camera. Dhall et al.
(2017) presents a LiDAR-Camera calibration method that
determines the extrinsic parameters (cRl,

ctl) between the
sensors, which represent the rotation and translation ma-
trix between LiDAR and camera. These values are used to
convert the LiDAR point cloud to projected points on the
image plane. Once the extrinsic parameters are obtained,
we calculate the projections of the point cloud (Xl, Yl, Zl)
with (1), where ul and vl are the coordinates in pixels on
the image plane for width and height respectively and ⊙
represent the Hadamard product between the (u, v) and e
obtained from (2), where Mc is the camera’s intrinsic pa-
rameters matrix. In addition, (ul,vl) ∈ Z+, and are within
the range of the camera’s RGB-D image dimensions.
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Fig. 1. LiDAR projected points with both normal and
interpolated state.

Fig. 1a shows the LiDAR projected points on the image
plane. Due to the low vertical density of the point cloud, we
interpolated the LiDAR data using Velasco (2022) method,
thus increasing the projected points to double, as shown in
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(a) Camera RGB-D depth image (b) LiDAR depth projections (c) LiDAR and camera depths com-
bined

Fig. 2. RGB-D camera depth image and LiDAR data projection combined on the image plane to determine object
distances in outdoor environments.

Fig. 1b. In this way, the point cloud is virtually increased
and distances to small objects are estimated, where the
original point cloud was not projected. Once the RGB-
D camera and LiDAR are calibrated, the camera depth
image (see Fig. 2a) and the LiDAR depth data (see Fig.
2b) projected on the image plane are combined, as shown
in Fig. 2c. In this way, the area where the LiDAR point
cloud was not projected is completed with the RGB-D
camera depth image. Thus, the distances of the scenario
are obtained, where the RGB-D camera depth image is
used for small distances of 0.3 - 3.0 m and the LiDAR
projected depth image is used for distances greater than
3.0 m.

Therefore, we estimate the distance between camera and
detected object by means of a depth image dI, which has
equal dimensions to the RGB image where the object was
detected.

2.3 Depth Estimation Methods

Regarding the methods to calculate the depth, four are
considered. We extract the data from the points in the
depth image dI with the area of objects’ BB or mask and
get the average (3), median (4), closest (6) and center
point (7). Data in the depth image where dI(u, v) = 0
are disregarded, because these are coordinates where the
LiDAR point cloud was not reflected or are noise from the
deep channel of the RGB-D camera.

average =
1

n ·m

n
u=0

m
v=0

[dIbb(u, v) ̸= 0] (3)

where dIbb is the part of the depth image (dI) correspond-
ing to the object detected, n is the height and m is the
width of the BB.

median =
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1

2
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, if n = even

(4)

dIs = sort(dIbb) (5)

where dIs is the sorted vector of the BB depth values (5).

nearest = argmin(dIbb ̸= 0) (6)

center =

dIbb(u

′, v′), ∀(u′, v′) =
u

2
,
v

2


(7)

We then compare the results obtained with the directly
measured depth data in order to determine which method
is the most accurate.

3. EXPERIMENTS AND RESULTS

3.1 Experiment Setup

For doing the experiments, we use several scenarios in
outdoor environments as show in Fig. 3. These scenarios
are different from those used during the training. This
method has been implemented on an intel 2.60GHz 6-
core processor and a GPU NVIDIA GeForce GTX 1660 Ti
with 6 GB of RAM memory. For taking RGB images, an
Intel® RealSense™ D435i camera is used with a resolution
of 640x480 at 15 Frames Per Second (FPS). If the objects
are further from 3.0 m, a LiDAR Velodyne VLP-16 sensor
is employed. This sensor allows a measurement frequency
of 20 Hz. All this technology is mounted in our research
platform BLUE: roBot for Localization in Unstructured
Environments, which was developed in Del Pino et al.
(2020), as shown in the Fig. 4a. For this application, we
use the platform as a static element to employ its sensors
in order to get the depth estimation in which objects
are for a future navigation and grasping project. In the
experiments, the LiDAR-camera matrix transformation
(cRl,

ctl) in (2) is defined as cTl, as shown in Fig. 4b.
In our specific test environment, the objects closer to 1.7
m cannot be detected since they are occluded by the body
of the robot.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 3. Visualization of the outdoor scenarios with the used
sensors and detectable objects positioned.

We conduct three experiments in different scenarios in
order to obtain the best method for estimating the depth

(a) BLUE: roBot for Localization
in Unstructured Environments
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Fig. 4. Sensors setup used in the experiments.

of objects. In all of them, the ground truth is obtained
measuring by hand the distance between the camera and
the object, so that we can compare each method with it.

3.2 Experiment 1

In this experiment, we checked which method from those
described in Section 2.3 obtain the best depth estimation.
In addition, we compare whether segmenting the detected
object or just using the BB is necessary to get the depth.
After obtaining it, we applied a reduction in the BB size
to determine if this parameter affects the final results. For
that purpose, eight objects are positioned in the scenario
and their distances are measured, as shown in Fig. 5a. We
then applied Yolact with DarkNet-53 to the image with the
methods described in Section 2.3 to segment and obtain a
BB for the object.
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2.64
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(a) Ground truth

(b) Yolact segmentation (c) Yolact BB

Fig. 5. First scenario with (a) the ground truth, (b) Yolact
segmentation and (c) Yolact detection with BB partial
reduction.

The results of this step are shown in Fig. 6. As it can
be seen, the lowest error is produced with the average
method in Fig. 6a in comparison with the median 6b and
the nearest 6c methods. The center method has a huge
estimated depth error since it did not overlap with any
point of the LiDAR’s projection. In that case, the depth
value to that point is zero, as shown in Fig. 6d. Applying

the average method with Yolact segmentation, Fig. 5b is
obtained with an estimated error of 0.0249 ± 0.0166 m.
Once the best method is identified, we modify the size of
the BB, reducing it by a percentage. The reduction of BB
makes calculation process lighter since we would have less
candidate points to compute in the loop to get the depth.

(a) Average method (b) Median method

(c) Nearest method
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Fig. 6. Error using (a) average, (b) median and (c) nearest
methods with several BB reduction. The darker the
blue is, the better the depth estimation will be. (d)
Depth estimation with center method.
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Fig. 7. Mean error and deviation of average method. BB
reduction versus accumulated error respectively. Mask
and 40% reduction of BB have similar errors.

In Fig. 7 we can see that reducing the size of the BB
by 40% returns similar results as if only the pixels of the
mask are used. Applying it to Fig. 5b, we obtain Fig. 5c.
Depth values in this scenario give us similar results, with
an estimated error of 0.02545 ± 0.01638 m, which is only
0.55 mm bigger than the error obtained when we used the
mask of the object, however the whole process becomes
lighter.

3.3 Experiment 2

In the second experiment, we tested if using a detection
method like YOLO returns a similar error to experiment
1, shown in Section 3.2.

Moving to a new scenario, six objects are positioned and
real distances to the objects are measured, obtaining the
layout shown in Fig. 8a. We then analyze the image with
Yolact with DarkNet-53 and the partially reduced BB
method with YOLOv5-small, getting the results shown
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of objects. In all of them, the ground truth is obtained
measuring by hand the distance between the camera and
the object, so that we can compare each method with it.

3.2 Experiment 1

In this experiment, we checked which method from those
described in Section 2.3 obtain the best depth estimation.
In addition, we compare whether segmenting the detected
object or just using the BB is necessary to get the depth.
After obtaining it, we applied a reduction in the BB size
to determine if this parameter affects the final results. For
that purpose, eight objects are positioned in the scenario
and their distances are measured, as shown in Fig. 5a. We
then applied Yolact with DarkNet-53 to the image with the
methods described in Section 2.3 to segment and obtain a
BB for the object.
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Fig. 5. First scenario with (a) the ground truth, (b) Yolact
segmentation and (c) Yolact detection with BB partial
reduction.

The results of this step are shown in Fig. 6. As it can
be seen, the lowest error is produced with the average
method in Fig. 6a in comparison with the median 6b and
the nearest 6c methods. The center method has a huge
estimated depth error since it did not overlap with any
point of the LiDAR’s projection. In that case, the depth
value to that point is zero, as shown in Fig. 6d. Applying

the average method with Yolact segmentation, Fig. 5b is
obtained with an estimated error of 0.0249 ± 0.0166 m.
Once the best method is identified, we modify the size of
the BB, reducing it by a percentage. The reduction of BB
makes calculation process lighter since we would have less
candidate points to compute in the loop to get the depth.

(a) Average method (b) Median method

(c) Nearest method
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(d) Center method

Fig. 6. Error using (a) average, (b) median and (c) nearest
methods with several BB reduction. The darker the
blue is, the better the depth estimation will be. (d)
Depth estimation with center method.
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Fig. 7. Mean error and deviation of average method. BB
reduction versus accumulated error respectively. Mask
and 40% reduction of BB have similar errors.

In Fig. 7 we can see that reducing the size of the BB
by 40% returns similar results as if only the pixels of the
mask are used. Applying it to Fig. 5b, we obtain Fig. 5c.
Depth values in this scenario give us similar results, with
an estimated error of 0.02545 ± 0.01638 m, which is only
0.55 mm bigger than the error obtained when we used the
mask of the object, however the whole process becomes
lighter.

3.3 Experiment 2

In the second experiment, we tested if using a detection
method like YOLO returns a similar error to experiment
1, shown in Section 3.2.

Moving to a new scenario, six objects are positioned and
real distances to the objects are measured, obtaining the
layout shown in Fig. 8a. We then analyze the image with
Yolact with DarkNet-53 and the partially reduced BB
method with YOLOv5-small, getting the results shown
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Fig. 8. Second scenario with (a) the ground truth, (b)
Yolact and (c) YOLOv5-small detection with BB
partial reduction.

in Fig. 8b and 8c respectively. In both cases, the average
method is used to calculate the depth. To compare which
method works better, errors are calculated (see Fig. 9).
There is an error of 0.0218 ± 0.0079 m in the mask
segmentation process, meanwhile in the detection one we
have an error of 0.0219 ± 0.0078 m.
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Fig. 9. Error using average method, with both YOLOv5-
small and Yolact.

These results point out that segmenting the object is
nearly the same as detecting it with the average method
and applying a 40% BB reduction, simplifying the estima-
tion of the depth.

3.4 Experiment 3

In the third and last experiment, we verified if the detec-
tion process could be run faster, losing the least possible
detected objects. The 40% reduction in the area of the BB
will also be applied.

We put nine objects in a new scenario and, as in previous
experiments, we measured the distance by hand in order to
build the ground truth, as shown in Fig. 10a. After that,
we applied YOLOv5-small and YOLOv5-nano with the
BB reduction as in previous experiments, obtaining 10b
and 10c respectively. As seen in Table 2, YOLOv5-nano
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Fig. 10. Third scenario with (a) the ground truth, (b)
YOLOv5-small and (c) YOLOv5-nano detection with
BB partial reduction.

is faster than YOLOv5-small, however we loose track of
several objects in the image, making this method unhelpful
in detection tasks. Also, we are unable to get an estimated
error for YOLOv5-nano since we have only two detections.
Although we calculated an error of 0.0839 ± 0.0771 m in
this scenario for YOLOv5-small, as it can be seen in Fig.
11. There is a clear increment in the error due to the object
BB is not properly detected, making the error grow quite
a lot.
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Fig. 11. Error using average method, with both YOLOv5-
small and YOLOv5-nano.

4. RESULTS AND DISCUSSION

We found that reducing the size of the BB from a detection
system like YOLOv5 provides better results than smaller
NN or segmentation systems. What is more, apart from
having more accurate results, reducing the size of the
BB makes the process faster since there are less pixels to
process. Our obtained results suggest that a segmentation
system, which is a priori a better solution to get the depth
of an object works worse than just using a reduced version
of the BB. We have also reviewed the state of the art, in
which we are able to find other sensors to solve this task.
Some examples could be thermal cameras, stereovision or
laser. However, we picked the forementioned combination
of sensors since they allow us to work in a bigger range

Table 3. State of art and results of technology, methods and committed error in the estimation
of depth.

Method Range (m) Technology used Depth estimator Error (m)

Liao et al. 0.1 - 2.1 Monocular image and scarce 2D laser None 0.0044
Solak and Bolat 0.4 - 1.8 Stereovision-based distance estimation None 0.0266
Sathyamoorthy et al. 0.5 - 4.0 RGB-D, CCTV and thermal camera 10% of closest points 0.0900
Tornero et al. 0.3 - 3.0 RGB-D camera Central point of BB 0.14 ± 0.07 X

0.11 ± 0.06 Y
Nguyen et al. 0.4 - 1.4 RGB-D camera Mean value of clustered points 0.028
Ours 0.3 - 6.0 RGB-D camera and LiDAR-camera fusion Average of 40% reduction of BB 0.0298 ± 0.0544

of distances. All the state of the art and our method is
compared in Table 3. Our method works better than the
rest compared in the state of the art, having a bigger
range of work with an error bounded in between the other
methods, which suggest our method to be fair enough to
do the job.

5. CONCLUSION

Thanks to the work presented in this contribution, we
estimate the depth at which domestic waste objects are lo-
cated from a mobile robot in outdoor environments, with a
fusion of RGB-D camera and LiDAR. We used several NN
for segmentation and detection tasks such as SOLO, Yolact
or YOLO to detect the objects. Several techniques were
applied in order to obtain the most accurate depth value in
comparison with the ground truth. These techniques were
median, average or center point. The best method was
the average one, followed by the median and nearest ones.
Then we reduced the size of the BB in order to see how
this parameter affects the detection. We conclude that,
using an average method in a 40% reduced BB area by a
detection NN like YOLOv5 gives the most accurate depth
values compared with the ground truth, having a median
error of 0.0298 ± 0.0544 m considering all the performed
detections with an execution time of around 20 ms. Some
limitations of our process are some BB placed near the
margins of the image or misinterpreted with the scenario,
making the depth estimation process very difficult. Also, as
technology evolves, new NN will arise and take the place
of current state of the art methods. The detection time
obtained is so low that the method could also be run in real
time while the robot navigates. Future works will follow
these perspectives in order to continue having results as
great are those we currently have.
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