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Abstract

Different notions on regularity of sets and of collection of sets play an important role in the
analysis of the convergence of projection algorithms in nonconvex scenarios. While some
projection algorithms can be applied to feasibility problems defined by finitely many sets,
some other require the use of a product space reformulation to construct equivalent prob-
lems with two sets. In this work we analyze how some regularity properties are preserved
under a reformulation in a product space of reduced dimension. This allows us to establish
local linear convergence of parallel projection methods which are constructed through this
reformulation.
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1 Introduction

The so-called feasibility problem asks for a point in the intersection of a family of sets
Cy, ..., C, in an Euclidean space; that is,

Find x*eCiNnC,N---NC,. 1)

Projection algorithms are widely employed methods for solving (1) whenever the individ-
ual projectors onto the sets can be easily computed. The method of alternating projections
(MAP) [29] and the Douglas—Rachford algorithm (DR) [17, 22] are well known projection
algorithms originally devised for solving feasibility problems with two sets. While the for-
mer can be naturally extended for an arbitrary number of sets [10], it is not so obvious for
the case of DR (see, e.g., [1, Sect. 3.3]). Although there exist some cyclic versions of DR
for finitely many sets [7, 9], these are not frugal in the sense that some of the projectors
are employed more than once at each iteration. In contrast, one can always apply Pierra’s
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product space reformulation [26] to derive a frugal parallel DR-type projection algorithm
embedded in the product Euclidean space X". This enlargement of the dimension of the
ambient space has been called as r-fold lifting. In general, reduced lifting is preferred as this
leads to computational memory savings.

In the more general context of monotone inclusions, which include feasibility problems
as particular cases, the impossibility of a frugal three-operator DR algorithm without lifting
was proved in [27]. In addition, the author showed that the minimal lifting for three oper-
ators is 2-fold. That result has been recently generalized in [23] for an arbitrary number of
operators. Further, frugal splitting algorithms with minimal (» — 1)-lifting have been inde-
pendently proposed in [12, 23]. By now, the analysis of splitting algorithms with reduced
lifting has become a very active research topic; see, e.g. [2, 3, 8, 11, 15, 28].

While the convergence of projection algorithms is well understood when the sets are con-
vex, they are also popular in nonconvex settings. In this framework, local linear convergence
of the schemes is usually analyzed by assuming some regularity properties of the individual
sets and of their intersection; see, e.g., [6, 7, 13—15, 18-21, 25]. In this work we analyze
how some of these properties are preserved through the product space reformulation with
reduced dimension studied by the author in [12]. This trick reformulates problem (1) as an
equivalent feasibility problem defined by two sets in the product space X”~! while keeping
the computability of the projectors. Thus, it allows for devising new projection algorithms
with (r — 1)-lifting from already existing two-sets methods. Although the reformulation
was shown to be valid for not necessarily convex sets but rather proximinal, there was a
lack of theoretical results from the perspective of the local convergence of projection algo-
rithms. The aim of this work is to extend the analysis of the reformulation by establishing
that super-regularity of the sets (see Definition 2.6), as well as linear regularity and strong
regularity of their intersection (see Definition 2.7), are inherit by the new product sets in the
reformulated problem. Hence, the local linear convergence of the derived algorithms can be
deduced assuming that those conditions hold for the original problem.

The structure of this manuscript is as follows. We collect some preliminary notions and
results in Sect. 2. In Sect. 3 we revisit the product space reformulation with reduced dimen-
sion and we include our main result regarding the preservation of regularity properties. We
apply our results in Sect. 4 to derive the local linear convergence of a parallel projection
algorithm with reduced lifting, where we also include a numerical experiment to illustrate
the result. Finally, some conclusions are drawn in Sect. 5.

2 Preliminaries

Throughout this paper, X is a Euclidean space endowed with inner product (-, -) and induced
norm || - ||. The set of nonnegative integers is denoted by N and B(x; §) stands for the closed
ball centered at x € X with radius § > 0. Given a linear subspace M C X we denote by M+
to its orthogonal complement, i.e., Mt ={ueX:(x,u)=0,Vx e M).

2.1 Projection Mapping

Given a nonempty set C C X, the distance function to C, dc : X — [0, 400), is given at
x € X by

dc(x) :=inf ||c — x]||.
ceC
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Definition 2.1 The projection mapping (or projector) onto C is the possibly set-valued op-
erator Pc : X =% C defined at each x € X by

Pe(x) := {PGC: llx = pll nggllc—xu}-

Any point p € Pc(x) is said to be a best approximation to x from C (or a projection of x
onto C).

If C is assumed to be closed, then it is proximinal; i.e., a projection onto C exists for
every point in the space (see, e.g., [4, Corollary 3.15]). When C is in addition convex,
then C is Chebyshev; i.e., the projector Pc(x) is single-valued for all x € X (see, e.g., [4,
Remark 3.17]).

We recall next some properties of the projector.

Fact2.2 Let C C X be nonempty. The following hold.

(1) If C is closed and convex, then Pc is continuous.
(i) If C is a linear subspace, then Pc is a linear mapping.

Proof (i): See, e.g., [4, Proposition 3.12]. (ii): See, e.g., [16, Theorem 5.13]. O

In general, no closed expression exists for the projector onto the intersection of two sets,
in terms of the individual projectors. However, if one of the involved sets is an affine sub-
space with some additional intersection structure with another closed set, we can establish

the following relation on the projectors.

Fact2.3 Let C C X be nonempty and closed and let D C X be an affine subspace. If Pc(d)N
D #, foralld € D, then

Pcop(x) = Pc(Pp(x))ND, VxelX.
Proof See [12, Lemma 2.10]. O
2.2 Normal Cone
Regularity notions shall be defined in terms of the (limiting) normal cone to the sets.

Definition 2.4 The (limiting) normal cone to C C X at a point x € C is given by
Nc(x) := {klim T (ze —x1) 1T = 0, xy > x and z; € Pc(xy), forall k € N} ,
—00

whereas we just set No(x) = for x ¢ C.

For a closed and convex set C C X, the limiting normal cone coincides with the classical
convex normal cone

fueX:(c—x,u)<0,YceC}.

In addition, when C is a linear subspace, its normal cone turns to its orthogonal complement;
i.e., No(x) = C* forall x € C (see, e.g., [4, Example 6.43]).
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As in the case of projectors, there is no general expression relating the normal cone to
the intersection of sets to those of the individual sets. The next lemma, which is a key tool
in our analysis, establishes such a relation under the same assumptions than Fact 2.3.

Lemma 2.5 Let C C X be a nonempty and closed set and let D C X be a linear subspace.
If Pc(d)N D # W, forall d € D, then

Neap(x) = (Ne(x)N D)+ D%, VxeCND.

Proof Let x € C N D and let u € Nenp(x). Then, there exist {7x}72, {xk}re, and {zx}oes
with 7, > 0 and z; € Pcnp(xi), for all k € N, and x; — x such that

u= lim 7 (2% — xx). 2)
k—o00

Set di := Pp(xy), for each k € N. On the one hand, by continuity of the projector Pp (see
Fact 2.2(i)) we get that dy — Pp(x) = x. On the other hand, since z; € Pcnp(xx), by apply-
ing Fact 2.3 we obtain that

e Pe(d)ND, VkeN. 3)
Now, we can split (2) as
u= lim t(zx — dy) + lim 7 (dy — x1), 4)
k—o00 k—00

provided that both limits exist. Indeed, since Pp is a (continuous) linear mapping (see
Fact 2.2), from (2) we derive that

Pp(u) = lim Pp (7 (zx — Xi))
k—o00
= lim 7 (Pp(zx) — Pp(x))
k—o0
= khm Tk (Zk — dk),
where we have used the fact that z; € D for all k € N, according to (3). This shows that the

first limit in (4), and therefore both of them, exist. Hence, we have obtained that u = v + w
with

v:i=Pp(u) = klim T (zx — di) € Nc(x), (5a)
w = klim 7.(dp — x;) € Np(x) = D*. (5b)

Since x € C N D was arbitrary, we have proved the direct inclusion
Nenp(x) € (Ne(x)N D)+ DY, VxeCND. (6)

On the other hand, by taking L = D, A=CND anda = x € A in [5, Theorem 3.5(25¢)-
(25d)] we obtain that

Neap(x) = (Nenp(x) N D) + D*.

Now, as C N D < C, it follows that N¢(x) € Nenp(x), which combined with the previous
expression yields the reverse inclusion of (6) and finishes the proof. |
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2.3 Regularity of Sets
Let us finally recall the following notions of regularity of sets and of collection of sets.

Definition 2.6 (Super-regular sets) A subset C C X is said to be super-regular at a point
x € C if, for any ¢ > 0, there exists § > 0 such that

(u,y—z) <elullly —zll, VYy,ze CNB(x;6), Yu € Nc(2).

Definition 2.7 (Regularity of collection of sets) A finite family of sets Cy,...,C, C X is
said to be

() linearly regular around x € X if there exist k > 0 and § > 0 such that
dry_c, () <wmax{de, )i =1,....r}, VzeB(:8); @)

(i) strongly regular at x € X if

D ui=0withu; € Ne,(®), fori=1,....r &= uy=-=u,=0. (8

i=l1

The above conditions are usually employed to derive the local linear convergence of some
projection algorithms on nonconvex problems. Recall that a sequence {x;}ren converges R-
linearly to a point x* if there exist n € [0, 1[ and M > O such that

g —x*| < Mn*, VkeN.

In the following fact, we recall the (local) linear convergence of the so-called generalized
Douglas—Rachford algorithm for two sets under regularity conditions.

Fact 2.8 (Linear convergence of gDR) Let A, B C X be nonempty super-regular sets of X
andletw e ANB#W@. Let A, u €10, 2] and let o € 10, 1[. Given xo € X, set

X1 = —a)xe +a (1 —w)Pg +pld)o (1 =) Py +21d) (x), VkeN. (9

Suppose that any of the following conditions holds:

(i) {A, B} is strongly regular at w,
(i) min{X\, u} <2 and {A, B} is linearly regular around w.

If the initial point x, is sufficiently close to w, then, the sequence generated by (9) converges
R-linearly to a point x* € AN B. When, in addition, A and B are convex sets, the R-linear
convergence of the sequence is global.

Proof See [13, Corollary 5.12]. O

3 Regularity Under a Product Space Reformulation with Reduced
Dimension

We begin this section by introducing the product space reformulation in a reduced dimen-
sional product space proposed in [12]. To this aim, consider the product space

-1
- =ax TV xx,
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endowed with the inner product

r—1
(xd’) ::Z(xi5yi>’ Vx:(xl,~~~,xr71)»y:()’1,~~s)’r71) GXr717
i=1

and define
D, =], ... x)exxex},

which is a linear subspace of A”~! commonly known as the diagonal. We denote j,_, :
X — D,_, the canonical embedding that maps any x e X to j,_;(x) =(x,...,x) € D,_;.
Then, consider the product sets

B:=Cx---xCr_y CX", (10a)
K:=C"'nD,_;={(x,....x)eX":xeC)cal (10b)

The equivalency, from the point of view of projection algorithms, between problem (1) and
the one described by the sets in (10a)—(10b) is recalled in the following fact.

Fact3.1 Let Cy, Cs,...,C, C X be closed sets and let B, K C X"~ the product operators
as defined in (10a)—(10b). Then the following hold.

(i) B is closed and
Pp(x) = Pc,(x1) X -+ x Pc, (x,—1), Vx=(x1,...,%_1) € X "

If, in addition, Cy, ..., C,._y are convex then so is B.
(ii) K is closed and

r—1
. 1 .
Pg(x)=j,_, (Pcr (: 21:)6)) Vx o= (x1, ..., %) € X

If, in addition, C, is convex then so is K.
(iii) BNK =j,_, (N_,C).

@) Pk () = j,y (P, (0). ¥x = j, () € D, .

Proof See [12, Proposition 4.3]. O

Remark 3.2 Recall that classical Pierra’s reformulation [26] reframes problem (1) as
FindxeCND,CX", withC:=C; xCyx---xC,,

where the projectors are given by

Pe(x):=[]Pc(x). Pp, =], (} fo> ;
i=1

i=1

for any x = (x, x2, ..., x,) € X" (see, e.g., [12, Proposition 4.2]). In contrast, we reformu-
late the same feasibility problem as

Findxe BNK C x"!,
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with B and K being the sets in (10a)—(10b), whose projectors are given in Fact 3.1. Note
that this leads to a reduction of one dimension of the ambient space in comparison to Pierra’s
trick. The computational advantage was shown in [12] through some numerical experiments.

The analysis of the regularity properties of the sets in Pierra’s reformulation is usually
employed in order to derive local linear convergence of parallel projection algorithms. See,
for instance, [21, Theorem 7.3] for the method of averaged projections. In particular, super-
regularity of sets and linear and strong regularity of the intersection are kept after the refor-
mulation (see, e.g., [15, Propositions 3.1(i) and 3.2]). We establish next analogous results
for the reformulation in the product space with reduced dimension in Fact 3.1. Although our
analysis employs similar techniques to those of [15], we need to establish first the following
technical result about the normal cones to the product sets in (10a)—(10b).

Lemma3.3 Let Cy, ..., C, C X be nonempty and closed sets, let B, K C X! be the prod-
uct sets as defined in (10a)—(10b) and consider D,_; the diagonal of the product space
X1 Then, the following hold.

(i) Ng() = Ne, (1) % == x Ne,_, (6-1), V& = (x1, ., xrm1) € X7,
(>i1) NDM(x)=DL forallx =j,_(x)e D,_,,and

r—1»

r—1
Df =) e XY =0}.

i=1
(iii) Ng(x)=j,_; (N¢,(x))+ D;—,Vx=j,_(x) € K.

Proof The proofs of (i) and (ii) follow from, e.g., [24, Proposition 1.2] and [4, Proposi-
tion 26.4(i)-(i1)], respectively. To prove (iii) let us define

S:=Cx "V xe, car, (11)

and fix any x = j,_,;(x) € K =S N D,_;. By Fact 3.1(i), for any arbitrary point g =
Jr—1(q) € D,_;, it holds that

Jro(p) € Ps(@)ND,—y, Vpe Pc(q).
In particular, Ps(q)ND,_; # @ forallg € D,_;. Hence, we can apply Lemma 2.5 to express
Nk (x) = Nsap,_, (x) = (Ns(x) N D,_;) + D+ |.
Since Ng(x) = l_[f;ll N, (x) by item (i), the result follows. O

We are now ready to derive our main result regarding the regularity of the product sets in
(10a)—(10b) and of their intersection, provided that the original sets verify those conditions.

Theorem 3.4 Let Cy,...,C, C X be nonempty and closed sets and let B, K C X! be the
product sets as defined in (10a)—(10b). Then, the following statements hold.

() If C; is super-regular at x; € C;, for all i = 1,...,r — 1, then the product set B is
super-regular at X := (X, ...,X,_1) € B.
(i) If C, is super-regular at x € C,, then K is super-regular at X := j,_,(x) € K.
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(i) If{C, ..., C,}islinearly regular around x € X, then {B, K} is linearly regular around
X=j,_x)ex

@{v) If{Cy,...,C,} is strongly regular at X € X, then {B, K} is strongly regular at X :=
Jy(®) ex .

Proof (i): See, e.g., [15, Proposition 3.1(a)].

(i1): Suppose that C, is super-regular at x € C,, set X := j,_;(x) € K and pick any
arbitrary & > 0. Consider the set S as in (11) so that K = S N D,_,. From item (i) we get
that § is super-regular at X and, thus, there exists § > 0 such that

(v,y—2z) <elvllly —zll, Vy.zeSNB(x;3d), Vv € Ns(z). (12)
Let y,z € KNB(x;d) and let u € Nk (z). By Lemma 3.3(iii) we can express
u=v+w, withveNg(z)ND,_,andwe D,_;*.
In view of (12) we get that
(v,y—z)<elvllly —zI. (13)
Further, it holds that
(w7y_z>:Os (14)

asw e D,_* and y, z € D,_;. In addition, |lu||> = ||v||> + |w||? since v € D,_; and w €
D,{l. In particular, this implies that ||v|| < ||u]|, which combined with (13) and (14) yields
w,y—z)=(v,y—z)+(w,y—2)
<elvlllly —zll
<elullly —zl
and proves that K is super-regular at x.

(iii): First of all we note that, for any ¢ = j,_;(¢) € D,_;, thanks to Fact 3.1 one can
easily check that

ok (@) = (r = Dd7r_ ¢, (@) (152)
r—1

dy(g) =) _d¢. (@), (15b)
i=1

dy(q) = (r — D)d¢, (q). (15¢)

In particular, (15b) implies that d¢,(q) < dg(q), foralli =1,...,r — 1, which combined
with (15¢) yields to

1
max{dc,(g):i=1,...,r} <max {dg(q), ﬁdl((q)}

<max{dp(q),dk(q)}.

(16)
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Now, suppose that {C}, ..., C,} is linearly regular around x € X’; i.e., there exits x > 0 and
8 > 0 such that (7) holds, and set X := j,_,(¥) € X"~!. Pick any z € B(x; v/r — 1%) and let
q = Pp, ,(z). We trivially get that

lg —zll =dp,_,(z) <dk(2). a7
Moreover, since X € D,_; we have that
lg —xll <llg —zll + ¥ —zll <2|lx —z]| </r — 18,

which implies that ¢ = j,_;(¢) with g € B(x; ). Therefore, the linear regularity of
{Cy,...,C,} around x implies that

dry

i=1

¢(@) < wmax{de, () i = 1,....r). (18)
Hence, using (15a), (16), (17) and (18) we deduce that
dprk (2) < dpnk (q) + g —zll
=~r—1ldn_ ¢ (q) +dk(2)
<wv/r—Tmax{de,(q):i=1,...,r} +dk(2)
<«+/r — Imax{dg(q).dx(q)} + dk (2)
<wv/r — 1 (max{dp(z),dx(2)} + Ilg — z|) + dk (2)

< wev/r = Tmax {dp (), dx (@) + (1 + 137 = 1) di (2)
< (1 4 2/r = 1) max {dp (2), dx (2)},
which shows that { B, K} is linearly regular around x.
(iv): Suppose that {C1, ..., C,} is strongly regular at x € X and setx = j,_,(x) € D,_;.
Let v € Np(x) and w € Nk (x) such that

v+ w=0. (19)

By Lemma 3.3(iii) we can write w = z + u where z € j,_; (N¢, (¥)) and u € D,_;*. Now,
in view of Lemma 3.3(i)—(ii) we obtain that

v=(v,..., V1), Withv; € N¢;(x),Vi=1,...,r —1, (20a)
z=7j,_1(2), withze N¢, (%), (20b)
r—1
w=(uy,...,u,_;), with Zu,- =0. (20c)
i=1

Then, by combining (19) and (20a)—(20c) we get that v; +z+u; =O0foralli e {1,...,r—1}.
By summing up all these equations we arrive at

r—1 r—1 r—1
0=> vi+@r—Dz+Y u=Y v+ -1z
i=1 i=1 i=1
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Since v; € N¢;(x) for i =1,...,r — 1, and (r — 1)z € N¢, (x), the strong regularity of
{Cy,...,C,} around X implies that vy =--- = v,_; = z = 0. Therefore, v = w = 0 and we
get that { B, K} is strongly regular at x. |

4 Application to Projection Algorithms

We finally apply our main result (Theorem 3.4) to derive (local) linear convergence of pro-
jection algorithms constructed by means of the product space reformulation in Fact 3.1.
In particular, we consider the generalized Douglas—Rachford (¢gDR) algorithm analyzed in
[13], as it includes the method of alternating projections (MAP) and the Douglas—Rachford
(DR) algorithm as particular cases.

Theorem 4.1 (Linear convergence of parallel gDR algorithm with reduced lifting) Let
Ci, Cy, ..., C, C X be nonempty super-regular sets with N._,C; # (. Let A, i € 10, 2] and
let o €10, 1[. Given x1 9, ...,X,—10 € X, set

fork eN:
pr = Pc, (ﬁ Z,r;ll xi,k) ,
fori=1,2,...,r—1: 21
uig = (1 —N)xi + Apy,
zik = Pe, (uik) .

X1 = (1= o)xi e + o (1= iy + pzix) -
Suppose that any of the following conditions holds:

1) {Ci,Cy, ..., C,}is strongly regular at a point x € N_,C;,
(ii) min{A, u} <2 and {C, Cs, ..., C,} is linearly regular around x € N;_,C;.

If the initial points x,, ..., X,—1,0 are sufficiently close to X, then, for each i € {1,...,
r — 1}, the sequence {x; y}ren converges R-linearly to a point x* € N;_,C;. When, in addi-
tion, Cy, Cs, ..., C, are convex sets, the R-linear convergence of the sequences is global.

Proof Consider the product Hilbert space X! and let B, K € X"~! be the product sets de-
fined in (10a)—(10b) which, in view of Theorem 3.4(i)—(ii), are super-regular. By Fact 3.1(iii)
we get that BN K = j,_,(N/_,C;) #@. Set x := (X1 4,...,%_14) € X~ forall k e N.
Hence, according to Fact 3.1(i)—(ii), we can rewrite (21) as

X1 = —a)xp +a((d—pw)Pp+pld) o ((1 —2)Pg +21d) (xr), VkeN. (22)

Note that (i) (resp. (ii)) implies that {B, K} is strongly regular (resp. linearly regular) at
X =j,_;(x) € BN K according to Theorem 3.4(iii) (resp. Theorem 3.4(iv)). Hence, the
result follows from Fact 2.8. O

As previously mentioned, iteration (22) recovers some well-known classical projection
methods. Hence, Theorem 4.1 provides local linear convergence for reduced parallel ver-
sions of these algorithms. We state next such result for the method of alternating projections,
leading to what we will refer to as reduced averaged projections method.
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Corollary 4.2 (Linear convergence of reduced averaged projections method) Let Cy, C»,
..., Cr C X be nonempty super-regular sets with linearly regular intersection around x €
Ni_;Ci. Given xo € X, set

r—1
1
Xpe1 = Pe, (: > P (xk)) , VkeN. (23)
i=1

If xo is sufficiently close to x, then the sequence {x;}ren converges R-linearly to a point
x* e N;_,Ci. When, in addition, Cy, C,, ..., C, are convex sets, the R-linear convergence
of the sequence is global.

Proof Apply Theorem 4.1(i) withA=pu=a =1. a

Remark 4.3 An analogous result can be derived for the Douglas—Rachford algorithm by tak-
ing A = pu =2 in (21). In particular, Theorem 4.1 under scenario (i) applies to the parallel
DR-algorithm with reduced dimension proposed in [12, Theorem 5.1] in the context of fea-
sibility problems.

4.1 Numerical Experiment

In this section, we present a numerical example to illustrate the linear convergence of the
reduced averaged projections method discussed in Corollary 4.2. Our objective is to replicate
the signal compression problem analyzed in [21, Sect. 9], which was utilized to show the
linear convergence of the traditional averaged projections method.

Given a “dictionary” W € R"*™ and a threshold o > 0, the recovery of the signal is
addressed by solving the feasibility problem

find U*eLNMNCCRY,

where
L:={U eR™:U=PW, with P e R""}, (24a)
M:={UeR”" . UU" =1}, (24b)
C:={UeR"" :|U|lx <a}. (240)

It is not difficult to check that the projectors onto these sets can be computed as

PLU)y=UWI(WwT)~lw,

Py(U)={PQ": P£Q" is a singular value decomposition of U},

Pc(U) = min(max(U, —a), o);
where the maximum and minimum in P¢ are understood componentwise. Furthermore, as
mentioned in [21], the three sets in (24a)—(24c¢) are super-regular, whereas the linear regular-

ity of their intersection is expected from randomness when generating the problem, provided
that o is not too small.
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Fig.1 Comparison of the
convergence rate of averaged 10° +
projections and reduced averaged
projections methods for solving a
signal compression problem. For — N
each method we plot the distance *
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In our experiment, we set n = 128, m =512, d = 8 and « = 0.1. The entries of the
matrix W € R128512_ a5 well as those of the initial iterate Uy € R3*°12, were randomly gen-
erated from a standard normal distribution. From that point, we run the averaged projections
algorithm, which iterates as

1
U1 = 3 (PL(Up) + Pu(Up) + Pc(Up), VkeN; (25)

and the reduced averaged projections method in Corollary 4.2. Note that (25) is completely
symmetric with respect to the order of the sets. However, this is not the case for the reduced
averaged projections in (23), where the set C, acts as a “central coordinator”. Thus, in our
experiment we consider all three possibilities for this method depending on which of the
sets L, M, or C plays the role of coordinator (indicated between brackets). We stopped each
algorithm when || Uy — Uyl < 1072, In Fig. 1 we plot the norm ||U; — U*|| with respect
to the iteration, where U™ denotes the limit of the sequence.

We can clearly observe a linearly convergent behavior of all tested methods, showing
the reduced versions of the method a better convergence rate than its classical version. Fur-
thermore, the choice of the coordinator set C, in (23) seems to have a strong impact in the
convergence rate of the method. In our experiment, the fastest convergence was achieved by
selecting set C in (24c¢), followed closely by selecting L in (24a). Overall, the results suggest
that choosing the appropriate coordinator set can significantly improve the convergence rate
of the method.

5 Conclusions

In this manuscript we explored how some regularity properties of sets and of collections
of sets are preserved under a reformulation in a product space with reduced dimension.
This allows for the establishment of local linear convergence of parallel projection methods
constructed through this reformulation. Specifically, the results were applied to the gener-
alized Douglas—Rachford algorithm, which include some well-known projection algorithms
as particular cases.

A numerical demonstration on a signal compression problem, replicating that of [21,
Sect. 9], was included. This study tested the method of averaged projections and some re-
duced versions of this method constructed trough the analyzed reformulation. As expected,
all methods showed to be linearly convergent. In addition, a better convergence rate was
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obtained for the reduced methods in this specific experiment. It remains open for future
research to analyze the convergence rate of these methods, particularly with respect to the
order of the sets and its effect on the rate.
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