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Abstract

Accurate effort estimation is necessary for efficient management of software devel-

opment projects, as it relates to human resource management. Ensemble methods,

which employ multiple statistical and machine learning techniques, are more robust,

reliable, and accurate effort estimation techniques. This study develops a stacking

ensemble model based on optimization correction factors by integrating seven statis-

tical and machine learning techniques (K-nearest neighbor, random forest, support

vector regression, multilayer perception, gradient boosting, linear regression, and

decision tree). The grid search optimization method is used to obtain valid search

ranges and optimal configuration values, allowing more accurate estimation. We con-

ducted experiments to compare the proposed method with related methods, such as

use case points-based single methods, optimization correction factors-based single

methods, and ensemble methods. The estimation accuracies of the methods were

evaluated using statistical tests and unbiased performance measures on a total of

four datasets, thus demonstrating the effectiveness of the proposed method more

clearly. The proposed method successfully maintained its estimation accuracy across

the four experimental datasets and gave the best results in terms of the sum of

squares errors, mean absolute error, root mean square error, mean balance relative

error, mean inverted balance relative error, median of magnitude of relative error,

and percentage of prediction (0.25). The p-value for the t-test showed that the pro-

posed method is statistically superior to other methods in terms of estimation accu-

racy. The results show that the proposed method is a comprehensive approach for

improving estimation accuracy and minimizing project risks in the early stages of soft-

ware development.
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1 | INTRODUCTION

The complexity of software project development has increased, and this industry demands a high level of competence from its employees, who

must possess particular skills. Project managers typically need such early estimates to bid on a project contract and make informed planning deci-

sions.1 However, they often encounter difficulties in estimating effort, cost, and schedule correctly in advance. Customer requirements are vola-

tile, inconsistent, and incomplete, that is, unknown. Therefore, a project manager must select an appropriate method and adapt or configure it to

the software project the company wants to undertake to obtain accurate estimates. However, since insufficient information is usually available,

the estimation process leads to a result subject to significant uncertainties.2

Software development effort estimation (SDEE) is one of the most challenging tasks in the early stages of software development. Effort esti-

mation methods are used to reduce project risk and minimize the risk of surprises during the project. They provide project managers with

informed control decisions to ensure that an appropriate amount of work is allocated to the various phases of the project development lifecycle.

Therefore, accurate effort estimation is critical to minimizing project risk.3 Several SDEE methods have been proposed, which can be classified

into three main categories: (1) algorithmic, (2) non-algorithmic, and (3) statistical and machine learning (ML) methods.4,5 Algorithmic methods are

popular in the literature and use statistical and mathematical equations for SDEE, for example, use case point (UCP), functional point analysis

(FPA), the cost constructive model (COCOMO-II), source line of code (SLOC), and the Putnam software life cycle model (SLIM). Non-algorithmic

methods rely on analytical comparisons and historical projects for estimation, for example, analogy-based, expert judgment, and planning poker

strategies. Statistical and ML models include fuzzy logic, artificial neural network, and hybrid models.6 These models can be used as stand-alone

models and require input variables to estimate software effort.

In the early phases of software development, the UCP method7 was extensively studied as a functionally sized metric for predicting software

effort.8 Most researchers today focus on developing new methods based on this original method or validating existing methods in industrial

applications, with an emphasis on improving accuracy. Basically, they apply statistical and ML techniques in these model variations to optimize

estimation accuracy. The techniques are used to model the relationship between effort and software variables, especially when this relationship is

non-linear. In recent decades, several statistical and ML techniques have been developed for effort estimation. Many of the proposed models

have achieved high estimation accuracy.9 Jorgensen et al4 identified 11 ML techniques used in studies published up until 2004 and noted that

regression techniques were used in 49% of the studies reviewed. Wen et al10 also performed a systematic literature review of ML techniques

used in SDEE covering the period 1990 to 2010. Their review indicated that the estimation accuracies obtained via ML techniques were greater

than those obtained using non-ML-based estimation methods. According to Kumar et al,11 the overall estimation accuracies of SDEE methods

based on statistical and ML techniques are nearly in the acceptable range, as they are within 25% of the percent error (PRED [0.25]). Given the

complexity of software development projects today, effort estimation requires ML assistance.12 Therefore, based on their review, we summarize

21 selected recent studies13–40 over the past 7 years (2016–2021) on software effort estimation using statistical and ML techniques or just ML

techniques. Specifically, seven statistical and ML techniques, namely, multilayer perceptron (MLP), support vector regression (SVR), decision tree

(DT), random forest (RF), multiple linear regression (MLR), K-nearest neighbor (KNN), and gradient boosting (GB), were discovered to have been

most frequently used in SDEE at 16%, 13%, 13%, 11%, 9%, 7%, and 4% of studies, respectively (see Figure 1). The list of abbreviations in Figure 1

is presented in Appendix A.

Although statistical and ML techniques have been handled remarkably well, there have been some difficulties in choosing unbiased

approaches and appropriate algorithms. First, selecting the proper statistical and ML techniques for SDEE is challenging. Generally, single statisti-

cal and ML methods are unreliable. Specifically, their estimation accuracies are inconsistent and unstable across different datasets and evaluation

criteria.41–43 According to Cabral et al,44 the use of a single model does not lead to optimal results for SDEE. Priya et al45 also pointed out that

combining multiple models is more accurate. Second, it is well known that the accuracy of a single method depends on its parameter configura-

tions.46 Moreover, very few studies have used statistical tests to validate their results. It is not valid to claim that one model is better than another

when adequate statistical tests are not performed.47

With such research motivation, we recently developed a parametric software effort estimation model based on optimizing correction factors

(OCFs).48,49 Specifically, the MLR model is applied to the OCF method to efficiently minimize the estimation error in the integration or recursion

process. However, the method still needs to be improved to reach more comprehensive methods. The difference between previous works is that

we continue developing our method OCF. The OCF method has investigated the least absolute shrinkage and selection operator (LASSO)

method50,51 to determine the best technical and environmental complexity factors that significantly affect the estimation accuracy of the UCP

method. The novel in this paper is that the new ensemble-based OCF approach is studied. Its improvements proposed in this paper are put under

a specific situation where popular statistical and ML techniques are incorporated into an ensemble effort estimation (EEE) based on the OCF

method. The EEE approach combines at least two different single models to address the weaknesses of single models for estimation tasks through

a unique aggregation mechanism and generate the final solution by weighted voting over their solutions.52 Compared to the previous related

methods, the new ensemble-based OCF approach will be unbiased in estimating the effort needed for a new software project. Our results confirm

the findings of the previous review that ML remains the most common technique for generating EEE and that ensemble techniques have out-

performed single models. Thus, the following three research questions will be addressed:

2 of 37 NHUNG ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2611 by U
niverzita T

om
ase B

ati In Z
lin, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



• RQ1: How much does the proposed ensemble-based OCF method improve upon the single methods used to produce it?

• RQ2: Are the differences in estimation accuracy between the proposed method and other methods statistically significant?

• RQ3: How much do the effects of the core components of the proposed method the estimation accuracy?

To answer the research questions, we conducted an empirical study to evaluate the estimation accuracies of the proposed method and methods

found in the literature. We used evaluation criteria that yield unbiased and symmetric distributions,49,53 such as the sum of squares errors (SSE),

the mean absolute error (MAE), mean balance relative error (MBRE), mean inverted balance relative error (MIBRE), median of magnitude of rela-

tive error (MdMRE), root mean square error (RMSE), and the percentage of prediction within x% (PRED[x]). Finally, all experimental groups are

compared using a statistical comparison. In this way, we aim to draw the most accurate conclusions about comparing methods. The statistical

comparison includes parametric and non-parametric methods. In this study, we used both the t-test, a parametric statistical comparison, and the

Mann–Whitney U test, a non-parametric statistical comparison.54–56 These pairwise statistical comparisons include the averages (μs) of the evalu-

ation results (SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE) from the five-fold cross-validations of the four experimental datasets. The following

statistical hypotheses were tested:

• H0 : μthe proposedmethod ¼ μthe other tested methods:

In other words, the estimation ability of the proposed method is not significantly different from the estimation abilities of the other tested

methods. In particular, the proposed method does not outperform the other tested methods in estimating software effort.

• H1 : μthe proposedmethod < μthe other tested methods:

In other words, the estimation ability of the proposed method is significantly different from the estimation abilities of the other tested

methods. In particular, the proposed method outperforms the other tested methods in estimating software effort.

Specifically, our main contributions are as follows:

• This study presents a novel SOCF method rooted in the Effort Estimation Ensemble concept. The SOCF method uniquely integrates the capa-

bilities of seven established statistical and ML techniques: MLR, KNN, SVR, MLP, RF, GB, and DTs. The main aim is to lessen the biases and

variability errors that are often found in individual models.

• A key aspect of the accuracy of this ensemble method lies in parameter tuning. The grid search (GS)57 optimization method is used to deter-

mine the best parameters for each technique and dataset, with 20% of the training set serving as the validation set. Detailed information on

the post-tuning parameters can be found in Section 3.

• The effectiveness of our proposed method is then compared with other estimation methods mentioned in previous studies.58 This comparison

utilizes four historical datasets from administrative, healthcare, and business sectors.38 We carry out the comparison by implementing a five-

fold cross-validation, leading to five random splits of the training and testing data. The findings are based on the average results each model

obtains across all evaluation criteria.

F IGURE 1 Most commonly used statistical and ML algorithms for SDEE over the past 7 years (2016–2021).
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• The results indicate that our innovative SOCF method significantly improves the accuracy of effort estimation in the early stages of software

development while minimizing project risks. This showcases its comprehensive ability to enhance effort estimation.

The remainder of this paper is organized as follows: Section 2 presents the related works. Section 3 provides the methodologies used, such as an

overview of the UCP and OCF methods, a background on the statistical and ML techniques used, and the configuration parameters for the statis-

tical and ML techniques used. Next, Section 4 presents the proposed method for estimating effort. Then, Section 5 describes the experimental

design, including the experimental process, the dataset, and the evaluation criteria/metrics. Section 6 focuses on the results, and Section 7 dis-

cusses the threats to validity. Finally, Section 8 discusses the conclusions and future work.

2 | RELATED WORKS

2.1 | Ensemble effort estimation problem formulation

Previous studies on statistical and ML techniques have shown that ensemble methods provide more accurate results than single methods.59 These

studies focused on various aspects of effort estimation, such as the diversity of base models, the ranking of models within the ensemble, aggrega-

tion techniques, and model selection. The ensemble learning approach in SDEE does well when the base models perform differently on different

datasets,60 that is, it minimizes model limitations and leads to more accurate estimates. The authors investigated the ranking stability and ensem-

ble approach across 90 methods and 20 datasets. They concluded that the ensemble approaches were consistently better, were more reliable,

and had lower error estimates.61 Pahariya et al62 agreed that ensemble models are superior to single methods. Azzed et al mentioned the impor-

tance of the ensemble approach in analogy-based estimation.13 The findings demonstrate that these ensemble methods perform better than sin-

gle models and produce more accurate estimates of error measurements.

The problem with the ensemble approach is selecting single appropriate methods that must meet the high accuracy and diversity criteria

to receive a high estimate.13,42,43,63,64 In other words, a single method must be versatile and accurate under certain conditions. In this way,

every single method compensates for the estimation errors of the others. Otherwise, an ensemble approach that does not contain different

single methods may have a lower estimation accuracy than its single method. The EEE architecture is shown in Figure 2, where X denotes the

feature vector of the underestimated project. All other single estimation algorithms M1,M2,…,Mn are given the same feature vectors and estimatesbyM1
,byM2

,…,byMn
. Based on the estimates provided by each single estimation algorithm, the ensemble aggregator

Ð
aggregates the estimates using

combination rules (mean, median, and IRWM with weights wM1 ,wM2 ,…,wMn ). Finally, an overall ensemble estimate bYensemble is provided for the

project.

2.2 | Ensemble effort estimation methods

An ensemble method is proposed for identifying the best-performing regression-based ML model across various datasets.14 In this method,

the AdaBoost ensemble approach is used to create combinations of two statistical and ML techniques (KNN, SVR, and DT) with which to

estimate the UCP-based effort. These adaptive UCP (AUCP) models are then compared with the ML models to determine whether they can

improve estimation accuracy. The results show that the best ensemble model performs best overall, with a regression rate of over 98% across

two datasets.

F IGURE 2 The architecture of the ensemble effort estimation.
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Effective and practical approaches are proposed for deploying and maintaining ML.15 Specifically, an ensemble of three statistical and ML

algorithms (SVR, MLP, and GLM) is presented for estimating the effort put forth during and duration of the initial phase of a project. The results

show that the ensemble model is more accurate than other approaches and suitable for practical use. An ensemble of optimal trees is developed

for SDEE.16 The results show that the RF model outperforms the random tree (RT) model for all datasets except the Desharnais dataset, where

their PRED(0.25) values are equal. However, the developed ensemble model consistently has a smaller mean magnitude relative error (MMRE)

than the RT and RF models across five datasets.

An ensemble model that combines UCP, expert judgment, and case-based reasoning (CBR) techniques is proposed to improve estimation

accuracy in software development.17 Specifically, UCP, expert judgment, and CBR produce independent variables, whereas effort is the depen-

dent variable. The estimation results of the three basic models are combined into an ensemble using combination rules (mean, median, and inverse

rank-weighted mean). An ensemble framework is presented for effort estimation using ML algorithms to obtain better accuracy estimates for

error measurements.18 The framework, which is based on an enhanced RF algorithm, succeeded in this task when it was compared to existing

effort estimation methods.

The authors compared five statistical and ML models (MLP, RF, RT, KNN, and SVR) with a voting ensemble model for estimating software

development effort over five datasets.19 For the ensemble model, these models are combined using a combination rule based on the median of

their estimated values. The results confirmed that the single models are unreliable because their estimation accuracies are inconsistent and unsta-

ble across different datasets. However, the ensemble model outperformed the single models on three of the five datasets. The authors proposed

and evaluated heterogeneous ensembles based on KNN, SVR, MLP, and M5Prime using three combination rules (average, median, and inverse

rank-weighted mean).20 The methods were evaluated based on standardized accuracy (SA), effect size, and PRED(0.25) using the leave-one-out

cross-validation (LOOCV) method.21,22 The Scott–Knott statistical test was also conducted to determine significant differences in accuracy among

the methods.

The authors experimented with SVR, RR, KNN, DT, and Bayesian networks to determine the method that provides better accuracy in estimat-

ing software effort.42 The results show that none of the methods uniformly performs better. Therefore, an ensemble-based approach was pro-

posed that outperformed the other similar approaches in terms of estimation accuracy. The article of Kumar et al65 proposed an ensemble

learning method, a gradient-boosted regression model. Accuracy comparisons are made with regression models such as KNN, DT, RF, and

AdaBoosted regressors. The models are evaluated using evaluation metrics such as MAE, MSE, RMSE, and R 2. The results show that the ensem-

ble learning method performs well on all the individual models used compared to both datasets, achieving 98% accuracy on COCOMO81 and

93% on the CHINA dataset. The authors conducted a comparative study of 12 ensemble methods for effort estimation. With an MMRE value of

10% and a PRED(0.25) of 97%, the M5 rule ensemble was found to be the best way to estimate effort.66

The above are some experimental studies on ensemble methods that are performed from time to time. Table 1 summarizes other related

work on software effort estimation of various single methods using known datasets and real-time industrial projects, and the performance metrics

were evaluated to determine the best model for estimating effort accuracy.

3 | METHODOLOGIES USED

The methodologies used in this paper to estimate the required effort are described below.

3.1 | Use case points

The UCP method7 is used to estimate the size of object-oriented software projects. The UCP is calculated by converting the elements of the

UML use case diagram into size measures according to a well-defined procedure. In the first step, the actor elements are categorized according to

their level of difficulty: simple, average, and complex, as shown in Table 2. The unadjusted actor weight (UAW) is calculated in Equation (1).

UAW¼
X3

i¼1
ati�wi ð1Þ

The use case elements are categorized into three categories (simple, average, and complex) according to the number of transactions men-

tioned in the use case description, as shown in Table 3. The unadjusted use case weight (UUCW) is calculated in Equation (2).

UUCW¼
X3

j¼1
ucj�wj , ð2Þ
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where αti is the number of actors in actor element i, wi is the complexity weight of actor i, ucj is the number of use cases in use case element i,

and wj is the complexity weight of use case j.

The TCF and ECF correction factors are used to describe the experience level of the software development team. The TCF is calculated based

on 13 technical factors (F1, F2, …, F13) significantly affecting project performance (see Table 4). The ECF is calculated based on eight environmen-

tal factors (E1, E2, …, E8) significantly affecting productivity (see Table 5). Each element in both groups can take an influence value between 0 and

5 and predefined weights representing the influence of each factor. Equations (3) and (4) show how to calculate TCF and ECF.

TCF¼0:6þ0:01
X13

i¼1
Ti�Wti , ð3Þ

ECF¼1:4�0:03
X8

i¼1
Ei�Wei , ð4Þ

where Ti is the value of technical factor i, Wti is the complexity weight of technical factor i, Ei is the value of environmental factor i, and Wej is the

complexity weight of environmental factor i.

The final UCP is computed according to Equation (5).

UCP¼ UAWþUUCWð Þ�TCF�ECF ð5Þ

For SDEE, Karner proposed a factor of 20 person-hours per UCP to measure software effort, as shown in the following Equation (6).

TABLE 4 Technical complexity factors.

Ti Description Weight (Wti)

T1 Distributed system 2

T2 Response adjectives 2

T3 End-use efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability 2

T9 Easy to change 1

T10 Concurrency 1

T11 Security features 1

T12 Access for third parties 1

T13 Special training facilities 1

TABLE 2 Actor classifications and their complexity weights.

Actor classification Description Weight

Simple The system through an API 1

Average The system through a protocol 2

Complex The system through a GUI 3

TABLE 3 Use case classifications and their complexity weights.

Use case classification Description Weight

Simple (0, 4) 1

Average <4, 7> 2

Complex (7, ∞) 3
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Effort¼UCP�20 ð6Þ

3.2 | OCFs

Our method, the OCF method,48 uses the LASSO method50,51 to select the best correction factors, thus reducing the risk involved in evaluating

these factors using the UCP method. Figure 3 represents a detailed illustration of the OCF method.

Phase 1: The LASSO regression model is used to determine the correction factors for regression analysis. The LASSO estimate bβ λð Þ is given
as follows:

F IGURE 3 Detailed illustration of the optimization correction factor (OCF) method.

TABLE 5 Environmental complexity factors.

Ei Description Weight (Wei)

E1 Family with RUP 1.5

E2 Application experience 0.5

E3 Object-oriented experience 1

E4 Lead analyst capability 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part-time workers �1

E8 Difficult programming language 2

NHUNG ET AL. 9 of 37
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bβ λð Þ¼ argmin
β

kY�Xβk22
n

þλ k βk1
� �

subject to
Xk

j¼1
βj
�� ��< t, ð7Þ

where

kY�Xβk22 ¼
Xn

i¼0
Yi� Xβð Þi
� �2

, ð8Þ

k βk1 ¼
Xk

j¼1
βj
�� ��, ð9Þ

where λ≥0 is the LASSO parameter, which controls the strength of the penalty determined by the LOOCV method.21,22 LASSO parameter selec-

tion is based on the lowest possible estimation error and a lack of bias with respect to the correction factors for the observations in the training

set. The LASSO parameter is directly related to the number of correction factors selected over non-zero β.

Next, least squares regression (LSR) is used to obtain the regression coefficients for the selected technical and environmental variables. Based on

LASSO, the lines for the n selected technical factors (LaTF) and m environmental factors (LaEF) are given in Equations (10) and (11), respectively.

LaTF¼ α0þ
Xn

i¼1
αi�LaTi�WLti, ð10Þ

LaEF¼ β0þ
Xm

i¼1
βi�LaEi�WLei, ð11Þ

where LaTi and LaEj are the technical and environmental factors, respectively, that take values from the interval [0, 5]; WLti and WLej are the

weight of these factors; and α0,αi , β0,andβi are the regression coefficients for the LSR model.

Phase 2: The OCF size is calculated as follows:

UCPOCF ¼ UAWþUUCWð Þ�LaTF�LaEF: ð12Þ

3.3 | Statistical and ML techniques

3.3.1 | MLP

MLP is a feedforward neural network used to solve regression problems that is usually trained with a backpropagation algorithm. The simplest

MLP model consists of at least three nodes, an input layer, a hidden layer, and an output layer.67 The number of independent variables in the input

pattern is equal to the number of nodes in the input layer. Each neuron in the hidden layer converts the values from the previous layer via a

weighted linear summation utilizing a nonlinear activation function. The number of nodes in the output layer depends on the problem under con-

sideration and the number of dependent variables.

In this work, the OCF&MLP structure includes an input layer, a hidden layer MLP, and an output layer. The input layer neurons represent the

variables identified with OCF. The output layer is the software size (UCPOCF&MLP) and receives values from the hidden layer to calculate the out-

put value. One of the essential steps in developing the MLP is the optimization of its configuration parameters, such as the number of neurons in

the hidden layer, and the three parameters of the learning algorithm (initial learning rate, momentum, and the regularization term). According to

Linoff et al,68 the number of nodes in the hidden layer should be between the number of nodes in the input layer and twice this number. In the

OCF&MLP, the number of hidden nodes is between five and eight because four OCF variables are input. In this study, the Stochastic Gradient

Descent (SGD) algorithm is used to train the MLP model.69 The critical parameters for constructing the MLP model and their values for prelimi-

nary execution are depicted in Table 6.

TABLE 6 The parameters for constructing the MLP model and their values for preliminary execution.

Model parameter Search range

Initial learning rate L¼ 0:01,0:02,0:03,0:04,0:05f g
Number of hidden nodes H¼ 5,6,7,8f g
Momentum M¼ 0:1,0:2,0:3,0:4,0:5f g
Regularization term α¼ 0:00001,0:0001,0:001,0:01f g
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3.3.2 | Support vector regression

Support vector machine (SVM) is a supervised learning method based on statistical learning theory.70 SV regression (SVR) is a special form of

SVM used to model the input–output functional relationship or regression. Assume that the training dataset is D¼ xi ,yið Þf gn1, where xi �ℝm

denotes the input values, yi �ℝ denotes the corresponding output values, n is the number of samples in the training dataset, and m is the dimen-

sion of the input dataset.

The goal of SVR is to approximate the nonlinear relationship shown in Equation (13) that brings f xið Þ as close as possible to the obtained tar-

get value (yi).

yi ¼ f xið Þ¼ w,Φ xið Þh iþb, ð13Þ

where w�ℝm and b�ℝ are the weight vector and threshold, respectively; :, :h i denotes the dot product, and Φ xið Þ is the transformation function

that maps the input values from ℝm space to a feature space of higher dimension. The values w and b are reduced to ensure that the approxi-

mated function satisfies the above objective.

minw,ξ,ξ�
1
2

wk k2þC
Xn

i¼1
ξiþ ξ�i , ð14Þ

subject to
yi� w,Φ xið Þh i�b≤ εþξ, i¼1,…,n

w,Φ xið Þh iþb�yi ≤ εþξ�, i¼1,…,n

ξ≥0, i¼1,…,n
ξ� ≥0, i¼1,…,n,

ð15Þ

where ε is the deviation of function f xið Þ and ξ and ξ� are slack variables used to measure ε. The regularization parameter C defines the error toler-

ance over ε.

In this work, ε�SVR is used as a variant of SVR, and the radial basis function (RBF) is used as a kernel function.71 The RBF kernel is calculated as

K xi ,xj
� �¼ exp �γ xi�xj

�� ��2� 	
,γ >0: ð16Þ

Three parameters that significantly affect the performance of the ε�SVR generalization, namely, the C, ε, and γ, must be carefully selected.

Table 7 shows the details of these configuration parameters and their search ranges for the SVR method.

3.3.3 | DT

DTs are supervised ML algorithms used to solve regression and classification problems.72 A DT creates a flowchart in an inverted tree-like struc-

ture, where the internal nodes illustrate the test, the branches define the test results, and each leaf node denotes a class label.73 The output of a

given DT is partitioned into distinguishable leaf nodes, following certain conditions, such as an if/else loop. There are many DT algorithms, such

as ID3, CART, CHAID, C4.5, M5P, and REPTrees.74,75 The DTs used in this study are optimized versions of the CART algorithm.

For any DT, we looked at four parameters: (1) the maximum depth (max_depth)—if this depth is not specified, the tree expands until the last

leaf nodes contain a single value, resulting in overfitting; (2) the minimum number of leaf nodes (min_samples_leaf) in a decision tree, which is

used to control the complexity of the model; (3) the minimum weighted fraction of the sum total of weights (min_weight_fraction_leaf) required

TABLE 7 The parameters for constructing the SVR model and their values for preliminary execution.

Model parameter Search range

Regularization term (C) C¼ 5,10,100,150f g
Epsilon for ε�SVR (ε) ε¼ 1,0:1,0:01,0:001,0:0001f g
Kernel coefficient (γ) γ¼ 1,0:1,0:01,0:001,0:0001f g
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at a leaf node; and (4) the number of leaf nodes (max_leaf_nodes) to control overfitting. Values that are too high can lead to under-fitting. Table 8

provides details concerning the parameters for the DT model and their search ranges.

3.3.4 | RF

The RF technique uses a supervised nonparametric approach for regression and classification.76 It creates multiple DTs and combines them to

obtain a more accurate and stable prediction. The RF result is the maximum vote from a panel of independent judges, which makes the final pre-

diction better than the best judge. In this research, we also focus on the parameters used in building an RF model, as in the DT model. Optimal RF

parameters either increase the model's predictive power or facilitate its training. The robustness and stability of the prediction depend on these

parameters.39 The optimal parameters for the RF method for each experimental dataset are listed in Table 9.

3.3.5 | KNN

KNN is a non-parametric ML method used in classifications and regressions. KNN collects historical data, called the training dataset, and produces

estimates for new test data.76 The K-nearest data from the training data set is determined, and then, based on the data attributes of these data,

an estimate is made of the new data. In KNN, the selection of K (number of neighbors) is very crucial. If the value of K is too small, the algorithm

becomes sensitive to noise, whereas if the value of K is too large, data from other classes can be counted as nearest neighbors.77 We apply GS to

optimize K in this study. Table 10 shows the values of its search range. The Euclidean, Manhattan, and Minkowski distance metrics can all be used

to measure the distance between points in KNN. We use the default Euclidean distance in scikit-learn. The Euclidean distance d pi,qið Þ between

one vector p¼ p1,p2,…,pnð Þ and another vector q¼ q1,q2,…,qnð Þ can be computed as follows:

d pi ,qið Þ¼
Xn
i¼1

pi�qið Þ2
" #1=2

: ð17Þ

3.3.6 | GB

GB is an ML technique used in regression and classification tasks. It is basically an ensemble method based on DTs.78 In GB, the number of deci-

sion trees (number of estimators) is a crucial parameter. The higher the number of trees, the better the data will be learned. However, a large

TABLE 8 The parameters for constructing the DT model and their values for preliminary execution.

Model parameter Search range

The maximum depth of the tree max_depth¼ 3,5,7,9,11,12f g
The minimum weighted fraction min_weight_fraction_leaf¼ 0:1,0:2,0:3,0:4,0:5f g
The number of leaf nodes max_leaf_nodes¼ 10,20,30,40,50,60,70,80,90f g
The minimum number of samples min_sample_nodes¼ 1,2,3,4,5,6,7,8,9,10f g

TABLE 9 The parameters for constructing the RF model and their values for preliminary executions.

Model parameter Search range

The number of trees n_estimators¼ 100,150,200,150,300,350,400,450f g
The minimum number of samples min_sample_nodes¼ 1,2,4f g
The maximum depth of the tree max_depth¼ 10,20,30,40,50,60,70,80,90,100f g

TABLE 10 The parameter for constructing the KNN model and its values for preliminary executions.

Model parameter Search range

Number of neighbors (K) n_neighbors¼ 2,3,4,5,6,7,8,9,10,11,12,13,14,15f g
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number of trees can significantly slow the training process down. Therefore, a parameter search is necessary. In this study, the three other param-

eters of interest in GB are the number of boosting stages (n_estimators), the minimum number of leaf nodes (min_samples_leaf), and the maximum

depth of the single regression estimators (max_depth), which is used to control model overfitting. The details of the search range for, and optimal

values of, the parameters for the OCF&GB method over GS for all datasets can be found in Table 11.

3.4 | Setting configuration parameters

The accuracy of a particular statistical or ML technique depends on the configuration parameters describing the characteristics of a specific

dataset. Determining a technique's optimal parameter values gives it a high predictive capacity. In this study, we use GS57 to optimize the configu-

ration parameters of each statistical and ML technique. Specifically, GS exhaustively searches each empirical method's parameter set across a

predefined range of values for each dataset and then selects the configuration that yields the “optimal” estimates. The parameter search ranges

are derived from previous analyses.30,31,35 In each case, we broadened the search range to consider as many possible configurations as possible

(see Tables 3–8). Each method's optimization convergence depends on the mean square error (MSE) reaching 0 or the maximum number of itera-

tions reaching 10,000.79 The parameters are tuned to the validation set, which represents 30% of the training set. The detailed optimal parameter

values for the estimation methods for each dataset are listed in Tables 12, 13, 14, and 15.

4 | PROPOSED STACKED OFC METHOD (IN FULL)

In this section, we present our proposed OCF-based stacked generalization ensemble method of statistical and ML models, which we have named

stacked OCF (SOCF). In this study, the staked generalization (staking) ensemble41,42 was used to estimate the OCF-based size. Recall that the

main goal of this study was to use the capabilities of a group of robust single estimators in a regression task to provide estimates that are more

accurate than those produced by any single model in the ensemble. The ensemble was trained and tested on the four datasets, D1–D4.

Figure 4 shows the detailed SOCF architecture, which consists of steps to clean the data, split the data into training and test datasets, and

apply the stacking model to estimate the OCF-based size. The following methodology was used:

TABLE 11 The parameters for constructing the GB model and their values for preliminary executions.

Model parameter Search range

Number of boosting stages n_estimators¼ 20,40,60,80,100f g
Minimum number of leaf nodes min_samples_leaf¼ 10,20,30,40,50,60,70f g
Maximum depth max_depth¼ 5,6,7,8,9,10,11,12,13,14,15,16f g

TABLE 12 The optimal values of the method parameters for the D1 dataset.

Method Parameters settings

OCF&MLP L¼0:05,H¼7,M¼0:2,α¼0:0001

UCP&MLP L¼0:04,H¼7,M¼0:5,α¼0:001

OCF&SVR C¼10,γ¼0:001,ε¼0:001

UCP&SVR C¼10,γ¼1,ε¼1

OCF&DT max_depth¼7, min_weight_fraction_leaf¼0:4,

max_leaf_node¼40, min_sample_leaf¼ 10

UCP&DT max_depth¼5, min_weight_fraction_leaf¼0:3,

max_leaf_node¼20, min_sample_leaf¼ 6

OCF&RF n_estimators¼100, min_sample_leaf¼2, max_depth¼10

UCP&RF n_estimators¼150, min_sample_leaf¼2, max_depth¼20

OCF&GB n_estimators¼60, min_sample_leaf¼60, max_depth¼5

OCF&KNN neighbors¼5

UCP&KNN neighbors¼10

UCP&GRNN σ¼0:1

NHUNG ET AL. 13 of 37
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1. LASSO regression is used to determine the best correction factors for the UCP method (details are presented in Section 3.2). A list of the best

correction factors for each dataset is presented in Appendix B (Tables 36 and 37).

2. The input and output vectors are determined.

3. The data is divided into a training set S�jð Þ and a test set Sj. S
�jð Þ is used to create the Level 0 models (regressors) via seven learning algorithms

(SVM, KNN, DT, MLP, MLR, GB, and RF).

4. The configuration parameters for the seven regression models (Level 0 models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the vali-

dation set (30% of the training set) to produce their optimal settings (see Section 3.4).

5. Create an ensemble model with the stacking method. The estimator's predictions are stacked and fed into a final estimator, which computes

the final estimation. More precisely, each of the Level 0 models in the first stage undergo five-fold cross-validation in S�jð Þ to output its predic-

tion and generate a prediction for Sj by taking the average of the seven estimation results generated by the five CV models in the training

phase. Then, these Level 0 models create a vector of predictions to input into the Level 1 model (in the second stage). RF was selected as the

meta-regressor to train a new model for the final project size estimation.

TABLE 13 The optimal values of the method parameters for the D2 dataset.

Method Parameters settings

OCF&MLP L¼0:02,H¼8,M¼0:5,α¼0:001

UCP&MLP L¼0:03,H¼6,M¼0:5,α¼0:0001

OCF&SVR C¼100,γ¼0:1,ε¼0:001

UCP&SVR C¼10,γ¼1,ε¼0:1

OCF&DT max_depth¼5, min_weight_fraction_leaf¼0:5,

max_leaf_node¼30, min_sample_leaf¼ 4

UCP&DT max_depth¼3, min_weight_fraction_leaf¼0:3,

max_leaf_node¼40, min_sample_leaf¼ 2

OCF&RF n_estimators¼200, min_sample_leaf¼1, max_depth¼50

UCP&RF n_estimators¼100, min_sample_leaf¼1, max_depth¼30

OCF&GB n_estimators¼20, min_sample_leaf¼40, max_depth¼6

OCF&KNN neighbors¼8

UCP&KNN neighbors¼9

UCP&GRNN σ¼0:3

TABLE 14 The optimal values of the method parameters for the D3 dataset.

Method Parameters settings

OCF&MLP L¼0:01,H¼6,M¼0:2,α¼0:01

UCP&MLP L¼0:04,H¼6,M¼0:2,α¼0:01

OCF&SVR C¼50,γ¼1,ε¼1

UCP&SVR C¼10,γ¼0:01,ε¼0:01

OCF&DT max_depth¼9, min_weight_fraction_leaf¼0:3,

max_leaf_node¼10, min_sample_leaf¼ 5

UCP&DT max_depth¼5, min_weight_fraction_leaf¼0:1,

max_leaf_node¼30, min_sample_leaf¼7

OCF&RF n_estimators¼300, min_sample_leaf¼4, max_depth¼80

UCP&RF n_estimator¼400, min_sample_leaf¼2, max_depth¼50

OCF&GB n_estimators¼30, min_sample_leaf¼30, max_depth¼7

OCF&KNN neighbors¼6

UCP&KNN neighbors¼10

UCP&GRNN σ¼0:6
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TABLE 15 The optimal values of the method parameters for the D4 dataset.

Method Parameters settings

OCF&MLP L¼0:02,H¼6,M¼0:3,α¼0:01

UCP&MLP L¼0:03,H¼6,M¼0:4,α¼0:001

OCF&SVR C¼100,γ¼1,ε¼0:01

UCP&SVR C¼10,γ¼0:01,ε¼0:01

OCF&DT max_depth¼3, min_weight_fraction_leaf¼0:1,

max_leaf_node¼50, min_sample_leaf¼ 2

UCP&DT max_depth¼5, min_weight_fraction_leaf¼0:5,

max_leaf_node¼30, min_sample_leaf¼3

OCF&RF n_estimators¼250, min_sample_leaf¼4, max_depth¼10

UCP&RF n_estimators¼300, min_sample_leaf¼4, max_depth¼20

OCF&GB n_estimators¼40, min_sample_leaf¼50, max_depth¼6

OCF&KNN neighbors¼7

UCP&KNN neighbors¼9

UCP&GRNN σ¼0:4

F IGURE 4 The architecture of the proposed SOCF model.
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5 | EXPERIMENTAL DESIGN

This section presents the experimental design, which consists of (1) an experimental process for evaluating the SDEE methods, (2) descriptions of

the datasets for the experiment, and (3) the evaluation criteria for assessing SDEE method accuracy.

5.1 | Experimental process

The experimental process for evaluating the accuracies of SDEE methods is shown in Figure 5. We performed experiments to compare our pro-

posed SOCF method with related methods, such as the UCP-based single methods (described in Table 16), OCF-based single methods (described

in Table 17), and ensemble methods (described in Table 18). In addition, we experimented with pure estimation methods, such as a baseline UCP

method,7 and an OCF method.48

We ran each experiment five times under five different random training and testing splits. The comparisons of the methods' estimation accu-

racies were based on the average results of these five runs and seven evaluation criteria, namely, the SSE, MAE, RMSE, MBRE, MIBRE, MdMRE,

and PRED(0.25), which are defined in Equations (18)–(24) of Section 6.3. A statistical comparison was also used to validate method accuracy.

5.2 | Dataset descriptions

The UCP methodology is a promising tool for early effort estimation in the software industry, but it still requires refinements in certain areas as

per our prior works.48,49 The evaluation of correction factors (TCF and ECF), which inherently possess a degree of uncertainty, significantly influ-

ences the precision of the UCP method. This research examines explicitly the dataset quality, encompassing the number of projects incorporated.

Consequently, we utilized the UCP benchmark dataset.38 This dataset's significance lies in its comprehensive coverage of technical (T1–T13)

and environmental factors (E1–E8), enabling a thorough evaluation of effort estimation methodologies. While some studies utilized multiple

datasets,83,84 to the best of our understanding, no alternate dataset aligns with our focus area.

A critical challenge is the relatively small dataset size, but the implementation previously mentioned LOOCV approach (as discussed in the

Threat to validity section) helps overcome this challenge. Other datasets that are publicly accessible for experiment replication and result generali-

zation, unlike in other research domains of effort estimation, cannot be used in the study, which evaluates TCF and ECF. This accessibility issue

significantly hinders broader community participation and progress.

A total of 70 projects from three repositories were used. Figure 6 shows boxplots of Real_P20 for each data repository, where Real_P20 is a

real effort in person-hours divided by productivity (PF � person-hours per 1 UCP). The repositories have significantly different Real_P20 values.

Specifically, the D1 data repository has the largest Real_P20 for projects, whereas the D3 data repository has the smallest Real_P20 for projects.

The D4 data repository, which combines D1–D3, was used to evaluate the impact of mixing projects from different data repositories.

Table 19 summarizes the descriptive statistics for the dataset's Real_P20 variables, including dataset size, as well as the median, mean, mini-

mum, and maximum Real_P20 values. For all datasets, the median Real_P20 uses PF = 20 because it is assumed that 20 person-hours equals

1 UCP.7 Minimum Real_P20 and maximum Real_P20 describe the smallest and largest project sizes in each case.

5.3 | Evaluation criteria

In SDEE, different criteria are used to evaluate the accuracy of the estimation methods. The accuracy of the SDEE method in terms of MMRE and

MMER1,9,49 are the most commonly used measures. However, these measurements can be biased.8,26,85,86 Therefore, to evaluate the proposed

estimation method, in this study, alternative criteria are used that provide an unbiased symmetric distribution as follows: SSE (Equation [18]),

MAE (Equation [19]), RMSE (Equation [20]), MBRE (Equation [21]), MIBRE (Equation [22]), MdMRE (Equation [23]), and PRED(x) (where x = 0.25

in this study; Equation [24]). All of these criteria have been proven to be effective.53

Specifically, SSE and PRED(0.25) are used to evaluate the accuracy of the estimated model. SSE is the most important metric to assess the

variability of modeling errors.87 This metric can describe errors in selected datasets. PRED(0.25) is less biased towards underestimation. This usu-

ally identifies the best method as standardized accuracy. The SDEE method with high estimation accuracy (when the value of PRED(x) is high) is

also suitable (when the value of SA is high).53

SSE¼
Xn

i¼1
yi�byið Þ2, ð18Þ
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F IGURE 5 Description of experimental process.

TABLE 16 UCP-based single methods implemented for experiments.

No.
Effort estimation
method

ML
technique Summary Notation

1 Use case point MLR • Uses MLR to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&MLR

2 Use case point SVR • Uses SVR to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&SVR

3 Use case point KNN • Uses KNN to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&KNN

4 Use case point DT • Uses DT to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&DT

5 Use case point GRNN • Uses GRNN to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&GRNN

6 Use case point MLP • Uses MLP to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&MLP

7 Use case point RF • Uses RF to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

UCP&RF

TABLE 17 OCF-based single methods implemented for experiments.

No.
Effort estimation
method

Statistical and ML
technique Summary Notation

1 Optimization

correction factor

SVR • Uses SVR to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&SVR

2 Optimization

correction factor

MLP • Uses MLP to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&MLP

3 Optimization

correction factor

GB • Uses GB to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&GB

4 Optimization

correction factor

MLR • Uses RF to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&MLR

5 Optimization

correction factor

KNN • Uses KNN to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&KNN

6 Optimization

correction factor

DT • Uses DT to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&DT

7 Optimization

correction factor

RF • Uses RF to estimate the software size based on OCF variables (UAW,

UUCW, LaTF, and LaEF).

OCF&RF

NHUNG ET AL. 17 of 37

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2611 by U
niverzita T

om
ase B

ati In Z
lin, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MAE¼1
n

Xn
i¼1

yi�byij j, ð19Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi�byið Þ2

n

vuuut
, ð20Þ

MBRE¼1
n

Xn
i¼1

j yi�byiÞ j�
min yi�byið Þ , ð21Þ

MIBRE¼1
n

Xn
i¼1

j yi�byiÞ j�
max yi�byið Þ , ð22Þ

MdMRE¼mediani
yi�byij j
yi

� �
, ð23Þ

PRED xð Þ¼1
n

Xn

i¼1

1 if
j yi�byi j

yi
≤ x

0otherwise

8<: , ð24Þ

where n is the number of observations, yi is the known real value, and byi is the estimated value.

TABLE 18 Ensemble methods implemented for experiments.

No.

Effort

estimation
method

Statistical and ML
technique Summary Notation

1 Use case point Majority voting

ensemble80
• Uses an ensemble of the MLR, SVR, and MLP models with the majority voting

method to estimate the software size based on UCP variables (UAW, UUCW,

TCF, and ECF).

VUCP81

2 Optimization

correction

factor

Stacked

generalization

ensemble82

• Uses an ensemble of the SVM, KNN, DT, MLP, MLR, GB, and RF models with

the stacked generalization method to estimate the software size based on

OCF variables (UAW, UUCW, LaTF, and LaEF).

SOCF

(proposed in

Section 4)

F IGURE 6 Boxplots of Real_P20 for four datasets.
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6 | RESULTS AND DISCUSSION

This section presents the results obtained for our proposed effort estimation method as well as the related methods and answers our research

questions.

6.1 | RQ1

To answer this question, we will first evaluate and rank the six UCP-based and seven OCF-based SDEE methods for each dataset. Second, we will

consider the ensemble methods and compare them with their component methods for each dataset. Finally, the ensemble methods will be com-

pared with each other.

The first step in assessing these statistical and ML techniques consisted of building and tuning them using the GS optimization technique.

The optimal settings for the datasets are listed in Section 3.4. Tables 20 and 21 present the estimation accuracies of the six UCP-based single

methods and seven OCF-based single methods across the four datasets.

The first observation from these results is that the OCF-based estimation methods, that is, OCF&SVR, OCF&MLP, OCF&DT, OCF&KNN, and

OCF&RF, minimize the errors more effectively than the traditional UCP model-based estimation methods, that is, UCP&SVR, UCP&MLP,

UCP&DT, UCP&KNN, and UCP&RF. This further reinforces the effectiveness of OCF variables when they are leveraged in estimation methods.

In addition, the determination of the technical and environmental complexity factors helped our OCF-based methods to give better experimental

in terms of average SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results in all experimental datasets, as shown in Figure 7. Based on the SSE,

MAE, RMSE, MdMRE, MBRE, and MIBRE results in Tables 20 and 21, we present in Tables 22, 23, 24, and 25 the percentage improvements in

SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results of the OCF-based estimation methods over the UCP-based estimation methods. Following

are some comments on the most significant improvements between the SSE results of the OCF-based and UCP-based models: the SSE results of

OCF&KNN are 133.39% and 166.71% better than those of UCP&KNN in data sets D1 and D2, respectively. For datasets D3 and D4, the SSE

results of OCF&RF are better than those of UCP&RF by 36.93% and 116%, respectively. Based on this finding, we can conclude that approaches

that use OCF variables outperform those that use UCP variables.

The second observation from these results is that the estimation accuracies of the single methods vary from one dataset to another, making

them unstable across these datasets and the evaluation criteria. In particular, the best model for the D1 dataset among the UCP-based single

models was UCP&GRNN. UCP&KNN had the lowest accuracy according to the SSE, whereas UCP&SVR had the most insufficient accuracy

according to the MAE, RMSE, MBRE, MIBRE, and MdMRE. For the D2 dataset, UCP&GRNN had the highest accuracy, whereas UCP&MLP had

the lowest. For the D3 dataset, UCP&SVR achieved the best accuracy according to the SSE, MAE, RMSE, MBRE, and MIBRE, whereas UCP&DT

achieved the best accuracy according to the MdMRE. UCP&RF was the worst model. For the D4 dataset, UCP&DT achieved the best accuracy

according to the SSE, whereas UCP&SVR had the lowest accuracy according to the MAE, RMSE, MBRE, MIBRE, and MdMRE. UCP&RF was the

worst model according to the SSE, RMSE, MBRE, MIBRE, and MdMRE, whereas UCP&MLP was the worst model according to the MAE. Similarly,

among the OCF-based single models for the D1 dataset, OCF&RF performed best according to the SSE and RMSE, whereas OCF&KNN per-

formed best according to the MAE, MBRE, MIBRE, and MdMRE. OCF&SVR was the worst model. For the D2 dataset, OCF&KNN had the highest

accuracy, whereas UCP&MLP had the lowest. For the D3 dataset, OCF&SVR had the best accuracy according to the SSE, MAE, RMSE, MBRE,

and MIBRE, whereas UCP&GB achieved the best accuracy according to the MdMRE. OCF&MLP was the worst model. For the D4 dataset,

OCF&DT had the best accuracy according to the SSE, whereas OCF&SVR had the lowest accuracy according to the MAE, RMSE, MBRE, MIBRE,

and MdMRE. OCF&MLP was the worst model. Table 26 ranks the UCP-based single methods from 1 to 6 based on the SSE metric across the

datasets, with “1” being the best, and “6” being the worst method in terms of the SSE metric. Similarly, in Table 27, the OCF-based methods are

ranked from 1 to 7 based on the SSE metric across the datasets, where “1” represents the best method, and “7” represents the worst method

based on the SSE metric. From these results, we can conclude that there is no single absolutely best method, meaning a single model can provide

superior estimation accuracy for one dataset while doing poorly on another dataset.

TABLE 19 Descriptive statistics for the datasets.

Dataset Size

Real_P20

Min Max Mean Median Standard deviation

D1 27 338.200 398.500 364.500 362.600 18.820

D2 23 299.650 338.050 314.708 312.000 12.156

D3 20 288.750 299.250 293.787 293.900 3.287

D4 70 288.750 398.500 327.936 320.300 33.212
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The third observation from these results is that the ensemble methods outperform all their components. We compare the experimental

results for the two ensemble methods (VUCP and SOCF) with their component methods across the datasets (Tables 20–21 show the estimation

accuracies for the single methods, which can then be compared with the results for their respective ensemble methods in Table 28). Specifically,

the SOCF ensemble method leads to the average SSE result better than OCF&SVR, OCF&MLP, OCF&DT, OCF&MLR, OCF&GB, OCF&RF, and

OCF&KNN, respectively, at 79.42%, 87.19%, 148.69%, 73.86%, 152.09%, 51.68%, and 56.01%. The results also show that the VUCP ensemble

method produces the average SSE results better than UCP&SVR, UCP&KNN, and UCP&DT with 41.92%, 43.07%, and 35.27%, respectively. The

comparison between the ensemble methods and their single approaches is shown in Figures 8 and 9.

In this straight line, we delved into the obtained experimental results to investigate the distinctiveness of our proposed approach. We have

proposed a new EEE-based OCF approach by combining the results of seven commonly used statistical and ML techniques with the OCF method.

The techniques are MLR, KNN, SVR, MLP, RF, GB, and DT. In this work, one of the strengths of our proposed SOCF is that we find the correct or

optimal hyperparameter values, which is the optimal model and uncertain training computational cost and test estimation models with different

values of hyperparameters and propose hyperparameter optimization with GS to optimize the parameters of the seven models in SOCF and find

the best parameters to estimate the effort of four datasets. We compared the experimental results with the ensemble algorithms commonly used

in the literature (AdaBoost ensemble, AUCP; random forest ensemble, ROCF; and voting ensemble, VUCP) and other related methods (see details

in Table 28). Figure 10 shows the improvement where SOCF outperforms all other methods regarding SSE, MAE, RMSE, MdMRE, MBRE, and

MIBRE. It can be seen that SOCF produced better SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE results than VUCP by 1.969, 1.561, 1.791,

1.621, 1.217, and 1.448 times, respectively. Compared with AUCP, SOCF results were better than 2.914, 2.113, 2.344, 2.202, 1.650, and 1.885

times, respectively. Similarly, SOCF results were better than ROCF results of 1.517, 1.367, 1.529, 1.405, 1.067, and 1.323, respectively. Generally,

SOCF also provides better SSE, MAE, RMSE, MdMRE, MBRE, and MIBRE results than the remaining methods.

TABLE 20 Estimation results for the UCP-based single methods. The best results are in bold. The worst results are italicized.

Method SSE MAE RMSE MBRE MIBRE MdMRE PRED

D1 dataset

UCP&SVR 1866.171 16.732 18.711 0.048 0.045 0.045 1.00

UCP&MLP 1515.529 14.082 16.768 0.040 0.038 0.036 1.00

UCP&GRNN 1493.428 12.770 15.553 0.039 0.036 0.035 1.00

UCP&KNN 1942.105 16.564 18.532 0.047 0.044 0.048 1.00

UCP&DT 1520.841 13.539 16.619 0.038 0.036 0.030 1.00

UCP&RF 1526.650 14.048 16.440 0.040 0.037 0.029 1.00

D2 dataset

UCP&SVR 768.535 10.180 13.168 0.034 0.032 0.026 1.00

UCP&MLP 1546.821 14.854 17.333 0.050 0.046 0.040 1.00

UCP&GRNN 392.452 8.382 9.736 0.028 0.026 0.023 1.00

UCP&KNN 651.119 11.122 12.459 0.036 0.035 0.032 1.00

UCP&DT 528.280 9.497 11.151 0.031 0.030 0.027 1.00

UCP&RF 405.550 8.054 9.640 0.026 0.025 0.021 1.00

D3 dataset

UCP&SVR 41.978 3.066 3.573 0.011 0.010 0.014 1.00

UCP&MLP 56.090 3.629 4.050 0.012 0.012 0.015 1.00

UCP&GRNN 51.268 3.517 4.020 0.012 0.012 0.015 1.00

UCP&KNN 54.621 3.780 4.210 0.013 0.013 0.016 1.00

UCP&DT 46.617 3.305 3.767 0.011 0.011 0.013 1.00

UCP&RF 60.420 3.941 4.407 0.014 0.013 0.017 1.00

D4 dataset

UCP&SVR 10,935.116 25.628 30.962 0.082 0.074 0.073 1.00

UCP&MLP 11,890.211 25.894 31.395 0.081 0.072 0.062 0.98

UCP&GRNN 11,105.597 23.822 29.951 0.076 0.067 0.056 1.00

UCP&KNN 11,074.020 24.558 30.942 0.077 0.068 0.060 0.98

UCP&DT 10,878.228 26.588 31.223 0.086 0.077 0.085 1.00

UCP&RF 13,470.085 25.689 32.905 0.083 0.072 0.073 0.98
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Table 29 shows the processing time (in seconds) of the different experimental methods. It can be seen that the methods using neural network

techniques, that is, SOCF, UCP&MLP, and OCF&MLP, have longer training time than other conventional models. In particular, their average train-

ing time is longer than that of UCP&RF, OCF&RF, UCP&DT, VUCP, and OCF&DT: 47.61, 42.77, 36.24, 36.01, and 30.98 times in the D1 dataset;

10.40, 10.07, 15.02, 14.97, and 13.09 times in the D2 dataset; 25.61, 15.76, 35.05, 34.48, and 26.91 times in the D3 dataset; and 54.59, 52.19,

70.79, 69.82, and 50.75 times in the D4 dataset. The significantly higher time consumption of these methods is explained as follows by GS per-

forming in the step of tuning the hyperparameters. The main drawback of GS is its ineffectiveness in the configuration space of high-dimensional

hyperparameters since the number of evaluations increases exponentially with the frequency of hyperparameters. Assuming that k parameters

exist and each has n distinct values, the computational complexity increases exponentially at a rate of O nk
� �

.57 Is it, therefore, necessary to per-

form hyperparameter tuning in ML methods? How about using these methods with the default parameters of the models, referred to as

SOCFwithoutGS? Figure 10 sheds light on these two questions in terms of SSE, MAE, MBRE, MIBRE, MdMRE, and RMSE results. We

experimented with the default parameters of the models. Specifically, compared to the other methods, we tested the estimation performance of

all seven models in SOCF without applying the grid search hyperparameter optimization. It can be seen that the ratio of improvement where

SOCFwithoutGS outperforms the other methods is not better than SOCF. We found that most hyperparameter values are changed during tuning,

TABLE 21 The estimation results for the OCF-based single methods.

Method SSE MAE RMSE MBRE MIBRE MdMRE PRED

D1 dataset

OCF&SVR 1410.337 13.900 16.350 0.039 0.037 0.029 1.00

OCF&MLP 1197.735 12.887 15.362 0.036 0.035 0.031 1.00

OCF&DT 1343.018 13.470 16.021 0.038 0.036 0.030 1.00

OCF&MLR 1018.045 11.545 13.719 0.032 0.031 0.025 1.00

OCF&GB 1314.082 13.434 15.903 0.038 0.036 0.030 1.00

OCF&RF 747.095 9.520 11.700 0.027 0.026 0.022 1.00

OCF&KNN 832.111 9.245 12.356 0.026 0.024 0.017 1.00

D2 dataset

OCF&SVR 649.039 9.434 12.399 0.032 0.030 0.025 1.00

OCF&MLP 994.084 12.096 15.033 0.040 0.038 0.033 1.00

OCF&DT 278.476 7.203 7.949 0.023 0.023 0.022 1.00

OCF&MLR 493.827 9.479 11.017 0.031 0.029 0.026 1.00

OCF&GB 279.682 7.203 7.972 0.023 0.023 0.022 1.00

OCF&RF 360.796 7.371 9.340 0.024 0.023 0.019 1.00

OCF&KNN 244.127 6.405 7.673 0.020 0.022 0.018 1.00

D3 dataset

OCF&SVR 36.965 2.891 3.387 0.010 0.010 0.013 1.00

OCF&MLP 51.081 3.634 3.968 0.012 0.012 0.014 1.00

OCF&DT 37.345 2.887 3.408 0.010 0.010 0.013 1.00

OCF&MLR 46.500 3.417 3.806 0.012 0.012 0.013 1.00

OCF&GB 37.893 2.899 3.437 0.010 0.010 0.012 1.00

OCF&RF 44.123 3.132 3.700 0.011 0.011 0.013 1.00

OCF&KNN 47.462 3.312 3.830 0.011 0.011 0.014 1.00

D4 dataset

OCF&SVR 6642.853 18.577 23.772 0.059 0.054 0.047 1.00

OCF&MLP 6874.876 18.429 24.192 0.058 0.053 0.047 1.00

OCF&DT 10,454.394 25.932 30.547 0.083 0.075 0.077 1.00

OCF&MLR 6909.895 19.053 24.246 0.060 0.054 0.054 1.00

OCF&GB 10,647.201 26.230 30.810 0.085 0.076 0.084 1.00

OCF&RF 6236.123 17.973 23.387 0.056 0.051 0.050 1.00

OCF&KNN 6475.196 18.208 24.113 0.057 0.052 0.044 1.00

Note: The best results are in bold. The worst results are italicized.
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indicating that the default values are suboptimal. The SSE result of our proposed SOCF method was more than 16.022%, 16.032%, 11.765%,

19.048%, and 13.358% of the SSE, MAE, MdMRE, MBRE, and RMSE of SOCFwithoutGS, respectively. These results showed that the tuning pro-

cess of the model's hyperparameters has a statistically significant positive impact on the estimation accuracy of the models. The methods in this

study performed well with optimally configured hyperparameter values. Moreover, these results show that when applying statistical and ML

methods, the optimization of the hyperparameters must be considered in the estimation process, as this theoretically increases the prediction effi-

ciency of ML methods. Based on the experimental results, conclusions can be drawn that the SOCF is a comprehensive approach to complex algo-

rithms based on the exploration of technical requirements for more accurate software effort estimation.

F IGURE 7 The average estimation results of the UCP-based and OCF-based single methods on all datasets.
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6.2 | RQ2

To answer RQ2, we statistically compared the methods with a significance level of 0.05. This study used the t-test (parametric statistical compari-

son) and the Mann–Whitney U test (non-parametric statistical comparison). The t-test depends on the t-values, whereas the Mann–Whitney U

test depends on the z-values. The t- and z-values were used to calculate the p-values. If the p-value is less than 0.05, then the two methods used

in the statistical comparison are significantly different. The results of the comparison are shown in Tables 29, 30, 31, and 32. The tables show the

statistical significance between our proposed and other methods. Specifically, our proposed SOCF method is statistically superior to the baseline

TABLE 22 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP
&KNN, UCP &DT, and UCP &RF on the D1 dataset.

OCF&SVR vs. UCP&SVR OCF&MLP vs. UCP&MLP OCF&KNN vs. UCP&KNN OCF&DT vs. UCP&DT OCF&RF vs. UCP&RF

SSE 32.32% 26.53% 133.39% 13.24% 104.34%

MAE 20.38% 9.28% 79.16% 0.51% 47.56%

RMSE 14.44% 9.15% 49.99% 3.73% 40.51%

MdMRE 57.64% 16.03% 186.90% 0.00% 28.83%

MBRE 21.43% 9.39% 82.17% 1.59% 48.87%

MIBRE 21.08% 8.67% 82.64% 0.00% 46.09%

TABLE 23 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP
&KNN, UCP &DT, and UCP &RF on the D2 dataset.

OCF&SVR vs. UCP&SVR OCF&MLP vs. UCP&MLP OCF&KNN vs. UCP&KNN OCF&DT vs. UCP&DT OCF&RF vs. UCP&RF

SSE 18.41% 55.60% 166.71% 89.70% 12.40%

MAE 7.91% 22.80% 73.64% 31.85% 9.27%

RMSE 6.20% 15.30% 62.37% 40.28% 3.21%

MdMRE 4.0% 21.47% 73.91% 21.82% 15.05%

MBRE 8.23% 24.75% 77.45% 33.91% 9.09%

MIBRE 7.43% 21.69% 60.19% 29.82% 8.62%

TABLE 24 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP
&KNN, UCP &DT, and UCP &RF on the D3 dataset.

OCF&SVR vs. UCP&SVR OCF&MLP vs. UCP&MLP OCF&KNN vs. UCP&KNN OCF&DT vs. UCP&DT OCF&RF vs. UCP&RF

SSE 13.56% 9.81% 15.08% 24.83% 36.93%

MAE 6.07% 0.04% 14.13% 14.49% 25.86%

RMSE 5.49% 2.08% 9.86% 10.52% 19.10%

MdMRE 7.94% 5.80% 16.07% 3.08% 31.25%

MBRE 12.50% 0.00% 14.29% 12.00% 25.93%

MIBRE 6.25% 0.00% 9.91% 12.00% 24.53%

TABLE 25 The percentage improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and OCF&RF over UCP&SVR, UCP &MLP, UCP
&KNN, UCP &DT, and UCP &RF on the D4 dataset.

OCF&SVR vs. UCP&SVR OCF&MLP vs. UCP&MLP OCF&KNN vs. UCP&KNN OCF&DT vs. UCP&DT OCF&RF vs. UCP&RF

SSE 64.61% 72.95% 71.02% 4.05% 116.00%

MAE 37.96% 40.51% 34.87% 2.53% 34.87%

RMSE 30.25% 29.77% 28.32% 2.21% 28.32%

MdMRE 55.32% 31.91% 36.36% 10.39% 46.00%

MBRE 38.51% 39.66% 35.09% 3.61% 48.21%

MIBRE 37.04% 35.85% 30.77% 2.67% 41.18%
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UCP method and its component methods (OCF&SVR, OCF&MLP, OCF&DT, OCF&MLR, OCF&GB, OCF&RF, and OCF&KNN), the VUCP ensem-

ble method and its component methods (UCP&SVR, UCP&KNN, and UCP&DT), and the other methods tested (OCF, UCP&MLP, and

UCP&GRNN) (Table 33). We can conclude that the proposed SOCF model achieves the best results regarding the number of wins compared to

other models. This is due to the effectiveness of each of the three main components of the SOCF model, including optimizing model parameters

TABLE 26 Rankings of the UCP-based single methods based on the SSE metric.

Methods D1 D2 D3 D4

UCP&SVR 5 5 1 2

UCP&MLP 2 6 5 5

UCP&GRNN 1 1 3 4

UCP&KNN 6 4 4 3

UCP&DT 3 3 2 1

UCP&RF 4 2 6 6

TABLE 27 Rankings of the OCF-based single methods based on the SSE metric.

Methods D1 D2 D3 D4

OCF&SVR 7 6 1 3

OCF&MLP 4 7 7 4

OCF&DT 6 2 2 6

OCF&MLR 3 5 5 5

OCF&GB 5 3 3 7

OCF&RF 1 4 4 1

OCF&KNN 2 1 6 2

TABLE 28 Ensemble estimation methods.

Method Base regressor SSE MAE RMSE MBRE MIBRE MdMRE PRED

D1 dataset

VUCP KNN, SVR, DT 1173.227 11.575 13.970 0.033 0.031 0.027 1.00

AUCP AdaBoost 1803.058 17.012 18.614 0.048 0.046 0.046 1.00

SOCF SVR, MLP, DT, MLR, GB, RF, KNN 491.627 7.168 9.186 0.020 0.023 0.016 1.00

ROCF RF 747.095 9.520 11.700 0.027 0.026 0.022 1.00

D2 dataset

VUCP KNN, SVR, DT 335.898 7.618 8.937 0.025 0.024 0.023 1.00

AUCP AdaBoost 705.518 10.633 13.077 0.035 0.033 0.026 1.00

SOCF SVR, MLP, DT, MLR, GB, RF, and KNN 125.236 4.322 5.386 0.014 0.022 0.013 1.00

ROCF RF 360.796 7.371 9.340 0.024 0.023 0.019 1.00

D3 dataset

VUCP KNN, SVR, and DT 38.537 2.865 3.431 0.010 0.010 0.013 1.00

AUCP AdaBoost 84.212 4.542 4.876 0.015 0.015 0.013

SOCF SVR, MLP, DT, MLR, GB, RF, and KNN 31.496 2.486 3.106 0.009 0.010 0.008 1.00

ROCF RF 44.123 3.312 3.700 0.011 0.011 0.013 1.00

D4 dataset

VUCP KNN, SVR, and DT 8043.400 21.536 26.338 0.069 0.062 0.059 1.00

AUCP AdaBoost 11,598.995 26.816 32.008 0.086 0.077 0.074

SOCF SVR, MLP, DT, MLR, GB, RF, and KNN 4222.464 13.944 21.706 0.043 0.049 0.030 1.00

ROCF RF 6236.123 17.973 23.387 0.056 0.051 0.050 1.00

Note: The methods with the best results are in bold.

24 of 37 NHUNG ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2611 by U
niverzita T

om
ase B

ati In Z
lin, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



using GS methods, reducing generalization errors using stacked ensembles, and selecting seven appropriate individual models for stacked ensem-

bles. All three components strongly support our conclusion above. Therefore, we accept the alternative hypothesis H1.

6.3 | RQ3

To address RQ3, we conducted effect analyses to assess the effectiveness of each of SOCF's three core components: (1) optimizing model param-

eters using the GS technique, (2) reducing the generalization error using the stacking ensemble, and (3) the selection of seven individual models

for the stacking ensemble.

• Case 1: Removing the first component (optimizing model parameters using the GS technique) and substituting the default parameters for

SOCF's single models. We named this method SOCF-Case1.

F IGURE 8 The comparison between the ensemble method VUCP and its single approaches.
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F IGURE 9 The comparison between the ensemble SOCF and its single approaches.
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• Case 2: Removing the second component (reducing generalization error using the stacking ensemble) and substituting in the voting ensemble.

We named this method SOCF-Case2.

• Case 3: Removing the third component (the selection of seven single models) and substituting in the three single models (MLR, SVR, and MLP).

We named this method SOCF-Case3.

F IGURE 10 The ratio of improvement for which SOCF outperforms each other methods in terms of SSE, MAE, MBRE, MIBRE, MdMRE,
and RMSE.
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Table 34 shows that as each of the three components was removed from the model and replaced by their substitutes, the average SSE, MAE, and

RMSE results for SOCF across all experimental datasets increased, implying a decrease in estimation accuracy in each case. Specifically, the SSE

results increase the most when the seven single models (MLR, SVR, MLP, KNN, RF, GB, and DT) are replaced by MLR, SVR, and MLP. Table 35

indicates that removing any of the three SOCF core components increases the SSE, MAE, and RMSE results (t-test p-value of less than 0.05). As a

result, the estimation accuracy of SOCF decreased in each case. Thus, the ablation analyses provided an answer to our RQ3.

7 | THREATS TO VALIDITY

This section presents the threats to the validity of this study, specifically internal, construct, conclusion, and external validity.

In terms of internal validity, we highlight each statistical and ML algorithm's unbiased performance evaluation methodology, which should

correct for any overfitting of the proposed method.88,89 The LOOCV method was used in the experiments to select optimal configuration parame-

ters for the statistical and ML algorithms. Because it produces a lower bias and a higher variance estimate than cross-validation, the LOOCV

method appears to be a better evaluation method. All of the configuration settings for this study were provided by the GS fine-tuning technique.

Adding an additional tuning step would significantly increase the cost of the experiments, and most of the methods in this study performed well

with optimally configured parameter values. However, these parameters might not perform well for larger datasets.

Measurement validity is the most serious threat to construct validity. The credibility/reliability of measures was chosen to assess the estima-

tion accuracies of the methods. The accuracy of the SDEE with regard to the MMRE is the most commonly used measure,9,49 but this measure

can be biased.88,89 As a result, we evaluated the estimation methods using alternative criteria that produced unbiased and symmetric distributions:

the SSE, MAE, MAE, RMSE, MIBRE, MBRE, MdMRE, and PRED(0.25).53

Conclusion validity is about the ability to draw significant correct conclusions. We carefully applied statistical tests and tested all necessary

assumptions. In particular, t-tests (parametric statistical comparison) and Mann–Whitney U tests (non-parametric statistical comparison) were

used to demonstrate statistical significance, as presented in Section 6. This research aimed to form the most accurate conclusions regarding the

methods. As a result, we can conclude that this study's experimental results are highly generalizable. In addition, we used a medium-sized dataset

to mitigate the risk associated with the number of observations that make up the dataset.

The most significant external threat to the study's validity is the generalizability of the ensemble and single techniques' estimation accuracy

results. Four datasets were chosen to assess the effectiveness of the ensemble and single techniques in mitigating external threats. These projects

were divided into four datasets and covered many domains, including the government, healthcare provider, and organizational domains.38 One

external threat concerns the use of only one GS technique to fine-tune the configuration parameters of each statistical and ML technique. To gen-

eralize the results of this study, it is suggested that research be conducted on other optimization techniques.

TABLE 29 The processing time (in seconds) for different experimental methods.

Methods

The training time The average response time of the estimation for a data record

D1 D2 D3 D4 D1 D2 D3 D4

UCP&KNN 1.321 0.776 1.437 0.981 0.004 0.003 0.003 0.001

OCF&KNN 1.360 1.944 2.951 1.737 0.035 0.037 0.018 0.008

UCP&SVR 14.620 11.588 65.354 26.414 0.002 0.002 0.002 0.001

OCF&SVR 19.248 14.549 86.044 29.970 0.036 0.036 0.016 0.008

OCF&GB 148.807 199.070 292.73 94.551 0.035 0.035 0.015 0.008

UCP&RF 1874.78 5620.99 5599.09 2539.39 0.003 0.005 0.004 0.001

OCF&RF 2087.17 5807.34 9099.68 2655.77 0.039 0.039 0.018 0.009

UCP&DT 2463.08 3894.02 4090.90 1957.94 0.001 0.002 0.002 0.001

VUCP 2479.04 3906.42 4157.75 1985.35 0.002 0.005 0.004 0.001

OCF&DT 2881.87 4467.11 5327.96 2731.12 0.036 0.036 0.015 0.008

UCP&MLP 86,504.7 54,753.3 136,296.1 117,837.9 0.002 0.001 0.001 0.001

OCF&MLP 88,066.5 55,098.2 139,488.8 146,233.6 0.035 0.035 0.016 0.008

SOCF 93,229.5 65,605.7 154,317.9 151,766.2 0.040 0.039 0.018 0.012
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TABLE 32 The Mann–Whitney U test results for five different runs of the proposed SOCF method in comparison with the other methods.

Pairs of methods

SOCF

vs.
UCP

SOCF

vs.
OCF

SOCF

vs.
OCF&SVR

SOCF

vs.
OCF&MLP

SOCF

vs.
OCF&DT

SOCF
vs. OCF&MLR

SOCF

vs.
OCF&GB

SOCF

vs.
OCF&RF

SOCF

vs.
OCF&KNN

SSE Avg.

p-value

0.00000 0.00000 0.00060 0.00480 0.02280 0.00740 0.01880 0.02280 0.04320

St. conc. >> >> >> >> >> >> >> >> >>

MAE Avg.

p-value

0.00000 0.00000 0.00140 0.00100 0.00340 0.00140 0.00340 0.00480 0.02280

St. conc. >> >> >> >> >> >> >> >> >>

RMSE Avg.

p-value

0.00000 0.00000 0.00210 0.00110 0.01020 0.00340 0.01020 0.01390 0.02070

St. conc. >> >> >> >> >> >> >> >> >>

MBRE Avg.

p-value

0.00000 0.00000 0.00080 0.00050 0.00020 0.00110 0.00200 0.00530 0.02390

St. conc. >> >> >> >> >> >> >> >> >>

MIBRE Avg.

p-value

0.00000 0.00000 0.00400 0.00380 0.01470 0.00920 0.01260 0.09030 0.23650

St. conc. >> >> >> >> >> >> >> << <<

MdMRE Avg.

p-value

0.00000 0.00000 0.00170 0.00090 0.00040 0.00160 0.00030 0.00530 0.05350

St. conc. >> >> >> >> >> >> >> >> <<

Note: A>>B means that A is statistically superior to B.

TABLE 33 The Mann–Whitney U test results for five different runs of the proposed SOCF method in comparison with the other methods.

Pairs of methods

SOCF
vs.
UCP&SVR

SOCF
vs.
UCP&MLP

SOCF
vs.
UCP&GRNN

SOCF
vs.
UCP&KNN

SOCF
vs. UCP&DT

SOCF
vs.
UCP&RF

SOCF
vs.
UCP&VUCP

SSE Avg.

p-value

0.0034 0.0038 0.0092 0.0038 0.0042 0.0092 0.0126

St. conc. >> >> >> >> >> >> >>

MAE Avg.

p-value

0.0003 0.0003 0.0018 0.0002 0.0006 0.0018 0.0034

St. conc. >> >> >> >> >> >> >>

RMSE Avg.

p-value

0.0009 0.0005 0.0027 0.0010 0.0013 0.0027 0.0074

St. conc. >> >> >> >> >> >> >>

MBRE Avg.

p-value

0.0002 0.0002 0.0014 0.0002 0.0003 0.0020 0.0030

St. conc. >> >> >> >> >> >> >>

MIBRE Avg.

p-value

0.0017 0.0009 0.0133 0.0012 0.0022 0.0139 0.0396

St. conc. >> >> >> >> >> >> >>

MdMRE Avg.

p-value

0.0003 0.0004 0.0006 0.0000 0.0003 0.0007 0.0013

St. conc. >> >> >> >> >> >> >>

Note: A>>B means that A is statistically superior to B. (cont.).
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8 | CONCLUSION AND FUTURE WORK

This work introduces a comprehensive approach to complex algorithms based on engineering requirements research for a more accurate estima-

tion of software effort. Specifically, we detailed software effort estimation using ensemble techniques and statistical and ML algorithms on the

OCF method. The proposed method incorporates standard statistical and ML techniques into an ensemble design to achieve higher estimation

accuracy with the OCF method. In particular, our proposed method combines three key components: optimizing the model parameters with a GS

technique, reducing the generalization error with a stacking ensemble, and including seven single models in the stacking ensemble. The stacking

ensemble was created by combining RF, KNN, SVR, MLR, MLP, GB, and DT. The GS method was used to find the optimal parameters for each

technique for the validation set. These regression-based single learners were then trained using the stacked learner. We conducted experiments

on a total of four datasets to demonstrate the effectiveness of our SOCF method more clearly. The estimation accuracy of the proposed method

and other methods were evaluated using unbiased performance measures, namely, the SSE, MAE, MAE, RMSE, MIBRE, MBRE, and PRED(0.25).

Based on the experimental results, no single model outperformed the other single models across all experimental datasets. Instead, our new

ensemble-based approach, which is an unbiased method for estimating the effort for a new software project, produced the best results across all

four experimental datasets. In other words, the SOCF method is highly stable. To provide robust method comparisons, we conducted statistical

comparisons using both the t-test and the Mann–Whitney U test, which indicated that our SOCF method is statistically superior to the other

models we considered. In addition, we performed ablation analyses to evaluate the effectiveness of each of the three core components of the

SOCF. The results showed that the average evaluation results increased across all experimental datasets when the three components were pro-

gressively removed from the model and replaced by substitutes, implying a decrease in the estimation accuracy compared to the full SOCF model.

Overall, our method outperformed the other models tested. We believe that the SOCF method developed in this study will benefit project man-

agers in terms of the pricing process, project planning, iteration planning, budgeting, and investment analysis. In summary, the results obtained

TABLE 34 The results for SOCF-Case1, SOCF-Case2, and SOCF-Case3.

Methods SSE MAE RMSE MBRE MIBRE MdMRE PRED

SOCF (in Full) 1217.71 6.98 9.10 0.021 0.026 0.017 1.00

SOCF-Case1 " 1412.80 " 8.10 " 10.31 " 0.025 " 0.024 " 0.019 1.00

SOCF-Case2 " 1643.75 " 8.91 " 11.16 " 0.028 " 0.026 " 0.023 1.00

SOCF-Case3 " 2146.13 " 11.00 " 14.03 " 0.035 " 0.032 " 0.030 1.00

Note: The " sign denotes an increase in SSE, MAE, RMSE, MBRE, MIBRE, or MdMRE results, implying a decrease in estimation accuracy compared to the

SOCF (in full) model.

TABLE 35 The ablation analyses.

Models for ablation analyses p-value of t-test

SOCF-Case1 SSE increase 195.096 0.01166

<< Full SOCF model

MAE increase 1.119 0.00000

<< Full SOCF model

RMSE increase 1.215 0.00008

<< Full SOCF model

SOCF-Case2 SSE increase 426.047 0.01914

<< Full SOCF model

MAE increase 1.932 0.00035

<< Full SOCF model

RMSE increase 2.061 0.00011

<< Full SOCF model

SOCF-Case3 SSE increase 928.428 0.00070

<< Full SOCF model

MAE increase 4.029 0.00001

<< Full SOCF model

RMSE increase 4.930 0.00001

<< Full SOCF model

Note: The term “<< Full SOCF model” refers to the full SOCF model's statistical superiority over models that exclude one of the three core components.
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can be considered beneficial for industrial applications, as they show that the proposed approach leads to more accurate estimates of the size and

complexity of the software.

In the future, we believe that our proposed method can be further improved by identifying specific correction factor components that will

help inexperienced developers better design their correction factors. One of our initial ideas for this work is to incorporate the program evaluation

and review technique (PERT) into the estimation problem, especially the correction factors. Another possibility is to calibrate the weighting values

of the correction factors to reflect the latest trend in the software development industry and improve the accuracy of the proposed methods.

Therefore, an approach to calibrate the weights of the correction factors using an artificial neural network will be performed in the future.
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APPENDIX A: LIST OF ABBREVIATIONS

APPENDIX B: THE TECHNICAL AND ENVIRONMENTAL FACTORS SELECTED IN EACH DATASET WITH THE λ DETERMINED AND

THEIR COEFFICIENT ESTIMATES ARE PRESENTED IN TABLES 35 AND 36

Abbreviation Meaning of abbreviation Abbreviation Meaning of abbreviation

MLP Multilayer perceptron ELM Extreme learning machine

SVR Support vector regression SR Stepwise regression

DT Decision tree RR Ridge regression

RF Random forest LR Lasso regression

MLR Multiple linear regression ENR Elastic net regression

KNN K-nearest neighbor PNN Probabilistic neural network

GB Gradient boosting RNN Recurrent neural network

GLM Generalized linear model GRNN General regression neural network

RT Regression tree RBFNN Radial basis function neural network

CNN Cascade neural network CCNN Cascade correlation neural network

ENN Elman neural network ANFIS Adaptive neuro-fuzzy inference system

NBL Naïve Bayes, Logistic MMRE Mean Magnitude Relative Error

BRE Balanced Relative Error MAR Mean Absolute Residual

MSE Mean Squared Error RSE Relative Squared Error

RRAE Root Relative Absolute Error RRSE Root Relative Squared Error

MAR Mean of Absolute Residual MdAR Median of Absolute Residual

AB Adaptive Boosting ensemble

TABLE 36 The estimated TCF coefficients in the LASSO regression.

D1 D2 D3 D4

λ 0.000231 0.000268 0.000227 0.000236

intercept 0.690619 0.693400 0.720820 0.695850

T1 0.009451 0.009725 0.009547 0.009505

T2 - - - -

T3 0.010897 0.010902 0.010311 0.010456

T4 0.009330 0.008877 0.009888 0.009556

T5 0.010430 0.011130 0.015199 0.010622

T6 0.009576 0.010157 - 0.009202

T7 0.008536 - 0.007298 0.008989

T8 - - - -

T9 0.010551 0.014018 0.013144 0.010334

T10 0.010526 0.010893 0.009730 0.010902

T11 0.007387 0.006516 - 0.005998

T12 - - - -

T13 - - - -
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TABLE 37 The estimated ECF coefficients in the LASSO regression.

D1 D2 D3 D4

λ 0.000177 0.000192 0.000247 0.000327

intercept 1.373478 1.376197 1.404496 1.387716

ENV1 - - - -

ENV2 - - - -

ENV3 �0.032072 �0.042706 �0.032954 �0.033555

ENV4 �0.042291 �0.037886 �0.025558 �0.033001

ENV5 �0.029170 �0.028453 �0.029931 �0.029393

ENV6 �0.028133 �0.027549 �0.030139 �0.029072

ENV7 �0.027981 �0.026382 �0.029221 �0.028660

ENV8 �0.028193 �0.028713 �0.031169 �0.029333
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