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Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as

selective estrogen receptor modulators and affect cholesterol homeostasis,

drug transport, nuclear and cell receptors, and other signaling proteins.

Using data from three highly overlapping sets of patients (N = 162 in total)

with early-stage estrogen-receptor-positive luminal BC—high-coverage tar-

geted DNA sequencing (113 genes), mRNA sequencing, and full micro-

RNA (miRNA) transcriptome microarrays—we describe complex

oxysterol-related interaction (correlation) networks, with validation in pub-

lic datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-

ABCA9 axis was the most prominent, interconnected through miR-125b-

5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and

miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked

gene set were associated with multiple differentially expressed oxysterol-

related genes. STARD5 was upregulated in patients with positive lymph

node status. High expression of hsa-miR-19b-3p was weakly associated

with poor survival. This is the first study of oxysterol-related genes in BC

that combines DNA, mRNA, and miRNA multiomics with detailed clini-

cal data. Future studies should provide links between intratumoral oxy-

sterol signaling depicted here, circulating oxysterol levels, and therapy

outcomes, enabling eventual clinical exploitation of present findings.
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1. Introduction

Breast cancer (BC) is the most frequent cancer diagno-

sis worldwide for females (25% of cases), and in 2020,

it surpassed lung cancer as the most common cancer

overall. Despite advances in diagnosis and treatment,

BC remains the number one cancer by mortality in

women globally (15.5% of all cancer deaths in females

in 2020) [1]. Resistance of cancer cells to both conven-

tional and targeted treatment represents an ongoing

problem for successful therapy. With the advent of

modern genomic methods, precision medicine, promis-

ing effective treatment individualized for every patient,

moves ever closer to clinical practice [2]. However,

studies in precision oncology in patients often focus on

only one type of data, for example, genomics, tran-

scriptomics, epigenomics, proteomics, or other omics-

type datasets, without combining multiple types of

data for the same patients, missing an opportunity for

deeper insight [3].

Oxysterols are a group of cholesterol derivatives,

generated endogenously either enzymatically or by

autoxidation, or being introduced through the diet

[4,5]. A growing body of evidence points to oxysterols

playing significant roles in the regulation of multiple

vital cellular pathways and in a wide range of patholo-

gies. In BC in particular, oxysterols have been shown

to function as selective estrogen receptor modulators

(SERM) [6]. In addition, more general effects of vari-

ous oxysterols on cholesterol homeostasis, drug trans-

port, nuclear and cell receptors, and other key

signaling proteins mean that oxysterols have been

implicated in a number of cancer types [7] and can

also affect the efficacy of anticancer therapy [8].

Micro-RNAs (miRNAs) are short (20–24 nucleo-

tides) noncoding nucleic acids canonically regulating

gene expression by modulation of mRNA cleavage or

repression of translation [9], which have also been

shown to have both tumor-suppressing and tumor-

promoting properties [10]. Interestingly, they are often

expressed in clusters, offering a chance to more easily

detect and target miRNAs in cancer research and

treatment [11]. Expression of many important lipid

metabolism and homeostasis genes/proteins is regu-

lated by miRNAs [12,13]. Some of those genes/pro-

teins, like the liver X receptor, ABCA1 or ABCG2,

and many others, are known to be also modulated by

oxysterols [14].

Recently, we showed that somatic mutations in

CYP46A1 and functionally related genes, as well as

in a group of genes associated with progesterone

receptor status, are associated with poor survival in

early estrogen-receptor (ER)-positive BC patients of

the luminal subtype [15]. However, for deeper insight,

findings in the genetic area should be supplemented

with their gene expression context. In this study, we

have therefore combined our existing somatic variation

data from targeted DNA sequencing (DNA-seq) of a

panel of 113 oxysterol-related genes (Table S1, [15])

with respective mRNA expression data obtained by

mRNA sequencing (mRNA-seq) and with the com-

plete miRNA transcriptome data obtained by microar-

rays, from the same BC patients. The genes and their

roles in oxysterol signaling are summarized in our pre-

vious publications [15–17].

The aim of this study was to document a potential

mRNA-miRNA interaction network of oxysterol sig-

naling in BC and to complement this with a range of

analyses of mRNA and miRNA data together with

DNA mutation and clinical data. The hypotheses gen-

erated would then inform future focused experimental

studies in the underexplored area of oxysterol signaling

in BC.

2. Materials and methods

2.1. Patients

A total of 162 incident BC female patients, diagnosed

in the Department of Oncosurgery Medicon and

Motol University Hospital, both in Prague, and EUC

Hospital in Zlin, Czech Republic, throughout 2001–
2013, were included in the study. For their full clinical

characteristics, see Table S2.

Diagnosis of all patients was confirmed histologi-

cally according to standard diagnostic procedures [18].

Immunohistochemical evaluation of hormone receptor

expression was based on a 1% cutoff. ERBB2 (erb-b2

receptor tyrosine kinase 2; also known as HER2) sta-

tus was tested by immunohistochemistry (IHC); 3+
scores were considered positive, and 0 and 1+ were

considered negative. In the case of 2+ scores, fluores-

cent in situ hybridization was used for status confirma-

tion. The threshold between high and low expression

of proliferative marker Ki-67 was 14% according to

Cheang et al. [19]. Molecular subtypes were classified

based on IHC, following published recommendations

[20,21]. Exclusion criteria for the study were the

refusal of informed consent of the patient, preopera-

tive chemotherapy or endocrine therapy, stage IIIB

and higher, subtype other than luminal, and lack of

histological diagnosis. Disease-free survival (DFS) was

defined as the time between surgery and the first dis-

ease relapse, including local relapses and death, or the

last control in remission. Overall survival (OS) was

calculated as the time from surgery to death or the last
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follow-up date. The logistics of sample collection, stor-

age, and processing have been described elsewhere

[17].

Procedures performed in the present study followed

the 1964 Helsinki Declaration and its later amend-

ments or comparable ethical standards. The Ethical

Commission of the National Institute of Public Health

in Prague approved the study protocol (approvals no.

9799-4, NT13679, and NT14055-3). All patients were

informed about the study, and only those who agreed

and signed the informed consent of the patient further

participated in the study.

2.2. Total RNA extraction, quantification, and

quality control

Each tumor tissue sample was pulverized by mortar and

pestle under liquid nitrogen, and total RNA was isolated

using the TRIZOL reagent (ThermoFisher Scientific,

Waltham, MA, USA) following the manufacturer’s pro-

tocol and kept at �80 °C. RNA was quantified using

the Quant-iT RiboGreen RNA Assay Kit (Invitrogen,

Carlsbad, OR, USA) on the plate reader Infinite M200

(Tecan Group Ltd., M€annedorf, Switzerland). Quality

(RNA integrity number—RIN) and quantity of RNA

were assessed on the Bioanalyzer 2100 instrument using

the RNA 6000 Nano kit (both Agilent Technologies

Inc., CA, USA).

2.3. miRNA microarrays

In total, 125 samples were included. The miRNA

Microarray System with miRNA Complete Labeling

and Hyb Kit and the SurePrint G3 Unrestricted

miRNA 8x60K v19.0 microarray slides (both Agilent

Technologies Inc., Santa Clara, CA, USA) was used

according to the manufacturer’s protocol. Briefly,

100 ng of total RNA per sample was dephosphory-

lated, labeled with Cyanine 3-pCp, hybridized, washed,

and scanned using the Agilent SureScan Microarray

Scanner instrument with SCAN CONTROL v9 software,

and data were extracted using the FEATURE EXTRACTION

software v11.5 (both Agilent Technologies Inc.).

For initial quality control and filtering, the GENESPRING

v14.9 software was used (Agilent Technologies Inc.).

First, values were quantile normalized and log2 trans-

formed. Samples shown to be outliers by 3D PCA analy-

sis were excluded. Then, to eliminate low expression

values that could be biased by background, miRNA

entities were filtered so that their signal intensity values

were between the 20–100th percentile. To eliminate

rarely expressed miRNAs, only probe sets that were

detected in at least 25% of samples were retained. To

adjust for batch effects caused by sourcing samples from

three different hospitals and measurement by different

laboratory operators, the ComBat empirical Bayesian

algorithm [22,23] of the SVA v3.40 R package was used

with the nonparametric setting (non-normality of data

confirmed by the Shapiro–Wilk test).

2.4. mRNA sequencing

In total, 67 samples were available for sequencing.

Libraries were prepared from 500 ng of total RNA

using the QuantSeq 30mRNA-Seq Library Prep FWD

for Illumina kit (Lexogen, Vienna, Austria) according to

the manufacturer’s protocol. Samples with RIN > 3.5

(n = 58) were processed by the standard protocol, while

samples with RIN < 3.5 (n = 9) were processed using

the low-quality RNA protocol. The quality of prepared

libraries was checked by Bioanalyzer 2100 using the

High Sensitivity DNA kit (Agilent Technologies Inc.),

and quantity was measured by qPCR using the KAPA

Library Quantification Kit for Illumina� Platforms

(Roche, Switzerland) and by the Qubit instrument using

the Qubit DNA HS Assay Kit (both ThermoFisher Sci-

entific). The equimolar pool of libraries was sequenced

on the NextSeq 500 platform (Illumina Inc., CA, USA)

using the High Output kit (1 9 75 bp setting) and tar-

geting 5–6 million reads per sample.

Quality control of sequencing data was performed

using FASTQC v11.9 [24]. For annotation, reference

transcriptome GENCODE v35 [25] (GRCh38.p13) was

used. Quantification of protein-coding transcripts via

pseudoalignment was done using KALLISTO v0.48 [26]

with default settings. For correlation analyses, the

count data were normalized to transcripts per million

(TPM) and were log2 scaled. For the purposes of the

study, only data pertaining to the 113 oxysterol-related

genes were used.

2.5. DNA sequencing

Sequencing data of tumor and nontumor DNA origi-

nated from our previous study and are described there

[15]. In brief, DNA short mutation data were obtained

via high-throughput panel sequencing of 113 oxysterol-

related genes (Table S1) using the SureSelect XT Low

Input platform with target enrichment by a

custom-designed probe set (0.8 Mb; all Agilent Technol-

ogies Inc.). Libraries were sequenced on the NextSeq

platform in 150 bp paired-end mode (Illumina Inc.).

Analysis of somatic variants utilized a matched normal

sample for every tumor sample, with the pair sequenced

simultaneously. Bioinformatic analysis to obtain a list of

variants used primarily the GENOME ANALYSIS TOOLKIT

2076 Molecular Oncology 17 (2023) 2074–2089 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Multiomics of oxysterol genes in breast cancer P. Hol�y et al.

 18780261, 2023, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13495 by U

niverzita T
om

ase B
ati In Z

lin, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.1.9 (GATK, Broad Institute of MIT and Harvard,

Cambridge, MA, USA) and followed the GATK Best

Practices [27]. ANNOVAR v2020-06-08 and the RefSeq

database [28] were used for annotation.

2.6. Integrative bioinformatic analysis, statistics,

and visualization

For all statistical testing, R v4.1 or v4.2 [29] was used.

The normality test (Shapiro–Wilk) of both miRNA and

mRNA data showed non-normal distribution (median

P-values across miRNAs and mRNAs 0.009 and 0.006,

respectively); therefore, the nonparametric Spearman

rank correlation test was chosen for its robustness in

comparison with the Pearson method when correlating

non-normal data. For differential expression analysis of

mRNAs, EDGER v3.36.0 [30,31] was used with default

settings. For survival analyses, the Kaplan–Meier

method with the log-rank test was performed by SUR-

VIVAL v3.3 and Cox regression by SPSS v16.0 (SPSS,

Inc., Chicago, IL, USA). For the correction of P-values

for multiple testing, the Benjamini–Hochberg false dis-

covery rate (FDR) method was used [32]. P-values

< 0.05 after FDR correction were considered statisti-

cally significant. Reported P-values are unadjusted,

unless stated otherwise.

To evaluate the validity of mRNA-miRNA corre-

lated pairs, we used the R package MULTIMIR v1.14

(database v2.3.0) [33] to query eight databases of pre-

dicted and three databases of experimentally validated

mRNA-miRNA interactions (Table S3). Only the top

20% (by default) of interactions by interaction score

were considered.

For network visualization, CYTOSCAPE v3.10 [34] was

used. The PHEATMAP v1.0.12 [35] package was used for

creating heatmaps. For analysis, evaluation, and visu-

alization of integrated multiomic signatures, we

employed the MIXOMICS v6.22.0 package [36], using

principal component analysis (PCA) and multiblock

sparse partial least squares—discriminant analysis (also

called DIABLO) methods [36,37].

2.7. Validation datasets

For validation purposes, we used one mRNA and two

miRNA expression datasets originating from The Cancer

Genome Atlas (TCGA) Breast Cancer project (BRCA)

(https://www.cancer.gov/tcga) and downloaded via the

UCSC Xena platform (https://xenabrowser.net/datapages/;

accessed 25 March 2022).To increase similarity with the

primary cohort, the datasets were reduced to tumor

samples of only female patients with ER-positive

tumors, disease stage I or II, and without neoadjuvant

treatment (n = 538 for mRNA dataset; n = 157 for the

first miRNA dataset, TCGA-GA; n = 374 for the sec-

ond miRNA dataset, TCGA-HS). The mRNA dataset

contained all patients from the two miRNA datasets.

The original mRNA dataset (20 530 mRNAs, Illu-

mina HiSeq 2000, log2(norm_count+1) normalized

values) was subsetted to the 113 oxysterol-related

genes ([15], Table S1), and gene names were updated

to adhere to the latest Human Genome Organisation

(HUGO) nomenclature [38]. The TCGA-GA miRNA

dataset [log2(RPM + 1) normalized values] was

obtained using the Illumina Genome Analyzer

sequencing platform. The TCGA-HS miRNA dataset

[log2(RPM + 1) normalized values] was prepared using

the Illumina HiSeq 2000 sequencing platform. Due to

differences in the methodology used, we decided

to treat these as two different cohorts and analyze

them separately. TCGA-GA and TCGA-HS were fil-

tered so that only those miRNAs that were analyzed

in the primary cohort (see Section 3) were retained.

MiRNA accession numbers were converted to/from

their mature miRNA names (miRBase v19) using MIR-

BASECONVERTER v1.18 [39].

3. Results

3.1. Patients

Out of 125 patients with their miRNAs measured, two

were deemed technical outliers due to assay overload

and were excluded from further analyses. All mRNA-

seq data (n = 67) passed quality controls. The overlap

between the two groups was 56 patients. For a Venn

diagram of the DNA-seq, mRNA-seq, miRNA micro-

array, and overlapping subcohorts (162 patients in

total, clinical data in Table S2), see Fig. 1.

3.2. Correlation analyses

3.2.1. Co-expression of miRNAs

In order to reveal which co-expressed miRNAs or their

clusters are prominent in our cohort, and to confirm

whether the data are representative of larger, more

heterogeneous cohorts, we performed miRNA-miRNA

correlation analyses in both the study cohort and two

TCGA validation cohorts and compared the results.

From the initial 2027 miRNA entities detected in 125

tumor samples, 280 miRNAs and 123 samples passed

all our filters. The miRNA expression data were then

correlated across all 123 samples with each other to

reveal co-expressed (or mutually exclusive) miRNAs.

For network analysis, we selected only strong
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interactions with a correlation coefficient (r) ≤ �0.8 or

≥ 0.8. No negative correlation could be classified as

strong (r ≤ �0.8). However, we identified 230 strong

positive interactions, all of which passed the significance

threshold (adj. P < 0.05) after FDR (Table S4). We

repeated the data processing and analysis with two sep-

arate filtered (see Section 2.7) miRNA-seq TCGA-

BRCA datasets: TCGA-GA (n = 157) and TCGA-HS

(n = 374). Out of 230 total unique statistically signifi-

cant miRNA-miRNA interactions found in the original

dataset, 79 were also found in both TCGA-GA and

TCGA-HS, three only in TCGA-GA, and 14 only in

TCGA-HS. For the majority of interactions, the posi-

tive correlation coefficient dropped below the minimum

of 0.80 of the primary cohort (median 0.55, Table S4).

One hundred and thirty-four interactions were con-

firmed in neither of the validation datasets. Notably,

whether an interaction was confirmed or not was highly

group-specific. The second largest group (15 miRNAs,

Fig. 2), three groups of five miRNAs, one group of

three miRNAs, and 15 miRNA pairs were confirmed

completely or almost completely, while one group of

eight nodes had one out of 11 interactions confirmed

(all in Fig. S1). Several other groups (2–41 miRNAs)

were not confirmed at all (Fig. S2). For the complete list

of interactions in the study and validation datasets,

including correlation coefficients and FDR-adjusted P-

values, see Table S4.

To see whether co-expression is affected by patient

characteristics relevant in hormone signaling, we

repeated the correlation analyses in the primary cohort

separated into clinical subgroups based on menopausal

status, PR status, and intrinsic tumor subtype. The

interactions with the largest differences in correlation

coefficients are listed in Table S5. None of the

miRNA pairs belonged to significantly correlated

groups of the full cohort (Fig. 2, Figs S1 and S2). In

addition, many individual correlations were not statis-

tically significant, making these results hard to

interpret.

3.2.2. Co-expression of oxysterol-related mRNAs

To inform our subsequent mRNA-miRNA analyses,

we correlated mRNA expression values of all 113

oxysterol-related genes (Table S1) across all 67 samples

to see any potentially co-expressed genes. No correla-

tion could be considered strong with adjusted P-value

≤0.05 (r between �0.42 and 0.74. Hierarchical cluster-

ing analysis did not reveal any strong clusters,

although there were multiple positively and negatively

correlated gene groups (Fig. S3). To see how represen-

tative our dataset was of larger, more heterogeneous

cohorts, we performed validation in the TCGA data

(n = 538). Out of 869 significant correlations, 418

agreed (direction of correlation the same) with TCGA,

130 disagreed and 321 were not significant in TCGA

(Table S6).

Analogously to the previous section, we compared

correlations between clinical subgroups based on men-

opause status, PR status and intrinsic tumor subtype

(Table S7). These comparisons suffer from similar lim-

itations as the previous miRNA-miRNA results, mak-

ing interpretation problematic.

3.2.3. Network analysis of oxysterol-related mRNA

and miRNA expression

Finally, we performed correlation analysis between the

mRNA (113 oxysterol-related genes, Table S1) and

miRNA data (see Section 2.7) across 56 overlapping

samples of the primary cohort. For the 123 interac-

tions that reached significance (network in Fig. 3,

listed in Table S8), we queried databases of in silico

predicted or experimentally validated mRNA-miRNA

interactions by multiMiR and found 14 (11.4%) and

nine (7.3%) interactions to be either predicted or vali-

dated, respectively (Table 1). Four interactions, that is,

INSIG1 with hsa-miR-130a-3p, ESR1 with hsa-miR-

130a-3p and with hsa-miR-145-5p, and NCOA2 with

hsa-miR-200c-3p were in databases of both predicted

and validated interactions.

For further validation, we correlated the TCGA

mRNA data with the filtered (see Section 2.7) TCGA-

GA and the TCGA-HS data, separately, and restricted

the results to only those significant after FDR correc-

tion. Out of the 123 original interactions, 14 were

Fig. 1. Venn diagram of all breast tumor samples included in the

study, divided by type of data obtained. DNA—short somatic

variant data of oxysterol-related gene panel by targeted DNA-seq.

miRNA—expression data for full miRNA transcriptome by microar-

ray. mRNA—expression data for oxysterol-related gene panel by

mRNA-seq.
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found to agree (direction of correlation the same) with

both validation datasets and 46 with only one of the

datasets while not being present in the other. One

interaction disagreed (hsa-miR-494 with CH25H,

direction of correlation opposite) with both datasets,

10 with only one of the datasets while not being pre-

sent in the other. Fifty-two interactions were not

found in either validation dataset (Table S8). In terms

Fig. 2. Largest group of co-

expressed miRNAs, confirmed by

validation in TCGA. Line thickness

corresponds to strength of

correlation (r between 0.80 and

0.99). Confirmation by validation

datasets: both (dark blue), one

(light blue), none (gray dashed line).

‘hsa’-omitted from miRNA names

for brevity. For other groups, see

Figs S1 and S2.

Fig. 3. Interaction network based on mRNA-miRNA expression correlations significant after FDR adjustment. mRNAs in orange and miRNAs

in white. Negative correlation in dashed lines and positive in solid lines. Dark blue lines—validated by both TCGA datasets; light blue lines—

validated by one TCGA dataset; gray lines—not validated by either TCGA dataset; orange lines—disputed by one TCGA dataset; red lines—

disputed by both TCGA datasets. ‘D’ in the middle of a line—interaction found in at least one of 11 databases queried (listed in Table 1; for

methodology, see chapter 2.6 and Table S3). ‘hsa-’ omitted from miRNA names for brevity.
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of the interactions found in databases, those of

CH25H, ESR1, INSIG1, and SC5D agreed with at

least one TCGA dataset, although the correlations

were considerably weaker in all cases. In the case of

NCOA2 and NCOA3, the correlation direction was

shown to be opposite in one of the TCGA datasets

(Table 1, Fig. 3).

We again repeated the analyses to see whether the

network would differ between clinical groups

(Table S9) based on menopause status, PR status, and

intrinsic tumor subtype. Only one prominent mRNA-

miRNA pair from our original mRNA-miRNA net-

work showed a large difference between subgroups

(CH25H-hsa-miR-494: 0.17 in luminal A, �0.78 in

luminal B patients) (Table S9). More differences were

observed than in the case of miRNA-miRNA and

mRNA-mRNA comparisons (Tables S5 and S7,

respectively), but they were again based mostly on sta-

tistically nonsignificant correlations.

3.3. Effects of mutation status of oxysterol-

related genes and clinical factors on mRNA

expression

We divided patients into groups based on the somatic

mutation (any type) status of individual genes or gene

sets that were associated with survival or other clinical

characteristics in our previous study [15] and/or the

mutation status of genes found to be prominent in the

mRNA-miRNA networks. We then performed differ-

ential expression analysis between the groups. Patients

mutated in CYP46A1 and in the STRING-CYP46A1

gene set (nine additional functionally related genes),

which were most significantly associated with poor

Table 1. Significant mRNA-miRNA interactions that were also found in databases, with validation by TCGA data.

mRNA

miRNA (hsa-

miR-. . .)

Correlation

coefficient (r)

FDR adj.

P-value

Databases of

predicteda
Databases of

validateda
TCGA-GA (r; FDR

adj. P-value)

TCGA-HS (r; FDR

adj. P-value)

CH25H 376a-3p 0.50 0.036 miRanda NS 0.24; 5.87E-05

CH25H 376c-3p 0.49 0.038 miRanda NS 0.34; 1.63E-09

ESR1 100-5p �0.57 0.006 mirTarBase �0.30; 8.41E-03 �0.25; 2.49E-05

ESR1 130a-3p �0.58 0.004 DIANA-microT

EIMMo

miRDB

PicTar

PITA

mirTarBase NS �0.19; 1.90E-03

ESR1 143-3p �0.56 0.007 miRanda NS �0.22; 2.69E-04

ESR1 145-5p �0.49 0.042 EIMMo TarBase NS NS

ESR1 199a-3p �0.53 0.018 PITA NS �0.15; 0.022

INSIG1 100-5p �0.52 0.021 mirTarBase NS NS

INSIG1 130a-3p �0.52 0.021 DIANA-microT

EIMMo

miRanda

miRDB

PITA

TargetScan

TarBase NS NS

INSIG1 140-5p �0.50 0.037 DIANA-microT

miRDB

NS NS

INSIG1 205-5p �0.55 0.009 TarBase NS �0.18; 4.01E-03

INSIG1 424-5p �0.52 0.021 TarBase NS NS

NCOA2 141-3p 0.50 0.031 TarBase NS NS

NCOA2 200c-3p 0.50 0.031 DIANA-microT

EIMMo

miRanda

miRDB

miRTarBase NS NS

NCOA2 93-5p 0.50 0.033 PITA NS �0.21; 5.36E-04

NCOA3 140-5p �0.57 0.006 DIANA-microT

MicroCosm

NS 0.13; 0.045

NCOA3 205-5p �0.50 0.031 DIANA-microT NS NS

OSBPL10 574-5p 0.55 0.012 PITA NS NS

SC5D 199a-3p 0.49 0.040 miRanda NS 0.22; 1.72E-04

a

For individual database versions and respective links, see Table S3.
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survival in our previous study [15], also showed the

largest number of differentially expressed genes. For

CYP46A1-mutated patients (n = 4), it was EBP,

DHCR7, and PPARGC1B that showed not only the

largest log2 fold change (log2FC; 2.74, 2.24, and 2.09,

respectively) but also the only significant P-values after

FDR (9.71E-10, 7.47E-06, and 1.72E-05, respectively).

OSBP, LDLR, and ABCG8 were also significant

(Fig. 4A). When expanding the cohort to patients

mutated in the STRING-CYP46A1 gene set (n = 15),

it was EBP, DHCR7, PPARGC1B, and OSBP that

remained significant (adj. P-values 0.0002, 0.033,

0.028, and 0.024, respectively), but their log2FC

decreased (1.44, 1.04, 0.93, and 0.76, respectively;

Fig. 4B). Patients with mutations in SC5D (n = 2) saw

its mRNA significantly upregulated (log2FC = 3.06;

adj. P = 4.84E-08; Fig. 4C), along with that of

SREBF1 (log2FC = 2.43; adj. P = 0.0001), and AHR

(log2FC = 1.93; adj. P = 0.019). SC5D was also upre-

gulated in patients with ABCA9 mutations (n = 4,

log2FC = 1.30; adj. P = 0.028; Fig. S4). Finally, those

mutated in ESR1 (n = 3) had higher expression of

NCOR1 (log2FC = 1.71; adj. P = 7.85E-05; Fig. S4).

Finally, we compared expression between groups

defined by clinical factors (tumor size and type, node

status, molecular subtype, ERBB2, and progesterone

receptor. Only the lymph node status (pN) of patients

led to any differentially expressed genes. Patients with

positive regional nodes (pN1; n = 28) saw the expres-

sion of STARD5 increase substantially as opposed to

those with negative (pN0; n = 36) (log2FC = 3.26; adj.

P = 0.0005; Fig. 4D).

Fig. 4. Volcano plots of differentially expressed genes. Patient groups separated by mutation status of (A) CYP46A1, (B) the STRING-

CYP46A1 gene set, and (C) SC5D. (D) Patients separated by their lymph node status (pN; N1 = nodes tumor-positive, N0 = nodes tumor-

negative). Vertical dashed lines show the threshold for high fold change (log2FC = �2), and horizontal dashed lines show the threshold for

significant P-value after FDR (0.05).
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3.4. Individual associations of mRNA and miRNA

expression and clinical factors with survival

We also evaluated potential associations of a range of

factors with DFS and OS of patients. First, we com-

pared the survival of 67 patients based on whether

they showed the expression of a particular mRNA

(n = 93) to be high (above or equal to the median) or

low (below the median). For especially low-expressed

genes where the median would be zero (n = 20), we

compared patients with any expression of an mRNA

to those without. Two genes showed high expression

as being prognostic of poor survival—LDLR (OS

P = 0.003; DFS P = 0.020; Fig. S5) and PPARGC1A

(OS P > 0.05; DFS P = 0.020; Fig. S6). Similarly,

from the list of low-expressed genes, any expression of

CYP3A4 was associated with worse survival compared

with no expression (OS P = 0.017; DFS P = 0.015;

Fig. S7). No results passed the FDR test and none

were confirmed in the TCGA cohorts.

Analogously, in 123 patients, we compared the sur-

vival data of patients based on the expression of a

miRNA (n = 280, see Sections 2.3 and 3.2). High

expression of eight miRNAs was associated either

with prolonged (hsa-miR-106b-5p, hsa-miR-3653, hsa-

miR-6069, and hsa-miR-6515-3p), or shortened OS

(hsa-miR-23b-3p, hsa-miR-4459, hsa-miR-4497, and

hsa-miR-4745-5p), and that of seven miRNAs was

associated with prolonged (hsa-miR-222-3p,

hsa-miR-1587, hsa-miR-4449, hsa-miR-4687-3p, and -

hsa-miR-6069) or shortened (hsa-miR-19b-3p and hsa-

miR-4745-5p) DFS (Table S10), although no results

remained significant after FDR correction. Only two

miRNAs were associated with both OS and DFS.

High expression of hsa-miR-6069 was associated with

prolonged OS (P = 0.009) and DFS (P = 0.004;

Fig. S8), while that of hsa-miR-4745-5p with poor OS

(P = 0.027) and DFS (P = 0.011; Fig. S9). None of

these associations reached significance after FDR cor-

rection. However, high expression of hsa-miR-19b-3p,

which was associated with poor DFS in our data

(P = 0.036, Fig. 5), showed a similar trend in the

TCGA-GA data, although not significant (P = 0.085,

Fig. 5), but not in TCGA-HS data (not shown). How-

ever, it was also associated with poor OS in the

study cohort, TCGA-GA, and TCGA-HS (P = 0.17;

P = 0.14; P = 0.05, respectively; Fig. S10), although

statistically significant only in TCGA-HS. In addition,

an association with poor disease-specific survival in

TCGA-HS was close to significance (P = 0.080,

Fig. S10).

Last, we tested clinical factors (pathologic stage,

grade, tumor size (pT), node status (pN), luminal sub-

type A vs B, progesterone receptor (PR) status,

ERBB2 status, Ki-67 status, and invasive ductal ade-

nocarcinomas vs others, menopause status). Here, only

large (> pT1) tumor size was associated with poor sur-

vival (Fig. S11) in all patients with available

Fig. 5. Disease-free survival of patients in the study cohort and the TCGA-GA cohort separated by hsa-miR-19b-3p expression level.

High = above or equal to median, Low = below median. P-values by log-rank test, unadjusted.
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information (OS: P = 0.004 in 157 patients; DFS:

P = 0.012 in 158 patients). In order to determine

whether the association of high hsa-miR-19b-3p

expression with poor DFS was a prognostic factor

independent of clinical parameters, we fitted the Cox

regression model with pT as a covariate. Expression of

miR-19b-3p above median was independently associ-

ated with poor DFS, with relapse risk ratio of 2.622

(95% CI: 1.071–6.423; P = 0.035).

3.5. Integrated oxysterol-related mRNA-miRNA

prediction model

We used PCA and plotted the first two principal com-

ponents in mRNA and miRNA data of our samples

and of the TCGA-GA and TCGA-HS datasets while

stratifying the samples by pathologic stage, pN, pT,

and OS status (living vs deceased) and PR status

(Table S11 for cohort statistics, Figs S12–S16 for

plots). None of these factors seemed to define any

obvious clusters of samples in any dataset.

Despite this, we attempted to fit multiomic predic-

tive models at least to the largest mRNA-miRNA

dataset TCGA-HS using the DIABLO framework [37].

Due to the categorical nature of the mutation data

(unsuitable for DIABLO), the small number of

mutated patients in the genes of interest, and the

incomparability of mutation data from TCGA and

from our cohort [15], we utilized only the mRNA

and miRNA expression data. We again used stage,

OS, pN, pT, and PR status as potentially discriminat-

ing factors. However, we were unsuccessful in fitting a

reliably predictive model, with weighted balanced error

rates higher than 40%. Since the initial model showed

inadequate predictive power, we did not proceed with

validation in the smaller datasets. In hierarchically

clustered heatmaps representing the signatures

(Figs S17–S19), a slight enrichment of samples with

pT > pT1 can be seen in the second largest cluster

(Fig. S18). Similarly, a small cluster enriched in PR-

negative patients seems to have a distinct signature

(Fig. S19). For lists of mRNAs and miRNAs repre-

senting minimal discriminatory signatures with the best

fit and for notes on the methodology, see Table S12.

4. Discussion

This study fills a gap in the understanding of the geno-

mic and transcriptomic background of oxysterol signal-

ing in early-stage BC, where a complex multiomic

approach has so far been neglected. We present novel

hypothetical mRNA-miRNA interactions, confirm ones

already published in multiple databases in other

contexts, and validate the majority of findings using

large publicly available datasets. Co-expressed groups of

miRNAs are documented and validated as well. In addi-

tion, differential expression patterns of oxysterol-related

genes based on their somatic mutation status, as well as

nonsignificant (after correction) associations of

oxysterol-related mRNA and miRNA expression with

patient survival are presented. Finally, we demonstrate

that oxysterol-related miRNA-mRNA interactions are

not suitable for the fitting of multiomic models that

would be predictive of clinical characteristics.

First, we correlated miRNAs between themselves in

order to not only reveal either established or novel bio-

logical miRNA clusters, which can have clinical rele-

vance in and of themselves [11,40], but also further

inform the following mRNA-miRNA network analysis.

We confirmed that miRNAs tend to be co-expressed in

groups and that only some of these groups can be

found in publicly available data, such as TCGA. This is

likely due to differences in miRNome versions between

the two projects. This highlights the importance of cor-

rect reporting of the miRBase version used in any study

pertaining to miRNAs. The most strongly correlated

and validated group of miRNAs (Fig. 2) was later

found to be the backbone of the mRNA-miRNA net-

work (discussed below).

In the mRNA-miRNA network analysis (Fig. 3), the

highest connectivity was shown by CH25H, with

the majority of strongest correlations being positive.

This is contrasted by ESR1, negatively correlated with

a series of miRNAs mostly corresponding to the larg-

est confirmed strongly co-expressed miRNA group.

These two genes are highly significantly (P adj. < 0.01)

linked through hsa-miR-100-5p, hsa-miR-125b-5p, and

hsa-199b-5p. Other, less significant (P adj. < 0.05)

links are then via hsa-miR-130a-3p, hsa-miR-143-3p,

hsa-miR-199a-3p, hsa-miR-199a-5p, hsa-miR-376a-3p,

and hsa-miR-376c-3p. The majority of these interac-

tions were also found in the validation data and many

of them in databases as well. This suggests a possible

functional link between ESR1 and CH25H. ESR1

codes for the estrogen receptor alpha (ERa), whose

vital importance for BC needs no explanation [41]. Its

association with oxysterols is primarily through 27-

hydroxycholesterol, which can act as a SERM [6].

SERMs such as tamoxifen are routinely used for the

treatment of ER-positive BC. CH25H produces choles-

terol 25-hydroxylase, a ubiquitously expressed enzyme

known for converting cholesterol to an important sig-

naling oxysterol, 25-hydroxycholesterol (25-HC), able

to bind to a number of receptors [42]. Remarkably,

ERa is one of those modulating growth rate of breast

and ovarian cancer cells in vitro through activation by
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25-HC [43]. Perhaps the interaction between ESR1

and CH25H involves miRNAs as well. It should be

noted that INSIG1, whose protein is responsible for

the maintenance of cholesterol homeostasis by inhibit-

ing cholesterol production, and is also affected by 25-

HC [44], was negatively correlated with CH25H in our

study (confirmed not in validation data, but in data-

bases), largely via the same miRNAs. This suggests a

possible ESR1-CH25H-INSIG1 interaction network.

High expression of ESR1 in ER-positive tumors,

coupled with upregulation of INSIG1 and downregula-

tion of CH25H (presumably accompanied by lower

cholesterol and 25-HC production, respectively) could

involve regulation by miRNAs. However, it has been

shown in vitro that ER-positive cells can actually have

their cholesterol metabolism and 25-HC production

enhanced compared with ER-negative BC cells [45].

Cholesterol metabolism upregulation is also a potential

marker of resistance to endocrine therapy and poor

prognosis [45]. Radically different study designs and

objectives, and the fact that our cohort was 100%

ER-positive and very homogeneous in general, unfor-

tunately make direct comparison of these results

impossible. Moreover, ESR1 and INSIG1 are signifi-

cantly negatively correlated with ABCA9 via hsa-miR-

99a-5p and hsa-miR-125b-5p. ABCA9 is a membrane

lipid transporter [46,47] which is downregulated in BC

(ER-positive in most cases) compared with normal tis-

sues [48,49].

Hsa-miR-99a-5b, hsa-miR-125b-5p, and hsa-miR-

100-5p are part of two well-defined clusters, miR-99a/

let-7c/miR-125b-2 (MIR99AHG, chromosome 21) and

miR-100/let-7a/miR-125b-1 (MIR100HG, chromosome

11). Low level of miR-99a/let-7c/miR-125b-2 was asso-

ciated with shorter OS in patients with the luminal A

subtype [50]. We also tested this post hoc in our cohort

(26 luminal A patients) and found similar trends for

both OS and DFS, but not statistically significant due

to the low number of patients (data not shown).

Previously, the importance of deregulation of hsa-

miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-

miR-143-5p, and hsa-miR-376a-3p in the development

of ductal carcinoma in situ (DCIS) from normal

breast tissue and/or in the development of invasive

breast carcinoma from the DCIS has been described.

Interestingly, hsa-miR-99a-5p, hsa-miR-125b-5p, and

hsa-miR-376a-3p were specifically downregulated in

the luminal B (PAM50) subtype [51]. Moreover,

hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p,

hsa-miR-130a-3p, and hsa-miR-376c-3p have been

proposed as blood biomarkers in breast carcinoma

patients [52,53]. We propose studying all the above-

mentioned miRNAs, especially in interactions with

CH25H, ESR1, INSIG1, and ABCA9, in focused func-

tional studies in luminal BC models and patients.

Because oxysterol signaling is hormone signaling-

related, we repeated all the correlation analyses of

miRNA-miRNA, mRNA-mRNA, and mRNA-miRNA

separately for clinical subgroups based on menopause

status, progesterone receptor status, and intrinsic sub-

type (Tables S5, S7 and S9) to see whether the networks

are affected. One aspect connecting all the analyses is

that almost none of the largest differences involved the

most prominent interactions from the networks of

the full cohorts (n = 123 for miRNA-miRNA, n = 67

for mRNA-mRNA, and n = 56 for mRNA-miRNA).

Practically, all the largest differences involved peripheral

and often overall weakly expressed miRNAs or

mRNAs. One exception was the CH25H-hsa-miR-494

correlation, which was negative (r = �0.53) in the full

cohort, which disagreed with both our TCGA validation

cohorts (0.27 and 0.30 for TCGA-GA and TCGA-HS,

respectively, Table S8, Fig. 3, in red). However, luminal

A (n = 13) patients showed r = 0.17 (adj. P = 0.983),

while luminal B patients (n = 29) had r = �0.78 (adj.

P = 0.003). This might point to luminal A patients being

more similar to the TCGA cohorts in this particular

interaction than the luminal B patients, which clearly

accounted for the negative r of the full cohort and the

only large discrepancy in the full network versus TCGA

data (Fig. 3). Unfortunately, a fully comparable

subtype-based correlation analysis in the validation

TCGA data was not possible due to incompatibility of

the clinical data with ours (TCGA molecular subtypes

are based on RNA-seq data, while our cohort is charac-

terized by clinical immunohistochemistry). Despite this,

we post hoc compared the correlations in our validation

TCGA-HS cohort reduced only to samples where RNA-

seq-based classification was unambiguously luminal A

(n = 63) or luminal B (n = 18). In both groups, the cor-

relation was positive (luminal A: r = 0.22, adj.

P = 0.540; luminal B: r = 0.371, adj. P = 0.788), but

these results were again based on low numbers of

patients and were not statistically significant. We con-

sider such comparisons between any two networks, espe-

cially derived from low number of samples (and

different cohort sizes), to be very challenging to statisti-

cally analyze and interpret. Such results should be taken

with a high degree of caution.

Following up on our previous study where mutations

in CYP46A1—coding for an enzyme responsible for

converting cholesterol into 24S-hydroxycholesterol—
and functionally related genes were weakly associated

with poor survival of BC patients [15], we discovered

that these same patients have multiple oxysterol-related

genes upregulated as well, namely EBP, PPARGC1B,
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and DHCR7. These patients were in fact one of only

several groups out of hundreds analyzed in this study

that had any genes differentially mutated, and they were

the ones with the most substantial dysregulation. This

adds oxysterol-related gene expression to the list of

genomic differences of this poorly surviving group

of patients, although any causal relationships remain

unclear and unlikely, especially due to mutations in

CYP46A1 being intronic. The abovementioned genes

and their roles in oxysterol signaling have been dis-

cussed by us previously [15,16].

STARD5 was the one highly upregulated gene based

on clinical characteristics, in lymph node-positive

patients compared with negative. STARD5 is key for

cholesterol homeostasis regulation, especially in liver

cells [54]. It is indeed hepatocellular carcinoma where it

has been recently proposed as a potential diagnostic and

prognostic biomarker, with high expression associated

with lower tumor grade and better prognosis [55], indi-

rectly in contrast with our results in BC. In our study, it

was also correlated with three miRNA: positively with

hsa-miR-29c-3p and negatively with hsa-miR-937-5p

and hsa-miR-1249. To our knowledge, this is the first

link, even if indirect, of these miRNAs to any clinical

parameter of BC. The potential importance of STARD5

and its regulation in BC is only starting to emerge, and

we consider it an understudied gene indeed.

As an intriguing secondary result not related to oxy-

sterols, hsa-miR-19b-3p emerged as a miRNA whose

above-median expression was associated with worse

survival of patients. An association with DFS was

found in our cohort and came close to significance in

TCGA-GA. There was a borderline significant result

for OS in the TCGA-HS cohort, with the trend also

present in our cohort and TCGA-GA, although not

significant there. Finally, a nearly significant

association with DSS was found in TCGA-HS. Hsa-

miR-19b-3p, together with hsa-miR-19a-5p, forms the

miR-19 family (sharing the same seed sequence) and is

transcribed in two paralogous clusters—miR-17-92

(chromosome 13q31.3) and miR-106b-25 (chromosome

7q21; miRBase v22.1). MiR-17-92 cluster is overex-

pressed in a number of tumor types [56], and the miR-

19 family has been shown to be the main oncogenic

activator of this cluster through the repression of the

tumor suppressor PTEN and the activation of

the AKT–mTOR pathway [57]. High expression of

miR-19b in BC tissues is significantly associated with

shorter OS in of BC patients in general [58]; however,

specific prognostic roles of miR-19 in different sub-

types of BC have not yet been described.

Oxysterol-related genes were not suitable for train-

ing of multiomic statistical models that would reliably

discriminate between patient subgroups. However,

despite us having applied this methodology on a much

smaller dataset than it is intended for (whole transcrip-

tomes), there were indications that with more samples,

models able to predict tumor size or PR status of

tumors based on our shortlist of 113 oxysterol-related

mRNAs and 280 miRNAs could perhaps be created.

The models would benefit from adding more samples,

as well as types of data, for example, proteomic or

methylomic. Perhaps an improved multiomic model,

able to include categorical data such as gene mutation

status or clinical factors, could show better predictive

ability. To our knowledge, such a model has not been

developed yet. However, even if such a model could be

fitted, aside from being of theoretical value to systems

biology, its applicability in clinical practice would be

questionable.

The main limitation of our study is the low numbers

of patients in some comparisons, mainly those based

on the mutation status of particular oxysterol-related

genes, since these genes are not frequently mutated in

our cohort, or in general. These results should there-

fore be treated with caution. In addition, the number

of patients in integrative analyses is limited by the

imperfect overlap of our miRNA microarray, mRNA-

seq, and DNA-seq cohorts. Next, since the present

study used a clinically relatively homogeneous set of

early-stage Czech BC patients of Caucasian ethnicity,

the results should not be applied to a more general

global population. However, large population studies,

which do contain similar specific subpopulations of

comparable size, usually lack the detailed analysis and

focus that this study provides. We therefore believe in

the value of studies in specific populations such as

ours. It needs to be stressed that the numerous poten-

tial mRNA-miRNA interactions found are based on

correlations and lack experimental verification. Even

though some of them were validated in two separate

external datasets and multiple databases of in silico

predicted and/or experimentally validated interactions,

they should be treated as hypotheses in need of func-

tional confirmation. In addition, some of the compari-

sons, especially between subgroups (menopause status,

PR status, and intrinsic subtype), are based on low

patient numbers.

For eventual utilization in clinical practice, the func-

tions of the ESR1-CH25H-INSIG1-ABCA9 axis and

other minor interactions should be investigated in

focused experimental in vitro and in vivo studies and

their on/off status should be connected with real oxy-

sterol levels in patients and their therapy outcomes.

First, the most influential miRNAs should be identified

and then hormonal therapy should be applied to test
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its efficacy when the signaling is active/inactive. Then,

a series of oxysterols should be introduced to test their

effects on the system. In case a link between specific

oxysterols and therapy, for example, tamoxifen, is

found, it could eventually be used for patient prognos-

tication and therapeutic management.

5. Conclusions

The present study provides new insights into the

mRNA-miRNA landscape of oxysterol-related genes

in BC in unprecedented detail, in combination with

mutation data. The main result is a complex

mRNA-miRNA interaction network, where we reveal

a potential ESR1-CH25H-INSIG1-ABCA9 subnetwork

involving several co-expressed miRNAs. We also add

to the existing evidence linking overexpression of hsa-

miR-19b-3p to worse survival of patients with ER-

positive tumors. These results should be used as the

basis of follow-up experimental studies in the area of

oxysterol research in cancer.
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