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ABSTRACT

In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental
data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for
replicating chaotic brain dynamics in the treatment of Parkinson’s and epilepsy patients. The dynamic properties of the Hénon map were
compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input–output with easy numerical
implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and
Fisher’s information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time
series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of
the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some
characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more
complex spectrum within the complexity–entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior
observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the
dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142773

An approach using information theory allows for the extraction
of dynamical features from neurophysiological signals. In this
paper, the dynamics of human intracranial electroencephalogra-
phy (iEEG) are compared to two mathematical models: the Hénon
map and a q-DG neural firing probability model. While the bio-
logical data present a much more complex spectrum of dynamical
characteristics, the models are able to reproduce some aspects of
neural dynamics.

I. INTRODUCTION

Dynamic systems describe processes that change over time.
These models can be used to explain how symbolic properties
emerge from physical and dynamic characteristics, which may also
be an explanation for the emergence of mental qualities through
neuronal activity.1 A dynamic system can be stable, periodic, or
chaotic. Chaotic systems are extremely sensitive to initial conditions
and exhibit complex behaviors that become unpredictable in the
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long term. Knowing the equation of a dynamic system can be useful
for controlling it through conventional dynamic control methods.
However, it can be challenging to identify patterns and determine
their parameters when the equation is unknown, as is the case with
electroencephalogram (EEG) signals.2

Many researchers in neuroscience have focused on studying
chaotic patterns. In real biological dynamics, stable attractors are
rare. Therefore, more complex behaviors (including oscillations and
chaos) must be taken into consideration. This has led to the devel-
opment of various numerical techniques for analyzing complex time
series, which can be used to describe dynamic processes at both the
temporal scale of cerebral dynamics and the fluctuations of clini-
cal symptoms.1 Applying these methods to physiological data has
shown that complex behaviors are associated with healthy states,
while simple dynamics are associated with pathological cases.3 There
are even studies that support the concept of “dynamic disease,”4,5

which refers to pathological states characterized by changes in
physiological rhythms.1

Previous studies have indicated that brain waves exhibit chaotic
behaviors. While solid evidence of chaos in cerebral dynamics (from
a mathematical perspective) has only been found at the level of axons
and individual and paired cells, the results suggest that it is possible
for brain signals to be distributed according to chaotic patterns at all
levels of its hierarchy.6–8

The brain is a highly complex dynamic system, and it is not
fully understood how it processes information and generates behav-
ior. The use of mathematical models, such as chaotic functions,
can help to study and understand the complex dynamics of the
brain and how it works. Several contemporary studies in the field of
biology have shown that certain well-known chaotic systems, such
as the Logistic Map, Lorenz, and Rössler systems, can accurately
describe the chaotic dynamics of biological systems under certain
conditions, that is, specific parameter values.8 One example of these
types of chaotic systems is the Hénon map, which is a mathemat-
ical function that exhibits complex and chaotic behavior.9 It has
been proposed as a potential tool for studying and modeling brain
activity and has been used to train artificial neural networks and
study their similarities to biological brain networks and their chaotic
behavior.2,10

By analyzing the behavior of the Hénon map and comparing
it to brain activity, it may be possible to obtain information about
the principles governing brain function and develop new approaches
to treating neurological conditions. In addition, the complexity and
unpredictability of chaotic functions may be useful for understand-
ing how the brain processes and responds to stimuli and how it
adapts to changes in its environment.

The goal of this study is to use information theory tools to com-
pare the cerebral dynamics of the subthalamic nucleus with those
of the Hénon map and a dichotomized q-Gaussian neuronal firing
model. The latter is capable of generating spike trains from a popula-
tion of neurons, which is useful for characterizing the local behavior
of the network. The purpose of this investigation is to determine
whether there are similarities between the dynamics of these models
that could be utilized in future studies of neurodegenerative diseases
like Parkinson’s and Alzheimer’s. Previous research has suggested
that chaotic dynamics may be associated with healthy states of
brain dynamics, while non-chaotic dynamics may be associated with

pathological states. Therefore, the primary objective of this work is
to establish whether the dynamics of the models mentioned display
similarities, and whether these similarities can be used to advance
future research on the subject.

A. Comparing the dynamics of the Hénon map and

neural activity for noninvasive brain stimulation of

Parkinson’s and epilepsy patients

The subthalamic nucleus (STN) of the basal ganglia has been
identified as a decision gatekeeper in human patients who have had
electrodes implanted for clinical deep-brain stimulation (DBS) treat-
ment. The STN is thought to set the decision threshold when there
is contradictory information by postponing action until the issue
is resolved.11,12 Motor symptoms of movement disorders, such as
Parkinson’s disease, can be effectively treated by STN-DBS. How-
ever, it is also known to have a subtle but significant negative impact
on behavior, mood, and cognition, with impulsivity being its most
common symptom.13,14

Different noninvasive brain stimulation (NIBS) technologies
are currently being studied as potential future strategies for the
treatment of Parkinson’s disease (PD). In addition to being used
to investigate brain physiology, NIBSs are also being recognized for
their therapeutic potential as a supplementary treatment for a variety
of neurological and psychiatric disorders.15,16

Understanding brain dynamics is necessary for the therapeutic
treatment of several neurological diseases, such as Parkinson’s and
epilepsy. These therapeutic options now have a strong experimen-
tal foundation, but lack a solid theoretical foundation. In addition,
many long-term effects of brain stimulation on cerebral neuronal
networks are unknown. The dynamic behavior of discharge activ-
ity patterns is important because they are closely related to the
physiological manifestation of neurons.

The analysis of chaotic systems is a central part of the study of
deep-brain stimulation. Several studies suggest that it is convenient
to analyze the nonlinear dynamics of biological systems using chaos
theory as a means of computation.17 Data analysis using formal
models is consistent with the idea that signals in the brain exhibit
chaotic patterns at all levels.8 Furthermore, EEG analysis exhibits
chaotic patterns and bifurcations, supporting the idea that chaos
exists in these types of signals.18

The Hénon map is among the best-known instances of chaotic
behavior in nonlinear dynamical systems. This translates a point (xn,
yn) on the plane to a new point for succeeding steps. The comparison
of the dynamics between the Hénon map and neural activity is inter-
esting, especially considering the recent proposal to use the Hénon
map to simulate chaotic brain dynamics in the noninvasive stimula-
tion of patients with Parkinson’s disease and epilepsy.9 To study the
temporal dynamics of Hénon, the Bandt and Pompe methodology
was used to calculate the Shannon entropy, statistical complexity,
and Fisher Information of the map time series.

The system dynamics were analyzed by comparing these find-
ings to actual local field potential (LFP) data from the subthalamic
nucleus (STN), medial frontal cortex (MFC), and a dichotomized
q-Gaussian theoretical model used to simulate spike trains of
highly correlated neuronal populations. More specifically, time
series generated by the LFPs were used to analyze the differences
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FIG. 1. Temporal evolution in milliseconds of the coordinates x and y of the
two-dimensional Hénon map.

and similarities with the Hénon Map and compared with the q-DG
model, which takes into account higher order correlations in both
input and output statistics.19 Representing these complex systems by
simulated or experimental time series can provide a better way to
visualize the hidden patterns related to network dynamics.

II. METHODS

A. Topological background

1. The Hénon map: A model for chaotic dynamics

The classical Hénon map is defined by the following coupled
equations:

{

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn.

Using a = 1.4 and b = 0.3 as parameters, the system exhibits irregu-
lar behavior that progresses into a chaotic attractor.9,10,20 The Hénon
map was used to generate two one-dimensional time series repre-
senting the position of the x and y coordinates (Fig. 1). These time
series were then assigned a probability using the Bandt–Pompe (BP)
method21 and the information-theoretic quantifiers were calculated.
The results of both components were averaged to obtain the final
values. The aim of this simulation was to mimic the dynamics of
neuronal activity using the Hénon map.

2. Modeling neural correlations using the

dichotomized q-Gaussian model

The dichotomized q-Gaussian model (q-DG) is a model of
neural activity that involves thresholding a multivariate q-Gaussian

random variable to produce a series of action potentials or spike
trains. The correlations among neurons in this model arise from
correlations in the underlying q-Gaussian distribution. The q-DG
model generalizes Amari’s dichotomized Gaussian model to account
for higher-order correlations in both the input and output statis-
tics of neurons. The deformation parameter, q, represents the heavy
tails of the q-Gaussian distribution.22–27 The joint firing probability
density of an N-neuron population can be expressed in terms of the
T-Student (T) distribution, as shown in Eq. (1),

f(r) = ζ

√

1 − α

α

[

1 + (T−1)2

ν

]
ν+1

2

× exp

[

− ζ
2

1 − α

α

(

T−1 − h

ζ
√

1 − α

)2
]

. (1)

Here, ζ is a scale factor defined as ζ =
√

5−3q

3−q
, r = k

N
, ν = 3−q

q−1

and k represents the population spike count distribution. Note that
T−1 is the inverse cumulative distribution function for a T-Student’s
with degrees of freedom ν. At any given time, r represents the frac-
tion of neurons within the population that are spiking. Overall, the
equation shows that f(r) is determined by the values of α, h, q, and
ν, which together determine the T-Student distribution.

The q-DG model was selected due to its simplicity in numer-
ical implementation. By varying the input correlation coefficient
α, the mean value h, and the deformation parameter q, it is pos-
sible to generate spike trains for a population by determining the
fraction of the population that is spiking at each time, while tak-
ing into account the correlations in the input and output signals of
the population. These spike trains can be superimposed to obtain
a signal of the local behavior of the neural network, which can be
compared with the LFPs from experimental data. To construct the
time series of spike trains, a Monte Carlo simulation with N neu-
rons is implemented using the joint firing probability density to
obtain the fraction of the population spiking. At each time point,
the percentage of total spiking neurons is calculated, and a random
process is used to determine which neurons will spike. This pro-
cess is repeated for all time steps to simultaneously construct all
spike trains. Finally, the spike trains are summed time by time to
obtain a single global (local) variable. Figure 2 demonstrates this
approach, showing spike trains with N = 30 neurons, h = 1, and
q = 1.1 generated using the model with input correlation coefficient
values of α = [0, 0.25, 0.51, 0.80] adjusted to output correlation val-
ues of ρ = [0, 0.1, 0.25, 0.5]. More details regarding the relationship
between input correlations α and output correlations ρ can be found
in the following papers: Refs. 22–27.

3. The Bandt–Pompe approach to examining ordinal

structure and quantify information

The Bandt–Pompe (BP) technique21,28–30 is employed to esti-
mate the underlying probability distribution function (PDF) of a
time series χ(t) = {xt; t = 1, . . . , M}, which is a collection of M
measurements of the observable χ . The method involves the trans-
formation of the time series into symbolic sequences and the identi-
fication of ordinal structures in the data by considering all possible
permutations of the values of the series in fixed-size windows. This
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FIG. 2. The asymptotic joint firing probability density can be used to generate
different sets of spike trains by varying the input correlation coefficient α, the
mean value h, and the deformation parameter q. Although the figure shows the
evolution of the parameter ρ, which is the output correlation coefficient, it is worth
noting that its relationship with the input correlation coefficient α is determined by
the choice of the remaining parameters.

process results in a probability distribution of ordinal patterns,
derived from the histogram of causal patterns in the signal, that
can be utilized to compute various information theory quantifiers.
These quantifiers offer insight into the dynamic characteristics of
the system represented by the time series.

Once an embedding dimension D and a time delay τ are fixed,
the time series is partitioned into n = M − (D − 1)τ overlapping
segments, each consisting of D > 1 observations separated by τ ≥ 1.
Each partition is represented as31,32

(s) 7→
(

xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)

, (2)

creating a D-dimensional vector of values at each time s,
s − τ , . . . , n. As D increases, more previous data are included in the
vectors. For each partition, the permutation π = (r0, r1, . . . , rD−1) of
the index numbers (0, 1, . . . , D − 1) is determined. The permutation
of the index numbers defined by the inequality is

xs−rD−1τ ≤ xs−rD−2τ ≤ xs−r1τ ≤ · · · ≤ xs−r0τ . (3)

All D! possible permutations πi of order D are considered. In cases of
ambiguity, it is proposed that ri < ri−1 if xs−riτ = xs−ri−1τ . Note that
the symbolic sequence {πi}i=1,...,n is an ordinal symbolic sequence.

The relative frequency for each πi is determined as follows:

pj(5j) = number of partitions of type5j in πi

n
, (4)

where 5j represents each one of the D! different ordinal patterns.
It is important to note that 5j represents a specific ordinal pattern
for a partition, while πi represents the sequence of all ordinal pat-
terns obtained from all partitions in the time series. Therefore, the
probability distribution P is calculated based on the frequency of
each specific 5j within the entire sequence πi: P = {pj(5j)}j=1,...,D!

.

The condition M � D! must be met to apply this technique.21 A
brief example is presented below to illustrate the method explained.
Consider the time series χ(t) = {10, 13, 15, 12, 20, 18, 25} with
M = 7. The Bandt and Pompe methodology with D = 3 and τ = 1
is applied to evaluate the PDF. The vectors (10, 13, 15), (13, 15, 12),
and (15, 12, 20) are represented by the ordinal pattern {012}, while
(12, 20, 18) is represented by {120} and (20, 18, 25) is represented
by {201}. From the permutation of the embedding dimension, the
number of possible states is D! = 6. The probabilities of occur-
rence associated with each mutually exclusive permutation are given
by p({012}) = p({120}) = p({201}) = 2/5 and p({021}) = p({102})
= p({210}) = 0. These results form the PDF P = {p1, p2, p3, p4, p5, p6}
associated with the time series χ . For more examples of how to
implement this methodology, please refer to Ref. 32.

The BP approach is used to determine PDF of a time series,
which is then used to compute Shannon entropy as a measure of the
information content of the signals. This method provides insights
into the causality of the signal that a basic histogram cannot offer, as
the PDF is derived from the histogram of causal patterns. It is worth
noting that since the estimated PDF P is derived from a histogram,
it is discrete. When the probability distribution of ordinal patterns
is used to calculate Shannon entropy, it is referred to as permutation
Shannon entropy.

It should be noted that randomness metrics do not fully capture
the presence of ordinal structures in a process. For a more accu-
rate characterization of the dynamics of the system represented by
its time series, measures of statistical or structural complexity are
required, as discussed in Ref. 33.

In this context, the BP methodology is employed to estimate
the underlying PDF of a time series χ(t) and to calculate several
information-theoretic quantifiers. The ordinal patterns method is
applied to detect and quantify the presence of ordinal structures
in the time series, for the purpose of comparing the dynamics of
human brain physiological signals with mathematical models using
the BP method. Using the resulting probability distribution, var-
ious information-theoretic quantifiers such as Shannon entropy,
statistical complexity, and Fisher information can be calculated.
These quantifiers offer valuable insights into the dynamics of the
system represented by the time series and can facilitate the compar-
ison between human brain physiological signals and mathematical
models.

In the discrete case, the Shannon entropy of a time series with
a corresponding probability distribution P ≡ {pj}j=1,...,N

is given by34

S[P] = −
N

∑

j=1

pj log2(pj), (5)
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where N is the number of possible states of the physical system under
consideration and pj is the probability of each state. When it is cer-
tain which of the potential outcomes, represented by j, will occur,
with probabilities given by P0 = {pj∗ = 1 and pj = 0 for all j∗ 6= j},
the Shannon entropy is zero, indicating that our understanding of
the process is maximized. On the other hand, when the probabil-
ity distribution is uniform, with Pe = pj = 1/N, ∀j = 1, . . . , N, our
knowledge is negligible. It is worth noting that large changes in P
that occur over a small range have little impact on the Shannon
entropy, as it is a “global” measure.

Perfect order and maximal unpredictability are opposite
extremes, with neither having any structure. In these cases, the com-
plexity C should be zero, as shown by C[P0] = C[Pe] = 0, where P0 is
the probability distribution of the maximally disordered system and
Pe is the probability distribution of the perfectly ordered system. It
has been shown that the range of feasible values of C lies between a
minimum of Cmin and a maximum of Cmax, constraining the possible
values of the statistical complexity to a specific entropy–complexity
plane.35 The statistical complexity is a measure that captures use-
ful differences in the dynamics of the systems under study. This
metric was developed as a result of the pioneering work of L’opez-
Ruiz et al.36 In this study, the version of the metric developed by
Martin–Rosso–Plastino, also known as MPR complexity,35,37 will be
utilized. Whenever the term “complexity” is used, it will be referring
to this specific metric. The statistical complexity is given by

CJS[P] = QJ[P, Pe] · H[P], (6)

where H is the normalized Shannon entropy defined by H[P] = S[P]
Smax

with Smax = S[Pe] = log2 N and 0 ≤ H ≤ 1. The disequilibrium QJ

is given as a function of the Jensen–Shannon divergence,

QJ[P, Pe] = Q0 J [P, Pe], (7)

where the Jensen–Shannon divergence is defined as

J [P, Pe] = H[
P + Pe

2
] − H[P]

2
− H[Pe]

2
. (8)

The normalization constant Q0 ensures that 0 ≤ QJ ≤ 1. It
is the inverse of the highest possible value of J [P, Pe], which is
obtained when one component of P, such as pm, is equal to one and
the remaining pj are equal to zero.

The Jensen–Shannon divergence, a metric for comparing the
difference between probability distributions, is often used for ana-
lyzing the symbolic structure of different sequences.38 The statistical
complexity measure (SCM) relies on two probability distributions:
the distribution representing the system being analyzed, P, and the
uniform distribution, Pe.28,30,35,39

In contrast to Shannon’s entropy, Fisher’s information is sensi-
tive to local changes.40,41 It is defined as

F[f] =
∫ | E∇f(x)|2

f(x)
dx. (9)

This measure represents the gradient content of the distribution f
(a continuous PDF) and is, therefore, highly sensitive to even small,
localized perturbations. Fisher’s Information can be interpreted in
several ways: as a measure of the ability to estimate a parameter,
as the amount of information that can be extracted from a set of

measurements, and as a measure of the level of disorder in a sys-
tem or phenomenon.41,42 Its most important property is known as
the Cramer–Rao bound. It is worth noting that the gradient opera-
tor plays a significant role in determining the contribution of small,
local f variations to the Fisher information value, making it a “local”
measure. In contrast to Shannon entropy, which decreases with
a skewed distribution, Fisher information increases in such cases.
The ability to detect local changes is useful in situations where a
concept of “order” is relevant.43–45 The issue of Information loss
due to discretization has been extensively studied (see, for exam-
ple, Refs. 46–48 and their references). In particular, it involves the
loss of Fisher’s shift-invariance, which is not relevant for our present
purposes.

The calculation of Fisher’s Information was performed using
the method proposed by Sanchez-Moreno et al.,49 which is based on
the probability amplitude f(x) = ψ(x)2. The equation for this is

F[ψ] = 4

∫

dψ

dx

2

dx. (10)

The discrete, normalized version of this (0 ≤ F ≤ 1) is given by

F[P] = F0

N−1
∑

i=1

(
√

pi+1 − √
pi)

2
. (11)

The normalization constant F0 is defined as follows:45

F0 =
{

1 if pi∗ = 1for i∗ = 1or i∗ = N and pi = 0 ∀i 6= i∗,
1/2 otherwise.

(12)

It is worth noting that the general behavior of Fisher’s Information
measure is opposite to that of Shannon’s entropy.50 When the sys-
tem is in a highly ordered state, it can be described using a PDF
represented by P0 = {pk

∼= 1; pi
∼= 0 ∀ i 6= k; i = 1, . . . , N} (with

N being the number of states in the system), resulting in a nor-
malized Fisher’s Information measure of F[P0] ∼= Fmax = 1 and a
Shannon entropy of S[P0] ∼= 0. On the other hand, if the system
being analyzed is in a highly disordered state, it is reasonable to
assume that it is defined by a PDF represented by the uniform dis-
tribution Pe = {pi = 1/N ∀ i = 1, . . . , N}, which yields S[Pe] ∼= Smax

and F[Pe] ∼= 0.

B. Comparing time series dynamics using the

complexity–entropy causality plane

The Shannon entropy–statistical complexity plane by Martin,
Plastino, and Rosso allows for the comparison of similar time series
dynamics through subtle characteristics of the system’s dynamics.
This is achieved by calculating the Shannon entropy and statistical
complexity of the time series and then plotting the results on a two-
dimensional plane.

Shannon entropy measures the amount of information con-
tained in a time series and statistical complexity measures the
amount of structure and patterns present in the time series. By
plotting these two values on a plane, it is possible to compare the
dynamics of similar time series and see if they exhibit similarities or
differences in terms of entropy and complexity.
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FIG. 3. Complexity–entropy causality plane: this plot depicts the relationship
between complexity and entropy in a time series. The maximum and minimum
complexity bounds are plotted, with chaotic systems located toward the maximum
complexity. These systems have entropies between 0.45 and 0.7 and complexi-
ties close to the maximum. Stochastic systems are located near the minimum
complexity curve. The middle region represents correlated noise, while stochastic
behaviors can be found below this region. The regions of white noise and regu-
lar oscillations are also shown. The plot is generated by calculating the Shannon
entropy and statistical complexity of a time series using an embedding dimension
of D = 6.51,52

This method is useful for analyzing complex systems and
detecting patterns or changes in the system’s dynamics over time.
It can also be used to compare different dynamic systems and see
if they exhibit similarities or differences in terms of entropy and
complexity.

As seen in Fig. 3, in the entropy complexity plane, the max-
imum and minimum complexity bounds are plotted, which are
determined by the embedding dimension used to calculate the PDF.
In the middle, correlated noise (color noise) is located (with medium
complexity and medium–high entropy values). Stochastic behav-
iors are found below correlated noise. Chaotic systems are located
toward the maximum complexity (with entropies between 0.45 and
0.7, and complexities close to the maximum, due to their internal
correlation structures). Stochastic systems are located near the min-
imum complexity curve. The regions of white noise (with maximum
entropy and minimum complexity) and regular oscillations (with
minimum complexity and entropy both) are also observed.51,52

C. Neurophysiological data

In this study, the chaotic dynamics of the Hénon map were
compared with brain dynamics, specifically in the subthalamic
nucleus (STN) region where deep-brain stimulation is implemented.
The aim was to determine if it was possible to emulate brain

dynamics using the Hénon map. However, only pathological
intracranial data from the STN region were available for compar-
ison. Therefore, another brain region was selected to contrast the
results, as it was possible that the activity in this region would be less
chaotic than that of healthy patients. Several brain regions were con-
sidered for this purpose, including the thalamus, which is important
in sensory integration and movement modulation, and the pre-
frontal cortex, which is important in decision making and cognitive
processing. The medial frontal cortex was ultimately chosen because
it was the region with the most similar activity for which local field
potential (LFP) data were available. Two sets of experimental data
were used in this study to analyze the dynamics of the brain. One set
was collected from the STN region and the other from the medial
frontal cortex (MFC). The STN data were obtained from patients
with Parkinson’s disease and included pathological LFP activity,
while the MFC data were collected from healthy regions of individu-
als with refractory epilepsy and may provide a reference for normal
LFP activity. The invasive procedure of introducing electrodes into
the brain was used to record the LFP activity in both regions. The
inclusion of data from both the STN and MFC allowed for a com-
parison of normal and pathological LFP activity, providing a deeper
understanding of brain dynamics.

1. Pathological LFP activity in the STN region

Since the Hénon map was proposed to stimulate patients with
Parkinson’s disease, it was decided to contrast the dynamic behav-
ior of the Hénon map with the brain dynamics of the stimulated
region in this type of patient: the subthalamic nucleus (STN). For
this purpose, the dynamics of the local field potentials (LFPs) of the
STN were studied in human patients. The sequential conflict task
human LFP recordings were collected from an Oxford University
database.11,53

The data for this study were obtained from a database con-
taining records from 15 patients diagnosed with Parkinson’s disease.
These patients had undergone electrode implantation for deep-brain
stimulation treatment, allowing for intracranial recordings of the
STN region. Of the patients included in the study, 11 had Medtronic
3389 electrodes and 4 had Boston Vercise directional leads. Results
from three patients were excluded due to incorrect task execution
or lack of sufficient channels for analysis. During the experiment,
participants were shown a series of images of a mouse facing either
left or right. Cues were presented for 200 ms with an interstim-
ulus interval of 600 ms, resulting in an 800 ms interval between
onsets. Participants were asked to judge the direction in which the
mouse would “run” based on probabilities extracted from a series
of sequential cue images and then respond accordingly. Responses
were made by pressing a button with the thumb of the congruent
hand after viewing a self-chosen number of cues, when the par-
ticipant felt they had sufficient evidence to make a decision. Prior
to recording, participants underwent a brief training session where
they were first asked to respond only after seeing a set number
of stimuli and were then informed that for the main experiment,
they could decide how many stimuli to observe themselves. For
the analysis, data from 13 patients were considered. Three right
STN channels and three left channels were used, with 100 different
stimuli analyzed for each of these channels. Temporal windows of
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200 and 400 ms were chosen in order to implement an embedding
dimension of D = 3 and D = 4 in the BP methodology. Each indi-
vidual signal had a length of 800 ms and was downsampled to a
frequency of 150 Hz. For the analysis in this study, raw data from
all patients were utilized.

2. Normal LFP activity in the MFC region

For this study, data from the MNI Open iEEG Atlas, a database
of recordings of normal brain activity from intracranial electrodes,
were used. The recordings were taken from the atlas and corre-
sponded to a state of quiet wakefulness with closed eyes. They were
used to compare data from the subthalamic nucleus with healthy
regions. The source data were collected from epileptic patients with
an unidentified focus of epilepsy using intracranial electrodes, with
each patient’s channels corresponding to normal regions outside the
epileptic zones. The dataset included 1785 channels with normal
neural activity from 106 patients. To compare patient activity, the
electrodes were placed in a common stereotactic space, allowing for
the accumulation and superposition of results from a large number
of subjects.54–56

In this work, Dixi intracerebral electrodes (labeled as “D” in the
database) were used to record data from the medial frontal cortex
(region 19). These data were included in order to contrast the LFP
data from STN patients with Parkinson’s disease with data from a
healthy region that may have similar neuronal activity characteris-
tics. The length of the signals was 68 s, and they were sampled at a
rate of 200 Hz.

D. Optimizing the temporal window size for

analyzing dynamics with embedding dimension D

Small temporal windows were selected for the analysis in this
study based on insights from the research of Panzeri et al. titled
“The Role of Spike Timing in the Coding of Stimulus Location in
Rat Somatosensory Cortex.”57 This research aimed to measure the

amount of information conveyed by both spike counts and spike
times during a specific post-stimulus time window (0-T). The study
findings suggest that longer time windows lead to a decrease in spike
count information, which is related to the size of the bin used in the
calculations. Decreasing the bin size, on the other hand, results in an
increase in information.

The size of the selected embedding dimensions is closely tied
to the size of the implemented temporal windows, where M � D!.
A D value of 1 does not provide causal information, and a value
of 2 provides only minimal information. Therefore, the embedding
dimensions of interest are those where D > 3. However, some of the
signals are very short, which precludes consideration of D > 4 due
to statistical significance. Additionally, it is worth noting that the
temporal windows were chosen contiguously without any overlap
between them.

In the results section of this paper, the minimum temporal win-
dow for applying an embedding dimension of D = 3 is determined
by the MFC data series, which have a number of samples M = 13 600
representing a duration of 68 s. Since M � D! is required to imple-
ment the BP methodology, the smallest window implemented is
200 ms, which is obtained by considering windows of M = 40. This
translates to a window of M = 75 when considering 200 ms in the
STN data. For the theoretical models, it was fixed that M = 40 cor-
responds to 200 ms. It should be noted that the Hénon map moves
toward the chaotic region in the complexity–Shannon entropy plane
as the number of samples considered increases, while in the q-DG
model, noise components increase causing it to move toward the
lower right corner. In the case of D = 4, the window is considered
to be 400 ms, with values being doubled in each case.

III. RESULTS

First, the time series to be analyzed were determined. From the
experimental data, the unfiltered STN and MFC LFPs were con-
sidered, and for the Hénon map, the x and y coordinate positions

FIG. 4. Lyapunov exponents for a 200ms time window: (a) corresponds to the Hénon map, (b) shows 800ms STN LFP signals calculated individually and then overlaid the
exponents in a single vector, and (c) corresponds to the Lyapunov exponents calculated on 68 000ms MFC LFP signals, which were also overlaid in a single vector.
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FIG. 5. Lyapunov exponents for a 200ms time window: Zoomed-in on the region between 1.5 × 105 and 2.0 × 105 ms. (a) corresponds to the Hénon map, (b) shows 800ms
STN LFP signals calculated individually and then overlaid the exponents in a single vector, and (c) corresponds to the Lyapunov exponents calculated on 68 000ms MFC
LFP signals, which were also overlaid in a single vector.

(two time series) were considered. For the dichotomized q-Gaussian
model, the sum of the trains of spikes of all neurons was considered
as the time series in order to imitate the behavior of the LFPs that
consider the global behavior of a given region.

Next, each time series was divided into small windows for
each case. The smallest implemented windows were 200 ms to have
good statistics in the BP dimension D = 3. For D = 4, a window of
400 ms was implemented. Several dimensions were tested, but this
was where the different quantifiers were best appreciated. Addition-
ally, the length of the STN experimental data time series did not
allow for the analysis of dimensions greater than D = 4 (remember
that D > M!).

The chaos level of the systems was analyzed using Lyapunov
exponents, which can then be used to search for possible stabilities
or chaos. The figures show the Lyapunov exponent for the Hénon
map when considering a window of 40 and 80 steps in the model
(which were fixed to correspond to 200 and 400 ms, respectively).
Figure 4 shows the Lyapunov exponents for a 200 ms time win-
dow. Figure 4(a) corresponds to the Hénon map, while Fig. 4(b)
shows the exponents calculated on 800 ms STN LFP signals that
were overlaid in a single vector. Figure 4(c) corresponds to the Lya-
punov exponents calculated on 68 000 ms MFC LFP signals, which
were also overlaid in a single vector. Figure 5 is a zoomed-in ver-
sion of Fig. 4 for the region between 1.5 × 105 ms and 2.0 × 105 ms.

FIG. 6. Same as Fig. 6, but with a 400ms time window.
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FIG. 7. Same as Fig. 7, but with a 400ms time window.

Figures 6 and 7 are similar to Figs. 4 and 5, respectively, but with a
400 ms time window.

Note that positive Lyapunov exponents show divergence and
chaos, while negative exponents show convergence. Therefore, it is
a measure of the speed at which infinitely close trajectories con-
verge or diverge. The Bandt–Pompe method was used to calculate
the Shannon entropy, statistical complexity, and Fisher information
for each temporal window and obtain the probability distributions
of the series. For the Hénon map, these quantifiers were calcu-
lated as the average value obtained for each coordinate. Figure 8
compares the dynamics of the STN and the Hénon map. The plot

shows Shannon entropy, statistical complexity, and Fisher informa-
tion calculated on LFPs with a temporal window of 200 ms and an
embedding dimension of Bandt and Pompe D = 3. The blue points
represent data from the STN, while the light blue points represent
data from the Hénon map. Figure 9 is similar to Fig. 8, but with a BP
dimension D = 4 and a temporal window of 400 ms.

Figure 10 compares the dynamics of the MFC and the STN.
The plot shows Shannon entropy, statistical complexity, and Fisher
information calculated on LFPs with a temporal window of 200 ms
and an embedding dimension of Bandt and Pompe D = 3. The vio-
let points represent data from the MFC, while the blue represents

FIG. 8. Comparison of dynamics in the subthalamic nucleus (STN) and the Hénonmap usingD = 3. Shannon entropy, statistical complexity, and Fisher information calculated
on local field potentials (LFPs) using an embedding dimension of Bandt and PompeD = 3 and a temporal window of 200ms. Blue represents data from the STN and light blue
represents data from the Hénon map. (a) Complexity–entropy causality plane. (b) Shannon entropy–Fisher information plane. (c) Statistical complexity–Fisher information
plane.
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FIG. 9. Same as Fig. 8, but with a BP dimension D = 4 and a temporal window of 400ms.

data from the STN. Figure 11 is similar to Fig. 10, but with a BP
dimension D = 4 and a temporal window of 400 ms.

Figure 12 compares the dynamics of the MFC and the Hénon
map. The plot shows Shannon entropy, statistical complexity, and
Fisher information calculated on LFPs with a temporal window of
200 ms and an embedding dimension of Bandt and Pompe D = 3.
The violet points represent data from the MFC, while the light blue
points represent data from the Hénon map. Figure 13 is similar to
Fig. 12, but with a BP dimension D = 4 and a temporal window of
400 ms. In Figs. 14 and 15, the dichotomized q-Gaussian model is
implemented with parameters q = 1.1, ρ = 0.1, and h = 0.1 for the
q-parameter, covariance, and mean, respectively. The plots compare
the dynamics of the Hénon map and the dichotomized q-Gaussian
model, with the light blue points representing data from the Hénon

map and the orange points representing data from the dichotomized
q-Gaussian model. In Fig. 14, the plots are generated using an
embedding dimension of Bandt and Pompe D = 3 and a tempo-
ral window of 200 ms, while in Fig. 15, these values are D = 4 and
400 ms, respectively.

IV. DISCUSSIONS

In Fig. 4, Lyapunov exponents for a 200 ms time window are
shown. Figure 4(a) corresponds to the Hénon map, Fig. 4(b) shows
800 ms STN LFP signals calculated individually and then over-
laid the exponents in a single vector, and Fig. 4(c) corresponds
to the Lyapunov exponents calculated on 68 000 ms MFC LFP sig-
nals, which were also overlaid in a single vector. In Fig. 5, which

FIG. 10. Comparison of dynamics in the subthalamic nucleus (STN) and the medial frontal cortex (MFC) using D = 3. Shannon entropy, statistical complexity, and Fisher
information calculated on local field potentials (LFPs) using an embedding dimension of Bandt and PompeD = 3 and a temporal window of 200ms. Blue represents data from
the STN and violet represents data from the MFC. (a) Complexity–entropy causality plane. (b) Shannon entropy–Fisher information plane. (c) Statistical complexity–Fisher
information plane.
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FIG. 11. Same as Fig. 10, but with a BP dimension D = 4 and a temporal window of 400ms.

is a zoomed-in version of Fig. 4 on the region between 1.5 × 105

and 2.0 × 105 ms, the same information is shown. In all cases, the
Hénon map presents a higher density of positive Lyapunov expo-
nents, indicating its predominantly chaotic behavior. In Figs. 4
and 5, a higher number of positive exponents can be observed for
the Hénon map. In Fig. 4(b), more negative exponents can be seen
for the STN, and in Fig. 4(c), a higher number of negative expo-
nents is found for the MFC. Contrary to what would be expected, the
Lyapunov exponents suggest a less chaotic behavior in the healthy
region. In Fig. 6, it can be observed that the Hénon map continues
to have a higher density of positive Lyapunov exponents, indicat-
ing a predominantly chaotic behavior. However, all systems show an

increase in positive exponents when the time window is increased
to 400 ms, with this change being more noticeable in Figs. 6(b)
and 6(c), which show the experimental data. Upon closer examina-
tion in Fig. 7, the differences in chaos between the systems become
less noticeable. In Figs. 8(a) and 9(a), the complexity–entropy
causality plane can be seen. It can be observed that for a tempo-
ral window of 200 ms, the Hénon map approximates the dynamics
of the STN LFPs are quite well if we consider that the different
noise components are located in the bottom right corner. This same
behavior is reflected in Figs. 8(b) and 9(b), as well as in Figs. 8(c)
and 9(c), where overlapping behaviors are seen within the Fisher
information–entropy and complexity–Fisher information planes.

FIG. 12. Comparison of dynamics in the medial frontal cortex (MFC) and the Hénon map using D = 3. Shannon entropy, statistical complexity, and Fisher information
calculated on local field potentials (LFPs) using an embedding dimension of Bandt and Pompe D = 3 and a time window of 200ms. Violet represents data from the MFC
and light blue represents data from the Hénon map. (a) Complexity–entropy causality plane. (b) Shannon entropy–Fisher information plane. (c) Statistical complexity–Fisher
information plane.
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FIG. 13. Same as Fig. 12, but with a BP dimension D = 4 and a time window of 400ms.

However, when the temporal window is increased to 400 ms in
order to implement the embedded dimension D = 4, the dynamic
behaviors separate. In Fig. 9(a), it can be seen that the Hénon map
migrates toward the chaotic region separating from the STN LFPs.
This separation is also evident in Figs. 9(b) and 9(c).

In Figs. 11 and 10, the dynamics of local field potentials (LFPs)
from the subthalamic nucleus (STN) of Parkinson’s disease patients
are compared to the dynamics of the medial frontal cortex (MFC)
region, which is assumed to have similar neural activity but from
healthy subjects. In Fig. 11, BP dimension D = 4 and a temporal

window of 400 ms are used, while in Fig. 10, BP dimension D = 3
and a temporal window of 200 ms are used. In both figures, it
is apparent that the data from the healthy MFC region exhibit
more chaotic components and several points shift into the region
of regular oscillations in the complexity–entropy causality plane
[Figs. 11(a) and 10(a)]. It should be noted that in D = 4
(Fig. 11), the density of points in the regular oscillation region is
higher than in D = 3 (Fig. 10). This indicates that the analyzed
data have partially similar dynamic behavior, as they overlap in
many points, but the LFP from the MFC region (with normal,

FIG. 14. Comparison of dynamics in the Hénon map and a dichotomized q-Gaussian model using D = 3. Shannon entropy, statistical complexity, and Fisher information
calculated on local field potentials (LFPs) using an embedding dimension of Bandt and Pompe D = 3 and a time window of 200ms. Light blue represents data from the
Hénon map and orange represents data from the dichotomized q-Gaussian model. (a) Complexity–entropy causality plane. (b) Shannon entropy–Fisher information plane.
(c) Statistical complexity–Fisher information plane.
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FIG. 15. Same as Fig. 14, but with a BP dimension D = 4 and a 400ms time window.

non-pathological activity) shows more chaotic and regular oscil-
lation characteristics. These overlaps and differences can also be
seen in the Shannon entropy–Fisher information plane [Figs. 11(b)
and 10(b)] and the statistical complexity–Fisher information plane
[Figs. 11(c) and 10(c)].

In the case of the comparison of the MFC LFP data and
the Hénon map, the greater variety of behaviors displayed by the
neurophysiological data is evident in all figures. In Fig. 12 with
BP dimension D = 3, in the complexity–entropy causality plane
[Fig. 12(a)], the MFC data almost cover the entire spectrum of the
plane, passing through the noise region, approaching chaotic char-
acteristics, and reaching the region of regular oscillations. Mean-
while, the Hénon map is positioned in a confined region. In the case
of D = 4 [Fig. 13(a)], the experimental data values open up even
more toward regular oscillations, while Hénon is compressed and
positioned in the upper region of the causality plane in the chaotic
region. Continuing the description of figures, in Figs. 14 and 15, the
dynamics of the Hénon map are compared. In Fig. 14, BP dimension
D = 3 and a temporal window of 200 ms are used, while in Fig. 15,
BP dimension D = 4 and a temporal window of 400 ms are used. It
can be noted that the dynamic behavior found in these figures, where
the q-DG model is shown alongside the Hénon map, is analogous to
the behavior found in the figures comparing the dynamics between
the Hénon map and the STN LFPs. This is observed in both the
similarities in D = 3 and the differences seen in D = 4. The behavior
of the q-DG is similar to that of the STN LFPs.

It should be noted that the comparisons between the models
and experimental data have been visualized qualitatively through
the figures of the calculated results. This is primarily because some
of the data appear distinctly separated in the images, while other
results exhibit partial overlap. The partial overlaps were consid-
ered from the analysis of the marginal distributions, as shown in
Appendix A for the case of D = 3. Appendix A presents the marginal
distributions for the complexity–entropy causality plane (Fig. 16),
Shannon entropy–Fisher information plane (Fig. 17), and statistical

complexity–Fisher information plane (Fig. 18) for the D = 3 case.
The figures show how the results of each model are distributed
in each plane, allowing the degree of overlap between them to be
evaluated. The MFC is represented in violet, the STN in blue, the
q-DG model in orange, and the Hénon map in light blue. The fig-
ures provide a more detailed analysis of the overlaps observed in the
calculated results.

The dynamic behavior of these systems is highly dependent on
the temporal scale studied, with the dynamics of the Hénon map
becoming increasingly different from those of biological and artifi-
cial neural systems as the size of the sample studied increases. This
can be seen in the comparison of the Hénon map with the STN
LFPs and the q-DG model, where the Hénon map exhibits more
chaotic and less regular oscillation characteristics in the causal-
ity plane compared to the neurophysiological and artificial data.
This trend is also observed in the Lyapunov exponent figures,
where the Hénon map exhibits more chaotic behavior as the tem-
poral window increases. This suggests that the Hénon map may
not accurately represent the complex dynamic behaviors observed
in real-world biological systems, particularly at larger temporal
scales. In conclusion, the complexity–entropy causality plane was
found to be a useful tool for comparing the dynamics of different
systems. By calculating the Shannon entropy and statistical com-
plexity of the time series and plotting them on a two-dimensional
plane, it was possible to see if the dynamics of similar time
series exhibited similarities or differences in terms of entropy and
complexity.

The results of this study showed that the Hénon map was
able to approximate some characteristics of the dynamics of the
STN LFPs when considering a temporal window of 200 ms and
an embedding dimension of D = 3. However, when the tempo-
ral window was increased to 400 ms and the embedding dimension
was increased to D = 4, the dynamic behaviors separated, with the
Hénon map shifting toward the chaotic region and away from the
STN LFPs.
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The q-DG model was also found to be able to imitate the
dynamics of the STN LFPs, with a higher overlap in the complex-
ity–entropy causality plane when considering a temporal window of
200 ms and an embedding dimension of D = 3. However, the q-DG
model showed less overlap with the MFC LFPs (due to the fact that
it does not have regular oscillation components), indicating that it
may not be as effective at reproducing the dynamics of healthy brain
regions.

It is worth noting that neurophysiological recordings of LFPs
often have large noise components due to the measurement method-
ologies, and it is not certain that experimental data in the noise
region of the complexity–entropy plane do not largely originate
from the noise introduced by the reading method.

Overall, the Hénon map barely reproduced a part of the full
spectrum of STN LFP dynamics, with the greatest overlap observed
when considering a temporal window of 200 ms and an embedding
dimension of D = 3. However, further research is needed to deter-
mine if the Hénon map can be implemented as a therapeutic tool for
stimulating patients with Parkinson’s disease. The q-DG model also
showed potential as a tool for imitating brain dynamics (although
its chaotic components are smaller and it does not have regular
oscillation components).

The results suggest that normal neural dynamics in the
STN region have a more complex spectrum within the complex-
ity–entropy causality plane that cannot be solely represented by
chaotic models. It is important to consider the temporal scale at
which the Hénon map could be applied, as it is constrained by
the required sampling frequency. It should also be noted that most
of the similarities were observed for small temporal dimensions
and signals from pathological activity. It would be interesting to
study whether normal neural activity in the STN region exhibits
regular oscillations, as the presence of these components would
further distance the Hénon map from the neural activity in this
region, rendering it even less suitable for modeling the activity
of the STN.

The reader should consider the sizes of the analyzed windows
and embedding dimensions, as two factors affect the separation of
results. Increasing the embedding dimension (D) accounts for more
causal information from the signals, while increasing the window
size enhances the precision of the calculated information-theoretic
quantifiers. Appendix B demonstrates the effect of window size on
the calculation of the quantifiers for the analyzed data. However, it is
important to note that increasing the temporal windows over experi-
mental data may result in a possible loss of timing precision, as high-
lighted by Panzeri et al.57 It is crucial to interpret these results while
considering the trade-off between the increased amount of informa-
tion encoded in neurophysiological records using small windows
(see Refs. 57–59 for techniques on how to maximize this infor-
mation) and the loss of statistical significance resulting from the
application of information-theoretic quantifiers themselves when
analyzing short time series.

V. CONCLUSIONS

In summary, both the Hénon map and q-DG model showed
some ability to reproduce certain features of the LFP dynamics

analyzed in this study, although care must be taken in choosing
appropriate parameters, sampling rates, and temporal scales. How-
ever, neither model was able to completely imitate the dynamics
of the LFPs. The Hénon map was able to approximate some char-
acteristics of the STN LFP dynamics when considering a temporal
window of 200 ms and an embedding dimension of D = 3, but when
the temporal window was increased to 400 ms and the embedding
dimension was increased to D = 4, the dynamic behaviors sepa-
rated, with the Hénon map shifting toward the chaotic region and
away from the STN LFPs. The q-DG model showed a greater overlap
with the STN LFPs when considering a temporal window of 200 ms
and an embedding dimension of D = 3, but it did not have regu-
lar oscillation components and, therefore, did not show as much
overlap with the MFC LFPs. It is important to consider the noise
present in neurophysiological recordings of LFPs and the potential
impact on the complexity–entropy plane, as well as the trade-off
that exists regarding the possible loss of information associated with
increasing the window size and the precision of calculations by
the information-theoretic quantifiers. Further research is needed to
determine the suitability of the Hénon map as a therapeutic tool for
stimulating patients with Parkinson’s disease, as well as to study the
presence of regular oscillations in normal neural activity in the STN
region.
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Experimental data used in this study were obtained from
two sources. The first is the University of Oxford database
at https://data.mrc.ox.ac.uk/data-set/human-lfp-recordings-stn-
during-sequential-conflict-task, Refs. 11 and 53. The second source
of data is the Montreal Neurological Institute (MNI) Open iEEG
Atlas at https://mni-open-ieegatlas.research.mcgill.ca/, Refs. 54–56.
This collaborative project, involving the Montreal Neurological
Institute and Hospital, the Grenoble-Alpes University Hospital, and
the Centre hospitalier de l’Université de Montréal, provides open
access to a collection of normal intracranial EEG activity.

APPENDIX A: MARGINAL DISTRIBUTIONS OF THE

COMPLEXITY–ENTROPY CAUSALITY PLANE FOR

D = 3.

The marginal distributions of the complexity–entropy causal-
ity plane for MFC, STN, q-DG, and Hénon are shown in Fig. 16.
The components are represented by different colors: violet for MFC,
blue for STN, orange for q-DG, and light blue for Hénon. The
same information for the Shannon entropy–Fisher information and
Fisher information–statistical complexity planes is shown in Figs. 17
and 18, respectively.

FIG. 16. Marginal distributions on the complexity–entropy causality plane for
D = 3. The medial frontal cortex (MFC) is represented in violet, the subthala-
mic nucleus (STN) in blue, the q-DG model in orange, and the Hénon map in light
blue.

FIG. 17. Marginal distributions on the Shannon entropy–Fisher information plane
for D = 3. The medial frontal cortex (MFC) is represented in violet, the subthala-
mic nucleus (STN) in blue, the q-DG model in orange, and the Hénon map in light
blue.

FIG. 18. Marginal distributions on the statistical complexity–Fisher information for
D = 3. The medial frontal cortex (MFC) is represented in violet, the subthalamic
nucleus (STN) in blue, the q-DGmodel in orange, and the Hénon map in light blue.
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FIG. 19. Effect of window size on information-theoretic quantifiers in MFC using D = 3. Shannon entropy, statistical complexity, and Fisher information calculated on local
field potentials (LFPs) using an embedding dimension of Bandt and Pompe D = 3. The figure shows a comparison of these quantifiers for four different time windows in
MFC, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows: light blue (200ms),
orange (400ms), yellow (1000ms), and violet (5000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher information plane. (c)
shows the statistical complexity–Fisher information plane.

APPENDIX B: EFFECT OF WINDOW SIZE ON

IMPLEMENTATION OF INFORMATION-THEORETIC

QUANTIFIERS

This section presents some examples of how the precision of
the information-theoretic quantifiers used is affected by the window
size used for PDF calculation. Only MFC experimental data results
are presented since their longer time series allows for analysis at
D = 3 (Fig. 19) and D = 4 (Fig. 20). Theoretical models are

presented for both D = 3 and D = 4, as the length of the time series
is not limited. Figures 21 and 22 correspond to the Hénon map,

while Figs. 23 and 24 correspond to the q-DG model. It is worth

noting that, as the temporal window size increases, the point cloud

dispersion of all the quantifiers becomes compressed into more

restricted regions, increasing their precision. This effect is observed

in all the analyzed data and dimensions. A comprehensive analysis
of this topic is outside the scope of this work.

FIG. 20. Effect of window size on information-theoretic quantifiers in MFC using D = 3. Shannon entropy, statistical complexity, and Fisher information calculated on local
field potentials (LFPs) using an embedding dimension of Bandt and Pompe D = 4. The figure shows a comparison of these quantifiers for four different time windows in
MFC, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows: light blue (400ms),
orange (1000ms), yellow (5000ms), and violet (10 000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher information plane. (c)
shows the statistical complexity–Fisher information plane.
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FIG. 21. Effect of window size on information-theoretic quantifiers in the Hénon map using D = 3. Shannon entropy, statistical complexity, and Fisher information calculated
on time series generated with the Hénon map, using an embedding dimension of Bandt and Pompe D = 3. The figure shows a comparison of these quantifiers for four
different time windows, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows: light
blue (200ms), orange (400ms), yellow (1000ms), and violet (5000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher information
plane. (c) shows the statistical complexity–Fisher information plane. The results are an average of the results of time series generated with the two components of the map.

FIG. 22. Effect of window size on information-theoretic quantifiers in the Hénon map using D = 4. Shannon entropy, statistical complexity, and Fisher information calculated
on time series generated with the Hénon map, using an embedding dimension of Bandt and Pompe D = 3. The figure shows a comparison of these quantifiers for four
different time windows, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows:
light blue (400ms), orange (1000ms), yellow (5000ms), and violet (10 000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher
information Plane. (c) shows the statistical complexity–Fisher information plane. The results are an average of the results of time series generated with the two components
of the map.

FIG. 23. Effect of window size on information-theoretic quantifiers in the q-DG model using D = 3. Shannon entropy, statistical complexity, and Fisher information calculated
on the sum of spike trains generated by the q-DG model, using an embedding dimension of Bandt and Pompe D = 3. The figure shows a comparison of these quantifiers for
four different time windows, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows:
light blue (200ms), orange (400ms), yellow (1000ms), and violet (5000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher
information plane. (c) shows the statistical complexity–Fisher information plane. The orange color represents the q-DG model, which is a dichotomized Gaussian
model.
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FIG. 24. Effect of window size on information-theoretic quantifiers in the q-DG model using D = 4. Shannon entropy, statistical complexity, and Fisher information calculated
on the sum of spike trains generated by the q-DG model, using an embedding dimension of Bandt and Pompe D = 3. The figure shows a comparison of these quantifiers for
four different time windows, with each figure [(a)–(c)] representing the comparison of all window sizes. The colors used to represent the different window sizes are as follows:
light blue (400ms), orange (1000ms), yellow (5000ms), and violet (10 000ms). (a) shows the complexity–entropy causality plane. (b) shows the Shannon entropy–Fisher
information plane. (c) shows the statistical complexity–Fisher information plane. The orange color represents the q-DG model, which is a dichotomized Gaussian model.
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