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h i g h l i g h t s

• We consider EEG signals of realized and imagined movements.
• We need to infer the dynamical properties of both tasks.
• We use an information theory framework in combination with a wavelet decomposition.
• Entropy-complexity plane allows distinguishing realized from imagined tasks.
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a b s t r a c t

Electroencephalograms reflect the electrical activity of the brain, which can be consid-
ered ruled by a chaotic nonlinear dynamics. We consider human electroencephalogram
recordings during different motor type activities, and when imagining that they perform
this activity. We characterize the different dynamics of the cortex according to distinct
motor and imagined movement tasks using an information theory approach and a wavelet
decomposition. More specifically, we use the entropy-complexity plane H × C in combi-
nation with the wavelet decomposition to precisely quantify the dynamics of the neuronal
activity showing that the current theoretical framework allows us to distinguish realized
and imagined tasks within the cortex.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Electroencephalography (EEG) is the physiological method that allow us to measure the electrical activity generated
by the brain on the scalp surface. The EEG shows characteristics of the brain activity itself and provides insights of the
underlying neural dynamics, and importantly synchronous neuronal discharges generates rhythmic fluctuations that can be
also recorded from the scalp using this technique [1–7].
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The brain–computer interface (BCI) is a sort of ‘‘cooperation" between a brain and a computer device that allows signals
from the brain to drive a given external activity, such as control a prosthesis or a cursor [8,9]. This interface permitsmanaging
communications between the brain and the object to be commanded. In particular EEG recordings can monitor the cortical
activity allowing an EEG-based BCI system to directly control physical or virtual robots and machines [10]. However, not
much is known about how a BCI signal processing have to be done in order to decode a message from the brain. The best
guidance comes from observations such as EEG signal of imaginedmovements [11]. If particular imagined handmovements
have detectable effects on particular brain signals, we can take advantage of these phenomena as one is therefore able to
communicate simple messages using imagery of hand movements [11]. Thus is very important to decode and distinguish
the EEG brain signals of real motor movements from imagined movement tasks, classifying the different signal patterns
produced by imagined movements [11].

Several methods of EEG analysis are based on the hypothesis that information processing in the brain is reflected in
the EEG as dynamic changes of electrical activity in time, frequency and space. Different methodologies have been used
to understand the mechanisms behind information processing [12–18]. Among those there also are methods of frequency
analysis like Wavelet Transform (WT) which distinguish itself from others due to the high efficiency when dealing with
feature extraction. The processing of information in the brain results in dynamic changes in its electrical activity through
three variables: time, frequency and space. The ‘‘wavelet analysis’’ is the appropriate mathematical tool to analyze signal
in both time and frequency domain [13–15,19]. More specifically, WT allows us to capture fine subtle changes in the EEG
signal.

WT was developed as an alternative signal processing technique that allows us to overcome the deficiencies of the
Fourier transform and provides a smooth representation, unlike windowed representation in the short time Fourier
transform [13,14,19–21]. WT is used for feature extraction and can capture meticulous details like sudden changes and
similarities, allowing the preprocessing/denoising of the signal [13,14,19–21]. Importantly, the wavelet transform does not
require stationarity, and the time evolution of the frequency patterns can be followed with an excellent time-frequency
resolution. The advantages of theWT are particularly important when analyzing EEGs as the definition of spectral entropies
is based on the distribution of the activity in the frequency domain allowing us to analyze EEG signals at different scales.
Thewavelet time-frequency representation does notmake any assumptions about stationarity of the signal and is capable of
detecting dynamic changes due to its localization properties.Wavelets arewell localized in both time and frequency, and the
computational time is short since the algorithm involves the use of fast wavelet transform in a multi-resolution framework.
Importantly, contaminating noise contributions can be easily eliminatedwhen they are concentrated in any frequency bands.
WT can provide a time-variant decomposition, which means a significant advantage over filtering techniques, as taking
a time-disparity decomposition it allows us to take different wavelet coefficients inducing distinct filtering situations for
diverse time windows. That is, WT makes possible to generate event related filter responses.

The main advantage of the wavelets is that they deliver the best relation between frequency resolution and time
windowing, reaching the lower limit in the time-frequency uncertainty principle [13]. In addition the wavelet entropy (WE)
provides an accurate quantification of the frequency content of the EEG signals and, moreover, is an ideal candidate for
measuring howspontaneous oscillations of the ongoing EEGget ordered upon stimulation [13]. Thismethodwas successfully
applied for studying the ordering of the EEG during grand mal epileptic seizures [19,22]. In this paper we propose a wavelet
decomposition of the EEG signal to distinguish motor and imagined movement tasks within the cortex considering a subtle
measure accounting for the normalized Shannon entropy (H) [19,21,23,24] andMartín, Plastino, Rosso statistical complexity
(C) [19,21,23,24]. Our approach allows us to quantify the dynamic of the signals, inferring the emergent properties of the
system through a twodimensional representationH×C , suggesting howbrain EEGactivity is related to imaginedmovements
and distinguishing real motor movements from imagined ones within the cortex.

2. Methodology

2.1. Information theory measures

2.1.1. Information measures
In the following we use the notation of Ref. [19]. Any information measure I can be defined as a functional that

characterizes a given probability distribution P =
{
pj; j = 1, . . . ,N

}
, with N the number of possible states allowed for

the system.
Wedefine for a given discrete probability distribution P and its associate informationmeasure I [P], an amount of disorder

H

H[P] = I [P] /Imax, (1)

where Imax = I [Pe] and Pe = {
1
N , . . . ,

1
N } is the uniform distribution. Thus, H is a quantity between 0 and 1. In our case

we choose I as the Shannon’s entropy S [P] = −
∑N

j=1 pj log
(
pj

)
. The entropy H would be zero when the knowledge of the

system state would bemaximal (i.e. only one of the pj is 1 and the rest are 0). The entropy H is equal to one when the system
is likely to be in any state (i.e. P equals the uniform distribution Pe). In both cases, we say that the system is not in a complex
state, because it is either in a state of perfect order or disorder.
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Thus, in order to quantify the complexity of the system state, we define a quantity named statistical complexity measure
(SCM). The statistical complexity should be zero for the two extremes: complete order or complete disorder. Before introduce
this measure, we define the ‘‘disequilibrium’’ as Q [P] = Q0D [P, Pe], where Q0 is a normalization constant, so 0 ≤ Q ≤ 1,
and D [P, Pe] is a distance between the probability under study P and the uniform distribution Pe. For the distance D we
use the Jensen–Shannon divergence between the system’s density function and the uniform distribution: D = JS [P, Pe] =

S
[ P+Pe

2

]
−

S[P]
2 −

log(N)
2 .

That is we can take the following definition for the MPR statistical complexity measure [23,24], C:

C [P] = H [P] Q [P] . (2)

This quantity reflects on the interplay between the amounts of information stored in the systemand its disequilibrium [19,
21]. This complexity measure satisfies the condition that C [P] = 0 when the system is in a very ordered state (this value
is obtained when one of the components of P , like pm, is equal to one and the remaining pj are equal to zero) or in a very
disordered state (when P = Pe).

2.1.2. Wavelet transform and wavelet-based information measures
Unlike in Fourier analysis, in which the sine and cosine functions are used, the wavelet transform is based in functions

that are vanishing oscillating functions.Within thewavelet multiresolution decomposition framework awavelet familyψa,b
is a set of elemental functions generated by scaling and translation of a unique admissible mother wavelet ψ(t):

ψa,b = |a|−1/2 ψ

(
t − b
a

)
, (3)

where a, b ∈ R, a ̸= 0, are the scale and translation parameter, respectively, and t is the time [19].
The continuouswavelet transform (CWT) of a signal S(t) ∈ L2(R) (the space of real square summable functions) is defined

as the correlation between the signal S(t) with the family wavelet ψa,b for each a and b:

⟨S, ψa,b⟩ = |a|1/2
∫

∞

−∞

S(t)ψ∗

(
t − b
a

)
dt (4)

where ∗ means complex conjugation. In principle, the CWT gives a highly redundant representation of the signal, because
it produces an infinite number of coefficients [19]. A non redundant and efficient representation is given by the discrete
wavelet transform (DWT), which also allows to a complete signal reconstruction. For a special election of themotherwavelet
function ψ(t) and the discrete set of parameters aj = 2−j and bj,k = 2−jk, with j, k ∈ Z, the family ψj,k(t) = 2j/2ψ(2jt − k)
constitutes an orthonormal basis of L2(R). Any arbitrary function of this space therefore can be uniquely decomposed and
the decomposition can be inverted [19]. The wavelets coefficients of the DWT are ⟨S, ψj,k⟩ = Cj(k). The DWT produces only
as many coefficients as there are samples within the signal under analysis S(t), without any loss of information.

Let us assume that the signal is given by the equally sampled values S = {s0(n), n = 1, . . . ,M}, withM the total number
of samples. If the decomposition is carried out over all resolution levels, NJ = log (M), the wavelet expansion reads:

S(t) =

−1∑
j=−NJ

∑
k

Cj(k)ψj,k(t) =

−1∑
j=−NJ

rj(t), (5)

where thewavelet coefficients Cj(k) can be interpreted as the local residual errors between successive signal approximations
at scales j and j − 1, respectively, and rj(t) is the detail signal at scale j, that contains information of the signal S(t)
corresponding with the frequencies 2j−1ωs ≤ |ω| ≤ 2jωs, being ωs the sampling frequency [19,21].

Since the family ψj,k(t) is an orthonormal basis for L2(R), the concept of wavelet energy is similar to the Fourier theory
energy. Thus, the energy at each resolution level j = −1, . . . ,−NJ , will be the energy of the detail signal:

Ej = ∥rj∥2
=

∑
k

|Cj(k)|2. (6)

The total energy can be obtained summing over all the resolution levels

Etot = ∥S∥2
=

−1∑
j=−NJ

∑
k

|Cj(k)|2 =

−1∑
j=−NJ

Ej. (7)

Finally, we define the relative wavelet energy (RWE) through the normalized ρj values:

ρj =
Ej
Etot

(8)

for the resolution levels j = −1,−2, . . . ,−NJ . The distribution P (W )
≡ {ρj} can be viewed as a time-scale distribution which

is a suitable tool for detecting and characterizing phenomena in the time and the frequency spaces [19].



30 R. Baravalle et al. / Physica A 511 (2018) 27–39

Using the definition of Shannon entropy, we can define the Shannon wavelet entropy (SWS) as

S
[
P (W )]

= H
[
P (W )]

= −

−1∑
j=−NJ

ρj log
(
ρj

)
, (9)

where P (W ) denotes the probability energy wavelet distribution. As mentioned early, the SWS is a measure of the degree of
order/disorder of the signal, providing information about the underlying dynamical process associated with the signal.

Taking into account the definition of the SCM in Eq. (2), and using the energy wavelet distribution P (W ) and the
corresponding equiprobability wavelet distribution P (W )

e = {
1
NJ
, . . . , 1

NJ
}, we can evaluate the disorder H

[
P (W )

]
and the

disequilibrium Q
[
P (W )

]
, in order to obtain the wavelet SCM as:

C
[
P (W )]

= H
[
P (W )] Q

[
P (W )] . (10)

In the following sectionwedescribe the experimentalmethodology of the EEG recordings thatwill be used to test our current
approach.

2.2. Experimental methods

We have considered the EEG Motor Movement/Imagery Dataset recorded using BCI2000 [11] instrumentation system
available through Physionet [25–28]. The dataset consists of more than 1500 EEG recordings, with different durations (one
or two minutes per record), obtained from 109 healthy subjects. The 109-subjects data on Physionet is screening data in
which the subjects had to perform one movement or imagery task at a time. The population of volunteers was drawn from
the employer at the New York State Department of Health, i.e, all the subjects had completed high school training and most
of them had completed four years of College education. The sex and age of the subjects have not been reported as relevant
for performing these tasks. All subjects were naive. As learning proceeded with further repetitions of the experiment,
imagery usually became less important and performance becomesmore automatic [25–30]. Subjects were asked to perform
differentmotor/imagery taskswhile EEG signalswere recorded from64 electrodes along the surface of the scalp. Each subject
performed 14 experimental runs:

• A one-minute baseline runs (with eyes open)
• A one-minute baseline runs (with eyes closed)
• Three two-minute runs of each of the four following tasks:

(1) A target appears on either the left or the right side of the screen. The subject opens and closes the corresponding fist
until the target disappears. Then the subject relaxes.

(2) A target appears on either the left or the right side of the screen. The subject imagines opening and closing the
corresponding fist until the target disappears. Then the subject relaxes.

(3) A target appears on either the top or the bottom of the screen. The subject opens and closes either both fists (if the
target is on top) or both feet (if the target is on the bottom) until the target disappears. Then the subject relaxes.

(4) A target appears on either the top or the bottom of the screen. The subject imagines opening and closing either both
fists (if the target is on top) or both feet (if the target is on the bottom) until the target disappears. Then the subject
relaxes.

The 64-channels EEG signals were recorded according to the international 10–20 system (as seen in Fig. 1). The sampling
frequency of the EEG is 160 Hz. The order of the recordings are: Baseline with open eyes, Baseline with closed eyes, and
then Task 1, Task 2, Task 3 and Task 4 successively until the 14 runs where completed. The right mastoid bone corresponds
to ground (GND) and the right earlobe to reference (REF) [25,27–30]. The impedance was kept under 10 k�. The data are
raw data without any re-referencing. There was no EOG recording. The data are raw without any post-processing. A variety
of sensors for monitoring brain activity were used. Muscular artifacts (electromyographic (EMG) signals) were carefully
checked at the beginning of each recording, and verified throughout the recording. During the recordings light was dimmed,
and the experiment was performed in a closed room where the external sounds were minimized. As the learning proceeds,
imagery usually becomes less important [25–30]. The timing from the event markers was of 1 s and they are stated in the
dataset (see Ref. [28]), the tasks order was block-randomized, in blocks of 8. For further details of the EEG data acquisition
we refer the reader to Refs. [25,27–30].

For each subject and for each task we perform an average of the signals, resulting in ERPs associated with each task. In
this paper, we consider the recordings which have the same number of stimuli of each type, resulting in just 87 subjects (of
the 109-subjects datamentioned above). That is we consider 87 subjects for whom the number of stimuli presented, and the
duration of each stimulus-rest interval was exactly the same. Then we choose 87 subjects with exactly the same stimulation
protocol. In addition, the order of presentation of the stimuli for each of subject this 87 subjects in each run is also identical
(stimulus-rest-stimulus-rest).
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Fig. 1. Electrode arrangement as per the international 10–20 system (as in [11,27–30]). The numbers below each electrode name indicate the order in
which they appear in the recordings.

3. Results

EEG is the recording of intrinsic electrical activity in the brain and it is based on the propagation of electric impulses
along a nerve fiber when the neuron fires. The experimental setup of the BCI2000 system is shown in Fig. 1, and consist of an
arrangement of the different used electrodes [25,27–30]. Eye blink artifacts are generated by fast movements of the eyelid
along the cornea, such as during an eye blink. Muscular artifacts were carefully checked at the beginning of each recording,
and verified throughout the recording [25,27–30]. In our current analysis the muscular and technical artifacts of the EEG
Motor Movement/Imagery Dataset were removed following the methodology, similar to the one presented in [11], which is
indicated below:

(1) A Common Average Reference (CAR) filter is performed. A spatial high-pass filter, is implemented by re-referencing
the potential sh(t) of each electrode h at each time point t to an estimated reference that is calculated by averaging the
signals from all H recorded electrodes. In other words, a CAR filter calculates the signal amplitude that is common to
all electrodes 1

H

∑H
i=1 si(t) and subtracts it from the signal sh(t) at each location.

(2) We applied the Kaiser filtering of 60 dB of attenuation, between 1 Hz and 50 Hz (see Ref. [31] )
(3) Selecting Epochs.
(4) Baseline corrects was set ranging from 100ms before the onset of each stimulus presentation to analyze Event Related

Potentials (ERPs).
(5) Averaging the event-related potentials (ERPs).
(6) Rejection of artifacts. That is we just compare the obtained signal using the previous steps with the one acquired using

an automatic methodology called wICA [32,33].

By recording small potential changes in the EEG signal immediately after the presentation of a sensory stimulus it is possible
to record specific brain responses to specific sensory, cognitive and othermental events. This method is called Event-Related
Potentials and is one of the classic methods for investigation of mental states and information processing [13,14]. In this
case to analyze the EEG Motor Movement/Imagery Dataset [25,27–30] we consider a duration of the analysis epoch of 1500
ms and a mean number of single trials used for averaging of 21 single trials (there were 7 stimulus presentations for each
experimental run, and 3 runs for each stimulus condition). Baseline corrects was set ranging from 100 ms before the onset
of each stimulus presentation to analyze ERPs. The onset stimulus is used for averaging (that is, we used the presentation of
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Fig. 2. Raw signal corresponding to electrode FC5 located over the motor area, during the right hand motor condition.

Fig. 3. Daubechies 2 mother wavelet.

the stimulus as a trigger to average). Once we have obtained the distribution of energy for each ERP signal corresponding to
one task, we can use the Information Theory quantifiers (of Section 2.1) to describe this energy distribution.

Fig. 2 depicts a typical raw signal that corresponds to electrode FC5 during the right hand motor condition. For analyze
these signals we use as a mother wavelet the Daubechies 2 [34] that is presented in Fig. 3 (see below for further details).
After a 6 octave wavelet decomposition, coefficients were obtained for the following resolution levels (frequency bands):
80–160 Hz (j = −1; not used for further analysis); 40–80 Hz (j = −2; not used for further analysis); 20–40 Hz (j = −3);
10–20 Hz (j = −4), 5–10 Hz (j = −5) and 2.5–5 Hz (j = −6); the residue was in the 1–2.5 Hz band (r = −6). The residue
was also removed for the analysis.

The EEG are highly nonstationary, but the Fourier transform (FT) requires stationarity of the signal and FT does not give the
time evolution of the frequency patterns [19]. In contrast, the orthogonal discrete wavelet transformmakes no assumptions
about record stationarity and the only input needed is the time series [13,19,21,22,35–39]. In this case, the time evolution of
frequency patterns can be followedwith an optimal time-frequency resolution. Thewavelet multiresolution decomposition,
described in Section 2.1.2, is used to split the signals in scale levels used by the clinical EEG analysis [19,21,35–38]. In
particular Daubechies proposed a discrete, maximally flat, compactly supported, orthogonal wavelet family known as the
Daubechies wavelets [34]. This wavelet family is important for signal processing applications [40]. The Daubechies wavelets
(DB wavelet) are the most commonly used wavelets as they provide better performance in localizing characteristics of the
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Fig. 4. Entropy-complexity plane considering the mean between all subjects for electrodes: (a) FC3 and (b) PO7 . We consider movement or imagery tasks,
and the baselines with open and closed eyes. The solid black lines correspond to maximum Cmax and the minimum Cmin values of the complexity.

signal. In particular the Daubechies 2 (DB2) wavelet permits to successfully locate changes in thewave shape at faulty points
enhancing specific features of a signal (Fig. 3 shows the DB2 mother wavelet). A few preliminary tests allows us to find that
the DB2 to provide a better discrimination than DB4 between puremotor and imaginedmovement. Thus we choose the DB2
to perform the analysis over the 64 electrodes. We applied the wavelet DB2 between 2.5 Hz and 40 Hz.

Fig. 4 displays, for all the 87 subjects here considered, the entropy-complexity plane H × C location. More specifically,
we analyzed the entropy-complexity plane, H × C , for a central motor electrode FC3 and (b) PO7. This figure depicts that
the entropy-complexity plane H × C allows us a‘‘robust" distinction between motor and imagined movement tasks, and
with respect to the baselines (with open and closed eyes). Note that the baseline epoch with open eyes is different from
the baseline used for averaging, as it is a long run without any stimulus. Let us remark that we consider two one-minute
baseline runs (one with eyes open and one with eyes closed). Although in Fig. 4(b) the left hand imagery and motor depicts
similar complexity values, the entropy-complexity plane, H × C , allows a proper distinction between the dynamics of the
different tasks. That is the combination of both entropy and complexity that allow us to distinguish imagery from realized
movements. Let us emphasize for a given value of H , the range of possible C values varies between a minimum Cmin and
a maximum Cmax that are depicted by the black solid lines, restricting the possible values of the statistical complexity in a
given entropy-complexity plane [41], values that depend only on the number degree of freedomof the considered probability
distribution function (PDF). The entropy and complexity are estimated through the distribution of energy for each ERP signal
as it is convenient to have a smoother signal to reduce bias deviations from our estimations.

The previous result motivated us to investigate in more detail the H × C planes of the imagery and realized movements
for other electrodes over the cortex. Fig. 5(a)–(d) show theH×C planes of four different subjects and for 64 electrodes along
the surface of the scalp, considering the motor and imagery task with the left hand. Fig. 6(a)–(d) depict the H × C planes
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Fig. 5. Entropy-complexity plane for the tasks related with left hand, movement or imagery, taking into account the 64 electrodes. We highlight four
different subjects that have different distributions of motor and imagery task with the left hand with at least a 95% confidence: (a) number 11; (b) number
30; (c) number 33; and (d) number 72. The solid black lines correspond to maximum Cmax and the minimum Cmin values of the complexity.

considering the motor and imagery task with the right hand for the same 64 electrodes as Fig. 5(a)–(d). We performed a
t-test for the distributions depicted in the entropy-complexity plane, H × C , of Figs. 5 and 6. The result for both variables
in entropy-complexity plane, H × C , are that 43 of 87 subjects considered here have different distributions between motor
and imagery task with the left hand with at least a 95% confidence (the test rejects the null hypothesis at the 5% significance
level). Instead in the case H × C planes considering the motor and imagery task with the right hand for both variables in
entropy-complexity plane,H×C , there are 77 of the 87 subjects that have different distributions at least a 95% confidence (the
test rejects the null hypothesis at the 5% significance level). The system’s localization in an entropy-complexity plane (global
quantifier) displays typical specific features associated with its dynamics’ nature of the brain. And, we can appreciate that
for a very significant, subjects the realized movement with the right hand have a different dynamics in entropy-complexity
plane, H × C .

We also investigate the entropy-complexity plane, H × C , in the cases in which both task are just realized movements,
taking into account the right and left hand movements for the 64 electrodes, as shown in Fig. 7. The H × C plane allows to
distinguish between the different right and left for realized movements for 42 of 87 subjects considered here as they have
different distributions at least a 95% confidence (the t-test rejects the null hypothesis at the 5% significance level). However,
we find a significant larger number of subjects with different distributions when considering just the imagery movements,
with left or right hand, as shown in Fig. 8. The result for both variables in entropy-complexity plane, H × C , are that 76 of
87 subjects considered here have different distributions with at least a 95% confidence when considering just the imaginary
tasks either with the right or left hand (the t-test rejects the null hypothesis at the 5% significance level).

Note that the maximum Cmax and the minimum Cmin values of the complexity restrict the possible values of the intensive
statistical complexity in the H × C plane. Localization in the entropy-complexity plane H × C , in some cases, closely
approaches the limiting curve of minimum statistical complexity Cmin. However, even the evaluation of lower values of the
complexity provides additional insight into the details of the system’s probability distribution, which is not discriminated
by randomness measures like the entropy [42,43]. Complexity helps to uncover information related to the correlational
structure of the physical process under study. The entropy-complexity diagram (or plane), H × C , allows us to detect subtle
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Fig. 6. Entropy-complexity plane for the tasks related with right hand, movement or imagery, taking into account the 64 electrodes. We consider four
different subjects: (a) number 11; (b) number 30; (c) number 33; and (d) number 72. The solid black lines correspond to maximum Cmax and the minimum
Cmin values of the complexity.

changes in the neural dynamics of a system originated by modifications of the external stimuli. This provides a distinction
between chaotic-deterministic and stochastic dynamics [23,24,44–47].

The system’s localization in an entropy-complexity plane allows us quantify specific features associated with left or right
hand for a given specific task. This is the entropy-complexity plane, H × C , is able to detect essential details of the brain
dynamics and distinguishing underlying peculiarities of imagery and realized tasks for different groups of subjects. That is,
we show that is possible tomake a distinction between imagery and realized tasks, using the Information Theory quantifiers
described in thiswork. TheWavelet-MPR-Complexity approach is therefore a suitable candidate for an accurate classification
of the different motor activities made by the right/left hand and by imagined tasks.

4. Discussion and conclusions

Complexity captures the degree to which a neuronal system integrates specialized information and, in particular, the
complexity of the neural system represents the amount of information contained in the organism, in the sense that it
quantifies the dynamic characteristics of the temporal pattern due to the functional interactions produced by a structural
network. In particular, the statistical complexity of MPR can distinguish time series generated by stochastic and chaotic
systems [23,24]. This measure of statistical complexity can also detect and quantify order induced by noise [23,24]. The
development of theoretical tools that could provide new insights into howmind/brainmechanismswork canhelp to improve
our understanding of different cognitive processes. In this paper we show that the combination of the statistical complexity
and entropy concepts with wavelet transforms can provide new crucial insights into this problem.

That is, the main objective of our current work is to infer the emergent dynamical properties of the neuronal system
through the entropy-complexity plane, H × C . This is to quantify critical details of neural dynamical processes underlying
the dataset as measures of statistical or structural complexity are necessary for a better understanding of chaotic time
series because they are able to capture their organizational properties [23,24,44–47]. This specific kind of information is
not revealed by randomness’ measures. Perfect order (like that of a periodic sequence) and maximal randomness (fair coin



36 R. Baravalle et al. / Physica A 511 (2018) 27–39

Fig. 7. Entropy-complexity plane for the tasks related with movement, left or right hand, taking into account the 64 electrodes. We consider four different
subjects: (a) number 11; (b) number 30; (c) number 33; and (d) number 72. The solid black lines correspond to maximum Cmax and the minimum Cmin
values of the complexity.

toss) possess no complex structure and exhibit zero statistical complexity. For states between these extremes a wide range
of possible degrees of structure exists, that should be quantified by an appropriate statistical complexity measure. The
Jensen–Shannon divergence, that quantifies the difference between two (or more) probability distributions, is especially
useful to compare the symbol-composition of different sequences. The complexity measures constructed in this way has the
intensive property found inmany thermodynamic quantities [23,24,44–47].We stress the fact that the statistical complexity
is the product of a normalized entropies and a statistical distance between distributions (the Shannon entropy and Jensen–
Shannon divergence) and it is a nontrivial function as it depends on two different probabilities distributions, i.e., the
one corresponding to the state of the system, P , and the uniform distribution, Pe, taken as reference state. The statistical
complexity measure used here is able to (i) detect essential details of the dynamics and (ii) differentiate between chaos and
(different degrees of) periodicity [23,24].

Thus complexity provides important additional information regarding the peculiarities of the underlying PDF, that is not
detected by the entropy.We found that theH×C plane allows us to distinguish particularlywell the right handedmovement
from the imagined ones. We are also able to distinguish the pure imagined movement between both hands. This effect is
lowerwhen distinguishing left handedmovements from realized ones.We have chosen the DB2 to perform the analysis over
the 64 electrodes. However, some positions of the frontal cortex showed more variability with respect to other areas, and
therefore for future related works we plan to use a different wavelet for the frontal area like for instance the Morlet [48,49]
and the DB2 for the rest of the electrodes. This can be helpful to improve the estimations performed using the entropy-
complexity plane, H × C , and these small adjustments will make the current methodology even more efficient. Notice that
is the combination of both entropy and complexity depicted the plane, H × C , that allow us to distinguish imagery from
realized movements. In other words entropy and complexity are different concepts that are complementary to each other.
Summarizing, the system’s localization in an entropy-complexity plane (H × C) provides a global quantifier that displays
typical specific features associated with its dynamics’ nature of the realized and imagined movements.

We investigate then the entropy-complexity plane H × C considering a wavelet decomposition of the EEG signal to
distinguish motor and imagined tasks over the motor cortex. This allows us to characterize the internal dynamics of
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Fig. 8. Entropy-complexity plane for the tasks related with imagery, left or right hand, taking into account the 64 electrodes. We consider four different
subjects: (a) number 11; (b) number 30; (c) number 33; and (d) number 72. The solid black lines correspond to maximum Cmax and the minimum Cmin
values of the complexity.

the neural system when taking into account the imagined and non-imagined tasks. We show that using the wavelet
decomposition in combination with recent advances in statistical complexity measures (H × C plane) is physiologically
meaningful since it helped us to distinguish a motor specific neurophysiological state with the imagined one. Moreover,
our approach allows us to identify the different dynamics when considering the signal of the right and left hand, and also
making possible to distinguish between imagery and realized tasks, quantifying the nonlinearities of the signal, and inferring
the emergent properties of the system over the cortex.

The information plane H × C can be used profitably to separate and differentiate between chaotic and deterministic
systems [50]; visualization and characterization of different dynamic regimes when the system parameters vary [50–
52]; dynamic evolution of time [53]; identifying periodicities in natural time series [54]; identification of deterministic
dynamics contaminated with noise [55,56] and intrinsic estimation time scales of delayed systems [57,58]; among other
applications [59]. Importantly in this paper, we show that the motor task and imagined activities can be associated with
different complex dynamic reflected in the entropy-complexity plane, H × C , allowing us to quantify the dissimilarities
between both within the motor cortex area. That is the entropy-complexity plane, H ×C , with a wavelet decomposition can
serve as the basis for a successful BCI [8,9], a technology that can help people who are severely disabled. Thus by identifying
the meaningful signal information of the EEG signal within the plane H × C with a wavelet decomposition we can provide a
mapping of human imaginedmotor activities that could be decoded into certainmovements of artificial actuators. Decoding
properly the imagined task from the realized ones can help us to understand how to communicate subtle artificialmovement
of an external device.
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