
December 19, 2016 19:53 1650009

International Journal of Neural Systems, Vol. 27, No. 2 (2017) 1650009 (24 pages)
c World Scientific Publishing Company

DOI: 10.1142/S012906571650009X

Superlinear Summation of Information in Premotor Neuron Pairs

Fernando Montani
Iflysib, Conicet & Universidad Nacional de La Plata

59-789 La Plata, Argentina
fmontani@gmail.com, f.montani@fisica.unlp.edu.ar

Andriy Oliynyk
Section of Human Physiology

Department of Biomedical Sciences and Advanced Therapies
Faculty of Medicine, University of Ferrara

Via Fossato di Mortara 17/19, 44121 Ferrara, Italy

Luciano Fadiga
IIT@UNIFE Center for Translational Neurophysiology

Istituto Italiano di Tecnologia, Ferrara, Italy
Section of Human Physiology, University of Ferrara, Italy

Accepted 15 December 2015
Published Online 11 February 2016

Whether premotor/motor neurons encode information in terms of spiking frequency or by their relative
time of firing, which may display synchronization, is still undetermined. To address this issue, we used
an information theory approach to analyze neuronal responses recorded in the premotor (area F5) and
primary motor (area F1) cortices of macaque monkeys under four different conditions of visual feedback
during hand grasping. To evaluate the sensitivity of spike timing correlation between single neurons, we
investigated the stimulus dependent synchronization in our population of pairs. We first investigated the
degree of correlation of trial-to-trial fluctuations in response strength between neighboring neurons for
each condition, and second estimated the stimulus dependent synchronization by means of an informa-
tion theoretical approach. We compared the information conveyed by pairs of simultaneously recorded
neurons with the sum of information provided by the respective individual cells. The information trans-
mission across pairs of cells in the primary motor cortex seems largely independent, whereas information
transmission across pairs of premotor neurons is summed superlinearly. The brain could take advantage
of both the accuracy provided by the independency of F1 and the synergy allowed by the superlinear
information population coding in F5, distinguishing thus the generalizing role of F5.

Keywords: Neural code; motor control; information theory; spike synchronization; neural networks;
Cortex.

1. Introduction

The relationship between the spiking activity of neu-
rons and the state of the surrounding world is of
paramount importance for understanding brain func-
tions. As the spiking activity across cortical neu-
rons is not independent, one needs to understand
how neurons work together to represent sensorimo-
tor information by translating it into spike trains. In
the most recent years it has become more and more

clear that perceptual mechanisms do not rely only on
sensory information. Indeed, brain functions such as
arousal, attention, perceptual enhancement are the
result of a dialogue between sensory and premotor-
prefrontal centers. In this regard, object represen-
tation and grasping control mechanisms have been
the focus of interest for many researchers (for a
review see Refs. 1 and 2). Their endeavors have
shown that grasping control mechanisms require the
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synergistic activity of a visuomotor network compris-
ing the anterior intraparietal area (AIP), and area
F5 of the ventral premotor cortex (PMv)3,4 to trans-
form object representations into grasping motor com-
mands, which are subject to further processing in the
primary motor cortex (area F1).5,6

It has been generally assumed that the repre-
sentation of movement and hand grasping parame-
ters are mediated by the average firing rate in these
areas.7 However, the firing rate alone may be too
simplistic for describing complex brain activity and
has been repeatedly discussed.8–10 Spike and EEG
synchronization between/across neurons has received
attention as a novel coding dimension, due to its
prevalence in cortical networks and its possible func-
tional relevance to perceptual binding and senso-
rimotor integration for conveying stimulus-specific
information.11–20 Nevertheless, no recent study has
attempted to address the relationship between syn-
chrony of motor/premotor neurons during hand
grasping, with and without visual feedback on the
hand action.

To gain a better understanding of this issue, we
considered two different instances. First, we inves-
tigated how complex neuronal representations of
visuomotor and motor information are constructed
from the activities of individual neurons. Secondly,
to quantify their effect, we investigated whether syn-
chronized spiking activity of nearby neurons within
the premotor and motor cortices may carry addi-
tional information about the stimuli.

The degree of synchronous activity in a spiking
neuronal network is usually characterized by sim-
ple parameters such as cross-correlation.21,22 More-
over, techniques based on the dynamic properties of
the spiking neural network23–26 such as chaos con-
trol, desynchronization, phase resetting,27,28 network
topology,29 optimization spiking,30 artificial spiking
neuronal networks,31,32 code specificity, population
code, and reinforcement learning33,34 are very use-
ful for describing important features of neural sys-
tems. Importantly, the transmitted information in
a spiking neural network can be encoded in the
frequency of spiking (rate encoding) and/or in the
timing of the spikes (pulse encoding).35,36 Pulse
encoding is more powerful than rate encoding in
terms of the wide range of information that may
be encoded by the same number of neurons.36 In
order to characterize a spiking neuronal network we

should consider therefore the amount of information
that could be encoded by rate and/or pulse encod-
ing.36–38 More specifically, the information that the
ensemble of neurons conveys about external stimuli
can be broken down into firing rate (‘rate encoding
like information’) and correlation components (‘pulse
encoding like information’).38–42 Thus, a quantita-
tive answer to how correlation affects coding, inde-
pendently of how responses are decoded, could be
provided by Information Theory.38–40,43–45 In this
study, we applied an information theory approach to
investigate the neural code of hand grasping. To do
so, we estimated the premotor and motor informa-
tion conveyed by areas F5 and F1, recording neuronal
responses during four different conditions in the pre-
motor and motor cortices of two unanesthetized, par-
tially restrained macaque monkeys (Macaca fascic-
ularis). The conditions were: grasping in full light,
grasping in darkness, and grasping in darkness but
with brief illumination of their acting hand during
two critical phases of grasping: hand preshaping and
target touching.

To gain a quantitative understanding of how
premotor cortical neurons might report different
stimuli, cells were classified into different subsets
according to their stimulus specificity. Subsequently,
we conducted the information theory analysis in
two stages. First, we compared the information
conveyed by the individual neuronal responses of
cells from F5 and F1, and second we investigated
the correlation in stimulus encoding of the premo-
tor and motor cortices, in a bid to explain the
recently discovered functional difference between
the two areas noted during the observation of
meaningful phases of the monkey’s hand grasping
action.5

2. Materials and Methods

2.1. Experimental procedures

Experimental protocols were approved by the Vet-
erinarian Animal Care and Use Committee of the
University of Ferrara, by the Italian Ministry of
Health, and complied with the European laws on
the use of laboratory animals. The present study is
based on the analysis of data acquired in previous
monkey’s experiments regarding the role of hand-
related visual feedback during grasping execution.5

Therefore, all preparatory steps, basic procedures,
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grasping tasks, electrophysiological recordings, selec-
tion of neurons and dataset (including ethical autho-
rizations, single- neuron activity during grasping
tasks, intracortical microstimulation data, kinematic
measurements, etc.) were the same as those described
by Ref. 5. Briefly, single-unit activity was recorded
from areas F5 and F1 in three hemispheres of two
behaving monkeys (Macaca fascicularis). Monkeys
MK1 and MK2 (one female and one male, weigh-
ing 5.7 and 4.9 kg, respectively) were trained to
perform a grasping task while sitting on a primate
chair. After training, recording chambers (diameter
30mm, left and right hemispheres of MK1, and left
hemisphere of MK2) and a head-restraining device
were surgically implanted. After the necessary recov-
ery, more than 500 units were recorded. From those
units, we isolated 169 F5 stable and valid neurons
(102 from both hemispheres of MK1 and 67 from
the left hemisphere of MK2) and 128 F1 neurons
(106 and 22 from the left hemispheres of MK1 and
MK2, respectively). Among these units we found
and analyzed 42 pairs of single neurons of area
F5 and 36 pairs of area F1. Wavelet methodol-
ogy can usually help to improve single unit isola-
tion in primary motor cortex cells.46 However, in
this paper, we take advantage of techniques such
as fuzzy logic that are powerful signal processing
tools.47 More specifically, all these neuron pairs were
recorded simultaneously during grasping tasks by
one single recording electrode and were then carefully
selected by using the Fuzzy Spike Sorting technique
(FSPSTM, see Ref. 48 for more details). Our FSPSTM

algorithm provided us fast and robust online clas-
sification of single neuron activity during the
experiment.5

The macaque performed a precision grip task
under four different conditions: (1) Light (L): grasp-
ing executed with continuous vision of its hand
movement. (2) Dark (D): grasping executed in the
absence of any visual feedback on its hand move-
ment. (3) PT-flash condition (P): grasping exe-
cuted in the dark with instantaneous visual feed-
back before touching, during the handgrip-shaping
phase. (4) T-flash condition (T): grasping exe-
cuted in the dark with instantaneous visual feed-
back at hand–object contact. In all the conditions
the target object was always kept visible by a
dim back-illumination. Experimental conditions were
presented in blocks of twelve trials and administered

with the above temporal order in all sessions. The L
condition was then repeated at the end of each ses-
sion to confirm the stability of neuronal activity (L2
condition).

The P condition correspond to the case in which
grasping was executed in dark but with instanta-
neous visual feedback during the hand preshaping
phase. During the flash conditions, the scene was
briefly illuminated by a single 20µs xenon light flash
delivered when the hand crossed an infrared barrier
at 10 cm in front of the apparatus (PT-flash) or when
both the thumb and index finger touched two small
metal contact sensors attached to the sides of the
to-be-grasped handle (T-flash). The T condition, is
similar to the PT-flash condition but with instanta-
neous visual feedback provided at hand-object con-
tact. The time sequence of events during the grasping
task and neuron recording are reported in the exper-
imental setup of Ref. 5. See also Ref. 5 for a detailed
description of the experimental tasks, instrumen-
tal methods and electrophysiological recordings
involved.

2.2. Spike sorting

The isolation of single neurons from multispike
recordings was performed off-line using FSPSTM

software, based on singular value decomposition of
the data matrix containing the different spike wave-
forms, followed by Fuzzy C-mean cluster analysis
of the principal components in multidimensional
space.48 The good quality of the discrimination was
confirmed by evaluating single-unit interspike inter-
val histograms and the main quantitative parameters
of cluster quality, including Lratio measures.48,49 To
investigate the synchronicity between pairs of neu-
rons recorded from the same electrode, we used a
methodology similar to the one used in Ref. 38. That
is, we identified pairs of single neurons and then
investigated the role of correlation in stimulus encod-
ing by using an exact information theoretic method
to quantify the information conveyed by different
coding mechanisms.38

Figures 1 and 2 show two representative examples
recorded from areas F1 and F5, respectively; the sin-
gle neurons were determined using the FSPSTM soft-
ware.48 In both cases the two neurons were recorded
simultaneously during task execution with the same
electrode.
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Fig. 1. Example of a typical single-neuron isolation performed using the FSPSTM algorithm from Ref. 48. The upper
part of the figure shows spike shapes for each of the detected clusters, while the lower part presents the corresponding
histograms and rasters (multispike recordings of area F1).

Fig. 2. Example of a typical single-neuron isolation performed using the FSPSTM algorithm from Ref. 48. The upper
part of the figure shows spike shapes for each of the detected clusters, while the lower part presents the corresponding
histograms and rasters (multispike recordings of area F5).
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2.3. Information theory

Shannon mutual information transmitted by the
population response to the whole set of stim-
uli38–40,50–52 was defined as

I(R; S) =

*X
r∈R

P (r | s) log2

�
P (r | s)
P (r)

�+
s

, (1)

where the angular brackets indicate the average over
different stimuli, hA(s)is ≡Ps∈S P (s)A(s),

P (s) is the probability that the stimulus s is
present, P (r | s) is the probability of observing the
response r given stimulus s, and P (r) is the proba-
bility of observing response r across all trials for any
stimulus. It quantifies the reduction of uncertainty
about the stimulus that can be gained from obser-
vation of a single trial of the neural response.51–53

Then the probability P (r | s) is determined experi-
mentally by repeating each stimulus in exactly the
same way on many trials, while recording the neu-
ronal responses, and P (r) = hP (r | s)is. Note that,
in general, we quantify the responses in a discrete
multidimensional array r = r1, . . . , rC of dimension
C. For instance, the spike count response of a single
cell would imply that C = 1, and r is the number
of spikes emitted by this single cell in the response
window in a given trial. However, if we consider the
spike count response of a given pair of cells, then
C = 2, and ri is the number of spikes emitted by
cell i (where i = 1 or 2) in the response window
in a given trial. Note that in Eq. (1) the response
window is defined by its duration, typically of a few
milliseconds, and onset time.38–40

In Eq. (1), R and S denote the responses and
stimulus sets, respectively.

Information breakdown decomposes the total
mutual information into a sum of components related
to the different ways in which correlations contribute
to population coding,38,40,52 such that

I(R; S) = Ilin + Isig−sim + Icor−ind + Icor−dep. (2)

The first term of the information breakdown, Ilin,
gives the total amount of information that would be
conveyed if all the cells shared neither noise nor sig-
nal. The second term, i.e. Isig−sim, the signal sim-
ilarity term, quantifies the amount of redundancy
specifically due to signal correlation (i.e. similarity of
the stimulus modulation of responses from individ-
ual cells). The term Icor−ind quantifies the average

level of correlation across the stimuli, and Icor−dep

quantifies the stimulus-dependent synchronization.
The information obtained if each cell were to con-

vey independent information is defined as38–40:

Ilin =
X

c

X
rc

�
P (rc | s) log2

�
P (rc | s)
P (rc)

��
s

, (3)

where ‘c’ denotes the cell label, rc is a vector describ-
ing the response of an individual cell. P (rc | s) is
the probability of observing the response rc given
stimulus s for the individual cell ‘c’, and P (rc) =
hP (rc | s)is. The total impact of signal similarities
on information transmission can be expressed as fol-
lows38–40:

Isig−sim =
1

ln 2

X
r

 Y
c

P (rc)

!

×
�

(ν(r) + (1 + ν(r)) · ln 1
1 + ν(r)

�
.

(4)

In terms of information breakdown, the total amount
of information attributable to the correlated activity
of the overall neural coding is provided by Icor =
Icor−dep + Icor−ind, where each terms reads as38–40:

Icor−dep =
X

r

�
Pind(r | s)(1 + γ(r | s))

× log2

hPind(r | s0)is0 (1 + γ(r | s))
hPind(r | s0)(1 + γ(r | s0))is0

�
s

(5)

and

Icor−ind =
X

r

hPind(r | s)γ(r | s)is log2

1
1 + ν(r)

.

(6)

Note that in the previous Eqs. (4)–(6) the noise
correlationγ(r | s) is defined as38–40:

γ(r | s) =




P (r | s)
Pind(r | s) − 1 if Pind(r | s) 6= 0

0 Otherwise


 (7)

and the signal correlation coefficient ν(r) as38–40:

ν(r) =




Pind(r)Y
c

P (rc)
− 1 if

 Y
c

P (rc)

!
6= 0

0 Otherwise


,

(8)

where ν(r) quantifies how similar across stimuli the
response probabilities of the individual cells that
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form the population are and rc is a vector describing
the response of an individual cell (‘c’ denotes the cell
label). Pind(r | s) =

QC
c=1 P (rc | s) is the distribution

one would derive in absence of knowledge of correla-
tions, and Pind(r) = hPind(r | s)is..

In Appendix A, we provide a visual explanation
of how the total mutual information is separated into
components reflecting the contributions of individual
coding mechanisms.

Neurophysiological experiments can only convey
a finite number of trials, and therefore the true
stimulus-response probabilities cannot be estimated
with precision. The estimated probabilities fluctuate
around their true values, and should then be cor-
rected for bias, since this can lead to serious mis-
interpretations of neural coding data.37,38,52,54 It is
also important to point out that due to the small
number of trials (12) it was crucial to use an effective
sampling procedure. To correct for bias in the infor-
mation calculations, we used three equipopulated
response bins with fixed time window lengths T =
100ms. That is to say, in order to facilitate the sam-
pling of its probability, we discretized the response
space by binning each time window of T = 100ms
into R = 3 equipopulated bins. To correct for sam-
pling bias, we used a quadratic extrapolation proce-
dure (QE, see Ref. 54) to estimate and subtract out
the bias of each information quantity. For the cur-
rent analysis, we found that the QE method (QE see
Ref. 54) was the most stable, as the Panzeri–Treves55

method used to remove sample-size-dependent bias
from entropy estimations does not perform well for
such a number of trials when the binning does not
remain constant across the ensemble.

The pair-wise information I(r1r2; S) conveyed by
joint observation of two cells was also estimated
using the “shuffling procedure” described in Refs. 52
and 56, which greatly reduces the bias of multidimen-
sional information estimates (Ish). The performance
of the “shuffling procedure” on realistically simulated
neural spike trains has previously been reported in
detail by other authors (see Refs. 38, 52 and 56). We
chose R = 3 (number of equipopulated bins) because
it was the largest number that consistently led to
robust unbiased results under the sampling condi-
tions of our experiment.

In the following, we describe how to assess noise
correlations from the cross-correlograms (CCGs).
When a stimulus is shown repeatedly, trial-to-trial

fluctuations in response strength are correlated
between neighboring cortical neurons. This correla-
tion is typically characterized using the noise correla-
tion rnoise. Furthermore, the timing of action poten-
tials between nearby neurons is also often correlated
or synchronized, as is usually shown by a peak in the
spike train CCG (see for instance Refs. 22, 57–59).
In this paper, we use different metrics to character-
ize correlations: the (shift-predictor-corrected) spike
train CCG (see Ref. 58), noise correlation rnoise,22

and the information breakdown method.38–40 All
these concept can be joined together investigating
how information is encoded by neural populations,
and in particular Eq. (5) quantifies the stimulus
dependent synchronization across pairs of neurons.

The average noise correlations rnoise were esti-
mated across trials, and for each of the four stimuli,
using the approach developed by Bair and Zohari.59

This approach is based on the fact that rnoise can
be rewritten in a form that is based solely on the
areas under the spike train CCG and autocorrelo-
grams (ACGs), as proposed in Ref. 59, such that

rnoise =
Area under CCG√

Area under ACG1 × Area under ACG2

.

(9)

To compute the CCGs, the spike train of each cell is
represented as a binary time series with 1 ms resolu-
tion, such that: xi

j(t) = 1 if in trial i, neuron j fired
an action potential during the tth millisecond, oth-
erwise, xi

j(t) = 0. ACG1 and ACG2 denote the spike
train ACGs for each cell.59 CCGs were computed as
follows:

CCG(τ) =
1
M

PM
i=1

PN
t=1 xi

1(t)x
i
2
(t + τ)

θ(τ)
√

λ1λ2

, (10)

where M is the number of trials, N is the number of
bins in the trial, xi

1 and xi
2 are the spike trains of neu-

rons 1 and 2 in trial i, τ is the time lag, and λ1 and λ2

are the mean firing rates of the two cells. θ(τ) is the
following triangular function: θ(τ) = T − |τ |, where
T is the trial duration in seconds. This function cor-
rects for the degree of overlap of the two spike trains
for each time lag (i.e. there are T opportunities for
simultaneous events in a trial of length T , but only
T − 1 opportunities for coincidences at time lags of
1 ms, etc.). Note that for ACGs estimations the lower
indices of the neurons in Eq. (10) are considered the
same.
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All CCGs were corrected for correlation induced
by the stimulus, subtracting a shift predictor calcu-
lated from trials 1 to n− 1, with an offset of one trial.
Specifically, the shift predictor was calculated as

SHIFT(τ) =
1

M − 1

M−1X
i=1

NX
t=1

xi
1(t)x

i+1
2

(t + τ). (11)

However, CCGs only account for near-synchronous
spikes. That is, they do not account for correla-
tions that occur on longer timescales or among pat-
terns of spikes. For instance, the firing rate can alter
the shape of CCGs, making it difficult to separate
information carried by firing rates from informa-
tion carried by correlations. The dependence between
responses and stimuli can take a number of forms:
firing rate dependence, pair-wise correlation depen-
dence, and so on.38–40

Information theory approaches have the unique
advantage of capturing all nonlinear dependencies of
any statistical order that may be present in the data.
If synergistic or redundant interactions between cells
are observed, the information components can reveal
the mechanisms through which they arise. Like-
wise, spike correlations can be estimated using the
information breakdown framework,38–40 in which the
total level of correlation quantifies the total amount
of information resulting from the correlated activ-
ity on the overall neural coding. As we mentioned
above, this term is further resolved in two compo-
nents Icor = Icor−ind + Icor−dep, which capture the
average level of correlation Icor−ind (see Eq. (6)), and
the stimulus-dependent synchronization component
Icor−dep(see Eq. (5)). In this way, information com-
ponent breakdown methods allow us to quantify the
effect of such dependencies on the mutual informa-
tion, and thereby assess the different ways in which
the correlations contribute to the neural code.38–40

3. Results

We estimated first the average mutual information
as calculated from the individual responses of 128
single neurons in F1 and 169 single neurons in F5.
All neurons were similar to the “nonobject type”
visual-motor neurons previously described in area
AIP.60 These neurons, whose discharge properties
can be considered as intermediate between the motor
and the visual-motor classes, have been thought to
respond to handgrip selectivity or to a combined

view of handgrip and object. They did not respond
to object presentation, as shown by the naturalistic
testing and by the absence of any response to the
mere observation of the to-be-grasped object during
the formal testing.5 In fact, in the naturalistic test
preceding the experiment, neurons showing activity
related to the observation of objects and, in par-
ticular, of small solid cubes matching the shape of
the door handle in the experimental apparatus were
not included in the study; in addition, recorded neu-
rons did not show any visual response to the sight
of the door handle, after removal of the overlying
external door by the experimenter, at the beginning
of each trial. To investigate the stimulus-dependent
synchrony of nearby cortical neurons in the premo-
tor and motor areas on the neural coding of grasping,
we used the information breakdown approach, specif-
ically the information components method.38–40

3.1. Linear information: Single-cell
analysis

Figures 3 and 4 show representative examples of
single-cell firing patterns within F5 and F1 under the
four different stimulus conditions: L, D, P (PT-flash)
and T (T-flash), previously described in Ref. 5. This
is representative of the overall behavior of the popu-
lation, although the single cells within F1 are gener-
ally more specific than those in F5. Indeed, F5 neu-
rons are sensitive to the observation of meaningful
phases of the grasping action, while F1 neurons are
more specific to motor task.5,61,62 To undergo further
analysis, we also considered different subsets of neu-
rons that fulfilled the following conditions: (i) L > D,
(ii) D > L, (iii) P > D, (iv) D > P, (v) P > L, and
(vi) L > P. The subsets were defined by splitting
the 250ms before grasping (object touch with both
grasping fingers) into five bins of 50ms. The notation
‘greater than’ (“>”) indicates a set of neurons that
under a given stimulus condition showed a signifi-
cant increase in firing rate than other given stimulus
condition (p < 0.05, two sample t-test). That is, we
considered different subgroups of cells that satisfied
each of the mentioned constraints (i)–(vi) for the five
bins of 50ms.

We then examined the population coding for
grasping in the premotor and motor cortices by quan-
tifying responses as the number of spikes fired by
each cell within time window T (typically 100ms,

1650009-7
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(a) (b)

(c) (d)

Fig. 3. Example of grasping-related activity motor-dominant neuron in the area F5 under four different stimulus condi-
tions: (a) Light (L), (b) Dark (D), (c) PT-flash (P), and (d) T-flash (T). Note: Rasters and histograms are aligned with
the grasp of the handle marked by the vertical line at 1 s.

R = 3). We calculated the average information con-
veyed by the single-cell population that responded
to the stimulus. More specifically, average mutual
information values estimated using Eq. (1) from the
individual neuronal responses (IF5 for F5 and IF1

for F1) were obtained for the entire population and
for the different subsets of cells (i)–(vi). To study
which stimulus feature or what combinations of fea-
tures are encoded in the neuronal response we per-
form these mutual information estimations for each
of the different set of stimuli, made up of all the
possible combinations of the four distinct conditions
(L, D, P, and T). These set of stimuli combinations
are given by DLPT, DLT, DLP, DL, TP, LT,
DP, DT, LP, LTP, and DTP. We consider the
whole population of cells, and the subsets of cells (i)–
(vi). Figure 5(a) shows the mutual information for

the DLPT combination considering the entire time
range of analysis (3 s). Figure 5(b) shows the aver-
age mutual information between 0.5 and 1.5 s for the
other 10 combinations of stimuli (DLT, DLP, DL,
TP, LT, DP, DT, LP, LTP, and DTP). With
respect to the whole population, it is evident that
the information conveyed by F1 is larger than that
conveyed by F5.

Visual information on the performed movement
is transformed from an extrinsic reference framework
(F5) that defines the spatial position of the hand
with respect to the object to an intrinsic frame-
work (F1) based on muscle and joint space to gener-
ate accurate grasping.5 F5 is implicated in an early
phase, the control of distal movements, while F1 in
intrinsic phase of action. Thus, F5 is involved in a
level of processing hierarchically higher than F1, and
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(a) (b)

(c) (d)

Fig. 4. Example of grasping-related motor neuron in the area F5 under four different stimulus conditions: (a) Light (L),
(b) Dark (D), (c) PT-flash (P), and (d) T-flash (T). Note: Rasters and histograms are aligned with the grasp of the
handle marked by the vertical line at 1 s.

the previous result seems counterintuitive. However,
it could be that possible differences in neuronal activ-
ity are caused by changes in kinematics between light
and dark conditions. For this reason, in addition to
the traditional L versus D, we also considered and
compared two further conditions, P and T, which
did not show any kinematic difference with respect
to D, thereby ensuring that any effect of the dark
on arm/hand kinematics was taken into account.
Indeed, the combination of P and T exhibits very
different behavior, with F5 becoming more informa-
tive than F1. Figure 5(c) shows the average mutual
information between 1.5 and 2.5 s using the same
stimulus combinations as in Fig. 5(b). We can see
that for all the stimulus combinations that do not
feature condition L (i.e. PT, DTP, DT, and DTP)
the information in F1 is less than the information in

F5. This effect is very strong and enables us to easily
distinguish cells belonging to F5 from those belong-
ing to F1. Thus, the comparison of mutual informa-
tion values of stimulus combinations with and with-
out the L condition provides a hitherto unknown
method of identifying a population ensemble within
F1 (or within F5). Moreover, it shows that visual
information conveyed by the brief illumination of the
monkey’s hand in action (P and T conditions) has a
greater effect on F5 than on F1 when the whole pop-
ulation of neurons is considered. A possible explana-
tion for this difference could be the distinctive con-
tribution of premotor area F5 to the motor-relevant
visual feedback (as suggested by the recent neuro-
physiological studies of Refs. 5, 61 and 62). Hence,
information theory allows us to redefine the prob-
lem of cell classification, to identify which stimulus
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(a) (b)

(c)

Fig. 5. Average mutual information conveyed by area F5 and area F1 during hand grasping for different stimulus
combinations: single-cell analysis. (a) The average mutual information for the four stimulus combinations Dark/Light/Pre-
touch/Flash-Touch-Flash (DLPT) for the entire time range of analysis (3 s). We considered 169 single neurons in F5 and
128 single neurons in F1. (b) The average mutual information between 0.5 and 1.5 s for the other 10 possible stimulus
combinations (DLT, DLP, DL, TP, LT, DPT, DT, LP, LTP, and DTP). Overall, the average information conveyed
by the neurons in F1 is greater than the information conveyed by F5. However, note in panel B that with the combination
of stimuli P and T, the reverse is true, i.e. F5 is more informative than F1. (c) The average mutual information conveyed
between 1.5 and 2.5 s, using the same stimulus combinations as in panel B. Note that for all the stimulus combinations
without the L condition (i.e. PT, DTP, DT, and DTP) the information transmitted in F1 is smaller than that in
F5. Analyzing stimulus combinations without the L condition in comparison with those with L condition can help us to
“identify” a population ensemble within F1 (or within F5).

combinations are most significant for each area, with-
out imposing a metric between neuronal responses
and stimulus variables. The pattern seen in Fig. 5(a)
applies generally across the dataset.

This behavior remained substantially uniform
across the subpopulation of cells that met the con-
ditions (i) and (ii), as shown in Figs. 6(a)–6(d). Fig-
ures 6(e) and 6(f) show the mean of the single-cell
information values that satisfied the condition (iii).
All these estimations were performed using Eq. (1).
For any time window before object touching (1 s)
smaller than 200ms, the Kolmogorov–Smirnov tests
rejected the hypothesis that the distributions of IF1

and IF5 are the same (DLPT stimulus combination).
Furthermore, these particular groups of cells exhib-
ited higher information values for F5 than for F1
at any time shorter than 1 s. After 1 s, the behavior
is inverted, and F1 is shown to be more informa-
tive than F5. Hence, this particular subset of cells
appears to exhibit specific stimulus adaptation dur-
ing the reach-to-grasp task. Figures 7(a) and 7(b)
show the mean of the single-cell information val-
ues that satisfied the condition (v). This particu-
lar subset of cells also exhibits information values
higher for F5 than for F1 over short time ranges at
the beginning of the experiment. In contrast to our
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. The classification of light-modulated neurons into different groups according to their response to a stimulus.
The classification was performed choosing a time of 250 ms before the time of grasping (1 s), with five bins of 50 ms. (a)
Average information conveyed by the single-cell population that met the condition L > D (DLPT stimulus combination).
(b) Average mutual information between 0.5 and 1.5 s (DLT, DLP, DL, TP, LT, DPT, DT, LP, LTP, and DTP) that
met the condition L > D. (c) Average information from the single-cell population that met the condition D > L (DLPT
stimulus combination). (d) Average mutual information between 0.5 and 1.5 s (DLT, DLP, DL, TP, LT, DPT, DT,
LP, LTP, and DTP) that met the condition D > L. (e) Average information from the single-cell population that met
the condition P > D (DLPT stimulus combination). (f) Average mutual information between 0.5 and 1.5 s (DLT, DLP,
DL, TP, LT, DPT, DT, LP, LTP, and DTP) that met the condition P > D. Note that these particular groups of cells
exhibited higher information values for F5 than for F1 at times shorter than 1 s. Thereafter, the behavior was inverted.
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(a) (b)

(c) (d)

Fig. 7. The classification of flash-modulated neurons into different groups according to their response to a stimulus.
The classification was performed choosing a time of 250 ms before the time of grasping (1 s), with five bins of 50 ms.
(a) Average information from the single-cell population that met the condition P > L (DLPT stimulus combination).
(b) Average mutual information between 0.5 and 1.5 s (DLT, DLP, DL, TP, LT, DPT, DT, LP, LTP, and DTP) that
met the condition P > L. (c) Average information from the single-cell population that met the condition D > P (DLPT
stimulus combination). (d) Average mutual information between 0.5 and 1.5 s (DLT, DLP, DL, TP, LT, DPT, DT, LP,
LTP, and DTP) that met the condition D > P. (e) Average information conveyed by the single-cell population that met
the condition L > P (DLPT stimulus combination). (f) Average information between 0.5 and 1.5 s (DLT, DLP, DL, TP,
LT, DPT, DT, LP, LTP, and DTP) meeting the condition L > P. Overall, the average information conveyed by F1 is
greater than the information conveyed by F5. Note that in panel B, D and F, in the case of PT the information conveyed
by F5 is greater than the information available in F1.
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(e) (f)

Fig. 7. (Continued)

findings in Fig. 6(e), the Kolmogorov–Smirnov tests
cannot reject the hypothesis that the distributions
are equal. Figures 7(c)–7(f) show the mean of the
single-cell information values for the cell subsets sat-
isfying the conditions (iv) and (vi), respectively. In
general, when considering subsets (i), (ii), (iv), (v),
and (vi), the information conveyed by the average
information of F1 is greater than the information
conveyed by F5. These values were obtained using
Eq. (1). In summary, our findings show that a sim-
ple comparison of mutual information values between
stimulus combinations with or without the L condi-
tion enables us to readily classify cells as belong-
ing to either F5 or F1. We also found that a par-
ticular subset of cells, which has P-stimulus spike
responses larger than in the D condition, exhibits
a specific stimulus adaptation through the task
execution.

3.2. Pairwise correlations in grasp
coding within the motor and
premotor areas

In the previous section we showed that, for linear
coding, F1 is more informative than F5 under full
vision (L) conditions. Considering the fact that this
could reflect finger posture adjustments derived from
proprioceptive feedback for accurate hand preshap-
ing in dark conditions (D, P, and T) this is not sur-
prising if we think in terms of a multilayer network,
as F1 is closer to the output than F5. Further down
the pathway, information from the primary motor
cortex (F1) is conveyed to cells in the spinal cord via
the corticospinal tract, a primary neural substrate

for independent finger movements.63,64 Our single-
cell analysis also shows how different areas could
process information generated by different stimulus
combinations. Thus, comparing mutual information
values of stimulus combinations with and without
the L condition provides us with a method to clas-
sify cells as belonging to either F1 or F5.

However, this does not enable us to resolve the
issue of synchronized neural coding. It is well estab-
lished that the timing of action potentials of nearby
neurons is often correlated or synchronized.38–40

It is, therefore, important to focus on how pairs
of cells with common inputs and similar recep-
tive fields might be affected by spike synchrony.
It is unclear, however, how the synchrony between
single neurons within F5 and F1 is affected by
basic stimulus manipulations such as L, D, P, and
T. Characterizing the correlation and its stimulus
dependence is important for understanding the com-
putations that can be performed by a neuronal pop-
ulation. Additionally, interactions between neurons
may encode combinations of parameters: von der
Malsburg,65 for example, suggested that the bind-
ing of different features belonging to one object is
represented by synchronous neural discharges. Cor-
relations between neurons encoding distinct param-
eters occur in specific parameter combinations, in
which stimulus/behavioral requirements match the
properties of the neurons. Furthermore, a particu-
larly important theoretical reason to study correla-
tions is that the capacity of a population rate code
to encode information can depend on the magnitude
of correlated variability, its relationship to the signal
similarity between neurons, and its dependence on
stimulus drive.66
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3.2.1. Spike train CCG

Figures 8(a) and 8(b) show the peristimulus his-
tograms (PSTHs) for two typical pairs of cells in
F5 and F1, respectively, while Figs. 8(c) and 8(d)
show the CCGs for the same pairs of cells, estimated
using Eq. (10). The correlation is characterized using
a (shift-predictor-corrected) spike train CCG (see
Ref. 59). We presented four stimuli that drove each
cell through the firing rates, which resulted in a sub-
stantial modulation in the height of the central peak
of the neuron spike-train CCG. At a particular stim-
ulus that drives both neurons moderately well, a frac-
tion of the spikes fired by each neuron tend to be syn-
chronized with millisecond temporal precision. This
result can be verified for both F5 and F1 neuron
pairs, as shown in Figs. 8(c) and 8(d). This stimulus
dependence of synchrony arises despite correcting for
the basic rate dependence of the CCG. Figures 9(a)–
9(h) show the average noise correlation over the
entire population of pairs, rnoise as in Eq. (9), within
F1 and F5. The data presented in Fig. 9 show the
histograms for rnoise in our population of pairs, in
order to illustrate the relationship between spike
counts and noise correlation.The average noise cor-
relations for F5 are 0.26± 0.02 (L), 0.37± 0.02 (D),
0.43± 0.02 (P), and 0.29± 0.02 (T). In contrast the
average noise correlations of F1 are 0.1 ± 0.03 (L),
0.18±0.03 (D), 0.17±0.03 (P), and 0.245±0.03 (T).
The rnoise estimation was performed by taking a time
lag T of 200ms before and after the time of touch-
ing (1 s). The distributions are significantly different;
the Kolmogorov–Smirnov tests rejected the hypothe-
sis that the distributions are the same. Note therefore
that both areas F5 and F1 show a significant amount
of noise correlation and stimulus dependence. How-
ever, the average signal correlation values, rsignal, for
the entire population of pairs (estimated as the Pear-
son correlation between the mean responses of each
cell to each stimulus) were quite low: 0.1560±0.0346
for F5 and 0.260 ± 0.0298 for F1.

3.2.2. Information component breakdown

Figures 10(a)–10(c) show the information fraction
considered for time windows of ±200ms, ±100ms,
and ±50ms before and after the 1st second (consid-
ering 42 pairs of F5 and 36 pairs of F1). We esti-
mated the information fractions by estimating the
information components given Eqs. (3)–(6) that were

divided by the information of the ensemble obtained
using Eq. (1). Figures 11(a) and 11(b) show the infor-
mation values in bits, estimated using Eqs. (1)–(6).
The picture shown by the entire population of pairs
in F5 is that of a very significant amount of synergy:
with time windows of ±200ms, ±100ms, and ±50ms
(before and after the 1st second), the ensemble pop-
ulation code, Ipopulation, outperforms the mean of
single-cell information values, Ilin, by 32.0%, 46.6%,
and 58.4% on average, respectively. The linear term
in the case of F5, Ilin, accounts only for 68.0%, 53.4%,
and 41.6% of the total ensemble information, and
the stimulus component correlation, Icor−dep, corre-
sponds to 45.0%, 43.5%, 43.9% of the total informa-
tion, respectively, for the time windows of ±200ms,
±100ms and ±50ms.

In contrast, when considering F1 population, the
amount of synergy is about half of the value obtained
for F5. That is, the population ensemble performs,
on average, 14.45% and 26.31% better than the sum
of single-cell contributions, respectively, for ±200ms
and ±100ms (see Figs. 10(a) and 10(b)).

When considering F5 the ensemble information,
Ipopulation, is much higher than the sum of the
single-cell information values (Ilin) for a wide range
of time windows ±200ms, ±100ms, and ±50ms.
The maximum difference we observed between F5
and F1 was a double amount of synergy for F5 at
200ms and ±100ms, tailing off sharply at 50ms,
a point at which synergy values became similar
(Fig. 10(c)). Thus, information across pairs of cells
in F1 is roughly independent, whereas information
across pairs of cells in the premotor cortex area F5
is summed superlinearly.

To test the robustness of our previous result, we
consider a Poisson simulation of uncorrelated neu-
rons that have exactly the same mean rates to each
stimulus as the neuronal pair under consideration,
but no noise correlations and the same number trials
for each of the four experimental conditions. Cor-
relations that manifest as covariation of the trial-
by-trial fluctuation around the mean response are
named “noise correlations”.37,62 On the other hand,
correlations in response profiles of an individual sig-
nal across different stimuli are called “signal corre-
lation”39,67 because they are entirely attributable to
stimulus selectivity. P (r | s) is the true distribution of
stimuli given responses, and Pind(r | s) is the distri-
bution one would derive in the absence of knowledge
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(a) (b)

(c) (d)

Fig. 8. Interaction between neuronal pairs in premotor and motor cortices. (a) and (c) correspond to the PSTHs and
CCG for the responses of a given pair of cells in F5. (b) and (d) correspond to the PSTH and CCG of a given pair of cells
in F1. The cross-correlation was estimated for the four stimulus conditions. The corresponding rnoise values are indicated
in each panel. CCGs for the pair above show that fine-timescale synchronization is induced for stimuli that drive both
cells relatively well.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Relationship between spike counts and rnoise, We consider the four stimulus that drove the pairs effectively. (a),
(c), (e) and (g): population histograms of rnoise in area F5 (±200 ms before and after 1 s) for L, D, P and T conditions,
respectively. (b), (d), (f) and (h): population histograms of rnoise in area F1 (±200 ms before and after 1 s) for L, D, P
and T conditions, respectively. Forty-two pairs of neurons in F5 and thirty-six pairs of neurons in F1 were considered.
The number next to each plot indicated by rnoise is the mean of the distribution.
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(a) (b)

(c)

Fig. 10. Fraction of information components across the entire population of neurons. Forty-two pairs of neurons in F5
and 36 pairs of neurons in F1 were included. In the figures (a), (b), and (c) we considered two bins of ±200 ms, ±100 ms,
and ±50ms, respectively, before and after 1 s. Error bars indicate the standard deviation of the mean. The bar charts on
the left-hand side of the figure illustrate the effects of the stimulus-dependent synchronization component, Icor−dep, the
bar charts that follow are the average level of correlation, Icor−ind, the signal similarity contribution, Isig−sim, and the
linear component, Ilin. Note that redundancy contributions due to the signal similarity term are higher for F1 than for
F5, and that the linear component Ilin is more informative for F1 than for F5. In other words, within the motor cortex,
information across pairs of cells is summed linearly. This is not the case in F5, where information across pairs of cells is
summed superlinearly.

of correlations. In practice, we obtained Pind(r | s)
numerically by multiplying the marginal probability
distributions.

In the information breakdown formalism,
Eqs. (1)–(6), the presence of noise correlation (corre-
lation in response variability for a fixed stimulus) is
given by P (r | s) 6= Pind(r | s). On the other hand,
the signal correlations are indicated by P (r) 6=
Pind(r).

We performed information estimations using 12
trials per condition using QE sampling procedure54

(considering the same mean rates but no noise cor-
relations; 42 pairs of F5 and 36 pairs of F1) tak-
ing into account a Poisson simulation of uncorre-
lated neurons. Figure 11(c) shows the mean values
of the information breakdown analysis. Note that
having no noise correlations implies Icor−dep = 0
and Icor−ind = 0 despite the reduced number of
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(a) (b) (c)

Fig. 11. The results of information breakdown analysis. (a) Information component analysis for F5 (average over 42
pairs of neurons), showing how the balance between a synergistic contribution attributable to the stimulus-dependent
synchronization (Icor−dep) and redundant contributions from tuning overlap (Isig−sim) and the average level of correlation
(Icor−ind) gives rise to the overall level of synergy. The information components Ilin, Isig−sim, and Icor combine to give the
total information, Iensemble. (b) The average of 36 pairs of cells in F1, which leads to a roughly independent neural code.
(c) Poisson simulation of uncorrelated neurons that have exactly the same mean rates to each stimulus as the neuronal
pair under consideration, but no noise correlations. Having no noise correlations leads to Icor−dep = 0 and Icor−ind = 0,
and it was important to use an effective sampling procedure (QE, Ref. 54).

trials. This is in agreement with the idea that Icor =
Icor−dep + Icor−ind quantifies whether the presence
of “noise correlation” could increase or decrease the
information available in the neural responses. Thus,
the absence of noise correlation leads to Icor−dep = 0
and Icor−ind = 0. In order to obtain such result, it
was crucial to use an effective sampling procedure
(QE, Ref. 54), to avoid the results being contami-
nated by residual bias.

The type of independence shown by this sim-
ulation corresponds to activity or response inde-
pendence, which applies if spike trains were truly
uncorrelated, i.e. p(r | s) = p(r1 | s)p(r2 | s). Thus if
we assume zero noise correlation (γ(r | s) = 0 or
rnoise = 0) the information breakdown formalism
expressed by Eqs. (1)–(6) reveals that Icor−ind = 0
and Icor−dep = 0. That is, the results obtained by
taking a Poisson simulation of uncorrelated neu-
rons are supported by a closer analytical examina-
tion of the correlation components in the informa-
tion breakdown formalism, Eqs. (5) and (6). Hence
our information theoretical approach, in combination
with the use of an effective sampling procedure (QE,
Ref. 54), guarantees the robustness of our results
obtained considering 42 pairs of neurons in F5 and
36 pairs of neurons in F1.

The stimulus dependency of individual neurons
activity, within area F5 and F1, to the four different

conditions of visual feedback during hand grasping
has been established in Ref. 5. In order to investi-
gate stimulus dependent synchronization across pairs
of neurons we used a methodology similar to the
one implemented in Ref. 38. More specifically, this
dependence between responses and stimuli may take
a number of forms: firing rate dependence, pairwise
correlation dependence, etc. Information component
breakdown methods allow us to quantify the effect
of such dependencies on the mutual information and
thus assess the different ways in which the correla-
tions contribute to the neural code. If synergistic or
redundant interactions between cells are observed,
the information components reveal the mechanisms
from which they arise.

We use a Poisson simulation of uncorrelated neu-
rons that have exactly the same mean rates to each
stimulus as the neuronal pairs under consideration,
but with no noise correlations and the same number
trials for each of the four experimental conditions.
We explicitly show, using this simulation under sim-
ilar conditions to the experimental ones presented
here, that we would obtain zero stimulus dependent
synchronization, Icor−dep = 0, and zero indepen-
dent stimulus synchronization, Icor−ind = 0, if there
were no noise correlations across the pairs of neu-
rons. Moreover, the use of different metrics to assess
the degree of pairwise correlations together with
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the application of the quadratic extrapolation proce-
dure to remove bias deviation at its source54 on the
components of our information breakdown reinforces
the reliability of our findings.

4. Discussion

Various forms of interactions among cortical neurons,
including firing synchrony and local oscillations, have
been considered as the key to form high-level rep-
resentations.68–72 The contribution of correlated dis-
charge has largely been dismissed as reflecting coding
redundancy in a noisy system. In particular, a pre-
vious study of pair-wise spike synchrony72 reported
that an excess of synchrony in motor cortical neu-
rons would lead to redundant information. However,
spike correlations in response variability can yield
additional information that is only provided by the
neuronal ensemble.71–73 Our findings show substan-
tial stimulus-dependent correlation between pairs of
neurons. In our study, the stimulus-dependent cor-
relation component, Icor−dep, was large enough to
outweigh redundant effects due to the average level
of correlation (Icor−ind), leading to an overall syn-
ergistic effect of correlations. Our results suggest
that there is a significant quantity of synchronous
spikes between pairs of cells in both the premo-
tor and motor cortex areas. In the case of F5, the
stimulus-dependent correlation component, Icor−dep,
is about 15% higher than in F1. Moreover, Icor−dep,
is about 45% of the total (shuffled) information (Ish)
in F5, whereas in F1 the stimulus-dependent correla-
tion component, Icor−dep, is smaller. Icor−dep is about
32% of the total shuffled information (Ish) in F1. The
results are robust for the different time windows used
in the analysis. There is a significant amount of syn-
chrony in both areas, effectively providing additional
information about the stimuli beyond the informa-
tion yielded by the independent firing. In a sense,
this is surprising, because it would appear to con-
tradict the findings of Oram suggesting that motor
neurons provides redundant information related to
direction of arm movement.72 Nevertheless, our anal-
ysis suggests that correlations in the trial-to-trial
response variability are more likely to increase than
to decrease information content. Thus, pair-wise syn-
chronization can be seen as a requirement for per-
forming the synergistic movement needed to achieve
effective motor control of grasping.

Functional classification of cortical neurons has
typically consisted of finding qualitatively different
responses to simple stimuli. In contrast, our anal-
ysis has revealed that average mutual information
values provided by individual cells across the popula-
tion, considering stimuli combinations with or with-
out full vision of the hand, enable us to classify cells
without imposing a metric on the space of stimuli or
responses. Thus, a simple comparison of total linear
mutual information estimations of different stimulus
combinations with (or without) full vision provides
us with a functional classification of cells as belong-
ing to either F5 or F1. Cells can be clustered in such
a way that most of the diversity is captured by the
total linear mutual information values of the clus-
ters, rather than by individual cell responses within
clusters.

Nevertheless, spike correlations across neurons
may also affect the coding of sensory information,
being a consequence of common input from other
neurons. Correlations between nearby neurons might
be expected since they are thought to share the
same thalamic projections in the primary motor
cortex.74 Functional studies have also shown that
a large diffuse portion of the primary motor cor-
tex is activated when simple reaching movements
are made, thereby suggesting that the motor cortex
is not organized as a set of independent columns,
and correlations between the responses of neurons
can encode information redundantly, independently,
or synergistically.67 If we consider a pair of neu-
rons with overlapping tuning, and without stimulus-
dependent correlation, the covariance of neuronal
firing would limit the information carried by the neu-
ronal population overall, due to the introduction of
redundancy.75

As neural integration is usually understood as
the algebraic representation and summation of exci-
tatory or inhibitory postsynaptic potentials, which
govern the potential for firing in the postsynaptic
neuron, synchronization of presynaptic inputs can
be thought of as a mechanism of neural integration.
Moreover, at a fine temporal scale appears to be
a natural mechanism for coordination and integra-
tion of neuronal activity, as shown by our current
findings.

One of the goals of the current study was to
address how synchronization of spike trains affects
the neural coding of grasping, using four different
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stimulus conditions. Our information component
breakdown analysis illustrates the interplay of syn-
ergy from the stimulus-dependent component and
redundancy from the average level of correlation, giv-
ing rise to a synergistic coding of correlations. The
picture over the population of neuron pairs in F5 is
one of a very significant amount of synergy, while
information across pairs of cells in F1 is largely inde-
pendent. This is consistent with the general picture
shown by single-cell populations: the linear informa-
tion conveyed by F1 is greater than the information
conveyed by F5. However, we found that synchrony
within the premotor and motor areas is prevalent, the
pair-wise coding of grasping being more informative
in F5 than in F1. So what is the use of spike synchro-
nization? According to von der Malsburg, the bind-
ing of features belonging to one object is represented
by synchronous neural discharges. Moreover, tempo-
ral correlations at fine scales could underlie aspects
of a higher cognitive process such as binding, motor
coordination, or even consciousness, because they
could signal relationships between neurons carry-
ing separate codes in their coarse temporal response
measures.75–77

We found that the synergistic effects provided by
pair-wise spike correlations across neurons in F1 are
less than half of those noted for F5. Thus, infor-
mation transmission across pairs of cells in F1 is
largely independent, whereas information transmis-
sion across pairs of cells in the premotor cortex
area F5 is summed superlinearly. These findings sup-
port the hypothesis that visual feedback information
about the monkey’s hand movement during the exe-
cution of a grasping task is accessible to the pri-
mary motor cortex through premotor cortical areas
(as shown in Ref. 5). More importantly, we have
shown here that the main mechanism of neuron–
neuron communication lies at the level of the cor-
relation code, rather than at the spike rate modula-
tion. The brain, therefore, could take advantage of
both the accuracy provided by independence in F1
and the synergy provided by the superlinear infor-
mation population code of F5. This suggests that
pair-wise interactions between neurons help to trans-
form internal representations of visuomotor informa-
tion into specific motor commands throughout the
grasping. Thus, pair-wise synchronization could be
seen as a requirement for performing the synergistic

movement needed to achieve the effective motor con-
trol of grasping.

A final point should be made to consider a
more general functional significance of this result.
The motor system is a hierarchical structure,
where upstream elements (and F5 is upstream to
F1) are more and more capable of merging and
generalization.5 The generalizing role of F5 clearly
emerges from the functional properties of its neu-
rons. For example, neurons specifically discharging
during precision grip performed with the right hand
(but not during whole hand prehension) discharge
also during the same type of grasping executed with
the contralateral hand or, in fewer cases, even with
the mouth. In addition, F4 neurons fire during arm
movements to the mouth, while F5 neurons fire when
the animal grasps objects with the hand and some-
times when it grasps objects with the mouth.78 This
means they generalize the concept of ‘taking posses-
sion of a small object’.5 The picture is completely
different in area F1, where its proximity to the out-
put and, in some cases, direct cortico-motoneuronal
projections, more strictly link neurons to muscles.
Our findings might also apply also to both ventral
and dorsal sectors of premotor cortices. It is possible
that the superlinear summation evidence shown by
the present work is a neural correlate of the diverse
roles played by the two areas within this hierarchical
structure.

It has been hypothesized that Broca’s area could
derive phylogenetically from F5 premotor area of
monkey where neurons involved in commanding
grasp with hands and mouth and in recognizing grasp
motor acts were recorded.79,80 In humans it has been
proved that the inferior parietal lobe has a major in
integrating converging multimodal sensory informa-
tion for coding of general action patterns (during real
and imagined mouth grasping).81 Our results pro-
vide deeper insights of how information is processed
pre-motor and motor cortex area. In addition, these
findings might have also implications for cognitive
recovery and rehabilitation after brain injury.

Moreover, one main challenge in computational
neuroscience is to provide an efficient algorithm of
brian–computer interface (BCI) that could translate
the recorded neural activity into a control signal
for an external device.82–90 The signal acquisition
component is generally divided intotwo categories:
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noninvasive and invasive.91 There are a big variety of
signal processing techniques such as time-frequency
methods, spatiotemporal techniques, signal feature
classification algorithms as artificial spiking neural
networks, population coding, code specificity, infor-
mation theoretical approaches, wavelet transform,
etc., that can be used for discovering features and
markers to be translated into desired actions.41,91–94

Importantly, BCI technology is evolving to provide
therapeutic benefits by inducing cortical reorgani-
zation via neuronal plasticity.95 In that respect, it
has been shown recently that cooperation between
reticulospinal and corticospinal systems could pro-
vide insight for development of better rehabilitation
approaches for stroke patients and others with move-
ment disorders.96 To some extent a successful BCI
algorithm should also account for generalizing role
of F5, as superlinear summation across neurons in
this area help to transform internal representations
of visuomotor information into specific motor com-
mands throughout the grasping.
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Appendix A

Figure A.1 presents a visual explanation of how
the total mutual information is separated into com-
ponents reflecting the contributions of individual
coding mechanisms. I(R; S) is the total (ensem-
ble) mutual information. Ilin is the information that
would be obtained if each neuron would to convey
independent information. Isig−sim corresponds to the
signal similarity term which is a pure redundant con-
tribution due to overlapping in the tuning cells. Icor

is the overall effect of synchronized firing, Icor−ind is
the effect of average level of correlation over stimuli.
Icor−dep is the contribution of the stimulus depen-
dent synchronization.

Fig. A.1. Information component breakdown. The
ensemble mutual information can be broken down
into a linear component, the reduction of information
attributable to the redundancy caused by overlap in tun-
ing curves, Isig−sim, and the contribution of synchronized
firing Icor = Icor−ind + Icor−dep.
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