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Spike correlations among neurons are widely encountered in the brain. Although models accounting for
pairwise interactions have proved able to capture some of the most important features of population activity at the
level of the retina, the evidence shows that pairwise neuronal correlation analysis does not resolve cooperative
population dynamics by itself. By means of a series expansion for short time scales of the mutual information
conveyed by a population of neurons, the information transmission can be broken down into firing rate and
correlational components. In a proposed extension of this framework, we investigate the information components
considering both second- and higher-order correlations. We show that the existence of a mixed stimulus-dependent
correlation term defines a new scenario for the interplay between pairwise and higher-than-pairwise interactions
in noise and signal correlations that would lead either to redundancy or synergy in the information-theoretic
sense.
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I. INTRODUCTION

Contemporary experiments in neuroscience have chal-
lenged the question of whether the information conveyed
by the activity of an ensemble of neurons is determined
solely by the number of action potentials fired by each cell
independently or correlations present in such spike trains also
play a key role in information transmission [1–11]. In this
sense, finding suitable models for capturing the statistical
structure of firing patterns distributed across several neurons
provides a challenge and a prerequisite for understanding
population codes. Recently, pairwise models have proven their
worth in analyzing retinal ganglion cells [12,13]. Nevertheless,
these studies have raised the question of the relevance of
higher-order correlations (HOCs) in binarized spike trains,
since pairwise models fail to completely explain the variability
in activity patterns at a more general level [14–21]: Even just
triplet correlations have been implied to deeply impact on
information processing in a small population of neurons [22].

Indeed, neurophysiological research has shown that pair-
wise models fail to explain the responses of spatially localized
triplets of cells [16–18,23] when describing the activity of large
neuronal populations responding to natural stimuli [18]. De-
viations from the pairwise-maximum-entropy (PME) model
indicate that HOCs have to be taken into account for modeling
the population statistics [24–27]. Thus, the intricacy of the
neurophysiological data highlights the need to develop a
theoretical framework accounting for the statistical complexity
of synchronous activity patterns. Pattern probabilities for the
so-called dichotomized Gaussian (DG) model [23–27] were
estimated using the cumulative distribution of multivariate
Gaussians showing high-precision fitting of the experimental
data, therefore evidencing that HOCs are required to properly
account for cortical dynamics.

Neurophysiologically speaking, single neurons are consid-
ered to make small and understandable contributions to animal
behavior [12]. However, most behaviors involve large numbers
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of neurons, thousands or even millions. The human brain has
approximately 86 × 109 neurons [28], and as these neurons
may be connected to other neurons via as many as 1015 synaptic
connections, the ways that information might be transmitted
among them are extremely complex. These neurons are
often organized into layers or regions, such that nearby
neurons have similar response properties. If the information
from different cells were independent, it would consequently
increase linearly with the number of cells in the population. If
that is not the case, then two regimes are possible. On the one
hand, if many cells in the sample carry similar information,
then the code is said to be redundant, since information of the
whole population would be overestimated if the cells are taken
to be independent [29]. On the other hand, some information
arises only by taking into account interactions (or simultaneous
responses) of different neurons, for example, information only
available from the relative timing of firing. This code is said
to be synergistic, and more information is available in the
population than one would obtain by the sum of the information
gathered from each neuron alone. It is important, therefore, to
gain a deeper understanding about correlations across neurons
in the brain and their impact on population coding, that is,
the modalities with which correlations contribute to neuronal
information transmission, rather than just a quantification
of the total information transmitted by the population [30].
A valid measure to assess the role of correlations in the
neural code is to evaluate whether information is encoded
synergistically, redundantly, or independently [11,31–41].

The information-theoretic series expansion formalism was
introduced in [3,4,42,43]. It allows us to separately quantify
the information available if each cell were to convey infor-
mation independently from the deviations that arise from
synergy and redundancy effects, considering up to pairwise
spike correlations across neurons. These nonlinear effects
result from different contributions that can be summed up
as redundant contributions due to similarities in the mean
response profiles of different cells, either a redundant or a syn-
ergistic stimulus-independent correlation term or a synergistic
stimulus-dependent correlational contribution [11,33,41].
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The series expansion approach is based on the assumption
that information is transmitted in poststimulus time windows
that are short compared to typical interspike intervals, so that
the average number of emitted spikes per stimulus presentation
is low [3,4,42]. In this paper, we present an extension of
this approach up to third-order contributions and propose
a general dependency for any order. We obtain an exact
analytical expression that allows us to estimate a correction for
the stimulus-dependent correlational component of the mutual
information (MI) within the series expansion approach. That
is, when neuronal correlations on spike trains are considered,
for instance, a three-neuron system, there is a limitation in
only analyzing pairwise interactions. Two types of external
input can generate triplewise and pairwise correlations, with
identical cross- and autocorrelation analysis in both cases
[14–19,44]. In other words, pairwise input network connectiv-
ity could generate HOCs that would be indistinguishable from
those generated by triplewise input network connectivity. It
would not be possible to distinguish, in such scenario, the two
distinct neuronal population activities even through a cross-
and autocorrelation analysis, and the differences between
these two configurations are not captured by mere pairwise
correlations. It is HOCs that determine whether coincident
spikes of two neurons are also coincident with the spikes
of the third neuron [14–19,44]. Pairwise correlations are not
therefore enough to provide reliable descriptions of neural
systems in general [14–19].

Furthermore, we show that the existence of a mixed
stimulus-dependent correlation term (of the MI expansion)
defines a new scenario when analyzing HOCs. At third-order
level it takes into account possible “chance” [45] triplets of
spikes that may have arisen from second-order correlations
and could contribute to either under- or overestimation of
the total information. Coding can thus be synergistic or
redundant, depending on the value of a mixed stimulus-
dependent correlation term. We perform a nonhomogenous
Poisson computational modeling considering a von Mises
distribution of stimuli across different neurons, showing how
the existence of the mixed stimulus-dependent correlation term
can modify information. We also evaluate this formalism using
pairwise and triplewise input correlation values considering a
spiking network. The current approach defines a new scenario
when analyzing HOCs, putting in evidence the limitations of
only considering pairwise neuronal correlations on spike trains
and reshaping the “achievable regions” of synergy/redundancy
when investigating a small population of neurons.

II. BREAKDOWN OF INFORMATION INTO CODING
MECHANISMS

As formulated in [42], we consider a time period of short
duration during which the activity of N cells is observed.
The neuronal population response to the stimulus in this
poststimulus time window is denoted by a vector r, each
element r1, . . . ,rN of the vector describing the response of an
individual cell. Each different stimulus is denoted as s, and the
stimuli considered are purely abstract; the formalism detailed
in this paper is applicable to a wide variety of experimental
paradigms. The response of each cell can be described in a
number of ways depending on the questions to be addressed.

For example, in a spike count code, ri would simply be the
spike count of cell i measured in the poststimulus time window
on a given trial with the stimulus s present. Conversely, in
this paper, we will describe the response by the firing rate,
i.e., the spike count divided by the poststimulus time window
and denote it by ri(s) to explicitly state stimulus dependency.
Alternatively, if we were interested in a spike timing code, the
response ri would be a sequence of spike arrival times {t ij },
where t ij denotes the time of the j th spike emitted by the ith
neuron in a given trial, as used in [3,4]. The equations derived
are valid for any choice of neuronal code r, including spike
timing codes with the appropriate notation.

For a given choice of code, following [46], we can write
the mutual information transmitted by the population response
about the whole set of stimuli {s} as

I =
*X

r∈{r}
P (r|s) log2

·
P (r|s)

P (r)

¸+
s

, (1)

where {r} denotes the response space. The angular brack-
ets indicate the average over different stimuli, hA(s)is ≡P

s∈{s} P (s)A(s), P (s) being the probability that the stimulus
s is present. P (r|s) is the probability of observing a particular
response r conditional to stimulus s, and P (r) = hP (r|s)is is
its average across all stimulus presentations. The probability
P (r|s) can be determined experimentally by repeating each
stimulus in exactly the same way on many trials, while
recording the neuronal responses. Mutual information quan-
tifies how well an ideal observer of neuronal responses can
discriminate between all the different stimuli, based on a
single trial. In Eq. (1) the summation is over all possible
population responses. Equation (1), as expressed in [30],
quantifies the total information transmitted by the activity of
a neuronal population. However, it tells us nothing about the
specific contribution of cross-neuronal correlations to the total
transmitted information or whether cross correlations make
the code redundant or synergistic.

Hence, to exactly describe the impact of correlation on
information, it is necessary to define a response-related
correlation measure. This measure is usually denoted as γ (r|s),
and it quantifies how much higher the probability that neurons
emit a response is than that expected in the uncorrelated case,
normalized to the probability of the event with firing rates
expected in the uncorrelated case [3,30,40,42]. It is referred to
as “noise correlation” in previous literature [3,30,40,42], as it
measures correlations in the response variability upon repeated
trials of the same stimulus. Positive values indicate correlation
and negative values indicate anticorrelation [42].

Another important coefficient for describing population
coding that quantifies similarity in the stimulus modulation
of responses of individual cells is the “signal similarity”
coefficient or “signal correlation” ν(r) [3,30,40,42]. That is,
it conveys correlations in the mean responses of the neurons
across the set of stimuli. It is different from zero if signals
coming from individual neurons are either positively correlated
or negatively correlated. Both measures can vary from −1 to
∞, with 0 indicating lack of correlation. Further information
on these correlation coefficients is detailed in Appendix A.

By considering these quantities, it is possible to write
the total information in components, each reflecting the
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contribution of a different coding mechanism, as in [30,42]

I (r; {s}) = Ilin + Isig-sim + Icor-ind + Icor-dep. (2)

Each component is specified in Appendix B. The mutual
information is exactly equal to the split of information within
the exact information breakdown approach as in [30]. It
is important to note that these components have the same
meaning in both the exact information breakdown and the
series expansion approximation when considering the different
order contributions [3,42]. Moreover, notice that by using the
exact information breakdown formalism [30], we are not in
control of which correlation order dominates the spike train
data.

By means of this breakdown, it is possible to separate the
additive contribution to information from the contribution of
neurons as independent units. Positive, negative, or null con-
tributions from mechanisms would arise from considering the
neurons as units of a population. Synergy (positive addition)
then would be evidence of a population code among interacting
cells and redundancy (negative contribution) would result
in a less-than-additive combination of information [33,47].
The first term of the information breakdown Ilin is the
information obtained if each cell were to convey independent
information, i.e., no redundancy or synergy is considered.
The total information transmitted by the population is the
linear sum of the information conveyed by each individual
cell [3,11,30,41,42]. The second term, Isig-sim, takes into
account the redundancy that could arise even in the absence of
cross correlation, when there are similarities in the distribution
across stimuli of stimulus-conditional response probabilities of
individual cells. This term is always less than or equal to zero,
so it cannot lead to synergy [3,11,30,41,42].

If the population responses are statistically independent,
these are the only nonzero contributions to the information
breakdown. In this sense, the sum of Ilin and Isig-sim quantifies
how much information can be obtained from the neurons eval-
uated individually, without any reference to the simultaneous
activity of other neurons.

The next two terms in the information breakdown are
correlational-dependent components: a stimulus-dependent
component Icor-dep and a stimulus-independent component
Icor-ind. Hence, they express any further effects that cross-
cell correlations might have beyond those accounted for by
individual cell properties. In that regard, the sum of the two
correlational terms Icor-ind and Icor-dep quantifies the amount of
information truly available from the correlated activity of the
whole population [3,11,30,41,42].

It can be proved by means of basic information theory
inequalities that the stimulus-dependent correlational compo-
nent (Icor-dep) is non-negative, and it is zero if and only if,
for any given response r, the correlation strength γ (r|s) is
stimulus independent. Therefore, this term measures how well
stimuli identity is “tagged” by differences in trial-to-trial spike
correlations across the stimuli [30]. Icor-dep is nonzero only if
the correlation strength γ (r|s) is different from zero for some
response r or stimulus s.

For a given response r, the stimulus-independent correla-
tional component (Icor-ind) is positive (synergistic) when signal
similarity and cross correlation have the opposite sign and

negative (redundant) otherwise. That is, even if not stimulus-
modulated, cross correlations can still affect the neuronal
code through an interaction between cross-cell correlation and
signal similarity [48,49]. Furthermore, as opposed to Icor-dep,
Icor-ind does not vanish if γ (r|s) or ν(r) is not equal to zero.

III. HIGHER-ORDER CORRELATIONS IN THE SHORT
TIME EXPANSION

To evaluate how order-specific interactions affect the total
information coding of a neuronal population, it is necessary to
rely on the series expansion approach [3,4,42]. Let us assume
first that spikes are not locked with infinite precision. Given
these conditions, individual firing probabilities scale with the
time duration t as [3,4,42]

P (ri |rj ,rk, . . . ,rn; s) ∼ t, (3)

and using the chain rule

P (ri, . . . ,rn; s) = P (ri |rj , . . . ,rn; s)P (rj |rk, . . . ,rn; s)

×P (rk| . . . ,rn; s) · · · P (rn; s), (4)

the probability of having n spikes fired is the product of the
conditional probabilities of each fire due to the presence of
other firings in the pattern. Then, as each of the terms is
proportional to t , the probability of having n firings scales
as [3,4,42]

P (ri,rj ,rk, . . . ,rn; s) ∼ tn. (5)

As a proposed extension of the series expansion of [3,4,42],
we can write the probability of having three neurons (labeled
as i, j , and k) firing as

P (ri,rj ,rk; s) = ri(s)rj (s)rk(s)t3[1 + γijk(s)] + O(t4), (6)

where

γijk(s) = ri(s)rj (s)rk(s)

ri(s)rj (s)rk(s)
− 1 (7)

denotes the triplewise noise correlation. Similarly, triplewise
signal correlation is given by

νijk = hri(s)rj (s)rk(s)is
hri(s)ishrj (s)ishrk(s)is − 1. (8)

Given these definitions, the following additional assump-
tions are made to be able to compute the series expansion: first,
that the mutual information is analytic in time and, second, that
different trials are random realizations of the same process.
The validity of these and previous assumptions has been
examined elsewhere [3,4,42]. Then the mutual information
can be expanded as a series of the poststimulus time window
as

I = I0 + tI1 + t2

2
I2 + t3

6
I3 + · · · , (9)

where I1 is the instantaneous information rate and Ii , with
i > 2, is the ith derivative of information. We insert the
different-order response probabilities into the sum over re-
sponses in Eq. (1), contained in the sequence of spikes. For
each term in the sum over responses, we use the power
expansion of the logarithm as in [42]. We then gather together
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all the terms in the sum which have the same power in t ,
and using equation Eq. (9), one obtains the expressions of
the information derivatives. The first- and second-order terms
can be found in [42], where they are separated into coding
components in the same manner as was later done in [30].

The first order of the expansion (and also the first term
of the information breakdown) corresponds to Ilin; i.e., no
redundancy or synergy is considered. The second order is
decomposed in the following components (noted by the
subindex 2 to distinguish them from higher-order ones) (as
in [30]): Isig-sim,2, which takes into account the redundancy
that can arise even in the absence of cross correlation, and
the two correlational terms, Icor-ind,2 and Icor-dep,2, which
measure the amount of information truly available from the
pairwise correlated activity of the whole population. We refer
to Appendix C for further details of these terms.

It is interesting to note that the decomposition of this
short time limit expansion up to the second order is ex-
actly analogous to the one previously detailed in the exact
breakdown of neuronal population information into coding
components when just considering pairwise interactions. The
latter can be simply derived from the second-order series
expansion by appropriately replacing the second-order noise
and signal correlations [3] with the exact ones [30] and the
instantaneous rates with the single-cell response probabilities
(i.e., the probability of each cell response considered inde-
pendently of the other cells). Despite this analogy, only the
first- and second-order moments of the response probability
distributions are considered in the approximated second-order
series expansion equations, and the approximation can be
improved by successively inserting higher-order terms.

However, if the expansion is continued up to higher orders,
an extra component must be considered, which is related to the
stimulus-dependent correlational component. By extending
this approach to take into account contributions made by
third-order interactions, we obtain the components Isig-sim,3,
Icor-ind,3, and Icor-dep,3, as expected. We also obtain an additional
term that reflects the possibility of “mistagging” a stimulus
with triplewise statistics when it actually corresponded to the
coincident spiking of three neurons that may arise by chance
from pairwise correlations [45], which we denote as Icor-ch,3.

Thus, at third order, the nonlinear contribution is I3 =
Isig-sim,3 + Icor-ind,3 + Icor-dep,3 + Icor-ch,3. The signal similarity
contribution is

Isig-sim,3 = 1

6 ln 2

NX
i,j,k=1

hri(s)ishrj (s)ishrk(s)is

×
·
νijk + (1 + νijk) ln

µ
1

1 + νijk

¶¸
. (10)

The total amount of information attributable to third-order
correlated activity on the overall neural coding is given by the
stimulus-independent contribution

Icor-ind,3 = 1

6 ln 2

NX
i,j,k=1

hri(s)rj (s)rk(s)γijk(s)is ln

µ
1

1 + νijk

¶

(11)

and the stimulus-dependent correlation component

Icor-dep,3 = 1

6 ln 2

NX
i,j,k=1

hri(s)rj (s)rk(s)[1 + γijk(s)]

× ln

½ hri(s 0)rj (s 0)rk(s 0)is 0 [1 + γijk(s)]

hri(s 0)rj (s 0)rk(s 0)[1 + γijk(s 0)]is 0

¾À
s

. (12)

The extra term reads as

Icor-ch,3 = − 1

2 ln 2

NX
i,j,k=1

hri(s)rj (s)rk(s)[1 + γijk(s)]

× ln

½
ri(s)rj (s) [1 + γij (s)]

hri(s 0)rj (s 0)[1 + γij (s 0)]is 0

¾À
s

. (13)

This Icor-ch,3 component can be consistently found when
higher-than-pairwise interactions are considered, and it de-
pends on lower-order noise correlations. We refer to Ap-
pendix C for details of the calculations of the third-order
terms. By extending the definitions for spike probabilities
and correlations for the higher-order components (see also
Appendix Cnth-order calculations), we can further infer the
dependency of this extra term in the general case of the nth
order, when n > 2. The nth-order Icor-ch component from the
series expansion, which we present here just for the sake of
completeness, can be written as

Icor-ch,n = − 1

n! ln 2

NX
i1,...,in=1

hri1 (s) · · · rin(s)

× £
1 + γi1,...,in (s)

¤ n−1X
m=2

µ
n

m

¶

× ln

½
ri1 (s) · · · rim (s)

£
1 + γi1,...,im (s)

¤
hri1 (s 0) · · · rim (s 0)

£
1 + γi1,...,im (s 0)

¤is 0

¾À
s

,

(14)

where γi1,...,im is the mth-order noise correlation coefficient. We
refer to Appendix C for further details of the information series
expansion and explanations of how the previous equations
were obtained.

In the following, we discuss the meaning of the term
Icor-ch,3 when just pairwise correlations are specified. Let
us consider the case of three neurons with four different
scenarios. Figure 1(a) illustrates the case in which the three
neurons do not share common inputs, but there might still be
coincidences between spikes across pairs of neurons (marked
in yellow/light gray). In Fig. 1(b), just two neurons share
common inputs, and thus there exists pairwise correlation
(marked in red/dark gray). Note that in this case, there could be
coincidences between spikes among triplets of neurons as two
neurons are correlated and the third one correlates by chance
to this pair. Figure 1(c) depicts the case in which all three
neurons share pairwise inputs, and coincidence triplets are
more likely to be produced than in Fig. 1(b). Finally, Fig. 1(d)
illustrates the case in which the neurons share pairwise and
triplewise inputs, respectively denoted in red (dark gray)
and green (dashed gray line). Nevertheless, pairwise and
triplewise correlations might appear by chance. Thus, the
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FIG. 1. Scheme of three interacting neurons. (a)–(d) Four charac-
teristic cases described in the text. Note that pairwise and triplewise
inputs are represented in red (dark gray) and green (dashed gray line),
respectively. Correlations by chance are marked in yellow (light gray).

apparent differences between these two populations are not
captured by mere pairwise correlations and even if we were
just considering the case in which a population of neurons has
just pairwise, common inputs, there might also be triplewise
correlations by chance, as previously conveyed. If such
were the case, we would need the term Icor-ch,3, which
quantifies the amount of information provided by mixture
of real pairwise and triplewise correlations by chance. Next
we discuss how accounting for the Icor-ch,3 term in the series
expansion can change the synergy or redundancy scenario
when considering a population of neurons.

IV. SYNERGISTIC AND REDUNDANT CODING
IN HIGHER-ORDER TERMS

To further study how HOCs may contribute to information
processing in the brain, we need to evaluate how the Icor-ch,3

component in each higher-order term shapes coding when
considering that neurons are interacting with each other in a
population. As already explained in [42], the series expansion
shows that overall correlations in the distribution of mean
responses alone, i.e., signal correlations, can only lead to
redundancy. To achieve a synergistic coding of information,
correlations in the variability of the responses (or noise
correlations) are needed. It can be proved that even when
the latter are independent of the stimuli, it is still possible
to have synergy by taking into consideration the sign of the
Shannon redundancy (obtained from Eq. (1) by subtracting the
information conveyed by the population from the sum of that
carried by each single cell [42]).

When correlations are taken to be independent of the chosen
stimulus, i.e., γ (r|s) = γ (r), it is possible to quantitatively
derive the values of γ and ν for which the system is
redundant or synergistic. That is, in the following paragraphs

we define a measure ISRL that allows us to define the different
scenarios of redundancy or synergy when considering third-
order contributions.

We consider a triplet of neurons, in which the noise corre-
lation is taken to be stimulus independent, i.e., γ123(s) = γ123.
In this framework, it is possible to analytically calculate the
curves (γ123, ν123) for which the mutual information changes
signs. To this end, let us consider first I3 = 0, as it constitutes
the value for which third-order contributions change from
synergistic to redundant and vice versa (I3 > 0 contribute
synergistically and I3 < 0 redundantly, respectively). Thus,
in this first case (I3 = 0),

0 = hr1(s)ishr2(s)ishr3(s)is
·
ν123 + (1 + ν123)

× ln

µ
1

1 + ν123

¶¸
+ hr1(s)r2(s)r3(s)isγ123

× ln

µ
1

1 + ν123

¶
+ 0 + hr1(s)r2(s)r3(s)

× [1 + γ123] ln

·
r1(s)r2(s)

hr1(s 0)r2(s 0)is 0

r1(s)r3(s)

hr1(s 0)r3(s 0)is 0

× r2(s)r3(s)

hr2(s 0)r3(s 0)is 0

¸À
s

. (15)

As expected, when correlations are taken to be independent
of the chosen stimulus, Icor-dep,3 becomes zero under this
assumption. However, the other terms remain relevant (see
Sec. II). After some algebra,

γ123 =
ν123

1+ν123
− [ln(1 + ν123) + f (r)]

[ln(1 + ν123) + f (r)]
, (16)

where we define the function f (r) as

f (r) = f (r1(s),r2(s),r3(s)).

= 1

hr1(s)r2(s)r3(s)is hr1(s)r2(s)r3(s)

× ln

·
r1(s)r2(s)

hr1(s 0)r2(s 0)is 0

r1(s)r3(s)

hr1(s 0)r3(s 0)is 0

× r2(s)r3(s)

hr2(s 0)r3(s 0)is 0

¸À
s

, (17)

where f (r) is a normalized average of the product of the triplet
of neuron’s firing rates weighted on the natural logarithm of
the product of the normalized pairwise firing rates [50]. Notice
that if pairs of neurons do not code for the stimuli, then f (r) is
null. Thus, we study in the following the sign of the third-order
information components in the regions delimited by the curves
determined by Eq. (16). Let us now consider the case I3 6= 0.
If I3 is positive, then its contribution is synergistic; otherwise,
when I3 is negative, it is redundant. We then estimate the
synergy contribution of the triplets as ISRL = I − (Ilin + I2),
which is calculated as the total mutual information I [Eq. (9)]
minus the linear sum of the information conveyed by each
individual cell (Ilin) and minus the pairwise contributions to the
information I2, considering just three neurons and imposing
the constraint that all correlations are taken to be independent
of the chosen stimulus. After some algebra, the synergy ISRL
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FIG. 2. ISRL (bits) versus triplewise noise correlation γ123 versus
triplewise signal correlation ν123. The consideration of a triplet of
neurons, in which the noise correlation is taken to be stimulus
independent, illustrates the range of possible dynamics when f (r)=0
(or Icor-ch,3 = 0). (a) Regions with the positive values of ISRL

that correspond to synergy and negative values that correspond to
redundancy (taking the plane γ123 versus ν123). (b) The 3D plot of
ISRL versus γ123 versus ν123 corresponding to the above plane. As
expected, values above the zero axis indicate synergistic encoding,
while values below zero indicate redundancy.

reads as

ISRL = hr1(s)ishr2(s)ishr3(s)is{ν123

− (1 + ν123)(1 + γ123)[ln(1 + ν123)

+ f (r1(s),r2(s),r3(s))]}. (18)

If ISRL is positive, then, as expected, the contribution of the
triplets to the code is said to be synergistic; on the contrary,
when ISRL is negative, it is redundant. If this quantity is
zero, then the code is, at most, nonlinear at a pairwise level.
Note in Eq. (18) that the factor outside the braces given
by hr1(s)ishr2(s)ishr3(s)is is strictly positive as it depends
exclusively on the mean firing rates of the neurons considered.

Figures 2 to 4 illustrate the different coding regimes for
the third-order term in a three-cell example, when analyzing
ISRL versus γ123 versus ν123. When the Icor-ch,3 term is zero,
then the analysis is the same as in [42] for the two-cell
example when just considering pairwise correlations, and
which corresponds to Figs. 2(a) and 2(b). That is to say,
from the results shown in Figs 2(a) and 2(b) we have taken

FIG. 3. ISRL (bits) versus triplewise noise correlation γ123 versus
triplewise signal correlation ν123. Same as in Figs. 2(a) and 2(b) but
considering f (r) > 0 (then Icor-ch,3 6= 0).

f (r) = 0, and in this case when considering triplewise noise
correlation γ123 versus triplewise signal correlation ν123, the
zones of redundancy and synergy are exactly the same as
the one shown in the case of pure pairwise correlations [42].
Thus, in such a scenario, when f (r) = 0, the zones of synergy
and redundancy are defined just by pairwise correlations as
in [42]. If the mean responses of each neuron to the various
stimuli are uncorrelated, ν123 = 0, then (independently of the
value of the noise correlation γ123) the redundancy is exactly
zero, as shown along the vertical axis line of Fig. 2(a) [see
also the dashed line parallel to the γ123 axis in Fig. 2(b)].
If the cells anticovary in their response profiles to stimuli,
then, to obtain synergy, they must have a positive-valued noise
correlation above the boundary established. On the contrary, if
the cells do have positive signal correlation, then coincidences
must be actively suppressed by a negative noise correlation
stronger than the corresponding boundary value. When the
signal and noise correlations have the same sign, one always
obtains redundancy in the short time scale limit. Figure 2(b)
shows, in addition to this, that the gradient of the amount of
redundancy or synergy becomes steeper with respect to noise
correlation as the signal correlation increases, in comparison
to the lack of variability when the signal correlation is small
regardless of the value of the noise correlation. When the
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FIG. 4. ISRL (bits) versus triplewise noise correlation γ123 versus
triplewise signal correlation ν123. Same as in Figs. 2(a) and 2(b) but
considering f (r) < 0 (then Icor-ch,3 6= 0).

neurons covary in the mean number of spikes they fire to each
stimulus, all else being equal, we have a redundant situation.
However, if there is enough anticorrelation in the noise, or vice
versa there is anticorrelation in the signal and enough positive
correlation in the noise, then the coding becomes synergistic.

However, when the Icor-ch,3 term is nonzero (either pos-
itive or negative), there is a substantial modification in the
correlational dynamics. Analytically, we find that this change
depends on the value of f (r), a function that solely depends on
the average firing rates of the three neurons in question. Even
when its value is small, it has great impact on the interplay
of the noise and signal correlations. On the one hand, as
can be seen in Figs. 3(a) and 3(b), when f (r) is positive,
then the redundancy region is greatly increased for expected
values of correlations. Still, it is possible to achieve synergy for
positive signal correlation and negative noise correlation below
a certain threshold. On the other hand, when f (r) is negative,
as shown in Figs. 4(a) and 4(b), then small correlations of any
sign lead to synergy, whereas it is possible to have a redundant
code surpassing a threshold for signal and noise correlations of
opposite signs. For both cases, the total amount of redundancy
or synergy is much more sensitive to variation when both noise
and signal correlations are high. It is important to remark that in
both cases presented in Figs. 3, 4(a), and 4(b), when f (r) 6= 0
(Icor-ch,3 6= 0), triplewise correlations completely redefine the
possible scenarios of synergy and redundancy.

There is evidence that cooperative computation charac-
terizes neuronal interactions on various time and spatial
scales [51–54]. Direct evidence shows that pairwise neu-
ronal correlation analysis does not resolve such cooperative
population dynamics [14–21,45,55]. We have shown the
existence of a mixed stimulus-dependent correlation term that
defines a new scenario when analyzing HOCs, putting in
evidence the limitations of only considering pairwise neuronal
correlation on spike trains in a three-neuron system. We used
an extension of the MI series expansion for short time scales
to explicitly estimate a mixed term between pairwise and
triplewise stimulus-dependent correlations through Icor-ch,3,
which greatly modifies the interplay between correlation in
the noise and correlation in the signal that could lead to either
redundancy or synergy depending on the firing rates averaged
over trials and stimuli.

V. VON MISES STIMULI AND INTEGRATE-AND-FIRE
NETWORK

A stochastic process that generates a sequence of events,
a spike train, for example, is said to be a Poisson process
if the probability of an event occurring at any given time is
independent of the immediately preceding event. Despite its
obvious limitations, the Poisson process has proven to provide
an extremely useful approximation of stochastic neuronal
firing of a neuronal population when properly extended.
The methodology we used to perform our computational
modeling of a small populations of correlated neurons is
similar to the one used in Ref. [56,57] and has been previously
applied in [3,4,11,41,42]. In the following, we consider an
inhomogeneous Poisson process, which produces variations
in the firing rate. In order to do so, the probability {P (ti)}
of having N spikes at a time window ti (the index i spans
from 1 to M , so that 0 6 t1 6 t2 6 · · · 6 tM 6 T ) is expressed
as [3,4,11,41,56,57]

P (ti) = [3θ (ti)]N

N !
exp [−3θ (ti)], (19)

where 3θ at a given ti is built by incorporating the different
stimulus conditions for a given time ti , which is defined as

3θ (ti) = [m + a exp(b{cos[(θ + ϕ) − θpref] − 1})]ti . (20)

That is, 3θ is the predicted function of the stimuli for a given
time ti . Note that the process is defined as nonhomogeneous
since the average rate of arrivals is allowed to vary with
time. For the computational model we chose values similar
to the ones adopted in [58]: m = 15, which is an offset;
a = 1.3 determines the height of the tuning curve; b = 3
determines the tuning bandwidth (quantified as the width of
tuning halfway between the minimum and maximum evoked
response); θpref = π

4 is the preferred orientation; and θ is the
stimulus orientation (spans from 0 to 2π ). The firing rate
modulations across neurons are produced by taking a von
Mises dependency [58] and by incorporating a phase shift
in the stimulus dependency ϕ = π

10 between the different
cells. In practice, this is made for each cell throughout the
random numbers chosen from the Poisson distribution with
parameter fed by 3(ti) at the given time ti . Thereafter,
considering different trails, we build the probabilities of having
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a particular response r conditional to stimulus s = θ . This
generates different inhomogeneous Poisson processes where
the correlation across neurons them are generated by the
different firing rate modulations as in [3,4,11,41]. The main
idea behind this computational modeling is that nearby neurons
share common inputs and have similar receptive fields (see,
for instance, [11]). Thus, it can be assumed that the firing
rate of each neuron approximately follows an inhomogeneous
Poisson statistics, and by taking a phase shift in the stimulus
dependency between each of the cells the rate modulations
are generated. This has experimental support as it has been
recently proved that the rate modulations can indeed increase
correlations across neurons [59].

In the following we consider the case shown in Fig. 1(d)
that illustrates the case in which three neurons share pairwise
and triplewise inputs. We carried out the computational
modeling described above with a set of two and three cells
with inhomogeneous Poisson firing, in which spikes are not
independent because of the rate modulation in their inputs
as in [3,4,11,41,56,57]. We consider three ensembles of pairs
of neurons given by the pairs {x1,x2}, {x1,x3}, and {x1,x3},
which have pairwise correlations due to rate modulations. This
is carried out by properly truncating the response space of
the ensemble {x1,x2,x3}. Finally, we consider the triplewise
correlations within {x1,x2,x3}, which are three cells generated
with inhomogeneous Poisson firing as described above. To
compute the degree of synergy in the population for a range of
time windows, we calculated a synergy index (which we call
the synergy fraction [11]) as

synergy fraction = 1 − Ilin

I
. (21)

Values higher than 0 indicate synergistic coding, whereas
values lower than 0 indicate redundancy. Note that as we
pointed out in Sec. IV if Icor-ch,3 6= 0, there is a substantial
modification in synergy and redundancy regions as triplewise
correlations change the dynamics compared with the case in
which just pure pairwise correlations are considered. Thus,
triplewise correlations in such case may lead to either synergy
or redundancy. Figure 5 shows the synergy fraction when
considering the inhomogeneous Poisson simulation with three
different cells as in Figs. 1(c) and 1(d), a time step of 1 ms,
1000 trials, and 100 different von Mises stimuli. In particular,
Fig. 5(a) shows that as the time window is increased, the
redundancy becomes larger when just pairwise correlations
in the neuronal ensemble {x1,x2}, {x2,x3}, and {x1,x3} are
considered. In this Fig. 5(a) we estimate the synergy fraction
when considering the kind of interaction shown in Fig. 1(c).
However, this is not the case when the effect of triplewise
correlations is also taken into account, as in Fig. 1(d). This
is illustrated in Fig. 5(b), where the effect of adding third-
order stimulus-dependent correlations increases the synergy
fraction as the time window becomes larger. This can be
explained by the fact that there is a significant amount of
stimulus-independent correlations at third order, as shown
in Fig. 5(c). This effect become more relevant as the time
window increases. Notice from Fig. 5(c) that Icor-ch,3 6= 0, and
thus when considering the interactions described in Fig. 1(d),
triplewise correlations become relevant. As we discussed at the
end of Sec. IV, the scenario of Icor-ch,3 6= 0 allows us to redefine
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FIG. 5. (a) Synergy fraction when considering just pairwise
correlations as in Fig. 1(c). The blue (gray) line shows the synergy
fraction using the total mutual information I obtained using the
series expansion, while the black line shows the one obtained using
the definition shown in Eq. (1). (b) Same as (a), but estimating the
synergy fraction when triplewise correlation terms are also included
as in Fig. 1(d). (c) Contributions of the stimulus-dependent correlation
components.

the “achievable regions” of synergy and/or redundancy when
compared with the case in which just pairwise correlations are
taken into account.
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In a biologically realistic neural network, it often takes
multiple inputs for a neuron to be able to propagate a signal.
A simple representation of this is to consider multiple input
signals connecting one neuron to the next, increasing or
decreasing the effect of single neuronal firing. This is achieved
by adjusting the connection weights between each neuron
and thus, in a computer simulation of a neural network, we
can mimic neural dynamics through a methodology known as
integrate-and-fire [60]. When the neuron membrane potential
reaches its threshold, it fires a spike and the signal is
transmitted to another neuron. Then, the propagated signal
could induce a spike in this new neuron. If the neuron does
not fire, its potential may be increased and when it receives
another input within a relatively short time window, it will be
more likely to reach the threshold and fire a spike.

To study the hypothesis of synergy and redundancy regimes
when correlations are independent of the chosen stimulus,
spike trains were simulated using a small, fully connected
network of integrate-and-fire neurons. In this model, neurons
were activated using brief initial random current inputs and
could continuously exhibit self-sustained activity [60,61]. De-
spite its simplicity, the integrate-and-fire model with balanced
excitation and inhibition can account for several aspects of
the firing statistics observed in the responses of neurons
across large regions of the cerebral cortex [60,61]. To test
our theoretical framework, we performed simulations using
the model previously explained to obtain numerical values for
the different variables compatible with the assumptions and
approximations made. It is important to point out that when
the Icor-ch,3 term is nonzero (either positive or negative), there is
a substantial modification in the correlational dynamics. This
alteration depends on the value of f (r), which is a function of
the firing rates of the three neurons in question. For a triplet of
neurons taken from the population, a redundant contribution
(ISRL < 0) was obtained with f (r) ≈ 0.24 and ν123 = 0.07,
with γ123 = 0.000 001 close to zero. The interplay between
correlation in the noise and correlation in the signal leads, in
this case, to redundancy as in Figs. 3(a) and 3(b).

VI. IZHIKEVICH SPIKING NETWORK

Neurons fire spikes when they are near a bifurcation from
resting to spiking activity, and it is the delicate balance between
noise, dynamic currents, and initial condition that determines
the phase diagram of neural activity. While there is a huge
number of possible ionic mechanisms of excitability and spike
generation, there are just four bifurcation mechanisms that can
result in such a transition. These bifurcations divide neurons
into four categories: integrators or resonators, monostable or
bistable [62]. Bifurcation methodologies [62] allow us to accu-
rately reproduce the biophysical properties of Hodgkin-Huxley
neuronal models by just taking a two-dimensional system of
ordinary differential equations and four different parameters.
This model is named “simple model of spiking neurons” [63],
and the system of ordinary differential equations reads

dv

dt
= 0.04v2 + 5v + 140u + ic, (22)

du

dt
= a(bv − u), (23)

with the auxiliary after-spike resetting

if v > +30 mV, then

½
v ← c,

u ← u + d,
(24)

where v is the membrane potential of the neuron and u is a
membrane recovery variable, which accounts for the activation
of K+ ionic currents and inactivation of Na+ ionic currents
and gives negative feedback to v. Thus, we are just considering
a two-dimensional system of ordinary differential equations of
two variables u and v, and all the known types of neurons can
be reproduced by taking different values of the four parameters
a, b, c, and d. After the spike reaches its apex at +30 mV (not
to be confused with the firing threshold), the membrane voltage
and the recovery variable are reset according to Eq. (24). The
variable ic is a noisy thalamic current of the model [63–65].

Summing up, each neuron can be described by a simple
spiking model that allows us to reproduce several of the
most fundamental neurocomputational features of biological
neurons [64]. Here we consider a network simulation model
in which the number for interconnected neurons is a param-
eter under control, and each neuron can be interconnected
randomly with two or more neurons [63–65]. The inhibitory
inputs hyperpolarize the potential and move it away from
the threshold. In contrast, excitatory inputs depolarize the
membrane potential (i.e., they bring it closer to the threshold).

We consider a network simulation that takes into account
cortical spiking neurons with axonal conduction delays and
spike-timing-dependent plasticity as a Hebbian synaptic learn-
ing rule. The magnitude of the synaptic weight between
presynaptic neurons depends on the timing of the spikes.
That is, the weight of the synaptic connection from the pre-
to postsynaptic neurons increases as 0.1 × exp −(t/t0) if the
postneuron fires after the presynaptic spike, where t0 = 20 ms
and t is the interspike interval. Otherwise, if the order of the
spikes is reversed, it decreases as 0.12 × exp (t/t0) [65]. Each
neuron in the network is described by the simple model of
spiking neurons of [63], which has been described above
in Eq. (22) to Eq. (24). We considered different stimulus
configurations by changing the parameter a that describes
the time scale of the recovery variable (we have always
taken values of a > 0). The parameter a describes the time
scale of the recovery variable u (smaller values result in
slower recovery). For the computational modeling we take
ten different stimuli s as ten different equispaced values of a

that span from 0.01 to 0.1 (a typical value is a = 0.02 [63]).
In order to perform our information theoretical estimation we
considered 10 000 trials and 10 different stimuli and performed
an average over a time window of 10 ms. Then on the basis
of the data generated by our computational model, we build
the probabilities of having a particular response r equal to 0
or 1 (where 0 denotes no spike events and 1 that a spike is
being fired in the considered time window) conditional to the
stimulus s described above.

Let us consider a network consisting of three neurons taking
into account two cases: one in which the neurons have just
pairwise common inputs in their excitatory synapsis (M = 2)
and the other with triplewise (M = 3) common inputs in
their excitatory synapsis. That is, Fig. 6 shows the different
stimulus-dependent correlation components considering these
two Hebbian networks in which the excitatory synapsis per
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FIG. 6. Izhikevich spiking network. Gray and black bars rep-
resent networks with pairwise and triplewise input connectivity,
respectively. Note that triplewise connectivity is reflected in a higher
amount of stimulus-dependent correlations, and Icor-ch,3 contributes
in either case with an important amount of information.

neuron is equal to M = 2 and M = 3, respectively. The
number of excitatory synapses per neuron is implemented
here in the same way as in Ref. [65], which is the standard
way of implementing this kind of modeling. We illustrate
how increasing the network input connectivity may affect the
stimulus-dependent correlation. Notice that Icor-ch,3 contributes
in both cases with an important amount of information. In
this case, the possible “chance” triplets of spikes that may
have arisen from second-order correlations would contribute
to an underestimation of information if they were not taken
into account. In the current model, the stimulus-dependent
correlations of second and third order increase the total amount
of information as the input connectivity becomes larger. Note
that triplewise connectivity is reflected in a higher amount of
stimulus-dependent correlations.

VII. DISCUSSION AND CONCLUSIONS

The emergent properties of any complex system cannot
be reduced, in general, to pairwise interactions [14–19,44].
Importantly, if triplet or higher-order correlations are present
in the data, they could not be visible, and they may just be
perceived as pairwise correlations [66]. Unlike other simpler
correlation measures, information has the unique advantage of
capturing all nonlinear dependencies of any statistical order
that may be present in the data. The simple comparison
between the information of an ensemble of neurons and the
sum of information provided by individual neurons combines
several forms of correlations [11,41]. It is therefore natural
to ask under what conditions groups of neurons represent
stimuli and direct behavior in either a synergistic, redundant,
or independent manner. In this sense, a crucial point in
understanding the representation of external stimuli by the
activity of a population of neurons is how the information
conveyed by individual cells combines together [42].

The main advantage of our current approach is that it allows
us to account for hidden variables dynamically linked together
that are not accessible to measure. They are expressed in our
numerical estimations through a mixed term of pairwise and
triplewise stimulus-dependent correlations by chance, Icor-ch,3.
We provide, for any order, the analytical estimation of the
correction that might be produced by hidden variables through
the novel term Icor-ch,3. Note that the series expansion approach
should not be applied to long poststimulus windows or
large populations. These limitations were previously explored
in [50], where the generality of this framework is challenged
even further. However, a powerful feature of our current
approach is that we are in absolute control of which correlation
order dominates the data and the proper quantification of the
possible stimulus-dependent correlations by chance through
Icor-ch,3.

We investigated the limitations of performing a pairwise
analysis, using an extension of the MI series expansion for
short time scales. Moreover, as it has been previously pointed
out by Martignon et al. [45], independent inputs can be such
that firing rates of individual neurons and pairwise correlations
may lead to triplewise correlations by chance. Thus, if we were
considering two populations of neurons, one with just pure
pairwise correlations and the other with pure pairwise corre-
lations as well but also with chance coincidence at triplewise
level, the differences between these two populations would
not be detected by a cross correlogram or even using standard
information breakdown methodologies [11,41,44,67–69]. It
is HOCs that determine whether coincident spikes of two
neurons are also coincident with the spikes of the third neuron
through the stimulus-dependent correlational component by
chance term, Icor-ch,3.

This paper was intended as a study of HOCs and not an
improved pairwise framework. In this sense, our work aims
to quantify the effect of chance correlations on information
processing in a population of neurons. We show that to properly
quantify pairwise correlations it is also necessary to account
for triplewise correlations, as the term Icor-ch,3 defines a new
scenario even if there is no impact from pure triplewise
interactions. More specifically, depending on the value of
f (r) (a function of the mean values of the firing rates of the
neurons considered, e.g., a triplet of cells), which is directly
related to the mixed stimulus-dependent correlation term (see
Sec. IV), when the Icor-ch,3 term is nonzero, there is a substantial
modification in the correlational dynamics. When this function
f (r) is positive, it results in a coding regime more similar to
the traditional intuition in which correlations tend to result
in redundancy and thus limit the number of neurons whose
output could usefully be combined to represent the stimulus
variable. On the contrary, if f (r) is negative, it leads to larger
regions of synergy in the plane noise versus signal correlations.
Importantly, when f (r) = 0, which means Icor-ch,3 = 0, the
regions of synergy and redundancy in the plane noise versus
signal correlations are qualitatively equivalent as the one
defined by pure pairwise correlations as in [42]. The present
study is the first attempt to provide an analytical expression to
quantify the mixed stimulus-dependent correlation by chance
involving an order higher than two neuronal interactions.
Our current study does not only rigorously demonstrate that
correlations do not imply redundancy, but also that HOCs
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could increase the amount of synergy. Moreover, using a
Poisson simulation with von Mises stimuli dependency, we
have shown that stimulus-dependent correlations should not
be neglected: The effect of stimulus-dependent correlations of
third order increases the synergy fraction. In addition, using
a spiking network simulation, we convey that the possible
“chance” triplets of spikes that may have arisen from second-
order correlations would contribute to an underestimation of
information if they were not taken into account and also that
an increase in the connectivity might be reflected in a higher
amount of stimulus-dependent correlations.

The possibility of synergy with correlations of order higher
than two is an important issue as they prove to be an
inherent property of cortical dynamics. The extension of
the information expansion we have introduced shows excess
synchrony that cannot be explained by simply considering up
to pairwise correlations, and HOCs redefine the boundaries
of the regions of synergy and redundancy. We have conveyed
this issue on a solid mathematical background, and, for short
time windows at third-order level, we have presented the exact
boundaries of the regions of synergy and redundancy. Thus, the
structure of higher-order interactions and their contributions to
cortical dynamics are still open to debate. Furthermore, if one
is interested in studying the interaction structure, the present
approach can be useful to reveal the underlying structure of
the neural cortex. As our results demonstrate that true pairwise
interactions can only be completely captured if potential
higher-order interactions are taken into account, our current
approach could also be a very useful complementary tool
to other large population methods [21,26,27] to quantify the
degree of synchronous activity in neuronal avalanches [70].
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APPENDIX A

A natural mathematical definition [30] for the normalized
cross-correlation strength of population response r (noise
correlation) is the following:

γ (r|s) =
(

P (r|s)
Pind(r|s) − 1 if Pind(r|s) 6= 0,

0 if Pind(r|s) = 0.
(A1)

The probability of independent population responses Pind(·)
can be obtained by taking the product of the probability
distributions of individual cells:

Pind(r|s) =
NY

i=1

P (ri |s). (A2)

Since γ (r|s) are response-dependent quantities, they have to
satisfy (for each stimulus s) a zero-sum constraint:X

r

Pind(r|s)γ (r|s) = 0. (A3)

This constraint stems directly from the normalization to one
of the response probabilities. We name Pind(r) = hPind(r|s)is .
The “signal similarity” coefficient (signal correlation) is
defined as

ν(r) =
(

Pind(r)QN
i=1 P (ri )

− 1 if
QN

i=1 P (ri) 6= 0,

0 if
QN

i=1 P (ri) = 0.
(A4)

It depends only on response probabilities of individual neurons
and, thus, satisfies a normalization condition similar to (A3),
as follows:

X
r

"
NY

i=1

P (ri)

#
ν(r) = 0. (A5)

As a ratio of the full and independent probabilities, they convey
how likely it would be to find correlated (in comparison to
independent) events in the ensemble. Despite being similarly
defined, the main difference between these two measures is
stimulus modulation.

APPENDIX B

The components of the exact information breakdown are
given below, as in [11,30]. The activity of C cells is observed
and each possible population response r is composed by
the individual cell responses r1, . . . ,rC . The total amount of
information that would be conveyed if all of the cells were
independent, Ilin, reads as

Ilin = 1

ln 2

X
c

X
rc

¿
P (rc|s) ln

P (rc|s)

P (rc)

À
s

. (B1)

Here sums are carried on for each cell c and each possible
response of such cell, since no further assumption was made
about the response probability. The signal similarity term,
Isig-sim, is given by

Isig-sim = 1

ln 2

X
r

"Y
c

P (rc)

#½
ν(r) + [1 + ν(r)]

× ln

·
1

1 + ν(r)

¸¾
. (B2)

The total amount of information attributable to the correlated
activity on the overall neural coding (Icor) is defined as Icor =
Icor-ind + Icor-dep, where the stimulus-independent component,
Icor-ind, reads as

Icor-ind =
X

r

hPind(r|s)γ (r|s)is log2

·
1

1 + ν(r)

¸
(B3)

and a stimulus-dependent component, Icor-dep, reads as

Icor-dep =
X

r

hPind(r|s)[1 + γ (r|s)]

× log2

½ hPind(r|s 0)is 0[1 + γ (r|s)]

hPind(r|s 0)[1 + γ (r|s 0)]is 0

¾À
s

. (B4)

APPENDIX C

The mutual information about the whole set of stimuli trans-
mitted by the population response [46,71,72] can alternatively
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be written to Eq. (1) as

I = H (r) − H (r|s), (C1)

where H (r) is the total response entropy

H (r) = −
X

r

P (r) log2 P (r) (C2)

and H (r|s) is the noise entropy that quantifies the variability
to repeated presentations of the same stimulus,

H (r|s) = −
X
s∈{s}

P (s)
X

r

P (r|s) log2 P (r|s). (C3)

Equations (3)–(5) are the main basis of the series expansion
approach [3,4,42]. For example, in the pairwise framework, the
probability of having no spike fired [3,4,42] reads as

P (0; s) = 1 −
NX

i=1

ri(s)t + 1

2

NX
i,j=1

ri(s)rj (s)[1 + γij (s)]t2

+O(t3), (C4)

and the probability P (ri ; s) of observing just one spike fired
by the cell i is [3,4,42]

P (ri ; s) = ri(s)t + ri(s)t2
NX

j=1

rj (s)[1 + γij (s)] +O(t3), (C5)

where N denotes the number of neurons. In this framework we
can write the probability of having two neurons (ri , rj ) firing
a pair of spikes as [3,4,42]

P (ri,rj ; s) = ri(s)rj (s)t2[1 + γij (s)] + O(t3), (C6)

where

γij (s) = ri(s)rj (s)

ri(s)rj (s)
− 1 (C7)

denotes the pairwise noise correlation. We use the overline
notation to denote the averaged quantities over trials and to
distinguish them from averages over stimuli. Pairwise signal
correlation is defined as (see [42])

νij = hri(s)rj (s)is
hri(s)ishrj (s)is − 1. (C8)

Note that we can extend the previous definitions for the nth
order of noise correlation as

γi1,...,in (s) = ri1 (s) · · · rn(s)

ri1 (s) · · · rn(s)
− 1. (C9)

Similarly, the nth order of signal correlation is given by

νi1,...,in = hri1 (s) · · · rn(s)is
hri1 (s)is · · · hrn(s)is − 1. (C10)

Considering this, the probability of having three neurons
firing (in the third order framework) is given by Eq. (6).
Moreover, the probability of having four neurons firing (up
to fourth order) is written as

P (ri,rj ,rk,rl ; s) = ri(s)rj (s)rk(s)rl(s)t4[1 + γijkl(s)]

+O(t5), (C11)

which is generalized for n neurons that fire n spikes simulta-
neously (in an nth-order framework) as

P (ri1 ,ri2 , . . . ,rin ; s) = ri1 (s) · · · rin(s)tn
£
1 + γi1,...,in (s)

¤
+O(tn+1). (C12)

The following additional assumptions are to be made to be
able to compute the series expansion: first, that the mutual
information is analytic in time and, second, that different
trials are random realizations of the same process. The
validity of these and previous assumptions has been examined
elsewhere [3,4,42,50]. Then the mutual information can be
expanded as a series of the poststimulus time window as in
Eq. (9). That is, we take advantage of the fact that the mutual
information can be estimated in terms of signal and noise
correlation contributions.

Summarizing, the information derivatives are
calculated in terms of the probabilities given by
Eqs. (C4), (C5), (C6), (6), (C11), and (C12) as
follows. First, one inserts the probabilities of
Eqs. (C4), (C5), (C6), (6), (C11), and (C12) into the
sum over responses in Eq. (1). Then, for each term of the sum
over responses, one uses the power expansion of the logarithm
as a function of t ,

log2(1 − tx) = − 1

ln 2

∞X
i=1

(tx)i

i
, (C13)

as in [3,42]. Finally, grouping together all the terms in the sum
which have the same power in t , and using Eq. (9), one obtains
the expressions for the information derivatives reported in this
paper and its encoding components of all orders.

As we mentioned in Sec. III the first and second orders
of the expansion were originally reported in [42]. Moreover,
the first order of the expansion (and also the first term
of the information breakdown) corresponds to Ilin; i.e., no
redundancy or synergy is considered. The second order,
the terms which have t2, is decomposed in the following
components (noted by 2 to distinguish them from higher-order
ones), as in [30]: Isig-sim,2, which takes into account redundancy
that can arise even in the absence of cross correlation; and the
two correlational terms, Icor-ind,2 and Icor-dep,2, which measure
the amount of information truly available from the pairwise
correlated activity of the whole population. Each component
expression in the series expansion up to second order is given
in the following equations:

I1 = Ilin. =
NX

i=1

¿
ri(s) log2

·
ri(s)

hri(s 0)is 0

¸À
s

. (C14)

At second order, the nonlinear contribution is

I2 = Isig-sim,2 + Icor-ind,2 + Icor-dep,2 (C15)
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in which

Isig-sim,2 = 1

2 ln 2

NX
i,j=1

hri(s)ishrj (s)is

×
·
νij + (1 + νij ) ln

µ
1

1 + νij

¶¸
, (C16)

Icor-ind,2 = 1

2 ln 2

NX
i,j=1

hri(s)rj (s)γij (s)is ln

µ
1

1 + νij

¶
,

(C17)

and

Icor-dep,2 = 1

2 ln 2

NX
i,j=1

hri(s)rj (s)[1 + γij (s)]

× ln

½ hri(s 0)rj (s 0)is 0 [1 + γij (s)]

hri(s 0)rj (s 0)[1 + γij (s 0)]is 0

¾À
s

, (C18)

The third-order terms are shown in Eqs. (10)–(13). In
the following we provide a detailed explanation of how to
perform the derivation of the third-order terms (I3) and the
terms displayed in Eqs. (10)–(13). Equation (6) represent
the probability of having three neurons firing (up to third
order in t), where the triplewise noise correlation and the
triplewise signal correlation are given by Eqs. (7) and (8),
respectively. Lower-order event (that is, one, two or zero
spikes) probabilities are defined by taking into account the
definitions of the pairwise correlation coefficients. In the
triplewise framework, the probability of having no spikes fired
reads as

P (0; s) = 1 −
NX

i=1

ri(s)t + 1

2

NX
i,j=1

ri(s)rj (s)[1 + γij (s)]t2

+ 5

6

NX
i,j,k=1

ri(s)rj (s)rk(s)[1 + γijk(s)]t3 + O(t4),

(C19)

the probability of observing just one spike fired by the cell i is

P (ri ; s) = ri(s)t − ri(s)
NX

j=1

rj (s)[1 + γij (s)]t2

− 1

2
ri(s)

NX
j,k=1

rj (s)rk(s)[1 + γijk(s)]t3 + O(t4),

(C20)

and the probability of having two neurons firing (labeled as i

and j ) is expressed as

P (ri,rj ; s) = ri(s)rj (s)[1 + γij (s)]t2 − ri(s)rj (s)

×
NX

k=1

rk(s){[1 + γijk(s)]}t3 + O(t4). (C21)

Note that N denotes the number of neurons. We put then
the probabilities defined in the triplewise framework by
Eqs. (C19), (C20), and (C21) and Eq. (6) into the sum over r in

Eq. (1). Additionally, for each term of such sum we consider
the power expansion of Eq. (C13) as a function of t . Gathering
together all the terms in the sum which have the same power
in t and using Eq. (9) for the third order, that is, the terms with
t3, one obtains

I3 = 1

6 ln 2

NX
i,j,k=1

hri(s)ishrj (s)ishrk(s)is

×
·
νijk + (1 + νijk) ln

µ
1

1 + νijk

¶¸

+hri(s)rj (s)rk(s)γijk(s)is ln

µ
1

1 + νijk

¶
+hri(s)rj (s)rk(s)[1 + γijk(s)]

× ln

½ hri(s 0)rj (s 0)rk(s 0)is 0 [1 + γijk(s)]

hri(s 0)rj (s 0)rk(s 0)[1 + γijk(s 0)]is 0

¾À
s

− 3hri(s)rj (s)rk(s)[1 + γijk(s)]

× ln

½
ri(s)rj (s) [1 + γij (s)]

hri(s 0)rj (s 0)[1 + γij (s 0)]is 0

¾À
s

. (C22)

Thus, at third order, the nonlinear contribution
is I3 = Isig-sim,3 + Icor-ind,3 + Icor-dep,3 + Icor-ch,3 (in analogy
to [3,4,30,42,50]). The signal similarity contribution, Isig-sim,3,
is specified by Eq. (10). The total amount of information
attributable to third-order correlated activity on the overall neu-
ral coding is given by the stimulus-independent contribution,
Icor-ind,3, and the stimulus-dependent correlation component,
Icor-dep,3. The extra term that takes into account “chance”
correlations is denoted as Icor-ch,3. Equations (11), (12),
and (13) are the expressions of Icor-ind,3, Icor-dep,3, and Icor-ch,3,
respectively.

For the sake of completeness, the fourth order of the
series expansion is given below. At fourth order, the nonlinear
contribution is

I4 = Isig-sim,4 + Icor-ind,4 + Icor-dep,4 + Icor-ch,4. (C23)

The signal similarity contribution, the stimulus-independent
correlation contribution, and the stimulus-dependent correla-
tion component are, respectively,

Isig-sim,4 = 1

24 ln 2

NX
i,j,k,l=1

hri(s)is · · · hrl(s)is

×
·
νijkl + (1 + νijkl) ln

µ
1

1 + νijkl

¶¸
, (C24)

Icor-ind,4 = 1

24 ln 2

NX
i,j,k,l=1

hri(s) · · · rl(s)γijkl(s)is

× ln

µ
1

1 + νijkl

¶
, (C25)

042303-13



LISANDRO MONTANGIE AND FERNANDO MONTANI PHYSICAL REVIEW E 94, 042303 (2016)

Icor-dep,4 = 1

24 ln 2

NX
i,j,k,l=1

hri(s) · · · rl(s)[1 + γijkl(s)]

× ln

½ hri(s 0) · · · rl(s 0)is 0[1 + γijkl(s)]

hri(s 0) · · · rl(s 0)[1 + γijkl(s 0)]is 0

¾À
s

.

(C26)

Finally, Icor-ch,4 reads as

Icor-ch,4 = − 1

24 ln 2

NX
i,j,k,l=1

hri(s) · · · rl(s)[1 + γijkl(s)]

×
½

6 ln

µ
ri(s)rj (s) [1 + γij (s)]

hri(s 0)rj (s 0)[1 + γij (s 0)]is 0

¶

+ 4 ln

µ
ri(s)rj (s)rk(s) [1 + γijk(s)]

hri(s 0)rj (s 0)rk(s 0)[1 + γijk(s 0)]is 0

¶¾À
s

.

(C27)

Extending these calculations to higher orders, we derive
the nth-order Icor-ch,n component of the series expansion of
Eq. (14). To illustrate the derivation of a general equation
for the correlation-dependent chance information term, the
nth-order contribution of the information series expansion is
specified in the following expressions. The signal similarity

contribution of such order reads as

Isig-sim,n = 1

n! ln 2

NX
i1,...,in=1

hri1 (s)is · · · rin(s)
®
s

×
·
νi1···in + ¡

1 + νi1,...,in

¢
ln

µ
1

1 + νi1,...,in

¶¸
.

(C28)

The stimulus-independent correlation contribution reads as

Icor-ind,n = 1

n! ln 2

NX
i1,...,in=1


ri1 (s) · · · rin(s)γi1,...,in (s)

®
s

× ln

µ
1

1 + νi1,...,in

¶
, (C29)

and the stimulus-dependent correlation component reads as

Icor-dep,n = 1

n! ln 2

NX
i1,··· ,in=1

hri1 (s) · · · rin(s)
£
1 + γi1,...,in (s)

¤

× ln

½ hri1 (s 0) · · · rin(s 0)is 0
£
1 + γi1,...,in(s)

¤

ri1 (s 0) · · · rin(s 0)

£
1 + γi1,...,in (s 0)

¤®
s 0

¾À
s

.

(C30)
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