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• Population of neurons has shown significant amount of higher-order correlations.
• We account for beyond second order inputs correlations seen by each neuron.
• We obtain an exact analytical expression for the joint distribution of firing.
• This method allows us to characterize higher-order correlations in a neuronal pool.
• Input nonlinearities can enhance coding performance by neural populations.
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a b s t r a c t

Recent experiments involving a relatively large population of neurons have shown a very
significant amount of higher-order correlations. However, little is known of how these
affect the integration and firing behavior of a population of neurons beyond the second
order statistics. To investigate how higher-order inputs statistics can shape beyond pair-
wise spike correlations and affect information coding in the brain, we consider a neuronal
pool where each neuron fires stochastically.We develop a simplemathematically tractable
model that makes it feasible to account for higher-order spike correlations in a neuronal
pool with highly interconnected common inputs beyond second order statistics. In our
model, correlations between neurons appear from q-Gaussian inputs into threshold neu-
rons. The approach constitutes the natural extension of the Dichotomized Gaussianmodel,
where the inputs to the model are just Gaussian distributed and therefore have no input
interactions beyond second order. We obtain an exact analytical expression for the joint
distribution of firing, quantifying the degree of higher-order spike correlations, truly em-
phasizing the functional aspects of higher-order statistics, aswe account for beyond second
order inputs correlations seen by each neuron within the pool. We determine how higher-
order correlations depend on the interaction structure of the input, showing that the joint
distribution of firing is skewed as the parameter q increases inducing larger excursions of
synchronized spikes. We show how input nonlinearities can shape higher-order correla-
tions and enhance coding performance by neural populations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Neurons in the cortex receive 3000–10,000 synaptic inputs, 85% of which are excitatory. Nearly half of the excitatory
inputs to any one neuron come from nearby neurons that fall within a cylinder of 100–200 µm radius, arranged as a col-
umn, sometimes termed a mini-column [1–4]. This suggests that cortical neurons receive abundant excitatory inputs and
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are embedded in a network of highly convergent signals. These networks have a recurrent nature, thus it is likely that those
neurons receive similar inputs and emit spikes under similar conditions. This means that the conditions that lead to a re-
sponse of any one neuron in the mini-column are likely to involve considerable activity from a large number of its inputs
beyond second order statistics. It is therefore reasonable to expect that many spike inputs will arrive in synchrony within a
very small time window.

The integration of features into gestalt entities [5–8] is one the most important challenges in cognition. It has been
proposed that correlated activity within themillisecond time rangemay be the signature of neuronal assembly formation. If
this is the case, it may be essential in the context of multiple object encoding. According to the temporal binding hypothesis
of von der Malsburg, cells belonging to the same assembly fire action potentials synchronously with a precision of a few
milliseconds, and cells belonging to different assemblies fire asynchronously. This hypothesis requires cortical neurons to
act as coincidence detectors [9–11]. In agreementwith the latter, themajor causes of correlated firing in neural networks are
common presynaptic input. Behavior then stems from the emergent properties of a large set of neurons with overlapping
neural circuits that share common dynamical inputs. A primary challenge in theoretical neuroscience is to gain further
understanding of circuit dynamics incorporating the neuronal activity at a variety of spatial and temporal scales. Moreover,
temporal dynamics and plasticity encode information about the outside world. Identification of relevant neural ensembles
underlying cognitive behavior thus requires new modeling techniques and theoretical frameworks. Approaches that may
help to link themultiple spatial, temporal, and organizational scales of neuronal assemblies could provide important insights
into the emergent properties of the neural network, as they may lead to new discoveries concerning neural circuitry that
could eventually shape the biophysical bases of behavior.

Information processing in the brain is usually encoded in the activity of large and highly interconnected neural popula-
tions. It has been proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies
and phase sequences. At short scales, it is expected that cell assemblies would affect information processing while at longer
scales they could shape behavior and perception. Neuronal cells synchronize through correlated input, and spike synchro-
nization between neurons emerges as a result of transient activity. Approaches using binary maximum entropy models at a
pairwise level have been developed considering a very large number of neurons on short time scales [12–14]. These models
can capture essential structures of the neural population activity, however, due to their pairwise nature their generality
has been subject to debate [15–17]. In particular, E. Ohiorhenuan and J. D. Victor have shown the importance of triplets of
spikes to characterize scale dependence in cortical networks [17,18]. That is to say, although models accounting for pair-
wise interactions have proved able to capture some of the most important features of population activity at the level of the
retina [12,13], pairwise models are not enough to provide reliable descriptions of neural systems in general, as experiments
considering a relatively large population of neurons have displayed a very significant amount of higher-order correlations
(‘HOCs’) [15–19].

More specifically, neurophysiological research has shown that pairwise models fail to explain the responses of spatially
localized triplets of cells [17–20], along with describing the activity of large neuronal populations responding to natural
stimuli [19]. Deviations from theMaximumEntropymodel indicate thatHOCs have to be taken into account formodeling the
population statistics [21–24]. Thus, the intricacy of the neurophysiological data highlights the need to develop a theoretical
framework accounting for the statistical complexity of synchronous activity patterns. Pattern probabilities for the so-called
Dichotomized Gaussian (‘DG’) model [20–24] were estimated using the cumulative distribution of multivariate Gaussians
showing high precision fitting of the experimental data.

In this paper, we provide a simplemathematically tractablemodel able to account for HOCs in the joint firing distribution
of a neuronal population. In our model, correlations between neurons arise from q-Gaussian inputs into threshold neurons.
It is therefore an extension of the DGmodel proposed by Amari [21], where the inputs to themodel are Gaussian distributed
and therefore have no interactions beyond second order. Our current theoretical formalism relies on recent progress made
on the Extended Central Limit Theorem (‘ECLT’), and thus using mathematical tools of non-extensive statistical mechanics
[25–33], we provide an approach that quantifies the degree of HOCs. We present the exact analytical solution of the joint
distribution of firing including neural correlation patterns of all orders across a population. That is, we estimate by means
of an analytically solvable model the amount of correlations of order higher than two in a neuronal pool through direct
application of a q-Gaussian distribution of common synaptic inputs providing the expression of the joint distribution, Tsallis
Relative Entropy and Fisher Information. We test the robustness of our approach using a set of simulated independent
and correlated neurons. Using our model, we investigate different analytical solutions when considering three typical
distributions: concentrated, widely spread, and bimodal. We study the emergent properties of the Fisher information
in a large neural population, and show their impact on the efficiency of population coding. Our approach allows us to
investigate how input nonlinearities can shape HOCs and improve information transmission. This could be a useful tool
for understanding how groups of neurons could integrate into unique functional cell assemblies.

2. Methodology

2.1. Higher order interactions in the pooled model

We represent the neuronal firing in a population of size N by a binary vector x = (x1, . . . , xN), where xi = 0 if neuron i
is silent in some time window1T and xi = 1 if it is firing a spike. We consider the probability distribution of those binary
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vectors, {P(x)} that consists of 2N probabilities

P(x) = Prob{x1 = i1, . . . , xN = iN} = Pi1...iN (1)

subject to the normalization
i1,...,iN=0,1

Pi1...iN = 1. (2)

Any such probability distribution can be unequivocally determined using a coordinate system. One possible coordinate
system is given by the set of 2N

− 1 marginal probability values [29,34]:

ηi = E[xi] = P{xi = 1}, i = 1, . . . ,N
ηij = E[xixj] = P{xi = xj = 1}, i < j
...

η123...N = E[x1 . . . xN ] = P{x1 = x2 = · · · = xN = 1}.

These are called the η-coordinates [29]. Moreover, provided P(x) ≠ 0, any such distribution can be expanded as in Ref. [34]

P(x) = exp


N
i=1

xiθi +

i<j

xixjθij + · · · + x1 . . . xNθ1...N − ψ


, (3)

where there are in total 2N
− 1 different θ correlation coefficients that can be used to determine univocally the probability

distribution. It is important to note that the estimation of all the parameters associated with HOCs suffers greatly from a
combinatorial explosion [35].

It is said that we reach the ‘thermodynamic limit’ when the number of particles being considered reaches the limit
N → ∞ and the volume of the system also grows in proportion to the number of particles. The thermodynamic limit is
asymptotically approximated in statistical mechanics using the Central Limit Theorem (‘CLT’) [36]. The CLT ensures that the
probability distribution function of any measurable quantity is a normal Gaussian distribution, provided that a sufficiently
large number of independent random variables with exactly the same mean and variance are being considered (see pages
324–330 [36]). Importantly, the CLT does not hold if correlations between random variables cannot be neglected.

In particular, the CLT has been used by Amari and colleagues [21] in order to obtain the DGmodel of correlated inputs to
estimate the joint probability distribution of firing in a neuronal pool, considering the limit of a very large number of neurons.
In their approach, pairwise correlations are quantified through the covariance ⟨uiuj⟩ of theweighted sumof Gaussian (due to
the CLT [21]) inputs ui and uj of two given pairs of neurons (i ≠ j, i = 1 . . .N and j = 1 . . .N) [21]. That is ui =

m
j=1wij −h,

wherewij is the connection weight from the jth input to the ith neuron (h = E[ui] denotes the mean).
However, in recent publications byMGell-Mann, C Tsallis, S Umarov, C Vignat, A Plastino (see: [26–28,32,33]), the CLT has

been generalized for the case when a systemwith weakly or strongly correlated random variables is being considered. They
have proved that if we gather a sufficiently large number of such systems together, the probability distributionwill converge
to a q-Gaussian distribution. This is in agreement with the theorems recently proved by Amari and Ohara [37], which allow
the introduction of the q-geometrical structure to any arbitrary family of probability distributions, and guarantee that the
family of all the probability distributions belongs to the q-exponential family of distributions.

We will use the ‘natural extension’ of the central limit theorem (ECLT) proposed in Ref. [26], which accounts for cases in
which correlations between randomvariables are non-negligible. This results in so-called q-Gaussians (instead of Gaussians)
as the probability density functions in the ECLT, as proved in Ref. [26]:

Gq(x) =



1 +

(1 − q)(−x2)
2

 1
1−q

if

1 +

(1 − q)(−x2)
2


> 0,

0 otherwise

(4)

where q is a (problem-dependent) positive real index. Notice that in the limit of q = 1 a normal Gaussian distribution is
recovered as limN→∞(1 +

1
N )

N
= e, which can be rewritten as limq→1(1 + (1 − q))

1
(1−q) = e. In other words, the CLT is

recovered as q → 1 [26–28,32,33].
Let us now consider, as in Refs. [21,35], the probability of exactly k = N · r (and thus r =

k
N , with r being the population

firing rate) neurons firing within a given time window1T across a population of N neurons. In the framework of the pooled
model we have that

Pr


r =

k
N


= Pr{x1 = x2 = · · · = xk = 1, xk+1 = · · · = xN = 0}, (5)

where neuron i is subject to a weighted sum of inputs ui, thus xi = 1 if and only if ui > 0 and xi = 0 if ui ≤ 0. Following [35],
the neuronal pool receives higher than pairwise-correlated common inputs s1, s2, . . . , sM , and ui isweighted by the common
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inputs ui =
M

j=1wijsj − h, where wij are randomly assigned connections weights. Considering that the ui are subject to a
q-Gaussian distribution (due to the ECLT [26–28,32,33])Nq(−h, 1), we define in analogy to Ref. [21] ui =

√
1 − α vi+

√
α ε−

h, for i = 1, . . . ,N . We takeα = Eq[uiuj] as a q-variance, h = Eq[ui] as the q-mean, and two independent q-Gaussian random
variables vi and ε subject to Nq(0, 1) (see Ref. [38] for a detailed description of q-Gaussian random variables).

The joint firing distribution can therefore be estimated using the saddle point approximation as in Ref. [35]:

Qq(r) =


1

r(1 − r)|z ′′
q (ε0)|

1
√
2π

exp

Nzq(ε0)−

ε0
2

2


, (6)

where zq(ε) = r log( Fq(ε)r )+(1−r) log(
1−Fq(ε)q

1−r ).Within the saddle point approximation [21,35,39]: ε0 = argmaxεϵR

zq(ε)


and dz(ε)

dε = 0. The solution is ε0 = F−1
q (r), which implies r = Fq(ε0), where r goes between [0, 1] and ε0 is defined for all real

numbers. Additionally, ε0 = F−1
q (r) depends on the degree of correlation of the network architecture, which is quantified

by q.
Notice that the functions Fq(ε) and zq(ε) are defined as in Ref. [35]:

Fq(ε) ≡ Pr (u > 0|ε) = Pr


ui >

h −
√
αε

√
1 − α


=

1
√
2π


∞

h−
√
αε

√
1−α

expq


−
v2

2


dv (7)

and

zq(ε) = r ln

Fq(ε)
r


+ (1 − r) ln


1 − Fq(ε)
1 − r


. (8)

After some algebra Eq. (7) reads as [35]:

Fq(ε) =
1

2
√
2π


q−1
2

B


1
1 + ξ0(ε)

;
1

q − 1
,
1
2


(9)

where B(.) is the Beta function and

ξ0(ε) =
(q − 1)(h −

√
αε)2

2(1 − α)
. (10)

If we consider the limit of the CLT framework (q = 1), Eq. (9) reduces to

Fq=1(ε) =
1
2
Erfc


1

√
2

h −
√
αε

√
1 − α


(11)

where Erfc(x) =
2

√
π


∞

x exp(−t2)dt denotes the complementary error function. However, if the effect of correlations of
order higher than two is not negligible, then, according to the ECLT, qmust be higher than 1 [35]. One can test for the presence
of HOCs by measuring the distribution of activity in multi-unit recordings and fitting q, which represents the amount of
higher-order correlations present in the distribution of firing. One can showby simple comparison how statistically different
from the q = 1 case the measured distribution is [35].

To this end, we consider the Kullback–Leibler divergence, which constitutes an Information Theory quantity and is a
measure of the ‘distance’ between two probability distributions:

D(P|P0) = P(x) log
P(x)
P0(x)

. (12)

A generalization of the Kullback–Leibler entropy, in the framework of the non-extensive thermodynamics, is the Tsallis
relative entropy or q-relative entropy that is better suited to deal with non-Gaussian distributions. The relative entropy is a
measure of the inefficiency of assuming that the distribution is P0 when the true distribution is P [40–42]:

Tq(P, P0) ≡


P(x)

[P(x)/P0(x)]1−q
− 1

1 − q
dx

=
1

q − 1


P(x)


P(x)
P0(x)

q−1

dx − 1



=
1

q − 1


P(x)qP0(x)1−qdx − 1


. (13)
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Ameasure that is also particularly interesting in this context to test the applicability of Eq. (6), since itwas used in Ref. [43]
to give an information theoretic proof of the CLT, is the Fisher information I . This quantity [44,45] constitutes a measure of
the gradient content of a distribution P(x):

I(P) =


|∇⃗P(x)|2

P(x)
dr, (14)

and it is therefore quite sensitive even to small localized perturbations. The Fisher information can be variously interpreted
as a scope of the ability to estimate a parameter, as the amount of information that can be extracted from a set of measure-
ments, and also as a measure of the state of disorder of a system or phenomenon [45,46], its foremost property being the
so-called Cramer–Rao bound. It is important to remark that the gradient operator significantly influences the contribution
of minute local p-variations to the Fisher information value, so that the quantifier is referred as a ‘local’ one. Local sensitivity
is useful in scenarios whose description needs to appeal to a notion of ‘order’ [47–49]. Fisher information is also useful for
detecting dynamical changes in a probability density function (i.e. a sharper probability distribution function would tend to
have higher Fisher information than a more widespread probability density function).

In the next section, we explicitly estimate the exact analytical expression of the probability distribution of firing extend-
ing the current formalism by means of our mathematically tractable model. We then investigate the analytical solutions of
three most representative types of joint firing distributions: concentrated, widely spread, and bimodal. Then, we show the
robustness of our method using two simulated set of neurons: the first one assuming independence across the cells and the
second considering a set of correlated neurons as random binary vectors with specified correlations generated using the
DG distribution [21–23]. Finally, we calculate the Tsallis relative entropy and Fisher information investigating the emergent
properties of the system as the correlation degree q increases.

3. Results

Understanding brain functions requires interdisciplinary approaches involving many levels of study: from the molecu-
lar level through the cellular level (individual neurons), to the level of relatively small assemblies of neurons (for example,
cortical columns); to the case of larger subsystems, as the one which subserves visual perception, and up to the level of
large systems, including the cerebral cortex, the cerebellum and to nervous system as a whole. Theoretical neuroscience
encompasses approaches ranging all levels, and together with mathematical modeling they are important tools for charac-
terizing what nervous systems do, determining how they function and understanding why they operate in particular ways.
Neurons interact through different dynamical pathways in the complex architecture of the brain connectivity. It may not be
preposterous therefore to think of synchrony as a mechanism for reliable signal transmission that extracts HOCs as a gestalt
rather than as an active binding mechanism that represents a secondary code to link a system of simple feature extraction.
When considering high-dimensional data of large number of cells the joint distribution of firing accounts for the common
overlapping inputs that neurons receive due to the network interactions. In the following, wewill obtain the exact analytical
expression of this distribution accounting for HOCs of all orders. In order to do so, let us first take the derivative of Fq(ε)
with respect to ε. Using the chain rule for the derivative, we can write

F ′

q(ε) =
1

2
√
2π


q−1
2

dB


1
1+ξ0(ε)

;
1

q−1 ,
1
2


d


1

1+ξ0(ε)

 d


1
1+ξ0(ε)


dε

. (15)

Considering that

d
dz

B (z; a, b) = (1 − z)b−1za−1, (16)

then

dB


1
1+ξ0(ε)

;
1

q−1 ,
1
2


d


1

1+ξ0(ε)

 =


1 −

1
1 + ξ0(ε)

−
1
2


1
1 + ξ0(ε)


1

q−1 −1


(17)

and

d


1
1+ξ0(ε)


dε

=
(q − 1)

√
α

(1 − α)

(h −
√
αε)

[1 + ξ0(ε)]2
. (18)

Thus we can rewrite

F ′

q(ε) =
1

√
2π


α

1 − α
[1 + ξ0(ε)]


q−2
q−1 −

3
2


. (19)



L. Montangie, F. Montani / Physica A 421 (2015) 388–400 393

Taking the first derivative of zq(ε)with respect to ε,

z ′

q(ε) =


r

Fq(ε)
−

1 − r
1 − Fq(ε)


(20)

and the second derivative we obtain

z ′′

q (ϵ) = −


r

F 2
q (ϵ)

+
1 − r

1 − Fq(ε)
2

 
F ′

q(ε)
2

+


r

Fq(ε)
−

1 − r
1 − Fq(ε)


F ′′

q (ε). (21)

As we are working within the saddle-point approximation [21,35,39], one can define a parameter ε0 that maximizes
zq(ε), and thus [35],

ε = ε0 H⇒ z ′

q(ε0) = 0 ∧ Fq(ε0) = r. (22)

Then,

z ′′

q (ε0) = −


1
r

−
1

1 − r

 
F ′

q(ε0)
2

= −
1

r(1 − r)
α

2π(1 − α)
[1 + ξ0(ε0)]


2

q−2
q−1


−3


. (23)

The joint firing distribution can therefore be calculated as

Qq(r) ≃


1 − α

α


expq


−
(h −

√
αF−1

q (r))2

2(1 − α)

−
(q+1)

2

exp


−
(F−1

q (r))2

2


, (24)

where

F−1
q (r) =

1
√
α


h −


2(1 − α)

q − 1


B−1
inverse


r;

1
q − 1

,
1
2


− 1


. (25)

Finally,

Qq(r) ≃


1 − α

α


Binverse


r;

1
q − 1

,
1
2

−
(q+1)
2(q−1)

exp


−
(F−1

q (r))2

2


. (26)

Equivalently, the equation above can be expressed in terms of q-exponentials as

Qq(r) ≃


1 − α

α


expq


B−1
inverse


r;

1
q − 1

,
1
2


− 1

−
(q+1)

2

· exp


−

1
2α


h −


2(1 − α)

q − 1


B−1
inverse


r;

1
q − 1

,
1
2


− 1


. (27)

In the limit of q → 1,

lim
q→1

Qq(r) =


1 − α

α
lim
q→1


expq


−
(h −

√
αF−1

q (r))2

2(1 − α)

−
(q+1)

2

· exp


−
(F−1

q (r))2

2


, (28)

considering

lim
q→1

F−1
q (r) = F−1(r) (29)

and

lim
q→1

expq(x) = exp(x) (30)

we obtain

lim
q→1

Qq(r) =


1 − α

α
exp


(h −

√
αF−1(r))2

2(1 − α)
−
(F−1(r))2

2


= Q1(r), (31)

which is in agreement with the findings of Amari et al. [21].
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Thus, by means of an analytical model we can test for the presence of HOCs by measuring the distribution of activity,
and then fitting q. When the correlations in the common presynaptic input are just pairwise, q tends to 1 and the expres-
sion reduces to the standard Amari’s Eq. (31) formula. However, when the correlations in a system are strong, q becomes
greater than 1 to ‘bias’ the probabilities of certain microstates occurring, accounting therefore for HOCs in Eq. (27). That is,
the parameter q, is therefore a way of characterizing the degree of correlation of the network architecture within Qq(r), and
particularly how strong they are. Thus, estimating the mean h and the variance α of a distribution and the degree of HOCs q
we can provide the joint probability distribution of firing Qq(r).

We compute the relative entropy using a Gaussian distribution as the reference probability density function. It is positive
for the case in which a probability distribution is described by an encoding optimal distribution Qq instead of the reference
distribution Q1. In the limit of q → 1, the Tsallis relative entropy becomes the Kullback–Leibler divergence. Both relative
entropies are not symmetric, i.e., Tq(Qq,Q1) ≠ Tq(Q1,Qq). This measure allows us to quantitatively compare the extended
activity distribution Qq with the reference one (Q1).

We calculate the analytical expression of the Fisher information for the extended joint probability distribution as

I(Qq) =

 1

0


∂Qq(r)
∂r

2

Qq(r)
dr

=

 1

0
Qq(r)

F−1
q (r)+

√
α(q + 1)

2(1 − α)

(h −
√
αF−1

q (r))
1 +

(q−1)
2(1−α)


h −

√
αF−1

q (r)
2


2 
∂F−1

q (r)

∂r

2

dr. (32)

Considering that the derivative of the Binverse (z; a, b) is

∂Binverse (z; a, b)
∂z

= (1 − Binverse (z; a, b))1−b Binverse (z; a, b)1−a B(a, b), (33)

we obtain, after some calculations,

I(Qq) =

 1

0


1 − α

α


1 − α

2α(q − 1)


B


1
q − 1

,
1
2

 
√
1 − β [β]


q−2
q−1


β3 − β4


·



(q + 1)2

2(q − 1)
α

(1 − α)
β(1 − β)+

1
√
α


h −


2(1 − α)

q − 1


β−1 − 1


2

·

expq


β−1

− 1
−

(q+1)
2 exp


−

1
2α


h −


2(1 − α)

q − 1


β−1 − 1


dr (34)

where β = Binverse


r; 1

q−1 ,
1
2


.

In the following, we provide analytical estimates of how the joint probability behaves for different sets of h, α and q.
We will consider three typical distributions as function of r: concentrated, widely spread, and bimodal. Fig. 1 shows a con-
centrated distribution. This concentration is caused by a very small amount of variance α = 0.01 and such peak is moved
towards a higher amount of synchronized neurons when q increases. Additionally, Fig. 2 shows a widely spread joint dis-
tribution considering α = 0.2. Notice that when q is increased the probability of having a higher amount of synchronized
spikes grows. As q grows the peak of the distribution moves to the right resulting in a larger number of synchronized neu-
rons. Finally, Fig. 3 shows a bimodal distribution considering α = 0.8. In such case the neurons fire synchronously at one
time and are quiescent at other times when q is close to 1. By adding more correlations through q, the quiescent proportion
of neurons become active leading to a larger amount of synchronized spikes at different times and at any correlation order.
This could reflect the impact of noise correlation in the brain, and it provides us with an important feedback: small, perhaps
undetectable, higher-order input correlations may have an important effect at the population level. Thus, our analytical ex-
pression allows us to assess how HOCs depend on the interaction structure of the input showing that the joint distribution
of firing rates is more skewed as q becomes greater, inducing large excursions of synchronized spikes.

Let us now consider a population of simulated correlated binary spike trains using themodel ofMacke et al. [22,23]where
the inputs are modeled by a correlated Gaussian with mean γ and covarianceΛ, which are chosen such that the outputs x
have mean µ, covariance σ and a correlation coefficient ρ = σ/[µ(1 − µ)] [22,23]. Here, a neuron is said to spike (xi = 1)
if its input is positive, and to be silent (xi = 0) otherwise. By symmetry, all activity patterns with the same number of spikes
are equally likely, and thus the model is fully specified by the distribution over spike counts Nsp =


i xi. The independent

distribution of firing is generated by assuming that P(x) =


i P(xi = 1). Fig. 4 shows the joint probability distribution, con-
sidering the previous model with a correlation coefficient ρ = 0.2852 and the independent case ρ = 0. That is, we use the
estimated q and the parameters α and h that give the best fit for Eq. (27). The optimization fitting criterion is the normalized
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Fig. 1. Concentrated distribution of firing Qq(r) for various q, with fixed α = 0.01 and h = 0.4. The peaks are moved towards a higher amount of
synchronized neurons when q increases.

Fig. 2. Widely spread joint distribution of firing rates Qq(r) for various q, with fixed α = 0.2 and h = 0.4. The peaks of the distribution moves to the right
as q increases resulting in a larger number of synchronized neurons.

mean squared error (NMSE), and the default error value is lower than 0.05 (p-value < 0.05). We then fit the parameter q to
find the best-fitting function Qq(r) in Eq. (27). The DG distribution with ρ = 0.2852 corresponds to a value of q = 1.3788,
and if we test the hypothesis of absence of correlations with ρ = 0, the best fitting distribution Qq(r) corresponds to q = 1
with a quite small α = 0.019. Thus, in this case, the pairwise model converges to the independent distribution.

Fig. 5 shows Tsallis relative entropy as a function of the correlation degree q. Notice that the function grows as the de-
gree of correlation becomes higher, quantifying the inefficiency of incorrectly assuming that the distribution is the one that
corresponds to Q1(r)when the true distribution is Qq(r). Meaning that the amount of information in a population cannot be
computed without knowing the correlational structure. If our system is in a very ordered state and thus is represented by
a very narrow probability density function, we have a maximal Fisher information measure. On the other hand, when the
system under study lies in a very disordered state one gets an almost flat probability density function and Fisher information
is closer to zero [50]. In the following, we take advantage of our proposed analytical solution for the joint probability distri-
bution considering neural firing correlation of all orders to investigate how information behaves as noise correlation grows.
Fig. 6 corresponds to a plot of Fisher information versus q. We show that it is possible to quantify the optimal amount of q
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Fig. 3. Bimodal joint distribution Qq(r) for various q, with fixed α = 0.8 and h = 0.4. By adding more correlations through q the quiescent proportion of
neurons become active leading to a larger amount of synchronized neurons.

Fig. 4. Normalized joint firing distribution Qq(r), considering a model binary neural population patterns using simulated firing pattern based on a DG
distribution. Correlated neurons correspond to the black squares joined by dashed lines: ρ = 0.2852 and q = 1.3788 (α = 0.48); Independent case, gray
circles joined by dashed lines, ρ = 0 and q = 1 (α = 0.019).

that maximizes information. Coding performance could be improved by shaping the output via input HOCs and their non-
linearities. Moreover, information saturates as the level of noise correlations increases. This is in agreementwith the general
intuition needed to understand how correlations may affect information in a population code: for positive correlations, in-
formation saturates as the number of correlated neurons increases and they have a large effect at the population level [51].

4. Discussion and conclusions

The brain is a dynamical system whose state variables encode information about the external world. Thus, the central
assumption of theoretical neuroscience is that the brain computes; in short, computation equals coding plus dynamics. The
detection of subtle changes in brain activity is therefore of importance to investigate the dynamics of functional interactions
across neurons. Some neuroscientists attempt to characterize how these dynamical variables evolvewith time. Others study
the way that information is encoded in neural activity and diverse dynamical variables of the brain. However, building an
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Fig. 5. Tsallis relative entropy of the Gaussian model Q1(r) and the extended model Qq(r) vs q, for various α and h = 0.4.

Fig. 6. Fisher information versus q. Coding performance can be improved by shaping the output via input higher-order correlations and their nonlinearities
throughout q.

appropriate methodological approach to describe the collective activity of neural populations is a very difficult task. In par-
ticular, maximum entropy models have been used in the literature to investigate pairwise correlations in neural population
activity [12,13]. But deviations from this model indicate that HOCs have to be taken into account for realistically modeling
the population statistics [24].

Recent neurophysiological experimentswith large neural populations show significant HOCs [17–20,24]. Statisticalmod-
eling on biologically inspired neural populations is important for inferring the function of complex neural circuits. Under-
standing how neurons process and integrate their input signals requires describing their cooperative action, instead of look-
ing at individual elements. It has been proposed that HOCs allow a decoder to recover the stimulus presented to a neural
population much faster than a decoder with access only to pairwise statistics. Several studies have revealed that neurons
are indeed very sensitive to the higher-order structure in their input [52–55]. However, theoretical research have mostly
focused on the second order statistical features of the input spike trains [21–23]. These properties substantially shape the
output response of each neuron, but little is known of how HOCs affect the integration and firing behavior of a cell indepen-
dently of the second order statistics.
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The DG model based on the Amari [21] paper, has been extensively used by Macke et al. [22,23] to construct quanti-
tative predictions on how departures from pairwise models depend on common Gaussian like neuronal inputs. They have
shown that common pairwise inputs could be used to explain HOCs in neural population activity. Although the inputs to the
model are Gaussian distributed and therefore have no interactions beyond second order, the nonlinear spiking thresholds
may give rise to statistical interactions of all orders. Importantly, the DG approach has been developedwithin the CLT frame-
work, which ensures that the probability distribution function of anymeasurable quantity is a normal Gaussian distribution,
provided that a sufficiently large number of independent random variables with exactly the same mean and variance are
being considered [36]. Importantly, the CLT does not hold if correlations between random variables cannot be neglected.
More in detail, the CLT has been used within the DG model proposed by Amari and colleagues [21] to estimate the joint
probability distribution of firing in a neuronal pool considering the limit of a very large number of neurons. Thus, in their
approach, pairwise correlations are quantified through the covariance of the weighted sum of inputs of two given pairs of
neurons [21], this sum being considered Gaussian due to the CLT.

However, information in neural populations is often encoded in the activity of large, highly interconnected neural pop-
ulations. But higher-order statistics can also be shaped and modulated by higher-order input statistics and their intrinsic
circuit mechanisms [17–20,24]. In order to account for higher-order statistics within the neuronal inputs, we take advan-
tage in this paper of recent mathematical progress on q-geometry in the asymptotic limit [26–28,32,33,37]. That is, we have
considered that each neuron is subject to a weighted sum of inputs, and thus the neuronal population receives common
inputs, which are q-Gaussian due of the ECLT [26–28,32,33]. We identify beyond pairwise inputs across neurons as the bio-
physical mechanisms that generate HOCs within the joint distribution. We provide the exact analytical expression of the
joint probability distribution proposed in Ref. [35]. Hence, we quantify the extent of higher than pairwise spike correlations
in pools of neural activity by means of an analytical solvable model showing that small, perhaps undetectable, higher-order
input correlations may well have an important effect at the population level. The main advantage of our analytical method-
ology is that, by extending the theoretical framework of Amari et al. [21] to the ECLT, we are able to quantify the amount of
correlations that come up from higher-order interconnectivity of the common overlapping neuronal inputs. In this manner,
using our analytical expression and measuring the population activity distribution as a function of the normalized firing
rate, we can then quantify the amount of correlation higher than two present in the neuronal data. Accounting for HOCs
within the common neuronal inputs through the ECLT, allows us to characterize the degree of correlation in the joint dis-
tribution avoiding performing the comparison of how far the DG approach deviates from the maximum entropy pairwise
estimations [21–23]. More importantly, our approach converges to the DG approach of Amari and collaborators when we
consider the limit of the CLT framework (q = 1). Providing the exact analytical expression of a generalized joint distribution
of firing rates within the ECLT allows us to show how HOCs can improve information coding performance in large neural
populations. We can therefore infer the emergent properties of a neural population, showing how information saturates as
the degree of correlation q grows.

Themain basis of our formalism is that, when taking the limit of a very large number of neurons within the framework of
the CLT as in Ref. [21], we are losing information about HOCs. Thus, in a novel theoretical approach,we take the limit of a very
large number of neurons within the framework of the ECLT instead of the CLT. The inclusion of a deformation parameter q in
the ECLT framework allowsus to reproduce remarkablywell the experimental distribution of firing and to avoid the sampling
size problem of Eq. (3) due to the exponentially increasing number of parameters. We used the ECLT proposed in Ref. [26],
which accounts for cases inwhich correlations between random variables are non negligible. Themodel we developed using
an information geometric approach within the ECLT framework allows us to investigate how information might saturate as
the degree of correlation increases at population level. Our current approach truly emphasizes the functional aspects of
higher-order statistics, since we consider those inputs correlations seen by each neuron within the pool. We assessed how
HOCs depend on the interaction structure of the input, showing that the (output) joint firing distribution is skewed inducing
large excursions of synchronized spikes.We have shown through our formalism that coding performance could be improved
by shaping the output via higher-order input correlations, and that common input nonlinearities can shape HOCs improving
information transmission by neural populations.

Summing up, our approach could be of help to gain further insights into the role of HOCs in information transmission,
and constitutes an important mathematical tool to characterize the dynamics of very large populations, ideally of up to
several thousands of neurons,where the spike sortingmethodologies are useless. Interestingly, as stated by the cell assembly
hypothesis [56], neurons transiently synchronize in order to form elementary units of information processing. There are
strong experimental evidences to support the idea that synchronous firing of the cell assemblies is related to development
of memories and behavior [57–62]. It would be important therefore to apply our approach to evaluate the role of HOCs
within the framework of the complementary Hebbian hypothesis that relevant information about concepts, percepts and
behavior in general are encoded at the level ofmultiple assembly activations [56].Webelieve that thiswill become a relevant
analyticalmethod for future research on the encoding capacity of large neuronal population and to assist neurophysiologists
gain new insights into the neuronal interdependence in the cortex.
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