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Understanding the operations of neural networks in the brain requires an understanding
of whether interactions among neurons can be described by a pairwise interaction model,
or whether a higher order interaction model is needed. In this article we consider the
rate of synchronous discharge of a local population of neurons, a macroscopic index
of the activation of the neural network that can be measured experimentally. We
analyse a model based on physics’ maximum entropy principle that evaluates whether
the probability of synchronous discharge can be described by interactions up to any
given order. When compared with real neural population activity obtained from the rat
somatosensory cortex, the model shows that interactions of at least order three or four
are necessary to explain the data. We use Shannon information to compute the impact of
high-order correlations on the amount of somatosensory information transmitted by the
rate of synchronous discharge, and we find that correlations of higher order progressively
decrease the information available through the neural population. These results are
compatible with the hypothesis that high-order interactions play a role in shaping the
dynamics of neural networks, and that they should be taken into account when computing
the representational capacity of neural populations.
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1. Introduction

Simultaneous recordings of the activity of individual neurons placed within local
networks in the central nervous system show that a large fraction of pairs of
neurons are correlated. The probability of observing near-simultaneous spikes
from two different neurons is often significantly higher than the product of the
probability of observing the individual spikes from each neuron (Li 1959; Perkel &
Bullock 1969; Mastronarde 1983).

The ubiquitous presence of correlations among the activity of different neurons
has raised the question of what is the impact of correlation upon neural population
coding of sensory stimuli (see for recent reviews Salinas & Sejnowski 2001;
Averbeck et al. 2006). Although the potential role of correlations in neural
population codes is still unclear and robustly debated (Shadlen & Movshon 1999;
von der Malsburg 1999), theoretical studies have suggested that correlations can
profoundly affect the information transmitted by neural populations. On the
one hand, correlations may play a crucial and beneficial role in the neural code,
by increasing the information content of neural populations (Oram et al. 1998;
Abbott & Dayan 1999; Pola et al. 2003), by serving as a scheme for implementing
associations and binding of features (von der Malsburg 1999) or by implementing
strategies for error correction (Schneidman et al. 2006). On the other hand,
correlations may reflect correlated noise arising from the structure of cortical
circuits, and may act as a detrimental, limiting factor to the representational
capacity of neural populations (Zohary et al. 1994; Mazurek & Shadlen 2002).
Whether correlations give a positive or negative contribution depends on the
precise details of the correlational structure of neural activity (Oram et al. 1998;
Abbott & Dayan 1999; Pola et al. 2003). Determining the precise structure of
correlated activity is thus crucial for the progress of systems neuroscience.

A particularly important question about the structure of correlated activity
of large neural populations is whether it can be described by considering only
pairwise interactions, or if genuine high-order interactions between neurons are
present. The understanding of the role of high-order interactions is important for
several reasons. First, most studies of population codes are based on the recording
of neural pairs and of pairwise correlations (Panzeri et al. 1999; Nirenberg et al.
2001; Panzeri & Schultz 2001; Petersen et al. 2001; Montani et al. 2007). Pairwise
studies can only inform about the behaviour of large populations if higher
order interactions are absent. Second, the presence of high-order interactions
has implications on the understanding of the functional organization of neural
networks in the brain (Martignon et al. 2000), because high-order interactions
are compatible with information transmission by activation of tightly connected
cell assemblies (Harris 2005). Third, understanding which is the minimal order of
interaction sufficient to describe correlations among neurons is crucial to develop
simple but effective models of decoding of neural population activity (Nirenberg &
Victor 2007). This question is only now beginning to be addressed both at the
theoretical level (Bohte et al. 2000; Nakahara & Amari 2002; Amari et al. 2003)
and the experimental level (Schneidman et al. 2006; Shlens et al. 2006; Tang et al.
2008).

In this study we evaluate the presence of high-order correlations in the
somatosensory cortical network, by investigating whether the observed
probability of synchronous firing to a given sensory stimulus can only be explained
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by considering high-order interactions, and whether such high-order interactions
play a role in the transmission of information about the stimuli.

2. Information geometry and the probability of synchronous discharge
in a homogeneous neural population

We consider a population of N neurons whose activity is simultaneously observed
during a specified short time window of size 1t following the presentation of a
sensory stimulus s taken from a set of S different stimuli. We represent neuronal
population activity by a binary vector x = (x1, . . . , xN ) in the space X of all binary
vectors of length N , where xi = 0 if neuron i is silent in some time window and xi =
1 if it is firing one or more spikes. The probability distribution P(x|s) of observing
population response conditional to the presentation of stimulus s can be expressed
using different coordinate systems. The most obvious way of characterizing such
a distribution is by specifying the 2N − 1 individual probability values; these are
called the p-coordinates. Alternatively, the probability can be determined by the
2N − 1 marginal probability values; these are called the η-coordinates (Amari
2001). Provided P(x|s) 6= 0 for any x , any such distribution can be expanded in
the so-called log-linear model, or θ -coordinates system (Martignon et al. 2000;
Amari 2001; Nakahara & Amari 2002):

P(x|s) = exp

⎧⎨
⎩

X
xi θ̂i +

X
i<j

xixj θ̂ij +
X

i<j<k

xixjxk θ̂ijk

+ · · · +
X

i<···<N

xi . . . xN θ̂i...N − ψ

)
, (2.1)

where the 2N − 1 different θ̂ coefficients uniquely determine the distribution and
are, at least in principle, stimulus-dependent (although in the following their
stimulus-dependence will be dropped for notational simplicity). The use of this
coordinate system to study probabilities and interactions was pioneered in the
early 1980s by Amari and co-workers (Amari 1980, 1982), and then was later
refined by the same authors (Amari & Nagaoka 2000; Amari 2001); in part thanks
to the influential work of Curado & Tsallis (1991) in developing a generalized
theory of statistical mechanics. In this article, we will use the above θ -coordinate
system because (as demonstrated in Amari (2001) and discussed in the next
section) it is the most natural coordinate system to study interactions between
variables.

In order to simplify the analysis, and following previous theoretical work (Bohte
et al. 2000; Amari et al. 2003), we will make a strong assumption about the

neural population. We assume that the neural population is a fully homogeneous
pool; that is all the parameters characterizing single neuron properties and
interactions between any group of neurons do not depend on the precise identity
of the considered neurons, but only on the number of neurons considered. With
this assumption the probability distribution is now characterized by only N
parameters. Because of the symmetry of the population, all the θ -coordinates
of a given order, k, are equal and can be represented by θk . For example, all
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interaction coefficients at order 3, θ̂ijk , are equal to a single parameter that we
indicate by θ3. Under the homogeneous pool assumption, equation (2.1) becomes

P(x|s) = exp

⎧⎨
⎩
X

xiθ1 +
X
i<j

xixjθ2 +
X

i<j<k

xixjxkθ3 + · · · +
X

i<···<N

xi . . . xnθN − ψ

⎫⎬
⎭.

(2.2)
Since the neurons are identical, the probabilities of all responses with m

neurons firing are equal to each other. Thus, from the conditional distribution
P(x|s) of the population response conditional to stimulus s, it is convenient
to extract a simpler but still relevant probability distribution: the distribution
P(m|s) of the number m from the space M = {0, 1, . . . , N } of neurons
simultaneously firing in response to stimulus s during the considered post-
stimulus time interval. In the rest of the paper, we will denote m as the rate
of coincident firing (because it is proportional to the fraction of active neurons
at any given time). Because of the homogeneity assumption, P(x|s) and P(m|s)
are simply related by combinatorial factors and P(m|s) is given by the following:

P(m|s) =
X
x∈Xm

P(x|s)

=
µ

N
m

¶
P(x1 = · · · = xm = 1; xm+1 = · · · = xN = 0|s), (2.3)

where Xm is the set of all vectors x containing exactly m cells firing. Hence,
equation (2.1) becomes

P(m|s) =
µ

N
m

¶
e{

Pm
i=1 (

m
i )·θi−ψ(θ)}, (2.4)

where θi represents the effect on the log-probability of interactions of order i
in the neuronal pool. The marginals ηm , which are the probabilities of any m
particular neurons firing at the same time, are (Bohte et al. 2000)

ηm =
NX

i=m

µ
N − m
i − m

¶
P(i)¡N

i

¢ . (2.5)

The probability of the number of neurons coincidentally firing is of physiological
interest, because the number of near-coincident inputs to a cell postsynaptic to
the considered neural population is likely to be a key factor in determining the
probability of firing the postsynaptic cell (Softky 1995; König et al. 1996). Thus,
the probability of coincident firing is likely to play a role in the actual information
transmission as well as in the information representation.

The assumption of a homogeneous neural pool is of course an oversimplification
of the properties of real neural networks and strongly limits the domain
of applicability of this formalism. It is however crucial to allow us to
robustly study the response probabilities of relatively large neural populations
(a few tens of neurons) at fixed stimuli. The analysis of tens of neurons
would be more problematic when considering the full non-homogeneous model
(equation (2.1)), because of both computational problems (Martignon et al. 2000)
and data-sampling issues (Panzeri et al. 2007) related to the larger number of
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parameters to be estimated in the non-homogeneous model. Fortunately, the
neural populations to which we will apply our analysis are relatively well described
by the homogeneous-pool assumptions, as we will discuss below.

3. Investigating the order of interaction through the maximum
entropy principle

A rigorous way to investigate the effects of different orders of interaction is
provided by the technique of maximum entropy (ME), which was originally
introduced in statistical physics (Jaynes 1957), and is now beginning to be used
in neuroscience (Martignon et al. 2000; Schneidman et al. 2006; Shlens et al. 2006;
Tang et al. 2006; Montemurro et al. 2007; Nirenberg & Victor 2007).

The idea of the ME principle is to first fix some constraints that are of
interest. We then seek the simplest, or most random, distribution subject to
those constraints. This removes all types of correlation or structure in the data
that does not result from the constrained features. Since entropy is a measure of
randomness, looking for the most random distribution corresponds to looking for
the distribution with ME.

Here, we use the ME principle to address the problem of what is the order
of interactions among neurons which is sufficient to describe the probabilities
of neural response. We will consider the distribution P (k)(x|s) with ME within
the class of all distributions with the same marginals up to order k as the
real measured distribution P(x|s). The ME condition ensures that, though
interactions of up to order k are preserved, there are no higher order interactions
present. We can then compare these ME models for different orders to the real
measured distribution. In practice, the comparison will be done on the lower-
dimensional probability distribution of coincident firing P (k)(m|s) and P(m|s),
which under the homogeneity assumption are univocally related to P (k)(x|s) and
P(x|s) through simple combinatorial factors, as given in equation (2.3).

The log-linear form using θ -coordinates (equations (2.2) and (2.4)) provides a
convenient framework with which to obtain the ME distributions. The general
form of the ME solution subject to constraints (Cover & Thomas 1991) has the
same form as the log-linear model, and it has been shown (Amari et al. 2001)
that, subject to constraints on the marginals of the distribution of up to order k,
the ME solution is given by equation (2.2) with the model truncated to include
only θ ’s of up to order k. Thus, it is possible to leverage the coordinate systems
described above and the transformations between them to efficiently compute the
ME solutions.

For a given order k, we compute the ME solutions as follows (more details are
given in Ince et al. 2009). We start by matching interactions up to order k to
those of the measured distribution by setting the low-order η-coordinates of the
ME solution to equal those of the measured distribution. Then, following Amari
(2001) and Amari et al. (2003), the ME solution among the distributions with the
appropriate low-order marginals is found by setting the high-order components
of the θ -coordinates to zero.

As shown in Amari (2001) and Amari et al. (2003), by enforcing both of
these constraints simultaneously, we obtain a set of simultaneous equations. The
coordinate transformation from p- to η-coordinates is given by equation (2.5)
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and denoted as η̌(·). The coordinate transformation from θ - to p-coordinates is
given by equation (2.4) and denoted as p̌(·). The ME requirement is enforced
by setting θ̄k+ = {θ̄i}i>k = 0 where θ̄i are the θ -coordinates of the ME model. The
ME distribution is then completely determined by the θ̄k− = {θ̄i}i≤k . These can be
obtained through numerical solution of

ηk− − η̌k−(p̌(θ̄k− , θ̄k+ = 0)) = 0, (3.1)

where ηk− = {ηi}i≤k of the measured distribution. This is a system of k equations
in k unknowns. The Jacobian of this function can also be obtained analytically
allowing efficient solution using a range of numerical optimization methods. Here,
we solve it by employing a least-squares approach using a Levenberg–Marquardt
algorithm (Jones et al. 2001). Using this we are able to solve for orders up to
approximately 10 for populations of approximately 30 cells in a few minutes on a
laptop computer. Solutions of all orders are possible, but computation time grows
exponentially with the order considered.

It is important to note that we maximize the entropy of the distribution of the
population response x , over the probabilities defined on the space X and given
the constraints on marginals of up to order k. We do not maximize the entropy
of the distribution of the rate of coincident firing m. This is correct because
we want to impose no interactions among neurons apart from those fixed by
the marginals of up to level k, and the interactions among neurons are defined
in the population response space X . The entropy of the stimulus-conditional
population response H [X |s] is not equal to the entropy of the rate of coincident
firing H [M |s]. In addition, the relationship between the two is not monotonic,
so maximizing H [X |s] does not result in H [M |s] being maximal. However, a
relationship between the two entropies can be derived using equation (2.3):

H [X |s] = −
X
m

X
x∈Xm

P(m|s)¡N
m

¢ log2
P(m|s)¡N

m

¢
= H [M |s] +

X
m

P(m|s) log2

µ
N
m

¶
. (3.2)

Since the relationship is not monotonic, it is possible that a distribution which
has ME on the population responses x is not a ME distribution of the rate of
coincident firing m. For example, as noted in Amari et al. (2003), the model where
all neurons are independent from each other is a model of ME given the single-
neuron marginal probability but it leads to a fully concentrated distribution of
the number of coincidentally active neurons in the large N limit.

4. Predictions from theoretical analyses of the distribution of synchronous
discharge in homogeneous populations

Recent seminal theoretical articles using the ME principle (Bohte et al. 2000;
Amari et al. 2003) have begun to elucidate the effect of high-order interactions
on the probability of the number of synchronously firing neurons, P(m|s).
Particular important predictions come from the work of Amari et al. (2003),
in which the authors consider the behaviour of P(m|s) in the thermodynamic
(large N ) limit. They found that, in the absence of correlations, P(m|s) is
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concentrated around its mean owing to the central limit theorem. They analysed
what conditions are required to obtain a widespread distribution, in which (even
in the thermodynamic limit) different numbers of neurons simultaneously firing
are possible. They found that even when pairwise or third-order interactions are
considered, the concentration is not resolved. Weak interactions at all orders are
needed to obtain widespread distributions.

These predictions assign a strong role to high-order interactions for all neural
systems exhibiting widespread distribution of synchronous firing. Since these
predictions are obtained in the thermodynamic limit, it is difficult to test these
predictions on real data because the number of simultaneously recorded neurons
in a typical experiment is small (up to a few tens of neurons at best). However,
it is interesting to consider whether real data tend to produce concentrated or
widespread distributions, and whether observed widespread distributions require
high-order interactions in order to be explained. We address this question directly
in the next section.

5. The role of high-order correlations in shaping synchronous
discharge in somatosensory cortex

We apply the techniques described above related to a pooled population of
neurons recorded from the whisker representation in the somatosensory cortex
of urethane-anaesthetized rats. The dataset (previously published in Arabzadeh
et al. 2003, 2004) consists of 24 simultaneously recorded neural clusters, each
sampled with a different electrode with a minimal inter-electrode distance of
400 μm. Spike times from each electrode were determined by a voltage threshold
set to a value 2.5 times the root mean square voltage. Since it was not
possible to sort well-isolated units from each channel, spikes from the same
recording channel were considered together as a single neural cluster. It has
been estimated that, under these recoding conditions, each cluster captured the
spikes of approximately two to five neurons located near the tip of the electrode
(see Petersen & Diamond 2000). Neural activity was recorded in response
to stimulation (with a piezoelectric wafer controlled by a voltage generator)
consisting of sinusoidal whisker vibrations, each defined by a different value
of vibration velocity and delivered for 500 ms (see Arabzadeh et al. (2004),
for full details). Thirteen different values of vibration velocity were tested,
ranging between Af = 0.15 mm s−1 and Af = 47.7 mm s−1. Each value of vibration
velocity was treated as a different stimulus s (there were 13 stimulus classes in
total). The number of recorded repetitions for each stimulus (called ‘trials’ in
neurophysiology), from which the probability of response at fixed stimulus is
determined, varied between a minimum of 200 and a maximum of 1400 across
the stimulus classes. We note that this dataset is a convenient one for studying a
neural population under the homogeneous-pool assumption. In fact, it was found
that (i) all the neurons analysed here respond with the same type of profile
to velocity (Arabzadeh et al. 2003) and (ii) when considering pairs of neurons,
neglecting the label of which neuron fired which spikes (which is equivalent to
transforming the response x into the response m) did not lead to any significant
information loss (Arabzadeh et al. 2004), which suggests that non-homogeneities
are negligible as far as information transmission is concerned.
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We measure the neural responses as follows. We first select a post-stimulus
window in which to measure the neural response. It has been shown (Arabzadeh
et al. 2004) that the majority of the information is transmitted very early post-
stimulus onset (typically between 5 and 30 ms). We therefore concentrate on data
taken from these early, highly informative windows. In each trial, the population
response x is computed as follows. For each recording channel, we set the response
to 1 if at least one spike occurs in the time window, and 0 otherwise. The number
m of neural clusters coincidentally firing is simply computed as the number of
clusters firing at least one spike in the considered window.

We use these data to study the shape of the distribution of the number
of clusters simultaneously firing at fixed stimulus, and the order of neural
interactions needed to describe this distribution. We note that some previous
studies (Schneidman et al. 2006) have focused on the overall probability of
response to many different stimuli. However, this has the potential problem that
the resulting correlation may arise both from correlations in the stimulus and in
correlations arising from actual neural interactions, and it is difficult to separate
them (Nirenberg & Victor 2007). Here, we have decided to consider distributions
at fixed stimuli to ensure we only investigate interactions of neural origin.

We first consider whether the distributions of the number of clusters
simultaneously firing at fixed stimulus are widespread or concentrated.
Distributions conditional to one particular stimulus (velocity = 2.66 mm s−1; 1400
trials available) are shown in figure 1, for different values of the size of the post-
stimulus window used to measure the response. For all windows considered, the
distribution is clearly widespread, with no concentration around a single value.
Choosing a larger window, we observe a higher expectation value of the number of
neurons firing, but the distribution remains widespread. These results and trends
apply to all 13 stimuli considered (data not shown).

We next consider whether the observed widespread distributions need high-
order interactions among neural activity to be explained. We investigate
this issue by applying the ME algorithms described in §3 to the stimulus-
conditional neural response probabilities and considering ME solutions of various
orders.

Figure 2 reports a comparison between the real distribution of synchronously
firing clusters in response to stimulus velocity = 2.66 mm s−1 and the
corresponding ME models at orders k between 1 and 5. The first- and second-order
models provide bell-shaped distributions which are a very poor approximation to
the measured distribution. It is clear that third order is a better approximation
than the first- and second order, and at fourth and fifth order the ME model
becomes difficult to distinguish from the true distribution. To quantify the
goodness-of-fit of the ME models, we used standard χ2 statistics. The ME
model at order k = 1, . . . , 3 had to be rejected at p = 0.05. Models of order
4 and higher were not rejected at p = 0.05. The results shown in figure 2 are
a good description of the typical behaviour of the dataset. Considering all
probabilities of coincident firing to all the 13 stimuli, 11 stimulus conditional
distributions needed at least order 3 interactions to fit the real data (p =
0.05), 8 needed at least order 4 (p = 0.05), and 6 needed at least order 5
(p = 0.05). The only two distributions that could be fit by a model of order
two (p = 0.05) were those with fewer number of trials (those with less statistical
power).
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Figure 1. Effect of window on response distribution. The distributions obtained depend on the
window used to define synchronous activity. Here, the distributions in response to stimulus velocity
2.66 mm s−1 (the best-sampled stimulus) from three different time windows relative to stimulus
onset are shown. Black curve, 10:12 ms; dashed curve, 9:15 ms; grey curve, 1:30 ms.
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Figure 2. Effect of interactions on response distribution. Here, the distribution conditional on
stimulus velocity 2.66 mm s−1 (the best-sampled stimulus) is considered. The maximum entropy
solutions are computed for 5 orders (green, k = 1; blue, k = 2; red, k = 3; purple, k = 4; yellow, k = 5)
and compared with the measured distribution (black line). The window used to define synchronous
firing is 1:30 ms.
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6. Effect of interactions on somatosensory information encoding

Determining the presence of high-order interactions suggests that they cannot
be neglected in models of information transmission, but it does not tell how
much these correlations are important. To quantify this, we next compute the
information between the stimulus and the population activity, and we compare
it with that derived from the ME models.

The mutual information between the stimuli and the neural population activity
is defined as follows:

I (S ; X ) = H (X ) − H (X |S), (6.1)
where H (X ) and H (X |S) are the response entropy and noise entropy, respectively:

H (X ) = −
X
x

P(x) log2 P(x), (6.2)

H (X |S) = −
X
x ,s

P(s)P(x|s) log2 P(x|s), (6.3)

where in the above P(x) = P
s P(x|s)P(s). Note that, because of the homogeneity

assumption, and because of the data processing inequality, the information about
the stimuli I (S ; X ) carried by the population response is equal to the one carried
by the rate of coincident firing I (X ; M ), although as previously discussed the
entropies are different.

We investigate the impact of interactions at a given order k by calculating the
mutual information that would result from a system exhibiting the probability
distributions obtained from the ME solution, as follows:

I (k)(S ; X ) = H (k)(X ) − H (k)(X |S), (6.4)

where H (k)(X ) and H (k)(X |S) are the response and noise entropies, respectively,
of the kth order ME model. These entropies are obtained by replacing P(X |s) and
P(X |s) with P (k)(X |s) and P (k)(X |s) in equations (6.2) and (6.3), where P (k)(X |s)
is the ME solution preserving up to kth order marginals equal to P(X |s) and
P (k)(X ) = P

s P (k)(X |s)P(s). Then

I (k)(S ; X ) =
X
m,s

P(s)P (k)(X |s) log2
P (k)(X |s)
P (k)(X )

. (6.5)

I (k)(S ; X ) was computed as follows. First, we obtain the homogeneous ME
solution, P (k)(X |s), for each order of interest and for each stimulus-conditional
response. Then, from each of these stimulus-conditional ME solutions, we simulate
data with the same number of trials as available in the experimental data (this
is different for each stimulus). These trials are generated using inverse transform
sampling. This is done to ensure a fair comparison between the measured data and
the generated data; any bias effects should affect both equally. Bias is corrected for
using the quadratic extrapolation method (Strong et al. 1998) from the Pyentropy
library (Ince et al. 2009). The values obtained are averaged over 1000 repetitions
to remove any trial-to-trial variation from the inverse transform sampling step.

Figure 3 shows the effect of including higher order interactions on information.
Correlations have a limiting rather than an enhancing effect in this neural system.
The first- and second-order ME models convey significantly higher information
than the true system. The third-order information is significantly lower than the
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Figure 3. Effect of interactions on mutual information. Here, the measured mutual information
for three post-stimulus windows is shown, and compared with the mutual information obtained
from ME distributions preserving marginals of up to order k = 1 . . . 5. Interactions of order higher
than 3 do not affect the information. Black bars, 10:12 ms; dark grey bars, 1:30 ms; light grey bars,
9:15 ms.

second-order one, suggesting that correlations of order higher than 2 still have a
sizeable effect on limiting information. Correlations of order higher than 4 (though
present, see previous section) do not influence information to a significant amount.

The fact that correlations of increasing order limit the information may
appear surprising at first glance, but can be explained by considering the
variance of the distributions of the rate of coincident firing in figure 2. The
rate of coincidences from low-order ME solutions have the same mean as the
true distribution, but are much more concentrated. As a consequence, the
noise entropies of the distributions of coincident firing H (M |S) (obtained from
equation (6.3) by replacing P(m|s) in lieu of P(x|s)) also increase with the
interaction order (figure 4). Since, as explained above, the only informative
variable in homogeneous population activity is the rate of coincident firing m,
the information value has to decrease as the interaction order k increases.

Figure 4 reports the noise and response entropies of the population activity
as a function of the interaction order considered. Because of the constrained
maximization, the noise entropies have to decrease with the interaction order.
However, the noise entropy H (X ), which is made up mixing all stimulus-
conditional responses, is not constrained to necessarily decrease as fast as H (X |S)
with the interaction order (Schultz & Panzeri 2001). In fact, H (X ) decreases more
quickly with k than H (X |S) does (figure 4), thus leading to an overall information
decrease with increase of order k.

It is interesting that the mutual information of the system is already well
approximated by models containing interactions of up to order 3. Interactions
of order higher than 3, though statistically significant, do not appear to play
a qualitatively important role in information transmission. This is a significant
simplification since it greatly reduces the parameters required to describe the
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Figure 4. Effect of interactions on entropies. Here, we show the conditional and unconditional
entropies of the measured distribution (true) and maximum entropy solutions preserving marginals
of up to order k = 1 . . . 5 for the maximally informative window 9:15 ms. Both the entropy of
coincident rate and the entropy of the full population response are shown. The entropies over
population response decrease with increasing order, as required by the maximum entropy condition,
but this is not true of the entropies of the rate of coincident firing. However, the information
transmitted (difference between the two bars in each plot) is the same for both. Top: dark grey
bars, H [X ]; light grey bars, H [X |S ]. Bottom: black bars, H [M ]; light grey bars, H [M |S ].

system. While it is still challenging to sample up to third-order marginals, it is a
much more tractable problem than the case where all orders of interaction must
be accurately determined.

7. Discussion

Here, we have considered, to our knowledge for the first time, how a homogeneous-
pool model containing interactions of arbitrary order (Bohte et al. 2000; Amari
et al. 2003) fits real distributions of the rate of coincident firing in real in
vivo neural networks. We found that, when considering stimulus-conditional
distributions of the rate of simultaneous discharge in populations including tens
of recorded neural clusters, interactions of order higher than two are typically
needed to describe the distributions. Thus, interactions of order two may not
always be sufficient to describe the correlational structure of neural activity, as
recently reported (Schneidman et al. 2006; Shlens et al. 2006; Tang et al. 2008).
In addition to studying the effects of interactions on the mutual information,
it would also be interesting to investigate the θ -coordinate scaling properties as
proposed in Amari et al. (2003). However, the currently available experimental
data are insufficient, since they do not contain enough simultaneously recorded
channels to approach the large N regime of the theory.

In this paper, we have also reported what constitutes, to our knowledge, the
first calculation of the impact of higher order firing on the mutual information
about sensory stimuli carried by a neural population. Previous studies mostly
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concentrated on the effect of interaction on response entropy. Since typically
mutual information is smaller when compared with both the response and the
noise entropy, an impact that may be proportionally small for entropy may
be proportionally much larger when considering information. In the system
considered here, we found that correlations decreased the information, and the
decrease in information became larger as the interaction order grew, and saturated
at order three. This suggests that, when evaluating the computational capacity of
cortical population in sensory areas, it may be necessary sometimes to take into
account correlations of order higher than two. Thus, it is particularly important
to be able to extend analytical models of the effect of correlation on information
to order higher than two, and to be able to compute their scaling in their
thermodynamic limit. We believe that this will become an important topic for
future theoretical research on the encoding capacity of neural networks.

This work was supported by BMI project at IIT (Italy) and by the EPSRC ‘CARMEN’ grant
EP/E002331/1 (UK).
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