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Properties of the matter in the inner crust of a neutron star are investigated in a Hartree-Fock plus BCS
approximation employing schematic effective forces of the type of the Skyrme forces. Special attention is paid
to differences between a homogenous and inhomogeneous description of the matter distribution. For that
purpose self-consistent Hartree-Fock calculations are performed in a spherical Wigner-Seitz cell. The results
are compared to predictions of corresponding Thomas-Fermi calculations. The influence of the shell structure
on the formation of pairing correlations in inhomogeneous matter are discussed.
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I. INTRODUCTION

The determination of the equation of state (EoS) for
nucleon matter is an important ingredient for various inves-
tigations of astrophysical objects. A lot of attention has been
paid to the EoS of baryonic matter at densities above the
saturation density of nuclear matter sr0<0.16 fm−3d. These
densities should be relevant to describing the interior of neu-
tron stars and are of particular interest, as they give rise to
speculations about exotic phases of baryonic matter includ-
ing the existence of kaon condensates or quark matter [1–3].

However, it is not only this regime of very high densities
that is interesting, but also the crust of neutron stars should
be a very intriguing phase of baryonic matter. At those lower
densities and low temperatures the free energy should be
reduced by allowing for a phase of inhomogeneous baryonic
matter. This nonuniform matter should consist of a lattice of
quasinuclei embedded in a gas of electrons and possibly also
a sea of neutrons. Thomas-Fermi calculations, which are
based on nonrelativistic or relativistic mean-field calcula-
tions for the homogenous system, exhibit these features
[4–8].

The presence of neutron superfluidity in the crust of neu-
tron stars seems to be well established. This is based on
investigations solving the BCS gap equation in homogenous
nuclear matter [9–12] . The precise knowledge of the pairing
gap is very important for the determination of the cooling
rate of neutron stars. The superfluidity of the material of the
crust should have a significant influence on the rotation fre-
quencies of the star. The formation of glitches may be related
to the vortex pinning of the superfluid phase in the inhomo-
geneous crust.

The aim of the investigations presented in this paper is to
explore the basic properties of this inhomogeneous phase of
baryonic matter on a level beyond the Thomas-Fermi ap-
proximation. What are the consequences of shell effects in
the quasinuclei in the systems for the bulk properties of this
material? How do they influence the proton fraction in the b
equilibrium? What are the consequences of these quasinuclei
on the pairing properties of the system?

To answer these questions we perform nuclear structure
calculations in a Wigner-Seitz cell of spherical shape. The
assumption of such a spherical cell is not designed to allow
for inhomogeneities of the matter, which is different from the
formation of quasinuclei or bubbles in the homogenous mat-
ter. Therefore we do not consider a formation of rods or slabs
of increased density [8]. Also at this stage, we do not aim at
a complete survey of this matter covering a large region of
various densities. Instead we wish to explore some features
of nuclear structure calculations beyond the Thomas-Fermi
approach for a few selected examples.

For that purpose we perform Hartree-Fock (HF) and HF
plus BCS calculations in an appropriate basis of the spherical
Wigner-Seitz cell. For the NN interaction we use rather
simple effective forces of the Skyrme type [13,14]. Special
attention is paid to the pairing gaps resulting from calcula-
tions of the homogenous matter and the nonhomogeneous
system.

After this Introduction we discuss in Sec. II the tech-
niques and results of HF calculations for the b-stable matter
within a spherical Wigner-Seitz cell. The determination of
pairing properties is presented in Sec. III, which is followed
by a short summary and conclusions in Sec. IV.

II. HF CALCULATIONS IN A SPHERICAL BOX

The single-particle wave functions for the nucleon consid-
ered in our calculations are expanded in a complete basis of
orthonormal states defined within a spherical box of radius
R. Such an orthonormal set of basis functions, which are
regular at the origin in the center of the box, is given by

FiljmsrWd = krWuiljml = RilsrdYljmsq,wd . s1d

In this equation Yljm represent the spherical harmonics in-
cluding the spin degrees of freedom by coupling the orbital
angular momentum l with the spin to a single-particle angu-
lar momentum j. The radial wave functions Ril are given by
the spherical Bessel functions, Rilsrd, jlskird for the discrete
momenta ki, which fulfill
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RilsRd = NiljlskiRd = 0. s2d

The normalization constant

Nil = 5
˛2

˛R3jl−1skiRd
for l . 0,

ip˛2
˛R3

for l = 0,
s3d

ensures that the basis functions are orthogonal and normal-
ized within the box,

E
0

R
d3rFiljm

* srWdFi8l8j8m8srWd = dii8dll8d j j8dmm8. s4d

Adopting this basis of eigenstates for the kinetic energy one
can try to describe homogenous nuclear matter with a con-
stant density rp and rn for protons and neutrons, respec-
tively, by filling all basis states with momenta ki below the
corresponding Fermi momentum kFp

and kFn
. The local den-

sity is then given by

rsrd = o
ilj

QskF − kids2j + 1dRil
2srd , s5d

where Q stands for the Heaviside function. The results for
this local density considering a spherical box with the radius
R=25 fm, and trying to describe a system with a density of
0.06 fm−3, are displayed in Fig. 1. From this figure one can
see that the local density is in reasonable agreement with the
mean value, except at the border of the cavity at r=R. Since
all wave functions by construction are bound to disappear at
this borderline, the same is also true for the density.

In order to cure this deficiency one could try an alterna-
tive basis for the radial functions by the boundary condition
that the radial derivative vanishes at the surface of the box

R̃ilsrd = Ñiljlsk̃ird with
]Ril
˜

]r
sRd = 0. s6d

So all these basis function exhibit an extremum at the surface
of the Wigner-Seitz cell, which leads to a maximum of the
local density at r=R if these functions are employed in Eq.
(5), as one can see from the curve labeled “Basis 2” in Fig. 1.

Bonche and Vautherin [15] suggested to use a mixed basis
by employing, e.g., basis states with the boundary condition
(2) for states with even l and those with the boundary con-
dition (6) for states with odd orbital angular momentum l.
This recipe cures the deviation of the local density from the
mean value at the surface (see also Fig. 1). Nevertheless, the
representation of the homogenous phase of nuclear matter
within a spherical box of finite size leads to slight fluctua-
tions in the local density. Furthermore, one must be aware of
shell effects, which are due to the finite size of the spherical
box considered.

In order to explore the influence of these shell effects on
the evaluation of expectation values, we have considered
spherical boxes of various radii and calculated the binding
energy per nucleon for homogenous nuclear matter using the
representation of the plane-wave states discussed above. We
have considered values for the radius R ranging from
15 to 25 fm. Most of the results turned out to be rather in-
sensitive to the choice of the basis [Eqs. (2) and (6), or mix-
ture]. Therefore, if not stated differently, we will present re-
sults for the basis (2) only.

As a first example we consider the homogenous system of
neutrons, protons, and electrons in b equilibrium. This
means that for any value of the baryon density considered,

r = rp + rn, s7d

we determine the proton abundance

Yp =
rp

r
, s8d

by the requirement that the Fermi energy for the neutrons is
identical to the Fermi energy of the protons plus the Fermi
energy of the electrons with the density of electrons being
identical to the density of protons.

The results for the energy per nucleon and the proton
abundance are displayed in Figs. 2 and 3, respectively. For
the range of densities considered, the results obtained in the
spherical boxes of different size agree rather well with the
corresponding observables calculated in the infinite system.
A significant discrepancy is only observed in the calculation
of the total energy at higher densities considering boxes with
small radii. In these cases the surface effects displayed in
Fig. 1, as well as the shell effects, lead to energies which are
too small as compared to the result for the infinite system.

After this test of the box basis to describe the homog-
enous system, we now turn to the HF description within such
a spherical box. The HF single-particle wave functions are
expanded in the basis of Eq. (1) by

FIG. 1. (Color online) The local density for homogeneous mat-
ter sr=0.06 fm−3d calculated according to Eq. (5) using Basis 1 (2),
Basis 2 (6), and the mixed basis as described in the text.
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CaljmsrWd = o
i=1

N

cailjFiljmsrWd . s9d

The number of basis states N is chosen to guarantee that the
results are not affected by this limitation. The results of self-
consistent HF calculations are displayed in Fig. 4, showing
the density of protons and neutrons as a function of the radial
distance from the center of a box with the radius R=21 fm.
The particle numbers for protons (Z=20 in this example) and
neutrons sN=388d have been determined to fulfill the condi-

tion of b stability, employing the Fermi energies evaluated in
the HF calculation.

The density distribution for the protons is different from
zero only near the center of the Wigner-Seitz cell. In this
region also the density of the neutrons is considerably larger
than in the rest of the spherical box. Therefore, we can in-
terpret this configuration as a quasinucleus embedded in a
neutron see. The single-particle energy spectrum for the pro-
tons exhibit a clear shell structure up to energies around the
Fermi energy. The density of states around the corresponding
Fermi energy is larger for the neutrons. In fact, it is close to
the one of the homogeneous matter described in the spherical
box of this size.

For the example of Z=20 protons and N=388 neutrons in
a Wigner-Seitz cell with the radius R=21 fm considered in
Fig. 4, we obtain a global density of r=0.0105 fm−3 and an
abundance for the protons of Yp=0.049. The energy per
nucleon for this self-consistent solution of the HF equations
is about 2 MeV per nucleon below the energy which was
obtained for the homogenous distribution of matter in b
equilibrium.

Figure 5 exhibits this gain in energy due to the formation
of quasinuclei in b-stable nuclear matter. For small densities
around r=0.01 fm−3 the HF solution with localized quasinu-
clei yields an energy which is about 3 MeV per nucleon
below the energy of the corresponding homogenous matter.
This gain in energy decreases with increasing density to
around 1 MeV per nucleon at r=0.04 fm−3. The results are
rather independent on the size of the Wigner-Seitz cell under
consideration.

The HF calculations allowing for an inhomogeneous dis-
tribution of matter, however, also yield different results for
the proton abundances as compared to the results obtained
for homogenous nuclear matter in b equilibrium (see Fig. 6).
Thomas-Fermi calculation, which allow for an inhomoge-
neous distribution of matter, show proton abundances which
are slightly above those derived from the calculation of ho-
mogenous matter. This indicates that the fluctuations in the
density, which are taken into account in the Thomas-Fermi
calculations, tend to enhance the proton abundances, as re-
gions with high densities contain a larger fraction of protons.

FIG. 2. (Color online) Energy per nucleon for homogenous mat-
ter in b equilibrium. The results for infinite matter are compared to
those obtained in spherical boxes of different radii. The Skyrme I
has been used for the NN interaction.

FIG. 3. (Color online) Proton abundance Yp for homogenous
matter in b equilibrium. For further comments, see Fig. 2.

FIG. 4. (Color online) Density distributions derived from HF
calculations for nuclear matter in b equilibrium.
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However, the main effect in the enhancement of the proton
abundances observed in the HF approach is not described by
the Thomas-Fermi model. It originates from the pronounced
shell structure of the proton single-particle energies. The HF
calculation favors distributions of matter with a quasinucleus
showing a closed shell for the protons.

III. PAIRING IN THE CRUST OF NEUTRON STARS

After we have noticed the effects of shell structure on the
decomposition of the nuclear material, we would like to ad-
dress in this section the question of how this shell structure
can affect the pairing properties of the nuclear material. In
particular, we consider neutron-neutron pairing for neutron
pairs with a total momentum equal to zero in a 1S0 partial
wave for the relative motion. Using the standard BCS ap-
proach for homogenous matter, the pairing gap Dskd for a
pair of neutrons with relative momentum k= ukWu is obtained
by solving the gap equation [9,11,12]

Dskd = −
2
p
E

0

‘

dk8k82Vsk,k8d
Dsk8d

2˛s«k8 − «Fd2 + Dsk8d2
.

s10d

Here Vsk ,k8d denotes the matrix elements of the NN interac-
tion in the 1S0 partial wave, «k the single-particle energy for
a nucleon with momentum k, and «F the Fermi energy. In-
stead of using the matrix elements for a realistic NN interac-
tion which is fitted to the NN scattering data, we have chosen
to employ an effective interaction which is of zero range,
density dependent, and has been proposed by Bertsch and
Esbensen [16,17],

Vsr1,r2d = v0F1 − hSrsr1d
r0

DaGdsr1 − r2d , s11d

where v0, h, and a are adjustable parameters and r0 is the
saturation density of nuclear matter. For such a zero-range
interaction a cutoff parameter «C must be introduced in the
gap equation to truncate the integral to states with energy «k
less than «C. These four parameters can be constrained to
reproduce the NN scattering length and Garrido et al. [18]
determined various sets of parameters which reproduce pair-
ing gaps for nuclear and neutron matter calculated with real-
istic NN interactions. We used the parameters v0
=481 MeV fm3, h=0.45, a=0.47, and «C=60 MeV and
verified that this set of parameters leads to pairing gaps for
homogenous neutron matter, which are in fair agreement
with those evaluated for the CD Bonn interaction [19].

We now turn to the solution of the HF1BCS equations
[20], which in the spherical Wigner-Seitz cells have the form

s«nlj − «Fdunlj + Dnljvnlj = Enljunlj ,
s12d

− s«nlj − «Fdvnlj + Dnljunlj = Enljvnlj ,

where

Enlj = ˛s«nlj − «Fd2 + Dnlj
2 ,

is the energy of the quasiparticle state with quantum numbers
n , l, and j and «nlj the corresponding single-particle energy
determined in the HF equations. From the coefficients unlj,
vnlj, and the corresponding single-particle wave functions
Cnljm [see Eq. (9)], one can calculate the anomalous density

FIG. 5. (Color online) Energy per nucleon of b-stable nuclear
matter in the homogenous phase (symbols connected by dashed
line) and inhomogeneous phase (symbols connected by solid line).

FIG. 6. (Color online) Proton abundances of b-stable nuclear
matter in the homogenous case of homogenous infinite matter (solid
line), inhomogeneous matter determined in the Thomas-Fermi ap-
proximation, and in HF calculations employing Wigner-Seitz cells
of different radii.
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xsrd = o
nlj

s2j + 1d
unljvnlj

2
Cnlj

2 srd , s13d

and the expression for the normal density is changed into

rsrd = o
nlj

s2j + 1dvnlj
2 Cnlj

2 srd . s14d

Using an interaction of zero range, like Eq. (11) does, leads
to a definition of a local gap function

Dsrd = Vsrdxsrd , s15d

from which one can calculate the state-dependent pairing
gaps

Dnlj =E DsrdCnlj
2 srdr2dr . s16d

The BCS equations (12)–(16) have to be solved together
with the HF equations in a self-consistent way. The Fermi
energy «F is adjusted to reproduce the requested particle
numbers or densities for protons and neutrons. These equa-
tions can be reduced to an approach, which we will call BCS
with plane waves in the spherical box, by restricting the ra-
dial wave functions for the single-particle states to the
spherical Bessel functions defined in Eq. (2) or Eq. (6).

The results for the gap function Dsrd defined in Eq. (15)
for b-stable matter of a density r=0.02 fm−3 are displayed in
Fig. 7. The gap function evaluated for the plane-wave basis
are presented by the dashed line. We find that this gap func-
tion fluctuates around 1.8 MeV with a sharp drop at the
boundary of the spherical box. This drop is of course related

to the boundary condition (2) of all wave functions. As al-
ready discussed for the local density above, this deficiency
can be cured by using a mixed basis, switching between Eqs.
(2) and (6) for states with even and odd parity (see lower
panel of Fig. 7).

Solving the BCS plus HF equations, one obtains a gap
function with values which are suppressed by about 25% in
the area of the quasinuclei. From this result one may specu-
late that the inhomogeneous matter leads to regions of en-
hanced densities in which the formation of pairing correla-
tions is suppressed to some extent. Therefore, these regions
might be considered as nuclei for the formation of normal
matter within the superfluid phase of neutron matter. Also
one could imagine that these quasinuclei could lead to vortex
pinning in the rotation of the superfluid crust of neutron
stars.

This observation would be in agreement with the results
for the pairing gap derived in a local density approximation
(LDA) as one can see, e.g., from Fig. 4 of [21]. In this paper
Barranco et al. demonstrate that that the LDA is not a very
good approximation and account for the nonlocality of the
pairing correlations by determining a momentum dependent
gap. These calculations are based on single-particle states
determined from a Woods-Saxon potential and lead to gap
functions which depend only weakly on the position.

This indicates that a more detailed analysis of the pairing
correlation may be required for an inhomgenous system (see
also [22]). Therefore, we are going to study the state-
dependent gaps Dnlj displayed in Figs. 8 and 9 for the plane
wave plus BCS and HF plus BCS calculations, respectively.
It should be kept in mind that many properties of the system,
like the specific heat or the response functions at low ener-
gies (which are relevant, e.g., for the propagation of neutri-
nos), are very sensitive to the quasiparticle energies around
the Fermi energy, which means that they are sensitive to the
gap for states close to the Fermi energy.

FIG. 7. (Color online) Local gap function Dsrd as defined in Eq.
(15) for b-stable matter of density r=0.02 fm−3. The results are
displayed for the plane wave plus BCS approach (dashed line) and
the HF plus BCS approach (solid line). While the upper panel ex-
hibits the results obtained in Basis 1 [see Eq. (2)], the lower part of
the figure displays the results obtained for the mixed basis.

FIG. 8. (Color online) The results for the state-dependent pair-
ing gaps Dnlj defined in Eq. (16) for b-stable matter of density r
=0.02 fm−3 as derived from plane wave plus BCS calculation.
These gaps are displayed as a function of the corresponding «nlj.
Each gap is presented by a symbol, and gaps belonging to states
with identical orbital angular momentum l and angular momentum
j are connected by a line.
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Comparing the results displayed in Figs. 8 and 9 it is not
so important to disentangle details but to observe the general
trends for the gaps as a function of the underlying single-
particle energy. One finds that the homogenous system,
which is described in terms of the plane wave plus BCS
calculation, leads to a gap Dnlj, which is almost independent
of the state.

The calculation of the inhomogeneous system, on the
other hand, leads to a few single-particle states, which are
much more bound than the lowest states in the homogeneous
calculation (−42 MeV as compared to −9.5 MeV). These
deeply bound states are localized near the origin. This large
binding of the single-particle states which leads to a reduc-
tion of the density of states is also responsible for the reduc-
tion of the pairing gap for these low-lying states. On the
other hand, the states with single-particle energies close to
the Fermi energy «F show a value for the gap parameter
which is very close to the one derived for the homogenous
system.

This implies that the reduction of the gap function Dsrd in
the region of the quasinuclei discussed above manifests itself
mainly in a reduction of the pairing gap for the deeply bound
single-particle states. The evaluation of response functions
and other observables, however, is in general sensitive to the
gap at the Fermi energy. Therefore, one cannot expect major
differences in the behavior of the inhomogeneous, as com-

pared to the homogeneous, system of matter with respect to
the pairing properties of the neutrons. This shall be different
for smaller densities, where the Fermi energy for the neu-
trons drops to values at which the shell structure of the
single-particle energies is significant.

IV. CONCLUSIONS

The transition from homogenous to inhomogeneous mat-
ter as it occurs in the crust of neutron stars has been inves-
tigated. Special attention has been paid to the consequences
of shell effects, which occur assuming a phase of quasinuclei
embedded in a sea of neutrons. For that purpose, HF plus
BCS calculations are performed assuming a basis of single-
particle states for a spherical Wigner-Seitz cell. It is observed
that the shell effects lead to a substantial increase for the
proton abundance in b-stable baryonic matter.

Shell effects are also responsible for a decrease of the
localized pairing gap in the region of the quasinuclei. A more
detailed analysis, however, shows that this reduction of the
local gap function Dsrd is mainly due to a reduction of the
pairing gap for the deeply bound single-particle states. The
pairing properties for the single-particle states close to the
Fermi energy are similar to those obtained for a homogenous
description of the system.

The present studies are based on simple parameterizations
for the effective NN interaction. It may be of interest to study
whether the predictions for the transition from homogenous
to inhomogeneous matter also hold, when more realistic NN
interactions are employed.

The use of a spherical Wigner-Seitz cell is a source of
various deficiencies. The boundary conditions at the border
of the cell lead to fluctuations in the density, which compli-
cate the comparison with the infinite homogenous system.
This could be improved by employing a Cartesian basis,
which is more involved from the numerical point of view.
The use of a Cartesian basis, however, would also allow for
the study of nonspherical structures.
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