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Short Abstract

We have used information theory to examine whether stimulus-dependent correlation could

contribute to the neural coding of orientation and contrast by pairs of V1 cells. To this end,

we have used a modified version of the method of information components. This analysis

revealed that although synchrony is prevalent and informative, the additional information

it provides is frequently offset by the redundancy arising from the similar tuning properties

of the two cells. Thus, coding is roughly independent with weak synergy or redundancy

arising depending on the similarity in tuning and the temporal precision of the analysis.

Our findings suggest that this would allow cortical circuits to enjoy the stability provided by

having similarly tuned neurons without suffering the penalty of redundancy as the associated

information transmission deficit is compensated by stimulus dependent synchrony.

The underlying origins of synchronized firing between cortical neurons are still under discus-

sion. GABAergic inhibitory neurons may be involved in the generation of oscillatory activity

in the cortex and its synchronization. Specifically, reduction of GABAergic inhibition may

favour cortical plasticity producing functional recovery following focal brain lesions. We

present a computational and analytical model of a topographically mapped population code

which includes a focal lesion as well as a process for receptive field enlargement. Our finding

shows that by tuning the receptive field plasticity to a certain value, the information transfer

through the cortex after stroke can be optimized.

A widespread distribution of neuronal activity can generate higher-order stochastic interac-

tions. In this case, pair-wise correlations do not uniquely determine synchronizing spiking in

a population of neurons, and higher order interactions across neurons cannot be disregarded.

We present a new statistical approach, using the information geometry framework, for an-

alyzing the probability distribution function (PDF) of spike firing patterns by considering

higher order correlations in a neuronal pool. We have studied the limit of a large population

of neurons and associated a deformation parameter to the higher order correlations in the

PDF. We have also performed an analytical estimation of the Fisher information in order to

evaluate the implications of higher order correlations between spikes on information trans-

mission. This leads to a new procedure to study higher order stochastic interactions. The

overall findings of this thesis warn about making any extensive statement about the role of

neuronal spike correlations without considering the case of higher order correlations.



Long Abstract

In chapter I of this thesis we present a review of the historical background of the previous

spike correlation studies and current state of the problem. In the chapters II, III and IV of

this thesis we have applied an information theoretic approach to study the role of correlations

in the neuronal code, using the responses of pairs of neurons to drifting sinusoidal gratings

of different orientations and contrasts recorded in the primary visual cortex of anesthetized

macaque monkeys. In chapter V we investigate the effects of a focal stroke in a population

of neurons on information transmission using a computational and analytical approach to

the problem. Finally, in chapter VI we use a novel analytical approach to study effects of

higher order correlations in a population of neurons.

It has been proposed in neuroscientific literature that pooling can lead to a significant im-

provement in signal reliability, provided that the neurons being pooled are at most weakly

cross-correlated. We have computed mutual information, and compared the information

available from pairs of cells with the sum of the single cell information values. This allowed

us to assess the degree of synergy (or conversely, redundancy) in the coding. In chapter II

of this thesis, we show that due to a loss of information encoded in the neuronal identity of

the cells, pooling spikes across neurons leads to a loss of a large fraction of the information

present in their spike trains.

We have used information theory to examine whether stimulus-dependent correlation could

contribute to the neural coding of orientation and contrast by pairs of V1 cells. To this end,

in chapter III, we have used a modified version of the method of information components.

This analysis revealed that although synchrony is prevalent and informative, the additional

information it provides is frequently offset by the redundancy arising from the similar tuning

properties of the two cells. Thus, coding is roughly independent with weak synergy or

redundancy arising depending on the similarity in tuning and the temporal precision of the

analysis. Our findings suggest that this would allow cortical circuits to enjoy the stability

provided by having similarly tuned neurons without suffering the penalty of redundancy

as the associated information transmission deficit is compensated by stimulus dependent

synchrony.

In chapter IV, we present a discussion about different measures of correlations and in par-

ticular we propose the Jensen-Shannon Divergence as a measure of the distance between the
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corresponding probability distribution functions associated with each spikes fired observed

patterns. We applied this Divergence for fixed stimuli as a measure of discrimination be-

tween correlated and independent firing of pairs of cells in the primary visual cortex. This

provides a new, information-theoretic measure of the strength of correlation. We found that

the relative Jensen-Shannon Divergence (measured in relation to the case in which all cells

fired completely independently) decreases with respect to the difference in orientation pref-

erence between the receptive field from each pair of cells. Our finding indicates that the

Jensen-Shannon Divergence can be used for characterizing the effective circuitry network in

a population of neurons.

The underlying origins of synchronized firing between cortical neurons are still under dis-

cussion. Inter-cellular communication through chemically mediated synaptic transmission

is considered a major contributor to the formation of neuronal synchrony. GABAergic in-

hibitory neurons may be involved in the generation of oscillatory activity in the cortex and

its synchronization. Specifically, reduction of GABAergic inhibition may favour cortical

plasticity producing functional recovery following focal brain lesions. Research into neu-

rotransmitter systems is therefore of paramount importance to understand the origins of

synchronized spiking. However, it is necessary to understand first how simple focal abnor-

malities in GABAergic modulators can affect the information transmission in an impaired

brain tissue. In chapter V, we present a computational and analytical model of a topograph-

ically mapped population code which includes a focal lesion as well as a process for receptive

field enlargement (plasticity). The model simulates the recovery processes in the brain, and

allows us to investigate mechanisms which increase the ability of the cortex to restore lost

brain functions. We have estimated the Fisher Information carried by the topographic map

before and after the stroke. Our finding shows that by tuning the receptive field plasticity to

a certain value, the information transfer through the cortex after stroke can be optimized.

A widespread distribution of neuronal activity can generate higher-order stochastic interac-

tions. In this case, pair-wise correlations do not uniquely determine synchronizing spiking in

a population of neurons, and higher order interactions across neurons cannot be disregarded.

We present a new statistical approach, using the information geometry framework, for an-

alyzing the probability distribution function (PDF) of spike firing patterns by considering

higher order correlations in a neuronal pool. In chapter VI, we have studied the limit of

a large population of neurons and associated a deformation parameter to the higher order
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correlations in the PDF. We have also performed an analytical estimation of the Fisher in-

formation in order to evaluate the implications of higher order correlations between spikes

on information transmission. This leads to a new procedure to study higher order stochastic

interactions.

The overall findings of this thesis warn about making any extensive statement about the

role of neuronal spike correlations without considering the general case inclusive of higher

order correlations, and suggest a need to reshape the current debate about the role of spike

correlations across neurons.
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1. INTRODUCTION

1.1 Synchronized spike activity

1.1.1 Historical review

In 1926 Adrian and Zotterman, using the afferent nerve of stretch receptor in the frog mus-

cle, showed that it was possible by amplification to record the impulse in single nerve fibbers.

They summarized their results in this single sentence: ”The impulses set up by a single end-

organ occur with a regular rhythm at a frequency which increases with the load on the

muscle and decreases with the length of time for which the load has been applied”. Ever

since Adrian and Zotterman observed that the firing rate of peripheral touch receptors coded

for the pressure applied to a patch of skin, neuroscientists have been trying to understand

the neural code.

However, understanding brain functions requires interdisciplinary approaches involving many

levels of study: from the molecular level through the cellular level (individual neurons), to

the level of relatively small assemblies of neurons (for example cortical columns); to the

case of larger subsystems as the one which subserves visual perception, and up to the level

of large systems including the cerebral cortex, the cerebellum, and to nervous system as a

whole. Neuroscience encompasses approaches ranging from molecular and cellular studies to

human psychophysics and psychology. Moreover, theoretical analysis of physiological data

and computational modelling are important tools for characterizing what nervous systems

do, determining how they function, and understanding why they operate in particular ways.

Unfortunately, it is extremely difficult to understand exactly how sensory information is

processed in the mammalian brain. For example, the influx of sensory information to a

single mammalian superior retina is detected by an array of millions of receptors, each



capable of detecting the difference between hundreds of gray levels. They have integration

times which allow them to detect new signals in just a few seconds. These inputs are then

processed by hundreds of millions of other neurons, and many of them interact with each

other in complex ways. Moreover, depending on stimulus conditions a different sort of inputs

is generated which will eventually modify these interactions dynamically. With this huge

level of complexity, the experimental tools which have been available during the last thirty

years were insufficient to account for all the involved variables.

One of the main experimental challenges in neuroscience during the last thirty years was to

demonstrate that distributed neural populations in the visual cortex process information in

a cooperative way. The visual cortex is composed of a large number of areas, which contain

neurons that are tuned to different visual features. Temporally correlated activity of indi-

vidual neuronal pairs within the visual cortex has been investigated in many laboratories

since the early 1980s (Toyama et. al. 1981a; Michalski et. al. 1983 ; Toyama et. al. 1981b;

Ts’o et. al. 1986; Volgushev 1998; Aiple and Krueger 1998; Ts’o and Gilbert 1988,

Gochin et. al. 1991; Hata et. al. 1998; Alonso et. al. 1998; Molotchnikoff et. al. 1998), most

often with a motivation to reveal structural coupling between cells. This approach to func-

tional anatomy had been methodologically and conceptually outlined by (Perkel et. al. 1967;

Gerstein and Perkel 1969; Moore et. al. 1970; Kirkwood 1979; Aersten et. al. 1989,

Surmier and Weinberg 1985), and successfully applied to the invertebrate nervous system

(Bryant et. al. 1973). The results of these different studies showed the presence of tem-

porally precise synchronization within the cat and macaque visual cortex. But, these cor-

relations occurred between cells showing the same feature preference. Because the peaks

in the correlograms were centered around zero the obtained correlations were attributed to

common inputs and no attempts were made at this stage to determine whether response

synchronization might depend on the stimulus configuration.

Evidence has indeed been obtained that many neurons within a column of cat visual cortex

can engage in a state of highly synchronous activity in response to an optimally oriented

moving light bar (Gray-Singer 1989; Gray et. al. 1989). Oscillatory activity in the gamma

frequency range was observed in both multi-unit activity (MUA), these are spike sequences

elicited by clusters of neighboring cells which are not further subdivided into contributions

of individuals cells, and local field potential (LFP) signals, which may be thought of as a

local EEG (electro-encephalogram) signal of a cortical column. LFP oscillations can only
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be observed when many neurons fire in synchrony, since otherwise the individual neurons

electric fields would simply cancel out. Furthermore, the occurrence of high frequencies

demonstrates that local synchrony is generated with high temporal precision, which is also

indicated by the MUA responses. The idea that whole groups of neighboring neurons could

discharge synchronously in response to the same visual object has been attracting neuro-

scientists attention for many years (Kreiter and Singer 1996a; Kreiter and Singer 1996b).

Furthermore, this idea is in general agreement with the hypothesis that neighboring cells

with similar functional properties are tightly coupled to form what is called a neural group

(Edelman 1987).

The parietal and the motor cortex hold similar organizational principles as the visual cortex,

and also consist of numerous areas. Any cerebral activity involves large numbers of areas.

Coordinate activity between neurons can be present in these areas. This coordination has

been investigated by studying the correlations between field potentials, which reflect the

average activity of large groups of neurons in the vicinity of a recording electrode (Mitzdorf

1985). The strength of coupling between transcortically recoded field potentials in different

cortical areas changes dynamically during the performance of a behavioral task. Synchro-

nization has been found between areas of the visual and parietal cortex, and between areas

of the parietal and motor cortex, in cats that are awake (Roelfsema 1997). Therefore, syn-

chronization on a fine temporal scale may be also a natural mechanism for the integration

and coordination of neuronal activity between different brain regions.

But, what is exactly synchronization for? Interpretations were disparate. It has been pro-

posed that correlations might act as an extra channel for information, carrying messages

about the outside world not carried by other aspects of spike trains such as the overall firing

rate (Gray 1999; Richmond and Gawne 1998; Abbott and Dayan 1999; Panzeri et. al. 1999).

Others have proposed that correlation interferes with decoding the information represented

by the firing rate of a population of neurons (Zohary et. al. 1994; Shadlen and Newsome 1998,

Mazurek et al 2002). On the other hand, Von der Malsburg 1981 proposed that the tempo-

ral correlations between neurons could help to avoid a potentially combinatorial problem in

neural coding. Theories that propose the creation of ”cardinal” cells to represent particu-

lar combinations of signals from lower-order neurons are implausible because the number of

combinations to be coded exceeds the number of neurons available. In Von der Malsburg

theory, which constitutes the original formulation of the binding theory, the activity of low-
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order neurons would be combined only when their spike activity was synchronized to within

a few milliseconds to create a synchronously active cell assembly. Synchronization would be

dynamically modulated, so that a particular cell could belong to one cell assembly at one

moment and to a second at another; in this way, the combinatorial problem can be avoided

and arbitrarily large numbers of states can be coded with a reasonable number of neurons.

It has been thought that synchronous activity within the millisecond time range may be

the signature of neuronal assembly formation. If correlated activity can be the signa-

ture of neuronal assemblies, it may be essential in the context of multiple object encoding

(Von der Malsburg 1981; Von der Malsburg and Schneider 1986; Singer 1990a; Singer 1993).

According to the temporal binding hypothesis of von der Malsburg, cells belonging to the

same assembly fire action potentials synchronously with a precision of a few milliseconds,

and cells belonging to different assemblies fire asynchronously. The temporal binding hy-

pothesis requires cortical neurons to act as coincidence detectors (Abeles 1982; Softky 1994;

Koenig et. al. 1994). Neuroscientists have been trying to find evidence for this proposal in

the nineties (Alonso at. al. 1996; Matsumara et. al. 1996; Castelo-Branco 1998,

Mangulis and Tang 1998; Prut et. al. 1998; Stevens and Zador 1998; Christiakova 1998,

Azouz and Gray 1999; Larkum et. al. 1999).

Two studies (Kreiter and Singer 1992; Kreiter and Singer 1996b) in which coherent high fre-

quency oscillations and long-range synchronization were investigated in the motion-sensitive

area MT of awake fixating macaque monkey, yield several important findings. First, they

demonstrated the existence of synchronization of local and distant cell groups and also os-

cillatory activity in the gamma frequency range in the cortical area outside primary visual

cortex in the awake animal, indicating that these phenomena might be of general impor-

tance for visual information processing. Second, synchronization was shown to be stimulus

dependent: a given pair of neurons or neuronal groups which synchronized their responses

when activated with a single contour, fired independently when stimulated with two different

contours (but see Roelfsema et. al. 2004). Third, while differences in synchronization were

significantly different in these two stimulus conditions, firing rates did not change in a sys-

tematic way. Thus, some information about the stimulus is conveyed by the relative timing

of spikes, which is unavailable from firing rates alone. Fourth, they found synchronization

to be independent of the detailed characteristic of orientation and motion of the coherent

stimulus (but see Kohn and Smith 2005; Samonds and Bonds 2005).
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De Charms et al. (1996) demonstrated that the relative timing of cortical action potentials

can signal stimulus features themselves, a function even more basic than feature group-

ing. They found that populations of neurons in the primary auditory cortex can coordinate

the relative timing of their action potentials such that spikes occur closer together in the

time during continuous stimuli and in this way cortical neurons can signal stimuli even

when their firing rates do not change. Different alternative solutions to the binding prob-

lem have been suggested by (Singer 1990b; Singer and Gray 1995; Kreiter and Singer 1996a;

Engel et. al. 1997; Roelfsema 1998). In this framework, neurons may belong to the same

assembly in one stimulus condition and belong to separate assemblies in yet another stimulus

condition. The temporal binding hypothesis predicts the existence of particular stimulus-

dependent changes of synchrony. The occurrence of synchrony seems to be therefore more an

attribute of the dynamic state of the neuronal network than a mere side effect of anatomical

coupling.

However, theoretical achievements which may accounts for visual feature integration, using

the temporal correlation hypothesis such as binding theory, are usually based on sugges-

tive evidence found by Kreiter and Singer in the visual cortex (Kreiter and Singer 1996a;

Kreiter and Singer 1996b). Over the last ten years there has been no conclusive evidence

about the binding theory. Several critics have indeed suggested that the theory does not hold

up (Shadlen and Movshon 1999; Palanca and DeAngelis 2005). According to the alternative

binding by rate enhancement hypothesis, features of single perceptual object are bound in-

stead if the neurons encoding them jointly enhance their response (Roelfsema et. al. 2004).

On the other hand, the influential Feature Integration Theory developed by Anne Treis-

man (Treisman and Gelade 1980) suggested instead that attention is responsible for binding

different features into consciously experienced wholes. That is, the neurological literature

supports the idea that binding is a high level process. But, conceptual problems arise when

the binding is considered as strictly intra-cortical (Eckhorn et. al. 1988; Gray-Singer 1989).

Intra-cortical binding through oscillation essentially solves the problem using circular logic.

The cortex bind object features to identify the object, but to bind the features the cortex

needs to know in advance that they are part of the same object. If we consider synchrony to

be informative to perceptual events, some representation of that information must also be

available in the retina. The object-binding problem therefore can not be completely solved

in primary visual cortex, and the computation involved cannot be completed until a fairly
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high level in the cortical hierarchy. Hence, a natural question is why synchrony should be

present in the primary visual cortex if binding is not computed there?

Neurons in cortex receive 3,000-10,000 synaptic inputs, 85 % of which are excitatory. Nearly

half of the excitatory input to any one neuron comes from nearby neurons that fall within

a cylinder of 100-200 µ m radius, arranged as a column, sometimes termed a mini-column

(Desimone 1991; Andersen 1995; Churchland et. al 1994; Cobb et. al. 1995). This suggests

that cortical neurons receive abundant excitatory input and are embedded in a network

of highly convergent signals. The networks have a recurrent nature, it is likely therefore

that those most excitatory neurons receive similar inputs and emits spikes under similar

conditions. This means that the conditions that lead to a response of any of one neuron

in mini-column are likely to involve considerable activity from a large number of its inputs

and its outputs. It is therefore reasonable to expect that many spikes inputs will arrive in

synchrony within a very small time window.

As we pointed out before there are several experiments, which show that the timing of visual

events on a millisecond scale can influence perception. These experiments have demonstrated

that the visual system can group features on the basis of similarity of time course, a natural

extension of the Gestalt concept (Leonards et. al. 1996; Alais 1998; Usher and Donnelly 1998;

Lee and Blake 1999; Samonds and Bonds 2005). In this sense the experiments support in

some way the original conjecture von der Malsburg’s. Von der Malsburg’s (1981) original

conjecture support indeed the idea that temporal synchrony could be created by visual in-

put. However, one should keep in mind that even if temporally precise activity is a necessary

condition for binding, it might not be a sufficient condition. This kind of statement was sup-

ported by (Golledge at. al. 2003) who found that firing rates, rather than correlations, are

the main element of the population for feature binding in the primary visual cortex. They

did not find that neuronal groups systematically synchronized their responses when they

were activated with a single contour, and they found that cells fired independently when

stimulated with two different contours. The ultimate role of synchronization in the primary

visual cortex in the object group features recognition remains still unclear.

The integration of features into gestalt entities is one the most important challenges in cog-

nition. In order to get a better understanding of how the brain can possibly know that

features belong to the same objects it is reasonable to expect that cortical synchrony starts
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with visual stimulus and the retinal inputs. Spatial and temporal correlations in the visual

scene cause synchronous activation of populations of retinal cells. This leads to matching

cortical latencies, triggering synchronization. Transient synchrony occurs with either dy-

namic or novel stimuli (Kruse and Eckhorn 1996) propagating from retina to LGN (lateral

geniculate nucleus) to the cortex (Castelo-Branco 1998; Neuenschwander et. al. 2002).

Transient visual inputs are in particular capable of eliciting burst of cortical activity whose

onset is reliable to within a few milliseconds, and whose duration can be as brief a few millisec-

onds (Kohn and Smith 2005; Shadlen and Newsome 1994; Bair and Koch 1996 Bair 1997;

Buracas et. al. 1998). This supports the idea that it is not really clear how to distinguish

visually elicited synchrony and hypothetical synchrony due to binding. If we suppose that

many inputs spikes can arrive in synchrony within a very small time window while the cor-

tical column is active, this would imply that cortical neurons can respond selectively to

synchronous input with a few milliseconds.

But, these are not the only issues that remain unsolved. The underlying origins of synchro-

nized firing between cortical neurons are also still under discussion. It has been thought for

instance that inter-celular communication through chemically mediated synaptic transmis-

sion was the major contributor for in the formation of synchronized spikes firing. This is,

the network of GABAergic interneurons connected by chemical synapses was a candidate for

the generator of synchronized oscillations in the hippocampus (Fukuda et. al. 2000). On the

other hand, electrical coupling by gap junctions between neurons were only thought as a key

element of neuron to neuron communication in early brain development. However, there are

growing morphological and physiological evidence which indicates that the electrical synapse

can also play an important role in the juvenile and adult brain (Venance et. al. 2000), and

remarkably, electrical synapses in the cortex are frequently found to connect GABAergic in-

terneurons. This is the case for instance in the striatum (Kita et. al. 1990) the hippocampus

(Venance et. al. 2000), the cerebellum (Mann-Metzer 1999), the reticular thalamic nucleus

(Landisman et al. 2002), and the neocortex (Gibson et. al. 1999, Galarreta and Hestrin 1999

Fukuda et. al. 2000). Recent experiments have shown that electrical synapses can be in-

volved in synchronizing neural activity. Blocking of inhibition and excitation does not

reduce the synchronization of interneurons in the molecular layer of the cerebellum be-

tween which electrical synapses have been identified (Mann-Metzer 1999). Neuronal syn-

chrony of neurons interacting via electrical and/or inhibitory synapses is still being highly
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debated (Venance et. al. 2000; Lewis et. al. 2003; Pfeuty et. al. 2003; Pfeuty et. al. 2005;

Bennett et. al. 2004).

It is still not clear how intrinsic cellular properties would exactly affect synchrony of neurons

coupled via inhibitory or electrical synapses, or what is the real significance of the combi-

nation of electrical and inhibitory couplings for neuronal dynamics. The electrical coupling

between neurons might define synchronized domains. Synaptic interactions might also have

some influence in synchronization. The cerebral cortex and hippocampus can indeed show

synchronized bursts of activity underlying strong recurrent excitatory connections, the pres-

ence of intrinsically burst-generating neurons, ephaptic (non-synaptic) interactions among

closely spaced neurons (Buzsaki et. al. 1996), and synaptic plasticity.

If we consider the information coding is based on dynamics and synchronization of neural

activity then the idea of considering the information coding as a multi-level process several

hierarchical levels can be very attractive (Borisyuk et. al. 1997). In this framework dynam-

ical model can be helpful to understand the basic properties of information processing in

the brain. However, it is yet not even well known how single cell coupled with other cells

display nonlinear dynamic properties and its role in the rhythmic synchronization of electri-

cally coupled neurons (Makarenko and Llinas 1998). This high level of complexity makes it

very difficult to account for all the underlying involved physical phenomena which might be

involved in the origins of synchronized firing.

1.2 The current state of the problem

1.2.1 A topic of intense debate in the neuroscience community

The nature of the neural code is a topic of intense debate within the neuroscience community.

One of the central issues in neural coding is whether individual action potentials and individ-

ual neurons encode independently from each other, or whether correlations between different

spikes and different neurons carry a significant amount of information. Independent-spikes

codes are much simpler to analyze than correlation codes, and thus if correlations were not

important for information decoding then this would strongly affect our strategies in the

study of the neural code. So, if we want to study the neural code, we must consider whether
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individual neurons act independently, or not.

If they act independently, then the relative timing of spikes contains no additional informa-

tion about the stimulus. In contrast, if correlations between the spiking of different neurons

provide additional information about a stimulus that cannot be obtained by considering all

their firing patterns individually we have a correlation code. An independent neuronal code

assumes that neurons act independently, and means that one does not need to take correla-

tions into account. Influential models of population coding have assumed independence of

the cell firing rate (Georgopoulos 1990). They are based on the idea that the nervous system

can take population average over neurons in order to achieve reliable stimulus coding, in the

same way that an experimenter with a single electrode can determine the single neurons

response properties by averaging over trials of stimulus representation.

Within this framework, if we considered a pair of correlated neurons with overlapping tuning

curves and without any stimulus correlation dependence, the covariance of neuronal firing

would be conceived as a limiting factor for a population of neurons to convey information due

to the introduction of redundancies (Zohary et. al. 1994). Contrary to models which assume

independence, synchronous firing of two or more neurons is one possible mechanism for

conveying extra information compared to an independent neuron code. Rhythmic oscillation

of population activity provides another possible mechanism. Both synchronous firing and

oscillations are common features of the activity of neuronal populations. However, the

existence of these features is not sufficient for establishing a correlation code, because it

is essential to show that a significant amount of information is carried by the resulting

correlations.

Neurons in the retina, LGN, and primary visual cortex respond to light stimuli in restricted

regions of the visual field called their receptive fields. Retinal ganglion cells in the same vicin-

ity have long been known to have receptive fields that overlap extensively. This means that

the retinal code at the level of the ganglion cells intrinsically uses populations of neurons to

represent even the sharpest spatial features within a visual image. In addition, natural visual

scenes have strong spatial correlations (Field 1987; Van der Schaaf A. and van Hateren 1996),

which may cause an even wider group of ganglion cells to participate in encoding any single

feature within a natural image. A central issue in studying the retina, LGN, and primary

visual cortex is to understand how information is represented collectively by the activity of
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a population of neurons. It is well known that the visual information reaches the brain by

way of a fine cable, the optic nerve. In the traditional view of retinal function, each ganglion

cell axon represents an independent channel of the information the eye conveys to the brain.

The bundle of such axons comprising the optics nerve forms a set of labelled lines, each

conveying the presence of a specific feature. Given the limited capacity of the optic nerve,

the idea that each of these features should be nearly unique has been attractive for a long

time (review by Barlow 2001).

Information theory (Shannon 1948) allows us to address how much the neuronal responses

tell us about the stimulus. We can use it to ask what forms of neuronal response are

optimal for conveying information about the stimuli. The relevance of information theory

for neuroscience ultimately derives from the fact that the brain possesses many subsystems

that acquire, process and transmit information. Therefore many brain structures can be

considered as communication channels, and the appropriate mathematical framework for the

analysis would be the Information Theory. Mutual Information (Shannon 1948) quantifies

how well an ideal observer can discriminate between all members of the stimulus set based

on the neuronal responses of a single trial.

To understand the neural code means to know how information about the outside world

is carried in neuronal spike trains. It has been known for many years that neuronal spike

trains fired by adjacent cortical neurons exhibit correlations - the probability of one cell

firing may depend upon whether another cell fires an action potential (Zohary et. al. 1994;

Kreiter and Singer 1996a; Kreiter and Singer 1996b; Gawne 1993; De Oliveira et. al. 1997;

Lebedev et al. 2000; Mastronarde1983). Whether (and how) such correlations contribute to

the coding of sensory information remains highly debated. Some experimental and theoreti-

cal findings support the usefulness of temporal correlations among a population of neurons.

Information theoretical considerations have shown that correlations of neuronal firing can en-

hance the accuracy of populations responses, increase the information rates and allow for in-

creased stimuli discriminability (Snippe and Koenderink 1992; Richmond and Gawne 1998;

Abbott and Dayan 1999, Panzeri et. al. 1999).

Synchronous spikes in a neuronal ensemble can carry extra information not available from

individual spikes elicited by the neurons independently. It is usually referred as synergy

(redundancy) when the information conveyed by an ensemble of neurons is larger (smaller)
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than the sum information conveyed by each neuron independently (Panzeri et. al. 1999).

Retinal ganglion cells have been found to encode synergistically (Meister 1996), roughly in-

dependently (Nirenberg et. al. 2001), or redundantly (Puchalla et. al. 2005). In the lateral

geniculate nucleus, Dan et al (1998) reported synergistic effects. In the cortex, most studies

have concluded that neurons provide roughly independent information, with some evidence

for weak synergy in V1 (Reich et. al. 2001; Golledge at. al. 2003; Kayser et. al. 2004), the

motor cortex (Averbeck and Lee 2003; Oram et. al. 2001), and the somatosensory cortex

(Petersen 2001).

It is important to point out that the mentioned studies, the authors used different met-

rics. For instance, Meister associate an information measure with individual occurrences

of events. In this framework correlations can act as an extra channel of information and

removing them would lead to a loss of information rather than a gain. Puchalla et. al. 2005

estimated synergy/redundancy (∆Synergy > 0 and < 0, respectively), where this measure

is the total information that neuronal responses provide about a set of stimuli minus the

information provided by the individual responses taken separately. However, this measure

can be positive, negative, or zero both when correlations are not important for decoding

(Nirenberg and Latham 2003). On the other hand, Nirenberg et. al. 2001 uses the condi-

tional relative entropy, or average KullbackLeibler distance (∆I), between the ”correlated

dictionary”, P (s|r), and the ”independent dictionary” Pind(s|r) . ∆I can be used to asses

the importance of correlation for decoding, and is equal to Icor−dep obtained using the In-

formation breakdown method (Pola et. al. 2003). One would expect the approach used by

Meister would capture the effects of only one kind of correlations, synchronous spikes across

neurons and not the correlations which could be captured by the use of ∆I (or Icor−dep).

Hence, the use of different metrics would eventually lead to different conclusions.

In the visual, auditory, motor and premotor cortex and the hippocampus, changes of syn-

chronization in relation to external or internal events have been observed without significant

changes of firing rates (Vaadia et. al. 1995; De Charms et. al. 1996; Kreiter and Singer 1996b;

Riehle et. al. 1997; Sakurai 1999). These findings show that information about these events

was available to the nervous system by relative timing of spikes. Many behavioral responses

are completed too quickly for the underlying sensory process to rely on estimation of neu-

ral firing rates. Hence, the fine temporal structure of spike trains should play an impor-

tant role and the temporal pattern of activity should carries information about the stim-
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ulus (Mainen and Sejnowski 1995). But, which features of the pattern are important? It

has been hypothesized that stimulus-driven oscillatory activity in a neuron is a code of

significant stimulus (Borisyuk et. al. 1990; Borisyuk et. al. 2000b). Recent studies in the

somatosensory cortex show that the complexity of the response of biological neuronal pop-

ulations is potentially contained in precise spike timing. Information about stimuli in the

striate cortex could be encoded in the precise spike timing, rather that neuronal firing rate

(Panzeri et. al. 2001b). Cortical neurons with similar stimulus selectivities are found in close

proximity to each other (Hubel et. al. 1962; Mountcastle 1957; De Angelis et. al. 1999).

It is highly debated how neurons in the cerebral cortex represent a stimulus when the response

variability is correlated (Zohary et. al. 1994; Lampl et. al. 1999,Shadlen and Newsome 1998).

At another level when these correlations are present they may have significant effect on

the population coding of sensory information. Several pieces of evidence point to correla-

tions between V1 neurons being orientation and contrast dependent (Kohn and Smith 2005;

Samonds and Bonds 2005). Recently, Samonds and Bonds 2005 have proposed that corti-

cal synchrony originates from coherent spatiotemporal stimulus structure, whereas bursts

and oscillations maintain and modulate synchrony by preserving its coordination across cell

populations. Oscillation occurs more often for drifting as opposed to stationary gratings

(Engel et. al. 1990), and thus, one would expect that they are only relevant for motion

processing. Synchronization and oscillation may therefore play a key role in propagating

information reliably. Oscillations can help to maintain transient synchronization. This al-

lows the possibility that synchronization could be used in higher cognitive processing in the

cortex. This higher order spatial and temporal properties of visual stimuli are progressively

extracted in the pathway from the retina through the cortex. Therefore, at the level of the

striate cortex correlations become progressively harder to detect (Purpura et al. 1994) as

the stimuli encoding become more and more abstract.

Hence, it is not straightforward to use the appropriate stimuli to identify the representation

of the visual information at this higher level of the visual system (Usrey and Reid 1999).

Neurons interact through different dynamical pathways in the complex architecture of visual

processing in the cortex of primates. It may not be preposterous therefore to think of syn-

chrony as a mechanism for reliable signal transmission that extracts higher-order correlations

as a gestalt rather than as an active binding mechanism that represents a secondary code to

link a system of simple feature extraction.
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This is, higher order correlations might well be a necessary feature to transmit information

between different parts of the brain, and also they could help to decode information about

the stimuli through the pathway from the retina to the cortex. However, to test all these

hypothesis it would be necessary to design an experiment where complex or natural stimuli

could activate higher order correlations in a population of neurons. But, at the same time,

it would be important to avoid all the possible unwished effects of anesthetics. This is a

huge challenge, since nowadays it seems more reliable to perform experiments using just

basic stimuli, because one would expect that they will not affect the responses if the animal

is awake or under the effect of anesthetics. Once again, this is a limitation if we want to

achieve a much better understanding of what the role of higher correlations is as a gestalt

in the processing of information.

Neurons could learn in each level of processing to extract relevant information about the

stimuli using a biologically unsupervised learning strategy (Thorpe 2005). Information

about spatial and temporal properties of visual stimuli can be progressively extracted in

the pathway from the retina through the cortex as if we were considering a non-linear net-

work. Higher-order features extraction could be interpreted as the binding of lower-order

local features, but the importance of the distinction between an active intra-cortical binding

mechanism versus higher-order filtering is that the latter process will not run into a circular

logic contradiction. However, it might still not pass every possible test of feature binding

(for a discussion review see Shadlen and Movshon 1999).

Just by gathering the above mentioned experimental and theoretical evidences, we can guess

that to investigate the role of temporal correlated neuronal activity is a key element for the

understanding of the neuronal coding. To get a better understanding of the role of correla-

tions can have widespread implications, not only for our basic understanding of how the brain

operates, but also in our understanding of neuronal dysfunctions (Uhlhaas and Singer 2006).

However, the matter of how the coding of sensory information is affected by spike correlations

across neurons has been fraught with dissension, and the debate has become polarized into

two different postures that co-exist in the neuroscientific community. One of the postures,

supported by many authors (Eckhorn et. al. 1988; Gray-Singer 1989; Gray et. al. 1989

Meister et. al. 1995; Vaadia et. al. 1995; De Charms et. al. 1996; Dan et. al. 1998,

Steinmetz et. al. 2000) is that correlations are important in the coding of sensory infor-
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mation, whereas others have proposed that they are not important (Nirenberg et. al. 2001;

Oram et. al. 1998,Petersen 2001; Levine et. al. 2002; Panzeri et. al. 2002a; Panzeri et. al. 2002b,

Averbeck et. al. 2003; Averbeck and Lee 2003; Averbeck and Lee 2004; Golledge at. al. 2003).

This dissension can be traced to different methods used to asses the role of synchronized

spike firing. For instance, one of the most used methods consisted in looking for stimulus-

dependent changes in cross-correlograms (Eckhorn et. al. 1988; Gray-Singer 1989,

Gray et. al. 1989; Vaadia et. al. 1995; De Charms et. al. 1996). However, the firing rate

can alter the shape of cross-correlograms making it difficult to separate information carried by

firing rates from information carried by correlations. Moreover, cross-correlograms account

only for near synchronous spikes. This is, they do not account for correlations which occur

on a longer time scales and among patterns of spikes.

1.3 From Signal Detection Theory to Information Theory

1.3.1 Signal Detection Theory

One of the early objectives of psychophysics research was to measure the sensitivity of our

sensory systems. This research has led to the development of the idea of a threshold, the

least intense amount of stimulation needed for a person to be able to see, hear, feel, or detect

a stimulus. But, one of the problems with this concept was that even though the level of

stimulation remained constant, people were inconsistent in detecting the stimulus. Factors

other than the sensitivity of sense receptors influence the signal detection process. There

is no single, fixed value below which a person never detects the stimulus and above which

the person always detects it. In general, psychophysics researchers define a threshold (or

attitude) as that intensity of stimulation at which a person can detect some percentage of

all times, for example, fifty percent.

An approach to solving this problem was provided by Signal Detection Theory. This theory

deals with the detection of the stimulus as a decision-making process, which is determined

by the nature of the stimulus, by how sensitive a person is to the stimulus, and by cognitive

factors. In other words, a person will be able to detect more intense sounds or lights more

easily than less intense stimuli. But, a more sensitive person requires a weaker stimulus
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intensity than a less sensitive person would. According to the theory, there are a number

of psychological determiners of how we will detect a signal, and where our threshold levels

will be. Experience, expectations, physiological state (e.g. fatigue) and other factors affect

thresholds (attitudes).

Signal Detection Theory provides a precise language and graphical notation for analyzing

decision making in the presence of uncertainty. The general approach of signal detection

theory has direct application in terms of sensory experiments, and also offers a way to

analyze many different kinds of decision problems. If a person is quite uncertain as to

whether the stimulus was present, the individual will decide based on what kind of mistake

in judgment is worse: to say that no stimulus was present when there actually was one or to

say that there was a stimulus when, in reality, there was none.

Let’s illustrate this with an example from everyday life. Suppose a person is expecting an

important visitor, someone that it would be unfortunate to miss. As time goes by, the person

begins to hear the visitor and may open the door, only to find that nobody is there. This

person is detecting a stimulus, or signal, that is not there because it would be worse to miss

the person than to check to see if the individual is there, only to find that the visitor has

not yet arrived.

In a typical sensory experiment that involves a large number of trials, an observer must

try to detect a very faint sound or light that varies in intensity from clearly below normal

detection levels to clearly above. The person responds positively (i.e., there is a stimulus) or

negatively (i.e., there is no stimulus). There are two possible responses, Yes and No. There

are also two different possibilities for the stimulus, either present or absent.

Psychophysics research has established that when stimuli are difficult to detect, cognitive

factors are critical in the decision an observer makes. If a person participates in an experiment

and receives one dollar for each Hit and there is no penalty for a False Alarm, then it is in the

person’s best interest to say that the stimulus was present whenever there is uncertainty. On

the other hand, if the person loses two dollars for each False Alarm, then it is better for the

observer to be cautious in saying that a stimulus occurred. This combination of rewards and

penalties for correct and incorrect decisions is referred to as the Payoff Matrix. If the Payoff

Matrix changes, then the person’s pattern of responses will also change. This alteration in

responses is called a criterion shift.
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There is always a trade-off between the number of Hits and False Alarms. When a person

is very willing to say that the signal was present, that individual will show more Hits, but

will also have more False Alarms. Fewer Hits will be associated with fewer False Alarms.

As such, the number of Hits is not a very revealing indicator of how sensitive a person is;

if the person claims to have heard the stimulus on every single trial, then the person will

have said Yes in every instance in which the stimulus was actually there. This is not very

impressive, however, because the person will also have said Yes on every trial on which there

was no stimulus. Mathematical approaches have been used to determine the sensitivity of an

individual for any given pattern of Hits and False Alarms; this index of sensitivity is called

d′ (d-prime) and is equal to the square-root of the signal-to-noise ratio. A large value of d′

reflects greater sensitivity.

Signal Detection Theory is an intent to quantify the ability to discern between signal and

noise. It constitutes one of the first attempts to model the processes involved in elementary

perceptual recognition tasks. It is based on the assumption that nearly all reasoning and

decision making takes place in the presence of some uncertainty. It could be used to evaluate

performances and can also help to solve problems in psychophysics.

To develop a measure of sensitivity, it is necessary to go beyond a simple description of the

data. A measure that describes the detectability of a signal must be based on the idea of

how the detection process work as a whole. The basis is constructed from statistical decision

theory and is similar to the idea that are used in statistical testing to make decision between

two hypothesis. To make predictions of the signal detection model the form of the signal and

noise distribution must be assumed. The simplest and most natural approach is the normal

distribution. However, this can also constitute a limitation.

Receiver operating characteristic (ROC) analysis was originally developed for using with

radar technology to separate observer variability from the innate detectability of the signal.

Sensitivity, or recall rate, is a statistical measure of how well a binary classification test

correctly identifies a condition. The specificity is a statistical measure of how well a binary

classification test correctly identifies the negative cases, or those cases that do not meet the

condition under study. The Receiver Operating Characteristics (ROC) of a classifier shows

its performance as a trade off between selectivity and sensitivity. In signal detection theory,

a receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot of the
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Fig. 1.1: d’ measures the distance between two normal distributions of equal variance.

sensitivity vs. [1 - specificity] for a binary classifier system as its discrimination threshold is

varied. Measurement of ROC curves provides an objective tool for describing the ability of

an observer to detect an object structure in any particular imaging situation, independent

of the attitude or threshold which the observer assumes.

In simple idealized detection situations ROC curves exhibit certain symmetric properties

and performance ranking of imaging systems is unambiguous. ROC analysis is related in a

direct and natural way to cost/benefit analysis of diagnostic decision making. ROC analysis

provides tools to select possibly optimal models and to discard suboptimal ones indepen-

dently from (and prior to specifying) the cost context or the class distribution. But, ROC

curves determined in actual visual detection experiments are characteristically asymmetric

and a generally meaningful measure for comparing such curves has not been identified so

far.

The basic idea behind signal detection theory is that neurons are constantly sending infor-

mation to the brain, even when no stimuli are present. This is called in this framework

neural noise. The level of neural noise fluctuates constantly. When a faint stimulus, or sig-

nal, occurs, it creates a neural response. The brain must decide whether the neural activity

reflects noise alone, or whether there is also a signal.

For very intense signals, there is no problem in deciding if there was a stimulus because the

neural effect of the signal far outweighs the neural effect of the noise. Similarly, when there is

no signal, the nervous system does not respond as it does when an outside signal is present, so

decisions are easy. On the other hand, for near-threshold signals, it can be difficult to know

whether neural activity results from noise alone or from a signal plus noise. At this point, the

observer makes a decision based on the payoff matrix (Green and Swets 1966; Wickens 2001).
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1.3.2 Information Theory

In order to get a better understanding on how we see, hear and think, we need to learn how

the activity of neurons relates to the state of the perceived world. Neurons use spikes of

membrane potential, known as action potentials, to convey information. As these are unitary

events, the set of individual time points of each action potential completely describes a neuron

response to sensory stimulation.

How to characterize the neuronal responses by a given stimuli is indeed very difficult, because

of the complexity and variability of the neuronal responses. Neurons typically respond by

producing complex spike sequences that reflect both the intrinsic dynamics of the neuron

and the temporal characteristics of the stimulus. Isolating features of the response that

encode changes in the stimulus can be difficult, especially if the time scale for these changes

is of the same order as the average interval between spikes. Neuronal responses can vary

from trial to trial even when the same stimulus is presented repeatedly. A potential source

is the randomness associated with various biophysical processes taking place during a trial.

The complexity and trial-to-trial variability of action potential sequences make it unlikely

that we can describe and predict the timing of each spike deterministically. But, a complete

description of the stochastic relationship between a stimulus and a response would require

us to know the probabilities corresponding to every sequence of spikes that can be evoked by

the stimulus. That is, the neural responses and their relation to the stimulus, are completely

characterized by the probability distribution of spikes (time) as function of the stimulus. The

independent-spikes code would correspond to the case in which the generation of each spike

is independent of all other spikes in the train. In contrast, if the individual spikes do not

encode independently of each other, we call the code a correlation code, because correlations

between spikes may carry additional information. In reality, information is likely to be

carried by both the individual spikes and through correlations, and some arbitrary dividing

line must be established to characterize the code.

In 1948 Shannon published A Mathematical Theory of Communication in two different

volumes of the Bell System Technical Journal. His work was focused on the problem of how

to best encode the information a sender wants to transmit. Shannon developed Information

Theory, as a measure for the uncertainty in a message while essentially inventing what became

known as the dominant form of ”information theory”. He invented information theory as a
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Fig. 1.2: Percentage of correct detections for an ideal observer in a detection task as a function of

SNR.

general framework for quantifying the ability of a coding scheme or a communication channel

(such an optic nerve) to convey information. It is assumed that the code involves a number of

symbols (such as different neuronal responses), and that the coding and transmission process

are stochastic and noisy. Communication channels, if they are noisy, have only limited

capacities to convey information. The techniques of information theory are used to evaluate

these limits and find coding schemes that saturate them. Moreover, information theory

allows us to address how much the neuronal responses tell us about the stimulus. We can

use them to ask what forms of neuronal response are optimal for conveying information about

the neuronal stimuli. Therefore many brain structures can be considered as communication

channels, and an appropriate mathematical framework is the information theory.

This basic approach was introduced quite some time ago (Werner and Mountcastle 1965),

but the state of the art in single cell information analysis has advanced considerably in

recent years. This is, the understanding of the principles which could lead the processing of

sensory information, was considerable boosted by the use of Shannon Information Theory

(Strong et. al. 1998b; Tolhurst 1989; Rolls et. al. 1997a; Rolls 1997b; Panzeri et. al. 1999;

Panzeri et. al. 2001b; Nirenberg and Latham 2003; Averbeck et. al. 2006). This approach

has been quite successful in studying the sensory processing properties of single neurons,
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just by estimating the mutual information that neuronal responses convey about a set of

controlled sensory stimuli.

The mutual information measures the amount of information that the knowledge of a given

random variable (y) conveys about another random variable (x). Mutual information can

also be expressed as a Kullback-Leibler divergence, of the product p(x)p(y) of the marginal

distributions of the two random variables X and Y, from p(x,y) the random variables joint

distribution:

I(X, Y ) = DKL(p(x, y)|p(x)p(y))
=
∑

xϵX

∑

yϵY p(x, y)log2
p(x,y)
p(x)p(y)

= H(X) +H(Y )−H(X, Y ), (1.1)

where H(X) =
∑

xϵX p(x)logp(x), H(Y ) =
∑

xϵY p(y)logp(y) are the Shannon marginal

entropies, and H(X, Y ) =
∑

yϵY p(x, y)log2p(x, y) is the joint Shannon entropy of X and Y.

This quantity can be evaluated for different coding schemes, and used to make conclusions

about the nature of the representation of the sensory information by neuronal spike trains.

However, the problem with real measures of entropy is that they depend on a limited number

of samples provided by the experiment. It is therefore important to use a theoretical approach

that can remove sample size dependent bias from the entropy estimations. On the other

hand, it is well known that approaches usually performed to estimate the entropy tend

to underestimate it since they are biased, and this effect can be avoided by the use of

a perturbative expansion in the asymptotic regime. The idea of calculating entropy by

counting coincidences was proposed a long time ago by Ma for physical systems in the

micro-canonical ensemble, where a uniform distribution of entropy corresponds to states of

fixed energy. The Bayesian prior proposed by Nemenman et. al. 2004 extends this idea to

an arbitrarily complex distribution. The goal of this method (which in the following will

be denoted by NSB) is to construct a Bayesian prior, which generates a nearly uniform

distribution of entropies in order to correct sample size dependent bias at its source.

Let’s go back for a moment to the Signal Detection Theory framework. An interesting mea-

sure is the signal-to-noise ratio (SNR). SNR allows us to quantify the size of the applied or

controlled signal relative to fluctuations that are outside experimental control. It has gen-
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eral applicability to the analysis of sensory discrimination, or to evaluate the performance of

neuronal networks. A common use of SNR is to compare the quality of electrophysiological

recordings containing events, action potentials or local field potentials, recorded in the pres-

ence of noise. This measure can be used to characterise the reliability of neural information

transmission (Schultz S.R 2006). The signal-to-noise ratio is defined as the ratio between a

signal and the background noise

SNR =
Psignal(ν)
Pnoise(ν)

, (1.2)

where ν is the frequency. In a signal detection scenario where a signal shifts between two

values 0 and ∆r, assuming an additive Gaussian noise of variance σN
2, the SNR can be

expressed as

SNR =
∆r2

σN 2
= d′

2
, (1.3)

where d′ =
√
SNR (see Figure 1.1) is the discriminability between signals and a commonly

used measure in psychophysics (Green and Swets 1966). Figure 1.2 shows the probability

finding a correct detection in this framework, which can be obtained by integrating over

the Gaussian noise (Green and Swets 1966; Reike et. al. 1998; Schultz S.R 2006). If SNR

becomes large, performance approaches 100 % correct, at SNR = 1, the percentage of correct

discriminations is 69 % which is a common definition of the threshold for detection in the

psychophysics literature.

SNR can be also interpreted as an information quantity, in the sense of Shannon mutual

information. This is, considering that signal and noise follow Gaussian distributions and for

the case of a discrete time channel with additive Gaussian noise (Cover and Thomas 1991),

the mutual information reads

I =
1

2
log2(1 + SNR). (1.4)

In the continuous channel with Gaussian noise it can be expressed as (Shannon, 1949)

I =

∫ ∞

0

1

2
log2(1 + SNR(ν))dν (1.5)

This information capacity provides an upper bound on the mutual information. The power

spectrum of a Gaussian process can be seen as an ordered list of the variances of frequency
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components. Each of these frequencies can be viewed as a ”symbol”, and the information car-

ried follows the form of the information per symbol. Then the total information is obtained

by summing over all independent symbols, and normalizing to express it as an information

rate. These steps can be accomplished by integrating over frequencies.

The discussion presented above brings to light some of the basic connections between Signal

Detection Theory and Information Theory. However, it does not tell us yet how it can be

possible to encode information about a given stimuli when complex spikes occur only about

once per second.

Shannon’s Information Theory formalizes the relationship between events, such as stimulus

and response events, strictly based on their probabilities of occurrence (e.g., P (si|rj), the
probability that stimulus si occurred given the response rj). Information Theory allows us

to address how much the neuronal responses tell us about the stimulus independently of any

mechanism or model.

Information theory tells us how much information about a set of stimuli is encoded in a set of

responses, which is a measure of how accurately we can know what stimulus was presented,

given the response. This measure can also be defined as the reduction in uncertainty about

which stimulus was presented before and after analyzing the response.

Hence, the first factor that determines the information is the a priori uncertainty in the

stimulus set. To quantify this uncertainty, Shannon defined a measure H(S) called entropy,

which is in many regards analogous to the entropy (disorder) defined in thermodynamics.

Once we analyze the response to the stimulus we will typically still be somewhat uncertain

about which stimulus was presented; this residual uncertainty, called equivocation, can be

quantified by H(S|R), i.e., the entropy about the stimulus given the response.

Two factors contribute to equivocation: first, because of noise, two presentations of the

same stimulus may evoke different responses. Second, the difference between the responses

to different stimuli might be small. H(S|R) is thus a function of the overlap between the

responses to one stimulus and the responses to the other stimuli. The difference between

H(S) and H(S|R) is the average reduction in uncertainty about the stimulus given the

response, called the mutual information.

The real advantage of the Shannon mutual information measure is that it is independent
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of any mechanism or model of how the stimulus and response are related. This can be

particularly useful when the firing pattern of the neuron is known, but when the cause of

this response is not known. Calculating information content requires only the stimuli and

the responses to be represented by a code. Information theory does not specify which code

to use, but simply says, for a given code, how much information is present. The key to

applying this method in neurophysiology is to define an appropriate stimulus set code and

a response set code.

Information theory is concerned with how efficiently information sources can be compressed

and transmitted. Neurons communicate with each other with a series of pulses, each of

which we call an action potential or spike. The rate at which spikes occur for a given neuron

changes with stimulus variations. More subtle changes, like in the probability distribution

of the inter-spike intervals, can also occur. This is, the stimulus is encoded in the pattern of

action potentials but the same stimulus does not result in exactly the same pattern.

Spikes are about a millisecond long. However, neuroscientists have found very low discharge

rates (less than 1 spike/sec and even zero) and rates as high as several thousand spikes/sec.

For cortical neurons, for example, typical range are between zero and 100 spikes/s. Spikes

typically have the same waveform and amplitude, and it is usually assumed that when

spikes occur they encode information. But, in general spike timing can deviate much from

the Poisson behavior.

It is also necessary to know how neurons process their inputs. Each neuron usually receives

input from many neurons. When each input produces a spike, whether a spike is excita-

tory or inhibitory, and on how the neuron integrates these inputs determines the neuron’s

information processing function. The neuron will produce a spike only when the timing and

strength of these inputs is correct. Excitatory inputs tend to cause spikes; inhibitory inputs

tend to suppress them. If a time interval that spans several spikes occurring in a neuron’s

inputs is considered, neural computation amounts to each neuron producing spikes based on

the timing of its inputs. Moreover there are many neurons and how they are connected to

each other is also extremely complex.

Several inputs are processed. Potentially those inputs could be expressing information to-

gether rather than individually. This is a population or an ensemble code working together

to represent information. One neuron is just too noisy to represent the stimulus. The idea
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of a simple averaging across neurons responding to the stimulus seems to be to very naive

to be a real representation of the neural code. Moreover, the spike timings among neurons

are correlated. An induced stimulus-correlation will occur when a common stimulus gener-

ates correlations between neurons, whereas a connection induced correlation will occur when

interneuronal connections link spike timing.

In the following chapters of this thesis we will make clear the overwhelming importance of

probabilities and statistics in neuroscience. In a broader framework, Information Geometry

provides an essential tool for understanding stochastic process, higher order stochastic cor-

relations, and for developing the investigation of previously unexplored possibilities in the

Information Theory framework. Its general validity as an statistical approach would allow

predictions to be made beyond the sensory periphery.

1.4 A Guide to the Thesis

In the following chapters of this thesis we revive the debate about neuronal spike correlations

which we think has been jeopardized by very general and too ambitious statements like the

one made around the binding theory.

In chapter I of this thesis we present a review of the historical background of the previous

spike correlation studies and current state of the problem. In the chapters II, III and IV of

this thesis we have applied an information theoretic approach to study the role of correlations

in the neuronal code, using the responses of pairs of neurons to drifting sinusoidal gratings

of different orientations and contrasts recorded in the primary visual cortex of anesthetized

macaque monkeys. In chapter V we investigate the effects of a focalized stroke in a population

of neurons on information transmission using a computational and analytical approach to

the problem. Finally, in chapter VI we use a novel analytical approach to study effects of

higher order correlations in a population of neurons. Extensive conclusions are presented in

the last chapter of the report (chapter VII).

More specifically, it has been proposed in neuroscientific literature that pooling can lead

to a significant improvement in signal reliability, provided that the neurons being pooled

are at most weakly cross-correlated. We have computed mutual information using the NSB

estimator, and compared the information available from pairs of cells with the sum of the
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single cell information values. This allowed us to assess the degree of synergy (or conversely,

redundancy) in the coding. In chapter II of this thesis, we show that due to a loss of

information encoded in the neuronal identity of the cells, pooling spikes across neurons leads

to a loss of large fraction of the information present in their spike trains.

We have used information theory to examine whether stimulus-dependent correlation could

contribute to the neural coding of orientation and contrast by pairs of V1 cells. To this end,

in chapter III, we have used a modified version of the method of information components.

This analysis reveals that although synchrony is prevalent and informative, the additional

information it provides is frequently offset by the redundancy arising from the similar tuning

properties of the two cells. Thus, coding is roughly independent with weak synergy or

redundancy arising depending on the similarity in tuning and the temporal precision of the

analysis. Our findings suggest that this would allow cortical circuits to enjoy the stability

provided by having similarly tuned neurons without suffering the penalty of redundancy

as the associated information transmission deficit is compensated by stimulus dependent

synchrony.

In chapter IV, we present a discussion about different measures of correlations and in par-

ticular we propose the Jensen-Shannon Divergence as a measure of the distance between the

corresponding probability distribution functions associated with each spikes fired observed

patterns. We applied this Divergence for fixed stimuli as a measure of discrimination between

correlated and independent firing of pairs of cells in the primary visual cortex. We found

that the relative Jensen-Shannon Divergence (measured in relation to the case in which all

cells fired completely independently) decreases with respect to the difference in orientation

preference between the receptive field from each pair of cells. Our finding indicates that the

Jensen-Shannon Divergence can be used for characterize the effective circuitry network in a

population of neurons.

The underlying origins of synchronized firing between cortical neurons are still under dis-

cussion. Inter-cellular communication through chemically mediated synaptic transmission

is considered a major contributor to the formation of neuronal synchrony. GABAergic in-

hibitory neurons may be involved in the generation of oscillatory activity in the cortex and

its synchronization. Specifically, reduction of GABAergic inhibition may favour cortical

plasticity producing functional recovery following focal brain lesions. Research into neu-
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rotransmitter systems is therefore of paramount importance to understand the origins of

synchronized spiking. However, it is necessary to understand first how simple focal abnor-

malities in GABAergic modulators can affect the information transmission in an impaired

brain tissue. In chapter V, we present a computational and analytical model of a topograph-

ically mapped population code which includes a focal lesion as well as a process for receptive

field enlargement (plasticity). The model simulates the recovery processes in the brain, and

allows us to investigate mechanisms which increase the ability of the cortex to restore lost

brain functions. We have estimated the Fisher Information carried by the topographic map

before and after the stroke. Our finding shows that by tuning the receptive field plasticity to

a certain value, the information transfer through the cortex after stroke can be optimized.

A widespread distribution of neuronal activity can generate higher-order stochastic interac-

tions. In this case, pair-wise correlations do not uniquely determine synchronizing spiking

in a population of neurons, and higher order interactions across neurons cannot be disre-

garded. We present a new statistical approach, using the information geometry framework,

for analyzing the probability density function (PDF) of spike firing patterns by considering

higher order correlations in a neuronal pool. In chapter VI, we have studied the limit of

a large population of neurons and associated a deformation parameter to the higher order

correlations in the PDF. We have also performed an analytical estimation of the Fisher in-

formation in order to evaluate the implications of higher order correlations between spikes

on information transmission. This leads to a new procedure to study higher order stochastic

interactions.

The overall findings of this thesis warn about making any extensive statement about the

role of neuronal spike correlations without considering the general case inclusive of higher

order correlations, and suggest a need to reshape the current debate about the role of spike

correlations across neurons.
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2. IS THE POOLING OF SENSORY INFORMATION ACROSS

NEURONS AN EFFICIENT MECHANISM FOR DECODING?

Pooling spikes across neurons constitute a simple solution to the decoding of neuronal activ-

ity in population of neurons. Nearby neurons in the visual cortex often partially synchronize

their spiking activity. Despite the widespread observation of this phenomenon, its impor-

tance for visual coding and perception remains to be uncovered. In this chapter we took

advantage of recent advances in entropy estimation techniques, using them in the context of

the Information Theory to study the coding of the contrast and direction of motion of visual

stimuli by pairs of simultaneously recorded neurons in the macaque primary visual cortex.

Our findings show that destroying the identity of which neuron fired which action potential

resulted in a substantial loss in information about stimulus direction. Nonlinear dendritic

summation would appear to be a necessary feature of a decoder capable of making use of

the additional information contribution, and thus circumventing the pooling limit.

2.1 Introduction

An important problem in neuroscience is to understand how psycho-physical performance

can be related to the signaling of single sensory neurons. It has been thought for instance that

combining signals across a pool of neurons can generate superior psychophysical sensitivity

if the noise carried by individual members of the pool is averaged out. This eventual benefit

of the pooling would be only achievable to the extent that the noise carried by individual

neurons is independent.

The implications of accounting interneuronal correlations would place limits on the effective-

ness of signal pooling (Johnson et. al. 1973; Johnson 1980; Parker and Newsome 1998). All

the beneficial effects of the pooling would be diminished even by the presence of a very weak



correlation (Zohary et. al. 1994; Shadlen et. al. 1996).

Neuronal spike trains fired by adjacent cortical neurons exhibit correlations: the probability

of one cell firing an action potential depends upon whether another cell fires (Mastronarde1983;

Gawne 1993; Zohary et. al. 1994; Kreiter and Singer 1996b; De Oliveira et. al. 1997,

Maldonado 2000). What would therefore be the ultimate role of interneuronal correlation in

the processing of sensory information considering they might reduce the effectiveness of the

signal pooling? Correlations would be a detrimental factor for perception. The beneficial

effects of pooling would be curtailed, rendering to a more plausible mechanism the use of

the sensitivity of single neurons to psychophysical decisions (Zohary et. al. 1994).

The spike count correlations are typically used to characterize correlations between re-

peatedly trial-to-trial fluctuations in response strength. They interfere with pooling as a

strategy to overcome response variability in a population rate code (Zohary et. al. 1994;

Shadlen and Newsome 1998). In the visual system, spike count correlation is either assumed

(Gawne 1993; Gawne et. al. 1996; Reich et. al. 2001) or known to be stimulus independent

(Zohary et. al. 1994; Bair et. al. 2001), suggesting that it arises from variations in the state

of the cortical network unrelated to the input provided.

Correlations in response profiles of individual signal across different stimuli are called ”signal

correlation” because they are entirely attributable to stimulus selectivity. On the other

hand, correlations which are manifested as covariation of the trial-by-trial fluctuation around

the mean response to the stimulus are named ”noise correlations”. These covariations are

observed at fixed stimulus, and they are not attributable to the stimulus (this will be discuss

further in Chapter III, in the framework of the Information breakdown method).

Recently, (Kohn and Smith 2005) have measured the spike correlation count between single

V1 neurons during spontaneous activity and for activity evoked by stimuli of different ori-

entations and contrasts. Changing stimulus orientation will likely alter the pool of cortical

neurons that provides input to the recorded pair, with the predicted effect on correlation de-

pending on the architecture of V1. This is, if the dominant input to V1 cells is feed-forward,

correlation should be orientation independent. But, if recurrent connections predominate,

correlation could be sensitive to orientation (Ben-Yishai et. al. 1995).

Figure 2.1 shows the orientation tuning and range of orientations (thick line) used to measure

correlation for an example pair. Figure 2.1 B-E shows how many standard deviations away
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Fig. 2.1: Tuning curves for two V1 neurons. B-F, Scatter plots of responses of V1 pair to 100 pre-

sentations of each stimulus show independence of spike count correlation and orientation

(modified Figure from Kohn and Smith 2005)

from the mean response for each stimulus are present for each of these observations. The

the Pearson correlation coefficient of the evoked spikecounts of two cells to the repeated

presentation of a particular stimulus, rsc, is calculated as follows: rsc =
E[N1N2]−E[N1]E[N2]

σN1σN2
,

where E is the expected value, σ is the SD (standard deviation) of the responses, and N1

and N2 are the spike counts of cell 1 and 2, respectively. Statistical evaluation is performed

after converting rsc toZ-scores using the Fisher transformation asfollows: z = 1
2
ln(1+rsc

1−rsc
).

The values of the spike correlation count do not depend on the stimulus orientation or the

evoked firing rate.

Figure 2.2 shows frequency histograms for spike count correlation in the population of pairs,

arranged for each pair from the orientation (contrast) that was most effective at driving the

two cells to which was least effective. The results suggests that the relationship between the

efficacy of an oriented (contrast) stimulus and the correlation in trial-to-trial variability of

evoked spike count is small, and therefore this variability arises from orientation-independent

(contrast-independent) variations in trial-to-trial cortical excitability. According to von der

Malsburg, binding of features belonging to one object is represented by synchronous neural

discharges. These results show that spike count correlations do not merely reflect the fixed

anatomical connectivity. Moreover, they do not show any kind of evidence against the

original von der Malsburg’s binding hypothesis (Von der Malsburg 1981).

Spike synchrony is usually identified as a peak centered on zero time lag in the cross cor-
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relograms.Neurons can covary their discharge for many reasons, and the simplest of these

is spike timing covariation. This is, a tendency unrelated to firing rate for the two neu-

rons to discharge at the same time corresponds to the common understanding and to our

use of the term synchrony. But factors other than synchrony can and do create peaks in

cross-correlograms and many of these certainly contribute to many reported cases of corre-

lated firing. Shuffle correction techniques are used to remove components from correlograms

that are due to events that cause the same spike rate modulation on every repetition of an

experiment, time-locked to some measurable event like the onset of a visual stimulus.

Indirect measures of synchrony also have been shown to depend on basic stimulus parameters

such as orientation and speed (Gray et. al. 1997; Friedman-Hill et. al. 2000; Frien et. al. 2000).

How would synchrony between single neurons in primary visual cortex (V1) be affected by

such basic stimulus manipulations as orientation and contrast ? Changing stimulus in ori-

entation and contrast will modify the magnitude of the response of the pool, allowing to

compare the relative influence of sensory drive and ongoing cortical activity on correlation.

This would allow us to test how correlations might possibly act as an extra channel for

information (Gray 1999; De Charms et. al. 1996; Panzeri et. al. 1999). If there is not such

dependency on the stimulus dependent synchronization, then pairs of cells with overlapping

tuning properties will tend to interact redundantly (Panzeri et. al. 1999). This would limit

the number of neurons which could be pooled together for perception and all the hypothetical

beneficial effects of pooling would be curtailed (Zohary et. al. 1994).

Several pieces of evidence point to correlations between V1 neurons being direction and

contrast dependent (Kohn and Smith 2005; Samonds and Bonds 2005). Kohn and Smith

have found that correlated responsivity arises from mechanisms operating at two distinct

timescales. The first mechanism is the orientation tuning, which determines the strength of

temporally precise synchrony. The second is the contrast sensitivity: low-contrast stimuli

results in stronger overall correlation but on a broad time scale, and high-contrast stimuli

leads to sharper synchronization (Kohn and Smith 2005).

In this chapter we present in detail the first part of a reanalysis performed over Kohn

and Smith experimental data set (Kohn and Smith 2005). This analysis form part of the

first work conducted in collaboration with Kohn and Smith (Montani et. al. 2007a). The

question we are focusing is whether or not the stimulus dependence of this correlation
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functions. The two highest responses would correspond to the preferred orientation of

each cell.

affects the limits correlation imposes upon information transmission (Zohary et. al. 1994;

Panzeri et. al. 1999).

We used information theory in order to address this question (Montani et. al. 2007a). Mu-

tual information was computed using the NSB estimator (Nemenman et. al. 2004), which

will be presented below, and compared the information available from pairs of cells with the

sum of the single cell information values. This allowed us to assess the degree of synergy

(or conversely redundancy) in the coding. We have used information theory to examine

whether stimulus-dependent correlation could contribute to the neural coding of orientation

and contrast by pairs of V1 cells.

2.2 Methods

To evaluate the effect of correlation on the population coding of sensory information responses

of pairs of single neurons in primary visual cortex (V1) of the anaesthetised macaque monkey

were recorded (Kohn and Smith 2005). Stimuli were luminance-modulated, drifting sine-
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wave gratings presented at a frame rate of 100 Hz. There were measured, in order, the

direction, spatial and temporal frequency, and size tuning for drifting sine-wave gratings

(Kohn and Smith 2005). After characterising the stimulus preference (see Figure 2.3) for

each cell independently, the correlation for responses evoked by stimuli of different directions

and contrasts was measured (Kohn and Smith 2005).

The spatial and temporal frequency of these test stimuli were set between the preferred

values of the two cells or at the value of the cell that responded less vigorously. Stimuli

were presented between the receptive field (RF) centers of the cells and covered both RFs

(Kohn and Smith 2005).

2.3 Experimental Procedures

Recordings were made by Kohn and Smith (Kohn and Smith, 2005) in 10 cynomolgus

(Macaca fascicularis), one bonnet (Macaca radiata), and one pig-tailed (Macaca nemestrina)

adult male monkeys. All experimental procedures were approved by the New York Univer-

sity Animal Welfare Committee. A very precise description of the experimental methods

can be found in the original paper (Kohn and Smith 2005).

2.3.1 Visual stimuli

After characterizing the stimulus preference of each cell independently, the correlation for

spontaneous activity and for responses evoked by stimuli of different orientations and con-

trasts was measured (Kohn and Smith 2005). The spatial and temporal frequency of these

test stimuli were set between the preferred values of the two cells or at the value of the

cell that responded less vigorously. Stimuli were presented between the receptive field (RF)

centers of the cells and covered both RFs. All measurements were made using stimuli pre-

sented in a circular aperture to the dominant eye of the less responsive cell. Stimuli were

surrounded by a gray field of average luminance.

Receptive fields were initially mapped by hand on a tangent screen, the position and the

dimensions of the receptive field being qualitatively determined by listening to the discharge
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on the audio monitor (Kohn and Smith 2005). The nonpreferred eye was then occluded

and a front-surface mirror was used to center the receptive field on the monitor. After a

brief qualitative determination of the preferred orientation, spatial frequency, and tempo-

ral frequency, quantitative assessment of tuning characteristics commenced under computer

control.

Direction and contrast experiments were performed in separate blocks of trials. Within most

( 90 %) of these experiments, the presentation order of each direction or contrast was block

randomized. In the direction experiments, they presented full-contrast gratings drifting in

five distinct directions, spanning the range between evoking a weak response and driving both

cells strongly. In the contrast experiments, the direction was fixed to that most effective at

driving the pair of cells, and the stimulus were presented at four contrasts, typically 1.56,

6.25, 25 and 100 % (Kohn and Smith 2005).

For cells with low contrast sensitivity, the range of contrasts was adjusted to extend it from

12.5 to 100 % in octave steps. Stimuli lasted for 2.56 sec with a 3 sec inter-stimulus interval,

and were showed on an isoluminant gray screen. Each stimulus was presented 30-200 times.

However, for the purposes of the information calculations (see below), these stimuli were

broken into individual cycles of the drifting grating, and thus a much greater number of

experimental trials (480 to 3200, mean 1300) were available for the purposes of information

estimation.

2.4 Theoretical Procedures

Spike count covariance and fine timescale synchrony were previously found to depend on

both stimulus orientation and contrast (Kohn and Smith 2005). To examine whether this

stimulus-dependent correlation could contribute to the neural coding of stimulus parameters

by pairs of V1 cells, we computed Shannon mutual information using the NSB estimator

(Nemenman et. al. 2004), and compared the ensemble information available from the pair

of cells (Iensemble) with the sum of the single cell information values (Isum). This allowed us

to assess the degree of synergy (or conversely redundancy) in the coding. Responses were

quantified by the number of spikes fired by each cell in the pair within a time window T ;

for a pair of cells, this thus provides a multinomial response code with cardinality K =
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(nmax,1 + 1)(nmax,2 + 1) where nmax,i is the maximum number of spikes fired by cell i of the

pair for any trial or stimulus.

Our information theory analysis has been performed, by considering each cycle to be one

experimental trial. Information was calculated from response bins with fixed time window

lengths (which were integral fractions of the cycle length T, i.e. T,T/2,T/4 etc). The

information in each such bin (relative to the start of the cycle) was calculated, collecting

trials across stimulus cycles, and then finally the information results were averaged across

the time windows within the cycle. Note that some (simple V1) cells were cycle-modulated;

for such cells, the results should be taken to be average information estimates, which should

not affect conclusions with regard to the relative effect of correlations.

2.4.1 Entropy estimators

In this section we will review some of the basic problems of entropy and mutual information

estimations for discrete variables and give a brief classification of different approaches to the

problem.

It is well known that the naive or “plugin” estimator of entropy tends to underestimate

it (it is biased). This is can be understood in the framework of the Jensen inequality

(Cover and Thomas 1991). The entropy is a concave function and therefore a “plugin” es-

timator of entropy tends to underestimate the real value of the entropy (a rigorous proof

of this statement can be found in Paninski 2003). The usual approach has been to attempt

to avoid this by the use of a perturbative expansion in the asymptotic regime (Panzeri and

Treves 1996). An alternative idea, that of calculating entropy by counting coincidences,

was proposed a long time ago by Ma for physical systems in the micro-canonical ensemble,

where a uniform distribution of entropy corresponds to states of fixed energy (Ma 1981). In

a neuroscience context, this would correspond to the assumption that the probability dis-

tribution of response words at a fixed spike count is close to uniform (Strong et. al. 1998a;

Schultz and Panzeri 2001). The Bayesian approach proposed by Nemenman, Shafee and

Bialek (2002), building upon ideas formulated by (Wolpert and Wolf 1995) and (Samengo 2002),

extends this idea to arbitrarily complex distributions. The goal of the NSB method is to

construct a Bayesian prior which generates a nearly uniform distribution of entropies in order

to correct sample size dependent bias at its source.
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In the following we are going to review the basic ideas of the NSB entropy estimator method

(Nemenman et. al. 2004), and we will compare the effectiveness of NSB in comparison with

the computation of the entropy via the naive “plugin” approach, and by using a sophisticated

analytical method for correcting bias (Panzeri and Treves 1996).

Consider the problem of estimating the Shannon entropy for a given probability distribution

p = {pi},

H = −
K
∑

i=1

pi log2 pi (2.1)

where the index i runs over K possibilities. For instance, p might be the distribution of

spike counts observed to be fired by a neuron – in which case iwould represent “number of

spikes + 1” (as zero spikes fired is also a possible response). Consider N samples (trials)

which were obtained from a given experiment, where each possibility i occurred ni times: if

N is much bigger than K we can approximate pi ≈ fi= ni/N, and therefore the entropy can

be expressed in terms of the observed frequencies as

Hnaive = −
K
∑

i=1

fi log fi (2.2)

The problem is that this “plugin” approach tends to underestimate the entropy. Several

attempts to solve this problem were made by (Carlton 1969), who made asymptotic bias

corrections by adding a term of order O(K/N). This approach was developed further by

(Panzeri and Treves 1996), and amounts to (in brief)

H = Hnaive +Bias[H(R)] (2.3)

where

Bias[H(R)] ≈ − 1

2Nln2

∑

s

R̂s (2.4)
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and R̂s denotes the number of relevant bins for for a trial with stimulus s, i.e. the re-

sponse bins in which the occupancy probability p(i|s) (at given s) is non-zero. Note that

if a bin is observed never to be occupied, it is ambiguous whether that is because it has

a true zero occupancy probability, or because responses simply have not been observed for

long enough. Choice of R̂s is a subtle issue, and is to some extent dependent upon data

characteristics. (Panzeri and Treves 1996) made use of a Bayesian prior for the number of

relevant bins, and iteratively re-estimated it. This procedure has been found to be effective

for a number of types of single-unit electrophysiology data (e.g. Panzeri and Schultz 2001a;

Rust et. al. 2002), but after much detailed analysis, we found its performance to be inad-

equate for the analysis of many of the pairs in the V1 dataset, despite the relatively large

number of trials available (480-3200) compared to many other information theoretic analyses

in the literature. This is, an adequate sampling was obtained with NSB at as low as 100

trials, but this was not the case with other entropy estimators.

Several approaches for estimating entropies without using such an asymptotic expansion

approach have recently been presented (Nemenman et. al. 2004; Paninski 2003). We will

follow the approach of Nemenman et al.

Recall our examination of the probability distribution p from equation (2.2). Bayes’ rule

tells us that we can express the posterior probability of p (≡ {pi} , i = 1..K discrete random

variable) , given that we have just observed i to have occurred ni times.

P (p|ni) =
P (ni|p)P (p)

P (ni)
(2.5)

Note that the number of times we observe each response value i to occur must add up to

the total number of experimental trials N .

K
∑

i=1

ni = N (2.6)

In equation (2.5), the “prior” distribution is P (p) – in principle, we could choose a prior such

that our estimator of the entropy of P (p) does not depend upon the number of trials. This

is obviously a desirable quality! To do this, we can express P (p) in terms of the Dirichlet
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family of priors (Nemenman et. al. 2004). This should allow us to construct a prior which

does not depend on inverse powers of N (which even the naive approximation does implicitly,

as fi=ni/N). The Dirichlet family are characterised by a parameter β; they can be written

as

Pβ(p) =
1

Z
δ(1−

K
∑

i=1

pi)
K
∏

i=1

pβ−1
i (2.7)

where

Z =
ΓK(β)

Γ(Kβ)
(2.8)

δ and Z are functions which enforce the normalization of p and Pβ respectively (δ being the

Dirac delta function, and Γ stands for Eulers Γfunction). Maximum likelihood estimation

corresponds to Bayesian estimation with this prior in the limit β → 0, while a uniform prior

is implemented by β =1. (Nemenman et. al. 2002) observed that fixing a particular value of

β (and thus fixing the prior) specifies the entropy almost exactly. For an “incorrect” prior,

the estimate of entropy is thus dominated by the prior, rather than determined by our actual

knowledge – that is to say, it is biased.

Ideally, we would like to compute the whole a priori distribution of entropies

Pβ(H) =

∫

dp1dp2...dpKPβ({pi})δ(H +
K
∑

i=1

pi log2 pi) (2.9)

But this is quite difficult to achieve. In order to get an entropy estimate with small bias one

could simply fix a flat prior distribution of entropy P (H). One way of doing so is by defining

P (H) = 1 =

∫

δ(H − ξ)dξ (2.10)

where ξ is the expected entropy. If we could find a family of priors Pβ(p) which result

in δ functions over H, and if by changing β we move the peak across the whole range of
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entropies uniformly, then we will effectively be choosing the proper prior for each entropy. We

will thus come close to the objective of removing bias at its source. Because the entropy of

distributions chosen for Pβ is sharply defined and monotonically dependent on the parameter

β we can effect this goal by averaging over β. The main idea of the NSB approach is thus

to construct a prior

Pβ(p) =
1

Z
δ(1−

K
∑

i=1

pi)
K
∏

i=1

pβ−1
i

dξ(β)

dβ
P (β) (2.11)

which will perform this task even when N is small. In this equation Z is again a normalizing

coefficient and dξ(β)
dβ

ensures the uniformity for a priori expected entropy ξ.

This Dirichlet priors allow all the Kdimensional integrals to be calculated analytically (see

Wolpert and Wolf 1995, giving for the moments of the entropy

(HNSB)m =

∫

dξρ(ξ, n) ⟨Hm(n)⟩β(ξ)
∫

dξρ(ξ, n)
(2.12)

where n={ni}, and m=1,2 correspond to the entropy and its second moment. ⟨Hm[ni]⟩β(ξ)is
the expectation value of the mth entropy moment at a fixed β (Wolpert and Wolf 1995) and

the posterior density is a function of the proposed Dirichlet prior,

ρ(ξ|n) = Pβ(ξ)
Γ(κ(ξ))

Γ(β(ξ))

K
∏

i=1

Γ(ni + β(ξ))

Γ(β(ξ))
(2.13)

Summarizing, the main idea of NSB is to construct a Bayesian prior, which generates a

nearly uniform distribution of entropies in order to avoid bias at its origin. These results

were obtained by (Nemenman et. al. 2002; Nemenman et. al. 2004); we have tried here to

give, in as simplistic terms as possible, an explanation of how the method works. We will

now illustrate the performance of the method with an example.
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Fig. 2.4: Relative performance of several information estimators. Two different time windows were

chosen for counting spikes: A 5ms, resulting in cardinality K = 10 from the ensemble

responses. B 40 ms, cardinality K = 76.
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2.4.2 Example: Information available for a single pair of neurons

In order to test the effectiveness of the entropy estimator developed by (Nemenman et. al. 2004),

we performed calculations of the total mutual information conveyed by a single pair of cells

in V1 (Kohn and Smith 2005) using the naive estimator, using the Panzeri-Treves bias cor-

rection, and using the NSB method. Figure 2.4 shows the total information estimated

through these different approaches. The ensemble (pair) mutual information was calculated

using different subsets of the total available number of trials, which in this case was sufficient

for all methods to converge to the same asymptote, which we can consider to be the true

information. The results speak for themselves.

The NSB approach was the only one we found to be adequate across the entire dataset,

despite the relatively large number of trials available (480-3200) compared to many other

information theoretic analysis in the literature. Note that this was a particularly (although

not entirely unusual) hard to sample pair of cells; for some other pairs, adequate sampling

was obtained by NSB at as low as 100 trials.

2.4.3 Numerical Implementation

It can be found online two different implementations of the NSB method available from

the authors http://nsb-entropy.sourceforge.net/. We have converted the Octave code to

a MatLab compatible version. The source code of implementation are in C++ and Mat-

Lab/Octave.

NSB requires a substantial amount of numerical integration and function inversion. The

Matlab version is pretty basic in its functionality, works cross-platform, but this version has

the inability of MatLab to index discrete structures that can exist in a space with cardinality

of more than 232. The C++ code is faster.
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2.5 Direction Coding

2.5.1 Spike train cross-correlograms (CCGs)

The timing of action potentials between nearby neurons is often correlated or synchronized,

as shown by a peak in the spike train cross-correlogram (CCG) (Figure 2.5). To compute the

CCGs, the spike train of each cell is represented as a binary time series with 1 ms resolution

such that:

xij(t) = 1, if on trial i neuron j fired an action potential during the tth millisecond

xij(t) = 0, otherwise

The CCGs are computed as follows:

CCG(τ) =

1
M

M
∑

i=1

N
∑

t=1

xi1(t)x
i
2(t+ τ)

θ(τ)
√
λ1λ2

(2.14)

where M is the number of trials, N is the number of bins inthe trial, xi1 and xi2 are the

spike trains of neurons 1 and 2 on trial i, τ is the time lag, and λ1 and λ2 are the mean firing

rates of the two cells.Θ(τ) is the following triangular function:

θ(τ) = T − |τ |

where T is the trial duration in seconds. This function corrects for the degree of overlap of

the two spike trains for each timelag (i.e., that there are T opportunities for simultaneous

events in a trial of length T but only T - 1 opportunities for coincidences at time lags of 1

ms, etc).

All CCGs were corrected for correlation induced by the stimulus, subtracting a shift predictor

calculated from trials 1 to n− 1, with an offset of one trial. Specifically, the shift predictor

was calculated as,

SHIFT (τ) =
1

M − 1

M−1
∑

i=1

N
∑

t=1

xi1(t)x
i+1
2 (t+ τ) (2.15)

It is used a shift predictor rather than an all-way shuffle correction, because the latter is
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Fig. 2.5: Cross-correlograms for each of five different stimulus directions, for the same pair as shown

in the previous figures.

affected more strongly by slow fluctuations in neuronal responsivity. In cells for which the

firing rate displayed strong temporal modulation (i.e., simple cells), shuffle correction occa-

sionally resulted in artifactual peaks in the CCG caused by bleed through this modulation.

Shift correction effectively reduced the presence of these relatively rare artifactual peaks but

otherwise resulted in CCGs that were essentially identical to those obtained with shuffle

correction.

The CCGs are normalized by the geometric mean spike rate which is the most common used

normalization, it facilitates therefore comparison with previous studies (Mastronarde1983;

Bair et. al. 2001). This normalization provides also results which are most comparable with

measures of spike count correlation (Kohn and Smith 2005).

Figure 2.5 shows a typical pair of V1 cells (the same pair used in Fig. 2.4) with substantial

modulation in the height of the central peak of the cross-correlogram of the neurons spike

trains: synchronization is maximised at a particular direction that drives the firing of both

neurons, and falls off around this stimulus.

2.5.2 Mutual Information

We introduce in this section an Information Theoretical analysis of 102 pairs from the original

dataset of (Kohn and Smith 2005). This is we have chosen a subset of 102 pairs of cells,
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Fig. 2.6: Comparison of the information available from the pair of neurons (Iensemble) in a time

window T , with the sum of the informations obtained from each constituent neuron (Isum)

and the information from a pooled code in which the identity of the cell firing each action

potential is ignored (Ipooled).

from the original data set with 104 pairs, with had the higher number of trials in order to

make trustable our Information analysis. We will refer as ”synergy” (redundancy) when the

information conveyed by an ensemble of cells (Iensemble) is bigger (smaller) than the sum

information conveyed by each independently (Isum). We will name Ipooled the information

conveyed if spikes are pooled across cells, that is, when the identity of the cells is not taken

into account.

What is the effect of this stimulus dependent correlation on the information transmitted by

the pair of neurons? This is shown in Figure 2.6: the resulting interaction is very mildly

synergistic: the ensemble mutual information (Iensemble) grows more rapidly with the time

window over which spikes are counted than the sum of the single cell information values

(Isum) does. Figure 2.6 also shows that pooling spikes across cells (Ipooled) leads to a drop

in information (see Section 2.7).

We analyzed the degree of synergy (redundancy) of direction coding at a fixed time window

of 40 ms, for 102 pairs of cells in V1. The fractional degree of synergy (defined as 1 −
Isum/Iensemble) was on average to− 0.02352± 0.005 (s.e.m.).

An alternative measure is the redundancy index which based on information rates
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(Reich et. al. 2001). The definition of synergy adopted here is essentially the same as the

definition adopted by (Gawne 1993).

Our findings (Figure 2.7) lead to the conclusion that information about direction essentially

summates across pairs of neurons as it would if the neurons were actually independent,

although they are substantially correlated. This is an example of informational independence,

even though there is substantial response dependence (Schneidman et. al. 2003) between

these cells.

2.6 Contrast Coding

In the previous section we studied the coding of information about visual stimulus direction

by pairs of neurons motivated by the directional dependence of response synchronization.

However, the contrast of the stimulus can also modulate the synchronization between pairs

of neurons (Kohn and Smith 2005). Cross correlograms (CCGs) provides insights into the

temporal structure of responses by using different sinusoidal grating contrast stimuli, whereas

Mutual Information estimations can provide insights not only into the the temporal structure

of responses but also into the degree to which information about contrast stimuli is encoded

at different time windows.

Figure 2.8 shows that reducing stimulus contrast reduces the temporal precision of syn-

chronous firing, but enhances the correlated response variability on longer time scales. We

analyse the degree of synergy (or rather redundancy) for the neural coding of contrast by a

somewhat stereotypical V1 pair. Figure 2.9 shows the picture over the entire population of

71 pairs for which contrast data were available. In almost all cases (17.24±0.2%) redundancy

was observed.

Our findings indicate that the different stimuli responses convey redundant information about

contrast, despite the presence of significant correlation as it is showed in Figure 2.8 . However,

since nearby neurons in V1 are tuned to similar stimulus features, it is reasonable to expect

significant redundancy in the contrast coding.

Sensory redundancy is important because knowledge of regularities in the environment is

advantageous for many purposes, such as making predictions. Redundancy can be a measure
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Fig. 2.7: Information adds approximately linearly across cells. A The total (ensemble) information

available for each pair is plotted against the sum of the information available from each cell

constituting the pair (n=102 pairs). Redundant points lie below the diagonal. The black

diamond indicates the pair shown in Figures 1-3. B Histogram of the total (ensemble)

information available for each pair divided by the sum of the information from each cell.
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of any kind of statistical regularities. It can be important for learning, inductive inference,

and the information-processing in the brain might help to survival by exploiting it.

2.7 Pooling

Most studies of neural coding have addressed the problem of how neurons encode sensory

events. However, the brain also faces the complementary problem that of decoding: given

the activity in a certain population of cells, what was the sensory event that evoked it? In

practice, decoding must occur for the successful transmission of information from one group

of neurons to a second group. Consider a target population which receives input from a set of

neurons with widely disparate tuning properties. To conserve all sensory information during

synaptic transmission, the target neuron must conserve the ”label” of the spikes arriving

from multiple input neurons at different places on its dendritic tree.

A simple solution to the decoding problem has been proposed, namely pooling

(Darian-Smith et. al. 1973). Pooling (summing spikes together from a neuronal pool regard-

less of the cell which fires them) is a popular population decoding strategy (Shadlen et. al. 1996;

Shadlen and Newsome 1998). The idea is that target neurons simply sum up, or pool, the
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activity of the afferent population. It has been proposed that pooling can lead to a signifi-

cant improvement in signal reliability, provided that the neurons being pooled are at most

weakly cross-correlated (Darian-Smith et. al. 1973; Zohary et. al. 1994).

However, Figures 2.6 and 2.8 show a loss of information when the ”pooled” code was used,

although this was much greater for the example of direction coding. How general was this?

Figure 2.10 shows that the loss of information due to pooling is generally much greater for

direction than for contrast coding. Neural codes that pool spikes across neurons lose a large

fraction of the information present in their spike trains. This is due to the lose of information

encoded in the neuronal identity of the spikes.

2.8 Discussion

We used information theory in order to understand how correlations between the spikes fired

by pairs of V1 neurons contribute to the direction and contrast coding. Our main findings

were that at timescales of the order of 40 ms, information about direction adds approximately

linearly across pairs of cells, whereas information about contrast adds sub-linearly (redun-

dantly). In both cases the responses covary (due to the synchronization), so the neurons are

response-independent, but in the first case the neurons are informationally independent also

(or approximately so), but in the second case the neurons code redundantly. What is the

explanation for this?

The neurons generally (although not always) have a substantial overlap in their direction

tuning curves (i.e. positive signal correlation), and also have positive noise correlation due

to fine-timescale synchronization of their responses. Information-theoretic analysis predicts

that in this regime, if the noise correlation is not stimulus-dependent, then the neurons will

interact redundantly (Panzeri et. al. 1999; Panzeri and Schultz 2001a). If the synchroniza-

tion is instead stimulus-dependent (as we see here), there is in addition an ”extra chan-

nel” of information, which makes the stimuli easier to discriminate by an ideal decoder

(which takes correlation into account) and makes up for the information lost due to redun-

dancy. This effect can be further analysed in terms of an information component breakdown

(Pola et. al. 2003; Montani et. al. 2007b), which is going to be presented in the next chap-

ter.
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The contrast dataset provides us with a natural control for the direction coding analysis.

This is, in the contrast data set, the tuning curves of different neurons in a pair tend to be

fairly similar, and synchronization is at lower contrasts less temporally precise. This resulted

in a coding regime more similar to the traditional intuition, in which correlations tend to

result in redundancy, and thus limit the number of neurons whose outputs could usefully be

combined to represent the stimulus variable. The major factors driving the differences in

contrast and orientation coding are thus the greater redundancy due to similarity in the tun-

ing curves between pairs of cells for contrast coding, and a slightly lower degree of stimulus

dependence in the correlation. The brain could take advantage of the robustness provided

by the redundancy in contrast, and the accuracy due to the informational independency in

the orientation code. These factors have been explored in more detail by performing an

information component decomposition (Pola et. al. 2003) and will be presented in the next

chapter.

Our results are roughly in line with previous information analyses that have found the exis-

tence of weak synergy or independent coding in V1 (Reich et. al. 2001; Kayser et. al. 2004).

Their findings show that keeping track of which neurons fire preserves a considerable amount

of information already present in the responses. This strategy is of help for removing re-

dundancy across neurons with similar tunings, and prevent a greater information loss from

summing responses information with different selectivities. This suggest that codes that use

information available of the ensemble are more plausible.

One major difference between this investigation presented here and these previous stud-

ies were that we characterized the complete response characteristics of each neuron in the

pair, and generated a set of stimuli which, as far as possible, drove both neurons across

their dynamic range, and included stimuli which excited both neurons well. There are also

substantial differences in the analyzes performed. In our study, we took advantage of re-

cent advances in entropy estimation techniques (Nemenman et. al. 2004). This was crucial

to the current study, as despite working well for the analysis of single cell recordings, other

estimation techniques resulted in significant residual bias with this paired recordings dataset.

Destroying the identity of which neuron fired which action potential resulted in a substantial

loss in information about stimulus direction. This provokes the question: how could down-
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stream neurons decode / make use of the positive information contribution provided by the

stimulus-dependent synchronization? Integrate-and-fire type neuronal operation would effec-

tively pool input spikes regardless of origin, thus being subject to the (Zohary et. al. 1994)

limitations on combining information from correlated input neurons. Nonlinear dendritic

summation (Hausser and Mel 2003) would appear to be a necessary feature of a decoder

capable of making use of the additional information contribution, and thus circumventing

the pooling limit.

However, as complicated as a dentritic tree appears on the surface, it has long been considered

that the whole cell functions as a simple one compartment summing unit, where as in an

idealized democracy, all synapsis have an equal opportunity to influence neuronal output

through the axon (Roddey et. al. 2000). This is, the rule for combining the effect of many

synapses under this assumption is generally considered to be linear, and can therefore be

expressed as a weighted sum of excitatory and inhibitory synaptic inputs. But, the integrative

properties of the dendrites are determined by a complex of mixtures of factors, including their

morphology, the spatio-temporal patterns of synaptic inputs, the balance of excitation and

inhibition, and neuromodulatory influences, all of which interact with many voltage-gated

conductances present in the dentritic membrane.

Linear models can often adequately describe the neural encoding process for weak (i.e., low

intensity) sensory stimuli (Roddey et. al. 2000), but neurons are nonlinear (Chacron 2006).

An optimal linear decoder for spatially localized stimuli will not capture all of the information

in pyramidal cell spike trains, because it only has access to a fraction of the information

transmitted by pyramidal cells. Hence, nonlinear decoders are necessary to fully access

information in pyramidal cell spike trains. Neurons would perform nonlinear operations on

incoming pyramidal cell spike trains to access all the information (Hausser and Mel 2003).
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3. THE ROLE OF CORRELATIONS IN ORIENTATION AND

CONTRAST CODING IN THE PRIMARY VISUAL CORTEX

The spiking activity of nearby cortical neurons is not independent. Numerous studies have

explored the importance of this correlated responsivity for visual coding and perception,

often by comparing the information conveyed by pairs of simultaneously recorded neurons

with the sum of information provided by the respective individual cells. Pairwise responses

typically provide slightly more information, so that encoding is weakly synergistic. The

simple comparison between pairwise and summed individual responses conflates several forms

of correlation, however, making it impossible to judge the relative importance of synchronous

spiking, basic tuning properties, and stimulus (in)dependent correlation. In this chapter we

have applied an information theoretic approach to this question, using the responses of pairs

of neurons to drifting sinusoidal gratings of different orientations and contrasts, recorded

in the primary visual cortex of anesthetized macaque monkeys. Our approach allows us

to break down the information provided by pairs of neurons into a number of components.

The results we present in this chapter are part of a second work we have carried out in

collaboration with Kohn and Smith (Montani et. al. 2007b).

This analysis reveals that although synchrony is prevalent and informative, the additional

information it provides is frequently offset by the redundancy arising from the similar tuning

properties of the two cells. Thus, coding is roughly independent with weak synergy or

redundancy arising depending on the similarity in tuning and the temporal precision of the

analysis. We suggest that this would allow cortical circuits to enjoy the stability provided by

having similarly tuned neurons without suffering the penalty of redundancy as the associated

information transmission deficit is compensated for by stimulus dependent synchrony.



3.1 Introduction

The brain processes sensory information in multiple stages. Information is transmitted by

trains of actions potentials (spikes) or, less frequently by local field potentials (LFPs). Spikes

are brief electrical impulses which travel along the membrane of a cell and are used by neurons

to communicate the local output signals. This is, sensory signals from the external world are

converted in the cortex into a series of spikes fired by a population of neurons. On the other

hand, LFPs are low-frequency (< 250Hz) voltage fluctuations measured at the electrode,

which account for the sum of dentritic synaptic activity within the volume of the tissue, and

represent the local inputs.

The relationship between the spike activities of neurons and the state of the perceived

world is of paramount importance for understanding the brain functions. The spiking

activity of nearby cortical neurons is not independent, and we need to understand how

neurons work together to represent sensory information. A central question in neuro-

science is therefore understanding how information about the outside world is carried in neu-

ronal spike trains. Information can be carried in spike rate (Werner and Mountcastle 1965;

Tolhurst 1989) spike timing (Panzeri and Schultz 2001a), spike correlations across neurons

(Kreiter and Singer 1992; Kreiter et. al. 1996; De Charms et. al. 1996; Roelfsema 1997,

Gawne et. al. 1996), or a combination of these. Recently, a great deal of attention has been

focused on correlated firing, this the probability of one cell spiking is related to whether other

nearby cells fire (Zohary et. al. 1994; Engel et. al. 1990; Kreiter et. al. 1996; Gawne 1993;

De Oliveira et. al. 1997; Lebedev et al. 2000; Mastronarde1983; Ts’o and Gilbert 1988,

Maldonado 2000; Bair et. al. 2001).

Whether such correlations affect the coding of sensory information is still highly debated.

It has been proposed that correlations might act as an extra channel for information, car-

rying messages about the outside world not carried by other aspects of spike trains such

as the overall firing rate (Gray 1999; Richmond and Gawne 1998; Abbott and Dayan 1999;

Panzeri et. al. 1999). Others have proposed that correlation interferes with decoding the

information represented by the firing rate of a population of neurons (Zohary et. al. 1994;

Shadlen and Newsome 1998; Mazurek et al 2002).

It has been also thought that pair-wise correlations provide a good estimate of the total
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amount of synchrony in a pool of neurons from which the recordings are obtained, and that

correlations between pair of neuron reflect a high degree of synchronous firing within a larger

assembly of neurons (Singer and Gray 1995; Engel et. al. 1992; Schneidman et. al. 2006).

Moreover, pairwise correlations between neurons can also have a high temporal precision

in the range of a few millisecond (Eckhorn et. al. 1988; Gray-Singer 1989; Roelfsema 1997;

Alonso at. al. 1996; Abeles et. al. 1993). And from a different point of view, Von der Mals-

burg (1981) suggested that assemblies of neurons might convey additional information by

firing in synchrony, since synchrony could be instrumental in forming relationships between

the members of such assemblies.

Thus, throughout the years the matter of how the coding of sensory information is affected

by spike correlations across neurons has been fraught with dissension, and the debate has

become polarized into two different postures co-existent in the neuroscientific community.

One of the postures, supported by many authors (Nirenberg et. al. 2001; Oram et. al. 1998;

Petersen 2001; Levine et. al. 2002; Panzeri et. al. 2002a; Panzeri et. al. 2002b,

Averbeck et. al. 2003; Averbeck and Lee 2003; Averbeck and Lee 2004; Golledge et. al. 2003),

is that correlations are not important or play a minor role, whereas others have proposed that

they are important in the coding of sensory information (Eckhorn et. al. 1988, Gray-Singer 1989;

Gray et. al. 1989; Meister 1996; Vaadia et. al. 1995; De Charms et. al. 1996; Dan et. al. 1998;

Steinmetz et. al. 2000).

This dissension can be traced to different methods used to asses the role of synchronized

spike firing. For instance, one of the most used methods consisted in looking for stimulus-

dependent changes in cross-correlograms (Eckhorn et. al. 1988; Gray-Singer 1989,

Gray et. al. 1989; Vaadia et. al. 1995; De Charms et. al. 1996). However, the firing rate

can alter the shape of cross-correlograms making difficult to separate information carried by

firing rates from information carried by correlations. Moreover, cross-correlograms account

only for near synchronous spikes. This is, they do not account for correlations which occur

on a longer time scale and among patterns of spikes.

Information Theory measures the statistical significance of how neural responses vary with

different stimuli. This is, it determines how much information about stimulus parameter

values is contained in neural responses. Information Theory measures provide a much more

quantitative and sensitive approach to correlations than methods that can only account for
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near synchronized spikes. Numerous studies have explored the importance of the correlated

responses for visual coding and perception, often by comparing the information conveyed

by pairs of simultaneously recorded neurons with the sum of information provided by the

respective individual cells (synergy/redundancy).

Unfortunately, information theoretic studies have provided disparate answers. For instance,

retinal ganglion cells have been found to encode synergistically (Meister 1996), roughly in-

dependently (Nirenberg et. al. 2001), or redundantly (Puchalla et. al. 2005). In the lateral

geniculate nucleus, (Dan et. al. 1998) reported synergistic effects. In cortex, most studies

have concluded that neurons provide roughly independent information, with some evidence

for weak synergy in V1 (Reich et. al. 2001; Golledge et. al. 2003; Kayser et. al. 2004), mo-

tor cortex (Averbeck and Lee 2003; Oram et. al. 2001), and somatosensory cortex

(Petersen 2001). Given that cortical responses are strongly correlated (Zohary et. al. 1994;

Bair et. al. 2001; Reich et. al. 2001) and that this correlation is stimulus dependent

(Kohn and Smith 2005; Samonds and Bonds 2005) it is surprising that the information pro-

vided by cortical neurons is nearly independent.

Pairwise responses typically provide slightly more information, so that encoding is weakly

synergistic. However, the simple comparison between pairwise and summed individual re-

sponses conflates several forms of correlations, making it impossible to judge the relative

importance of synchronous spiking, basic tuning properties, and stimulus (in)dependent cor-

relation. But, two Information measures have appeared in the literature. One of them,

mentioned in paragraph before, aimed at quantifying the role of correlation by measuring

synegy/redundancy (Brenner et. al. 2000; Liu et. al. 2001; Machens et. al. 2001,

Schneidman et. al. 2003), whereas the other is provided by the information breakdown

method (Pola et. al. 2003; Pola et. al. 2005; Montani et. al. 2007b). This measure can be

used to understand how information about correlations affect the transformation from stim-

ulus to response.

The results we present in this chapter are part of a second work performed in collaboration

with Kohn and Smith (Montani et. al. 2007b). We applied an information theoretic ap-

proach for studying the role of correlation in the neuronal code, using the responses of pairs

of neurons to drifting sinusoidal gratings of different orientations and contrasts, recorded

in the primary visual cortex of anesthetized macaque monkeys. Our approach allowed us
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to break down the information provided by pairs of neurons into a number of components.

More in detail, we investigated the role of correlation in stimulus encoding in primary vi-

sual cortex, with two important extensions over previous studies. First, we used an exact

information theoretic method to quantify the information conveyed by different coding mech-

anisms (Pola et. al. 2003). Second, we have applied this approach to responses evoked in

primary visual cortex by stimuli which vary in two distinct ways: drift direction and contrast

(Kohn and Smith 2005).

We confirmed that coding is roughly independent despite the presence of substantial corre-

lation, with weak synergy or redundancy arising for particular stimulus manipulations and

time scales. We showed that this independence comes about because of a balance between

the strong synergy provided by stimulus-dependent correlation and redundancy arising from

the similarity in tuning of the neurons. This analysis reveals that although synchrony is

prevalent and informative, the additional information it provides is frequently offset by the

redundancy arising from the similar tuning properties of the two cells. Thus, coding is

roughly independent with weak synergy or redundancy arising depending on the similarity

in tuning and the temporal precision of the analysis. Our findings suggest that this would

allow cortical circuits to enjoy the stability provided by having similarly tuned neurons with-

out suffering the penalty of redundancy as the associated information transmission deficit is

compensated for by stimulus dependent synchrony.

3.2 Methods

To characterize the neuronal responses by a given stimuli is indeed very difficult because of

the complexity and variability of these responses. Neurons typically respond by producing

complex spike sequences that reflect both the intrinsic dynamics of the neuron and the

temporal characteristics of the stimulus. Isolating features of the response that encode

changes in the stimulus can be difficult, especially if the time scale for these changes is of

the same order as the average interval between spikes. Neuronal responses can vary from

trial to trial even when the same stimulus is presented repeatedly. There are many potential

sources of this variability including variable levels of arousal and attention, randomness

associated with various biophysical processes that affect neuronal firing, and the effects of

other cognitive processes taking place during a trial.
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The complexity and trial-to-trial variability of action potential sequences make it unlikely

that we can describe and predict the timing of each spike deterministically. Instead, a

complete description of the stochastic relationship between a stimulus and a response would

require us to know the probabilities corresponding to every sequence of spikes that can be

evoked by the stimulus. That is, the neural responses and their relationship to the stimuli

are completely characterized by the probability distribution of spikes times as function of

the stimulus. The independent-spike code corresponds to the case in which the generation of

each spike is independent of all other spikes in the train. In contrast, if the individual spikes

do not encode independently of each other, we call the code a correlation code, because

correlations between spikes times may carry additional information. In fact, information is

likely to be carried by both individual spikes and through correlations, and some arbitrary

dividing line must be established to characterize the code.

Part of the difficulty in understanding population coding is that neurons are noisy and the

same pattern of activity never occur twice, even if the same stimulus is presented. Because of

this noise, population coding is necessarily probabilistic. One of the prevailing view of neural

coding is that the meaningful signal is contained in the mean rate of the action potential

discharges of a neuron, and rate variability is just noise. This noise may be filtered out

by averaging across time or neuronal populations, rate coding can performs robustly in the

presence of noise, but it has limited information capacity. This is, noise in the brain is

correlated and it is essential we gain a thorough understanding of the correlational structure

in the brain and its possible impact in the population code. An alternative view of the neural

code is summarized by the term temporal coding; the notion that the timing of individual

spikes also carries relevant information. In principle, selective temporal mechanisms could

exploit the high intrinsic precision of cortical neurons to increase the efficiency of neural

coding.

How to account for the entire complexity levels present in the brain signals just by using

a single theoretical approach ? Information theory is the most rigorous way to quantify

neural code reliability and constitutes an aspect of probability theory which allows us to

quantify the information transmitted by communication channels (Shannon 1948). One

possible application could be to quantify how much information neuronal activity carry

about external sensory stimuli. More importantly, the exact breakdown of Information

into its coding mechanisms allows a precise quantification of all the modalities with which
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Fig. 3.1: Information component breakdown. The ensemble mutual information can be broken

down into a linear component, the reduction of information due to the redundancy caused

by overlap in tuning curves, and the contribution of correlated firing (Icor). The noise

correlation term can be further broken down to separate out the effect of the average level

of correlation over all stimuli, and the stimulus-dependence of correlation – the latter term

captures any effects due to coding by explicit modulation of correlation/synchronization.

correlations contribute to the neural code.

In this section we describe how we calculated the Shannon information transmitted by neu-

ronal population activity (and a number of related quantities). Shannon mutual information

quantifies the extent to which the responses are dependent upon the stimuli – it is a distance-

like measure (the Kullback-Leibler divergence) between two probability distributions: the

joint probability of responses and stimuli, P( r,s), and joint probability distribution that

would apply if responses did not depend at all upon stimuli, P( r)P(s). This dependence

between responses and stimuli may take a number of forms – firing rate dependence, pairwise

correlation dependence, etc. Information component breakdown methods (Figure 3.1) allow

us to quantify the effect of such dependencies upon the mutual information and thus assess

the different ways in which the correlations contribute to the neural code. If synergistic or

redundant interactions between cells are observed, the information components may reveal
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the mechanisms from which they arise.

The technical approach we adopt is a modification of a previously developed technique

(Panzeri and Schultz 2001a; Schultz and Panzeri 2001; Panzeri et. al. 1999) in which a Tay-

lor series expansion was used to break the Shannon information into its components. Pola

et al (2003) generalised this approach by substituting correlation functions with probability

functions, resulting in an exact information component breakdown. One disadvantage to

the Pola approach is that the correlation components cannot be explicitly written in terms

of entropies of probablity distributions. While we do not see this as giving rise to problems

of interpretation (but see Schneidman et al 2003), it does mean that advanced methods for

entropy estimation cannot be used. Thus we have rewritten the correlational components

as approximate entropies (i.e. an entropies plus additional terms which are very small and

relatively immune to bias), allowing us to use a recently developed technique for minimizing

the bias associated with estimating entropy from a limited number of experimental samples

(Nemenman et. al. 2004). By using a Bayesian prior to generate a nearly uniform distri-

bution of entropies, we thus correct for sample size dependent bias at its source and avoid

potential artefacts that may occur when sampling is insufficient, as is typically the case in

neurophysiological experiments.

We consider a time period of duration T unit time bins in which the activity of a given pair

of cells is observed. The neural population response will be denoted by r (drawn from a

response space R) and a sensory stimulus from a given stimulus set S will be denoted by

s. The mutual information transmitted by the population response about the whole set of

stimuli (Shannon 1948; Cover and Thomas 1991) is written as

I(R;S) = H(R)−H(R |S) , (3.1)

where H(R) and H(R|S) are the total response entropy and the noise entropy respectively.

They are defined as:

H(R) = −
∑

r∈R

P (r) log2P (r), (3.2)
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H(R |S ) = −
∑

s∈S

P (s)
∑

r∈R

P (r |s) log2P (r |s) , (3.3)

where P (r|s) is the probability of observing a given ensemble response vector r conditional

upon the occurrence of stimulus s, and P (r) is the average of P (r|s) over all stimuli.

In order to understand the meaning of correlation one must define the probability of getting

independent population responses as:

Pind(r |s) =
C
∏

c=1

T
∏

t=1

P (rct |s) , (3.4)

and

Pind(r) = ⟨Pind(r |s)⟩s , (3.5)

where c is the label for each cell (up to C=2 cells in the pair for the analysis presented here,

although the formalism is quite general in this respect),t indexes the time bin up to a max-

imum value of Lcorresponding to durationT , and the stimulus average ⟨x⟩s =
∑S

s=1 P (s)x.

The presence of noise correlation (correlation in the response variability for a fixed stimulus)

or signal correlation (correlation in the tuning of, or signal conveyed by response variables)

is indicated by Pind(r|s) ̸= P (r|s) and P (r) ̸= Pind(r), respectively. Moreover, P (s|r) is the
true distribution of stimuli given responses and Pind(s|r) is the distribution one would derive

in absence of knowledge of correlations. In practice, we obtained Pind( r|s) numerically by

multiplying the marginal probability distributions as apparent from 3.4.

The information component breakdown method allows us to write the total mutual infor-

mation into a sum of components which are related to the different decoding mechanism

(Panzeri and Schultz 2001a; Pola et. al. 2003)

I(R;S) = Ilin + Isig−sim + Icor (3.6)
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The first term of the information breakdown, Ilin, gives the total amount of information

which would be conveyed if all the cells were independent:

Ilin =
C
∑

c=1

T
∑

t=1

[H(Rct)−H(Rct |S)] (3.7)

where

H(Rct |S ) = −
∑

s∈S

P (s)
∑

rct

P (rct |s) log2 P (rct |s) , (3.8)

and H(Rct) is the averaged value across all the stimuli.

The signal similarity term Isig−sim quantifies the information loss arising from redundancy

due to overlap in the tuning curves pertaining to response (cell,time) bins rct (”redundancy

due to signal correlations”)

Isig−sim = Hind(R)−
C
∑

c=1

T
∑

t=1

H(Rct), (3.9)

where

Hind(R) = −
∑

r

Pind(r) log2 Pind(r), (3.10)

The third term, Icor, quantifies the total amount of information due to the correlated activity

on the overall neural coding:

Icor = I(R;S)−Hind(R) +
C
∑

c=1

T
∑

t=1

H(Rct|S). (3.11)

This is, Icor quantifies whether the presence ”noise correlation” increase or decrease the

information available in the neural responses.
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So far, it is apparent that all of the terms can be written in terms of entropies of particular

distributions. However, this correlation term can be further resolved into two components,

a stimulus independent component Icor−ind and a stimulus dependent component Icor−dep.

This last term in the (Pola et. al. 2003) formalism is calculated as

Icor−dep = I(R;S)− χ+
∑

c

H(Rc|S), (3.12)

where

χ = −
∑

r

P (r) log2 Pind(r), (3.13)

That is, the stimulus dependent correlation component is not made up entirely of entropies,

and thus advanced entropy estimation techniques such as NSB cannot be applied. Moreover,

χ can be substantially biased, which renders its calculation by previously available procedures

difficult for all except very low-dimensional problems.

Formally speaking, the stimulus dependent correlation component can be defined as the

Kullback-Leiber divergence between P (s |r) and Pind(s |r), (Nirenberg et. al. 2001,

Latham et. al 2005) – conceptually characterized by Nirenberg et al as the effect of correla-

tions upon the decoding of stimuli:

Icor−dep = D (P (s |r) ∥Pind(s |r)) ≡
∑

r

P (r)
∑

s

P (s |r) log2
P (s |r)
Pind(s |r)

(3.14)

In the following we rewrite the correlation stimulus dependent component from “first prin-

ciples” using the Kullback-Leibler, for the case in which only pairwise correlations between

neurons are considered. We note that this formalism can be easily extended to a larger

number of cells.

Icor−dep = D (P (s |r1r2 ) ∥Pind(s |r1r2 )) ≡
∑

r1r2

∑

s

P (s)P (r1r2 |s) log2
P (r1r2 |s)
Pind(r1r2 |s)

− (3.15)

∑

r1r2

P (r1r2) log2
P (r1r2)

Pind(r1r2)
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where

Pind(r1r2) =
∑

s

P (s)P (r1|s)P (r2|s) (3.16)

and

P (r1r2) =
∑

s

P (s)P (r1r2|s) (3.17)

The second term in the Kullback-Leibler distance, D∆ =
∑

r1r2

P (r1r2) log2
P (r1r2)
Pind(r1r2)

, does not

change if we multiply and divide by exactly the same factor inside the logarithm.

D∆ = −
∑

r1r2

P (r1r2) log2

(

P (r1r2) ⟨P (r1|s)⟩s ⟨P (r2|s)⟩s
⟨P (r1|s)P (r2|s)⟩s ⟨P (r1|s)⟩s ⟨P (r2|s)⟩s

)

, (3.18)

This is equivalent to saying

D∆ =
∑

r1r2

P (r1r2) log2
P (r1r2)

⟨P (r1|s)⟩s ⟨P (r2|s)⟩ s
−∆ = I(r1; r2)−∆ (3.19)

where ∆ =
∑

r1r2

P (r1r2) log2 β

and,

β =
⟨P (r1 |s)⟩s ⟨P (r2 |s)⟩s
⟨P (r1 |s)P (r2 |s)⟩s

, (3.20)

the correlation stimulus dependent component can be rewritten as

Icor−dep =
∑

r1r2

∑

s

P (s)P (r1r2 |s) log2
P (r1r2 |s)
Pind(r1r2 |s)

− (3.21)

∑

r1r2

P (r1r2) log2
P (r1r2)

⟨P (r1 |s)⟩s ⟨P (r1 |s)⟩s
−∆,
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Fig. 3.2: The effect of ∆ (at T = 40 ms for 102 pairs of neurons). Icordep0 correspond to ∆ = 0 .

The stimulus dependent correlation component has thus been expressed in terms of entropy

quantities with the addition of a single term ∆; the NSB estimation method can be applied to

these quantities with the exception of ∆. The remaining non-entropy term (∆) is essentially

the stimulus-averaged response multiplied by a logarithmic function of the coefficient β

summed over the whole space of responses. We are summing therefore in the space of

responses quantities which have been averaged over the stimuli, and it is reasonable to

expect a very low bias contribution from this term. Moreover, since β is the product of the

stimulus-averaged response from each cell divided by the stimulus unconditional independent

responses, it is reasonable to expect that it will always be close to one and therefore ∆ will

be close to zero. In practice, we included ∆ in our calculations (without bias correction);

the magnitude of ∆was always observed to be small.

Figure 3.2 shows an histogram of the ratio between the true value of Icordep and that obtained

by setting ∆=0. We conclude from the histogram that the contribution from ∆ will be

reasonably small. In practice, we included ∆ in our calculations (without bias correction).

Having expressed all of the quantities necessary to perform the information component analy-
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sis in terms of entropies of particular (in some cases conditional) distributions, these entropies

are computed by inserting the respective distributions into the NSB entropy estimation rou-

tine. We found that, for our dataset, this procedure resulted in substantially better estima-

tion performance than we were able to achieve with techniques that we have used previously

(Panzeri and Treves 1996). In addition, the NSB approach provides a convenient error es-

timate for the entropies, which can be propagated into error estimates for the information

quantities. An alternative method to estimate Icor−dep has been also recently developed by

Montemurro et. al. 2007.

We have expressed all information quantities in total information terms, measured in bits,

as opposed to rates measured in bits/sec. In the context of the present study we believe

that this leads to a clearer interpretation; a discussion of the relationship to information rate

quantities will be presented later in this chapter.

3.3 Experimental Procedures

As we have mentioned in the previous chapter recordings were made by (Kohn and Smith 2005)

in 10 cynomolgus (Macaca fascicularis), 1 bonnet (M. radiata) and 1 pig-tailed (M. nemest-

rina) adult male monkeys. All experimental procedures were approved by the New York

University Animal Welfare Committee. This dataset has previously been described

(Kohn and Smith 2005), as have the experimental procedures used in the laboratory

(Cavanaugh et. al. 2002).

For the sake of completeness, we will mention again very briefly the experimental proce-

dure in this chapter. Animals were premedicated with atropine (0.05 mg/kg) and diazepam

(1.5 mg/kg) and anaesthetized initially with ketamine HCl (10 mg/kg). Anaesthesia dur-

ing recording was maintained by intravenous infusion of sufentanil citrate (Sufenta; 4-8

µg.kg−1.hr−1). To minimize eye movements, vecuronium bromide was infused intravenously

(Norcuron; 0.1 mg.kg−1.hr−1). Vital signs (EEG, ECG, end-tidal PC02, temperature and lung

pressure) were monitored continuously. The pupils were dilated with topical atropine and

the corneas protected with gas-permeable contact lenses. Refraction was provided by sup-

plementary lenses. Electrophysiological recordings were made using a seven-electrode array

(Thomas Recording, Giessen, Germany). Spikes were detected using a hardware discrimi-
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nator, and digitised with a temporal resolution of 0.25 ms. Most pairs of cells (90.5%) were

recorded on separate electrodes. Use of an anaesthetised preparation for this experiment

allowed many more trials to be collected than would otherwise be possible; this is particu-

larly important for information theoretic analyses in which effective sampling is crucial. Use

of sufentanil avoided some of the problems that are apparent with other anaesthetics such

as halothane and isoflurane, including changes in contrast sensitivity (Movson et. al. 2003)

and oscillations (Imas et. a. 2004).

3.3.1 Visual Stimuli

Stimuli were luminance modulated, drifting sine-wave gratings presented at a frame rate

of 100 Hz. We measured, in order, the direction, spatial and temporal frequency, and

size tuning for drifting sine-wave gratings. After characterising the stimulus preference for

each cell independently, we measured correlation for responses evoked by stimuli of different

directions and contrasts. The spatial and temporal frequency of these test stimuli were

set between the preferred values of the two cells or at the value of the cell that responded

less vigorously. Stimuli were presented between the receptive field (RF) centres of the cells

and covered both RFs. All measurements were made using stimuli presented in a circular

aperture to the dominant eye of the less responsive cell. A gray field of average luminance

surrounded the stimuli.

Direction and contrast experiments were performed in separate blocks of trials. Within most

(˜90%) of these experiments, the presentation order of each direction or contrast was block

randomized. In the direction experiments, we presented full-contrast gratings drifting in five

distinct directions, spanning the range between evoking a weak response and driving both

cells strongly. In the contrast experiments, we fixed the direction to that most effective at

driving the pair of cells, and presented the stimulus at four contrasts, typically 1.56, 6.25,

25 and 100%. For cells with low contrast sensitivity, we adjusted the range of contrasts to

extend from 12.5 to 100% in octave steps. Stimuli were presented for 2.56 sec with a 3 sec

inter-stimulus interval during which we presented an isoluminant gray screen. Each stimulus

was presented 30-200 times. However, for the purposes of the information calculations (see

below), these stimuli were broken into individual cycles of the drifting grating, and thus a

much greater number of experimental trials (480 to 3200, mean 1300) were available for the
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purposes of information estimation.

3.3.2 Response characterisation

We characterised correlation using the (shift-predictor corrected) spike train cross-correlogram

(CCG; (Perkel et. al. 1967) as described by (Kohn and Smith 2005), as well as by the use

of information theory. For the purposes of the information calculations, we used response

bins with fixed time window lengths T (which were integral fractions of the grating period τ ,

i.e. T=τ , T=τ/2, T=τ/4 etc, where τ was the inverse of the stimulus temporal frequency

used for the pair of cells – ranging from 80 ms to 320 ms). Response vectors r for each

trial were calculated by counting spikes in these bins of length Tms; for codes comprising a

pair of cells, the response vector had length two. The cardinality of the response vector was

(nsmax,1+1)(nsmax,2+1) where nsmax,i is the maximum number of spikes (over all stimuli, for

any trial) that was observed to be fired by cell i. For each window length T , we calculated

the information quantities (as shown below) using all 480 to 3200 trials (cycles). When

multiple windows could be extracted from a single cycle (e.g. 4 windows at T=τ/4), the

resulting information values from each window in the cycle were finally averaged together.

Note that simple cells were cycle-modulated, so the results should be taken to be average

information estimates, which should not affect conclusions with regard to the relative effect

of correlations.

3.4 Results

We analyzed the activity of 147 pairs of single neurons in the primary visual cortex of

anesthetized, paralyzed macaque monkeys (Kohn and Smith 2005). The neurons in each

pair were typically complex cells separated by less than 500 microns that had a mean re-

ceptive field overlap of 75% and similar tuning properties: a mean difference of 37 ◦ in

direction preference, 0.37 octaves in spatial frequency preference, and 0.36 octaves in tem-

poral frequency preference. These neuronal pairs have previously been shown to mani-

fest stimulus-dependent synchrony (Kohn and Smith 2005). In this chapter we present an

information-theoretic analysis of the effect of this synchrony on neural coding of direction

and contrast, making use of a modified version of the method of information components
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(Panzeri and Schultz 2001a; Pola et. al. 2003; Montani et. al. 2007b). This approach al-

lows us to provide new insights into mechanisms of sensory processing in the primary visual

cortex by paying special attention on stimulus dependent correlation component. We report

here on a subset of 102 pairs (for the orientation analysis) and 71 pairs (for the contrast anal-

ysis) of the original (Kohn and Smith 2005) dataset, chosen in order to satisfy convergence

criteria for the entropy estimation procedure that we utilised (Nemenman et. al. 2004).

3.4.1 Direction coding: information adds linearly across cells

We examined the population coding of stimulus direction in primary visual cortex by quan-

tifying simultaneously recorded pairwise responses as the number of spikes fired by each cell

in the pair within a time window T (a “two letter word” response). We then calculated the

total mutual information conveyed by the ensemble response about which stimulus direction

gave rise to the response.We designated this Iensemble (Figure 3.1), and compared it with

two other information measures: the sum of the mutual informations calculated from the

individual neurons’ responses (i.e. the sum of two informations calculated from two “one

letter words”, Isum), and the mutual information calculated from a reduced code in which

the spikes on each trial are pooled across cells (i.e. the information from a single “one letter

word”, Ipooled , (Reich et. al. 2001). If the neurons’ responses are completely uncorrelated,

then Iensemble should be equal to Isum; in the presence of correlations, Iensemble might exceed

Isum – which we would refer to as a synergistic interaction – or might be less than Isum –

which we would refer to as a redundant interaction. This commonly used definition of re-

dundancy between a pair of information channels (cells) measures the extent to which they

carry common information.

Figure 3.3 A shows a typical pair of cells (which we label pair A) with partially overlapping

tuning curves (their direction preferences were 49 degrees apart). We presented five stimuli

(solid circles in Figure 3.3 A) that drove each cell through a wide range of firing rates. The

result, as can be seen in Figure 3.3C, is a substantial modulation in the height of the central

peak of the cross-correlogram (CCG) of the neurons’ spike trains: at a particular orientation

that drives both neurons moderately well, a fraction of spikes fired by each neuron tend to be

synchronized with millisecond temporal precision (Kohn and Smith, 2005). For stimuli that

do not drive both cells well, the extent of synchronization falls off sharply. This stimulus
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Fig. 3.3: Direction coding by two pairs of neurons. A,B Direction tuning curves for two pairs of

neurons the first pair are both direction-selective, the second only slightly directionally

biased (fitted using von Mises functions). C,D Cross-correlograms for each of the pairs

above show that fine-timescale synchronization is induced for stimulus directions that

drive both cells relatively well. The cross-correlation was measured for the five stimuli

indicated by the filled circles in A,B. E,F Information analysis: the total information

available from each pair of neurons (Iensemble) is compared for different integration time

windows T to the sum of the information values obtained from each constituent neuron

alone (Isum) and to the information from a pooled code in which the identity of the cell

firing each action potential is ignored (Ipooled).
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dependence of synchrony arises despite correcting for the basic rate dependence of the CCG

(Kohn and Smith 2005); the origin of the stimulus-dependence in the cross-correlogram is

discussed later in this chapter.

The synchronized firing illustrated above is an example of correlation: the timing of spikes

in the two neurons is not independent. Does the substantial synchronization apparent in

this example lead to a synergistic or redundant encoding of stimulus direction? In 3.3E

it can be seen that the answer for this pair is neither. In this case, there appears to be a

balance of contributions such that the overall effect of the correlation is neither synergistic

nor redundant. The ensemble information (Iensemble) is exactly equal to the sum of the single

cell information values (Isum), for a wide range of time windows.

A second example pair with more widely separated direction tuning curves (difference in

direction preference of 87 degrees), is shown in 3.3B (which we label pair B). The height of

the central peak of the CCG is again sensitive to stimulus direction ( 3.3D), but in this case

the resulting interaction is synergistic : the ensemble mutual information is larger than the

sum regardless of the time window over which spikes are counted ( 3.3F).

The picture over the entire population is one of a small amount of synergy: with a time

window of 5 ms, the ensemble code does on average 2.4% better than the sum of single

cell contributions (see Figure 3.4A,B). To compute the degree of synergy in the population

for a range of time windows T , we calculated a synergy index (which we call the synergy

fraction) as (Iensemble-Isum)/ Iensemble: values greater than zero indicates synergistic coding,

values less than zero indicate redundancy. The synergistic effect of ensemble coding is

more substantial at shorter time windows, where the fine temporal precision at which the

spikes may synchronize has a significant effect – the maximum effect we observed was 13.7%

at 2 ms (for technical reasons related to convergence of the numerical integral involved

in the entropy computation, the smallest time window we were able to use), tailing off

sharply at around 10 ms, where the synergy fraction is close to zero (Figure 3.4B). Thus,

being very precise about spike timing leads to synergy rather than information independence

(Schneidman et. al. 2003). The short time scale over which synergy is present agrees well

with the time scale of synchrony in the population: the mean full width at half maximum

of the CCG peaks was 9 ms. At longer time windows (T≥ 20 ms), the information became

comparable in size to the stimulus entropy (log2 5 bits), and thus ceiling effects may reduce
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Fig. 3.4: Information adds relatively linearly across cells. A The total (ensemble) information

available for each pair is plotted against the sum of the information available individually

from each cell constituting the pair. The time window used for counting spikes was 5 ms.

Pairs marked A and B correspond to the pairs illustrated in Figure 2A,B. B The synergy

fraction (defined as 1 − Isum/Iensemble and indicating the fraction of information beyond

that expected if the cells are independent) is plotted against the time window used for

counting spikes. The lines show the average (+/− s.e.m.) over the entire dataset, and

over only those pairs showing ensemble information lower than 1 bit (this latter curve

excluding potential artefactual redundancy effects). C Pooling spikes across cells destroys

a substantial amount of information in almost all cases indicating that the pattern of

spikes across cells is informative.
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the raw information values somewhat. We corrected for this by removing pairs from the

population that presented a higher information amount than 1 bits at a given time window,

an arbitrary but conservative threshold. It is apparent that in the absence of ceiling effects,

the trend for long time windows is for the synergy fraction to asymptote to a slightly negative

value, indicating that the mutual information adds across the neurons as if they were roughly

independent.

In contrast to Isum, the information available from the pooled code (Ipooled) is severely cur-

tailed: destroying the identity of which cell fired a spike substantially reduces the information

transmitted (in agreement with Reich et al., 2001). This was apparent in both example pairs

A and B (Figures 3.2 E and F), and is true for every pair analysed (Figure 3.3C). The mean

amount of information lost due to destroying cell identity was 46.33% of the ensemble infor-

mation at T = 5 ms, and 46% at T = 40 ms (see also Reich et al., 2001).

3.4.2 The role of correlations in direction coding: a balance of redundant and synergistic

effects

In the previous section we found that correlations between neurons lead to a weakly syner-

gistic code for direction on fine timescales. In a sense, this is surprising because the pairs

often displayed substantial synchronization whose strength was strongly dependent on the

direction of the stimulus (Figure 2C,D; (Kohn and Smith 2005), suggesting that this syn-

chrony should convey substantial information. On the other hand, the synchrony arises from

common input to a pair of cells and was prevalent in our dataset precisely because the neu-

rons had similar receptive field properties. The similarity in tuning properties means that

the firing rate provides redundant information and raises the issue of how this information

compares to that provided by correlated firing.

To examine the relative information conveyed by different aspects of the response, we sepa-

rated the total mutual information into components reflecting the contributions of individual

coding mechanisms (Figure 3.1). The linear component—Ilin—represents the information

that would be obtained if each neuron were to convey independent information. This is

equal to Isum, which we calculated in the previous section by a different approach. Isig−sim

represents the reduction in total information conveyed due to one source of redundancy: the

overlap in the tuning of the cells. These first two components depend only on the firing
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rates of the individual neurons, rather than the correlated or synchronized firing between

neurons. The Icor term captures the consequences of this correlated firing and can be sep-

arated further into stimulus-dependent (Icor−dep) and stimulus-independent (Icor−ind) parts.

The effect of Icor−dep, if non-zero, is always positive, but the effect of Icor−ind can be either

positive or negative (synergistic or redundant), depending on the sign and magnitude of the

overlap in tuning curves (see Panzeri et. al. 1999 for details). Breaking the information into

its respective components allows us identify how synergy or redundancy arises.

Figure 3.5A shows the breakdown into components of the mutual information for pair A. In

this case, the ensemble information is exactly equal to the linear component, indicating that

there is (overall) no information provided by the correlation (consistent with the analysis

of Figure 3.3E). This is true despite the presence of stimulus-dependent synchrony in this

pair (Figure 3.3C). The reason for this lies in redundant contributions from the stimulus

independent correlation (Icor−ind) and the overlap in the tuning of the two cells, Isig−sim,

which offset exactly the information provided by the stimulus-dependent synchrony (Icor−dep).

Pair B, which showed a stronger synchronization effect, also showed a stronger contribution

of the correlational components of the information. In this case, the stimulus-dependent

correlation component Icor−dep was sufficiently large to outweigh redundant effects due to

the average level of correlation (Icor−ind) and the similarity in tuning (Isig−sim), leading to

an overall synergistic effect of correlation (Figure 3.5B).

For pair A (a fairly typical pair of cells), synchronization affected information content, but

the stimulus-dependence of the synchronization served to precisely balance the redundancy

due to overlapping tuning. The value of Icordep (called ∆I by (Nirenberg et. al. 2001, de-

rived using a different approach) has been argued to indicate the importance of correlations

for decoding (Latham et. al 2005): Icordep can be written as the Kullback-Leibler divergence

between P(s|r), the probability that a stimulus s elicited ensemble response r, and Pind(s|r),
such a probability distribution constructed without knowledge of the correlations. If corre-

lations are not important for decoding which stimulus gave rise to the response, then these

probability distributions should be identical, and Icordep zero; as correlations increase in im-

portance for decoding, Icordep should also increase. For pair A, the value of Icordep was relative

small (10% of the ensemble information at T= 5 ms). For pair B, the explicit information

content in the stimulus dependence of correlations outweighed redundant effects and led to

a more substantive value for Icordep (18.5% at T = 5 ms). For time windows of 5 ms, the
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Fig. 3.5: Information component analysis for the example pairs, showing how the balance between

a synergistic contribution due to orientation dependent synchronization (Icor−dep), and
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Fig. 3.6: Information components across the entire population of 102 pairs (direction coding). A

Histogram of the relative contribution of Icordep to the total information for a time window

of 5 ms. B Isigsim, reflecting the redundant contribution due to the overlap in tuning

curves, is generally non-zero but is not strongly correlated with the overall amount of

synergy or redundancy. CCorrelational effects captured by Icor are more strongly related

to the extent of synergy in the coding. D The stimulus-dependent correlational component

is strongly related to the extent of synergistic coding, whereas (E) the average level of

correlation is unrelated. F A bar chart capturing the average value of each information

component (expressed as a fraction of the total information, Iensemble) over the entire

dataset. Error bars indicate standard error of the mean (N=102).
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mean value of Icordep over the population was 10.3 (Figure 3.6 A). For longer time windows

(T = 40 ms), the mean value of Icordep was also about 10 %.

Which of the information components were responsible for the small amount of synergy that

was observed? We examined this point by comparing the fraction of synergistic information

(Iensemble - Isum)/Iensemble to the information components on a pair-by-pair basis. For T =

5 ms it can be seen that the redundancies added by the signal-similarity term Isigsim (Fig-

ure 3.6B) are mostly canceled by synergistic contributions of the total correlation component

Icor (Figure 3.6C). Icor is significantly related to the synergy fraction (correlation coefficient

r=+0.36, significant to p=0.0005 by transforming the correlation to generate the t statistic),

and contributes mostly synergistically (Figure 3.6C). The component breakdown of Icor re-

veals that Icordep (Figure 3.6D) is most predictive of the extent to which the pairs of neurons

interact synergistically (r=+0.33; p=0.001); in contrast, Icorind is unrelated to the synergy

fraction (r= -0.008, p=0.94; Figure 3.6E). The average values of each of the components

over the entire population of pairs is shown in Figure 3.6F, for a time window of 5 ms, and

in Figure 3.7A for a range of time windows.

Notice that the correlation coefficient r is the zeroth lag of the normalized covariance func-

tion, and the p-values test the hypothesis of no correlation. The p-value is computed by

transforming the correlation to create a t statistic. If p less than 0.05, then the correlation

r is significant.

In summary, it is the balance between Icordep, on the one hand, and Isigsim and Icorind, on the

other, that largely determines the degree of synergy. For time windows lower than 10 ms, the

preservation of temporally precise spike synchrony results in correlational information which

is a relatively large fraction of the total information Iensemble(Figure 3.7A). At time windows

longer than 10 ms the synergy contribution from Icordep is significantly curtailed, and ef-

fectively cancelled by the signal similarity term, Isigsim, and also byIcorind, which provides a

greater redundant contribution as the time window increases (Figure 6A). This is in agree-

ment with the study of (Kohn and Smith 2005), where an orientation sensitive component

of the response correlation was found to dominate for short time scales, and an orientation

insensitive component for longer time scales.
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3.4.3 Greater separation in direction preference leads to synergy

One important difference between the two examples is that for pair A the tuning preferences

are closer together than for pair B, while pair B showed a stronger synergistic relationship

than did pair A. As shown in Figure 3.7B for a time window of 5 ms, this is indicative of a

general relationship: pairs with a greater separation in their preferred direction were more

likely to interact synergistically, and those with preferred directions close together were more

likely to carry redundant information. Linear summation of information across cells—when

the synergy fraction is zero—occurred for neurons whose preferred directions were around

14 degrees apart (linear fit, Figure 3.7B; r=0.35, p=0.0015) for a time window of 5 ms.

Neurons with widely separated tuning curves thus carry complementary information, even

when correlations are taken into account, whereas neurons with similar direction tuning

curves tend to carry redundant information.

The finding that synergy is strongest for pairs with dissimilar tuning may appear surpris-

ing because correlated firing, and sharp synchrony in particular, are strongest between nearby

neurons that have similar tuning (Nelson et. al. 1992; Lee et. al. 1998; De Angelis et. al. 1999;

Nowak et. al. 1999; Bair et. al. 2001; Kohn and Smith 2005). Our analysis reveals, how-

ever, that synergy is strongest between pairs of neurons for which correlation would be

expected to be relatively weak. This is because although nearby neurons are particularly

strongly correlated, this correlation arises from strong common input that presumably also

gives rise to strongly overlapping tuning curves. The redundancy that arises from having

similar tuning outweighs the information provided by correlation. For pairs with different

preferences, even weak correlation can lead to synergistic coding since the tuning of the cells

is less redundant. However, correlations do not necessarily lead to synergy. Weak correla-

tions can lead to synergy or redundancy, depending on the similarity in tuning and relative

magnitudes of Icordep and Icorind. Moreover, we did not found any relationship between the

Synergy Fraction and the high of the CCGs peaks. Attempting to relate the strength of

stimulus-dependent synchrony to synergistic coding is thus perilous. When similarity in

tuning and stimulus-independent correlation are taken into account, it is not necessarily the

case that stronger synchrony leads to more synergistic coding.
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3.4.4 Contrast coding is redundant

According to (Shannon 1948) redundancy is what wastes channel capacity. He defined re-

dundancy as the difference between the entropy of the ensemble of the messages actually

transmitted and the maximum entropy of the ensemble that the channel could transmit. A

communication channel can only transmit information at rates up to a finite limit called

its capacity, but the messages actually transmitted often contain less than this amount of

information; the difference is the redundancy of the messages. The importance here is that

any form of regularity in the messages is a form of redundancy, and since information and

capacity are quantitatively defined, so is redundancy, and we have a measure for the quantity

of environmental regularities.

Anatomical evidence in the brain shows that there are many more neurons at higher levels of

the brain than at lower levels, which suggests that Shannon redundancy does not decrease,

but instead increases. In the cortex it seems more likely that channel capacity increases

rather that decreases. The two optic nerves of humans contain axons just over 2 · 106 retinal
ganglion cells, whereas in V1 alone there are probably about 109 neurons. Information

capacity at higher levels is likely to be greater than that of the representation in the retina

or in the optic nerve. Following this reasoning, Shannon redundancy must increase, not

decrease because information cannot be created.

A selective code is a code where some information is retained and some information is

deliberately discarded. Selective codes do occur in nature, this is, a full reconstruction

output-input is not possible. On the other hand, a redundancy-reducing code is a code were

no information need to be lost. It has been hypothesized that mammalian sensory systems

are efficient because they reduce the redundancy of natural sensory input. One way in which

it might do this is by reducing the redundancy of the representation at successive stages of

processing. This is called redundancy-reduction hypothesis (Attneave 1954; Barlow 1959).

An animal must identify what is redundant in the sensory messages it perceives. This can

tell it about structure and statistical regularity in its environment that are important for

its survival. Some information about that would be conveyed by its genes, but sensory

redundancy knowledge stems from its own experience.

What would be the typical result in a redundancy-reducing code? One could expect that

a typical result of this kind of code would be to produce a distributed representation of
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the sensory input with a high activity ratio, in which many neurons are active simultane-

ously, and with high and similar frequencies. However, such high activity-ratio distributed

representations are inconvenient and highly inefficient from the statistical point of view

(Gardner-Medwin and Barlow 2001). High-activity ratio distributed representations, which

would be the product of redundancy reducing codes, could lead to inaccurate estimates of

frequencies, and the resulting statistical inefficiency would make unreliable the learning. This

would have disastrous consequences for survival.

In the previous sections, we have used information theory to study the role of correlations

in the coding of stimulus direction in primary visual cortex. However, correlations are also

modulated by stimulus contrast (Kohn and Smith 2005): whereas direction determines the

height of the central peak of the CCG, the width of the central peak is primarily sensitive

to stimulus contrast. This can be seen in the example in Figure 3.8 – a pair of neurons

with relatively similar contrast tuning curves (Figure 3.8A), which show a broadening of

the width of the CCG as contrast is reduced (Figure 3.8B). The different effect of altering

stimulus direction and contrast on correlation provides an important test of whether there

is a general role for correlation in stimulus coding, or whether the importance of correlation

depends on the particular stimulus attribute in question.

In the example of Figure 3.8, the ensemble information about contrast is substantially less

than the sum of the information available from each cell independently, regardless of the

window of analysis (Figure 3.8C). Thus the coding of contrast is redundant. This can be

explained by the fact that the contrast tuning functions of the neurons are similar, the

values of stimulus dependent correlation component are smaller for contrast, and that there

is a significant level of stimulus-independent correlation (e.g. substantial synchrony that is

present at all contrast levels). Figure 3.8D shows that the major contributor in the coding

of contrast is the large redundant Isigsim component of the information and that the effects of

the average level of correlation (Icor−ind) and the stimulus dependence of correlation (Icor−dep)

cancel each other.

The intuition provided by this example pair applies generally across the dataset. For the

whole population at a time window of 5 ms, there was an average 3% redundancy. This

redundancy arose despite the fact that correlation was contrast dependent: the average

contribution of the stimulus dependent correlation component Icordep is 6.3% of the total
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Fig. 3.9: Contrast coding across the population of 71 pairs of cells for which contrast data were

available. A Histogram of the relative contribution of Icordep to the total information for

a time window of 5 ms. B The relationship between Isigsim, the component reflecting the

contribution due to the overlap in tuning curves, and the extent of redundancy as indicated

by the negative synergy fraction. C,D,E The relationship between the magnitude of each

of the correlation components of the information, and the overall extent of synergy, on a

pair by pair basis across the entire dataset. F A histogram showing the average fraction

of information captured by each component across the dataset.
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information (Figure 3.9D). While the overall level of correlation (Icor, Figure 3.9C) covaries

significantly across the dataset with synergy fraction, Icordep does not (Figure 8D). Much of

the correspondence between Icor and synergy/redundancy is accounted for by Icorind, which is

strongly related to the synergy fraction (r= +0.58, p=1x10−5; Figure 3.9E). However, notice

that this effect is driven by the three outliers in the lower left of Figure 3.9E and if these points

are removed the analysis of Icorind will lead to results which are more in line with the one

obtained for the orientation coding. The effect of the correlation components for contrast is

relatively modest: Figure 3.9B,F shows that it is Isigsim that most strongly predicts the level

of redundancy (r=+0.62, p=1x10−5) – indicating that the redundancy substantially arises

from the high degree of similarity of all contrast tuning curves (the differing nature of the

role of Isigsim in contrast and direction coding is apparent from comparison of Figures 3.6B

and 3.9B). Icordep does nevertheless have an effect on the coding regime, in that its lower

value for the contrast dataset than the orientation dataset means that for contrast, the

redundant effects are not compensated for (comparison of Figures 3.6F, 3.9F). These results

are in general affected by the time window used to count spikes. The information is maximal

(and redundancy lowest) at T=2 ms, a timescale which corresponds to a strong effect of fine

timescale synchronization. As the time window is increased, and the effect of spike locking

is averaged out, the redundancy increases, reaching a maximal value at 80 ms.

The relative uniformity of the redundancy for the contrast dataset is apparent from Fig-

ure 3.10A. Figure 3.10B summarizes the results over the population for the coding of contrast

compared to direction coding. The pairs are weakly redundant at 5 ms – however by 40 ms

time windows, this has turned into strong redundancy (synergy fraction equal to -0.235 (

0.005). Our findings show that the coding for contrast is more redundant than for direction,

regardless of the window of analysis and despite the presence of significant correlation. This

is consistent with the general picture that pairs of cells with similar tuning (typically the

case for monotonic contrast tuning functions and true for a subset of the direction tuning

data) have high correlation but that the coding is largely redundant.

3.4.5 Transfer and autocorrelation functions

Through the last two chapters of this thesis we have used an Information Theoretical ap-

proach for discussing the role of correlations between pair of neurons in V1. Another method
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commonly used for this purpose is the cross correlation. The cross correlation is equal to the

transfer function between the pair of neurons convolved with the autocorrelation function of

one of the neurons (Papulis and Unnikrishna Pillai 2002),

CCG(r1, r2, τ) ∝
∑

t

A(r1, t, τ) · T (r1, r2, t,τ) (3.22)

where r1, r2 denote the response (number of spikes in bin) of cell 1 and 2 respectively, and

the summation is over time bins t. A and Tare respectively the integrands (summands in

the discrete notation used here) of the autocorrelation and transfer functions,

ACG(r, τ) =
∑

t

A(r, t, τ) =

∑

t

(r(t)− ⟨r(t′)⟩t′)(r(t+ τ)− ⟨r(t′)⟩t′)
∑

t′
(r(t′)− ⟨r(t′′)⟩t′′)2

(3.23)

and

TF (r1, r2, τ) =
∑

t

T (r1, r2, t, τ) =
∑

t

r2(t+ τ)− ⟨r2(t′)⟩t′
r1(t+ τ)− ⟨r1(t′)⟩t′

(3.24)

The cross-correlation can also similarly be written as the sum over a summand C

CCG(r1, r2, τ) =
∑

t

C(r1, r2, t, τ) =

∑

t

(r1(t)− ⟨r1(t′)⟩t′)(r2(t+ τ)− ⟨r2(t′)⟩t′)
√
∑

t

(r1(t)− ⟨r1(t′)⟩t′)2
√
∑

t

(r2(t)− ⟨r2(t′)⟩t′)2
(3.25)

The transfer and the autocorrelation functions were calculated for finite bins (typically of 5

ms duration) using Matlab (Mathworks, Natick, MA, USA) functions tf and xcorr.

In order to gain a better understanding of how stimulus dependence might affect the transfer

and autocorrelation functions, and to relate this to the information measure of correlations

Icordep, we will discuss the behaviour of these functions for a few representative pairs of cells

in our data set.

Figure 3.11 shows the transfer and autocorrelation functions for two different stimuli (this

pair of cells correspond to the one labelled as Pair A). Figure 3.11: A, C and E shows the
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transfer and autocorrelation functions for the stimulus for which the average firing rate is

minimal (135 degrees orientation). Figure B, D and F show the transfer and autocorrelation

function at the preferred orientation in which the firing rate is maximal (171 degrees). Note

that the transfer and the autocorrelation functions are dependent on the stimulus orientation

(this can be appreciated in the changes of the width in the autocorrelation function between

Figure 3.11:F and E). Transfer functions are essentially transformed by a scale factor. How-

ever, both autocorrelation functions change width if the stimulus orientation is changed. For

this particular pair of cells (Pair A) the stimulus dependent correlation component Icordep

was typically 10 % of the ensemble information.

The results shown in 3.11 are representative of how the transfer and autocorrelation functions

behaved in our data set. However, for pairs of cells where Icordep was relatively small (see

Figure 3.6D) the stimulus dependence of the transfer function was remarkably lower as

shown in Figure 3.12, A and B. These figures shows the transfer function for a given pair

of cells, with the smallest Icordep that can be appreciated in Figure 3.6D, for two different

set of stimuli (A and B correspond to the orientations with minimal and maximal firing

rate respectively). On the other hand, Figure 3.13 A and B shows that the width of the

autocorrelation functions is still slightly sensitive to the stimulus changes in orientation. For

this particular pair of cells Icordep was typically about 3% of the ensemble information.

Hence, even if the cross covariance and the stimulus dependent correlation component

Icordepare both good measures of correlation, a one to one relationship cannot be established

between them. The cross covariance may show stimulus dependence through the transfer

and the autocorrelation functions, or through only one of them. Moreover, in cases where

the stimulus dependence in the transfer function is small, the cross covariance may still

show stimulus dependence through the autocorrelation functions. We showed in particular

two pairs of cells, one with relatively high and one with relatively low Icordep. As might be

expected if the effects are ”real”, the transfer function shows greater stimulus dependence in

the case where Icordep is larger; with small Icordep, there was less dependence of the transfer

function on the stimuli. However, there were dependences of the autocorrelation on the

stimuli, so the picture is by no means simple.
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Fig. 3.12: A, Transfer function between pair of cells for the minimum, and B for the maximum firing

rate (pair of cells with the smallest Icordep value which can be found in Figure 3.6D, time

window fixed at 160 ms).
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3.4.6 Information rate

Mutual information quantifies how faithfully the responses measured over some defined time

period represent the stimuli. If we know exactly when and for how long the necessary infor-

mation is present in a set of neuronal spike trains, then calculating the mutual information

from this time period is exactly what we should do. In the absence of this knowledge (but

armed with some general idea), a safe option is to compute the mutual information over a

range of timescales.

Many authors wish to calculate a quantity representing the average information performance

(typically as a rate in bits/sec) over some long time period (Borst and Theunissen 1999).

Since on relatively short timescales, responses from different timescales are not independent,

the mutual information values calculated from one time window and the following cannot

be simply added: thus for short timescales, the information rate cannot be obtained simply

by dividing the information by the time window (bin) in which it is calculated. A better

estimate of the information rate might be obtained by calculating the information from both

the first and the second time bins (we could say with a wordlength L = 2); a better still

from three bins (L = 3), and so on.

cIrate(R;S) = lim
L→∞

H(ri+1, ..., ri+L)/L− lim
L→∞

H(ri+1, ..., ri+L |S )/L (3.26)

= lim
L→∞

I(ri+1, ..., ri+L;S)/L (3.27)

(3.28)

and has units of bits per second.

In Figure 3.14, we show the calculation of the information rate for the same typical pairs

of cells that we have been considering in the manuscript, by plotting the information at

wordlength L divided by the total time window considered. The asymptote defines the

information rate; the data has been fit with the function y = 1/xa + c for illustrative

purposes. The figure illustrates the use of this approach for determining the asymptotic

information rate in a neural system.
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Fig. 3.14: Calculating asymptotic information rates. A, B. Information rate estimates at differ-

ent word lengths for Pair A and for individual neurons, with bin widths t=5ms. The

information rate is the limit of these curves as L approaches infinity.
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3.5 Discussion

We have found that for direction coding the information available by being precise about

spike timing for pairs of neurons in V1 adds super-linearly. But as the timescale becomes

more coarse, information about direction adds slightly sub-linearly across pairs of cells in

agreement with a previous information theoretic study of V1 cells (Reich et. al. 2001). We

have revealed the origin of these effects by our information component analysis, which shows

a redundant (negative) contribution to the information due to the overlap in tuning and

to the average level of correlation (i.e. stimulus independent correlation). However, these

components are balanced on average by a contribution from stimulus-dependent synchrony.

It is usually accepted that visual scene contains features such as edges and homogenous

color patches, which give rise to statistical dependencies between neighboring regions of the

visual image (Field 1987). To reduce redundancy, the visual system might use these features

as a basis for representing visual input (Barlow 2001). The mammalian visual system is

believed to efficiently encode natural visual information. One way in which it might do

this is by reducing the redundancy of the representation at successive stages of processing

(Attneave 1954; Barlow 1959).

Our results have showed that synergy was stronger(and redundancy weaker) for pairs of

neurons with dissimilar tuning curves. Pairs of neurons with overlapping spatial receptive

fields but dissimilar orientation tuning will provide a strong joint response to features such as

corners and T-junctions in a visual scene (Das and Gilbert 1999); by comparison, those pairs

with similar orientation tuning will be jointly driven best by lines and edges. Our results

suggest that the pairwise coding of lines and edges is essentially independent, due to the

effects of tuning-related redundancy, whereas the coding of features such as corners should

be more synergistic. Analogously, the coding for changes in contrast is strongly redundant,

due to the greater inherent similarity of the contrast tuning curves of the neurons in a pair.

To overcome the statistical inefficiency of high activity ratio distributed representations,

which are the typical product of redundancy reduction code, one needs representations with

minimum overlap. This is, representations with the minimum number of elements active in

both inputs in pair of cells that need to be distinguished. However, our finding suggest that

stimulus dependent correlations can help the neural code to overcome this problem. The

94



fact that the synchronization depends on the stimulus direction is critically important for

coding: it serves to reduce the redundancy caused by cells having similar tuning. In our

experiments we used direction stimuli that were relatively coarsely spaced (typically 22.5 de-

gree increments). Another study used finer increments of orientation (Samonds et. al. 2003)

and found the degree of fine timescale spike synchronization to be exquisitely dependent

upon stimulus orientation. Our study might therefore under-estimate the contribution of

stimulus-dependent synchrony to the neural population code for direction/orientation.

Contrast response functions of pairs of neurons tend to be fairly similar, and synchrony

at lower contrasts is less temporally precise. For both contrast and direction coding, the

redundant contributions are dominated by the similarity in tuning, although the redundancy

is stronger for contrast. The average level of correlation plays a small redundant effect in both

cases. The synergistic contribution of the stimulus dependence of correlations is also lower

on average for contrast than for direction coding. Overall, this results in a coding regime

more similar to the traditional intuition, in which correlations tend to result in redundancy,

and thus limit the number of neurons whose outputs could usefully be combined to represent

the stimulus variable. Importantly, the results of our analysis warn strongly against making

general statements about the role of correlations in neural coding – as demonstrated here,

the effect of correlations can be quite sensitive to both the timescale and the nature of the

stimulus parameter that is being studied.

These principles underlying the neural coding of stimulus orientation and contrast were

revealed by performing, for the first time, an information component breakdown of V1

neuronal responses. In doing so, it was crucial to use an effective sampling procedure

(Nemenman et. al. 2004), to avoid the results being contaminated by residual bias. The

sampling approach we took is described in detail in Chapter 4. The information com-

ponent breakdown rendered transparent the interplay of synergistic and redundant inter-

actions giving rise to the overall result of weakly synergistic coding at short timescales,

and independent orientation (and strongly redundant contrast) coding at longer timescales.

The information components, first derived for short time windows in (Panzeri et. al. 1999),

and extended to arbitrary timescales by (Pola et. al. 2003), relate to terms that have been

measured by others (see Schneidman et. al. 2003 for a review). In particular, the stimulus-

dependent correlation component, Icordep, is exactly equal to the quantity ∆I computed by

(Nirenberg et. al. 2001; Nirenberg and Lathan 2003).
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(Schneidman et. al. 2003) raised the importance of the distinction between different kinds

of independence in neural coding. A first type of independence (which we will call Type

I) is activity or response independence, which might apply if spike trains were truly un-

correlated, i.e. p(r1,r2) = p(r1)p(r2). A second kind is conditional independence, which

might apply if correlated activity could be explained purely by overlap in receptive field

properties. This Type II independence notion accounts for the oftmade distinction between

“signal” and “noise” correlations – only the former involve Type II dependence. Type III

independence is informational independence, and applies to the situation when information

adds linearly across cells, possibly despite the presence of activity and/or conditional depen-

dencies. This latter case describes the situation for our direction dataset at long timescales,

and is a fair description of the situation at short timescales given the weak synergy we

observe. However, it is important to note that even a small amount of pairwise informa-

tional dependence can have a relatively large effect on the population code for direction

(Shlens et. al. 2006; Schneidman et. al. 2006; Averbeck et. al. 2006), even if only pairwise

correlations are present. Such an effect can be expected to be even larger if the pairwise cor-

relations are themselves only the second order signature of higher order correlations. Thus

deviations from informational independence of the order of 10% may well be of substantial

importance.

The primary goal of the current study was to address how synchronisation of spike trains

affects the neural coding of drifting gratings of different orientations and contrasts. This

leads to an obvious question: what is synchronisation for? A number of theories have been

proposed, including temporal binding (Singer and Gray 1995), fine orientation discrimination

(Samonds et. al. 2003; Samonds et. al. 2004) and contour integration (Samonds et. al. 2006).

Our results suggest a new role for stimulus-dependent synchronization: to create a coding

regime that allows sensory information to be pooled across a neuronal population in a linear

(i.e. informationally independent) or even super-linear way despite the presence of redun-

dancy in the signals conveyed by individual cells (i.e. their similarity in tuning). This

may be an important role, particularly if the redundancy is a necessary feature of cortical

circuitry rather than an imperfection. Because redundancy can lead to improved robust-

ness through fault-tolerance, it may well be desirable. By balancing this redundancy with

stimulus-dependent synchronization, the brain could take advantage of both the robustness

provided by redundancy and the accuracy due to pooling allowed by informational indepen-
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dence.

We find that destroying the identity of which neuron fired each action potential results in

a substantial loss in information about stimulus direction. This provokes the question: how

could downstream neurons decode and make use of the positive information contribution

provided by the stimulus-dependent synchronization? Simple linear readout schemes such as

the population vector (Georgopoulos et. al. 1986) can not: a nonlinear readout algorithm is

required, such as the nonlinear population vector (Shamir and Sompolinsky 2004). This does

not address how such a readout should be implemented, however, and the implementation

constraints are particularly severe if one considers that the information should be usable

within a single neuronal layer, as opposed to a multi-layer network. An integrate-and-

fire operation would effectively pool input spikes regardless of origin, thus being subject

to the (Zohary et. al. 1994) limitations on combining information from correlated input

neurons. Nonlinear dendritic summation (Hausser and Mel 2003) would thus appear to be

a necessary feature for the biophysical implementation of a decoder capable of making use

of the additional information contribution.

3.5.1 An useful Mechanism for surviving

Discovering the statistical structure of sensory messages is important. The best way to

encode information depends enormously on the use that is made of it. If the aim were just

to transmit information from one location of the brain to another then redundancy-reducing

codes economizing channel capacity would be what only matters. But the brain is not just

only a communication system, and we need to survey cases where compression is the best

way to exploit statistical structure.

Our findings suggest a new role for stimulus-dependent synchronization: to create a coding

regime that allows sensory information to be pooled across a neuronal population in a linear

or even super-linear way despite the presence of redundancy in the signals conveyed by

individual cells. This is, the neural code should convert hidden redundancy into a manifest,

explicit, immediately recognized form, rather than reduce it or eliminate it.

Knowledge of the properties of signals that are behaviorally important for the animal can be

used to improve the signal/noise ratio for their detection by matching characteristics of the
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Fig. 3.15: Detecting changes in the orientation of tiger stripes (”orientation stimuli”) is vital for

the surviving of a primate.

detector with those properties. As much as possible this preserves the stimulus energy and

excludes other signal that would contribute with noise. This is important for birds detecting

songs of their own species, and similarly for crickets, bats and electric fish.

A similar principle should be applicable from our findings to mammals. In the millisecond

that the primary visual cortex of a superior primate processes the movement of a tiger in

the forest, the synergy provided for the stimulus dependent synchronization by detecting

the change in the orientation of the stripes (Figure 3.15) will be vital for its surviving. The

animal must identify what is redundant in the sensory messages from the forest, because

statistical regularities in its environment will be also essential for its survival. Redundancy

provided by contrast stimuli, by a given visual stimuli in the forest, will help to improve

robustness through fault-tolerance. By balancing this redundancy with stimulus-dependent

synchronization, the brain could take advantage of both the robustness provided by redun-

dancy and the accuracy due to pooling allowed by informational independence.

3.5.2 Hypercolumns and the physiological origin of synchronization

The hypercolumn is a form of macrocolumn specific to the visual cortex (Hubel and Weisel 1977).

The visual cortex contains highly specific types of columns called orientation and ocular
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dominance columns, as well as hypercolumns, the merging of more than one macrocolumn.

The macrocolumn is a larger unit that consists of many minicolumns. The ’minicolumns’

are highly repetitive and complex local network that contains within them the elements for

redundancy. Cells in the column are excited by incoming stimuli with only small latency

differences. However, different species reveal different types of columns in different regions

of the brain.

Cortical neurons with similar stimulus selectivity are generally organized in columns that

span the whole cortical depth (Mountcastle 1997). Panzeri et. al 2003 have found that the

differences in the response properties of neurons located within the same column are not

essential for representing salient stimulus features. This is, the columnar organization could

act as a framework to facilitate pooling with minimal information loss. But, across-column

pooling leads to information loss. Pooling can be an effective strategy for decoding stimulus

location when restricted to individual cortical columns: all the information conveyed about

principal whisker stimulation is preserved by the operation of within the column pooling.

Moreover, they have shown that if a neuronal population is localized within a column,

then each neuron in the population carried similar messages and their activity could be

”averaged” together without any information loss. If the neurons were located in different

somatosensory columns, then each neuron provided independent and unique information, so

that ”averaging” neurons on this spatial scale would lead to a huge information loss. Thus,

cells in rat somatosensory cortex may convey information about the site of the whisker

stimulation precisely by taking advantage of the column in which they are located. These

findings suggest that columnar organization of barrel cortex serves to facilitate decoding of

the location of the stimulated whisker (Panzeri et. al 2003).

(Hubener et. al. 1997) suggested that rather than to envisage the visual cortex as containing

identical modules, it should be viewed as being composed of mosaics of functional domains

with different properties arranged non-randomly. It has been proposed that the visual sys-

tem reveals a columnar organization for an array of tasks, in what is referred to as multiple

columnar systems (Hubener et. al. 1997). It is also reasonable to expect that spike activi-

ties between excitatory cells in the same column exhibit strong synchronization and sharp

orientation selectivity. A study on feedforward inhibition in mouse barrel cortex closely links

excitation and inhibition to the function of a column (Porter et. al. 2001). After an initial

volley of excitation, input from the thalamus excites inhibitory inter-neurons, which then
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fire on short latency. In this particular experiment it has been also found that thalamo-

cortical excitation and inhibition work in synchrony, utilizing the most important sensory

information while suppressing weaker or distracting inputs.

Our finding show how synchrony between single pairs of nearby neurons in primary visual

cortex (V1) of macaque monkeys can be affected by very basic stimulus manipulations as

orientation and contrast. Destroying the identity of which neuron fired each action potential

resulted in a substantial loss in information. To overcome the statistical inefficiency of high

activity ratio distributed representations, there are needed representations with minimum

overlap. The neural code should convert therefore hidden redundancy into a obvious, clear

and exact, straightaway recognized form, rather than reduce it or exclude it. Our findings

indicate that stimulus dependent correlations can create a coding regime that allows sensory

information to be pooled across a neuronal population in a linear or even super-linear way

despite the presence of redundancy in the signals conveyed by individual cells (by cells having

similar tuning) (Montani et. al. 2007b).

Understanding better how columns work depends much on the knowledge of the functioning

of local inhibitory circuits. In chapter V we will will present a computational model to study

how simple focal abnormalities in GABAergic modulators affect information transmission in

a population of neurons.
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4. TOWARDS AN ALTERNATIVE MEASURE OF SPIKE

CORRELATIONS

To evaluate how reliably one can decide if a given response on the population coding of sen-

sory information comes from the full distribution, or from the product of independent distri-

butions from each cell, we used recorded responses of pairs of single neurons in primary visual

cortex of macaque monkey (V1) to stimuli of varying orientation (Kohn and Smith 2005).

In this chapter we consider the Jensen-Shannon Divergence (JSD) as a distance measure

of neuronal spike correlations and we discuss the advantages of this measure in compar-

ison to KL. We applied this Divergence for fixed stimuli as a measure of discrimination

between correlated and independent firing of pairs of cells in the primary visual cortex. The

Nemenman-Shafee-Bialek estimator was used in our entropy estimation in order to remove

all possible bias deviation from our calculations. We found that the relative Jensen-Shannon

Divergence (measured in relation to case in which all cell fired completely independently)

decreases with respect to the difference in orientation preference between the receptive field

from each pair of cells. Our finding indicates that the Jensen-Shannon Divergence can be

used for characterizing the effective circuitry network in a population of neurons.

4.1 Introduction

In their pioneering work Gauss and Riemann pointed out that one of the bases of geometry

is the concept of distance between points in a given space (differentiable manifold, in modern

terminology). According to their conceptions, the distance function (metric) determines all

the geometrical properties of the space. More specifically, in mathematics, a metric space is

a set where a notion of distance between elements of the set is defined. The metric space

which most closely corresponds to our intuitive understanding of space is the 3-dimensional



Euclidean space. The Euclidean metric of this space defines the distance between two points

as the length of the straight line connecting them. Topological spaces are mathematical

structures that allow the formalization of concepts such as convergence, connectedness and

continuity (Dugundji 1966; Kelley 1975). The conventional definition of a metric over a

topological space specifies how separated two given points are. An alternative to the formal

definition of a topological metric can also be applied to collections of more than two elements,

i.e, to probability distributions (Amari and Nagaoka 2000; Wolpert 2004).

Distance functions are used in natural sciences as measures of content of a given shape or

structure. They are useful tools for quantitative evaluation of the degree of similarity, shape

content and symmetry with respect to an ”ideal referent shape”. Moreover, distance mea-

sures also play a fundamental role in statistical sciences. One of the important issues in appli-

cations of statistics and probability is finding appropriate probabilistic metrics of distance or

affinity between probability distributions. In the previous chapter we used Kullback-Leiber

divergence for characterizing stimulus dependency correlations in an ensemble of neurons

(Nirenberg and Latham 2003; Pola et. al. 2003; Montani et. al. 2007b). Indeed, a number

of divergence/information measures have been proposed as measures of discrimination or dis-

tributional similarity between probability distributions. Different measures such as Kullback-

Leibler divergence, Jensen-Shannon distance (Rosso et. al. 2004; Rosso et. al. 2006), varia-

tion distance (Goldstein and Reinert 2006), Hellinger distance (Ouagnina 2003), chi square

divergence (Broniatowski and Leorato 2006), Bhattacharyya (Choi and Lee 2003) distance

have been applied in a variety of disciplines .

However, in probability theory and statistics, Jensen-Shannon distance is one of the most

popular methods of measuring the similarity between two probability distributions. Jensen

Shannon Divergence is a symmetrized and smoothed version of the all important divergence

measure of Information Theory. It is a universal measure that provides interesting inter-

pretations of information transmission (Grosse et. al. 2002). In this chapter we will use

Jensen-Shannon distance as a discrimination measure between pairs of correlated cells in the

primary visual cortex.

The importance of identifying appropriate measures of correlations and independence and

quantifying their relation to the stimulus has been pointed out by (Schneidman et. al. 2003).

To evaluate how reliably one can decide if a given response on the population coding of
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sensory information comes from the full distribution, or from the product of independent

distributions from each cell, we used recorded responses of pairs of single neurons in primary

visual cortex of macaque monkey (V1) to stimuli of varying orientation which were presented

in the previous chapter (Kohn and Smith 2005).

The results presented in this chapter were published in the American Institute of Physics

Conference Proceedings (Montani et. al. 2007c).

4.2 Methods

Let’s consider that a discrete distribution with probability function Pi represent data, obser-

vations, or a precisely calculated probability distribution. Suppose a second discrete distri-

bution with probability function Qi represents a theory, a model, another set of observations,

or even an approximation of Pi. The KL divergence of P from Q is defined as,

DKL(P∥Q) ≡
n
∑

i=1

Pi log2

{

Pi
Qi

}

, (4.1)

The Kullback-Leibler divergence is a divergence measure between the two probability densi-

ties. It is a convex function of Pi, is always nonnegative, and equals zero only if Pi = Qi. But,

notice that the Kullback-Leibler divergence is not a distance metric since it is not symmetric

and does not satisfy the triangle inequality (Grosse et. al. 2002). This kind of argument can

be applied to any distance measures which account for the quotient or the difference between

two probability densities P and Q.

Let’s remember that Shannon entropy is defined as,

H(P ) = −
∑

i

Pilog2(Pi), (4.2)

and consider a mixture of probability distributions,

Pmix =
∑

i

βiPi, (4.3)
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where the coefficients are non negative and sum to 1. Introducing eq.(4.3) in the entropy

function we can rewrite

H(
∑

i

βiPi) =
∑

i

βiH(Pi) +
∑

i

βiDKL (Pi∥Pmix) , (4.4)

and the concavity of the entropy function

H(
∑

i

βiPi) ≥
∑

i

βiH(Pi). (4.5)

is confirmed. Hence, it follows DKL (P∥Q) ≥ 0.

Notice that eq(4.4) can be rewritten as

H(
∑

i

βiPi)−
∑

i

βiH(Pi) =
∑

i

βiDKL (Pi∥Pmix) , (4.6)

and the left hand of eq(4.6) equation is the Jensen Shannon Divergence related to the mixture
∑

i

βiPi. We define therefore the general JSD as (Lin 1991; Topsoe 2000),

JSD(
∑

i

βiPi) =
∑

i

βiDKL (Pi∥Pmix) . (4.7)

In the following we are going to discuss an interpretation of this quantity. Let’s assume that

an observer did not know how to discriminate between two probability distribution P and

Q he/she would take advantage therefore of doing an average over DKL (Pβ∥Q).

According to the compensation identity which is an identity of important significance in

optimization problems (Matz and Duhamel 2004),

∑

i

βiDKL (Pi∥Q) =
∑

i

βiDKL (Pi∥Pmix) +DKL (Pmix∥Q) (4.8)
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and the minimum likelihood estimate correspond to Pmix = Q and
∑

i

βiDKL (Pi∥Pmix) is

the corresponding minimum value, and therefore this quantity may be interpreted as the

”minimum redundancy” (Topsoe 2000). Moreover, for any fixed Q

DKL

(

∑

i

βiPi∥Q
)

≤
∑

i

βiDKL (Pi∥Q) (4.9)

which proves that this quantity is a convex function.

In particular, by choosing JSD(P
2
+ Q

2
) we reduce eq(4.7) to the Jensen Shannon distance

between two distributions P and Q,

DJSD(P∥Q) =
1

2
DKL (P∥G) +

1

2
DKL (Q∥G) (4.10)

where G = P
2
+Q

2
, and DKL is the Kullback-Leibler divergence between the two distributions.

Notice that eq.(4.10) can be directly related to the J -divergence (Johnson and Sinanovic 2001).

The JS is a distance measure between probability distributions and was introduced by Rao

(1987)(Rao 1987) and Lin (1991) (Lin 1991) as a symmetrized and smoothed version of the

Kulback-Leibler divergence. Kullback-Leibler divergence DKL (P∥G) can be considered as

the inefficiency assuming that the true distribution is G when it is really P . JS can be

interpreted therefore as the minimum inefficiency distance where P and Q correspond to

two independent distributions (Endres and Schindelin 2003). We are assuming that P and

Q are two discrete probability distributions. However, the extension to the continuous case

is straightforward.

For completeness we will gather the mathematical properties of the Jensen Shannon distance

in the following paragraphs.

(1) JSD is positive defined

DJSD (P∥Q) ≥ 0 (4.11)

notice, JSD is equal to zero if and only if P = Q.

(2) JSD is symmetric in its arguments, i.e.,

DJSD (P∥Q) = DJSD (Q∥P ) . (4.12)
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(3) JSD is always well defined (Endres and Schindelin 2003).

(4) Its square root verifies the triangular inequality,

√

DJSD (P∥Q) ≤
√

DJSD (P∥G) +
√

DJSD (G∥Q). (4.13)

and JSD is the square of a metric that is equivalent to the Hellinger metric (Majtey et. al. 2005).

(5)
√
JSD is true metric for the probability distribution space (Endres and Schindelin 2003).

(6) JSD can also be interpreted as the capacity of a noisy information channel with two

inputs giving the output distributions P and Q.

(7) JSD can be generalized to quantify the divergence between an arbitrary number of points.

J. Lin proposed a generalization of JSD as a distance for several probability distributions.

In fact, let P1(x), · · · , PN(x) be a set of probability distributions and let π1, · · · , πN be a

collection of non-negative numbers such that
∑

i πi = 1. Then the JSD of the probability

distributions Pi(x) with i = 1, · · · , N is defined by

D(π1,··· ,πN )[P1, · · · , PN ] = H

[

N
∑

i=1

πi Pi

]

−
N
∑

i=1

πi H[Pi] . (4.14)

A remarkable feature of this generalized JSD is that it is possible to assign different weight

to each probability distribution Pi.

(8) It is a natural link between Information Theory and Geometry. Mutual Information is

equal the JSD in the case in which we are considering just two stimuli.

Unlike other divergence measures, the JSD does not require the condition of absolute con-

tinuity for the probability distributions involved. JS distance it is always well defined and

bounded and its square root is a true metric for the probability distributions space (is

symmetric, and it verifies the triangle inequality) (Endres and Schindelin 2003). Moreover,

Jensen Shannon Distance is a symmetrized and smoothed version of the Kullback-Leibler

divergence the most used divergence measure of Information Theory (Pola et. al. 2003;

Nirenberg and Latham 2003; Montani et. al. 2007b). In general, the measure of discrim-

inability between two stimuli s1 and s2 is the JSD between P (r|s1) and P (r|s2).

The Jensen-Shannon divergence can be considered as a measure distance between the cor-

responding probability distribution function associated with each spikes fired observed pat-

terns. The Jensen-Shannon divergence measures how reliably one can decide if a given
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Fig. 4.1: For a typical pair of cells in V1 the JSD was calculated taken into account the full stimuli

orientation dependency at seven different time windows (named as JSD Full).

response comes from the full distribution, p(r1r2), or the product of independent distribu-

tions, p(r1) · p(r2). In the present chapter we use the Jensen-Shannon Divergence for fixed

stimuli as a measure of discrimination between pairs of correlated cells in the primary visual

cortex of anesthetized macaque monkeys (Kohn and Smith 2005). Our findings indicates

that the Jensen-Shannon Divergence may be used for characterizing the circuitry network in

a population of neurons (Montani et. al. 2007c).

4.3 Results

We use the Jensen-Shannon divergence (JSD) taking G = P+Q
2

as (Rosso et. al. 2004;

Rosso et. al. 2006),

JSD(P∥Q) =
1

2

[

DKL

(

P∥P + Q

2

)

+ DKL

(

Q∥P + Q

2

) ]

, (4.15)

where DKL is the Kullback-Leibler divergence between the two distributions.

The JSD allows us to decide how reliably one can decide if a given response comes from two

different distributions. However, unlike the Kullback-Leibler divergence, it is symmetric,
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always well defined and bounded. In particular if we choose P ≡ P (r|s), the probability of

getting response vector r conditional upon the occurrence of stimulus s, and Q ≡ Pind(r|s),
the probability of getting independent population responses,

JSD(P∥Q) =
1

2

∑

r1,r2

∑

s

P (s) P (r1r2|s) log2 P (r1r2|s) − 1

2

∑

r1,r2

P (r1r2) log2 P (r1r2)

+
1

2

∑

r1,r2

∑

s

P (s) Pind(r1r2|s) log2 Pind(r1r2|s) − 1

2

∑

r1,r2

Pind(r1r2) log2 Pind(r1r2)

+
∑

r1,r2

∑

s

P (s) Pmix−all(r1r2|s) log2 Pmix−all(r1r2|s)

−
∑

r1,r2

Pmix−all(r1r2) log2 Pmix−all(r1r2). (4.16)

where P (r1r2) =
∑

s P (s)P (r1r2|s) and Pind(r) =
∑

s P (s)P (r1|s)P (r2|s) are the average of

P (r|s) and Pind(r|s) over all the possible stimuli (P (s) = 1
S
).

We named Pmix−all(r1r2|s) = Pind(r1r2|s)+P (r1r2|s)
2

, and Pmix−all(r1r2) = Pind(r1r2)+P (r1r2)
2

. By

fixing the stimuli we can use the Jensen-Shannon divergence to measure how reliably one

can decide if a given response comes from P (r1r2|sfix), or , Pind(r1r2|sfix). Comparing the

JSD for pairs of correlated P (r|s) and uncorrelated Pind(r|s) cells at a fixed stimuli, one can

ask how much information one can gain about the effective network between cells.

Notice that eq.(4.16) is completely made up of Shannon entropies. Hence, having exactly

expressed all of the quantities necessary to perform estimation of the Jensen-Shannon dis-

tance in terms of entropies of particular (in some cases conditional) distributions, these (six)

entropies contributions are computed by inserting the respective distributions into the NSB

entropy estimation routine. Thus, we can exactly apply the NSB entropy estimator without

any kind of additional approach, which also constitutes a significant advantage with respect

to the use of the KL divergence.

The concept of resistor average distance was defined in a similar framework by Johnson

(Johnson and Sinanovic 2001). This was later used by Samonds et. al. 2003, who named

”KL distance” to one half of the resistor average distance defined by Johnson and Sinanovic 2001.

The resistor average is symmetric and one half of the resistor average provides a close ap-

proximation of the Chernoff distance (Johnson and Sinanovic 2001). It equals the harmonic

sum (half of the harmonic mean) of the component KL distances.

This is, the resistor average and JSD are not exactly the same distant measures, and they
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may well lead to different conclusions. The procedure used by Samonds et. al. 2003 to

estimate the bias and to provide confidence to the measures was the bootstrap method. JSD

is more closed related to the intuitive concept of ”geometric mean” (see eq (4.7)). More

importantly, notice that we can estimate JSD using the NSB entropy estimator without any

kind of additional approach.

In order to evaluate how reliably one can decide if a given response on the population coding

of sensory information comes from the full distribution, P (r1r2|sfix), or from the product of

independent distributions from each cell, Pind(r1r2|sfix), we used recorded responses of 42

pairs of single neurons in primary visual cortex of macaque monkey (V1) to stimuli of varying

orientation. The experimental methods can be found in (Kohn and Smith 2005). They col-

lected data from single pairs of cells in primary visual cortex. For each neuron, they first de-

termined the preferred orientation and direction. This was done quantitatively by measuring

the responses to sinusoidal gratings drifting in different directions (Kohn and Smith 2005),

centered on the receptive field as determined by initial mapping (Kohn and Smith 2005).

Figure 4.1 shows the Jensen-Shannon divergence for one single pair of cells in V1

(Kohn and Smith 2005) using the NSB entropy estimator (Nemenman et. al. 2004) at differ-

ent time windows. The Jensen Shannon divergence was calculated taking the full orientation

dependency on both probabilities distributions. Plateau like behavior can be appreciated in

the Jensen-Shannon as time window becomes bigger.

In Figure 4.2 we present the Jensen-Shannon Fraction for 42 pairs of single neurons V1

at fixed stimuli orientation as function of the difference in orientation preferences from

the tuning curves obtained by each pair of cells (time window fixed at 5 ms). We de-

fine the Jensen-Shannon fraction as the minimum JS divergence obtained by fixing the

stimuli in a given set S = s1, s2..si divided by its maximum in an ensemble of neurons

JSD − Fraction =
JSD(P,Q)min−s

JSD(P,Q)max−s
. Pairs of cells with similar preferred orientations present

a higher JSD-Fraction than those that showed less similarities. This result is in agreement

with the fact that cells which share similar preferred orientations are more likely to share

a higher quantity of common inputs than those that present less similarities. Hence, those

cells are more likely to present spikes with a higher degree of synchrony. By estimating the

different JSD Fractions, we might be able to reconstruct the effective network in a popula-

tion of neurons. Our finding suggests therefore that the Jensen-Shannon Divergence could
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Fig. 4.2: T = 5 ms, The relative Jensen-Shannon Divergence as a discrimination measure of corre-

lations normalized with respect to its maximum value for this data set. In the upper part

of this Figure the Synergy-Fraction is also plotted as function of Difference in Orientation

Preference. Notice that cells with similar preferred orientation are more likely to share a

higher quantity of common inputs than those that present less similarities.
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be used for characterizing the effective circuitry network in a population of neurons.

4.4 Discussion

The present chapter describes the use of the Jensen-Shannon divergence (JSD) to charac-

terize neuronal spike correlations as an alternative quantitative scheme to Kullback-Leibler

divergence (KLD). Jensen-Shannon divergence (JSD) is a natural link between Information

Theory and Geometry. Mutual Information is equal the JSD in the case in which we are

considering just two stimuli. Unlike the Kullback-Leibler divergence (KLD), Jensen-Shannon

divergence (JSD) is always well defined and bounded and its square root is a true metric for

the probability distributions space (is symmetric, and it verifies the triangle inequality).

The Jensen Shannon Divergence is completely made up of Shannon entropies and therefore

the NSB entropy estimator can be exactly applied. This constitutes a significant advantage

to avoid bias deviations with respect to another measure of spike correlations which are

based in the KL divergence.

We performed NSB method on a relative Jensen-Shannon Divergence for pairs of cells in

V1 with stimuli dependence in orientation, considering the relevant timescale for sensory

information. By fixing the stimuli we use the Jensen-Shannon divergence to measure how

reliably one can decide if a given response comes from the full distribution or the probability

of getting independent population responses.

As we discussed in chapter III, in the case of pairs of cells with different orientation pref-

erences, even weak correlation can lead to synergistic coding since the tuning of the cells is

less redundant. The temporal correlation comes about from strong common input that pre-

sumably also gives rise to strongly overlapping tuning curves. The redundancy that comes

about from having similar tuning outweighs the information provided by correlation.

Our findings show that pairs of cells in V1 with similar preferred orientations present a higher

relative JS divergence Fraction that those which have less similarities. The use of a relative

Jensen-Shannon Divergence at a fixed stimuli provides us with a measure of how much

information one can gain about the effective network between cells. We plan to investigate
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further these features in a future analysis using a simultaneous multi-recording data set of

many neurons.
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5. THE ACCURACY OF A NEURAL POPULATION CODE AFTER

FOCAL ISCHAEMIA

The underlying origins of synchronized firing between cortical neurons are still under dis-

cussion. Inter-cellular communication through chemically mediated synaptic transmission

is considered a major contributor to the formation of neuronal synchrony. GABAergic in-

hibitory neurons may be involved in the generation of oscillatory activity in the cortex and

its synchronization. Specifically, reduction of GABAergic inhibition may favour cortical

plasticity producing functional recovery following focal brain lesions. Research into neu-

rotransmitter systems is therefore of paramount importance to understand the origins of

synchronized spiking. However, it is necessary to understand first how simple focal abnor-

malities in GABAergic modulators can affect the information transmission in an impaired

brain tissue. We present a computational and analytical model of a topographically mapped

population code which includes a focal lesion as well as a process for receptive field en-

largement (plasticity). The model simulates the recovery processes in the brain, and allows

us to investigate mechanisms which increase the ability of the cortex to restore lost brain

functions. We have estimated the Fisher Information carried by the topographic map before

and after stroke. Our finding shows that by tuning the receptive field plasticity to a certain

value, the information transfer through the cortex after the stroke can be optimized.

5.1 Introduction

Excitatory neurons in the sensory areas (visual, auditory, and somatosensory) of the brain

respond only to stimuli in restricted regions of the sensory field, referred as their receptive

fields. However, due to the distributed organization of sensory systems, the representation of

sensory objects requires integration of responses across different cortical regions. The reason



is that even basic features of an object are processed in parallel in different, specialized areas

of the cortex. The integration should be complemented by mechanisms permitting binding

of signals across different sensory modalities, since many objects encountered in the world

are multisensory and possess, in various combinations, visual, auditory, haptic, and olfactory

properties.

Gamma-aminobutyric acid (usually abbreviated to GABA) is an inhibitory neurotransmitter

found in the nervous systems of widely divergent species. It is the most important inhibitory

neurotransmitter in the central nervous system and also in the retina. In vertebrates, GABA

acts at inhibitory synapses in the brain. GABA acts by binding to specific transmembrane

receptors in the plasma membrane of both pre and postsynaptic neurons. This binding

causes the opening of ion channels to allow either the flow of negatively-charged chloride

ions into the cell or positively-charged potassium ions out of the cell. This will typically

result in a negative change in the transmembrane potential, usually causing hyperpolariza-

tion. Neurons that produce GABA as their output are called GABAergic neurons, and have

major inhibitory actions at receptors in the cerebral cortex of an vertebrate. GABAergic

neurons have a major functions in the cortex. They are critically involved in mechanisms

of reward, reinforcement and emotional arousal, and can induce recovery of sensorimotor

function in the traumatically injured brain. Inter-celular communication through chemically

mediated synaptic transmission is considered significant contributor to the formation of syn-

chronized spike firing. The interneural network of GABAergic neurons connected by chemical

synapses is a candidate for the generator of synchronized oscillations in the hippocampus

(Fukuda et. al. 2000).

On the other hand, glutamate is the most abundant fast excitatory neurotransmitter in

the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles.

Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing

post-synaptic cell, glutamate receptors, such as the NMDA receptor (ionotropic receptor for

glutamate), bind glutamate and are activated. Because of its role in synaptic plasticity, it

is believed that glutamic acid is involved in cognitive functions like learning and memory in

the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly

remove glutamate from the extracellular space. In brain injury or disease, they can work in

reverse and excess glutamate can accumulate outside cells. This process causes calcium ions

to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell
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death.

Investigations involving humans combining noninvasive recording techniques such as EEG

and MEG with advanced methods of time series analysis have revealed that neural synchrony

is associated with cognitive functions that require large-scale integration of distributed neu-

ral activity. Examples are attention-dependent stimulus selection, multi-modal integration,

working memory, selective routing of activity, and conscious processing of stimuli (for a re-

view see Singer 1999, Schnitzler and Gross 2005 and Varela et. al. 2001). Studies performed

using novel methods of time series analysis have been developed for the examination of os-

cillatory brain activity and its synchronization. Spike trains synchrony is related to feature

binding, learning and memory (Singer 1999; Borisyuk et. al. 2000a; Borisyuk et. al. 2001).

Synchronization of oscillatory responses in the β and γ band is involved in a variety of cogni-

tive functions, such as perceptual grouping, attention-dependent stimulus selection, routing

of signals across distributed cortical networks, sensory-motor integration, working memory,

and perceptual awareness.

The generation and synchronization of cortical β- and γ-oscillations involves several neu-

rotransmitter systems. GABAergic neurons play a central role in the generation of high-

frequency oscillations and their local synchronization, whereas glutamatergic connections ap-

pear to control their strength, duration, and long-range synchronization (Traub et al. 2004)

and (Wang and Buzsaki 1996). Abnormalities in dopaminergic and serotonergic neuro-trans

-mitters are thought to play a central role in the pathophysiology of schizophrenia. But,

unusual behavior in GABAergic inhibitory neurons (Lewis et al 2005) and NMDA-receptor

dysregulation (Moghaddam 2003) has been also found in patients with schizophrenia. This is,

dopaminergic dysfunctions can affect neural synchronization in schizophrenia via dopamin-

ergic action on GABAergic interneurons (Seamans and Yang 2004). Recent evidence indi-

cates a close relation between impaired neural synchrony in schizophrenia and cognitive

deficits (Uhlhaas et al. 2006). In addition to chemical synaptic transmission, direct electro-

tonic coupling through gap junctions between inhibitory neurons may also contributes to

the temporal patterning of population activity and, in particular, to the precise synchroniza-

tion of oscillatory activity (Draguhn et al. 1998; Fukuda et al. 2006 ; Hormuzdi et al. 2001;

Nase et al. 2003; Traub et al. 2001).

Several authors have recently proposed that cortical networks in autism may be character-
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ized by an absence of a biological equilibrium between excitation and inhibition, which leads

to hyperexcitability and unstable cortical networks (Hussman 2001) and (Rubenstein 2003).

This hypothesis is consistent with abnormalities in GABAergic and glutamatergic trans-

mitter systems. Indications for reduced GABAergic inhibition have been derived from the

evidence that autism is associated with mutations of genes encoding subunits of the GABA

receptor (DiCicco-Bloom et al. 2006). Anatomically, there is evidence for both hyper- as well

as hypoconnectivity in autism. Abnormal glutamatergic neurotransmission is supported by

polymorphisms in genes that encode both metabotropic and ionotropic glutamate receptors

(Carlsson 1998) and (Polleux and Lauder 2004).

Epilepsy has been assumed to result from abnormal, hyper-synchronous neural activity.

Clinical studies suggest that convulsive epilepsy is often associated with an absence of bi-

ological equilibrium between excitatory and inhibitory neurotransmitter systems, causing

enhanced excitability. GABAergic interneurons play a critical role in maintaining this bal-

ance (Levitt, 2005) and accordingly, convulsive seizures can be suppressed or reduced by

enhancing GABAergic transmission (Snead, 1992). As synchronization increases the impact

of neural activity in target structures, enhanced GABAergic transmission may, in certain

cases, facilitate seizures by inducing synchronous population discharges that then spread

very effectively across neighboring networks. In the case of absence seizures which may occur

in several forms of epilepsy, GABA-mediated hyperpolarization is essential for the develop-

ment of the synchronized, low-frequency oscillations. They depend on low-threshold Ca2+

channels that are only activated when the membrane potential drops substantially below the

average resting level (e.g., (McCormick and Williamson 1989; Huguenard and Prince 1994;

Ulrich and Huguenard 1996). However, abnormalities in GABAergic transmission alone may

not be sufficient for epileptogenesis in the mature cortex (Khalilov et al. 2005) and, gap junc-

tions may play an important role in the synchronization and propagation of epileptic activity

Carlen et al. 2000; Traub et al. 2001.

The role of temporal coordination abnormalities in neuronal synchronization and cognitive

dysfunctions is of considerable clinical relevance to a better understanding of brain disor-

ders. Certain brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer’s disease,

and Parkinson’s are associated with abnormal neural synchronization. Moreover, abnor-

malities in GABAergic inhibitory neurons may be involved in the generation of oscillatory

activity and its synchronization (Traub et al. 2004; Wang and Buzsaki 1996). Reduction
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of GABAergic inhibition may favor cortical plasticity producing functional recovery follow-

ing focal brain lesions (Zihl and von Cramon 1985; Suzuki et. al. 2000; Frost et. al. 2003;

Reinecke et. al. 2003; Xerri et. al. 1998; Schweigart and Eysel 2002; Rema and Ebner 2003;

Nudo and Milliken 1996; Jablonka and Kossut 2006). Research into neurotransmitter sys-

tems is of paramount importance not only to understand the undergoing origins of synchro-

nized spikes, but also to develop further knowledge of the pathophysiological mechanisms

underlying these neuropsychiatric disorders. A better understanding of sensory system in-

formation and processing by comparison between impaired and normal brain tissues will

be of ultimate help in the understanding cognitive dysfunctions. It is very important to

understand therefore how simple focal abnormalities in GABAergic modulators can affects

the information transmission in the impaired brain tissue.

Several observations have shown that following stroke, the levels of γ-aminobutyric acid

(GABAergic) inhibition in neighboring brain areas drops and others have shown that a reduc-

tion of GABAergic inhibition may favor cortical plasticity (Sober et. al. 1997; Carmichael 2003;

Frahm et. al. 2004; Schiene et. al. 1999; Eysel and Schweigart 1999). From these findings it

has been hypothesised that the brain supports recovery from lesion by decreasing GABAergic

inhibition and thereby facilitating plasticity and reorganization of the cortical representation

in surrounding areas. The reorganization of neural activity that follows after stroke is very

important in producing functional recovery.

Insufficient blood transport to neurons in the brain due to blocked or ruptured blood vessels

(stroke) can lead to damage or death of cells, causing functional impairment. Intact neurons

surrounding a stroke-like lesion have been shown to adapt to the damage by expanding their

sensory receptive fields in the direction towards the lesion, thereby restoring information

processing capacity within the cortex. The expansion of the receptive fields can then be

explained by the dis-inhibition caused by reduction in GABAergic modulators. Changes

in levels of GABA only affect the inhibitory parts of receptive fields but leave the excita-

tory parts unaffected. This disrupted balance between excitation and inhibition causes the

receptive field to expand asymmetrically from its original position towards the lesion.
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5.2 Topographic mapping of the cortex

Disturbance of the cerebral blood supply due to blockage or rupture of blood vessels leads

to neuronal damage or cell death, resulting in functional brain impairment (stroke). Many

who survive a stroke do so with disability. Moreover, there are no effective treatments

presently available (McCulloch J. and Dewar D.), and the brain processes that follow tran-

sient ischaemic episodes are still poorly understood (Carmichael 2003). This is true not only

of the neurochemical cascades initiated by stroke, but also of the functional reorganization

that occurs as the brain attempts to adapt to the injury and make optimal use of its re-

duced computational resources. A mathematical understanding of the principles by which

the brain manages its information processing circuitry after injury may help in the devel-

opment of therapeutic strategies. It may also help us to build machines which make use of

this remarkable fault-tolerant aspect of the brain’s computing architecture. In this chapter

we present a first step towards understanding.

After a lesion in a sensory area of the cortex, neurons in the region of tissue surrounding the

lesion tend to show hyper-excitability and enlarged receptive fields (Eysel and Schweigart 1999;

Schweigart and Eysel 2002; Fujioka et al. 2004). This functional plasticity is apparent also

in the recovery of motor function after stroke-induced impairment (Nudo et. al. 1996,

Steinberg and Augustine 1997). Several physiological mechanisms are known to be involved

in brain plasticity following a stroke. These include synaptic plasticity (Mittmann 2001),

axonal sprouting (Dancause et. al. 2005), synaptogenesis (Stroemer et.al. 1998), neuroge-

nesis (Felling 2003) and disinhibition / peri-infarct hyper-excitability (Sober et. al. 1997;

Fujioka et al. 2004). Of these, disinhibition is perhaps the simplest mechanism, and we will

thus use it as the basis of the current investigation. Underlying this model of post-stroke

plasticity is the observation that after stroke, the level of GABA-ergic inhibition in cor-

tex nearby to the lesion is reduced (Neumann-Haefelin et. al. 1995; Luhmann et. al. 1995;

Schiene et. al. 1999; Frahm et. al. 2004). The disinhibition model alone, without rewiring,

has been shown to account for many of the features of receptive field changes underlying

behaviorial recovery (Sober et. al. 1997).

Studying the consequences of stroke in a sensory part of the cortex allows us to examine

the effects of stroke on the information processing capabilities of the cortical circuit, due to

the topographic mapping of sensory information onto the surface of the cortex, as indicated
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by retinotopic and columnar organization. A remarkable feature of sensory cortices in the

brain is that the sensory world can be mapped topographically onto the cortical surface.

This means that neighboring points in the sensory field evoke activity in neighboring regions

of the cortex. Since receptive fields overlap, each point is monitored by a population of

neighboring cells, rather than a single cell, and when a point is stimulated the population of

neurons whose receptive fields include that particular site are excited.

Thus we are afforded a tool with which to extract principles that will also be relevant to

association areas of cortex, but cannot be studied directly due to the more complex (or

at least less well understood) representation of information. We will take advantage of

this topographic feature of sensory cortex to develop and solve, under particular assump-

tions a mathematical model of functional recovery after cortical damage. We will use the

theoretical approach that has been developed for the study of neuronal population cod-

ing (Seung and Sompolinsky 1993; Abbott and Dayan 1999; Deneve et. al. 1999). In this

approach, Fisher information is used to measure the accuracy of the population code in

representing a sensory variable - typically the orientation of a stimulus. We extend this

approach to the calculation of Fisher topographic information - accuracy of representation

of the (x, y) retinotopic position of a visual stimulus.

In this chapter, we present a computational model of a topographically mapped population

code which includes a focal lesion as well as a process for receptive field enlargement (plas-

ticity). The model simulates the recovery processes in the brain, and allows us to investigate

mechanisms which increase the ability of the cortex to restore lost brain functions. Changes

in the degree of plasticity of the receptive fields of the neurons, which could potentially be

influenced to enhance information transfer through the cortex after stroke, were incorpo-

rated into the model. This allowed the exploration of effects resulting from changes in the

concentration of this parameter on the level of functional restoration. Neurons close to the

damaged region expand their receptive field more than those neurons further away in the

cortex.

We developed model of the effect of focal ischaemia on the performance of a neuronal popula-

tion code, in order to study physiological parameters that could be influenced as to enhance

recovery from stroke. Our findings show that recovery of the accuracy of the population

code is optimal at a specific amount of receptive field plasticity. This plasticity can be in-
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fluenced by changing the level of γ-aminobutyric acid (GABA-ergic) inhibition in the areas

surrounding the damaged tissue.

We use Fisher Information in order to calculate how much information a neural response

carries about the stimuli. We estimate the Fisher Information carried by the topographic

map before and after the stroke. We find that by tuning the receptive field plasticity to a

certain value, the information transfer through the cortex after stroke can be optimized.

In this chapter we present the equations for Fisher information under three conditions: prior

to stroke, immediately after the lesion and with functional recovery. The equations we derive

are valid for a general receptive field model comprising the addition of an excitatory and

an inhibitory component: this (with different parameters) captures both centre-surround

Gaussian receptive fields and oriented cortical simple-cell like receptive fields. We present

the results here for the former case. We find that there is a single optimal plasticity level for

maximum recovery of function by the neuronal population code.

5.3 Methods: A mathematical model of functional reorganization

We assume a population ofN neurons with receptive fields tiled evenly across two-dimensional

visual space. We consider a model with periodic boundary conditions, i.e. a toroidal visual

space. We want a receptive field model which can capture both center-surround and V1

simple-cell type receptive field structure, without too much change in the underlying math-

ematics. A key aspect of the receptive field model for this study is that the receptive fields

must be established by the sum of an excitatory and an inhibitory component, which may

then be passed through a transfer function representing the static spiking nonlinearity. This

is in order that the core feature of the disinhibition plasticity model - separable effects on

excitation and inhibition - can be implemented. The actual size of the receptive field is

thus determined by the balance of excitation and inhibition - by shifting the balance it can

be increased or decreased. In particular, this means that selective release from inhibition

related to distance from a damage site will cause a relative shift towards excitation in the

balance, and thus the net receptive field will appear to grow towards the lesion site (see Fig.

1). The receptive field is thus defined as

fi(x, y, θ) = f exi (x, y, θ) + f ini (x, y, θ) (5.1)
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which defines the average response of neuron i to a stimulus centered at (x, y) and with

orientation θ. f exi and f ini are the excitatory and inhibitory components of the net synaptic

current respectively, which we will refer to as the excitation and inhibition fields. Although

we are defining a two-dimensional space of neurons, we use i as a label without loss of

generality - to each i is associated a receptive field centered in visual space defined by xi0

and yi0.

Fig. 5.1: Illustration of the mechanism for receptive field enlargement following a lesion. A The

overall receptive field is formed from the sum of separate excitatory and inhibitory con-

tributions - this is crucial for the mechanism to work. B With a lesion at the position

indicated, the inhibitory component is reduced by a factor 1 − exp(−dα/γ), where d is

the distance from the lesion. This leads to disinhibition on one side of the receptive field,

and consequently enlargement towards the lesion of the overall receptive field. For the

example shown, γ = 10 and α = 4.

At any given time (or experimental trial), the neuron will fire at instantaneous rate ri, which

is normally distributed about fi with variance σ2
n

P [r|x, y, θ] = 1
√

2πσ2
n

exp

[

−(ri − fi(x, y, θ))
2

2σ2
n

]

. (5.2)

We now consider the form that excitation field should take. The Gabor function (Gabor 1946)

is a common choice for modelling the simple cell receptive field (Marcelja 1980). However, for

the current purpose it is inconvenient: it provides a form for the overall shape of the receptive

field that does not naturally break into excitatory and inhibitory contributions. This means
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that it is difficult to incorporate a separate effect of plasticity on the GABAergic contribution

to the receptive field. It has also been found that other functions, such as the difference of

offset Gaussians, provide a better fit for both psychophysical data (Stork and Wilson 1990)

and for the spatial contrast sensitivity functions of simple cells in monkey visual cortex

(Hawken and Parker 1987). As the spatially offset difference of Gaussians (DOG-s) model

also has the property of breaking naturally into separate excitatory and inhibitory contribu-

tions, we have more than enough reason to use it in the present study.

We thus define the excitation input field of each neuron as

f exi (x, y, θ) = exp

{

−(x′ − xexi0 )
2 + β(y′ − yexi0 )

2

2σ2
ex

}

(5.3)

where xexi0 , y
ex
i0 indicate the center of neuron i’s excitation field in visual space, σex controls

envelope spread and x′ = x cos θi+y sin θi, y
′ = −x sin θi+y cos θi implements the orientation

preference θi of the neuron. The spatial frequency preference of the neuron is given by νi,

its phase preference by ψi and ellipticity by β. For the remainder of the chapter we will take

ψ = 0 and β = 1 for all i.

To avoid complicating the model too much at this stage, we will consider the inhibitory

components of the receptive fields to be non-oriented. This is supported by recent evidence

from two-photon imaging of inhibitory interneurons in the GAD67-GFP (∆neo) mouse, in

which GABAergic neurons were found not to be orientation tuned (Sohya et. al. 2007).

There is however some support for an orientation-tuned inhibitory component from whole-

cell patch-clamp recordings in the cat (Anderson et. al. 2000). Inclusion of orientation-tuned

inhibition would be possible in a future study. The inhibition field is thus

f ini (x, y, θ) = − exp

{

−(x− xini0 )
2 + (y − yini0 )

2

2σ2
in

}

. (5.4)

where σin controls the spread of the inhibition field, and xini0 , y
in
i0 its spatial location. x, y

feature in this equation instead of x′, y′, due to the lack of orientation tuning here. For

simplicity we will consider in this paper only the numerical results for the situation where

the spatial offset is zero, i.e. xexi0 = xini0 , y
ex
i0 = yini0 .

This general receptive field model, illustrated in Figure 5.1, can thus represent, with appro-

priately chosen parameters, the receptive fields of retinal ganglion cells, lateral geniculate

neurons, V1 simple cells and non-oriented cortical neurons. The latter case could also be

applied to cortical receptive fields for other stimulus modalities.
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5.3.1 The disinhibition model of post-lesion plasticity

A lesion is induced in the model by destroying a specific number of neurons in the population

and zero-ing out their receptive fields. The damaged neurons are thus unable to respond to

any incoming stimuli and do not contribute to the information transferred about the applied

stimuli by the population across the cortex. The size of the lesion determines the number of

damaged neurons and can be tuned to explore the effects of various sizes on the cortex. We

define a region L, in which the neurons are damaged, and thus not firing. Equation 5.1 thus

becomes

fi(x, y, θ) =

{

f exi (x, y, θ) + f ini (x, y, θ) i ̸∈ L
0 i ∈ L

. (5.5)

The affected neurons will thus not contribute to the population code.

After the lesion, we allow receptive field plasticity to occur. Note that we make a distinction

in terms between receptive field plasticity (as used in the adult brain plasticity literature,

see e.g. (Calford and Tweedale 1988)) and synaptic plasticity. Synaptic plasticity is in all

likelihood one of the mechanisms contributing towards receptive field plasticity, but it is not

a mechanism we consider explicitly in this model in its current form.

The essential element of the plasticity model is that release from inhibition should occur

proportionally to proximity to the lesion. The precise form of this functional relationship is

at present entirely unconstrained by the experimental data. We plan to perform experiments

in the future to measure this relationship, but for the meantime hypothesize for the sake

of progress that it is exponential. We also do not consider the dynamics of plasticity in

the present model, but assume that this exponential relationship is reached at steady state.

Thus Equation 5.6 becomes after plasticity

f ini (x, y, θ) = − exp

{

−(x− xini0 )
2 + (y − yini0 )

2

2σ2
in

}[

1− exp

(−dαL(x, y)
γ

)]

. (5.6)

where dL(x, y) is the Euclidean distance of point (x, y) from the boundary of the lesioned

region L, the exponent α governs the shape of the falloff of disinhibition from the lesioned

region, and γ determines the magnitude of the disinhibition that occurs.
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5.3.2 A simulation of nonlinear neuronal responses

Before we introduce the mathematical formalism, a simple simulation will be performed

to verify that it behaves as expected. Neuronal responses are complex and variable thus

describing the relationship between stimulus and response is a difficult task. The model

described in this section generates a neuronal population response to input stimuli. A simple

neuronal model can estimate firing rates as instantaneous functions of the corresponding

applied stimulus by assuming that contributions from different locations within the visual

field sum linearly. That is, the spatial input stimulus, s(x, y), is weighted linearly by the

receptive field of each neuron, fn(x, y). The linear response of each neuron n to the input

stimulus is thus generated by:

rlinear(x, y)n =
sizex
∑

x=1

sizey
∑

y=1

fn(x, y) · s(x, y) (5.7)

sizex and sizey determine the height and width of the spatially mapped visual field respec-

tively. By adding to the model a threshold-gain function, T , which is appropriately bounded

from above and below the firing rate will be never be negative or unrealistically large.

White noise, wn, is added to the system to incorporate the fact that a neuron does not

always respond in the same way to a repeatedly applied stimulus. Thus, the actual response

of each neuron n to a spatial stimulus s in the model is:

rnonlinear(x, y)n = T (rlinear(x, y)n + wn) (5.8)

For the simulations that will be shown, the transfer function T was

T (rlinear + wn) = g[rlinear + wn − r0]+ (5.9)

whereas the analytical results which we will present have currently been obtained for the

simple case

T (rlinear + wn) = rlinear + wn. (5.10)
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Fig. 5.2: A contour plot of the mapped receptive field of a single neuron, in the population before

the a stroke lesion is induced The x- and y- coordinates represent degrees of visual field

(Montani 2007d ; Einarsdottir and Montani and Schultz)

In the above, r0 is the threshold value that the sum (rlinear + wn) must reach before firing

starts. Above threshold level, the firing rate is a linear function of rlinear and g is the gain.

Figure 5.2 shows a contour plot of a receptive field of a single neuron in the neural population.

The peak of the receptive field, (x0, y0)n is dependent of the position of the neuron within

the cortex because its receptive field are mapped across it. In each trial, a white noise is

applied to the population and the response of each neuron is recorded and used to calculate

the points of the receptive field.

Figure 5.3 shows how the size of a damage influences the enlargement of receptive field.

The damage in Figure 5.3B covers a larger area of neurons than the damage in Figure 5.3A

and therefore influences a greater drop in inhibition. The plasticity levels are increased,

dependent on the drop in GABA and for these simulations, γ = 0.02 refers to the plasticity

level in the cortex following a small lesion shown in Figure 5.3 A and γ = 0.1 is the plasticity

value induced by the larger lesion shown in Figure 5.3B.

Figure 5.4 shows the relationship between the expansion of receptive fields and the distance

of neurons to the lesion. The expansion of each receptive field is represented as the deviation,

in percentage, from the original base width, pre-lesion. The distance dn from the damage is

presented in arbitrary model units and is defined to be the shortest distance between neuron
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Fig. 5.3: Receptive field adaptation following stroke-like lesion of different sizes, obtained by com-

puter simulation. The damage is represented with black dotted lines. The intact neu-

ron responds to the lesion by expanding its receptive field towards the damaged area

(Montani 2007d ; Einarsdottir and Montani and Schultz).
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Fig. 5.4: Expansion in the receptive field versus the distance between the damage and the neurons is

shown for different values of plasticity γ, which are dependent on the size of the damage.

The blue line refers to γ = 0.02, green line to γ = 0.1 and the red line to γ = 0.81.

Expansion is defined as the change in percentage between the base width of the receptive

field pre- and post lesion (Montani 2007d ; Einarsdottir and Montani and Schultz).

n and each cell within the damaged area.

5.4 Results

5.4.1 Fisher topographic information

The Fisher information for the accuracy with which the variable x can be decoded from

response ri is given by

I(x) = −
∫

driP (ri|x)
∂2 logP (ri|x)

∂x2
. (5.11)

The Cramer-Rao bound tells us that the mean-squared error of any decoder must be greater

than or equal to 1/I(x). The Fisher information thus provides a good way to characterize the

performance of a neural population code (Seung and Sompolinsky 1993; Abbott and Dayan 1999).

In two dimensions, it is relatively straightforward to see that the following simple general-
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ization of the usual quantity holds:

I(x, y) = −
∫

driP (ri|xy)
∂2 logP (ri|xy)

∂x∂y
. (5.12)

This is of course the Fisher information provided by one neuron, and it is a function of spatial

position. We will consider the situation where each neuron codes independently, and thus the

population Fisher information is simply additive across neurons. We will also assume that

all parts of retinotopic space are equally important, and thus we will consider the average

Fisher information over space, which is I = −
⟨

∑N
i=1

∫ R

0
driP (ri|xy)∂

2 logP (ri|xy)
∂x∂y

⟩

x,y
where R

is the maximum response observed.

5.4.2 Fisher information for a lesioned retinotopic code

Taking derivatives of logP from Equation 5.4 and inserting them into the above equation,

with the assumed noise model the expression for Fisher information becomes

I(x, y) =
∑

i

1

σ2
n

∂fi
∂x

∂fi
∂y

(5.13)

Now, the receptive field breaks into excitatory and inhibitory components, i.e.

∂f

∂x

∂f

∂y
=

∂

∂x
(f ex + f in)

∂

∂y
(f ex + f in). (5.14)

and the Fisher information I(x, y) can thus be written as the sum of excitatory, inhibitory

and interaction terms:

I(x, y) = Iex + Iex,in + Iin,ex + Iin (5.15)

where

Iex =
1

σ2
n

∑

i

(f exi )2
(x− xi0)(y − yi0)β

σ4
ex

(5.16)
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Iin =
1

σ2
n

∑

i

β(f ini )2
{

(x− xi0)(y − yi0)(1− e−d
α/γ)2

σ4
in

−α
2

(x− xi0)(y − yiL)(1− e−d
α/γ)e−d

α/γ

σ2
ind

2−αγ

−α
2

(x− xiL)(y − yi0)(1− e−d
α/γ)e−d

α/γ

σ2
ind

2−αγ

+
e−2dα/γ

d2(2−α)γ2
(x− xiL)(y − yiL)

α2

4d2(2−α)

}

(5.17)

Iex,in =
1

σ2
n

∑

i

(f exi f
in
i )

{

(x− xi0)(y − yi0)β

σ2
ex

[

(1− e−d
α/γ)

σ2
in

]}

+ (5.18)

1

σ2
n

∑

i

(f exi f
in
i )

{

(x− xiL)(y − yi0)

d2−ασ2
ex

β
α

2
e−d

αγ

}

Iin,ex =
1

σ2
n

∑

i

(f exi f
in
i )

{

(x− xi0)(y − yi0)β

σ2
ex

[

(1− e−d
α/γ)

σ2
in

]}

+ (5.19)

1

σ2
n

∑

i

(f exi f
in
i )

{

(x− xi0)(y − yiL)

d2ασ2
ex

β
α

2
e−d

α/γ

}

and xL, yL are the locations (in visual space) of the nearest lesioned area to neuron i. The

spread of the excitation/inhibition field is controled by σex and σin, respectively. The noise

deviation is given by σn.

Iex and Iin are the excitatory and inhibitory contributions respectively. But, Iin−ex and

Iin−ex correspond to a mixed contributions made up of excitatory and inhibitory elements.

Equations 5.17, 5.16, 5.20 and 5.19 were implemented in Figure 5.5 and 5.6 in order

to illustrate the effects of the plasticity γ on the Fisher Information components. Following

stroke-like damage the information surrounding the damaged area is increased. Notice that

this increase is mostly due to the excitatory component Iex.

Figure 5.7 Fisher Information as a function of the degree of plasticity γ for the analytical

approach. Figure 5.8 show the Fisher Information as a function of the degree of plasticity

γ using our simulation of nonlinear neuronal responses on eq. 5.15 . In both cases the

information transfer post stroke is dependent on the plasticity, γ.
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Fig. 5.5: Fisher Information components in the 2-D topographic map before the stroke. The dif-

ferent values of the Fisher information are displayed as a color map for different values of

x and y. Notice that the changes in colors, inside each individual neuron, are due to the

finite size effect of the lattice. For the example shown, γ = 0,σn = 1, σex = 2 and σin = 1.
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Fig. 5.6: Fisher Information components in the 2-D topographic map before the stroke. The dif-

ferent values of the Fisher information are displayed as a color map for different values

of x and y. Notice that the changes in colors, inside each individual neuron, are due to

the finite size effect of the lattice. For the example shown, γ = 10,σn = 1, σex = 2 and

σin = 1. Following stroke-like damage the information surrounding the damaged area is

increased mostly due to an increase in the excitatory component Iex.
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Fig. 5.7: Analytical results for Fisher Information as a function of the degree of plasticity γ. Solid

black line indicates coding accuracy when the damage covers 3 % of the neurons in the

population, the dotted line refers to 30 % damage and the dashed refers to 50 % damage.

The population includes 64 neurons with a side length of visual space, i.e. distance before

it starts repeating, equal to 40 and σex = 2 and σin = 1).
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Fig. 5.8: Fisher Information as a function of the degree of plasticity γ using our simulation of

nonlinear neuronal responses on the analytical expression (eq. 5.15). The black solid line

indicates coding accuracy when the damage covers 10 % of the neurons in the population,

the dashed line refers to 30 % damage and the dotted line refers to 70 % damage. The

population includes 225 neurons with original receptive field spread σ = 2. The curves are

normalised to the Fisher information prior to the stroke. The left asymptote corresponds

to the performance after stroke, but prior to functional recovery.
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Our findings in Figure 5.7 and 5.8 show that following a stroke-like damage, the information

transfer drops from its original value because neurons within the damaged area do not con-

vey information about the applied stimuli. When the plasticity level is raised, the neurons

surrounding the damage start to expand their receptive fields in order to take up lost func-

tions, and the information transfer increases. However, when γ is raised even further and

the expansion increases, overlap of the receptive fields becomes too large and information

is lost again. This is due to the fact that infinitely large receptive field do not provide any

information about applied stimuli because every stimulus pattern is weighted in the same

way and no discrimination is accomplished. Large overlapping receptive fields are therefore

not specific enough to give information about the input. There is therefore a certain value,

γ0 which optimizes the performance of the cortex. Figure 5.7 and 5.8 shows the Fisher

Information for three different sizes of damages. Bigger lesion led to more information loss

and less recovery with increasing γ. The analytical formulation has particular advantages,

in that it allows the effects to be broken down into excitatory, inhibitory, and interaction

terms. The purely computational approach of course may be applied to a wider range of

models.

5.5 Discussion

The current theoretical model describes how intact neurons surrounding a stroke-like cor-

tical lesion adapt to the damage and to the resulting functional impairment. The neurons

experience a dis-inhibition in their receptive fields and therefore their total receptive field

expands in the direction of the lesion. The amount of enlargement apparent in each neuron

is determined by two factors: the distance of the neuron in question from the damage and

the size of the damage. Neurons close to to the damage expand their receptive field more

than neurons further away (Montani 2007d ; Einarsdottir and Montani and Schultz). In our

approach, Fisher information is used to measure the accuracy of the population code in

representing a sensory variable. We have simplified out the dependency on orientation of a

stimulus, however, the model can be extended to include the orientation dependency just by

replacing the Gaussian (DOG-s) model by Gabor functions (Gabor 1946).

Our findings shows that after a lesion, the accuracy of coding by the population, as measured

by the Fisher information, drops by an amount which depends upon the size of the lesion.
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If plasticity mechanisms result in an enlargement of receptive fields in the direction of the

lesion (as predicted by the simple disinhibition model of plasticity), then some recovery of

Fisher information is obtained as the neurons in the intact region begin to represent the

spatial information previously represented by the damaged tissue. If plasticity is too large,

however, then receptive fields become too big, and essentially become uninformative about

the spatial location of a stimulus. There is thus a clear optimum level of plasticity for

compensating for the effect of the lesion to the maximal extent possible. This phenomenon

appears to be quite robust, and relevant to reasonable physiological parameters. Our findings

suggest that by tuning the receptive field plasticity levels to certain value, the information

transfer through the cortex post stroke can be optimized. This may be of interest both

for understanding the effects of potential therapeutic interventions in stroke, as well as for

developing engineering principles for incorporating brain-like redundancy into machines.

However, the parameters in the current study were chosen in order to illustrate the operation

of the model. There is currently little available quantitative physiological data concerning

the exact shape of receptive field enlargement following stroke. However, the experiments

required to do so are quite feasible, and we plan to carry them out using a photothrom-

bosis model stroke in the rodent preparation. We note that while the disinhibition model

has been assumed here, as a first step, our mathematical approach could be used with rela-

tively minor changes to compute the Fisher information associated with any parameterized

change in receptive field shape following the lesion, including those for instance generated

by synaptic plasticity and sprouting processes which are difficult to model explicitly using

our approach. An understanding of the precise shape changes following stroke will help us

to assess the effect of novel pharmacological therapeutic interventions that may be piloted

in rodent preparations. An understanding of the operating principles by which they occur

will also be important for the engineering of devices such as sensory arrays which make use

of fault-tolerant algorithms with brain-like recovery of function properties.
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6. AN ANALYTICAL APPROACH TO THE PDF AND FISHER

INFORMATION CONSIDERING HIGHER-ORDER CORRELATIONS IN

A POPULATION OF NEURONS

A widespread distribution of neuronal activity can generate higher-order stochastic interac-

tions. In this case, pair-wise correlations do not uniquely determine synchronizing spikes

firing in a population of neurons and higher order interactions across neurons can not be

disregarded. In this chapter we present a new statistical approach, using the information

geometry framework to analyze the probability distribution function (PDF) of spike firing

patterns by considering higher order correlations in a neuronal pool. This allows us to

study the limit of a large population of neurons and to introduce a deformation parameter

associated to the higher order correlations in the PDF. We present also an analytical estima-

tion of the Fisher information which allows us to evaluate the implications of higher order

correlations between spikes on information transmission in a population of neurons.

6.1 Introduction

Probabilities are daily used in real world applications, often without any understanding of

their mathematical foundations and of the meaning attached to them. Statistical Mechanics,

more than other disciple in physics, has been beset with problems of methodology and

presentation. Even philosophers have argued over the meaning of probabilities, in particular

when are applied to single events. However, mathematicians sidestepped this issue long time

ago by stripping away any physical interpretation and treating probability as a measure

accompanied by a set of rules. Nowadays mathematicians are at the forefront of developing

new statistical methodologies and performing cutting edge research of ultimate help to solve

statistical problems. The conundrums of many scientific disciplines have important aspects



of probabilistic science at its heart.

The idea of combining statistic and differential geometry was introduced by Amari in the

early eighties (Amari 1980; Amari 1982). However, the major scientific journals were re-

luctant at that time to accept this new idea. The attempt made by Curado and Tsallis in

1991 (Curado and Tsallis 1994) of dealing with a generalized statistics encouraged Amari

and Nagoaka to revive their results on information geometry (for a review of their work see

Amari and Nagaoka 2000). Probability distributions are indeed fundamental elements over

which fields such as statistic, stochastic processes, and Information Theory are developed

( Amari and Nagaoka 2000, Amari 1992 and Amari 1997). Information geometry itself pro-

vides a new analytical tool within the field of statistical mechanics, which has emerged from

investigating the geometrical structures of a manifold of probability distributions. Strictly

speaking, information geometry is the geometric study of statistical estimations. To consider

statistical estimations from the differential geometry point of view has allowed several pre-

vious open problems to be solved; information theory has already established itself within

the field of statistical mechanics. In the field of information theory, stochastic process, and

systems, information geometry allows the investigation of previously unexplored possibilities

(Amari and Nagaoka 2000).

Information-geometric measures can be used to analyze neural firing patterns including not

only the second-order, but also taking into account higher-order correlations across neurons

(Amari 2001; Nakahara and Amari 2002; Bothe et. al. 2000; Tanaka 2000; Ikeda et. al. 2004;

Wu et. al. 2004)). A widespread distribution of neuronal activity can generate higher-order

stochastic interactions (Amari et al. 2003). The aim of this chapter is to evaluate the sig-

nificance of these higher order correlations, in the case that correlations can not be reduced

to pairwise correlations in a population code. More specifically, we estimate analytically the

widespread PDF and Fisher Information in the limit of a large number of neurons by taking

into account higher-order correlations across the neuronal pool.

The results presented in this chapter were obtained in collaboration with Stefano Panzeri and

are being prepared for publication elsewhere (Montani and Panzeri 2007; in preparation).
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6.2 Methods

A combination of a family of probability distributions has a natural hierarchical structure.

In the Information Geometry framework, the neuronal firing is represented by a binary

vectorX = (X1, ..., Xn), each Xiindicates that the ithneuron is silent at a short time bin

ti if Xi=0. In contrast, if Xi=1 the ithneuron is firing a spike. We denote P=P(X) as

the probability distribution of getting the X neurons firing. Each P (X) is given by 2n

probabilities, pi1,. . . ,in=Prob{X1=i1,. . . ,Xn=in}, ik=0,1, normalized by the condition Σi1...in

pi1. . . in =1.

This probability distribution can be exactly expanded as (Nakahara and Amari 2002),

P (X) = exp

{

∑

xiθi +
∑

i<j

xixjθij +
∑

i<j<k

xixjxkθijk + ...+
∑

i<...<n

xi...xnθi...n − ψ,

}

(6.1)

All the θijk...n, together have 2n-1 components and form a coordinate system, called θ −
coordinates which correspond to e-flat structure in Sn. (Nakahara and Amari 2002). The

normalizing factor ψ correspond to –log2p(x1=x2=. . . =xn=0).

The set of all probability distributions form a 2n-1 dimensional manifold in Sn.

The distribution P (X) can be decomposed into marginals

ηi = Prob{xi = 1} = E{xi}, i = 1, ..., n (6.2)

ηij = Prob{xi = 1; xj = 1}, i < j (6.3)

ηijk = Prob{xi = 1; xj = 1; xk = 1}, i < j < k (6.4)

η1...n = Prob{x1 = 1; x2 = 1; x3 = 1 . . . ; xn = 1}, (6.5)

which have a 2n-1 components and define a m-flat structure in Sn. (Nakahara and Amari 2002).

En(θ) is defined as a manifold in which the marginals ηi,..., η1...n can change freely but θ is

fixed. This is, the manifold En(θ) spans all the geometrical directions in which the marginal

changes but the correlations coordinate θ is fixed.
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The θ-coordinates which are orthogonal to the marginals η1,η2,η12=η1η2 for the linear con-

tribution are given by,

θi = log2

{

Pi
P0

}

; (6.6)

where Pi is the probability Prob{Xi=1} of the ith neuron to be firing a spike, and P0 is the

probability of getting no responses Prob{Xi=0}.

The sub-manifold E1(0) consists of all the independent distributions. This can be achieved

imposing the constraints

θij = θijk = θijkl = . . . = θi...n = 0, (6.7)

which leads to the distribution P (1)

P (1) = e

∑

i

xiθi
(6.8)

which is the distribution one would derive in the absence of knowledge of spike correlations

under the maximum entropy principle. The normalizing factor is given by,

ψ = log2(P0), (6.9)

In the case of pairwise correlations the marginals are,

η1= p10+p11 (6.10)

and

η2= p01+p11 (6.11)

with

η12 = E[x1x2] = p12, (6.12)
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The coordinates orthogonal to the marginals are given by,

θij = log2

{

PijP0

PiPj
,

}

(6.13)

where Pij denotes Prob{Xi=1 Xj=1}. The sub-manifold E2(0) is composed of all the distri-

butions which take into account only pairwise interactions. This is, the condition

θijk = θijkl = . . . = θi...n = 0, (6.14)

leads to

P (2) = exiθi+xixjθij−ψ (6.15)

which correspond to the distribution that takes into account spikes correlations up to second

order.

In the case of a triplewise interaction the marginals are given by,

ηi = E[xi] = Prob {xi = 1} ; (i = 1, 2, 3) (6.16)

with

ηij = E[xixj] = Prob {xi = xj = 1} ; (i = 1, 2, 3) (6.17)

and

η123 = E[x1x2x3] = Prob {xi = xj = xk = 1, } (i = 1, 2, 3) (6.18)

For triple-wise correlations the θ-coordinates which are orthogonal to the marginal contri-

butions are given by,
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θijk = log2











Pijk
∏

l

Pl

P0

∏

l1l2

Pl1Pl2











(6.19)

where Pijk denotes Prob{Xi=1, Xj=1,Xk=1} .

The sub-manifold E3(0) is composed of all the distributions up to triplewise order interac-

tions. This is, the condition

θijkl = . . . = θi...n = 0, (6.20)

leads to

P (3) = exiθi+xixjθij+xixjxkθijk−ψ (6.21)

which accounts for pairwise and triple-wise spike correlations.

In the case of fourth order correlations the orthogonal θ-coordinates to the “fourth order

marginals” are,

θijkl = log2











Pijkl
∏

l1l2

Pl1l2P0

∏

l1l2

Pl1Pl2
∏

l3

Pl3











(6.22)

The distributions present before P(1), P(2) , P (3), . . . ... P (i) , with the constraint θi...n = 0,

correspond to stable distributions of the Boltzman machine in the neural network

(Nakahara and Amari 2002). Each of them correspond to a probability distribution whose

entropy is larger than (or equal to) that of all other members of a specified class of distribu-

tions. This is, they all satisfy the maximum entropy (Nakahara and Amari 2002).
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6.3 Results

6.3.1 Pooling across neurons:

The amount of pairwise informational dependence can have a relatively large effect on the

population code (Averbeck et. al. 2006). It is usually not difficult to incorporate pairwise

correlations dependency in the probability distribution of the ensemble. In this way, it is also

relatively easy to compare to the probability of the ensemble with probability distribution

of getting independent population responses.

However, pairwise correlations across neurons do not always determine the probability distri-

bution of synchronized postsynaptic events. Synchronous events in which a large proportions

of neurons take place should exist even in the case of weak pairwise correlations. Unfortu-

nately, pairwise correlations only provide an indirect measure of the probability distributions

of higher order correlations. Even when pairwise correlations in an ensemble of neurons are

fixed, the probability of measuring higher order events may be undetermined. This gives

an idea that to estimate higher order dependencies among a decomposition of a number of

stochastic variables is a difficult task.

Information geometry allows us to decompose quantitatively stochastic dependency into an

orthogonal sum of pairwise, triplewise, quadruplewise, and further higher order dependen-

cies. This gives a new invariant decomposition of joint entropy, which is very important

for extracting intrinsic interactions in firing patterns of an ensemble of neurons, and for

estimating recurrent functional connectivity on the information coding.

A widespread distribution of neuronal activity can generate higher-order stochastic inter-

actions across neurons that should not be disregarded. We use Information Geometry to

analyze the probability distribution function (PDF) of spike firing patterns by taking into

account higher order correlations in a neuronal pool. This allows us to consider the limit

of a large population of neurons and to introduce a deformation parameter associated to

the higher order correlations in the PDF. An analytical approach to the estimation of the

Fisher information allows us to identify higher order correlations with a deformation param-

eter and to speculate about their possible role on information transmission (Montani and

Panzeri 2007; to be submitted).
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If we assume that a ”target neuron” can not process separately spikes from different neurons,

then the label of the neuron which fired each spike is lost. Hence, the pooling mechanism

can be understood as a simple information processing strategy in the nervous system. Let’s

consider a neuronal pooling of just N neurons (let’s say k firing and N−k silent, 0 ≤ k ≤ N).

The probability of k neurons firing is,

P (k) =

(

n

k

)

· e















k
∑

i=1









k

i









·θi−ψ(θ)















(6.23)

which can equivalently be expressed as,

P (k) =

(

n

k

)

· e















k·θ1+
k
∑

i=2









k

i









·θi−ψ(θ)















(6.24)

Notice that since we are considering a neuronal pool, a simple index 1 ≤ i ≤ k is included

in θ coordinates which accounts for higher order contributions because all neurons are equal

and thus all thetas of the same order are equal and independent of the index combination.

Taking the limit of n→ ∞, we can rewrite the probability distribution as

P (k) = e















k
∑

i=1









k

i









·θi−ψ(θ)+nH(r),















(6.25)

where r = k
N

and H(r) = −r · log(r) − (1 − r) · log(1 − r), and enH(r)is the normalization

factor which results from

(

n

k

)

by taking the limit n → ∞ (Stirling asymptotic formula

for factorial Leung et. al. 1997).

(Amari et al. 2003) have proved that when the activity of the probability distribution is not

concentrated, the interactions θ2 . . . θn scale as θi = O( 1
ni−1 ), if i ≤ n

2
. Or, θi = O( 1

nn−i ), if

i > n
2
. Figure 6.1 shows a widespread distribution where the probability distribution present
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Fig. 6.1: Widespread probability distribution, P(r), accounting for higher order correlations .

two peaks. The neurons fire synchronized at one time and are quiescent at other times. This

behavior correspond to the case in which higher order correlations generate a widespread

distribution of neuronal activity. The firing activity of the neurons is centered on its mean

when all the neurons fire independently.

Let’s consider for a moment repeated independent trials in a population of neurons. They

are called Bernoulli trials if there are only two possible outcomes for each trial and their

probabilities remain the same throughout the trials. Let’s define b(k;n, p) as the probability

that N Bernoulli trials with probabilities p of having k neurons firing and z = 1−p in N −k
neurons silent,

b(k;n, p) =

(

n

k

)

pkzn−k (6.26)

In the case in which many neurons (N) are recorded simultaneously several spikes k can be

measured to fire in synchrony across the population. However, the number k of spikes being

fired is not usually a large quantity when compared to the total number of neurons N .

In contrast to the bimodal distribution shown in Figure 6.1, neuronal spike firing is more

often represented by unimodal Poisson distribution. More specifically, in the limit of N large
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and p small a binomial distribution eq.( 6.26) can be described by a Poisson distribution,

which usually called as the ”Poisson regime” (Feller 1950). This is, if we consider N to be

sufficiently large and p small enough in order to ensure that λ = N · p is a finite quantity,

the binomial distribution converges to the Poisson distribution with mean λ. In this case,

the following identity holds

b(k;n, p)

b(k − 1;n, p)
=
λ

k
+O(

1

n
), (6.27)

and from eq.( 6.24) the quotient between P (k) and P (k − 1) is

P (k)

P (k − 1)
= (

n− k + 1

k
)e

{

θ1+
k−1
∑

i=2

(k−1)
i!(k−1−i)!

·[ k
k−1

−1]θi+θk

}

. (6.28)

In the particular case of k = 1 we can write,

b(1;n, p)

b(0;n, p)
=
λ

1
+O(

1

n
). (6.29)

and the quotient between P (1) and P (0) is

P (1)

P (0)
= neθ1 (6.30)

and since we choose n→ ∞ ( λ = n · p where p is an small quantity),

λ ≈ (n) · eθ1 +O(
1

n
), (6.31)

which can also be rewritten as,

λ

n
≈ eθ1 +O(

1

n2
). (6.32)

This implies
(

λ
n

)k ≈ ekθ1 , and the probability of having k neurons firing can be expressed as,
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P (k) =
n(n− 1)...(n− (k + 1))

(n)k
λk

k!
e















k
∑

i=2









k

i









·θi−ψ(θ)















, (6.33)

In the limit of n→ ∞, since lim
n→∞

n(n−1)...(n−(k+1))
(n)k

= 1,

P (k) ≈ λk

k!
e−ψe















k
∑

i=2









k

i









·θi















, (6.34)

Defining,

q(k) = e















k
∑

i=2









k

i









·θi















, (6.35)

and imposing (if i ≤ n
2
)

(

k

i

)

· θi >
(

k

i+ 1

)

· θi+1 (6.36)

⇒ 1
k−i

· θi > 1
i+1

· θi+1 we can choose the condition which will ensure a finite contribution

from the higher order contributions. If i > n
2
a similar relation should hold

(

k

i

)

· θi <
(

k

i+ 1

)

· θi+1 which leads to 1
k−i

· θi < 1
i+1

· θi+1.

Assuming θi ≈ θi
ni−1 , if i ≤ n

2
(θi ≈ θi

nn−i ,if i >
n
2
) the condition of q(k) being finite can be

expressed as θi > (k−i
i+1

) θi+1

n
(θi < (k−i

i+1
)nθi+1, if i >

n
2
) and therefore under this constraints

q(k) = e















k
∑

i=2









k

i









·θi















, (6.37)
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can be interpreted as a finite deformation parameter associated to higher order correlations.

This is,

Pq(k) ≈
λk

k!
e−ψeq(k), (6.38)

where q(k) is a deformation parameter in the Poisson distribution which accounts for higher

order correlations. This quantity accomplishes the normalization condition
∫

dk · Pq(k) = 1

when integrated over the entire space of responses. The PDF defined in the Information

Geometry framework (Nakahara and Amari 2002; Amari et al. 2003) is normalized to one

and therefore the approach we used to obtain eq.( 6.38) is also normalized since we have

taken the limit of large N for which the contribution in the term of the order O( 1
N
) can be

disregarded (λ ≈ (n) · eθ1 +O( 1
n
)).

If k = 0, assuming Bernoulli trials, the distribution b(k;n,p) in the ‘Poisson approximation’

converges to b(0; n, p) =e−λ + O( 1
n
). But, ⟨k⟩ = ∂ψ

∂θ1
⇒ ⟨k⟩ ∼ λ, which corresponds to

the averaged responses over trials (notice that the derivative was taken with respect to θ1).

Hence, Pq(k) ≈ ⟨k⟩k

k!
e−⟨k⟩eq(k) is a what we will name in the following as ’q-deformed Poisson’

distribution. The scheme developed above with the restriction imposed will be denoted the

‘q-deformed Poisson regime’.

Let’s consider a ’q-deformed Poisson’ for observed pattern of activity k to a given stimulus

with unknown orientation ξ,

Pq(k|ξ) =
f(ξ)ke−f(ξ)eq(k,ξ)

k!
, (6.39)

where we named ⟨k⟩ = f(ξ) as the mean response over trials for a Poisson distribution.

Notice that the bracket denotes ⟨...⟩ =
∫

dk...Pq(k|ξ).

We define q-deformed mean response over trials as

⟨k⟩q(ξ) =
∫

dk · k · Pq(k|ξ), (6.40)

and the q-deformed variance as,

⟨

σ2
⟩

q(ξ)
=

∫

dk · (k − f(ξ))2 · Pq(k|ξ). (6.41)
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In the case where “q(k, ξ) ” can be disregarded Pq(k|ξ) → PP (k|ξ) = f(ξ)ke−f(ξ)

k!
, converges to

a Poisson distribution, and ⟨σ2⟩q(ξ) → σ2 converges to the variance of a Poisson distribution

σ2 = f(ξ).

In the ‘q-deformed Poisson regime’ we can estimate the Fisher Information as,

I =

⟨

{∂ logPq(k|ξ)
∂ξ

}2
⟩

q

, (6.42)

and if the regularity condition
∫

∂2Pq(k|ξ)
∂ξ2

= 0 (6.43)

is accomplished the following identity holds

I = −
⟨

∂2 logPq(k|ξ)
∂ξ2

⟩

q

. (6.44)

Taking the logarithm of the deformed probability distribution,

logPq(k|ξ) = k log f(ξ)− f(ξ)− (log(k!)− log(eq(k,ξ)), (6.45)

the first partial derivate with respect to ξ,

∂ logPq(k|ξ)
∂ξ

= k · f
′(ξ)

f(ξ)
− f ′(ξ) + q′(ξ, k), (6.46)

and its square can be expressed as,

[
∂ logPq(k|ξ)

∂ξ
]2 =

f ′(ξ)2

f(ξ)2
[(k − f(ξ)) +

q′(ξ, k)f(ξ)

f ′(ξ)
]2 (6.47)

=
f ′(ξ)2

f(ξ)2
(k − f(ξ))2 + (k − f(ξ))

2q′(k, ξ)f ′(ξ)

f(ξ)
+ q′(k, ξ)2.

Notice that if “ q′(k, ξ) is disregardable or q(k, ξ) ≡ q(k) does not present stimulus dependency

” the following identity holds [∂ logPq(k|ξ)

∂ξ
]2 = f ′(ξ)2

f(ξ)2
[(k− f(ξ))]2. This is exactly equal to the

expression we would have obtained for [∂ logPP (k|ξ)
∂ξ

]2 in the case of a Poisson distribution.
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In response to a given stimulus with unknown orientation ”ξ”, the observed pattern of

activity is represented by ”k”. What can we say about ”ξ” given ”k” by taking into account

higher order correlations? Fisher Information reads,

I =
⟨

σ2
⟩

q(ξ)
·f

′(ξ)2

f(ξ)2
+

⟨

(k − f(ξ))q′(k, ξ) +
q′(k, ξ)2f(ξ)

2f ′(ξ)

⟩

q

(ξ) · 2f
′(ξ)

f(ξ)
. (6.48)

Fisher information is maximum where the slope is maximum. The effect of higher order

correlations into Fisher information are essentially being determined by the quotient between

q deformed variance ⟨σ2⟩q(ξ) and the square of the mean ⟨k⟩ = f(ξ) without any deformation

plus additional contributions from the higher order correlation terms accounted in q′(k, ξ).

In the case in which the “deformation parameter q(k, ξ) is disregardable”, considering that in

this case the q-deformed variance over trial (see eq.6.41) is equal to the mean f(ξ), Pq → PP

and,

I =
f ′(ξ)2

f(ξ)
, (6.49)

this expression is reduced exactly to the case of the Fisher Information for a Poisson distri-

bution.

Let’s consider for a moment the case in which the neuronal activity is modelled as a

Gaussian and the noise is assumed to be pairwise-correlated throughout the population

(Shamir and Sompolinsky 2001; Shamir and Sompolinsky 2004). The pattern of activity k

of the neurons to a given stimulus with unknown orientation ξ is distributed according to a

Gaussian distribution,

P (k|ξ) =
exp{ 1

2σGauss(ξ)
(k − fGauss(ξ))

2}
Z

. (6.50)

where Z is the normalization factor, fGauss(ξ) is the Gaussian tuning function and σGauss(ξ)

accounts for pairwise correlations. Fisher Information for the neuronal pool in this case is

given as (Shamir and Sompolinsky 2001),

Ig = Imean + Icorr, (6.51)
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where

Imean =
f ′
Gauss(ξ)

2

σGauss(ξ)
(6.52)

and

Icorr =
σ′
Gauss(ξ)

2

2σGauss(ξ)
2 . (6.53)

Notice that the pairwise correlation factor with stimuli dependency in orientation, σGauss(ξ),

and the derivative with respect to the stimuli σ′
Gauss(ξ), are being included in Icorr. The

expression above has been implicitly used in the neuro-physiological data analyzed in the

previous chapters of this thesis, and correspond to the Fisher Information of the neuronal

pooling limit accounting for pairwise correlations. If higher order correlations can be simple

reduced to pairwise contributions, then eq.(6.48) has a structure which present a few simi-

larities with respect to eq.(6.51). However, it is important to point out that the widespread

probability distribution described in this chapter can not be reproduced using a ”Gaussian

readout” correlation model and an exact approach including higher order contributions in

Information Geometry framework is needed.

6.4 Discussion

Neuronal populations can represent information in the higher order statistics of the responses.

Experimental findings show that Information exist not only in the mean firing rates but also

in higher order statistic of neuronal responses. In the case of a widespread distribution where

the probability distribution presents two peaks, the neurons fire synchronized at one time

and are quiescent at other times. This behavior correspond to the case in which higher order

correlations generate a widespread distribution of neuronal activity, and the firing activity

of the neurons is centered on its mean when all the neurons fire independently. In this

particular case, pair-wise correlations do not uniquely determine synchronizing spike firing

in a population of neurons.

Thus, higher order correlations across neurons should be taken into account. It is necessary

therefore a formalism which allow us to account for a proper description of the Information

in terms of higher-order correlations. We developed a new statistical approach, using the
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information geometry framework, to account for higher order correlations in the probability

distribution function of firing spike patters of a neuronal pool. This approach allows us

to calculate analytically the Fisher Information of the neural population by taking into

account all the possible contributions from higher order correlations terms. Moreover, the

probability distribution described in this chapter can not be simple reproduced using a

”Gaussian readout” correlation model. Our exact formalism allows us to include higher order

contributions and to reproduce the widespread distribution where the probability distribution

presents two peaks.

It is well known that Fisher Information constitutes an useful measure of the accuracy of

a populations code. However, depending on whether it is necessary or not to extract in-

formation about pair-wise or higher order correlations in the neural code, the ”Gaussian

readout” approach is not longer valid. The formalism presented above can be understood

as a exact formalism to account for cases in which higher order correlations are a necessary

feature to describe the firing spike patters of a neuronal pool. The deformation parame-

ter q(ξ) controls the efficiency of the information encoded in the mean activity, f(ξ) (first

term of eq. (6.48)) and provides an additional source of information about the stimuli ξ

(second term of eq. (6.48)). Moreover, the distributions function used to estimate Fisher

Information correspond to stable distributions of the Boltzman machine in the neural net-

work (Nakahara and Amari 2002). Thus, the PDF correspond to a probability distribution

whose entropy is larger than (or equal to) that of all other members of a specified class of

distributions. This is, they all satisfy the maximum entropy (Nakahara and Amari 2002).

The results presented above will be extended in the close future to the general case in which

the identity of the cells is taken into account. We are also currently developing a numerical

simulation to compare the ”Gaussian readout” correlation model with the exact approach

developed in this chapter. This comparison will be presented in a paper which is about be

submitted (Montani and Panzeri; 2007)

151



7. CONCLUSIONS

The brain is basically composed of two types of cells, nerve cells known as neurons, and

support cells. There are about one thousand billion neurons in a primate brain. One of the

aims of neuroscience is to understand the mechanisms through which the information about

sensory stimuli is processed in the brain. The relationship between the state of the word

being perceived and neuronal activity is of paramount importance for understanding brain

functions. Information Theory allow us to quantify how much information neuronal activity

carries about external sensory stimuli. However, the brain is not just a communication

system, and we need to survey cases where compression is a way to exploit the statistical

structure of the stimuli. The best way to encode information depends enormously on how

much compression is used. Discovering possible statistical structures of sensory messages

can give new insights of the neural coding.

The spiking activity of nearby cortical neurons is not independent, and we need to under-

stand how neurons work together to represent sensory information. Numerous studies have

explored the importance of this correlated responsivity for visual coding and perception, of-

ten by comparing the information conveyed by pairs of simultaneously recorded neurons with

the sum of information provided by the respective individual cells. The simple comparison

between pairwise and summed individual responses conflates several forms of correlation,

however, making it impossible to judge the relative importance of synchronous spiking,

basic tuning properties, and stimulus (in)dependent correlation. We found that although

synchrony is prevalent and informative, the additional information it provides is frequently

offset by the redundancy arising from the similar tuning properties of the two cells. Thus,

coding is roughly independent with weak synergy or redundancy arising depending on the

similarity in tuning and the temporal precision of the analysis. Our findings suggest that this

would allow cortical circuits to enjoy the stability provided by having similarly tuned neu-

rons without suffering the penalty of redundancy as the associated information transmission



deficit is compensated for by stimulus dependent synchrony.

More specifically, we found that for direction coding the information available by having pre-

cise spike timing for pairs of neurons in V1 adds super-linearly. But at more coarse timescale,

information about direction adds slightly sub-linearly across pairs of cells in agreement with

a previous study of V1 cells by (Reich et. al. 2001), based on information theory. We have

revealed the origin of these effects by our information component analysis, which shows

a redundant (negative) contribution to the information due to the overlap in tuning and

to the average level of correlation (i.e. stimulus independent correlation). However, these

components are balanced on average by a contribution from stimulus-dependent synchrony.

It is usually accepted that visual scene contains features such as edges and homogenous color

patches, which give rise to statistical dependencies between neighboring regions of the visual

image (Field 1987). Knowledge of the properties of signals that are behaviorally important

for the animal can be used to improve the signal/noise ratio for their detection by matching

characteristics of the detector with those properties. As much as possible this preserves

the stimulus energy and excludes other signal that would contribute with noise. To reduce

redundancy, the visual system might use these features as a basis for representing visual

input (Barlow 2001). Our results have showed that synergy was stronger(and redundancy

weaker) for pairs of neurons with dissimilar tuning curves. Pairs of neurons with overlapping

spatial receptive fields but dissimilar orientation tuning will provide a strong joint response

to features such as corners and T-junctions in a visual scene (Das and Gilbert 1999); by

comparison, those pairs with similar orientation tuning will be jointly driven best by lines

and edges. Our results suggest that the pairwise coding of lines and edges is essentially

independent, due to the effects of tuning-related redundancy, whereas the coding of features

such as corners should be more synergistic. Analogous to this, the coding for changes in

contrast is strongly redundant, due to the greater inherent similarity of the contrast tuning

curves of the neurons in a pair.

To overcome the inefficiency of distributed representations with high activity ratio, which are

the typical product of code to reduce redundancy, one needs representations with minimum

overlap. This is, representations with the minimum number of elements active in inputs to

the pair of cells that need to be distinguished. However, our findings suggest that stimulus

dependent correlations can help the neural code to overcome this problem. The fact that the
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synchronization depends on the stimulus direction is critical for coding: it serves to reduce

the redundancy caused by cells having similar tuning.

Contrast response functions of pairs of neurons tend to be fairly similar, and synchrony at

lower contrasts has less temporal precision. For both contrast and direction coding, the

redundant contributions are dominated by similarity in tuning, although the redundancy is

stronger for contrast. The average level of correlation plays a small redundant effect in both

cases. The synergistic contribution of stimulus dependence of correlations is also lower on

average for contrast than for direction coding. Overall, this results in a coding regime more

similar to the traditional intuition, in which correlations tend to result in redundancy, and

thus limit the number of neurons whose outputs could usefully be combined to represent

the stimulus variable. Importantly, the results of our analysis warn strongly against making

general statements about the role of correlations in neural coding. As demonstrated here,

the effect of correlations can be quite sensitive to both the timescale and the nature of the

stimulus parameter that is being studied.

Our results suggest a new role for stimulus-dependent synchronization: to create a coding

regime that allows sensory information to be pooled across a neuronal population in a linear

(i.e. informationally independent) or even super-linear way despite the presence of redun-

dancy in the signals conveyed by individual cells (i.e. their similarity in tuning). This may be

an important role, particularly if the redundancy is a necessary feature of cortical circuitry

rather than an imperfection. Because redundancy can lead to improved robustness through

fault-tolerance, it may well be desirable.

We find that destroying the identity of which neuron fired an action potential results in a sub-

stantial loss in information about stimulus direction. This provokes the question: how could

downstream neurons decode and make use of the positive information contribution provided

by the stimulus-dependent synchronization? Simple linear readout schemes such as the pop-

ulation vector (Georgopoulos et. al. 1986) can not decode this scheme. A nonlinear readout

algorithm is required, like a nonlinear population vector (Shamir and Sompolinsky 2004).

This does not address how such a readout should be implemented, however, and the imple-

mentation constraints are particularly severe if one considers that the information should be

usable within a single neuronal layer, as opposed to a multi-layer network. An integrate-and-

fire operation would effectively pool input spikes regardless of origin, thus being subject to the
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limitations on combining information from correlated input neurons (Zohary et. al. 1994).

Nonlinear dendritic summation (Hausser and Mel 2003) would thus appear to be a neces-

sary feature for the biophysical implementation of a decoder capable of making use of the

additional information contribution.

A similar principle should be applicable from our findings to primates. The animal must

identify what is redundant in the sensory messages, because statistical regularities in its

environment will be also essential for its survival. Redundancy provided by contrast in

visual stimuli, will help to improve robustness through fault-tolerance. By balancing this

redundancy with stimulus-dependent synchronization, the brain could take advantage of

both the robustness provided by redundancy and the accuracy due to pooling allowed by

informational independence.

We have discussed the advantages of the Jensen-Shannon measure in comparison to the Kull-

back Leiber divergence. More specifically, we have investigated the Jensen-Shannon Diver-

gence as a measure of distance between the corresponding probability distribution functions

associated with each spikes fired observed patterns. We found that the relative Jensen-

Shannon Divergence (measured in relation to the case in which all cells fired completely

independently) decreases with respect to the difference in orientation preference between

the receptive field from each pair of cells. Our finding indicates that the Jensen-Shannon

Divergence can be used for characterizing the effective circuitry network in a population of

neurons.

To understand first how simple focal abnormalities in GABAergic modulators can affect

the information transmission in an impaired brain tissue we developed a computational

and analytical model of a topographically mapped population code. The model includes a

focal lesion as well as a process for receptive field enlargement (plasticity). It simulates the

recovery processes in the brain, and allows us to investigate mechanisms which increase the

ability of the cortex to restore lost brain functions. We estimated the Fisher Information

carried by the topographic map before and after the stroke. Our finding shows that by

tuning the receptive field plasticity to a certain value, the information transfer through the

cortex after stroke can be optimized.

A widespread distribution of neuronal activity can generate higher-order stochastic interac-

tions. If neurons fire synchronized at one time and are quiescent at other times, pair-wise
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correlations do not uniquely determine synchronizing spiking in a population of neurons and

higher order interactions across neurons cannot be disregarded. We present a new statistical

approach, using the information geometry framework, for analyzing the probability density

function (PDF) of spike firing patterns by considering higher order correlations in a neuronal

pool. In chapter VI, we studied the limit of a large population of neurons and associated a

deformation parameter to the higher order correlations in the PDF. We have also performed

an analytical estimation of the Fisher information in order to evaluate the implications of

higher order correlations between spikes on information transmission. Our formalism, leads

to a new procedure to study higher order stochastic interactions. This will allow us, in

the near future, to evaluate how different stimuli structures can influence the neural coding

through higher order spike correlations.

Short-term plasticity with respect to spike train structure has been demonstrated in a variety

of conditions (Dobrunz and Stevens 1999; Lisman 1997; Snider and Bonds 1998,

Tsodyks et. al. 1997; Usrey et. al. 1998; Varela et. al. 1997). He developed a theory to

provide a framework for many perceptual phenomena that remain unexplained. Von der

Malsburg 1981 proposed that the temporal correlations between neurons could help to avoid

a potential combinatorial problem in neural coding. Theories that propose the creation of

”cardinal” cells to represent particular combinations of signals from lower-order neurons are

implausible because the number of combinations to be coded exceeds the number of neurons

available. In Von der Malsburg theory, which constitutes the original formulation of the bind-

ing theory, the activity of low-order neurons would be combined only when their spike activity

was synchronized to within a few milliseconds to create a synchronously active cell assembly.

Their elaborations are termed correlation theory or temporal binding theory, where percep-

tually related features are linked through correlated firing among subpopulations of cells.

The original basis of the cell assembly theory was that relationships were formed between

cells based on anatomical connections (Hayek 1952; Hebb 1949). However, acknowledging

the dynamic and adaptive nature of the brain, Hayek (1952) proposed that the formation of

cell assemblies might not require actual anatomical changes in synaptic connections. It could

instead result from short-term enhancement of synaptic effectiveness (a form of plasticity)

generated by changes in the temporal structure of spike trains (Von der Malsburg 1981).

But conceptual problems arise when the binding is considered as strictly intra-cortical

(Eckhorn et. al. 1988; Gray-Singer 1989). Intra-cortical binding through oscillation essen-
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tially solves the problem using circular logic. The cortex bind object features to identify the

object, but to bind the features the cortex needs to know in advance that they are part of

the same object.

It is important to consider the information coding as a multi-level process with several

hierarchical levels where the dynamics and synchronization of the neural activity plays a

fundamental role (Borisyuk et. al. 1997). The results presented in this Thesis do not bear

on directly with the role of oscillation or synchrony in solving the binding problem. How-

ever, our findings are in agreement with the (Samonds et. al. 2004) suggestions that cortical

synchrony starts with the visual stimulus and the retinal input. Spatial and temporal corre-

lations in the visual scene cause synchronous activation of populations of retinal cells. This

leads to matching cortical latencies, triggering synchronization. Transient synchrony occurs

with either dynamic or novel stimuli (Kruse and Eckhorn 1996) propagating from retina to

LGN to cortex (Castelo-Branco 1998; Neuenschwander et. al. 2002). Moreover, it is reason-

able to interpret the pathway from the retina to the cortex as a non-linear network which

accounts for fine temporal synchronization with stimulus dependence in the responses at the

level of the cortical processing. This is, to build a sort of multistage temporal binding inte-

gration theory, which could account for all the features not included in the von der Malburg

hypothesis.

The overall findings of this thesis warn about making any extensive statement about the

role of neuronal spike correlations without considering the general case that includes higher

order correlations, and suggest a need to reshape the current debate about the role of spike

correlations across neurons.
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APPENDIX



.1 Publications

The works previously presented in chapter II, III, IV and V have appeared in print.

• Montani F., Kohn A., Smith M.A., Schultz S.R. (2007), The role of correlations in

direction and contrast coding in the primary visual cortex., J Neurosci, Vol: 27, Pages:

2338 - 2348, 1529-2401.

• Montani F., Kohn A., Smith M.A., Schultz S.R. (2007), How do stimulus-dependent

correlations between V1 neurons affect neural coding?, Neurocomputing, Vol: 70,

Pages: 1782 - 1787.

• Montani F., Rosso O. A. and Schultz S. R. (2007). Discrimination Measure of Cor-

relations in a Population of Neurons by using the Jensen-Shannon Divergence. AIP

Conference Proceedings 913 XV Conference on Nonequilibrium Statistical Mechanics

and Nonlinear Physics, pp. 184-189.

• Einarsdottir H., Montani F. and Schultz S. R. (2007). A mathematical model of

receptive field reorganization following stroke. IEEE International Conference on De-

velopment and Learning, in press.

Two preprints are about of being submitted.

• Montani F., Einarsdottir H., and Schultz S. R. (2007). The accuracy of a neural

population code after focal ischaemia. To submitted to Network.

• Montani F. and Panzeri S. (2007). An analytical approach to the PDF and Fisher

Information considering higher-order correlations in a population of neurons. To be

submitted to Neural Computation.
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