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We consider local semitransparent Neumann boundary conditions for a quantum scalar field as imposed
by a quadratic coupling to a source localized on a flat codimension-one surface. Upon a proper
regularization to give meaning to the interaction, we interpret the effective action as a theory in a first-
quantized phase space. We compute the relevant heat kernel to all order in a homogeneous background and
quadratic order in perturbations, giving a closed expression for the corresponding effective action inD ¼ 4.
In the dynamical case, we analyze the pair production caused by a harmonic perturbation and a Sauter
pulse. Notably, we prove the existence of a strong/weak duality that links this Neumann field theory to the
analog Dirichlet one.
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I. INTRODUCTION

One of the major successes of quantum field theory
(QFT) has been the prediction of the Casimir effect [1],
which builds a bridge between the world of macroscopic
media and that of quantum effects [2–6]. In a first
approximation, the bodies may be modeled as perfect
conductors and thus implemented as boundary conditions
on the electromagnetic field [1]. Of course, this is not
enough to describe the always improving experimental
results [7,8]. Moreover, this simplification is thought to be
the root of some theoretical issues that include the
divergence of the energy density at the boundaries [9,10]
and a possible ill definition of the vacuum self-energy [11].
A way to obtain more realistic models is to incorporate

information of the bodies’ bulk, as in Lifshitz theories [12].
In recent times, this has been done by modeling electro-
magnetic properties as external (classical) smooth fields
[13–23].

Another possibility regards the substitution of perfect
Dirichlet or Neumann boundary conditions by more gen-
eral ones. In the Dirichlet case, one can mention for
example semitransparent boundary conditions [24–27]
(see also the closely related case of Robin boundary
conditions [28]). These can be seen as a special case of
the ones described in the previous paragraph, where
potentials get localized in a thin shell and allow the
recovery of perfect boundary conditions as a special limit
of the coupling.
Following these lines one can also consider local

semitransparent conditions, in which the coupling (or
background field living on the thin shell) becomes space-
time dependent [29,30]. This allows the study of interesting
phenomena and cases, such as particle creation [31] and
smooth nonplanar geometries (say gratings [32]) in the
effective-medium approach [33].
A by far less-studied case regards the analog for

Neumann boundary conditions. It has been shown in
Ref. [34] that Neumann semitransparent (or imperfect)
boundary conditions for a scalar field can be modeled by
the operator of quantum fluctuations:

Δζ ≔ −∂2x − ζ∂xδðxÞ∂x; ð1:1Þ

where ζ ∈ R is the coupling constant. From a mathematical
point of view, the problem at hand mixes several interesting
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ingredients. Indeed, it is contained in the so-called four-
parameter family of point interactions [35], i.e., it arises in
the study of self-adjoint extensions of the one-dimensional
second-derivative operator acting on functions appropri-
ately defined on R=f0g. In this context the interaction was
baptized δ0ðxÞ, leading to some misunderstandings in the
literature. This point was already explained in the paper by
Šeba [36], which showed that the correct interpretation of
this self-adjoint extension is in terms of a ∂δ∂ potential with
a renormalized potential, as also discussed in [34,37,38]. In
particular, Δζ is not related to the proposal in [39], where a
true generalized potential is considered.
One formal way to introduce the operator Δζ is through

the implementation of boundary conditions [35,40,41]. In
this case, the action ofΔζ should be understood as implying
the boundary conditions

ϕð0þÞ − ϕð0−Þ ¼ −ζϕ0ð0Þ; ð1:2Þ

where 0� denotes the left/right limits to zero, and the
derivative should be regularized for example as ϕ0ð0Þ ¼
ϕ0ð0þÞþϕ0ð0−Þ

2
; see [35,38]. A similar interpretation through

boundary conditions has been pursued recently in [42–44],
where δ-δ0 structures have been considered.
In the present paper we will focus on a scalar field living

in aD-dimensional flat space. It will satisfy local Neumann
semitransparent boundary conditions on a flat thin shell,
i.e., we will upgrade ζ to a spacetime-dependent coupling
(or field living on the shell). In particular, we will follow the
idea that such a field may develop small fluctuations η
around a mean (or vacuum expectation) value ζ, so that an
exact treatment in ζ but a perturbative one in η should
provide rich physical information. We thus begin our
exposition in Sec. II with a description of the relevant
QFT, consisting of a scalar field interacting with a classical
background. In Sec. III we explain how to compute the heat
kernel of Δζ to all order in the coupling ζ employing the
worldline formalism, i.e., a path-integral approach. In
doing so, we devise a tailor-made regularization which
allows to perform in Sec. IVa perturbative computation for
spacetime-dependent contributions, which is also exact in
the constant background.
Then, in Sec. V we analyze the effective action in a four-

dimensional setting, showing that the renormalized theory
is dual to the problem of local (Dirichlet) semitransparent
boundary conditions. Afterwards, we study in Sec. VI the
effect of pair production in our system by considering time-
dependent background fields, an analog of the widely
studied dynamical Casimir effect. In particular, as examples
we consider a harmonic perturbation and a Sauter pulse.
Finally, in Sec. VII we state our conclusions.

We leave necessary technical information to the appen-
dixes, where we compute the worldline-generating function
relevant to our current problem (Appendix A), compute
integrals involving chained free heat kernels (Appendix B;

others containing also Hermite polynomials are included in
Appendix C) and calculate in closed form a series of
Hermite polynomials (Appendix D). We use Planck units
so that ℏ and c are taken to be unity. It will prove
convenient to split D-dimensional coordinates x into the
coordinate perpendicular to the shell, xD, and those D − 1

parallel to it, xk; in Minkowski space, the set of spacelike
coordinates of the latter is denoted by xk. We define
x̃ ≔ x − L.

II. MODEL

We begin by considering a real scalar quantum field φ
living on a D-dimensional Euclidean flat spacetime; it
interacts with an external (classical) real scalar field η that
lives on a plate according to the following action:

S≔
1

2

Z
dDx½ð∂φÞ2þm2φ2− ðηðxkÞþ ζÞδðxD−LÞð∂DφÞ2�:

ð2:1Þ

In this action m is the mass of the field φ and we have split
the coordinates into the direction perpendicular to the plate
(xD) and those parallel to it (xk). Additionally, the plate is
placed at xD ¼ L and ζ may be understood as a mean value
of the field η over the plate. From a physical point of view,
the classical field describes the properties of the thin plate
that are relevant in the interaction with the quantum field.
Notice also that η has dimensions of length, independently
of the dimension D of the spacetime.

The interpretation of this action in Eq. (2.1) is more
evident once we consider a homogeneous configuration for
which ηðxkÞ≡ 0 [34]: in the limit ζ → ∞ one expects to
obtain two semispaces, on whose boundaries φ satisfies
Neumann boundary conditions, very much akin to the
generation of Dirichlet boundary conditions through delta
potentials.1 In this sense, for finite ζ the action (2.1) can be
interpreted as imposing Neumann semitransparent boun-
dary conditions on the field φ; allowing for inhomogeneous
field configurations ηðxkÞ, we will refer to local Neumann
semitransparent boundary conditions.
Following the usual way, upon a path-integral quantiza-

tion one can obtain the generating functional Z for this
system,

Z½J� ≔
Z

Dφe−SþJφ: ð2:2Þ

Afterwards, integrating out the scalar field φ, we can write
the effective action Γ in terms of the operator of quantum
fluctuations A; a direct computation gives

1Wewill see in Sec. III A that the correct limit is indeed ζ → ∞
and not the naive one ζ → −∞.
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Γone−loop ¼
1

2
LogDetðAÞ; ð2:3Þ

Að−i∂; x; ηÞ ≔ −∂2 þm2 þ ðηðxkÞ þ ζÞ∂D½δðxD − LÞ∂D�;
ð2:4Þ

where Γone−loop denotes the quantum contributions to Γ. We
will assume that ηþ ζ ≥ 0, such that A admits only a
continuum spectrum. A peculiarity is that the operator A
may be interpreted as a Schrödinger operator with a
derivative-dependent potential, different from the more
diffused case of an only position-dependent potential.2

As we will see in the next section, this admits an
interpretation of boundary conditions in phase space.
On physical grounds, we expect two interesting regimes

for our system: one in which η develops small fluctuations
around a constant background, admitting thus an expansion
in powers of the fluctuations, and one in which topology
plays an important role, such that η should be considered to
all orders. In the following we will consider the former,
leaving the latter for future studies.

III. A PATH INTEGRAL APPROACH: THE
WORLDLINE FORMALISM IN PHASE SPACE

One simple way to compute the quantum contributions
to the effective action is to employ the well-known
equivalence between Log Det and TrLog, as well as
Schwinger’s propertime trick (or Frullani’s representation
for the logarithm of a quotient [45]). In this way we may
recast

Γone−loop ¼
1

2
TrLogA ¼ −

1

2

Z
∞

0

dT
T

TrKAðx; x0;TÞ; ð3:1Þ

where the heat kernel KAðx; x0;TÞ ≔ hxje−TAjx0i has
appeared in a natural way.
From the formal side, the study of the spectral functions

of operators with singular operators or generalized boun-
dary conditions has attracted much attention in recent years
[46–51]. One efficient way to perform this kind of
computation is through the worldline formalism, in which
one interprets the heat kernel in terms of path integrals in a
first quantization procedure. Indeed, one may notice that
the arguments of A are momentum and position operators
in a first quantization, realized as ðp̂; x̂Þ → ð−i∂; xÞ, so that
e−TA can be understood as the evolution operator in
imaginary time t ¼ iT.

The worldline formalism has been successfully applied
to several problems; see the book [52], the reviews [53,54]
and references therein. In particular, it has recently
proved useful in three situations that are relevant to the
present computation: in phase space, where it has been
applied to investigate noncommutative quantum field
theories [55–57] and Berry phases [58], in the analysis
of singular potentials and metrics [31,59,60] and in the
study of boundaries [61–64] (see also [65–67] for related
path-integral approaches).
As a first step, we will perform an all-order computation

with a constant background, setting η≡ 0. It should be
clear that under such assumption one can disentangle the
contribution in the Dth direction, yielding the remaining
components just a free path integral. Therefore, for the rest
of this section we may simply work in a one-dimensional
setup. Additionally, we will consider the massless case,
given that the mass may be directly included in the heat
kernel at the end of the computations, simply by adding a
factor e−m

2T.
Taking these considerations into account, we follow the

worldline formalism approach to compute the transition
amplitudes, so that the relevant heat kernel may be
written as

Kζðx;x0;TÞ

≔
Z

xðTÞ¼x0

xð0Þ¼x
DxDpe−

R
T

0
dt½p2ðtÞ−ipðtÞ_xðtÞ−ζðδðx−LÞp2þ1

4
δ00ðx−LÞÞ�:

ð3:2Þ

In obtaining the master equation (3.2) one needs to Weyl
order the operator A, which involves employing the
commutation relation between derivatives and coordinates
to render the operator symmetric in terms of p and x (see
[52,68]); this is the origin of the δ00 contribution and one of
the reasons why previous attempts to compute the heat
kernel of the operator A may have failed [69]. As a matter
of fact, one should keep in mind that this additional δ00 term
does not enter in any way in the original operator; instead, it
just plays a role in the path-integral interpretation.
One further important point is that the path integral over

the momentum variables has no boundary conditions. Since
from the QFT point of view we are interested in the trace of
the heat kernel, we could have imposed periodic boundary
conditions on the phase-space path integral. However, such
a choice would not allow the study of the heat kernel out of
the diagonal that we are going to undertake in the following
section.

A. Heat kernel Kζ

We will compute the heat kernel in a perturbative
fashion, expanding the result (3.2) in the coupling param-
eter ζ. In this way we obtain

2Another way to look at the problem is to focus on the
similarities that the operator A has with Laplace-Beltrami
operator with a singular metric. We are not going to pursue this
way in this article.
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Kζðx; x0;TÞ ¼
Z

xðTÞ¼x0

xð0Þ¼x
DxDpe−

R
T

0
dt½p2ðtÞ−ipðtÞ_xðtÞ�

×
X∞
n¼0

ζn

n!

Yn
j¼1

�Z
T

0

dtj

�
δðxðtjÞ − LÞp2ðtjÞ

þ 1

4
δ00ðxðtjÞ − LÞ

��
: ð3:3Þ

To proceed further we compute the momentum integrals,
which are Gaussian upon introducing a source denoted
by j:

Z
Dpe−

R
T

0
dtðp2−i_xpÞp2ðt1Þ ¼ N

δ2

δjðt1Þ2
e
1
4

R
T

0
dtðjþi_xÞ2

����
j¼0

:

ð3:4Þ

The factorN is a normalization constant whose only role is
to be fixed when determining the value of the free path
integral and therefore may be safely dismissed. Having
recast every momentum as a variation in j, one can simplify
the problem noting that δ00ðx − LÞ ¼ ∂

2
Lδðx − LÞ; this

enables us to use the Dirac deltas to impose constraints
on the paths as following:

Kζðx;x0;TÞ

¼
X∞
n¼0

�
ζ

4

�
n
Z
S

Yn
l¼1

�
dtl

�
4

�
δ

δjl

�
2

þ ∂
2
Ll

��

×
Z

xðt1Þ¼L1

xð0Þ¼x
Dxe

R
t1
0

dtðjþi_xÞ2
4 � � �

Z
xðTÞ¼x0

xðtnÞ¼Ln

Dxe
R

T

tn
dtðjþi_xÞ2

4

����
j¼0

;

ð3:5Þ

where for any t-dependent quantity XðtÞ adding a subindex
means Xl ≔ XðtlÞ and the integral over the intermediate
times has been ordered, such that

Z
S

Yn
j¼1

dtj ≔
Z

T

0

dtn

Z
tn

0

dtn−1 � � �
Z

t2

0

dt1: ð3:6Þ

Additionally, we have introduced one position variable (Li)
for each insertion of the potential, in order to avoid
undesired mixing of the derivatives; as we will see shortly,
this will bring its own benefits.
In this way the computation is reduced to a chain of

partition functions (or generating functionals), which can
be readily computed as in Appendix A. Using those results
we get

Kζðx; x0;TÞ ¼
X∞
n¼0

�
ζ

4

�
n
Z
S

Yn
l¼1

�
dtl

�
4

�
δ

δjl

�
2

þ ∂
2
Ll

��

×
Yn
m¼0

�
e

1
4Δtm

ðiΔxmþ
R

tmþ1

tm
dtjðtÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πΔtm
p

�����
j¼0

; ð3:7Þ

where we have introduced the natural notation for the
intermediate displacements Δxm ≔ xmþ1 − xm and inter-
mediate periods Δtm ≔ tmþ1 − tm; correspondingly we
define x0 ≔ x, xnþ1 ≔ x0, t0 ≔ 0, tnþ1 ≔ T and for i ¼
1; � � � nwe set xi ≔ Li. Even if at first sight the computation
of the variations and derivatives may seem a hard task, the
implementation of a Hubbard-Stratonovich transformation
to linearize the problem allows a direct computation:

Kζðx; x0;TÞ

¼
X∞
n¼0

�
ζ

4

�
n
Z
S

Yn
l¼1

�
dtl

�
4

�
δ

δjl

�
2

þ ∂
2
Ll

��

×
Z

∞

−∞

Yn
m¼0

�
dkm
ð2πÞ e

−Δtmk2mþkmðiΔxmþ
R

tmþ1

tm
dtjðtÞÞ

�����
j¼0

¼ ð−1Þ
2

ffiffiffi
π

p
X∞
n¼0

�
ζ

8
ffiffiffi
π

p
�

n
Z
S

�Yn
l¼1

dtl

�
Δx0Δxn

Δt3=20 Δt3=2n

×

�Yn−1
m¼1

ð2Δtm − Δx2mÞ
Δt5=2m

�Yn
p¼0

e−
Δx2p
4Δtp : ð3:8Þ

Notice that had we set Li ≡ L at this point, the integrals
in the intermediate times would have become divergent.
Indeed, it has been shown in the past that the problem at
hand requires a renormalization of the coupling [34,36] or,
alternatively, an extension of the potential to let it act on
more general functions [70]. This feature is shared by
some related problems, such as point interactions in three
dimensions [35,71]. In our case, the regularization is
already implemented by the separation of the intermediate
points, which in physical terms corresponds to the idea of a
plate with finite width suggested in [34]. The limit Lm ≡ L
will thus be left to the last stage of the computation.
As explained in Appendix B, one can use the results in

[31] to perform the integrals in the intermediate times one
by one. Considering the first cases, one realizes that the
result for arbitrary n involves Hermite polynomials; using
the general result of Appendix C, we obtain

Kζðx; x0;TÞ≕
X∞
n¼0

ζnKðnÞ
ζ ðx; x0;TÞ; ð3:9Þ

where the nth-order coefficient in this expansion reads
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KðnÞ
ζ ðx; x0;TÞ

¼ −
ð−1ÞnT−n

2
−1
2signðx̃Þsignðx̃0Þe−ðjx̃jþjx̃0 jÞ2

4T Hnðjx̃jþjx̃0j
2
ffiffiffi
T

p Þ
2

ffiffiffi
π

p :

ð3:10Þ
In this expression we have employed the sign function
signð·Þ and defined the displaced variables,

x̃ ≔ x − L: ð3:11Þ
We can perform a resummation in Eq. (3.9) by using the
method described inAppendixD; in this waywe get a closed
result in terms of the complementary error function erfcð·Þ:

Kζðx; x0;TÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πT

p e−
ðx̃−x̃0Þ2

4T

þ 1ffiffiffiffiffiffiffiffiffi
4πT

p signðx̃Þsignðx̃0Þe−ðjx̃jþjx̃0 jÞ2
4T

−
1

ζ
signðx̃Þsignðx̃0Þe

2ζðjx̃jþjx̃0 jÞþ4T

ζ2

× erfc

�
ζðjx̃j þ jx̃0jÞ þ 4T

2
ffiffiffiffi
T

p
ζ

�
: ð3:12Þ

The expression (3.12) coincides with the one obtained in
[69] from a fermionic path integral. One further confirma-
tion of the correctness of our result can be obtained from its
trace. Integrating the heat kernel (3.12) over the whole
space we getZ

dxKζðx; x;TÞ ¼
V

ð4πTÞ1=2 þ
1

2
e
4T
ζ2erfc

�
2

ffiffiffiffi
T

p

ζ

�
; ð3:13Þ

where V denotes the volume (length) of the whole space.
Using this formula as point of departure, we can analyze the
small and large coupling regimes by using the following
expansions:

e
4T
ζ2erfc

�
2

ffiffiffiffi
T

p

ζ

�
¼
8<
:

1
2
− 2

ffiffiffi
T

pffiffi
π

p
ζ
þ 2T

ζ2
− 16T3=2

3
ffiffi
π

p
ζ3
þOðζ−4Þ;

ζ
4
ffiffi
π

p ffiffiffi
T

p − ζ3

32ð ffiffi
π

p
T3=2ÞþOðζ4Þ:

ð3:14Þ

In particular, it is immediate to see that we recover the free
(ζ ¼ 0) and the Neumann (ζ → ∞) cases [72].

As a final comment, recall that we are considering a
positive ζ. The case with ζ < 0 is subtler, given that a
bound state with energy Eb ¼ − 4

ζ2
arises [69]. In order to

obtain the heat-kernel trace for negative coupling one
should then not only change the sign of ζ in Eq. (3.13)
but also add a further contribution coming from the bound
state, which readsZ

dΔKζðx; x;TÞ ¼ e−TEb ¼ e
4T
ζ2 : ð3:15Þ

Interestingly, the appearance of the bound state is already
signaled as a nonperturbative factor in Eq. (3.13), which for
ζ < 0 generates a strong divergence as ζ → 0. This reminds
us of similar effects in resurgence theory, where informa-
tion about the nonperturbative sector is stored in the
perturbative results; see [73–76] and references therein.
A more detailed analysis of this fact will be left to a future
publication.

B. Relation with the heat kernel
of a Dirac delta potential

One fundamental remark concerns the relation of this
heat kernel with a similar problem, viz. that involving a
Dirac delta potential. If one defines the operator

Adelta ≔ −
d2

dx2
þ λδðx − LÞ; ð3:16Þ

then its heat kernel has been shown to be [31,77,78]

Kdeltaðx; x0;T; λÞ

¼ e−
ðx−x0Þ2

4Tffiffiffiffiffiffiffiffiffi
4πT

p −
λ

4
e
1
4
λ½λTþ2ðjx−Ljþjx0−LjÞ�

× erfc

�jx − Lj þ jx0 − Lj þ λT

2
ffiffiffiffi
T

p
�
: ð3:17Þ

This means that we may recast our result (3.12) as

Kζðx; y;TÞ

¼ ð1þ signðx̃Þsignðx̃0ÞÞ
2

ffiffiffiffiffiffiffiffiffi
4πT

p
�
e−

ðx−x0Þ2
4T þ e−

ðx̃þx̃0Þ2
4T

�

þ signðx̃Þsignðx̃0Þ
�
Kdeltaðx; x0;T; 4ζ−1Þ −

e−
ðx−x0Þ2

4Tffiffiffiffiffiffiffiffiffi
4πT

p
�
:

ð3:18Þ

This relation is similar in nature to the Fermi-Bose duality
introduced by Girardeau [79] and then further developed by
Cheon and Shigehara [80] for a gas of interacting particles.
However, our case differs from theirs, inasmuch as one
can verify that Kζ possesses no defined symmetry under
x̃ → −x̃ and consequently no statistics can be clearly
assigned. Alternatively, projecting our heat kernels Kζ

and Kdelta respectively to the space of antisymmetric and
symmetric functions around L, one can obtain the Fermi-
Bose duality at the level of heat kernels.
Importantly, the similarity between the heat kernels

involved in (3.18) gets enhanced once we consider their
diagonal, since then some partial cancellations occur and
the sign functions simplify. As wewill see in Secs. IVA and
VA, the relation will be upgraded to a map between heat
kernels for the case of inhomogeneous backgrounds and
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will entail a duality at the level of QFTs, linking Neumann
and Dirichlet local semitransparent boundary conditions.

IV. AN EXPANSION FOR LOCAL NEUMANN
SEMITRANSPARENT BOUNDARY CONDITIONS

Let us now turn our attention to the operator in Eq. (2.4).
As precedently commented, we will split the classical

background into a constant ζ plus a small perturbation
ηðxkÞ that may depend on the (D − 1) coordinates parallel
to the plate. The idea is to perform an expansion in ηðxkÞ,
keeping the full dependence on ζ. Following the lines in the
preceding section one can obtain a worldline formula for
the corresponding heat kernel:

Kζðx; y;T; η� ¼
Z

xðTÞ¼y

xð0Þ¼x
DxDpe−

R
T

0
dt½p2ðtÞ−ipðtÞ_xðtÞ−ðζþηðxkÞÞðδðxD−LÞp2þ1

4
δ00ðxD−LÞÞ�: ð4:1Þ

This expression can be readily expanded in powers of η. Moreover, we expect that in a large variety of physical situations η
would be such that its average would vanish; as a consequence, we will neglect the first-order contribution, so that the first
new contribution will appear at second order in η. In formulas, we obtain

Kζðx; y;T; η� ≈ Kζðx; y;TÞ þ Kð2Þ
ζ ðx; y;T; η�;

Kð2Þ
ζ ðx; y;T; η� ≔

Z
xðTÞ¼y

xð0Þ¼x
DxDpe−

R
T

0
dt½p2ðtÞ−ipðtÞ_xðtÞ−ζðδðxD−LÞxD½p�2þ1

4
δ00ðxD−LÞÞ�

×
Z

T

0

Z
s2

0

ds1ds2
Y2
j¼1

�
ηðxkðsjÞÞ

�
pD

2ðsjÞ þ
∂
2
Lj

4

�
δðxDðsjÞ − LjÞ

�
; ð4:2Þ

in which we have explicitly used the symmetry under exchange of the intermediate times si¼1;2. Once more, the
computation is more involved than the usual case, given that the potential on one side involves derivatives and on the other
should be regularized. For this reason, it proves convenient to employ a series expansion in ζ, instead of trying to make
direct use of the heat kernel in Eq. (3.12). Calling ηj ≔ ηðxkðsjÞÞ one obtains

Kð2Þ
ζ ðx; y;T; η� ¼

Z
T

0

Z
s2

0

ds1ds2
X∞
n¼2

ζn
Z

T

0

dtn � � �
Z

t2

0

dt1
Yn
j¼1

�
δ2kDðtjÞ þ

∂
2
Lj

4

�Y2
i¼1

�
δ2kDðsiÞ þ

∂
2
Li

4

�

×
Z

xðTÞ¼y

xð0Þ¼x
Dxe

1
4

R
T

0
dt½i_xðtÞþkðtÞ�2η1η2

Yn
j¼1

δðxDðtjÞ − LjÞ
Y2
i¼1

δðxDðsiÞ − LiÞ: ð4:3Þ

If we now want to interpret the Dirac delta functions as fixing the path at given times, then there is an additional difficulty
related to the fact that the intermediate times si¼1;2 are not ordered with respect to the other times, ti. However, whatever
value si¼1;2 may take, they will of course fall into one of the intervals ð0; t1Þ, ðt1; t2Þ, � � �, ðtn; TÞ. We can thus define ordered
times t̂iðlmÞ, such that

ðt̂0ðlmÞ; t̂1ðlmÞ; � � �Þ ≔ ð0; t1;…; tl; s1; tlþ1;…; tm; s2; tmþ1;…; TÞ; ð4:4Þ

and introduce an analogous definition for the3 L̂i and x̂i. Hiding the ðlmÞ dependence for reasons of readability, we
obtain

3The hatted coordinates correspond to the Dth component, i.e., x̂i ¼ x̂Di ; we omit the upper index D to simplify the notation.
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Kð2Þ
ζ ðx; y;T; η� ¼ ð−1Þ

27π3=2

X∞
n¼0

Xn
l≤m¼0

Z
xkðTÞ¼yk

xkð0Þ¼xk
Dxkη1η2e

−1
4

R
T

0
dt _xk

2

×

��
ζ

8
ffiffiffi
π

p
�

n−m Z
T

0

ds2

Z
T

s2

dtn � � �
Z

tmþ2

s2

dtmþ1

Δx̂nþ2

Δt̂3=2nþ2

� Ynþ1

r¼mþ2

ð2Δt̂r − Δx̂2rÞ
Δt̂5=2r

�� Ynþ2

p¼mþ2

e
−

Δx̂2p
4Δt̂p

��

×

��
ζ

8
ffiffiffi
π

p
�

m−l Z s2

0

ds1

Z
s2

s1

dtm � � �
Z

tlþ2

s1

dtlþ1

� Ymþ1

r¼lþ1

ð2Δt̂r − Δx̂2rÞ
Δt̂5=2r

�� Ymþ1

p¼lþ1

e
−

Δx̂2p
4Δt̂p

��

×

��
ζ

8
ffiffiffi
π

p
�

l
Z

s1

0

dtl � � �
Z

t2

0

dt1
Δx̂0
Δt̂3=20

�Yl
r¼1

ð2Δt̂r − Δx̂2rÞ
Δt̂5=2r

��Yl
p¼0

e
−

Δx̂2p
4Δt̂p

��
: ð4:5Þ

Notice that we may also reorder the series to get the compact expression

Kð2Þ
ζ ðx;y;T;η� ¼−

1

16

Z
T

0

ds2

Z
s2

0

ds1

Z
xkðTÞ¼yk

xkð0Þ¼xk
Dxkη1η2e

−1
4

R
T

0
dt _xk

2

S1ðỹD;T− s2;ζÞS2ðs2− s1;ζÞS1ð−x̃D;s1;ζÞ; ð4:6Þ

where the S1 and S2 functions are defined as follows:

S1ðx;T; ζÞ ≔
1

2
ffiffiffi
π

p
X∞
n¼0

�
ζ

8
ffiffiffi
π

p
�

n
lim

Δx0;���Δxn−1→0

Z
T

0

dαn � � �
Z

α2

0

dα1
xe−

x2
4Δαn

Δα3=2n

�Yn−1
r¼0

ð2Δαr − Δx2rÞ
Δα5=2r

��Yn−1
p¼0

e−
Δx2p
4Δαp

�
;

S2ðT; ζÞ ≔
1

2
ffiffiffi
π

p
X∞
n¼0

�
ζ

8
ffiffiffi
π

p
�

n
lim

Δx0;���Δxn→0

Z
T

0

dαn � � �
Z

α2

0

dα1

�Yn
p¼0

e−
Δx2p
4Δαp

��Yn
r¼0

ð2Δαr − Δx2rÞ
Δα5=2r

�
: ð4:7Þ

In the usual case, i.e., when one considers potentials that do
not involve derivatives, the Si functions would correspond
to heat kernels with constant coupling. In the current
model, the Si play instead the role of regularized derivatives
of the heat kernel with constant coupling ζ. Employing the
results in Appendixes C and D, we can perform a
resummation of the power series in ζ and obtain them in
closed form:

S1ðx;T;ζÞ¼
e−

x2
4T

2
ffiffiffi
π

p
T

X∞
n¼0

�
−
ζsignðxÞ
4

ffiffiffiffi
T

p
�

n
Hnþ1

�
x

2
ffiffiffiffi
T

p
�

¼−
4

ζ2
signðxÞ

�
e
4Tþ2ζjxj

ζ2 erfc
�
ζjxjþ4T

2ζ
ffiffiffiffi
T

p
�
−ζ

e−
x2
4Tffiffiffiffiffiffiffiffiffi

4πT
p

�
;

ð4:8Þ

S2ðT; ζÞ ¼ −
1

2
ffiffiffi
π

p
T3=2

X∞
n¼0

�
−

ζ

4
ffiffiffiffi
T

p
�

n
Hnþ2ð0Þ

¼ −
16

ζ3

�
e
4T
ζ2erfc

�
4

ffiffiffiffi
T

p

2ζ

�
−

ζffiffiffiffiffiffiffiffiffi
4πT

p
�
: ð4:9Þ

At this point we can perform the following fast check. If we
consider a constant η, then the result in Eq. (4.6) reduces, as
expected, to a free heat kernel in the parallel directions,
multiplied by Kζþηðx; y;TÞ restricted to quadratic order
in η.

Considering once more the expression (4.6) for the heat
kernel, the integrals in the parallel directions are trivial:

Z
xkðTÞ¼yk

xkð0Þ¼xk
Dxkη1η2e

−1
4

R
T

0
dt _xk

2

¼ e−
ðyk−xkÞ2

4T

ð4πTÞðD−1Þ=2

Z
dk1kdk2k

ð2πÞ2D−2 η̃1η̃2e
iðk1k·xckðs1Þþk2k·xckðs2ÞÞ

× e−
ðT−s1Þs1

T k1k2−
ðT−s2Þs2

T k2k2−2
s1ðT−s2Þ

T k1k·k2k ; ð4:10Þ

where xckðtÞ ≔ ðyk−xkÞ
T tþ xk and the Fourier transforms

η̃i ≔ η̃ðkikÞ are defined as

ηðxkÞ≕
Z

dkk

ð2πÞD−1 e
ikk·xk η̃ðkkÞ: ð4:11Þ

Replacing in Eq. (4.6) we obtain our final expression for the
contribution to the heat kernel of quadratic order in η:

Kð2Þ
ζ ðx; y;T; η�

¼ −
1

16

e−
ðyk−xkÞ2

4T

ð4πTÞðD−1Þ=2

Z
T

0

ds2

Z
s2

0

ds1

Z
dk1kdk2k

ð2πÞ2D−2 η̃1η̃2

× eiðk1k·xckðs1Þþk2k·xckðs2ÞÞe−
ðT−s1Þs1

T k1k2−
ðT−s2Þs2

T k2k2−2
s1ðT−s2Þ

T k1k·k2k

× S1ðỹD;T − s2; ζÞS2ðs2 − s1; ζÞS1ðx̃D; s1; ζÞ: ð4:12Þ
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A. Mapping the heat kernel: Neumann semitransparent
to Dirichlet semitransparent

Looking at the closed expressions for the Si one notices
that they are proportional to the heat kernel for a delta
potential, cf. Eq. (3.17). The explicit relations are

S1ðx−L;T;ζÞ¼ 4signðx−LÞ
ζ

Kdeltaðx;L;T;4ζ−1Þ; ð4:13Þ

S2ðT; ζÞ ¼
16

ζ2
KdeltaðL;L;T; 4ζ−1Þ: ð4:14Þ

Amore carefully comparison shows that the proportionality
extends also to the heat-kernel expression at quadratic
order in η, so that, up to a rescaling in the inhomogeneities,
the weak-background problem in the delta case (or more
precisely, local semitransparent Dirichlet boundary con-
ditions) is mapped to a strong-background regime in
our current model and vice versa4:

Kð2Þ
ζ ðx;y;T;η�
¼ signðx̃DÞsignðỹDÞKð2Þ

deltaðx;y;T;4ζ−1;−4ζ−2η�: ð4:15Þ

In particular, this means that we may borrow some results
from [31]; as an example, the trace of the heat kernel
(which will be employed to compute the effective action) is
simply given by

TrKð2Þ
ζ ðx; y;T;η�

¼ 8

ζ4
T2

ð4πTÞðD−1Þ=2

Z
dk1k

ð2πÞD−1 jη̃1j2
Z

1

0

ds−e−Tk1
k2s−ð1−s−Þ

×KdeltaðL;L;Tð1− s−Þ; 4ζ−1ÞKdeltaðL;L;Ts−; 4ζ−1Þ:
ð4:16Þ

An even more detailed inspection shows that this is not
an accidental relation valid only for the quadratic expansion
in η. Indeed, one can repeat the computations performed in
the previous section for an arbitrary order in η, to find that,
dismissing the path integrals in the parallel directions, one
obtains a chain,

KðnÞ
ζ ðx; y;T; η�

∼
Z

ds1 � � � dsnS1ðỹD;T − sn; ζÞS2ðsn − sn−1; ζÞ � � �

× S2ðs2 − s1; ζÞS1ð−x̃D; s1; ζÞ; ð4:17Þ

which is exactly the one we would have obtained in the
delta case. This provides an order by order proof of the

existence of a map between the heat kernels of these two
different problems; more precisely, the map is given by

Kζðx;y;T;η�

¼signðx̃DÞsignðỹDÞ
�
Kdeltaðx;y;T;4ζ−1;4ζ−2η�−

e−
ðx−yÞ2
4T

ð4πTÞD=2

�

þð1þsignðx̃DÞsignðỹDÞÞ
2ð4πTÞD=2

�
e−

ðx−yÞ2
4T þe−

ðx̃DþỹDÞ2þðxk−ykÞ2
4T

�
:

ð4:18Þ

This map depends strongly on the fact that η lives on the
plate and will be broken if one introduces for example an
additional potential with support outside from it. As wewill
see in Sec. V, the mapping that we have discussed will
automatically translate into a duality at the level of the
renormalized semiclassical field theory.

B. Purely inhomogeneous coupling

One interesting case is that in which the background field
is small, such that the fluctuations may become larger than
it.5 In this regime we will be able to obtain a closed
expression for the trace of the heat kernel and the effective
action in the massive case. Moreover, as we will see this
will turn out to be an instructive limiting case.
Let us then begin with expression (4.16). Taking its

small-ζ limit involves expanding the heat kernel of the delta
potential for large coupling, which gives

Kdeltaðx; x0;T; 4ζ−1Þ

¼ e−
ðx−x0Þ2

4T

2
ffiffiffi
π

p ffiffiffiffi
T

p −
e−

ðjx̃jþjx̃0 jÞ2
4T

2
ffiffiffi
π

p ffiffiffiffi
T

p þ ζðjx̃j þ jx̃0jÞe−ðjx̃jþjx̃0 jÞ2
4T

8
ffiffiffi
π

p
T3=2

−
ζ2e−

ðjx̃jþjx̃0 jÞ2
4T ððjx̃j þ jx̃0jÞ2 − 2TÞ

32
ffiffiffi
π

p
T5=2 þOðζ3Þ; ð4:19Þ

so that after setting x0 ≡ L the leading term cancels,
rendering the expression more divergent as T → 0:

Kdeltaðx;L;T;4ζ−1Þ¼
ζe−

ðL−xÞ2
4T ð2jL−xjþζÞ
16

ffiffiffi
π

p
T3=2

−
ζ2ðL−xÞ2e−ðL−xÞ2

4T

32
ffiffiffi
π

p
T5=2 þOðζ3Þ: ð4:20Þ

Setting also x≡ L, the first contribution to Kdelta is of order
ζ2, which is exactly the power needed to cancel the inverse
powers of ζ in Eq. (4.16). In our computation the limit
x; x0 → L should be taken at the end, since they act as

4We are defining Kð2Þ
deltaðx; y; T; 4ζ−1;−4ζ−2η� as the contribu-

tion to the heat kernel of the operator Adelta
D ≔ ½−∂2 þm2 þ

ðηðxkÞ þ ζÞδðxD − LÞ� which is quadratic in η.

5But keeping always ζ þ η > 0 such to avoid instabilities
triggered by possible bound states.
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regulators; the final expression once the mass contribution
is reinstated is given by

TrKð2Þ
0 ðx; y;T; η�

¼ −
1

25
e−m

2T

Tð4πTÞðD−1Þ=2

Z
dkk

ð2πÞD−1 jη̃j2gðTkk2Þ; ð4:21Þ

where gð·Þ is defined in terms of the modified Bessel
functions of the first kind Iαð·Þ:

gðbÞ ≔ be−
b
8

�
I0

�
b
8

�
þ I1

�
b
8

��
: ð4:22Þ

To have an intuition of the result (4.21), one can study
the behavior of gð·Þ for large and small arguments:

gðbÞ ¼
(

4
ffiffi
b

pffiffi
π

p − 4ffiffiffiffi
πb

p − 6ffiffiffiffiffiffi
πb3

p þOðb−5=2Þ;
b − b2

16
þ b3

256
þOðb4Þ:

ð4:23Þ

Notice that the limit of a homogeneous configuration gives
a vanishing contribution, in agreement with the previous
results in Sec. III A. Moreover, the first terms in a small-
propertime expansion are local. If instead the field η
acquires modes with large momenta, then the expansion
involves half-integer powers of kk, which is tantamount to
saying that nonlocal terms will play an important role.
The result in (4.21) deserves one last comment, which

will become important in the analysis of the effective action
in the following section. A consequence of the small-ζ limit
is that the expression for the heat kernel, in the expansion
for small propertime, is more divergent than the finite ζ
case by a factor T−1. More generally, every time we
increase the order in η by 1, the expansion of the heat
kernel for small T will be more divergent by a factor T−1=2.
This is reminiscent of the findings for a constant coupling,
cf. (3.10), signaling that for a small coupling a resummation
may be needed in order to see the real behavior for small T.

V. EFFECTIVE ACTION

A. Duality for the field theory

Consider now the mapping in Eq. (4.18) at the level of
the effective action adding a mass term. Employing the
formula (3.1) for the effective action in terms of the heat
kernel’s trace, we get the following relation between
the quantum contributions to the effective action in our
generalized Neumann case, Γ1−loop, and those in the
generalized Dirichlet case, Γdelta

1−loop:

Γ1−loopðζ;η�

¼−
1

2

Z
∞

0

dT
T
e−m

2T

Z
dDxKζðx;x;T;η�

¼−
1

2

Z
∞

0

dT
T
e−m

2T

Z
dDx

�
Kdeltaðx;x;T;4ζ−1;4ζ−2η�

þ e−
ðx−LÞ2

T

ð4πTÞD=2

�
¼Γdelta

1−loopð4ζ−1;4ζ−2η�þ4−D=2: ð5:1Þ
In as much as we do not consider the interaction with
gravity, the constant factor 4−D=2 is irrelevant in the
computation of physical quantities, since it will be
absorbed in the renormalization of the cosmological con-
stant. Therefore, we can see that there is a duality between
both theories at the quantum level: if one desires to
compute the large background expansion in one theory,
one may simply study the small background of the other.
These assertions are valid independently from the dimen-
sions D of spacetime in which we choose to work.

B. Inhomogeneous and massless case in D= 4

As an immediate consequence of the duality discussed in
the previous paragraphs, we can study the massless case in
D ¼ 4 by borrowing results from the delta-potential case
previously obtained by some of the authors of this work
[31]. The explicit result for the effective action at quadratic
order in η is

Γð2Þ
m¼0;D¼4 ≔

1

2
TrLogA

���
order η2

¼
Z

d3kk

ð2πÞ3 η̃ðk
kÞη̃ð−kkÞFðkk; ζÞ; ð5:2Þ

where the form factor F has been split into three terms, one
divergent asD tends to four, another which is finite and local
(FL), and the remaining which is finite and nonlocal (FNL):

Fðkk;ζÞ≔−
8

ζ4

�
1

4π2ζ

1

D−4
þFLð4ζ−1ÞþFNLðkk;4ζ−1Þ

�
:

ð5:3Þ
The explicit expressions for these contributions, defining
b2 ≔ 16ðζkÞ−2 and in terms of Lerch’s transcendent function
Φð·; ·; ·Þ, read

FLð4ζ−1Þ ≔
1

8π2ζ

�
γ − 4þ log

�
μ2ζ2

256π3

��
; ð5:4Þ

FNLðk; 4ζ−1Þ ≔
1

8π2ζ

�
−
1

b
þ ð2þ bÞ log

�
1þ 2

b

�

þ b
4ð1þ bÞΦ

�
1

ð1þ bÞ2 ; 2;
1

2

��
: ð5:5Þ
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In order to render the nonlocality ofFNLmorevisible, one can perform expansions for large and smallb, forwhichweget either
logðk2Þ contributions or half-integer powers of k2 that preclude a so-called derivative expansion (see [81] for its application to a
Casimir configuration which is similar in spirit to ours):

FNLðk; 4ζ−1Þ ¼
8<
:

− k
32π2

h
1 − 4 log



ζ2k2

4

�
− 2ð4 logðζ2k2=4Þþπ2þ8Þ

ζk þOððkζÞ−2Þ
i
;

3
8π2ζ

h
1 − ζ2k2

216
þ ζ4k4

7200
− ζ5ðk2Þ5=2

17280
þ 11ζ6k6

564480
− ζ7ðk2Þ7=2

161280
þOððkζÞ8Þ

i
:

ð5:6Þ

At this point some comments are in order. First, the
leading terms were to be expected from a simple dimen-
sional analysis of the problem. Indeed, this is the reason
why corrections proportional to k are so frequently
encountered in the bibliography [82].
Second, the vanishing Neumann limit of Γð2Þ seems to be

well motivated: indeed, a small variation around infinity
should make no difference, at least as long as η is small,
which was one of our hypotheses. The physical mechanism
is similar to that in the Dirichlet case, where a larger
coupling tends to repel the quantum field from the sheet,
correspondingly attenuating the interaction with the back-
ground η. The only difference is that the coupling in the
current situation involves derivatives of the quantum field.
Third, Eq. (5.3) signals that the theory needs to undergo

renormalization. In dimensional regularization, the only
term that needs a counterterm is the mass term for η.
However, in other schemes one may obtain additional
divergent terms, as discussed for general cases in [5,83].
Although this is not the case if ζ > 0, the ζ ¼ 0 case is
more subtle and will be discussed in Sec. V C.
Lastly and related to the previous point, in the limit of

vanishing coupling the effective action in expression (5.2)
is divergent, as can be seen from Eq. (5.3) together with the
corresponding definitions and the expansion in Eq. (5.6).
Such divergence simply indicates the fact that the expan-
sions for small η and ζ do not commute. To gain insight into
this point, consider the constant coupling case.
A straightforward computation shows that

Γ
Vk

¼ 1

3π3ðD − 4Þζ3 þ
− logðπζ2μ2Þ − ψð5

2
Þ

6π3ζ3

þOðD − 4Þ; ð5:7Þ

where ψð·Þ is the polygamma function and Vk is the volume
over the plate. If we now consider homogeneous perturba-
tions by replacing ζ → ζ þ η, the expansion will be in
powers of η=ζ, rendering clear our statement. The physical
intuition of why the expansion is singular for ζ around zero
is related to the instabilities generated by the bound state for
ζ < 0. An alternative heuristic way to make sense of those
divergences is to interpret them as a need of an additional
renormalization. We will analyze this point further in the
following section.

C. On the purely inhomogeneous and massive case

To understand better the ζ → 0 limit of the previous
expressions, let us set ζ ≡ 0 right from the beginning; the
simpler formulas enable us to include the effects of a
nonvanishing mass. One can then compute the effective
action employing the heat-kernel’s trace in Eq. (4.21); the
result for a massive field in such case is6

Γð2Þ
pure ¼

Z
d3kk

ð2πÞ3 η̃ðk
kÞη̃ð−kkÞFpureðkk; mÞ; ð5:8Þ

where the form factor is defined in terms of the hyper-
geometric function 2F1ð·; ·; ·; ·Þ:

Fpureðk;mÞ ≔ k2ðm2Þ3=2
384π 2F1

�
−
3

2
;
1

2
; 2;−

k2

4m2

�
: ð5:9Þ

The asymptotic expressions of this form factor in the limits
of large and small mass can be obtained from the
corresponding expansions of the hypergeometric function,
to read

2F1

�
−
3

2
;
1

2
; 2;−b

�
¼

� 8b3=2
15π þ 2

ffiffi
b

p
π þOðb−1=2Þ;

1þ 3b
8
þ 3b2

64
− 5b3

1024
þOðb4Þ:

ð5:10Þ

In particular, the massless limit corresponds to a nonlocal
term proportional to a half-integer power of k2, namely
ðk2Þ5=2.
Notice that the result in Eq. (5.8) is automatically finite

in dimensional regularization. However, as mentioned in
the previous section the situation may change in other
schemes. If instead of dimensional regularization a cutoff is
introduced, then also the terms ðk2Þijη̃j2, i ¼ 1, 2, should be
renormalized. Indeed, computing the effective action from
(4.21), we introduce a UV cutoff Λ with dimensions of
momentum, set D≡ 4 and expand for small T to obtain

6We are considering ηðxkÞ > 0, so that effectively one may
extract a mean value and perturbations around it. However, it
proves convenient for the following discussion to keep η as one
single entity.
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Γð2Þ
pure¼

Z
d3kk

Z
1

Λ−2
dtjη̃j2

×

�
kk2

512π3=2T5=2−
kk4þ16kk2m2

8192π3=2T3=2 þOðT−1=2Þ
�
þ���

¼ 1

768π3=2

Z
d3kkjη̃j2

�
kk2ΛðΛ2−3m2Þ−kk4Λ

16

�
þ��� ;

ð5:11Þ

where the dot points denote finite terms as Λ tends to
infinity. As a consequence, the theory lacks predictivity for
the terms depicted in (5.11). In particular, one may set all of
them to zero, as in the substraction of large mass terms
suggested in [84].
At this point one may understand the ζ → 0 limit of the

results in the previous section as follows. The divergent
contributions in Eq. (5.8) as ζ → 0 should be reabsorbed in
a renormalization process; the explicit equivalence between
both approaches can be seen by comparing them to
Eq. (5.11). Taking this comment into account, one then
sees that the ζ → 0 limit of Eq. (5.2) and the massless limit
of expression (5.8) agree at the renormalized level.
One can also envisage what would happen once higher

powers in η are considered. At the end of Sec. IV we have
mentioned that, in the purely inhomogeneous scenario, the
expansion of the heat kernel for small propertimes acquires
one additional T−1=2 for every extra power of η. This
implies that the number of terms to be renormalized will
also correspondingly increase. However, this situation is
reminiscent of the perturbative expansion of the heat kernel
for homogeneous coupling ζ [cf. Eq. (3.10)], where
arbitrary large negative powers of the propertime appear.
Once the series is resummed, the result (3.12) is seen to
have only a T−1=2 divergence for small propertime. We
expect that a similar mechanism should be behind the need
for renormalization of terms like those in (5.11) as long as η
is strictly bigger than zero, since we have not seen them in
the expansion studied in Sec. V B. In other words, the
resummation in ζ performed in Sec. IV, if η=ζ < 1, is
expected to be enough to avoid the singularities of the
effective action’s expansion for vanishing total coupling
(ζ þ η).

VI. DYNAMICAL CASIMIR EFFECT
AND PARTICLE CREATION

The term dynamical Casimir effect refers to the study of
the electromagnetic field’s quantum vacuum properties in
time-dependent systems. In particular, it comprises the
phenomena of photon generation as a consequence of
moving boundaries or the change in the electromagnetic
properties of the involved media with time; the interested
reader may refer to the reviews [85,86] and references
therein.

As is well known, scalar fields have been introduced in
the past as simplified models which may help to understand
the general behavior of vacuum properties. Following this
logic, in the present section we will describe the analog of
the dynamical Casimir effect in our scalar model: a time-
dependent external field η localized on a plane will play the
role of time-varying electromagnetic properties, while
instead of photon creation we will observe the production
of scalar particles.
The initial obstacle that we encounter is that up to this

point we have restricted ourselves to the consideration of
the theory in Euclidean space. However, as customarily
done, one can appeal to a Wick rotation in order to consider
the problem in Minkowski space. This will prove to be
enough to mimic a situation of dynamical Casimir effect
through time-dependent properties of the wall.
First of all, to examine this dynamical scenario we will

assume that the argument of the delta function in Eq. (2.1)
corresponds to a spatial coordinate, so that time may only
be an argument of the external field η. Calling τ the
Euclidean time and x0 the Minkowski one, the rotation
x0 ≕ − iτ (accompanied by analogous rotations for every
zeroth component of a tensor) may be performed without
encountering singularities in the form factors studied in this
manuscript. One obtains then a master formula for the

effective action Γð2Þ
M in Minkowski space at second order

in η,

Γð2Þ
M ¼−

Z
d3kk

ð2πÞ3 jη̃Mðk0;k
kÞj2F


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk2−k20− iϵ

q
;m

�
; ð6:1Þ

where we have introduced Feynman’s prescription through
an infinitesimal parameter ϵ, we have taken the branch cut
of the square root to be in the negative real axis and the
Fourier transform in Minkowski space is defined as7

ηðxkÞ≕
Z

dk0dkk

ð2πÞ3 eið−x0k0þxk·kkÞη̃Mðk0; kkÞ: ð6:2Þ

Of course the form factor F, depending on the situation
under study, may be chosen among those in Eqs. (5.3)
or (5.9).
The expression for the effective action may be used to

compute the creation of particles in a dynamical situation.
Indeed, in the usual in-out formalism, the vacuum persis-
tence’s amplitude is given by the effective action as

h0outj0ini ¼ eiΓM : ð6:3Þ

If the effective action develops an imaginary contribution,
which may be possible by the appearance of branch cuts in
(6.1) after the Wick rotation, then the vacuum becomes

7The set of components that are parallel to the plates and
spacelike is denoted by kk.
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unstable through a process of pair creation, whose prob-
ability P is defined as

1 − P ≔ e−2ImΓM : ð6:4Þ

In the most frequently studied situation, i.e., for weak pair-
creation processes, we may approximate P ≈ 2ImΓM.
Therefore, the quantity in which we are interested is

P ≈ 2

Z
d3kk

ð2πÞ3 jη̃Mðk0; k
kÞj2Im

h
F

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kk2 − k20 − iϵ
q

; m
�i

:

ð6:5Þ

Turning back to Eq. (5.9), the hypergeometric function

2F1ð− 3
2
; 1
2
; 2; xÞ possesses a branch cut, which in the case

of the principal branch runs from 1 to ∞ on the real x axis.
We may thus recast the probability of pair creation as

P ¼ 2

Z
d3kk

ð2πÞ3 jη̃Mðk0; k
kÞj2Θðk20 − kk2 − 4m2Þ

× Im
h
F

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kk2 − k20 − iϵ
q

; m
�i

; ð6:6Þ

where Θð·Þ is the Heaviside function that signals the
threshold of the pair-creation process: the external field
η must provide at least the rest energy of two particles for
the process to take place. In the case described in Eq. (5.2),
such threshold is absent because particles are taken as
massless.

A. Harmonic perturbations

A simple model that mimics the dynamical Casimir
effect, introduced in [87] for the one-dimensional case and
studied also in [31] for an inhomogeneous delta potential, is
given by perturbations that are harmonic in time with

frequency ω0; for simplicity we will consider it indepen-
dent of the spatial coordinates8:

ηHðtÞ≔ η0 cosðω0tÞe−
jtj
T ; ω0;T > 0; η0 ∈R: ð6:7Þ

In Eq. (6.7), the exponential factor is employed to impose a
boundary in time, since otherwise the number of pairs
created becomes infinite. In the limit of large T, a
straightforward computation shows that its Fourier trans-
form satisfies

jηHðk0Þj2 ¼
π

2
η20T½δðk0 −ω0Þ þ δðk0 þω0Þ�; ω0T ≫ 1;

ð6:8Þ

which, defining the threshold frequency ωc ≔ ω0=ð2mÞ,
thus leads to the following probability of pair-creation rate
per unit area of the plate in the purely inhomogeneous case
(A denotes the area of the plate):

PH

AT
¼ η20Θðω2

0 − 4m2ÞIm½Fpureð−iω0 þ ϵ; mÞ�

¼ η20
3072π

Θðω2
c − 1Þðm2Þ3=2ω2

0ðω2
c − 1Þ3

× 2F1

�
3

2
;
7

2
; 4; 1 − ω2

c

�
: ð6:9Þ

To derive the last line we have employed the result in [88]
for the jump across the branch cut of the hypergeometric
function, which is proportional to the desired imaginary
part.
Analytically, we can compute the expansions for small

and large ωc, which show that ω5
0 sets the scale of the

probability rate:

PH

AT
¼ η20ω

5
0

384π
Θðω2

c − 1Þ
(

1
15π −

1
4πω2

c
þ 3ð4 log ð4ωcÞ−1Þ

64πω4
c

þ −12 log ð4ωcÞ−5
768πω6

c
þOðωc

−7Þ;
1
8
ðωc − 1Þ3 − 33

64
ðωc − 1Þ4 þ 345

256
ðωc − 1Þ5 − 2899ðωc−1Þ6

1024
þOððωc − 1Þ7Þ:

ð6:10Þ

On one side, we see that in the massless limit we indeed
recover (up to a rescaling) the infinite coupling result for
the delta case [31], being the first corrections of order ω−2

c .
Once more, on dimensional grounds this situation is
reproduced in some analogous setups, such as a moving
mirror [89].

On the other side, for large masses the result evidently
vanishes as a consequence of the mass threshold, since the
energy of the oscillations is not enough to provide the
minimum energy of two particles at rest. For values of ωc

slightly larger than the threshold, the particle creation rate
behaves as a third power in the difference (ωc − 1). These
behaviors can be confirmed from the plot in the left panel of
Fig. 1, where the pair-production rate per unit area is shown
as a function of the frequency; the dashed blue line and
the violet dashed-dotted line correspond respectively to
m ¼ 0.1 and m ¼ 3.

8Following the discussion in Sec. V C, it should be clear that
formally it is not enough to consider the amplitude η0 small; one
should also think that there is an additional background ζ (not
necessarily much) bigger than η0 for the expansion in η to be well
defined.
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As a generalization of this simple harmonic example,
one can also consider a perturbation that resembles a plane
wave over the plate,

ηWðx;tÞ≔η0cosðkðx−vtÞÞe−σjx−vtj; k;σ>0; η0; v∈R;

ð6:11Þ

where k is its wave number, σ → 0 is a regulator and v the
speed of the wave (recall that v ¼ 1 in our units equals c,
the speed of light in vacuum). After removing the regulator
we get the following pair-production rate per unit area:

PW

AT
¼ η20Θððv2 − 1Þk2 − 4m2Þ

× Im
h
Fpure


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þk2 − iϵ

q
; m

�i
: ð6:12Þ

On one side we see that pair production is possible only if
v ≥ 1. Notice that this situation should be understood not as
a traveling wave with speed faster than light, but rather as
an active fast modulation of a property over the plate, in a
way analogous to that proposed for example in [90].
On the other side, defining an effective frequency

ω2
eff ≔ ðv2 − 1Þk2, the result (6.12) can be obtained from

(6.9) by simply trading ω0 → ωeff . In particular, the
exclusively time-dependent case ηH can be understood
as its infinite speed limit (after an appropriate rescaling
of k).

B. Sauter pulse

One widely diffused profile in the literature of QED in
external backgrounds is the Sauter pulse [91], defined as

ηSðtÞ≔
η0

cosh2ðωStÞ
; ωS ∈R− f0g; η0 > 0: ð6:13Þ

Replacing this profile in our general equation (6.6), we can
compute the probability of pair creation PS.

First, for the massive case (and ζ ¼ 0), we show a
density plot of Pζ¼0

S per unit area in the right panel of Fig. 1
as a function of the frequency ωS and the mass m. On the
one hand, as could be expected, as the mass increases the
probability of pair creation diminishes, since the cost of
creating the pair becomes higher. On the other, if the
frequency ωS becomes larger, the distribution of η in
Fourier space is widened, so that creation of pairs is more
favored. This is in agreement with the following analytical
asymptotics:

Pζ¼0
S

A
¼ η20ω

4
S ×

8<
:

7ζRð7Þ
π9

þ � � � ; m=ωS ≪ 1;

1
4π4

m4

ω4
S
e−

2πm
ωS ð1þ 23

4π
ωS
m Þ þ � � � ; m=ωS ≫ 1;

ð6:14Þ

where ζRð·Þ is Riemann’s zeta function. Although the
exponential suppression for large masses may remind the
one present in the Schwinger pair production for rather
general electric fields [92], keep in mind that our process is
perturbative in the background field amplitude and there-
fore intrinsically different in nature.
Additionally, in the left panel of Fig. 1 we show the

behavior of the pair-production probability per unit area as
a function of the frequency ωS; the solid red line and
the yellow small-dashed line correspond respectively to
m ¼ 0.1 and m ¼ 3. Compared to the harmonic case, if
frequencies are small we see that the exponential supres-
sion allows for a faster setting in of pair production; in other
words, the Sauter pulse always embodies some frequency
components above the mass threshold that enable the
creation of pairs. On the contrary, for larger frequencies
the trend will be reverted and the harmonic pair production
will become greater, as dictated by Eqs. (6.10) and (6.14).
We can also consider the massless case together with an

arbitrary ζ. An expansion of the pair-production probability
for large and small frequencies thus gives

FIG. 1. Pair-production probability/rate per unit area in the massive case. The left panel compares the harmonic and Sauter cases
(denoted as H and S respectively) for different values of masses and as a function of the corresponding frequency. Notice that in the
harmonic case, the pair-production rate should be understood. The panel on the right is a density plot of the pair-production probability
per unit area for the Sauter pulse as a function of the frequency ωS and the mass m. In all the cases, the amplitudes η0 are set to unity.
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Pζ
S

A
¼ η20ω

4
S×

( 7
π9
½ζRð7Þ− 54

7π2
ζRð9ÞðωSζÞ2þ�� ��; ζωS ≪ 1;

1
ðζωSÞ4 ½

12ζRð3Þ
π5

− 8
3πζωS

þ�� ��; ζωS ≫ 1:

ð6:15Þ

In particular, for vanishing ζ we recover the expected
massless limit of Eq. (6.14). Increasing the value of ζ gives
rise to an anti-assisted effect, contrary to the one found for
electromagnetic backgrounds for Schwinger pair produc-
tion [93,94]. Naively, since a constant potential alone does
not contribute to pair creation in our scalar setup,9 one
could have expected that its addition would have had no
effect on pair creation. Instead, the nonlocal feature of the
generated form factor is nontrivial. The fact that it dimin-
ishes the pair production can be physically understood from
the fact that a larger ζ tends to repel the quantum field, as
explained in Sec. V B.
Lastly, taking into account the discourse developed in

Sec. V C, we can analyze the case in which we rescale the
amplitude of the perturbation, η0≕ ζη̃, such that η̃ is taken
to be small. At the practical level, this is analogous to
saying that we multiply the pair-production probability by
ζ2. We have plotted in the left panel of Fig. 2 a density plot
of the rescaled probability as a function of both ωS and ζ;
one can see that for ωS ≲ 1.5, increasing the coupling ζ
leads to larger probabilities. The right panel of Fig. 2
provides a clearer picture of this effect, showing the
rescaled probability as a function of ωS for three distinct
values of ζ ∼Oð1Þ. For ωS ∼ 1.5 we see that the hierarchy
between the curves is inverted.

VII. CONCLUSIONS

In the present article we have studied the problem of a
quantum scalar field theory with local semitransparent
Neumann boundary conditions on a plate, which can also

be understood as interactions with an external (classical)
field confined to the latter.
First of all, we have shown that the quantum contribu-

tions to the effective action can be understood in terms of
quantities in the phase space of a first quantization.
Worldline techniques are by far much more developed in
the case of configuration space [53], rendering the study of
such path integrals per se an interesting problem.
Second, taking into account the well-known fact that the

studied interaction requires regularization, we have devised a
regularization appropriate to our path-integral methods. We
have shown that in this waywe are able to rederive previously
obtained results for the homogeneous case. Notice that this
regularization provides also a physical interpretation in terms
of an effective finite width of the plate, since we have to
evaluate the intermediate heat kernels at noncoincident points.
These technical developments allowed the computation

of the heat kernel at quadratic level on the perturbations η
around a homogeneous background field ζ and the corre-
sponding effective action in the D≡ 4 case. Notably, these
results are exact in ζ; they are (generally) given by a
nonlocal operator acting on the perturbations η, which can
be seen from the appearance of nonanalytic contributions.
Such nonanalytic contributions are responsible for the pair

production that we have encountered in Minkowski space-
time, where the perturbations are used to model dynamical
properties of the plates, verymuch akin to the situation in the
dynamical Casimir effect. In this scenario we have consid-
ered two possibilities, a harmonic excitation and a Sauter
pulse. For large masses, the Sauter background displays an
exponential cutoff, which is softer than theHeaviside present
for the harmonic pulse. In the massless Sauter case, the
introduction of a background ζ leads to a scenario of anti-
assisted pair production. This effect can be inverted in a
region of the parameter space if the amplitude of the pulse
scales linearly with ζ, which is possible taking into account
the discussion in Sec. V C regarding the smallness of η and ζ.
A special comment deserves the finding of a duality

between the field theory obeying local semitransparent
Neumann boundary conditions and the equivalent Dirichlet

FIG. 2. Probability of assisted particle production for a Sauter pulse per unit area, ζ2Pζ
S=A. The left panel shows its density plot as a

function of the frequency ωS and the background ζ. The right panel displays its behavior as the frequency varies, considering different
backgrounds. We have set the amplitude of the pulse (η0) to unity.

9This is one intrinsic difference with the electromagnetic case,
where for example constant electric fields do produce pairs,
giving rise to the Sauter-Schwinger effect.
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one. Indeed, we have shown that there exists a mapping
between the relevant heat kernels, which becomes an exact
strong/weak duality at the level of the corresponding renor-
malized quantum effective actions. Notice that this is a new
duality, different from the Fermi-Bose duality discussed in
condensed matter by means of the Girardeau mapping
[79,80,95]. To clarify this point, first notice that the latter
connects the Lieb-Liniger model [96] and the Cheon-
Shigehara one, which are both one-dimensional models,
while our results are valid in D dimensions. Second, as
discussed in Sec. III B,we impose no typeof symmetry under
the parity transformation x̃ → −x̃ andwe always workwith a
scalar bosonic field, contrary to the change in statistics of the
Girardeaumapping. Additionally, we do not introduce a self-
interaction; instead, our field interacts with a spacetime-
dependent background potential η. Nevertheless, taking into
account the several experimental accomplishments based on
theFermi-Bose duality [97,98], itwill be of interest to explore
possible experimental roads of the newly devised duality.
Regarding possible future developments, it will be inter-

esting to try to generalize our results to the problem where
nonlocal boundary conditions are imposed. This may pro-
vide a way to analyze the appearance of topological effects.
One further peculiarity of the interaction considered in

this article is that it can be thought as the first term in an
effective field theory expansion, which has undergone a
thin-shell limit. As such, it may find applications in trying
to understand the nature of dark matter. Indeed, one open
possibility is that it may behave as a field with unusual
couplings [99,100].
Finally, another useful advance would be the develop-

ment of a numerical code to tackle the problem discussed
here. The situation is more involved than the usual cases,
since a naive adaptation of the numerical worldline
techniques [101–103] to phase space suffer from the so-
called sign problem.
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APPENDIX A: PARTITION FUNCTION
IN THE WORLDLINE

In this appendix we will recall how to compute the
partition function for an open scalar line in the worldline
formalism, considering a source k for _x:

Z _x½k� ≔
R xðt2Þ¼x0

xðt1Þ¼x Dxe
−
R

t2
t1

dt_x
2ðtÞ
4
þ
R

t2
t1

dtkðtÞ_xðtÞ

R xðt2Þ¼x0

xðt1Þ¼x Dxe
−
R

t2
t1

dt_x
2ðtÞ
4

: ðA1Þ

First of all, we may perform a change of variable in
the path, so that we get a path integral over trajectories
that obey initial and final Dirichlet boundary conditions.
In order to do so, we split the path into a classical and
a quantum contribution; substituting xðtÞ → yðtÞ þ
ðx0 − xÞðt − t1Þ=ðt2 − t1Þ þ x we get

Z _x½k� ¼
R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt
ð_yðtÞþ x0−x

t2−t1
Þ2

4
þ
R

t2
t1

dtkðtÞð_yðtÞþ x0−x
t2−t1

Þ

R xðt2Þ¼x0

xðt1Þ¼x Dxe
−
R

t2
t1

dt_x
2ðtÞ
4

¼ e
x0−x
t2−t1

R
t2
t1

dtkðtÞ
R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4
−
R

t2
t1

dt_kðtÞyðtÞ

R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4

;

ðA2Þ

where in the last line we have performed an integration by
parts to get rid of the derivatives acting on yðtÞ in the
source term.
We have thus reduced our problem to the computation of

the partition function with Dirichlet boundary conditions,
which can be readily solved by inverting the kinetic term.
Indeed, a straightforward computation gives

R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4
−
R

t2
t1

dt_kðtÞyðtÞ

R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4

¼ e
1
4

R
t2
t1

dt
R

t2
t1

d½s�_kðsÞGðs;tÞ_kðtÞ
;

ðA3Þ

where the required symmetric Green function is defined as

Gðs;tÞ≔ 4

ðt2− t1Þ
ðs− t1Þðt2− tÞ; t1<s< t< t2: ðA4Þ

This Green function satisfies as customarily the differential
equation

−
1

4
∂
2
sGðs; tÞ ¼ δðs − tÞ; ðA5Þ

as well as the boundary conditions Gðt1; tÞ ¼ Gðt2; tÞ ¼
0 ¼ Gðs; t1Þ ¼ Gðs; t2Þ.
One can further simplify the expression in the present

case integrating by parts in the exponent; explicitly
employing the boundary conditions satisfied by the
Green function, we get

LOCAL NEUMANN SEMITRANSPARENT LAYERS: … PHYS. REV. D 106, 105022 (2022)

105022-15



R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4
−
R

t2
t1

dt_kðtÞyðtÞ

R yðt2Þ¼0

yðt1Þ¼0
Dye

−
R

t2
t1

dt_y
2ðtÞ
4

¼ e
1
4

R
t2
t1

dt
R

t2
t1

dskðsÞ∂s∂tGðs;tÞkðtÞ; ðA6Þ

A direct computation shows that the second partial deriva-
tive involved in the computation is given by

∂s∂tGðs; tÞ ¼ −
4

ðt2 − t1Þ
½1 − δðt − sÞðt2 − t1Þ�: ðA7Þ

Adding all these results together we are led to our final
expression:

Z _x½k� ¼ e
x0−x
t2−t1

R
t2
t1

dtkðtÞ− 1
ðt2−t1Þð

R
t2
t1

dtkðtÞÞ2þ
R

t2
t1

dtk2ðtÞ
: ðA8Þ

APPENDIX B: INTERMEDIATE-TIME
INTEGRALS OF CHAINED HEAT KERNELS

In Sec. III A, we are led to expressions that involve
integrals of chains of free heat kernels in the intermediate
time t, combined with increasing negative powers of that
time and its distance to the end time T. One can compute
the first of them by considering the first order in ζ of the
result [ [31], Eq. (16)]:

Z
T

0

dt
e−

a
t−

b
T−tffiffi

t
p ffiffiffiffiffiffiffiffiffiffi

T − t
p ¼ πerfc

� ffiffiffi
a

p þ ffiffiffi
b

pffiffiffiffi
T

p
�
: ðB1Þ

The algorithm to obtain integrals with higher powers in the
intermediate time involves differentiating this expression in
terms of a or b. As a matter of completion, we mention the
first of them:
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T
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a
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APPENDIX C: INTEGRALS INVOLVING
HERMITES, GAUSSIANS AND INVERSE
POWERS OF THE INTERMEDIATE TIME

A crucial step in obtaining an all-order expression for the
heat kernel in Sec. III A is the derivation of a closed
expression for the integral

An;mðx; yÞ ≔
Z

1

0

dt
e−

x2
4t

tð1þnÞ=2
e−

y2

4ð1−tÞ

ð1 − tÞð1þmÞ=2 Hn

� jxj
2

ffiffi
t

p
�

×Hm

� jyj
2

ffiffiffiffiffiffiffiffiffiffi
1 − t

p
�
: ðC1Þ

Employing the well-known formula to generate the
Hermite polynomials as derivatives of a Gaussian,

HnðxÞ ¼ ð−1Þnex2∂nxe−x2 ; ðC2Þ

we can recast Eq. (C1) as

An;mðx; yÞ ¼ ð−2ÞnþmsignnðxÞsignmðyÞ∂nx∂my
×
Z

1

0

dt
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× ∂
n
x∂

m
y erfc
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p
þ

ffiffiffiffiffi
y2

p
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where in the last line we have employed our result (B1). If
x > 0, then we may set

ffiffiffiffiffi
x2

p
¼ x in Eq. (C3), since the

derivatives act by definition only locally. If also y > 0,
employing once more the generating formula (C2) we find

An;mðx; yÞ ¼ 2
ffiffiffi
π

p
e−

ðxþyÞ2
4 Hnþm−1

�
xþ y
2

�
: ðC4Þ

Extending this analysis to any sign of x and y, and allowing
also for a final time T different from 1, we prove the
following relation:
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4T

TðmþnÞ=2 Hnþm−1

�jxj þ jyj
2

ffiffiffiffi
T

p
�
; ðC5Þ

valid for10 x; y ∈ R − f0g and n;m ¼ 0; 1;…, if Hermite’s
polynomials with negative index are understood in terms of
parabolic cylinder functions.

APPENDIX D: SERIES OF
HERMITE POLYNOMIALS

In Sec. III A, the resummation of the heat kernel’s ζ
expansion involves the computation of a series of Hermite
functions,

Tðx; βÞ ≔
X∞
n¼0

HnðxÞβn: ðD1Þ

A way to obtain a closed expression for this series is to
notice that, by using (C2), we have

Tðx; βÞ ¼
X∞
n¼0

ex
2ð−βÞn dn

dxn
e−x

2 ¼ ex
2 1

1þ β d
dx

e−x
2

; ðD2Þ

where we have employed the formal expression of the
geometric series. Solving it for T we arrive at the following
differential equation:�

1þ β
d
dx

�
e−x

2

Tðx; βÞ ¼ e−x
2

; ðD3Þ

whose more general solution is given by

T̃ðx; βÞ ¼ c1ðβÞex
2−x

β þ
ffiffiffi
π

p
2β

e
1

4β2
þx2−x

βerf

�
x −

1

2β

�
: ðD4Þ

The “constant of integration” c1 may be fixed by analyzing
the behavior of T for small β, from which we get

c1ðβÞ ¼ −
ffiffiffi
π

p
e

1

4β2

2β
: ðD5Þ

This implies that the desired function is given by

Tðx; βÞ ¼ −
ffiffiffi
π

p
e
ð1−2βxÞ2

4β2 erfcðx − 1
2βÞ

2β
: ðD6Þ
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