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Abstract: Pharmaceuticals play a critical role in the eradication of infectious diseases. Effective
pharmaceutical inventory management is important for controlling epidemics since medical resources
such as pharmaceuticals, medical staff, and hospitals are limited. In this study, a novel epidemiological
model is proposed to evaluate the resource requirements for pharmaceuticals and is applied to
analyze different pharmaceutical inventory management strategies. We formulate the relationship
between the number of infected individuals and the risk of infection to account for virus mutation.
Evolutionary game theory is integrated into an epidemiological model to represent human behavioral
choices. The proposed model can be developed to forecast the demand for pharmaceuticals and
analyze how human behavior affects the demand of pharmaceuticals. This study found that making
people aware of the risk of disease has a positive impact on both reducing the number of infections
and managing the pharmaceutical inventory. The main contribution of this study is to enhance areas
of research in pharmaceutical inventory management. This study revealed that the correct recognition
of the risk of disease leads to appropriate pharmaceutical management. There are a few studies on
the application of infectious disease models to inventory control problems. This study provides clues
toward proper pharmaceutical management.

Keywords: inventory management; SEIR model; evolutionary game theory

1. Introduction

In December 2019, a novel coronavirus (COVID-19) broke out and caused a worldwide
epidemic of infections. As of now, the cumulative number of deaths worldwide has ex-
ceeded 6.8 million [1]. The spread of the virus has caused challenges in many countries and
regions, including the threatened collapse of healthcare systems and economic stagnation
due to requests for voluntary furloughs and closings of offices. When an infectious disease
outbreak occurs, pharmaceuticals play an extremely important role in bringing the epi-
demic to an end. Vaccination provides long-term herd immunity [2]. Since pharmaceutical
resources are limited, they must be properly managed in order to effectively contain an
epidemic [3]. The efficient management of pharmaceutical supply chains is essential to
combat drug-treatable disease epidemics [4]. Shortages of medicines can have a major im-
pact on epidemic control [4]. Therefore, an integrated model combining infectious diseases
and the corresponding pharmaceutical supply chain is needed to understand the spread of
diseases and their impact on the supply chain [5]. Therefore, in this study, we first propose
a mathematical model of infectious diseases that takes into account the characteristics of
infectious diseases. The model is then extended to an inventory management model to
forecast the demand for pharmaceuticals.

Mathematical models of infectious diseases can describe and analyze infection dy-
namics. They also play a less obvious but important role in solving specific coordination
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problems and social dilemmas that arise during a pandemic [6]. The SIR model is the most
basic model of infectious diseases. This model considers three states: susceptible, infected,
and recovered. The SIR model describes changes in these states over time. The SEIR model
is extended to include the incubation period state. Other models that take into account the
effects of antibodies from vaccination, severity of symptoms, births, deaths, and age have
also been studied [7–10]. Thus, by extending the model to take disease characteristics into
account, it is possible to create a model that more closely resembles real-world situations.

Research has also been conducted to incorporate not only the characteristics of the
disease but also the behavior and intentions of people into the model. Some studies have
used game theory to take into account people’s fertility rates, to express whether they are
vaccinated or not, or to consider two strategies: vaccination and social distance [11,12].
Studies considering the effect of lockdown policies on the number of infected people [13],
the effect of wearing masks [14], and the effect of vaccination on infection rates [15,16] have
been conducted using evolutionary game theory. Amaral et al. [17] used evolutionary game
theory to express the relationship between human behavior and the prevalence of infectious
diseases using the SIR model. Evolutionary game theory is one of the areas of game theory
that studies organisms and human behavior based on the idea of biological evolution.
The motivation is that, by using game theory, it is possible to express the probability that
people change their strategy. This allows us to represent human behavior in a model of
infectious diseases.

One of the characteristics of COVID-19 is a propensity for recurring cycles of population-
wide infections. As shown in Figure 1, the number of infected people has exhibited un-
dulating patterns of growth and decline. Although it is difficult to capture this pattern of
infection using the SIR model or SEIR model, the application of evolutionary game theory
offers a viable approach to depicting the undulating rise and fall in the number of infected
persons [18]. In their study, agents choose whether to voluntarily refrain from going out to
reduce the risk of infection and keep themselves quarantined at home or to behave as they
would under normal circumstances. The agent decides which strategy to adopt, taking
into account the risk of disease transmission and the various costs of self-isolation. This
allows us to show the impact of self-restraint on the number of people infected during a
COVID-19 epidemic. However, previous studies have used the SIR model, which does not
take into account the incubation period of infectious disease. In addition, factors such as
the effects of viral mutations and pharmaceuticals are not taken into account.
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The incubation period is one of the most important factors in analyzing COVID-19 [19].
The mutability of the virus also has a significant impact on the prevalence of COVID-19. In
this study, we extend the model of references [17] to the SEIR model to take into account the
incubation period of the infection, and an evolutionary game model is integrated to express
human behavioral choices. Then, we formulate the relationship between the number of
infected persons and the risk of infection to account for virus mutation. Furthermore, the
proposed infectious disease model is used to forecast the demand for pharmaceuticals and
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analyze how people’s behavioral choices affect pharmaceutical inventory management.
Rather than a mandatory quarantine policy such as a lockdown, this study deals with
a policy that encourages people to refrain voluntarily. We investgate the impact of this
policy on the number of infected people and the pharmaceutical inventory. Numerical
experiments confirm that, by increasing the infection rate as the infection spreads, the
maximum number of infected persons in each infection peak continues to increase until
the maximum number of simultaneous infections is reached. This reveals that the higher
infection rate caused by the mutation of the virus affects the number of infected persons.
The impact of human behavioral choices on the inventory of pharmaceuticals is then
clarified. The purpose of this study is to analyze how people’s decisions affect the spread
of infectious diseases and the management of pharmaceutical inventories.

This study makes several contributions to the current literature. First, we clarified the
effects of human behavior and viral mutations on infectious epidemics. In particular, there
have been few studies of infectious disease models that take viral mutations into account.
This is useful in considering countermeasures to reduce epidemics. Second, the study
revealed that correct recognition of the risk of disease leads to appropriate pharmaceutical
management. Few studies have been conducted on the application of infectious disease
models to inventory control problems. This is a clue to proper pharmaceutical management.

The paper is organized as follows: Section 1 describes the background and objectives
of the study, and Section 2 reviews related works. Section 3 explains the mathematical
model of infectious diseases and evolutionary game theory. Section 4 describes the model
proposed in this study. In Section 5, numerical experiments are conducted using the model
presented in Section 4, and the results are presented. Section 6 presents a discussion of the
experimental results, and the findings are presented. Section 7 presents conclusions and
future work.

2. Literature Review

In this section, we review the literature on infectious disease models and pharmaceuti-
cal inventory management. After the expansion of COVID-19, research on mathematical
models of infectious diseases capable of describing and analyzing infection dynamics has
obtained considerable attention. In this study, the SEIR model is used to describe the
infection epidemic; the SEIR model is extended to incorporate some real-world features.
Since many such studies have already been conducted, it is important to review the area
of infectious disease modeling in order to conduct this study. Furthermore, the infectious
disease model is extended by integrating an inventory management problem in this study.
The review of the area of pharmaceutical inventory management is important for the
formulation of the inventory management model in this study. Therefore, we conduct a
literature review of these two areas.

We first review the literature on infectious disease models. Lu et al. [20] proposed a
new two-stage epidemic model with a dynamic control strategy to describe the spread of
COVID-19. They analyzed appropriate control strategies to minimize control costs and the
normal operation of society is ensured. This study did not consider virus mutations, nor
the impact of pharmaceuticals. In addition, their study has not dealt with people’s behavior.
Kabir et al. [13] proposed a model that combines the compartmental epidemiology model
with the concept of behavioral dynamics in evolutionary game theory. Numerical analysis
shows that emergency aid funds disbursed by the government are effective in reducing
the duration and overall economic costs of a pandemic. This paper did not consider the
impact of viral mutations or pharmaceuticals. Our study focuses more on the impact of
pharmaceuticals.

Annas et al. [9] involved stability analysis and numerical simulation of the SEIR model
for the spread of COVID-19. The SEIR model with vaccination and sequestration factors as
model parameters was used for model construction, and the generation matrix method was
used for model analysis to obtain the basic reproduction number and the global stability of
the COVID-19 distribution model. The simulation results show that the vaccine promotes
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the cure of COVID-19 and that maximum quarantine can delay the spread of COVID-19.
This study did not address viral variation and focused solely on a single infection cycle.

Kabir et al. [14] proposed a new intervention game model that combines a mathemati-
cal model of epidemiology with evolutionary game theory. The model mainly analyzes
the effect of mask-wearing or not. Numerical results reveal that behind the mask-wearing
dilemma lies a diverse and rich social dilemma structure. Their study failed to take into
account viral mutations. It also considered only a single infection cycle. While their study
focused on the human behavior of wearing masks, our study also focuses on the effects
of pharmaceuticals. Gosak et al. [21] used game theory to formulate the interaction of
spontaneous social distancing in a partially infected population. Their study also did not
consider pharmaceuticals. However, it provides a meaningful method for describing the
dynamics of infection epidemics.

Amaral et al. [17] used evolutionary game theory to propose an epidemiological SIR
model that integrates social strategies, individual risk perception, and virus spread into a
single process. While the final scale of infection is determined primarily by the infection
rate, risk perception is shown to be fundamental in controlling the magnitude of the
infection peak. However, this study did not take into account factors such as the incubation
period of the infection or viral mutations, nor did it take into account pharmaceuticals such
as vaccines.

Agusto et al. [22] built a mathematical model of COVID-19 infection with isolation
and hospitalization combined with a dynamic game model of human adaptive behavior.
Susceptible and infected individuals adopt different behavioral strategies based on their
perceptions of disease prevalence and burden, and their susceptibility to isolation measures,
and evolve their strategies using social learning algorithms. The study concludes that
incentives for altruistic behaviors, such as voluntary self-isolation by infected individuals,
are necessary to reduce the social burden of pandemics. This study also did not take into
account the impact of pharmaceuticals. Our study also focuses on people’s behavior.

Then, we review the literature that combines infectious disease and inventory man-
agement models. Liu et al. [23] proposed a unique time-varying forecasting model for
the dynamic demand for medical resources based on the SEIR model. The entire medical
resource allocation process is structured as a multi-stage integer programming problem. At
each stage, a cost minimization subproblem is solved subject to the time-varying demand.
The corresponding optimal allocation results are then used as inputs to a process that
controls the spread of influenza and determines the demand for the next stage. This study
demonstrates that the subproblem may help decision-makers prepare for a pandemic, in-
cluding how to dynamically allocate limited resources. Since this study is about influenza,
we propose a model that takes into account the characteristics of COVID-19. We also focus
on the influence of human behavior.

Liu et al. [24] proposed a dynamic logistics model for healthcare resource allocation
that can be used to control epidemic spread. The model combines a predictive mechanism
constructed for the demand for medicines during the course of epidemic spread with a
logistics planning system to meet the predicted demand and minimize the total cost. The
study did not consider characteristics of COVID-19, such as viral mutations, or human
behavior. Shamsi Gamchi et al. [25] addressed a novel dual-purpose vehicle routing
problem for distributing vaccines among different regions to control the spread of infectious
diseases. The model developed aims to minimize the social costs incurred by considering
different priority groups under the SIR epidemic model and the cost of vehicles used
simultaneously. Viral mutations were not taken into account in this study, nor did it take
into account the effects of actions taken by individuals.

Paul et al. [26] proposed a generic framework for pharmaceutical inventory man-
agement, consisting of hospital, forecasting, and inventory management modules. The
disease spread forecasting model is shown to be superior to naïve policies in terms of
mitigating infections and saving inventory. The authors then analyzed the quantification
of the impact of important factors such as the selection of appropriate ordering policies,
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safety stockpiles, and epidemic declaration thresholds on epidemic dynamics. The study
did not consider virus mutations or human behavior. Rehman et al. [27] examined various
inventory policies such as reorder points, recurring orders, and just-in-time to minimize
inventory management costs for medical supplies. They used an infectious disease model
to determine the dynamics of COVID-19 and the percentage of infected patients admitted
to the hospital. Based on this information, various situations are created that take into
account lockdown, social awareness, etc., and appropriate inventory policies are proposed
to reduce inventory management costs. Viral mutations were not considered in this study.
Our study also uses evolutionary games to represent human behavior.

A large number of literature surveys were conducted, indicating that studies have
been conducted from a variety of perspectives. Among the reviewed studies, the study on
infectious disease models was very helpful in developing a method to represent human
behavior in the models. The study on pharmaceutical inventory management was very
helpful in developing the infectious disease model into an inventory management method.
The relevant literature reviewed is summarized in Table 1. As shown in this table, only a
limited number of studies on infectious disease models consider the impact of pharmaceu-
ticals. Also, few studies on inventory control models consider human behavior and analyze
its impact. In addition, there are few studies that integrate infectious disease models and
inventory control models, and we believe that more research in this area would be useful.

Table 1. Review of relevant literature.

Authors I V M P E

Lu, X. et al. [20] X X
Kabir, K. M. A. et al. [14] X X
Amaral, M. A. et al. [17] X X

Liu, M. et al. [24] X X
Shamsi, G. N. et al. [25] X X

Paul, S. et al. [26] X X X
Agusto et al. [22] X X X

Our Study X X X X X
I: incubation period, V: viral mutation, M: multiple-infection cycle, P: people’s behavior, E: effects of pharmaceuticals.

3. Epidemiological Model and Evolutionary Game Theory

In Sections 3.1 and 3.2, we explain the basic concepts of the epidemiological model
and evolutionary game theory, which are necessary to conduct this research. In Section 3.3,
the work of Amaral et al. [9] that used evolutionary games to express and analyze the
relationship between human behavior and infectious disease epidemics in a mathematical
model is also explained. The reason for dealing with these models is that the infectious
disease model can describe temporal changes such as the number of infected persons, and
evolutionary game theory can represent human behavior.

3.1. Epidemiological Model

The epidemiological model was formulated by Kelmack and McKendrick in the UK in
1927 as a model used to describe a single infectious disease epidemic in a population with
differential equations [28]. Subsequently, a mathematical review was conducted mainly by
European researchers at the end of the 1970s, and the threshold theorem was established.

The first use of epidemiological models in Japan was for epidemic forecasting and
prevention policy during the AIDS epidemic in the late 1980s. Since many mathematical
scientists entered the field at that time, research on epidemiological models has made
great progress. Even after the AIDS pandemic, epidemics of infectious diseases such as
BSE, SARS, and swine influenza occurred in the 2000s, but the policy implementation of
using an epidemiological model has not progressed. The reason for this is that research
on epidemiological models in mathematical biology has mainly focused on qualitative
mathematical analysis, with little practical research being conducted.
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With the COVID-19 epidemic, data analysis and forecasting using epidemiological
models were conducted in real-time. The results had a significant impact on government
policy and were a milestone in the fight against infectious diseases in Japan. This led to the
rapid spread of the basic concepts of the susceptible, infectious, recovered (SIR) model and
the basic reproduction number.

3.1.1. SIR Model

The SIR model is the most basic epidemiological model. The model describes changes
in three quantities over time, denoted by S, I, and R respectively, where S represents the
number of susceptible individuals, I represents the number of infected individuals, and
R represents the number of immune individuals. The SIR model is given by the ordinary
differential equations in system (1). Figure 2 shows a model diagram that describes the
relationship between each state. 

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

(1)
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Each parameter is explained as follows: β is the effective contact rate, also called the
infection rate, γ is the recovery rate, and 1/γ is the average duration of infection. The SIR
model assumes S′ + I′ + R′ = 0, which means that the number of individuals does not
change due to births or deaths. The model does not take into account the possibility that a
once-infected person may become infected again.

3.1.2. SEIR Model

The susceptible, exposed, infectious, recovered (SEIR) model is an extension of the
SIR model to account for the incubation period of infectious diseases. It is expressed by
adding E, which represents the number of persons during the incubation period. The flow
of the disease is as follows: susceptibility, exposure, infectiousness, and recovery. The SEIR
model is given by the ordinary differential equations in system (2). Figure 3 shows a model
diagram that describes the relationship between each state.

dS
dt = −βSI

dE
dt = βSI − εE

dI
dt = εE− γI

dR
dt = γI

(2)

Appl. Sci. 2023, 13, 11308 7 of 26 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑆𝑆𝐼𝐼

𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑆𝑆𝐼𝐼 − 𝜀𝜀𝐸𝐸

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝜀𝜀𝐸𝐸 − 𝛾𝛾𝐼𝐼

𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼

 (2) 

 
Figure 3. SEIR model. 

As in the SIR model, 𝛽𝛽 and 𝛾𝛾 denote the infection and recovery rates. In addition, 
𝜀𝜀 denotes the incidence rate and 1/𝜀𝜀 denotes the number of days of the incubation pe-
riod. The SEIR model does not take into account the possibility of the re-infection of once-
infected persons. 

The infectious disease model can describe temporal changes in the number of infec-
tions. These concepts of infectious disease models are the basis of the models in this study, 
and by developing these basic models, the characteristics of various infectious diseases 
can be taken into account. Most of the studies of infectious disease models discussed in 
the literature review are developments of this most basic model. 

3.2. Evolutionary Game Theory 
Evolutionary game theory is an area of game theory that studies the behavior of or-

ganisms and humans based on the idea of biological evolution. The evolutionary games 
are the dynamics of organisms and human behavior by focusing on the Nash equilibrium 
point as a group equilibrium. The concepts of evolutionary game theory are essential in 
this study to describe the human behavior of voluntary segregation. 

3.2.1. Evolutionarily Stable Strategy 
In this study, evolutionary game theory is used to model the human behavior in in-

fectious disease epidemics. Evolutionarily stable strategies, a very important concept in 
evolutionary game theory, are discussed in this section. 

In the basic idea of biological evolution, the number of individuals with high adapt-
ability proliferates and the number of individuals with low adaptability decreases [29]. 
The distribution of individuals with various characteristics within a population change 
over time. In the study of populations, it is important to investigate the distribution of 
individuals that can realize a steady state in the long term. The steady state of a population 
is a state in which the distribution of individuals does not change. Natural selection is a 
concept in biological evolution. This is the idea that the population of highly adapted in-
dividuals increases, and the population of less adapted individuals decreases. An im-
portant question in biological evolution is how the distribution of a population changes 
when different types of individuals invade the population. A new individual invading a 
population is called a mutation. A steady state is said to be evolutionarily stable when the 
state is maintained without proliferation of mutations even when a small number of mu-
tations invade the population. 

Then, we discuss evolutionarily stable strategies. Consider a steady state where all 
the individuals in a population chooses strategy 𝑠𝑠. Suppose that a mutation that selects a 
different strategy 𝑑𝑑 with a small ratio 𝜀𝜀 > 0 invades the population. Such a population 
can be denoted as (1 − 𝜀𝜀)𝑠𝑠 + 𝜀𝜀𝑑𝑑 . Figure 3 shows the invasion of strategy 𝑑𝑑  into the 

Figure 3. SEIR model.



Appl. Sci. 2023, 13, 11308 7 of 25

As in the SIR model, β and γ denote the infection and recovery rates. In addition, ε de-
notes the incidence rate and 1/ε denotes the number of days of the incubation period. The SEIR
model does not take into account the possibility of the re-infection of once-infected persons.

The infectious disease model can describe temporal changes in the number of infec-
tions. These concepts of infectious disease models are the basis of the models in this study,
and by developing these basic models, the characteristics of various infectious diseases can
be taken into account. Most of the studies of infectious disease models discussed in the
literature review are developments of this most basic model.

3.2. Evolutionary Game Theory

Evolutionary game theory is an area of game theory that studies the behavior of
organisms and humans based on the idea of biological evolution. The evolutionary games
are the dynamics of organisms and human behavior by focusing on the Nash equilibrium
point as a group equilibrium. The concepts of evolutionary game theory are essential in
this study to describe the human behavior of voluntary segregation.

3.2.1. Evolutionarily Stable Strategy

In this study, evolutionary game theory is used to model the human behavior in
infectious disease epidemics. Evolutionarily stable strategies, a very important concept in
evolutionary game theory, are discussed in this section.

In the basic idea of biological evolution, the number of individuals with high adapt-
ability proliferates and the number of individuals with low adaptability decreases [29].
The distribution of individuals with various characteristics within a population change
over time. In the study of populations, it is important to investigate the distribution of
individuals that can realize a steady state in the long term. The steady state of a population
is a state in which the distribution of individuals does not change. Natural selection is
a concept in biological evolution. This is the idea that the population of highly adapted
individuals increases, and the population of less adapted individuals decreases. An im-
portant question in biological evolution is how the distribution of a population changes
when different types of individuals invade the population. A new individual invading
a population is called a mutation. A steady state is said to be evolutionarily stable when
the state is maintained without proliferation of mutations even when a small number of
mutations invade the population.

Then, we discuss evolutionarily stable strategies. Consider a steady state where all
the individuals in a population chooses strategy s. Suppose that a mutation that selects a
different strategy t with a small ratio ε > 0 invades the population. Such a population can
be denoted as (1− ε)s + εt. Figure 3 shows the invasion of strategy t into the population
of strategy s. The mutation that selects a different strategy t with a ratio ε > 0 is called a
mutation of strategy s.

The conditions for strategy s to be evolutionarily stable can be expressed in the
following equation. Let u(s, (1− ε)s + εt) be the payoff of adaptation of strategy s in the
population (1− ε)s + εt, and u(t, (1− ε)s + εt) be the payoff of adaptation of strategy t.
The condition under which strategy s is more adaptive than mutation t is expressed in
Equation (3). Figure 4 shows the invasion of mutations into the population.

u(s, (1− ε)s + εt) > u(t, (1− ε)s + εt) (3)

When this condition is satisfied, strategy s is an evolutionarily stable strategy.
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3.2.2. Fermi Rule

Following the usual evolutionary game dynamics, whether agent i changes to agent
j’s strategy depends on the payoffs of both [17]. To express the probability that an agent
switches its strategy, we employ the Fermi rule in this study. The Fermi rule expresses the
probability Θ

(
πi, πj

)
of agent i changing to agent j’s strategy as in Equation (4), where πi

and πj are the payoffs of agents i and j, and k can measure the degree of noise.

Θ
(
πi, πj

)
=

1

1 + e−(πj−πi)/k
(4)

3.3. Mathematical Model Expressing the Relationship between Human Behavior and Infectious
Disease Outbreaks

Amaral et al. [17] used evolutionary game theory to represent human behavior in
infectious disease models. In their study, agents choose whether to voluntarily isolate
themselves to reduce the risk of infection or to behave as in a normal situation. These
actions are denoted as strategy Q (quarantine) and strategy N (normal), respectively. In
addition, it is assumed that the risk of infection is lower for strategy Q than for strategy N.
In their extended SIR model, susceptible individuals and infected indivuduals can choose
one of the strategy. The model diagram is shown in Figure 5. The model can be expressed
by equations in system (5).
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S′N = −SN
(

βN IN + βα IQ
)
+ τϕS

S′Q = −SQ
(

βα IN + βQ IQ
)
− τϕS

I′N = SN
(

βN IN + βα IQ
)
− γIn + τϕI

I′Q = SQ
(

βα IN + βQ IQ
)
− γIQ − τϕI

R′ = γ
(

IN + IQ
)

(5)

In system (5), we denote the infection rate of SQ as βQ and that of SN as βN . In this
model, interaction between the two strategies may occur, such as when SQ and IN are
infected by contact. The infection rate in such a case is denoted by βα. The magnitude of
each infection rate is βQ < βα < βN .

ϕS, ϕI denote the strategy transition rate in each state as expressed in Equations (6) and (7).
The parameter τ represents how quickly the new strategy is adopted with respect to the
timescale of the infection epidemic.

ϕS = SQ(SN + IN)Θ
(
πQ, πN

)
− SN

(
SQ + IQ

)
Θ
(
πN , πQ

)
(6)

ϕI = IQ(SN + IN)Θ
(
πQ, πN

)
− IN

(
SQ + IQ

)
Θ
(
πN , πQ

)
(7)

where πQ, πN denote the payoffs of each strategy. Θ
(
πQ, πN

)
represents the probability

of changing from strategy Q to strategy N, and Θ
(
πN , πQ

)
represents the probability of

changing from strategy N to strategy Q.

4. Problem Description and Model Formulation

This section describes the proposed model. Section 4.1 provides the problem descrip-
tion. In Section 4.2.1, we extend the model of Amaral et al. [17] presented in Section 3.3 and
propose a model that takes into account the characteristics of COVID-19 infection, which
have not been considered in previous studies. Section 4.2.2 proposes a model that considers
the severity of symptoms and adds a hospital component in addition to the incubation
period and viral mutation. Section 4.2.3 proposes an inventory management model that
forecasts demand using the proposed infectious disease model.

4.1. Problem Description

During the COVID-19 epidemic, many people mitigate the risk of infection by refrain-
ing from going out and minimizing contact with others. However, there are also people
who do not refrain from going out and behaving as usual. The probability of contracting
COVID-19 infection differs greatly between those who refrain from going out and stay at
home and those who behave as usual [17]. This study integrates the individuals’ behaviors
into the epidemic model.

Also, we take into account that new mutant strains with high infection rates are
emerging. The number of infected persons in Japan is higher in the second and subsequent
waves than in the first wave. This is due to the fact that the infection rate is increasing as
the virus mutates. The infection rate is assumed to increase as the epidemic progresses [30].

In the proposed model, factors such as population increase or decrease due to births
and deaths, inflows of people from overseas, and outflows of people overseas are not
considered. The model also does not take into account the changes in infection rates due to
vaccination status.

4.2. Model Formulation

Section 4.2.1 presents the SEIR model with human behavior. This model is also used
to forecast the demand for pharmaceuticals. In Section 4.2.2, we present a model that takes
into account hospital care, and in Section 4.2.3, a pharmaceutical inventory management
model is developed.
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4.2.1. SEIR Model with Incubation Period and Viral Mutation

There is an incubation period before symptoms develop after infection with COVID-19.
In addition, the number of cases in Japan shows that the scale of the infectious epidemic
is gradually increasing. This is mainly due to the effect of virus mutation [30]. In this
section, we propose the model to examine the effect of the incubation period of COVID-19
infection and the increase in the infection rate due to virus mutation on the number of
infected persons. The model proposed in this section consists of four states: susceptible
(S), infected (I), incubation period (E), and recovered (R). In states S, E, and I, agents
have two strategies: (1) voluntarily refraining from going out and staying at home (strategy
Q), and (2) acting as they would under normal circumstances (strategy N). The former
strategy have lower probability of infection than the latter. Let SQ denote the agent that
takes strategy Q in state S and SN denote the agent that takes strategy N. Similarly, in
states E and I, we denote by EQ, EN , IQ, and IN , respectively. A diagram of the model is
shown in Figure 6.
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Here, the infection rate of SQ is represented by βQ and the infection rate of SN is
denoted by βN . In this model, it can be assumed that βQ < βN because the risk of infection
is smaller when voluntary isolation is used [17]. In rare cases, the interaction between
the two strategies may occur, such as when SQ and IN come into contact with each other.
The infection rate in such a case is denoted by βa, where βQ < βa < βN . Since βQ and
βN are considered to increase with the prevalence of infection, they are expressed as in
Equations (8) and (9), respectively. βQ0 and βN0 represent the initial values of βQ and βN .

βQ = βQ0 + a
(

IQ + IN + R
)

(8)

βN = βN0 + b
(

IQ + IN + R
)

(9)

For simplicity, βa is expressed as a weighted average of βQ and βN using the parameter
c with 0 < c < 1 as in Equation (10).

βa =
c
(

βQ + βN
)

2
(10)

Since the incubation period of the disease is the same regardless of the strategy, the
incidence rate for both EQ and EN is ε. The recovery rate is also γ for both IQ and IN . ϕS,
ϕE, and ϕI denote the rate of change in strategy in each state.

The payoffs for each strategy are shown in Equations (11) and (12).

πQ = −Ω (11)

πN = −δβN I (12)
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where Ω represents the cost over the isolation period and δ is the risk of the disease as
perceived by the individual.

The probability of whether agent i adopts agent j′s strategy using the Fermi rule in
Equation (4) [31]. Using Equation (4), the strategy transition rates for each of the states S, E,
and I are expressed in Equations (13) to (15) as follows:

ϕS = SQ(SN + EN + IN)Θ
(
πQ, πN

)
− SN

(
SQ + EQ + IQ

)
Θ
(
πN , πQ

)
(13)

ϕE = EQ(SN + EN + IN)Θ
(
πQ, πN

)
− EN

(
SQ + EQ + IQ

)
Θ
(
πN , πQ

)
(14)

ϕI = IQ(SN + EN + IN)Θ
(
πQ, πN

)
− IN

(
SQ + EQ + IQ

)
Θ
(
πN , πQ

)
(15)

The SEIR model with incubation period and viral mutation is shown in system (16)
as follows: 

S′N = −SN
(

βN IN + βα IQ
)
+ τϕS

S′Q = −SQ
(

βα IN + βQ IQ
)
− τϕS

E′N = SN
(

βN IN + βα IQ
)
− εEn + τϕE

E′Q = SQ
(

βα IN + βQ IQ
)
− εEQ − τϕE

I′N = εEn − γIn + τϕI

I′Q = εEQ − γIQ − τϕI

R′ = γ
(

In + IQ
)

(16)

where the parameter τ represents how quickly the new strategy is adopted in relation to
the timescale of the infection epidemic.

The model (16) represents the relationship between susceptible agents, incubation
period agents, infected agents, and recovered agents. In addition, ϕS, ϕE, and ϕI represent
the change in the agent’s strategy due to the evolutionary game. This means that the agent’s
behavior of self-isolation can be incorporated into the SEIR model, which represents an
epidemic.

4.2.2. SEIR Model for Consideration of Hospital Care

When infected with COVID-19, patients with severe symptoms should be treated
in a hospital. In Japan, the basic policy is that only those with severe symptoms should
receive treatment at a hospital, while those with mild symptoms or asymptomatic patients
should be cared for at home. However, there are not enough hospital beds in an epidemic
of COVID-19 infection, and there are cases in which patients with severe illness cannot be
treated in a hospital. We propose a model in this section to examine the level of symptoms
at which infected patients should be admitted to hospitals so that those with severe illnesses
can be treated in hospitals on a priority basis. The same parameters and conditions as
in the model presented in Section 4.2.1 are omitted in this section. Agents choose their
own strategies only for the set of states S and E. We assume that there are two types of
infected patients: those who are cared for in the hospital and those who are cared for at
home. The person who recovers at home is denoted as state Im. The person who recovers
in the hospital is denoted by state H. The proposed model is shown in Figure 7.

The infection rates βQ and βN are expressed by Equations (8) and (9) in Section 4.2.1.
Parameter α is a parameter that expresses how many people in the incubation period will
be treated in the hospital when they develop the disease and become infected. The recovery
rate for state H is denoted by γA, and that for state Im by γB. The payoffs for each strategy
are expressed in Equations (11) and (12).
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Using Equation (4) in Section 3.2.1, the strategy transition rates for each state of S and
E are expressed in Equations (17) and (18) as

ϕS = SQ(SN + EN)Θ
(
πQ, πN

)
− SN

(
SQ + EQ

)
Θ
(
πN , πQ

)
(17)

ϕE = EQ(SN + EN)Θ
(
πQ, πN

)
− EN

(
SQ + EQ

)
Θ
(
πN , πQ

)
(18)

The equations of the model are shown in system (19).

S′N = −βNSN(H + Im) + τϕS

S′Q = −βQSQ(H + Im)− τϕS

E′N = βNSN(H + Im)− εEN + τϕE

E′Q = βQSQ(H + Im)− εEQ − τϕE

H′ = αε(E N + EQ
)
− γH

I′m = ε(1− α)(E N + EQ
)
− γIm

R′ = γAH + γB Im

(19)

The model (19) represents the relationship between susceptible, incubators, infected,
and recovering agents. In addition, ϕS and ϕE represent the change in the agent’s strategy
due to the evolutionary game. It can be said that the agent’s behavior of self-isolation is
incorporated into the SEIR model, which represents the infection epidemic. In addition, by
adopting state H and parameter α, the number of patients in the hospital, which cannot be
represented by the ordinary SEIR model, can be expressed.
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4.2.3. Pharmaceutical Inventory Management

This section describes a pharmaceutical inventory management approach that uses
an infectious disease model to forecast demand. The proposed method uses a demand
forecasting model and an inventory control model. The demand forecasting model uses
the infectious disease model described in Section 4.2.2. A study by Paul et al. [26] on the
inventory management of pharmaceuticals using an infectious disease model is presented.
We develop the inventory management method of based on the study by Paul et al. [26].
In this study, an inventory management model that forecasts demand using the infectious
disease model is been proposed.

The parameters and equations in Section 4.2.2 are used to forecast the demand for
pharmaceuticals. The predicted demand for pharmaceuticals (Dd) in period d can be ex-
pressed in Equation (20) using the number of people in the incubation period who develop
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symptoms and become infected (εEN + εEQ) and the unit of the number of pharmaceuticals
required per patient (n).

Dd = nε(E N + EQ
)

(20)

The order quantity (OR) is determined based on the forecast demand (Dd) as in
Equation (21). The adjustment parameters α and β are used to adjust for drug order
discrepancies and inventory discrepancies.

OR = max{0, Dd + α(DOd −MOd) + β(DId −MId)} (21)

The desired order quantity (DOd) is calculated as the product of the production lead
time (L) and the expected demand (Dd). The desired inventory (DId) is calculated based on
the desired inventory rate (DC), the forecast demand (Dd), and the safety stock (SS). In this
study, the safety stock is assumed to be a given value in order to simplify the inventory
control method.

DOd = L× Dd (22)

DId = DC× Dd + SS (23)

The quantity of medicines on order (MOd) and the quantity in stock (MId) are ex-
pressed in Equations (24) and (25).

MOd+1 = MOd + ORd −
MOd

L
(24)

MId+1 = MId +
MOd

L
− Cd − Pd (25)

where Cd represents the number of pharmaceuticals used, expressed as in Equation (26)
using the number of people who recovered in the SEIR model.

Cd = nγ
(

IN + IQ
)

(26)

Since medicines have an expiration date, pd represents the quantity of medicines to
be disposed of due to expiration. The shelf life of a drug is Ts, which is expressed by
Equation (27). The proposed model is shown in Figure 8.

pd =
MId
Ts

(27)Appl. Sci. 2023, 13, 11308 14 of 26 
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5. Numerical Experiments

We solve the simultaneous differential equations of the model using the fourth-order
Runge-Kutta method. We then show how the model behaves by examining the effects of
varying the values of the parameter βN0, which represents the infection rate of SN and the
individual’s perceived risk of the disease, δ, in the model presented in Section 4.2.1.

5.1. Experimental Results Using an Infectious Disease Model

We set the initial values of each parameter and each state of the SEIR model that takes
into account the incubation period and viral mutation as shown in Section 4.2.1, as well as
the initial values of each state as shown in Tables 2 and 3. Refer to the references [8,9,17] for
the setting of each parameter value.

Table 2. Parameter values for the model in Section 4.2.1.

Parameter Values

βQ0 1.0
a 1.0
b 5.0
c 0.1
ε 1/7
γ 1.0
Ω 1.0
τ 1.0
k 0.1

Table 3. Initial values for each state of the model in Section 4.2.1.

State Initial Values

S0 0.99
E0 0
I0 0.01
R0 0
Q0 0.5
N0 0.5

We set the initial values of each parameter value and each state of the SEIR model
considering hospital care shown in Section 4.2.2 as shown in Tables 4 and 5.

Table 4. Parameter values for the model in Section 4.2.2.

Parameter Values

βQ0 1.0
βN0 15

a 1.0
b 5.0
ε 1/7

γA 1.0
γB 1.0
Ω 1.0
τ 1.0
k 0.1
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Table 5. Initial values for each state of the model in Section 4.2.2.

State Initial Values

S0 0.99
E0 0
I0 0.01
H0 0
R0 0
Q0 0.5
N0 0.5

5.1.1. Results of SEIR Model with Incubation Period and Virus Mutation

First, the model is examined by setting βN0 = 15 and δ = 15. Figure 9 shows the
population rate over time. Figure 10 shows the population for two strategies, Figure 11
shows the number of people infected with each strategy, Figure 12 shows the total number
of infected people, and Figure 13 shows the number of adopters for each strategy. As
shown in Figures 11 and 12, the number of infected people keep increasing and decreasing.
The payoff of Q, the self-isolation strategy, becomes larger when the percentage of infected
agents becomes large at the beginning. The first peak of SQ occurs when most agents begin
to select self-isolate strategy. When most agents self-isolate, the infection rate remains low,
and the total fraction of infected agents begins to decrease. However, as the number of
infected agents I approaches zero, the payoff of strategy N, which acts as usual, begins to
grow. Eventually, the payoff of strategy Q becomes larger than the payoff of strategy N, so
the number of agents that act normally without quarantine increases. This corresponds to a
rapid increase in SN near the beginning of the second wave of infection. In addition, as
the number of people who act freely without quarantine increases, a second infection peak
will inevitably occur. As the number of infected people increases, more people change their
strategies and self-isolate, and SN begins to decrease. This process is repeated many times.
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5.1.2. Impact of Individual Perceived Disease Risk δ on the Model

We discuss the effect of δ, a parameter that represents an individual’s perceived risk
of disease, on the behavior of the model presented in Section 4.2.1. In Figures 14–17, we
show the number of people in each state when δ = 0, 10, 15, and 20, respectively. Looking
at Figure 14, there is only one infection cycle; in Figure 15, two infection cycles occur, each
with a smaller peak; in Figures 16 and 17, more infection cycles occur, and the peak of each
infection cycle is smaller. In summary, when the risk is small, agents are infected early and
the maximum number of simultaneous infections is large. When the risk is high, agents
self-isolate for relatively long periods of time, and multiple infection cycles are distributed
with smaller infection peaks. This is a naturally occurring behavior when evolutionary
game dynamics are taken into account. Figure 18 shows the behavior of the number of
infected persons I when varying δ.
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Figure 18. Change in the number of infections with different δ.

One of the key features of this model is the occurrence of infection waves during the
epidemic period, when there is no possibility of re-infection. The higher the value of δ,
the more often these waves of infection occur, and the smaller the peak of each wave. The
higher the risk perception of the disease, the more likely it is to disperse infections over a
long period of time.

5.1.3. Results of the SEIR Model Considering Hospital Care

In this section, we set the probability of severe COVID-19 infection to 1.6%. Figure 19
shows the results when α = 0.016, and Figure 20 shows the number of infected patients.
Figure 21 shows the number of patients in the hospital by setting α = 0.016, α = 0.030,
α = 0.050, and α = 0.10, respectively. This model was created to verify how many beds
are available by comparing the number of patients in hospitals with the number of beds
available for COVID-19 infections in actual hospitals. However, at this stage, the actual
number of infected patients in Japan and the number of infected patients shown in the
model are so different, and therefore cannot be compared. Therefore, it is necessary to
improve each parameter to represent the actual number of infected patients in the future.
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5.2. Experiments with Inventory Control Models

This section presents experimental results using the inventory control model presented
in Section 4.2.3. Each parameter value is set as shown in Table 6. Refer to reference [26] for
the setting of each parameter value.

Table 6. Parameter values for the model in Section 4.2.3.

Parameter Values

n 1
L 7

DC 1
SS 0.1
ε 1/7
γ 1.0
Ts 7

We set (α, β) = (1, 1) and δ = 15 as a baseline model. The results are shown in
Figure 22.
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5.2.1. Impact of Individual Perceived Disease Risk δ on the Model

In this study, we consider how people’s decisions affect the quantity of orders and
inventory. Figures 23 and 24 show the increase and decrease in order quantity and inventory
quantity for δ = 4, 8, 12, 16, and 20, respectively. Figure 24 shows that the inventory
sometimes decreases significantly when δ is small compared to when δ is large. Since it
is ideal to have a certain level of inventory, the larger δ is the appropriate inventory level.
Therefore, it can be said that making people aware of the risk of disease is also effective in
the inventory control of pharmaceuticals.
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5.2.2. Effect of Ordering Policy (α, β) on Inventory Quantity

Ordering policies are very important in inventory management. In this section, we
discuss the effect of the parameters (α, β) representing the ordering policy on inventory
holdings. Figure 25 shows the inventory quantity calculated for five combinations of the
adjustment parameters (α, β) of the ordering policy. When (α, β) = (0.5, 0.5), the inventory
quantity sometimes shows negative values. It indicates that the inventory is out of stock.
When (α, β) = (1, 0.5), the inventory quantity is relatively low, indicating a possibility of
running out of stock. When (α, β) = (1, 1 ), (α, β) = (0.5, 1), and (α, β) = (2, 2), there is
some room in the inventory. This result shows that when α is small, a large quantity of
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final inventory is left over; a small value of β will result in less excess inventory, but may
cause stockout.
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6. Discussion and Findings

Discussion and findings on the experimental results are presented in this section.

6.1. Discussion of Experiments with Infectious Disease Models

The model described in the first experiment, which extends previous studies and takes
into account the incubation period of the infectious disease and viral mutations, shows
in Figure 18 the response of individuals to the infectious level of the disease. As a result,
secondary infections occur or infectious diseases start to re-emerge after the majority of the
population begins to act freely without quarantine. The main parameter examined in this
study is δ, which expresses the extent to which the population is aware of the individual
costs of infection. This parameter has little effect on the final number of infections but has
the greatest effect on the number of infections at the peak of the epidemic. For higher values
of the parameter δ, the number of people infected at the peak of infection is lower, but
multiple peaks of infection occur. The occurrence of multiple peaks of infection overlaps
with the actual increase and decrease in the number of infected people in Japan. In the
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current crisis of infectious disease epidemics, it is extremely important to reduce the number
of people infected during the peak period in order to prevent the collapse of the healthcare
system. Therefore, it is effective to spread awareness of the risk of disease, which can
spread the increase in the number of infected patients over a long period of time and reduce
the number of infected patients at the peak of infection.

The second experiment was conducted to verify the number of hospital beds available
by comparing the number of hospital beds for COVID-19 infection with the number of
patients in the actual hospitals. However, the number of infected patients shown by the
model differs greatly from the actual number of infected patients in Japan. Therefore,
it is necessary to modify the parameters of the model to make it comparable with the
actual data.

6.2. Discussion of Experiments with Inventory Control Models

The experiment in Section 5.2.1 shows the effect of people’s decisions on the inventory
of pharmaceuticals. Regardless of people’s perception of the risk of disease, the quantity of
inventory increases or decreases as the number of infected people increases or decreases,
because more orders are placed when the number of infected people increases or decreases.
Excess inventory is risky because medicines have expiration dates. Therefore, it is effective
to spread awareness of the risk of the disease over a long period of time to reduce the
number of infected people at the time of peak infection, and, at the same time, to manage
the inventory of pharmaceuticals appropriately.

The experiment in Section 5.2.2 shows the effect of the ordering policy on the inventory
of pharmaceuticals. It shows how the parameters (α, β), which represent the ordering
policy, affect the inventory. Future work is to optimize (α, β) and to study the optimal
ordering policy.

6.3. Findings

The findings from this study show that making people aware of the risk of disease
has a positive impact on both reducing the number of people infected and managing
the inventory of pharmaceuticals. Specifically, the number of people infected can be
dispersed and the number of people infected at peak times can be controlled. As a result, a
rapid increase in the demand for pharmaceuticals does not occur, and the risk of holding
excess inventory is reduced. The risk of holding excess inventory is particularly high
because pharmaceuticals have expiration dates. Therefore, it is very important to make
people correctly aware of the risk of disease and the cost of their actions in the inventory
management of pharmaceuticals.

7. Conclusions

Two processes as complex as social behavior and disease epidemics are usually ana-
lyzed separately for simplicity. In order to explain two complex processes and to reveal
the essential elements of their dynamics and interactions, it is important to create a model
that is simple and captures the observed phenomenon as much as possible. In this study,
two infection models are proposed. First, we proposed the SEIR model, which extends
previous studies and takes into account the incubation period of infectious diseases and
viral mutations. Second, we proposed a new SEIR model that takes into account hospital
care. The proposed model is used to forecast demand and is adapted to an inventory
management problem. The results of the operation of these models are presented and the
effects of changing the parameters are examined. The results show that people’s perception
of the risk of disease has a significant impact on the number of infections and the inventory
of medicines. We also found that an increase in the infection rate due to viral mutations has
an impact on the spread of the epidemic.

We found that the effectiveness of the policy of encouraging voluntary isolation
considered in this study depends on people’s perceived risk of disease. Therefore, the
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usefulness of this policy is enhanced when the risk of disease is perceived as accurately as
possible by the population.

Several future directions need to be noted regarding the present study. In this study,
human behavior, hospitals, and other factors were incorporated into the SEIR model. In the
future, parameter estimation based on real data will be important for actual forecasting.
Therefore, future work is to improve the model and perform parameter estimation using
real data. The other future works are to compare the model’s results with the actual number
of infected people and the number of people receiving medical care, and to study the
degree to which people with symptoms should be treated in a hospital. In addition, a
more detailed analysis of the impact of ordering policy is needed in its adaptation to the
inventory control problem.
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