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Considering the role of epidermal keratinocytes, they occupy more than 90% of

the epidermis, form a physical barrier, and also function as innate immune

barrier. For example, epidermal keratinocytes are capable of recognizing

various cytokines and pathogen-associated molecular pattern, and producing

a wide variety of inflammatory cytokines, chemokines, and antimicrobial

peptides. Previous basic studies have shown that the immune response of

epidermal keratinocytes has a significant impact on inflammatory skin diseases.

The purpose of this review is to provide foundation of knowledge on the

cytokines which are recognized or produced by epidermal keratinocytes. Since

a number of biologics for skin diseases have appeared, it is necessary to fully

understand the relationship between epidermal keratinocytes and the cytokines.

In this review, the cytokines recognized by epidermal keratinocytes are

specifically introduced as “input cytokines”, and the produced cytokines as

“output cytokines”. Furthermore, we also refer to the existence of biologics

against those input and output cytokines, and the target skin diseases. These use

results demonstrate how important targeted cytokines are in real skin diseases,

and enhance our understanding of the cytokines.

KEYWORDS

epidermal keratinocytes, input cytokines, output cytokines, biologics, inflammatory
skin diseases
1 Introduction

In recent years, many biologics targeting cytokines have been clinically used for

inflammatory skin diseases. Therefore, we must understand the importance of cytokines in

the pathogenesis of the diseases. It is widely known that cytokines mainly function among

immunocytes such as lymphocytes, but in fact, epidermal keratinocytes, which are resident

cells, also recognize and produce various cytokines.
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Epidermal keratinocytes occupy 90% or more of the epidermis,

form a physical barrier (1). On the other hand, epidermal

keratinocytes also form an innate immunological barrier with the

potential to mount an innate immune response. For example,

epidermal keratinocytes also express a variety of cytokine

receptors, and microbial sensors such as Toll-like receptor (TLR)

1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, MDA5 (melanoma

differentiation-associated gene 5) and RIG-I (retinoic acid-

inducible gene-I) (2–6). Also, epidermal keratinocytes are capable

of producing inflammatory cytokines and chemokines (5, 6). In

addition, the cells show antibacterial activity by expressing

antibacterial peptides such as defensins, cathelicidin, and S100

proteins (7). Through these immunological functions, epidermal

keratinocytes play an important role in the pathogenesis of

inflammatory skin diseases including atopic dermatitis (AD),

psoriasis, several pustular dermatoses and so on (8–10).

The purpose of this review is to provide foundation of

knowledge on the cytokines which are recognized or produced by

epidermal keratinocytes. Since a number of biologics for skin

diseases have appeared, it is necessary to fully understand the

relationship between epidermal keratinocytes and the cytokines.

We here focus on pro- or anti-inflammatory cytokines except

growth factors in epidermal keratinocytes. The cytokines directly

recognized by epidermal keratinocytes are specifically introduced as

“input cytokines”, and the produced cytokines as “output

cytokines”. Furthermore, we also refer to the existence of

biologics against those input and output cytokines and the target

skin diseases. Some of these biologics have already been approved

and are in use, while others have not been shown to be effective.

Recognizing these findings will enhance our understanding of

the cytokines.
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2 “Input cytokines” in
epidermal keratinocytes

“Input cytokines” in epidermal keratinocytes include IL-1a/b/
Ra, IL-4, IL-13, IL-17A/AF/C/F, IL-18, IL-19, IL-20, IL-21, IL-22,

IL-24, IL-26, IL-27, IL-31, IL-36a/b/g/Ra, IL-37, IL-38, IFN-a/b/e/
g/k/l1/l2/l3/l4/w, oncostatin M (OSM) and TNF-a (Figures 1-

3, Table 1).
2.1 IL-1 family cytokines

The IL-1 family consists of 11 cytokines which are further

divided into inflammatory cytokines with agonistic activity (IL-1a,
IL-1b, IL-18, IL-33, IL-36a, IL-36b, IL-36g) and anti-inflammatory

cytokines with antagonistic activity (IL-1Ra, IL-36Ra, IL-37, IL-38)

(11). They are also classified into three subfamilies (IL-1, IL-18, IL-

36 subfamily) according to their structures and receptors (11). Most

of the human IL-1 family cytokine genes are located on

chromosome 2, and the IL-18 and IL-33 genes are located on

chromosomes 11 and 9, respectively (12). Among them, epidermal

keratinocytes recognize IL-1a, IL-1b, IL-18, IL-36a, IL-36b, IL-36g,
IL-1Ra, IL-36Ra, IL-37, and IL-38 (Figure 1, Table 1).

IL-1a and IL-1b bind to IL-1R1, and this binding signals via

TIR-MyD88, leading to NF-kB and MAPK activation (Figure 1,

Table 1) (13). IL-1RAcP is the co-receptor for IL-1R1 (Figure 1,

Table 1). IL-1-bound IL-1RI associates with IL-1RAcP to form a

heterodimer. Signal transduction requires the presence of IL-1RI

and IL-1RAcP molecules. IL-1a is produced as precursors and

activated by calpain (10). IL-1b is also produced as precursors and
FIGURE 1

Input cytokines which activate NF-kB and MAPK signaling pathway in epidermal keratinocytes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1239598
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Morizane et al. 10.3389/fimmu.2023.1239598
activated by casepase-1. IL-1a and IL-1b induce inflammatory

cytokines including TNF-a and IL-6, and chemokines including

IL-8 in epidermal keratinocytes (14). IL-1Ra binds to IL-1R1, and

this cytokine work as the inhibitor of IL-1a and IL-1b (Figure 1,

Table 1) (13).

IL-1 signaling is thought to play an important role in not only

autoinflammatory diseases but also various inflammatory skin

diseases. Therefore, it has attracted attention as a therapeutic

target. Anakinra, a recombinant IL-1Ra which blocks the

activities of the proinflammatory cytokines IL-1a and IL-1b, is
Frontiers in Immunology 03
clinically used for rheumatoid arthritis (RA), neonatal-onset

multisystem inflammatory disease (NOMID), cryopyrin-

associated periodic syndromes (CAPS), systemic juvenile

idiopathic arthritis (sJIA), adult-onset Still disease (AOSD),

Schnitzler’s Syndrome (SS), and deficiency of IL-1RA (DIRA)

(15). However, it was not significantly effective in a phase II

randomized, double-blind clinical trial for palmoplantar

pustulosis (PPP) (16). On the other hand, another group reported

that anakinra up to 300mg daily showed positive responses with

localized and generalized pustular psoriasis (GPP) in a phase II
FIGURE 2

Input cytokines which activate JAK-STAT signaling pathway in epidermal keratinocytes (gc cytokines, IL-6 family cytokines, type I IFNs and type II IFN).
FIGURE 3

Input cytokines which activate JAK-STAT signaling pathway in epidermal keratinocytes (IL-20 family cytokines and type III IFNs).
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open-label trial (17). Anakinra has also been used in hidradenitis

suppurativa (HS) by several groups with controversial results (10).

Rilonacept is an IL-1 receptor fusion protein consisting of the Fc

portion of human IgG1 and the human IL-1 receptor which traps

both IL-1a and IL-1b, and clinically used for familial cold

autoinflammatory syndrome (FCAS), Muckle–Wells syndrome

(MWS), and recurrent pericarditis (15). A clinical trial for cold

contact urticaria (CCU) is currently ongoing with this agent (18).

Canakinumab is a human anti-IL-1b monoclonal antibody, and

clinically used for FCAS, MWS, CAPS, familial Mediterranean fever

(FMF), mevalonate kinase deficiency (MKD), tumor necrosis factor

receptor-associated periodic syndrome (TRAPS), and AOSD (15).

Canakinumab has also shown contradictory efficacy results in HS

(10). In an open-label prospective study, this agent was effective for

pyoderma gangrenosum (PG) (10). Bermekimab, a human anti-IL-

1a monoclonal antibody, showed efficacy in phase II open-label

studies in HS patients (10). Gevokizumab is a humanized anti-IL-1b
monoclonal antibody, and clinical trials for PG are currently

ongoing with this agent (18).
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IL-18 binds to IL-18Ra, and this binding signals via TIR-

MyD88, leading to NF-kB and MAPK activation (Figure 1,

Table 1) (13). IL-18Rb is the co-receptor for IL-18Ra (Figure 1,

Table 1). Like IL-1 signaling, the signal transduction requires the

heterodimerization of IL-18Ra and IL-18Rb (Figure 1, Table 1) . IL-
18 is produced as precursors and activated by casepase-1 (10).

Epidermal keratinocytes express IL-18Ra and IL-18Rb. When IL-

18 binds to these receptors on the surface of keratinocytes, it triggers

a signaling cascade within the cells, leading to various cellular

responses such as the induction of CXCL9, CXCL10, CXCL11,

major histocompatibility complex (MHC) class I, and MHC class II

expression (19, 20). IL-18 is considered to be involved in the

pathogenesis of psoriasis, AD, and AOSD, and tadekinig alfa, a

human recombinant IL-18-binding protein, is currently

investigated in a phase II open-label clinical trial on patients with

AOSD (18).

IL-36a, IL-36b, and IL-36g bind to IL-36R, and these binding

signal via TIR-MyD88, leading to NF-kB and MAPK activation

(Figure 1, Table 1) (13). IL-1RAcP is the co-receptor for IL-36R
TABLE 1 Input cytokines in epidermal keratinocytes.

Cytokine Classification Receptor Signaling

IL-1a/b IL-1 family IL-1R1/IL-1RAcP NF-kB and MAPK

IL-1Ra IL-1 family IL-1R1 Act as IL-1R antagonist

IL-4 gc family IL-4Ra/IL-13Ra1 JAK-STAT

IL-13 IL-4 like cytokine IL-4Ra/IL-13Ra1 JAK-STAT

IL-17A/AF/F IL-17 family IL-17RA/IL-17RC NF-kB and MAPK

IL-17C IL-17 family IL-17RA/IL-17RE NF-kB and MAPK

IL-18 IL-1 family IL-18Ra/IL-18Rb NF-kB and MAPK

IL-19 IL-20 family IL-20Ra/IL-20Rb JAK-STAT

IL-20/24 IL-20 family IL-20Ra/IL-20Rb,
IL-22Ra1/IL-20Rb

JAK-STAT

IL-21 gc family IL-21Ra/gc JAK-STAT

IL-22 IL-20 family IL-22Ra1/IL-10Rb JAK-STAT

IL-26 IL-20 family IL-20Ra/IL-10Rb JAK-STAT

IL-27 IL-6 family gp130/WSX1 JAK-STAT

IL-31 IL-6 family IL-31Ra/OSMRb JAK-STAT

IL-36a/b/g IL-1 family IL-36R/IL-1RAcP NF-kB and MAPK

IL-36Ra IL-1 family IL-36R Act as IL-36R antagonist

IL-37 IL-1 family IL-18Ra Act as IL-18R antagonist

IL-38 IL-1 family IL-1R1 or IL-36R Act as IL-1R or IL-36R antagonist

IFN-a/b/e/k/w Type I IFN IFNAR1/IFNAR2 JAK-STAT

IFN-g Type II IFN IFNGR1/IFNGR2 JAK-STAT

IFN-L1/L2/L3/L4 Type III IFN IL-28Ra/IL-10Rb JAK-STAT

OSM IL-6 family gp130/OSMRb JAK-STAT

TNF-a TNF family TNFR1 NF-kB and MAPK
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(Figure 1, Table 1). Like IL-1 and IL-18 signaling, the signal

transduction requires the heterodimerization of IL-36R and IL-

1RAcP (Figure 1, Table 1). IL-36 cytokines are produced as

precursors and activated by neutrophil-derived proteases (10).

Similar to IL-1a and IL-1b, IL-36a, IL-36b, and IL-36g induce

TNF-a, IL-6, IL-8, G-CSF, GM-CSF, CXCL1, CXCL10, CCL20, and

RANTES in epidermal keratinocytes (21, 22).

IL-36Ra binds to IL-36R, and this cytokine works as the

inhibitor of IL-36a, IL-36b, and IL-36g (Figure 1, Table 1) (13).

Deficiency of IL-36Ra develop GPP, which suggests the importance

of IL-36 signaling in the disease (23). In fact, spesolimab, a

humanized anti-interleukin-36 receptor monoclonal antibody

which blocks human IL-36a-, IL-36b-, and IL-36g-induced IL-

36R activation, show significant clinical improvement in GPP (24).

Additional studies of spesolimab are currently being performed in

patients with PPP and HS (10). Imsidolimab is also a humanized

anti-interleukin-36 receptor monoclonal antibody which blocks

human IL-36a-, IL-36b-, and IL-36g-induced IL-36R activation,

and clinical trials for HS and GPP are currently ongoing with this

agent (10).

IL-37 is an anti-inflammatory cytokine, and reported to

suppress the production of CXCL8, IL-6, and S100A7 which are

induced by the mixture offive proinflammatory cytokines in human

keratinocyte cell line HaCaT cells (25). Extracellularly, IL-37 binds

to IL-18Ra and recruits IL-1R8 to form the IL-37/IL-1R8/IL-18Ra

complex, inhibiting IL-18R-dependent inflammation (10).

IL-38 is also anti-inflammatory cytokine, and reported to

inhibit IL-36g-induced inflammatory molecules in epidermal

keratinocytes (26). IL-38 binds to IL-1RAcP or IL-36R, and works

as the inhibitor of IL-1a/b or IL-36a/b/g, respectively (10).
2.2 Gamma chain cytokines

The gc cytokines family consists of IL-2, IL-4, IL-7, IL-9, IL-15,

and IL-21, and among them, IL-4 and IL-21 are input cytokines in

epidermal keratinocytes (Figure 2, Table 1) (27). IL-13, another type

2 cytokine which shares IL-4Ra and IL-13Ra1 with IL-4, is also an

input cytokine in the cells (Figure 2, Table 1) (28). Th2 cells release

IL-4 and IL-13, and type 2 innate lymphoid cells produce IL-13

(29). The IL-4 and IL-13 signaling in the cells decrease the

expression of filaggrin, loricrin, an involucrin via JAK-STAT

pathway (30, 31). These cytokines also suppress ceramide

synthesis and inhibit the expression of elongases which lengthen

fatty acid chain in the cells (32–34). In addition, antimicrobial

peptides expression is also suppressed by IL-4 and IL-13 in the cells,

which enhances the susceptibility to infection (35). Furthermore,

IL-4 and IL-13 increase serine protease KLK7 expression and

function in the cells (36). Recently, these cytokines were also

reported to impair TLRs-mediated barrier functions in the early

phases of AD (37). These findings suggest that IL-4 and IL-13

contribute to not only allergic inflammation but also barrier

dysfunction. The importance of IL-4 and IL-13 in skin diseases is

found in recent biologics. Anti-IL-4Ra antibody dupilumab which

blocks both IL-4 and IL-13 signaling and anti-IL-13 antibody

including tralokinumab and lebrikizumab show clinical efficacy in
Frontiers in Immunology 05
AD (38–41). In addition, dupilumab represents significant

improvement in prurigo nodularis (PN) (42).

IL-21 is produced by NKT and CD4(+) T cells, and signals via

JAK-STAT pathway (Figure 2, Table 1) (43). IL-21R is up-regulated

in patients with systemic sclerosis (SSc) and might be involved in

the pathogenesis of SSc via induction of VEGF (44). IL-21 is also

highly expressed in the skin of individuals with psoriasis, and

stimulates epidermal keratinocytes to proliferate and causes

epidermal hyperplasia (45).
2.3 IL-6 family cytokines

The IL-6 family consists of 11 cytokines and shares 130-kDa

signal-transducing b-receptor subunit gp130, except IL-31 (46–48).
All the cytokines activate JAK-STAT signaling pathway. Among

them, IL-27 induces CXCL9, CXCL10, CCL2, CCL5, and enhance

anti-viral activity in epidermal keratinocytes (49–51). Another IL-6

family member, OSM, is also recognized via gp130 and OSM

receptor beta (OSMRb) by epidermal keratinocytes (Figure 2,

Table 1) (52). OSM is produced by T cells, monocytes,

macrophages, hepatocytes and endothelial cells (52). OSM is

involved with innate immunity, angiogenesis, adhesion, motility,

tissue remodeling, cell cycle and transcription in epidermal

keratinocytes (52, 53). Since this cytokine show synergy with

TNF-a, IL-1a, IL-17A, and IL-22 in production of antimicrobial

peptides, it is considered to be involved in pathogenesis of psoriasis

(53). OSM is also implicated in the pathogenesis of SSc, and a

randomized phase 2 study ofan anti-OSM monoclonal antibody

GSK2330811 in SSc was conducted. However, its effects were not

different from placebo (54). IL-31 is also an input cytokine which

signals through heterodimeric receptors composed of the OSMRb
and the interleukin 31 receptor alpha (IL-31Ra) (Figure 2, Table 1)
(48). IL-31 is mainly produced by Th2 cells, and suppresses the skin

barrier protein expression such as filaggrin and involucrin and

induces the expression of several chemokines in epidermal

keratinocytes (55, 56). IL-31Ra is also expressed in sensory

nerves and IL-31 promotes nerve fiber extension, suggesting that

IL-31 is involved in pruritus in AD (57). Actually, nemolizumab, a

humanized monoclonal antibody against IL-31Ra which blocks

signaling from IL-31, provides improvement of pruritis in patients

with AD in a 16-week, double-blind, phase 3 trial (58).
2.4 IL-17 family cytokines

The IL-17 family consists of 6 homodimers IL-17A to IL-17F

and 1 heterodimer IL-17AF (59). On the other hand, the IL-17

receptor family consists of 5 molecules, IL-17RA-RE (59). IL-17RA

is a common receptor and forms heterodimeric complexes with IL-

17RB, IL-17RC and IL-17RE. Epidermal keratinocytes recognize IL-

17A, IL-17C, IL-17F, and IL-17AF and then strongly produce

inflammatory cytokines, chemokines, and antimicrobial peptides

(Figure 1, Table 1) (60). IL-17A, IL-17AF, and IL-17F are mainly

produced by Th17 cells, and share the heterodimeric receptor of IL-

17RA and IL-17RC (Figure 1, Table 1) (59). Binding of these
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cytokines to their receptors recruits Act1 to which TRAF6 binds.

TAK1-NF-kB and MAPK-AP1 axes are activated downstream of

TRAF6. IL-17C are produced by epithelial cells rather than immune

cells, and binds to the heterodimeric receptor of IL-17RA and IL-

17RE, and shows similar activation to IL-17A (Figure 1, Table 1).

However, the ability to induce inflammation in epidermal

keratinocytes is reported to be stronger in the order of IL-17A,

IL-17AF, IL-17F, and IL-17C (60). These cytokines, especially IL-

17A, are considered to play a critical role in the pathogenesis of

psoriasis, and anti-IL-17A antibody including secukinumab and

ixekizumab, anti-IL-17A/IL-17F antibody bimekizumab, and anti-

IL-17RA antibody brodalumab which blocks the signaling of IL-

17A, IL-17A/F, IL-17F, IL-17C, and IL-17E, show high clinical

efficacy in psoriasis (61–64). Secukinumab and bimekizumab are

also reported to be clinically effective in HS (65, 66).
2.5 IL-20 family cytokines

The IL-20 family consists of IL-19, IL-20, IL-22, IL-24, IL-26,

and type III IFNs. IL-19, IL-20, and IL-24 signal through the IL-

20Ra/IL-20Rb heterodimer. Furthermore, IL-20 and IL-24 also

signal through the IL-22Ra1/IL-20Rb heterodimer (Figure 3,

Table 1) (67). IL-19, IL-20, and IL-24 is mainly produced by

myeloid cells but can also be produced by epidermal

keratinocytes (68). TNF-a and IFN-g enhance IL-20Ra
expression in the cells (69). These cytokines all induce epidermal

keratinocytes to proliferate and to express inflammatory and

immunomodulatory mediators through activation of STAT3 (67).

IL-20 was considered to be involved in the pathogenesis of psoriasis,

and a phase I study with an anti-IL-20 monoclonal antibody

fletikumab for psoriasis was conducted, however the study was

terminated due to lack of efficacy (70).

IL-22 is known to exert protective functions in barrier defense,

tissue repair, and homeostasis depending on the context, in various

organs including the skin (71). Epidermal keratinocytes recognize

IL-22 through the IL-22Ra1 and IL-10Rb heterodimer (Figure 3,

Table 1) (72). IL-22 is mainly produced by Th1, Th17, and Th22

cells and also type 3 innate lymphoid cells (72–74). IL-22 up-

regulates, in a dose-dependent manner, the expression of S100A7,

S100A8, S100A9, a group of proinflammatory molecules belonging

to the S100 family of calcium-binding proteins, as well as the matrix

metalloproteinase 3, the platelet-derived growth factor A, and the

CXCL5 chemokine (75). IL-22 also down-regulates the expression

of genes associated with keratinocyte differentiation such as

filaggrin (75). In addition, IL-22 strongly induces hyperplasia of

reconstituted human epidermis (75). Therefore, IL-22 is considered

to contribute to the acanthosis in psoriasis and lichenification in

AD. However, the inhibitors of and IL-22 (fezakinumab) did not

show sufficient improvement in psoriasis (70). On the other hand,

fezakinumab, anti-IL-22 antibody, showed clinical efficacy in

moderate-to-severe AD (76).

IL-26 is an input cytokine in epidermal keratinocytes. IL-26 is

produced mainly by Th1, Th17, or natural killer cells (77, 78). IL-

26R is a heterodimer composed of two receptor proteins: IL-20Ra
Frontiers in Immunology 06
and IL-10Rb (Figure 3, Table 1) (79). IL-26 enhances the

production of FGF1, FGF2, and FGF7 from epidermal

keratinocytes and vascular endothelial cells (80). These may

promote angiogenesis in patients with T cell-mediated skin

inflammation, including psoriasis (80). IL-26 enhanced IL-8, IL-

1b, CCL20, IL-33, and b-defensin 2 expression via JAK1, JAK2, and

TYK2 in normal human epidermal keratinocytes (81). These may

be involved in the pathogenesis of AD (81).
2.6 type I interferons

Type I interferon (IFN) members consist of IFN-a, IFN-b, IFN-ϵ,
IFN-k and IFN-w, and bind to the heterodimeric receptor of IFN-a/b
receptor 1(IFNAR1) and 2(IFNAR2), resulting in the activation of

JAK1 and non-receptor tyrosine kinase 2 (TYK2) and the formation of

STAT1-STAT2-IRF9 complex which is called ISGF3 (82). Almost all

cell types produce type I IFNs (82). Since epidermal keratinocytes

express both IFNAR1 and IFNAR2, the cells recognize type I IFNs

(Figure 2, Table 1) (83). For example, IFN-k induces IFN-k expression

itself and enhances the anti-viral activity against HSV-1 in epidermal

keratinocytes (84). In addition, IFN-a and IFN-k increase IL-6

production in the cells, which is considered to be associated with the

pathogenesis of cutaneous lupus erythematosus (85).
2.7 type II interferon

Epidermal keratinocytes also recognize Type II IFN, IFN-g
which is produced by T cells, B cells, NK cells, NKT cells, and

dendritic cells (86). IFN-g binds to the heterodimeric IFN-g
receptor (IFNGR) complex comprising IFNGR1 and IFNGR2

(Figure 2, Table 1) (86). The signal phosphorylates and activates

JAK1, JAK2, and STAT1, which leads to the homodimerization of

STAT1 (86). Stimulation with IFN-g in epidermal keratinocytes

increases terminal differentiation of cells, inhibits proliferation, and

enhance anti-viral activities (87, 88). Furthermore, IFN-g
cooperates with TNF-a and IL-17A to induce the production of

cytokines, chemokines, and antimicrobial peptides (89–91). IFN-g
is increased in the skin lesions of psoriasis, and the disease was

previously considered to be a Th1 disease. Therefore, a clinical trial

with humanized anti–IFN-g antibody (Fontolizumab) for

moderate-severe plaque psoriasis was performed, however, no

significant clinical changes were observed (92).
2.8 type III interferons

Type III IFNs, including IFN-l1 (IL-29), IFN-l2 (IL-28A),

IFN-l3 (IL-28B), and IFN-l4, are involved in inhibiting viral

infection similar to type I IFNs (93, 94). Type III IFNs act via the

heterodimer of IL-28Ra and IL-10Rb (Figure 3, Table 1) (93). These
cytokines are input cytokines in epidermal keratinocytes, for

example, IFN-l1 is shown to enhance anti-viral activity through

an increase in TLR3 in the cells (95).
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2.9 tumor necrosis factor

Epidermal keratinocytes recognize TNF-a. TNF-a was

discovered as a necrotic cytokine in solid tumors and later turned

out to be a major cytokine involved in inflammation (96). TNF-a is

produced from almost all cells, and are thought to exist both

upstream and downstream of the pathological cascade of various

inflammatory diseases. Since epidermal keratinocytes express

TNFR1 receptors and produce TNF-a, autocrine phenomena are

observed and an inflammatory loop is formed (Figure 1, Table 1)

(97). The importance of TNF-a in various skin diseases is easily

found in the clinical use of anti-TNF-a antibodies against the

diseases. TNF-a inhibitors including infliximab, adalimumab,

etanercept, and certolizumab pegol are clinically effective in

psoriasis (8). Infliximab and adalimumab also show clinical

efficacy in HS, and PG (98–101).
3 “Output cytokines” in
epidermal keratinocytes

“Output cytokines” in epidermal keratinocytes include IL-1a/b/
Ra, IL-6, IL-7, IL-15, IL-17C, IL-17E (IL-25), IL-18, IL-19, IL-20, IL-

24, IL-33, IL-34, IL-36a/b/g/Ra, IL-37, IL-38, IFN-a/b/e/k/l1,
thymic s t romal lymphopoie t in (TSLP) , and TNF-a
(Figure 4, Table 2).
3.1 IL-1 family cytokines

Epidermal keratinocytes produce inflammatory IL-1 family

cytokines with agonistic activity including IL-1a, IL-b, IL-18, IL-
33, IL-36a, IL-36b, and IL-36g and anti-inflammatory IL-1 family
Frontiers in Immunology 07
cytokines with antagonistic activity including IL-1Ra, IL-36Ra, IL-

37, and IL-38 (Figure 4, Table 2). Since IL-1a, IL-b, IL-18, IL-36a,
IL-36b, and IL-36g are also input cytokines and are capable of

inducing themselves, inflammation loops are formed in the cells

(Figures 1, 4, Tables 1, 2) (14, 102).

IL-33 is an IL-1-family cytokine that is over-expressed in the

keratinocytes of patients with AD (103, 104). IL-33 is also in an

activated state in the precursor and is rather inactivated when

cleaved by caspase-1 or caspase-3 (105). IL-33 activates type 2

innate lymphoid cells which induce type 2 inflammation by

producing IL-5 and IL-13 (103, 106). Therefore, IL-33 is thought

to be involved in the pathogenesis of AD. However, anti-IL-33

antibody LY3375880 and etokimab or anti-IL-33 receptor ST2

antibody astegolimab did not show significant clinical

improvement in AD (107–109).
3.2 Gamma chain cytokines

Among gc cytokines, epidermal keratinocytes produce IL-7 and

IL-15 (Figure 4, Table 2) (27). IL-7 is produced under the stimuli

with IFN-g (110). IL-15 expression is increased in vitiligo epidermis,

and is induced by oxidative stress via NF-kB (111). IL-7 and IL-15

derived from hair follicle keratinocytes regulate skin-resident

memory T cell homeostasis (112). In a mouse model of alopecia

areata, blockade of IL-7 signaling with anti-mouse IL-7Ra antibody

suppressed inflammatory responses and reversed alopecia areata

(113). Also, in a mouse model of vitiligo, blocking IL-15 signaling

with an antibody reversed the disease symptoms (114).

Epidermal keratinocytes express TSLP which is an epithelial-

derived IL7-like cytokine and initiate or perpetuate the Th2-type

allergic inflammation via dendritic cells or group 2 innate lymphoid

cells (Figure 4, Table 2) (115, 116). TSLP mediates STAT5

phosphorylation via kinases JAK1 and JAK2 (Table 2) (117). The
FIGURE 4

Output cytokines in epidermal keratinocytes.
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levels of TSLP is significantly increased in the lesional skin of AD,

indicating that TSLP is important for initiating the systemic Th2

immunity favorable for the development of allergic inflammation

(115). Against this background, a randomized phase 2a clinical trial

of the anti-TSLP monoclonal antibody tezepelumab in the

treatment of moderate-to-severe AD patients was conducted but

did not reach the targeted level of efficacy (118).
3.3 IL-6 family cytokines

IL-6, the first cytokine discovered in the IL-6 family, activates

the JAK-STAT pathway and induces inflammation (46, 47).

Epidermal keratinocytes also produce IL-6 under the stimuli with

some TLR ligands, UVB, TNF-a, IL-17, IFN-g, and so on (Figure 4,

Table 2) (119–122). Anti-IL-6 receptor antibody such as

tocilizumab shows clinical efficacy in rheumatoid arthritis (RA),

juvenile idiopathic arthritis (JIA), giant cell arteritis (GCA), and

Castleman’s disease (CD) (123). The efficacy of tocilizumab in

morphea, SSc, psoriasis, AD, vitiligo or PG has been also reported

in case series, however, higher-level evidences have not been shown

in these skin diseases (123).
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3.4 IL-17 family cytokines

Epidermal keratinocytes produce IL-17C and IL-17E (IL-25)

(Figure 4, Table 2). IL-17C controls the innate immune activity of

epithelial cells in an autocrine manner (124). IL-17C is induced by

TNF-a, IL-17A, and IFN-g in epidermal keratinocytes (91). Anti-

IL-17C antibody MOR106 showed no significant clinical

improvement in AD although it was reported to be effective in

mouse experiments (125, 126). IL-17E is produced by various cell

types and induces Th2 responses (59). In AD, IL-17E derived from

epidermal keratinocytes activates type 2 innate lymphoid cells,

which drive IL-13 production (127). Therefore, IL-17E is

considered to play an important role in the pathogenesis in AD.

IL-17E is shown to be induced by IL-17A and IL-22 in epidermal

keratinocytes (Figure 4, Table 2) (128).
3.5 IL-20 family cytokines

As described above, IL-19, IL-20, and IL-24 are input and

output cytokines in epidermal keratinocytes (Figures 3, 4,

Tables 1, 2). TNF-a, IL-17A, and IL-22 induces IL-19, IL-20, and
TABLE 2 Output cytokines in epidermal keratinocytes.

Cytokine Classification Receptor Signaling

IL-1a/b IL-1 family IL-1R1/IL-1RAcP NF-kB and MAPK

IL-1Ra IL-1 family IL-1R1 Act as IL-1R antagonist

IL-6 IL-6 family IL-6R/gp130 JAK-STAT

IL-7 gc family IL-7Ra/gc JAK-STAT

IL-15 gc family IL-2/15Rb/gc JAK-STAT

IL-17C IL-17 family IL-17RA/IL-17RE NF-kB and MAPK

IL-17E IL-17 family IL-17RA/IL-17RB NF-kB and MAPK

IL-18 IL-1 family IL-18Ra/IL-18Rb NF-kB and MAPK

IL-19 IL-20 family IL-20Ra/IL-20Rb JAK-STAT

IL-20/24 IL-20 family IL-20Ra/IL-20Rb,
IL-22Ra1/IL-20Rb

JAK-STAT

IL-33 IL-1 family ST2/IL-1RAcP NF-kB and MAPK

IL-34 CSF-1-like CSF-1R
Syndecan-1
PTP-z

JAK-STAT
NF-kB and MAPK, Caspase, AMPK/ULK1, PI3K/AKT

IL-36a/b/g IL-1 family IL-36R/IL-1RAcP NF-kB and MAPK

IL-36Ra IL-1 family IL-36R Act as IL-36R antagonist

IL-37 IL-1 family IL-18Ra Act as IL-18R antagonist

IL-38 IL-1 family IL-1R1 or IL-36R Act as IL-1R or IL-36R antagonist

IFN-a/b/e/k Type I IFN IFNAR1/IFNAR2 JAK-STAT

IFN-L1 Type III IFN IL-28Ra/IL-10Rb JAK-STAT

TNF-a TNF family TNFR1 NF-kB and MAPK

TSLP IL-7-like cytokine TSLPR/IL-7Ra JAK-STAT
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IL-24 production in the cells (68, 129–131). These cytokines are

considered to enhance psoriatic inflammation (130, 131).

3.6 type I interferons

Type I IFNs including IFN-a, IFN-b, IFN-ϵ, and IFN-k are also

output cytokines in epidermal keratinocytes (Figure 4, Table 2) (84).

These cytokines are induced by TLR3 and TLR9 signaling, or Type I

IFNs themselves in the cells (2, 84, 132). Since type I IFNs are

considered to stimulate myeloid dendritic cells which produce IL-23

and contribute to the pathogenesis of psoriasis, randomized,

double-blind, placebo-controlled, phase I study of MEDI-545

(Sifalimumab), an anti-IFN-a monoclonal antibody for plaque

psoriasis was performed, however, it showed no significant

clinical improvement (133). Sifalimumab was also expected to be

a treatment for systemic lupus erythematosus (SLE), but the clinical

trial was discontinued in favor of anifrolumab (134). Anifrolumab,

a monoclonal antibody that binds to IFNAR1, therefore blocking

the activity of all type I IFNs, are demonstrated to improve skin and

joint disease activity in patients with SLE (134). Rontalizumab is

also a monoclonal antibody, and did not show clinical efficacy

including a phase 2 trial in SLE patients (134).
3.7 type III interferons

Among type III IFNs, IFN-l1 is shown produced by epidermal

keratinocytes stimulated with TLR3 ligand poly (I:C) or vesicular

stomatitis virus (Figure 4, Table 2) (135). IFNl and the IFNl
receptor are strongly expressed in the epidermis of cutaneous

lupus erythematosus (CLE), SLE, lichen planus (LP) and

dermatomyositis (135).
3.8 tumor necrosis factor

TNF-a is also an input and output cytokine as described above

(Figures 1, 4, Tables 1, 2). TNF-a is induced by TNF-a itself, IL-1b,
IL-17A, TLR ligands including poly (I:C), LPS, flagellin, CpG,

ultraviolet light, anisomysin, palmitic acid and so on (4, 131, 136, 137).
3.9 Others

IL-32 is a proinflammatory cytokine which is produced by a

variety of cells, including NK cells, T cells, monocytes, and epithelial

cells (138, 139). IL-32 expression is increased in the epidermis of

AD lesions, and the expression is induced by TNF−a and/or IFN-g
in cultured epidermal keratinocytes (139). However, IL-32 is not

secreted by the cells and remains in the cells; therefore, this cytokine

cannot be called an output cytokine in epidermal keratinocytes

(139). This cytokine is considered to modulate keratinocyte

apoptosis and contribute to the pathogenesis of AD (139).

IL-34 is an output cytokine in epidermal keratinocytes

(Figure 4, Table 2). It exists as a homodimer consisting of 39 kDa

monomers (140). IL-34 has no evident sequence homology with
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other cytokines (141). Likewise, IL-34 has only a 26% sequence

homology with colony-stimulating factor 1 (CSF-1), yet they share a

common receptor known as CSF-1R (Table 2) (141, 142).

Furthermore, IL-34 has exhibits interactions with two distinct

receptors: protein-tyrosine phosphatase (PTP)-z, and syndecan-1

(Table 2) (141). Through the investigation of IL-34-deficient

(Il34LacZ/LacZ) reporter mice, it was found that keratinocytes

and neurons were the main sources of IL-34 (143). Especially,

IL-34 is highly expressed in the epidermis during murine

embryogenesis (144). CSF-1R is expressed by dendritic cells

(DCs) and macrophages, excluding CD11c+ precursors of DCs,

whereas PTP-z is expressed by neural progenitors, glia,

glioblastoma, B cells, and kidney tubular cells (141). Syndecan-1

is expressed by many cancers, such as myeloma, melanoma (141).

IL-34 is considered to regulate major cellular functions, including

cell adhesion, motility, proliferation, differentiation, survival,

metabolism, and cytokine/chemokine expression (141).

IL-39 is a cytokine composed of IL-23Ap19 and Epstein–Barr

virus-induced (EBI) 3 heterodimer which was firstly reported in
TABLE 3 Disease names and the abbreviations.

Disease name Abbreviation

Adult-onset Still disease AOSD

Atopic dermatitis AD

Castleman’s disease CD

Cryopyrin-associated periodic syndrome CAPS

Cold contact urticaria CCU

Cutaneous lupus erythematosus CLE

Deficiency of IL-1RA DIRA

Familial cold autoinflammatory syndrome FCAS

Familial Mediterranean fever FMF

Giant cell arteritis GCA

Generalized pustular psoriasis GPP

Hidradenitis suppurativa HS

Juvenile idiopathic arthritis JIA

Lichen planus LP

Mevalonate kinase deficiency MKD

Muckle–Wells syndrome MWS

Palmoplantar pustulosis PPP

Prurigo nodularis PN

Pyoderma Gangrenosum PG

Rheumatoid arthritis RA

Schnitzler’s syndrome SS

Systemic lupus erythematosus SLE

Systemic sclerosis SSc

Tumor necrosis factor receptor-associated periodic
syndrome

TRAPS
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2015 (145). This cytokine is shown to be produced by B cell

lymphocytes and activate neutrophils (146, 147). Our group

researched about the expression of IL-39 in human epidermal

keratinocytes, however our ELISA experiment and LC-Ms/Ms

analyses did not detect the heterodimeric cytokine IL-39 in

epidermal keratinocytes (148). So far, this cytokine cannot be

called an output cytokine in epidermal keratinocytes Table 3.
4 Conclusion

In this review, we introduced that epidermal keratinocytes

recognize and produce a large number of cytokines and are

deeply involved in the pathogenesis of these diseases. The number

of output cytokines appears to be lower compared to that of input

cytokines in the cells. This might suggest that epidermal

keratinocytes are cells that are responsible for innate immunity

rather than adaptive immunity, and that they are excellent at

functioning as sensor cells rather than the control tower. The

immunological functions of epidermal keratinocytes in innate

immunity requires further investigation.

We also referred to the existence of biologics against those input

and output cytokines and the target skin diseases. Current biologics

have a significant impact on immune cells throughout the body,

which can lead to side effects such as serious infections. If we could

target only cytokines derived from epidermal keratinocytes through

the development of drug delivery that specifically acts on cells, it will

be possible to suppress only excessive immune reactions in the skin

caused by pathological activation of epidermal keratinocytes, which

should be a safer treatment.
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