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CONSTRUCTION OF FAMILIES OF DIHEDRAL QUINTIC
POLYNOMIALS

YASUHIRO KisHI AND MEI YAMADA

ABSTRACT. In this article, we give two families of dihedral quintic poly-
nomials by using the Weber sextic resolvent and a certain elliptic curve.

1. INTRODUCTION

Let @Q be the field of rational numbers. For f(X) € Q[X], denote
Gal(f/Q) the galois group of the minimal splitting field of f over Q. If
f is quintic and irreducible over Q, then Gal(f/Q) is isomorphic to C5 (the
cyclic group of order 5), D5 (the dihedral group of order 10), F5 (the Frobe-
nius group of order 20), As (the alternating group of degree 5) or S; (the
symmetric group of degree 5). The aim of this paper is to construct fami-
lies of quintic polynomials with rational coefficients whose galois groups are
isomorphic to Ds.

On the one hand, as is well known, any galois extensions of Q whose galois
groups are isomorphic to Dy are given as the minimal splitting fields of the
quintic polynomial

FX) =X+ (t—=3)X 4 (s—t+3)X3+(#> —t—25—1) X% +5X +1t € Q[X]
([2, Theorem 2.3.5]), which is called Brumer’s polynomial. This is a generic
polynomial for Ds. On the other hand, the following results are known
when restricting the form of the polynomial. As for a quintic binomial
f(X) = X° +a € Q[X], Gal(f/Q) is isomorphic to not D5 but always Fj
if f is irreducible over Q (see, for example, [2, Theorem 2.3.4]). As for a
quintic trinomial f(X) = X%+ aX*+b € Q[X], in case of i = 1 (essentially
the same in case of i = 4), Gal(f/Q) is isomorphic to D5 if and only if
the following three conditions holds: (i) f is irreducible over @Q; (ii) the
discriminant of f is a perfect square in Q; (iii) a and b are of the following
form:

5 At
(A—1)4(>\2li6>\+25)’ b=ap MpeQ A#L u#0)
([5, §189], [3, Theorem 11.3.4], [2, Theorem 2.3.4]). In case of i = 2 (essen-
tially the same in case of i = 3), Gal(f/Q) is isomorphic to D5 essentially
only when

a =

(a,b) = (5,3), (5, —15), (25, 300)
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([4, Theorem 3]). This is shown by using the elliptic curve
V? = X%+ 14X? + 625X.
In this paper, we treat the following quintic tetranomials:
fappu(X) = X° + abX?® + a®X + a®p € Q[X] (a,b, p € Q%).
We note that the discriminant disc(fap,) of fap,u is
disc(fap,) = a*?{5%u*a® + 4(276* — 225b? 4 500)bu’a + 16(b + 2)% (b — 2)?}.
Theorem 1. For b, u € Q*, we define a;(b,u) € Q (i € {1,2}) by

144(b + 2)%(2b + 5)(6b% + 15b + 10) ifiz1

() = pip -

(D) e = 25— 2)2(36 + 5)2(36 — 10)
55(b% 4+ b — 1)p?

and put a; == a;(b, ), for brevity. Assume that fq,p,, is irreducible over Q.

Then the galois group Gal( fq, »,./Q) is isomorphic to Cs or Ds, especially for

b> 0 (resp. b > 10/3), Gal(fa,5,/Q) (resp. Gal(fa,p,/Q)) is isomorphic
to D5.

if i =2,

Remark 1. It is known that the polynomial
F(X) =X+ X3 +tX% +t € QX]

is a generic polynomial for S; over Q. Our polynomial f, 1/, is obtained

from such f as s = ab and t = a?.

2. WEBER SEXTIC RESOLVENT AND TWO CRITERIA

In this section, we introduce two criteria to determine the galois group.
Now we define the Weber sextic resolvent which is a key ingredient of the
proof of Theorem 1.

Definition (]2, Definition 2.3.2]). For a quintic polynomial f(X) = X5 +
as X* + a3 X3 +asX? +a1X +ag (a; € Q), define the Weber sextic resolvent
G(Z) of f by

G(Z) = (Z3 + by Z% + by Z + by)? — 21%7Z € Q[Z],
where
bo = —64ay — 176a2a? + 28a3a; — 16a3a3a3 — 1600a3a2 — 64asaza?
— 80a§a2ag + 384@2(11@0 + 640@4@%&0 — 192aia3a2a0
— 1600aqaiag — 128aia%a1 + 48a4a§a0 — 640a4a3a1ag
+ 64ajaszasa; + 64agazal + 224a3aza? + 224aza3a,

+ 8asajas — 112a4a3a2a1 — 16a3a3a1 — 16a3a3 — 64aja?
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4 4000aza3 — a$ + 32043,
by = 3a§ — 16a4a§a2 + 16a2a3 + 16a3aza; — 64asag + 16asa’
— 8a§a1 — 112a4a0a1 + 240a4a3aq + 240a% — 400asay,
by = —3a§ + 8agas — 20ay,
d = disc(f).
Then the following holds:

Proposition 1 ([2, Theorem 2.3.3]). For an irreducible quintic polynomial
f(X) € Q[X], the Weber sextic resolvent G(Z) of f has a rational root if
and only if Gal(f/Q) is a solvable group, that is, Gal(f/Q) is isomorphic
to 05, D5 or F5.

Moreover, the following holds in general:

Proposition 2. For an irreducible polynomial f(X) € Q[X] of degree n,
the discriminant of f is a perfect square in Q if and only if Gal(f/Q) is
isomorphic to a subgroup of Ay, especially forn =5, Gal(f/Q) is isomorphic
to 05, D5 or A5.

Proof. See, for example, [1, Proposition 6.3.1]. O

3. PROOF AND REMARKS
First, we treat the following quintic tetranomial:
f(X) = X%+ abX? + a*cX + au (a,b,c,p € QX).
Then the Weber sextic resolvent G(Z) of f is
G(Z) = Z5 + 2(—3b* — 20¢)a>Z5 + (15b* + 104b%c + 880c?)a* Z*
+ 4{2000bu%a + (—5b° — 4b'c — 368b%c* — 2240¢3)}a®Z3
+ {8000(—3b* — 20¢)bu’a
+ (1568 — 176b%¢ 4 1440b*c? + 1280b%¢3 + 44800¢) }a® 22
+ 2{—1600000p*a® + 32(—1353b* 4+ 13400b%c — 2000¢2)ba
+ (36" + 920%¢ — 992b°¢2
+ 896b*c® 4 20736b%ct — 54272¢°)Val?Z
+ {160000000° 1 a? 4 8000(—b° + 28b%c — 176b%c% + 320¢%)bpu’a
+ (b2 — 56b0¢ + 1136b5¢* — 10496193
4 48896b%c? — 1126406%¢° 4 102400c5) }a'2.
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Moreover, for b,c € Q*, we define the elliptic curve Cy, . by
Chpe:Y? = X34 2(70% — 60c) X2 + 625(b* — 8b%c + 16¢%) X.

Furthermore, for b,c,s € Q, we define three rational numbers A(b, ¢, s),
B(b,c,s), C(b,c,s) by

A(b, ¢, s) = —219519(5 — 25b),
B(b,c,s) = 265°b{5s — 25(3b* + 20c)s* — (1353b* — 13400b%c + 2000¢?)s
— 625(b% — 28b%c + 1766%¢* — 320¢%)},
C(b,c,s) = {s* — 10(b* + 4c)s + 25(b* — 8b%¢ + 16¢%)}?
x {52 = 10(b* + 12¢)s + 25(b* — 40b%c + 400¢°)}.
By straightforward calculations, we get two equalities
(2) 55G (a%s/5) = a'*{A(b, ¢, s)uta® + B(b, ¢, s)pPa + C(b,c, s)}
and
(3)  B(b,c,5)? —4A(b,c,s)C(b,c,s)
= 212510042 _ 2(118% 4 20¢)s — (59b* — 840b%c — 400¢?)}2
x {s% 4+ 2(76% — 60c)s* + 625(b* — 8b%c + 16¢?)s}.
Proposition 3. Let a,b,c,u € Q*. If the Weber sextic resolvent G(Z) of
f(X) = X®+abX? + a’cX + a®u has a rational root Z = r, then r can be

expressed as r = a’s/5 such that s is the X -coordinate of a certain rational
point of Cy ¢, and a € Q™ satisfies the equation

(4) A(b,e,5)u'a® + B(b,e, s)u%a + C(b,c,5) = 0.

Conversely, letb,c,up € Q* and s the X -coordinate of a rational point of Cy .
Then numbers a satisfying (4) are rational, and the Weber sextic resolvent
G(Z) of f(X) = X®+abX?® + a%cX + a®u has a rational root Z = a®s/5.

Proof. Let a,b,c,un € Q*, and assume that the Weber sextic resolvent G(Z2)
of f(X)= X®+abX?+ a?cX + a’u has a rational root Z = r. Noting that
a # 0, we put

s:=5r/a’.
Then by (2), we have
(5)
0 =5%G(r) = 55G(a*s/5) = a'*{A(b, ¢, s)ua® 4+ B(b, ¢, s)u*a + C(b,c,s)},

and hence a € Q* satisfies (4). Thus it is sufficient to show that s is the
X-coordinate of a certain rational point of Cy .. If s # 25b%, then we have
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A(b,c,s) # 0. Solving (4) for a, we have

—B(b,c,s) £ /B(b,c,s)2 — 4A(b,c,s)C(b,c, s)
2A(b, ¢, s)p?

Since a is rational, it must hold that B(b, ¢, s)? — 4A(b,¢,s)C(b, c,s) € Q2.
Hence by (3), there exists t € Q such that

t2 = 83 + 2(7b? — 60c)s* + 625(b* — 8b%c + 16¢%)s.

Then (X,Y) = (s,t) is a rational point of Cy.. If s = 25b?, then we can
verify that (X,Y) = (s,100b(2b? — 5¢)) is a rational point of Cp.
Conversely, let b,c,u € Q*, s the X-coordinate of a rational point of
Chc, and a € C satisfying (4). If A(b,c,s) = 0, it is clear that a € Q. If
A(b,c, s) # 0, we obtain a € Q by (3). Moreover, it follows from (2) and (4)
that G(a?s/5) = 0. O

a =

Proof of Theorem 1. For b, u € Q*, we define a; := a;(b, ) € Q (i € {1,2})
by (1). First, we can verify that the discriminants disc(fq; ) of fa, b for
i € {1,2} are both perfect squares:
‘ 2%a'%(b + 2)(18b* 4 50b + 35)%(54b% + 225b 4 230)*
dzsc(fal,b,u) = ( ) ( 54 ) ( ) 5
a'®(b —2)2(3b® — 20b — 20)2(96> — 15b + 10)?
54(b2 4+ b —1)2 '

disc(faspp) =

Next, we consider two rational points
(X,Y) = (53(b +2)%,2%53 (b + 2)%(3b + 5)), (5(b — 2),2%5(b — 2)*(3b + 5))

of Cp 1. By putting s1 := 53(b+ 2)?, sg := 5(b — 2)? and by straightforward
calculations, we have the following equality:

A(b,1, ;) puta? + B(b, 1, 53)u’a; + C(b,1,5;) = 0.

Then a = a; satisfies (4). Hence by Proposition 3, the Weber sextic resolvent
G(Z) of fq4;p,u has a rational root. By Propositions 1 and 2, therefore,
Gal( fa;,p,./Q) is isomorphic to Cs or Ds if f,, p ,, is irreducible over Q.

Now assume b > 0 (resp. b > 10/3). Then we easily see a; > 0 (resp. az >
0), and hence

faippu(t) = 52 4 3a;bx? +a? > 0

for any real number x. Thus f,, 5, has non-real roots which implies that
Gal(fa;b,./Q) contains the complex conjugate involution.  Therefore,
Gal( fa;b,./Q) is not isomorphic to C5. The proof of Theorem 1 is now
completed. ]
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Remark 2. Since
1
Jai o) b (X) = Efai(b,n,b,l(ﬂX ),

the minimal splitting fields of fo, 4, )., Over Q for p € Q* are all the same.

Remark 3. (1) There are some examples in which the galois group
Gal( fay,p,,/Q) is isomorphic to Cs in the case b < 10/3. For instance,
let b=5/2, = 5/(2331) (vesp. b = 13/4, u = 13 - 59/(265241)). Then we
have

az = GQ(b,M) = —62 (resp. a2 = a2(b7#) = _164)
and

fa o (X) = X° — 155X 4 3844X — 4805
1289327

25 )

By using GP/PARI, we see that fq,;, are irreducible over Q and
Gal( fa,p,/Q) are isomorphic to Cs in these cases. The authors have not
yet found any examples in which Gal( fq, 5,/Q) is isomorphic to Cs.

(2) As we have seen in the end of proof of Theorem 1, the minimal splitting
field of fu, b, (resp. fasp,u) over Q is never contained in the field R of real
numbers under the condition b > 0 (resp. b > 10/3). Here, we give some
examples where it is with b < 0 (resp. b < 10/3). Let b = —9/4, u = 3/(225?)
(resp. b=3, u=2-3-7/(5°11)). Then we have

a1 = ai(b,p) =53 (resp. ag = ag(b, u) = —55)

(resp. faypu(X) = X° — 533X° + 26896 X —

and

4Tt

446631
farppu(X) = X° TX3 +2809X +

100
(resp. faypu(X) = X° — 165X> + 3025X — 5082).

We can verify that f, 5, (resp. fa,p,) has five real roots, which are in
the range (—10,—9), (—5,—4), (-2,-1), (7,8) and (8,9) (resp. (—12, —11),
(—6,-5), (2.4,2.5), (2.6,2.7) and (12,13)). Moreover, we see by using
GP/PARI that Gal(f,,,/Q) are isomorphic to D5 in these cases. Thus
the minimal splitting fields of f,, 3, over Q are both contained in R.
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