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ON RECURSIVE CONSTRUCTIONS OF Z2Z4Z8-LINEAR

HADAMARD CODES

DIPAK K. BHUNIA, CRISTINA FERNÁNDEZ-CÓRDOBA, MERCÈ VILLANUEVA

Abstract. The Z2Z4Z8-additive codes are subgroups of Zα1
2 × Zα2

4 ×
Zα3
8 . A Z2Z4Z8-linear Hadamard code is a Hadamard code, which is the

Gray map image of a Z2Z4Z8-additive code. In this paper, we generalize
some known results for Z2Z4-linear Hadamard codes to Z2Z4Z8-linear
Hadamard codes with α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0. First, we give
a recursive construction of Z2Z4Z8-additive Hadamard codes of type
(α1, α2, α3; t1, t2, t3) with t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1. It is known that
each Z4-linear Hadamard code is equivalent to a Z2Z4-linear Hadamard
code with α1 ̸= 0 and α2 ̸= 0. Unlike Z2Z4-linear Hadamard codes, in
general, this family of Z2Z4Z8-linear Hadamard codes does not include
the family of Z4-linear or Z8-linear Hadamard codes. We show that,
for example, for length 211, the constructed nonlinear Z2Z4Z8-linear
Hadamard codes are not equivalent to each other, nor to any Z2Z4-linear
Hadamard, nor to any previously constructed Z2s -Hadamard code, with
s ≥ 2. Finally, we also present other recursive constructions of Z2Z4Z8-
additive Hadamard codes having the same type, and we show that,
after applying the Gray map, the codes obtained are equivalent to the
previous ones.

1. Introduction

Let Z2s be the ring of integers modulo 2s with s ≥ 1. The set of n-tuples
over Z2s is denoted by Zn

2s . In this paper, the elements of Zn
2s are also called

vectors. A code over Z2 of length n is a nonempty subset of Zn
2 , and it is

linear if it is a subspace of Zn
2 . Similarly, a nonempty subset of Zn

2s is a
Z2s-additive code if it is a subgroup of Zn

2s . A Z2Z4Z8-additive code is a
subgroup of Zα1

2 × Zα2
4 × Zα3

8 . Note that a Z2Z4Z8-additive code is a linear
code over Z2 when α2 = α3 = 0, a Z4-additive or Z8-additive code when
α1 = α3 = 0 or α1 = α2 = 0, respectively, and a Z2Z4-additive code when
α3 = 0. The order of a vector u ∈ Zn

2s , denoted by o(u), is the smallest
positive integer m such that mu = (0, . . . , 0). Also, the order of a vector
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u ∈ Zα1
2 × Zα2

4 × Zα3
8 , denoted by o(u), is the smallest positive integer m

such that mu = (0, . . . , 0 | 0, . . . , 0 | 0, . . . , 0).
The Hamming weight of a vector u ∈ Zn

2 , denoted by wtH(u), is the
number of nonzero coordinates of u. The Hamming distance of two vectors
u, v ∈ Zn

2 , denoted by dH(u, v), is the number of coordinates in which they
differ. Note that dH(u, v) = wtH(u − v). The minimum distance of a code
C over Z2 is d(C) = min{dH(u, v) : u, v ∈ C, u ̸= v}.

In [19], a Gray map from Z4 to Z2
2 is defined as ϕ(0) = (0, 0), ϕ(1) = (0, 1),

ϕ(2) = (1, 1) and ϕ(3) = (1, 0). There exist different generalizations of this

Gray map, which go from Z2s to Z2s−1

2 [14, 12, 15, 20, 24]. The one given in
[20] can be defined in terms of the elements of a Hadamard code [24], and
Carlet’s Gray map [14] is a particular case of the one given in [24] satisfying∑

λiϕ(2
i) = ϕ(

∑
λi2

i) [16]. In this paper, we focus on Carlet’s Gray map

[14], from Z2s to Z2s−1

2 , which is also a particular case of the one given in
[33]. Specifically,

ϕs(u) = (us−1, us−1, . . . , us−1) + (u0, . . . , us−2)Ys−1,(1)

where u ∈ Z2s ; [u0, u1, . . . , us−1]2 is the binary expansion of u, that is,

u =
∑s−1

i=0 ui2
i with ui ∈ {0, 1}; and Y is a matrix of size (s−1)×2s−1 whose

columns are all the vectors in Zs−1
2 . Without loss of generality, we assume

that the columns of Ys−1 are ordered in ascending order by considering the
elements of Zs−1

2 as the binary expansions of the elements of Z2s−1 . Note
that ϕ1 is the identity map, and

ϕ2 : Z4 −→ Z2
2 ϕ3 : Z8 −→ Z4

2

0 7→ (0, 0) 0 7→ (0, 0, 0, 0)
1 7→ (0, 1) 1 7→ (0, 1, 0, 1)
2 7→ (1, 1) 2 7→ (0, 0, 1, 1)
3 7→ (1, 0) 3 7→ (0, 1, 1, 0)

4 7→ (1, 1, 1, 1)
5 7→ (1, 0, 1, 0)
6 7→ (1, 1, 0, 0)
7 7→ (1, 0, 0, 1).

We define Φs : Zn
2s → Zn2s−1

2 as the component-wise extended map of ϕs.
We can also define a Gray map Φ from Zα1

2 × Zα2
4 × Zα3

8 to Zn
2 , where

n = α1 + 2α2 + 4α3, as follows:

Φ(u1 | u2 | u3) = (u1,Φ2(u2),Φ3(u3)),

for any ui ∈ Zαi

2i
, where 1 ≤ i ≤ 3.

Let C ⊆ Zn
2s be a Z2s-additive code of length n. We say that the Gray

map image of C, say C = Φs(C), is a Z2s-linear code of length n2s−1. Since
C is a subgroup of Zn

2s , it is isomorphic to Zt1
2s × Zt2

2s−1 × · · · × Zts
2 , and we

say that C, or equivalently C = Φs(C), is of type (n; t1, . . . , ts). Note that
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|C| = 2st12(s−1)t2 · · · 2ts . Similarly, if C ⊆ Zα1
2 × Zα2

4 × Zα3
8 is a Z2Z4Z8-

additive code, we say that its Gray map image C = Φ(C) is a Z2Z4Z8-
linear code of length α1 + 2α2 + 4α3. Since C can be seen as a subgroup
of Zα1+α2+α3

8 , it is isomorphic to Zt1
8 × Zt2

4 × Zt3
2 , and we say that C, or

equivalently C = Φ(C), is of type (α1, α2, α3; t1, t2, t3). We have that a
Z2Z4-linear code C [10, 11] can can be seen as a Z2Z4Z8-linear code of
type (α1, α2, 0; 0, t2, t3). In this case, we also write that the type of C is
directly (α1, α2; t2, t3). Unlike linear codes over finite fields, linear codes
over rings do not have a basis, but a generator matrix exists for these codes
with a minimum number of rows. If C is a Z2Z4Z8-additive code of type
(α1, α2, α3; t1, t2, t3), then |C| = 8t14t22t3 and there exist a generator matrix
with t1 + t2 + t3 rows.

Two structural properties of codes over Z2 are the rank and dimension
of the kernel. The rank of a code C over Z2 is simply the dimension of
the linear span of C, say ⟨C⟩. The kernel of a code C over Z2 is defined
as K(C) = {x ∈ Zn

2 : x + C = C} [3]. If the all-zero vector belongs to
C, then K(C) is a linear subcode of C. Note also that if C is linear, then
K(C) = C = ⟨C⟩. We denote the rank of C as rank(C) and the dimension of
the kernel as ker(C). These parameters can be used to distinguish between
nonequivalent codes since equivalent ones have the same rank and dimension
of the kernel.

A binary code with length n, 2n codewords, and minimum distance n/2
is called a Hadamard code. Hadamard codes can be constructed from
Hadamard matrices [1, 26]. Note that linear Hadamard codes are first-
order Reed-Muller codes, or equivalently, the dual of extended Hamming
codes [26, Ch.13 §3]. The Z2s-additive codes such that after the Gray map
Φs give Hadamard codes are called Z2s-additive Hadamard codes, and the
corresponding images are called Z2s-linear Hadamard codes. Similarly, the
Z2Z4Z8-additive codes such that after the Gray map Φ give Hadamard codes
are called Z2Z4Z8-additive Hadamard codes, and the corresponding images
are called Z2Z4Z8-linear Hadamard codes.

It is well-known that Z4-linear Hadamard codes (that is, Z2Z4-linear
Hadamard code with α1 = 0) and Z2Z4-linear Hadamard codes with α1 ̸= 0
can be classified by using either the rank or the dimension of the kernel
[23, 28]. Moreover, in [25], it is shown that each Z4-linear Hadamard code
is equivalent to a Z2Z4-linear Hadamard code with α1 ̸= 0. Later, in
[16, 6, 18, 4], a recursive construction for Zps-linear Hadamard codes, with
p prime, is described, the linearity is established, and a partial classification
by using the dimension of the kernel is obtained, giving the exact amount of
nonequivalent such codes for some parameters. In [17], a complete classifi-
cation of Z8-linear Hadamard codes by using the rank and dimension of the
kernel is provided, giving the exact amount of nonequivalent such codes. For
any t ≥ 2, the full classification of ZpZp2-linear Hadamard codes of length

pt, with α1 ̸= 0, α2 ̸= 0, and p ≥ 3 prime, is given in [5, 7], by using just
the dimension of the kernel.
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The paper contributes to the study of codes over rings Zps , which were
first studied by Blake [9] and Shankar [30] in 1975 and 1979, respectively.
These codes have become more significant after the publication of [19]. It
is also important to note that Hadamard codes are two weight codes, which
have been widely studied in [31, 32]. On the other hand, the classification of
nonlinear Hadamard codes is still an open problem. By giving an additive
structure, as Zps-linear, ZpZp2-linear or Z2Z4Z8-linear codes, to some of
them, and showing whether they are equivalent or not among them, we are
providing a partial classification for these codes.

From a more practical point of view, since Hadamard codes are optimal
and have a high correction capability, they appear in different aspects re-
lated to the transmission of information, such as in digital communication
with satellites [21], in CDMA phones to modulate the transmission of in-
formation and minimize interference with other transmissions [34] and, in
general, in different OCDMA multiple access systems to allow access to
multiple users asynchronously and simultaneously [22]. Other applications
are found in cryptography [27] or in information hiding (steganography and
watermarking) [35]. See [21] for more applications in other fields.

This paper is focused specifically on Z2Z4Z8-linear Hadamard codes with
α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0, generalizing some results given for Z2Z4-
linear Hadamard codes with α1 ̸= 0 and α2 ̸= 0 in [28, 29] related to
a recursive construction of such codes. These codes are also compared
with the Z4-linear, Z8-linear, and in general Z2s-linear Hadamard codes
with s ≥ 2 considered in [16]. In general, the construction of Z2Z4Z8-
linear Hadamard codes allows to construct codes which are not equivalent
to Z2s-linear Hadamard codes, with s ≥ 2. It is known that each Z4-linear
Hadamard code is equivalent to a Z2Z4-linear Hadamard code with α1 ̸= 0
and α2 ̸= 0. Unlike Z2Z4-linear Hadamard codes, in general, this family of
Z2Z4Z8-linear Hadeamard codes does not include the family of Z4-linear or
Z8-linear Hadamard codes, or Z2s-linear Hadamard codes with s ≥ 4. In
Example 2.3, we show that all the nonlinear Z2Z4Z8-linear Hadamard codes
Ht1,t2,t3 of length 211 are not equivalent to each other, nor to any Z2Z4-linear
Hadamard code, nor to any Z2s-linear Hadamard code [16], with s ≥ 2, of
the same length 211. This paper is organized as follows. In Section 2, we
describe a recursive construction of Z2Z4Z8-linear Hadamard codes of type
(α1, α2, α3; t1, t2, t3) with α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0. We emphasise
that, unlike Z2Z4-linear Hadamard codes, in general, this family of Z2Z4Z8-
linear Hadeamard codes does not include the family of Z4-linear or Z8-linear
Hadamard codes. In Section 3, we present other recursive constructions and
show that we obtain Z2Z4Z8-linear Hadamard codes equivalent to the previ-
ous ones. Finally, in Section 4, we give some conclusions and further research
on this topic.
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2. Recursive construction of Z2Z4Z8-additive Hadamard codes

The description of generator matrices having a minimum number of rows
for Z4-additive Hadamard, some families of Z2s-additive Hadamard, and in
general Zps-additive Hadamard codes, with s ≥ 2 and p prime, are given
in [23], [16], and [6], respectively. Similarly, generator matrices having a
minimum number of rows for ZpZp2-additive Hadamard codes with α1 ̸=
0, α2 ̸= 0 and p prime, as long as a recursive construction of these matrices,
are given in [28, 29] when p = 2 and in [5] when p ≥ 3. In this section, we
generalize these results for Z2Z4Z8-additive Hadamard codes with α1 ̸= 0,
α2 ̸= 0, and α3 ̸= 0. Specifically, we define a recursive construction for
the generator matrices of a family of these codes and establish that they
generate Z2Z4Z8-additive Hadamard codes.

Let 0,1,2, . . . ,7 be the vectors having the elements 0, 1, 2, . . . , 7 repeated
in each coordinate, respectively. If A is a generator matrix of a Z2Z4Z8-
additive code, that is, a subgroup of Zα1

2 × Zα2
4 × Zα3

8 for some integers
α1, α2, α3 ≥ 0, then we denote by A1 the submatrix of A with the first
α1 columns over Z2, A2 the submatrix with the next α2 columns over Z4,
and A3 the submatrix with the last α3 columns over Z8. We have that
A = (A1 | A2 | A3), where the number of columns of Ai is αi for i ∈ {1, 2, 3}.

Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. Now, we construct recursively
matrices At1,t2,t3 having t1 rows of order 8, t2 rows of order 4, and t3 rows
of order 2 as follows. First, we consider the following matrix:

(2) A1,0,1 =

(
1 1 2 4
0 1 1 1

)
.

Then, we apply the following constructions. If we have a matrix Aℓ−1,0,1 =
(A1 | A2 | A3), with ℓ ≥ 2, we may construct the matrix

(3) Aℓ,0,1 =

(
A1 A1 M1 A2 A2 A2 A2 M2 A3 A3 · · · A3

0 1 1 0 1 2 3 1 0 1 · · · 7

)
,

where M1 = {zT : z ∈ {2} × {0, 2}ℓ−1} and M2 = {zT : z ∈ {4} ×
{0, 2, 4, 6}ℓ−1}. We perform Construction (3) until ℓ = t1. If we have a
matrix At1,ℓ−1,1 = (A1 | A2 | A3), with t1 ≥ 1 and ℓ ≥ 1, we may construct
the matrix

(4) At1,ℓ,1 =

(
A1 A1 M1 A2 A2 A2 A2 A3 A3 A3 A3

0 1 1 0 1 2 3 0 2 4 6

)
,

where M1 = {zT : z ∈ {2}×{0, 2}t1+ℓ−1}. We repeat Construction (4) until
ℓ = t2. Finally, if we have a matrix At1,t2,ℓ−1 = (A1 | A2 | A3), with t1 ≥ 1,
t2 ≥ 0, and ℓ ≥ 2, we may construct the matrix

(5) At1,t2,ℓ =

(
A1 A1 A2 A2 A3 A3

0 1 0 2 0 4

)
.

We repeat Construction (5) until ℓ = t3. Thus, in this way, we obtain
At1,t2,t3 .
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Summarizing, in order to achieve At1,t2,t3 from A1,0,1, first we add t1 − 1
rows of order 8 by applying Construction (3) t1−1 times, starting from A1,0,1

up to obtain At1,0,1; then we add t2 rows of order 4 by applying Construction
(4) t2 times, up to generate At1,t2,1; and, finally, we add t3− 1 rows of order
2 by applying Construction (5) t3 − 1 times to achieve At1,t2,t3 . Note that
the first row always has the row (1 | 2 | 4).

Example 2.1. By using the constructions described in (3), (4), and (5), we
obtain the following matrices A2,0,1, A1,1,1 and A1,1,2, respectively, starting
from A1,0,1 given in (2):

(6) A2,0,1 =

 11 11 22 2222 4444 44444444
01 01 02 1111 0246 11111111
00 11 11 0123 1111 01234567

 ,

(7) A1,1,1 =

 11 11 22 2222 4444
01 01 02 1111 1111
00 11 11 0123 0246

 ,

A1,1,2 =


1111 1111 222222 222222 4444 4444
0101 0101 021111 021111 1111 1111
0011 0011 110123 110123 0246 0246
0000 1111 000000 222222 0000 4444

 .

In order to obtain A2,1,1, we start with A1,0,1, we apply Construction (3) to
obtain A2,0,1 = (A1 | A2 | A3) given in (6), and then we apply (4) to obtain

A2,1,1 =

 A1 A1

2222
0022
0202

A2 A2 A2 A2 A3 A3 A3 A3

0 1 1 0 1 2 3 0 2 4 6

 .

The Z2Z4Z8-additive code generated by At1,t2,t3 is denoted by Ht1,t2,t3 ,
and the corresponding Z2Z4Z8-linear code Φ(Ht1,t2,t3) by Ht1,t2,t3 .

Lemma 2.1. Let t1 ≥ 1 and t2 ≥ 0 be integers. Let Ht1,t2,1 be the Z2Z4Z8-
additive code of type (α1, α2, α3; t1, t2, 1) generated by At1,t2,1. Then, 2t1+t2 =
α1, 4

t1+t2 = α1 + 2α2 and 8t14t2 = α1 + 2α2 + 4α3.

Proof. First, we prove this lemma for the codeHt1,0,1 by induction on t1 ≥ 1.
Note that the lemma holds for the codeH1,0,1 of type (2, 1, 1; 1, 0, 1). Assume
that the lemma holds for the code Ht1,0,1 of type (α1, α2, α3; t1, 0, 1), that
is,

2t1 = α1, 4
t1 = α1 + 2α2 and 8t1 = α1 + 2α2 + 4α3.(8)

By using Construction (3), the type of Ht1+1,0,1 is (α′
1, α

′
2, α

′
3; t1 + 1, 0, 1),

where

α′
1 = 2α1, α

′
2 = 2t1 + 4α2 and α′

3 = 4t1 + 8α3.(9)
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Thus, from (8) and (9), 2t1+1 = 2α1 = α′
1, 4

t1+1 = 4α1 + 8α2 = 2α1 +
2α1 + 8α2 = α′

1 + 2t1+1 + 8α2 = α′
1 + 2α′

2 and 8t1+1 = 8α1 + 16α2 + 32α3 =
2α1+(2α1+8α2)+(4α1+8α2+32α3) = 2α1+(2t1+1+8α2)+(4t1+1+32α3) =
α′
1 + 2α′

2 + 4α′
3. Therefore, the lemma holds for the code Ht1,0,1.

Next, we prove this lemma for the codeHt1,t2,1 by induction on t2 ≥ 0. As-
sume that the lemma holds for the code Ht1,t2,1 of type (α1, α2, α3; t1, t2, 1),
that is,

2t1+t2 = α1, 4
t1+t2 = α1 + 2α2, and 8t14t2 = α1 + 2α2 + 4α3.(10)

By using Construction (4), the type of Ht1,t2+1,1 is (α′
1, α

′
2, α

′
3; t1, t2 + 1, 1),

where

α′
1 = 2α1, α

′
2 = 2t1+t2 + 4α2 and α′

3 = 4α3.(11)

Thus, from (10) and (11), 2t1+(t2+1) = 2α1 = α′
1, 4

t1+(t2+1) = 4α1 + 8α2 =
2α1+2α1+8α2 = α′

1+2t1+t2+1+8α2 = α′
1+2α′

2 and 8t14t2+1 = 4α1+8α2+
16α3 = 2α1+(2α1+8α2)+16α3 = α′

1+(2t1+t2+1+8α2)+4α′
3 = α′

1+2α′
2+4α′

3.
Therefore, the lemma holds for the code Ht1,t2+1,1. This completes the
proof. □

Proposition 2.1. Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. Let Ht1,t2,t3 be
the Z2Z4Z8-additive code of type (α1, α2, α3; t1, t2, t3) generated by At1,t2,t3.
Then,

α1 = 2t1+t2+t3−1,

α1 + 2α2 = 4t1+t22t3−1,

α1 + 2α2 + 4α3 = 8t14t22t3−1.

(12)

Proof. We prove this result for the code Ht1,t2,t3 by induction on t3 ≥ 1. By
Lemma 2.1, the proposition holds for t3 = 1, that is, for the code Ht1,t2,1.
Assume that it holds for the code Ht1,t2,t3 of type (α1, α2, α3; t1, t2, t3),
that is, (12) holds. By using Construction (5), the type of Ht1,t2,t3+1 is
(α′

1, α
′
2, α

′
3; t1, t2, t3 + 1), where

α′
1 = 2α1, α

′
2 = 2α2, and α′

3 = 2α3.(13)

Thus, from (12) and (13), 2t1+t2+t3 = 2α1 = α′
1, 4

t1+t22t3 = 2α1 + 4α2 =
α′
1 + 2α′

2 and 8t14t22t3 = 2α1 + 4α2 + 8α3 = α′
1 + 2α′

2 + 4α′
3. Therefore, the

proposition is true for the code Ht1,t2,t3+1. This completes the proof. □

Corollary 2.1. Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. Let Ht1,t2,t3 be
the Z2Z4Z8-additive code of type (α1, α2, α3; t1, t2, t3) generated by At1,t2,t3.
Then,

α1 = 2t1+t2+t3−1,

α2 = 4t1+t22t3−2 − 2t1+t2+t3−2,

α3 = 8t14t2−12t3−1 − 4t1+t2−12t3−1.
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Remark 2.1. By Corollary 2.1, we have that the Z2Z4Z8-additive codes
Ht1,t2,t3 of type (α1, α2, α3; t1, t2, t3) generated by At1,t2,t3, so constructed
recursively from (3), (4), and (5), satisfy that α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0.

Remark 2.2. The construction of the generator matrices At1,t2,t3 is a gener-
alization of the recursive construction of the generator matrices of the Z2Z4-
additive Hadamard codes of type (α1, α2; t2, t3) with α1 ̸= 0 and α2 ̸= 0,
given in [29]. Note that if we do not consider the coordinates over Z8 in
Constructions (3), (4), and (5), we have that (3) and (4) become

(14) Aℓ,1 =

(
A1 A1 M1 A2 A2 A2 A2

0 1 1 0 1 2 3

)
,

where Aℓ−1,1 = (A1 | A2) and M1 = 2A1 = {zT : z ∈ {2} × {0, 2}ℓ−1} (up
to a column permutation); and Construction (5) become

(15) At2,ℓ =

(
A1 A1 A2 A2

0 1 0 2

)
,

where At2,ℓ−1 = (A1 | A2). Then, starting from the following matrix:

(16) A1,1 =

(
1 1 2
0 1 1

)
,

and applying (14) and (15) in the same way as above, we obtain the gen-
erator matrices At2,t3 of the known Z2Z4-additive Hadamard codes of type
(α1, α2; t2, t3) with α1 ̸= 0 and α2 ̸= 0 [28, 29]. The Z2Z4-additive code
generated by At2,t3 is denoted by Ht2,t3, and the corresponding Z2Z4-linear
code Φ(Ht2,t3) by Ht2,t3.

When we include all the elements of Z2i , where 1 ≤ i ≤ 3, as coordi-
nates of a vector, we place them in increasing order. For a set S ⊆ Z2i

and λ ∈ Z2i , where i ∈ {1, 2, 3}, we define λS = {λj : j ∈ S} and
S + λ = {j + λ : j ∈ S}. As before, when including all the elements in
those sets as coordinates of a vector, we place them in increasing order.
For example, 2Z8 = {0, 4, 6, 8}, (Z4,Z4) = (0, 1, 2, 3, 0, 1, 2, 3) ∈ Z8

4 and
(Z2 | Z4 | 2Z8, 4Z8) = (0, 1 | 0, 1, 2, 3 | 0, 2, 4, 6, 0, 4) ∈ Z2

2 × Z4
4 × Z6

8.

Lemma 2.2. Let 1 ≤ i ≤ 3 and j ∈ {0, 1, . . . , i− 1}.
(1) If µ ∈ 2jZ2i, then 2jZ2i + µ = 2jZ2i.
(2) If µ ∈ 2jZ2i, then (2jZ2i ,

m. . ., 2jZ2i) + µ1, where m ≥ 1, is a permu-
tation of the vector (2jZ2i ,

m. . ., 2jZ2i).
(3) If µ ∈ 2Z2i, then (Z2i\2Z2i) + µ = Z2i\2Z2i.

(4) If µ ∈ Z2i, then (0, . . . ,2i − 1) + (µ, ℓ·2
i

. . ., µ), where ℓ ≥ 1 and k =

(k, ℓ. . ., k) for k ∈ Z2i, is a permutation of (Z2i ,
ℓ. . .,Z2i).

Proof. Item 1 follows from the fact that Z2i is a ring and 2jZ2i is an ideal
of Z2i . Item 2 follows from Item 1.

For Item 3, it x ∈ (Z2i\2Z2i) + µ, then x − µ ∈ Z2i\2Z2i . Assume that
x /∈ Z2i\2Z2i , so x ∈ 2Z2i . Since 2Z2i is an ideal of Z2i , we have that
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x − µ ∈ 2Z2i , which is a contradiction. Thus, x ∈ Z2i\2Z2i and hence
(Z2i\2Z2i) + µ ⊆ Z2i\2Z2i . In the same way, (Z2i\2Z2i) − µ ⊆ Z2i\2Z2i .
Hence, Z2i\2Z2i ⊆ (Z2i\2Z2i) + µ and therefore (Z2i\2Z2i) + µ = Z2i\2Z2i .

For Item 4, note that (0, . . . ,2i − 1) + (µ, ℓ·2
i

. . ., µ) is a permutation of

(17) (Z2i ,
ℓ. . .,Z2i) + (µ, ℓ·2

i
. . ., µ).

Since Z2i + µ = Z2i , (17) is a permutation of (Z2i ,
ℓ. . .,Z2i). □

Lemma 2.3. Let 1 ≤ i ≤ 3, λ ∈ Z2i\2Z2i, and u ∈ Zn
2i
. Then,

(u, 2i. . ., u) + λ(0, . . . ,2i − 1)

is a permutation of (Z2i ,
n. . .,Z2i).

Proof. Since λ ∈ Z2i\2Z2i , λ(0, . . . ,2
i − 1) is a permutation of (0, . . . ,2i − 1)

and we may consider λ = 1. Then, (u, . . . , u)+ (0, . . . ,2i − 1) is a permuta-
tion of (u1 +Z2i , . . . , un +Z2i) = (Z2i ,

n. . .,Z2i), where u = (u1, . . . , un). □

Lemma 2.4. Let u = (µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4) ∈ Zm+2n+2r
4 ,

where m,n, r ≥ 0 and µ ∈ Z4\2Z4 = {1, 3}. Then,

(u, u, u, u) + (0,2,0,2)

is a permutation of (2Z4, 4n. . ., 2Z4,Z4\2Z4, 4r+2m. . . ,Z4\2Z4).

Proof. By Items 1 and 3 of Lemma 2.2, u+ 2 is a permutation of (µ+2, m. . .
, µ + 2, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4). Let k = (µ, m. . ., µ). Since µ ∈
{1, 3}, we have that (k,k,k,k)+(0,2,0,2) is a permutation of (Z4\2Z4, 2m. . .
,Z4\2Z4). Therefore, (u, u, u, u) + (0,2,0,2) is a permutation of (2Z4, 4n. . .
, 2Z4,Z4\2Z4, 4r+2m. . . ,Z4\2Z4). □

Lemma 2.5. Let u = (µ′, m
′

. . ., µ′, µ′′, m
′

. . ., µ′′, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .,Z8\2Z8) ∈

Z2m′+4n′+4r′

8 , where m′, n′, r′ ≥ 0 and µ, µ′ ∈ Z8\2Z8 = {1, 3, 5, 7}. Then,

(1) (u, u, u, u)+(0,2,4,6) is a permutation of (2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′+2m′
. . .

,Z8\2Z8);

(2) (u, u, u, u)+(0,4,0,4) is a permutation of (µ′, 4m
′

. . ., µ′, µ′+4, 4m
′

. . ., µ′+

4, 2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′

. . .,Z8\2Z8) if µ′ = µ′′ or µ′ = µ′′ + 4, or a

permutation of (2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′+2m′
. . . ,Z8\2Z8) otherwise.

Proof. For Item 1, by Items 1 and 3 of Lemma 2.2, if j ∈ {0, 2, 4, 6}, then u+j

is a permutation of (µ′+j, m
′

. . ., µ′+j, µ′′+j, m
′

. . ., µ′′+j, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .

,Z8\2Z8). Let k
′ = (µ′, m

′
. . ., µ′, µ′′ m′

. . ., µ′′). Since µ′, µ′′ ∈ {1, 3, 5, 7}, we have
that (k′, 4. . .,k′) + (0,2,4,6) is a permutation of (Z8\2Z8, 2m

′
. . .,Z8\2Z8) and

hence (u, u, u, u)+(0,2,4,6) is a permutation of (2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′+2m′
. . .

,Z8\2Z8).

For item 2, we have (k′, 4. . .,k′) + (0,4,0,4) is a permutation of (µ′, 4m
′

. . .

, µ′, µ′ + 4, 4m
′

. . ., µ′ + 4) if µ′ = µ′′ or µ′ = µ′′ + 4, or a permutation of

(Z8\2Z8, 2m
′

. . .,Z8\2Z8) otherwise. Therefore, (u, u, u, u)+(0,4,0,4) is a per-

mutation of (µ′, 4m
′

. . ., µ′, µ′ + 4, 4m
′

. . ., µ′ + 4, 2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′

. . .,Z8\2Z8)
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if µ′ = µ′′ or µ′ = µ′′ + 4, or a permutation of (2Z8, 4n
′

. . ., 2Z8,Z8\2Z8, 4r
′+2m′
. . .

,Z8\2Z8) otherwise. □

Lemma 2.6. Let u = (µ, m. . ., µ, 4Z8, n. . ., 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8) ∈ Zm+2n+2r
8 ,

where m,n, r ≥ 0 and µ ∈ 2Z8\4Z8 = {2, 6}. Then,

(1) (u, u, u, u) + (0,2,4,6) is a permutation of (2Z8, 2r+2n+m. . . , 2Z8);
(2) (u, u, u, u)+(0,4,0,4) is a permutation of (4Z8, 4n. . ., 4Z8, 2Z8\4Z8, 4r+2m. . .

, 2Z8\4Z8).

Proof. By Item 1 of Lemma 2.2, if j ∈ {0, 4}, then u+ j is a permutation of
(µ+j, m. . ., µ+j, 4Z8, n. . ., 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8). Similarly, if j ∈ {2, 6},
then u + j is a permutation of (µ + j, m. . ., µ + j, 4Z8, r. . ., 4Z8, 2Z8\4Z8, n. . .
, 2Z8\4Z8). Let k = (µ, m. . ., µ).

For Item 1, since µ ∈ {2, 6}, we have that (k, 4. . .,k) + (0,2,4,6) is a
permutation of (2Z8, m. . ., 2Z8), and hence (u, u, u, u) + (0,2,4,6) is a per-
mutation of (2Z8, 2r+2n+m. . . , 2Z8).

For Item 2, we have (k, 4. . .,k)+(0,4,0,4) is a permutation of (2Z8\4Z8, 2m. . .
, 2Z8\4Z8). Therefore, (u, u, u, u) + (0,4,0,4) is a permutation of (4Z8, 4n. . .
, 4Z8, 2Z8\4Z8, 4r+2m. . . , 2Z8\4Z8). □

Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. Let Gt1,t2,t3 be the set of all
codewords of the code generated by the matrix obtained from At1,t2,t3 after
removing the row (1 | 2 | 4).

Lemma 2.7. Let t1 ≥ 1 be an integer. Let

z = (u1, u1 | x1, u2, u2, u2, u2 | x2, u3, 8. . ., u3) ∈ Gt1+1,0,1,

where u = (u1 | u2 | u3) ∈ Gt1,0,1 and xi−1 ∈ (2Z2i)
2(i−1)t1 for i ∈ {2, 3}.

Then,

(1) if o(z) = 8, then xi−1 is a permutation of (2Z2i ,
2(i−1)(t1−1)

. . . , 2Z2i) for
i ∈ {2, 3}.

(2) if o(z) = 4, then x1 = 0 and x2 is a permutation of (4Z8, 2·4
t1−1
. . . , 4Z8).

(3) if o(z) = 2, then x1 = 0 and x2 = 0.

Proof. Let wj , where j ∈ {1, . . . , t1 + 2}, be the jth row of At1+1,0,1. Note
that w1 = (1 | 2 | 4), and w2, . . . ,wt1+2 are the rows of order 8, where
wt1+2 = (0,1 | 1,0,1,2,3 | 1,0, . . . ,7). Since any element of Gt1+1,0,1 can

be written as z + λwt1+2, where λ ∈ Z8, then z =
∑t1+1

j=2 rjwj = (u1, u1 |
x1, u2, u2, u2, u2 | x2, u3, 8. . ., u3), where rj ∈ Z8. By construction, x1 and
x2 are generated by the rows of M ′

1 = {zT : z ∈ {0, 2}t1} and M ′
2 = {zT :

z ∈ {0, 2, 4, 6}t1}, respectively. Thus, x1 = 0 or x1 is a permutation of

(2Z4, 2
t1−1
. . . , 2Z4), and x2 = 0 or x2 is a permutation of (2Z8, 4

t1−1
. . . , 2Z8) or

(4Z8, 2·4
t1−1
. . . , 4Z8).

For Item 1, there exists at least one j ∈ {2, . . . , t1 + 1} such that rj ∈
{1, 3, 5, 7}. Therefore, by Item 1 of Lemma 2.2, xi−1 is a permutation of

(2Z2i ,
2(i−1)(t1−1)

. . . , 2Z2i) for i ∈ {2, 3}.
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For Item 2, we have that rj ∈ 2Z8 for all j ∈ {2, . . . , t1 + 1} and there
exist at least one j ∈ {2, . . . , t1+1} such that rj ∈ {2, 6}. Therefore, x1 = 0

and, by Item 1 of Lemma 2.2, x2 is a permutation of (4Z8, 2·4
t1−1
. . . , 4Z8).

For Item 3, we have that rj ∈ 4Z8 for all j ∈ {2, . . . , t1 + 1} and there
exist at least one j ∈ {2, . . . , t1 + 1} such that rj = 4. Therefore, x1 = 0
and x2 = 0. □

Lemma 2.8. Let t1 ≥ 1 and t2 ≥ 0 be integers. Let

z = (u1, u1 | x1, u2, u2, u2, u2 | u3, u3, u3, u3) ∈ Gt1,t2+1,1,

where u = (u1 | u2 | u3) ∈ Gt1,t2,1 and x1 ∈ (2Z4)
2t1+t2 . Then,

(1) if o(z) = 8, then x1 is a permutation of (2Z4, 2
t1+t2−1
. . . , 2Z4).

(2) if o(z) = 4, then x1 = 0 if u1 = 0, and x1 is a permutation of

(2Z4, 2
t1+t2−1
. . . , 2Z4) otherwise.

(3) if o(z) = 2, then x1 = 0.

Proof. Let wi, where i ∈ {1, . . . , t1 + t2 + 2}, be the ith row of At1,t2+1,1.
Note that w1 = (1 | 2 | 4), w2, . . . ,wt1+1 are the rows of order 8, and
wt1+2, . . . ,wt1+t2+2 are the rows of order 4, wherewt1+t2+2 = (0,1 | 1,0,1,2,3 |
0,2,4,6). Since any element of Gt1,t2+1,1 can be written as z + λwt1+t2+2,

where λ ∈ {0, 1, 2, 3}, then z =
∑t1+t2+1

i=2 riwi = (u1, u1 | x1, u2, u2, u2, u2 |
u3, u3, u3, u3), where ri ∈ Z8 for i ∈ {2, . . . , t1 + 1} and ri ∈ {0, 1, 2, 3} for
i ∈ {t1 + 2, . . . , t1 + t2 + 1}. By construction, x1 is generated by the rows
of M ′

1 = {zT : z ∈ {0, 2}t1+t2}. Thus, x1 = 0 or x1 is a permutation of

(2Z4, 2
t1+t2−1
. . . , 2Z4).

For Item 1, there exists at least one i ∈ {2, . . . , t1 + 1} such that ri ∈
{1, 3, 5, 7}. Therefore, since x1 is of order at most two, x1 ̸= 0.

For Item 2, we have that ri ∈ 2Z8 for all i ∈ {2, . . . , t1 + 1} and ri ∈
{0, 1, 2, 3} for all i ∈ {t1 + 2, . . . , t1 + t2 + 1}. Note that, since x1 and u1
are of order at most two, x1 ̸= 0 if and only if there exists at least one i for
i ∈ {t1 +2, . . . , t1 + t2 +1} such that ri ∈ {1, 3}, or equivalently, if and only
if u1 ̸= 0.

For Item 2, we have that ri ∈ 4Z8 = {0, 4} for all i ∈ {2, . . . , t1 + 1} and
ri ∈ {0, 2} for all i ∈ {t1 +2, . . . , t1 + t2 +1}. Therefore, since x1 is of order
at most two, x1 = 0. □

Lemma 2.9. Let t1 ≥ 1 be an integer. Let Ht1,0,1 be the Z2Z4Z8-additive
code of type (α1, α2, α3; t1, 0, 1) generated by At1,0,1. Let u = (u1 | u2 |
u3) ∈ Gt1,0,1. Then,

(1) if o(u) = 8, then u1 contains every element of Z2 the same number
of times, u2 is a permutation of (µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .
,Z4\2Z4) for some integers m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a

permutation of (µ′, m
′

. . ., µ′, µ′′, m
′

. . ., µ′′, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .,Z8\2Z8)

for some integers m′, n′, r′ ≥ 0 and µ, µ′ ∈ {1, 3, 5, 7}.
(2) if o(u) = 4, then u1 = 0, u2 contains the element in 2Z4\{0} =
{2} exactly 1

2(
α1
2 + α2) = 4t1−1 times and α2

2 −
α1
4 = 4t1−1 − 2t1−1
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times the element 0, and u3 is a permutation of (µ, m. . ., µ, 4Z8, n. . .
, 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8) for some integers m,n, r ≥ 0 and µ ∈
{2, 6}.

(3) if o(u) = 2, then u1 = 0, u2 = 0, and u3 contains the element in
4Z8\{0} = {4} exactly 1

4(
α1
2 + α2 + 2α3) = 8t1−1 times and α3

2 −
1
4(

α1
2 + α2) = 8t1−1 − 4t1−1 times the element 0.

Proof. We perform a proof by induction on t1 ≥ 1. If t1 = 1, then by
Lemma 2.1, α1 = 2, α2 = 1, α3 = 1, and G1,0,1 = ⟨(0, 1 | 1 | 1)⟩. Let
u = (u1 | u2 | u3) ∈ G1,0,1. Then, u = λ(0, 1 | 1 | 1), where λ ∈ Z8.
Thus, we have that u1 = λ(0, 1), u2 = (λ), and u3 = (λ). If o(u) = 8, then
λ ∈ Z8\2Z8. Therefore, u satisfies Property 1. If o(u) = 4, then λ ∈ {2, 6}.
In this case, u1 = (0, 0), u2 = (2) contains the element in 2Z4\{0} = {2}
exactly 1 = 1

2(
α1
2 + α2) time and 0 = α2

2 −
α1
4 times the element 0, and

u3 = (λ). Thus, u satisfies Property 2. If o(u) = 2, then λ = 4. In this case,
u1 = (0, 0), u2 = (0), and u3 = (4) contains the element in 4Z8\{0} = {4}
exactly 1 = 1

4(
α1
2 +α2+2α3) time and 0 = α3

2 −
1
4(

α1
2 +α2) times the element

0. Thus, u satisfies Property 3. Therefore, the lemma holds for t1 = 1.
Assume now that the lemma holds for the codeHt1,0,1 of type (α1, α2, α3; t1, 0, 1)

with t1 ≥ 1. By Lemma 2.1, we have that

2t1 = α1, 4
t1 = α1 + 2α2, and 8t1 = α1 + 2α2 + 4α3.(18)

We must show that the lemma is also true for the code Ht1+1,0,1.
Let v = (v1 | v2 | v3) ∈ Gt1+1,0,1. We can write

v = z+ λw,

where z = (u1, u1 | x1, u2, u2, u2, u2 | x2, u3, 8. . ., u3), w = (0,1 | 1,0,1,2,3 |
1,0, . . . ,7), u = (u1 | u2 | u3) ∈ Gt1,0,1, λ ∈ Z8, x1 ∈ (2Z4)

2t1 such that ei-

ther x1 = 0 or x1 is a permutation of (2Z4, 2
t1−1
. . . , 2Z4), and x2 ∈ (2Z8)

4t1 such

that either x2 = 0 or x2 is a permutation of (2Z8, 4
t1−1
. . . , 2Z8) or (4Z8, 2·4

t1−1
. . .

, 4Z8). Then, v1 = (u1, u1) + λ(0,1) and, for i ∈ {2, 3},

vi = (xi−1, ui, 2i. . ., ui) + λ(1,0, . . . ,2i − 1).(19)

If z = 0, then v = λw and it is easy to see that v satisfies Property 1 if
λ ∈ Z8\2Z8 = {1, 3, 5, 7}, Property 2 if λ ∈ {2, 6}, and Property 3 if λ = 4.
Therefore, we focus on the case when z ̸= 0.

Case 1: Assume that o(v) = 8. We have two subcases: when o(z) is
arbitrary and λ ∈ Z8\2Z8, and when o(z) = 8 and λ ∈ 2Z8. In both
subcases, note that v1 contains every element of Z2 the same number of

times. For the first subcase, we have that (ui, 2i. . ., ui) + λ(0, . . . ,2i − 1), for
i ∈ {2, 3}, is a permutation of (Z2i ,

αi. . .,Z2i) by Lemma 2.3. Thus, from (19),
vi is a permutation of (xi−1+λ1,Z2i ,

αi. . .,Z2i). Since either xi−1+λ1 = λ1,

or xi−1 + λ1 is a permutation of (Z2i\2Z2i ,
2(i−1)(t1−1)

. . . ,Z2i\2Z2i), v satisfies
Property 1.
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For the second subcase when o(v) = 8, that is, when o(z) = 8 and
λ ∈ 2Z8, we have that o(u) = 8 and, by Item 1 of Lemma 2.7, xi−1 is a per-

mutation of (2Z2i ,
2(i−1)(t1−1)

. . . , 2Z2i) for i ∈ {2, 3}. By induction hypothesis,
u satisfies Property 1 and then u2 is a permutation of

(µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4),

where m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a permutation of

(µ′, m
′

. . ., µ′, µ′′, m
′

. . ., µ′′, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .,Z8\2Z8),

wherem′, n′, r′ ≥ 0 and µ′, µ′′ ∈ {1, 3, 5, 7}. From (19), v2 = (x1, u2, u2, u2, u2)+
λ(1,0,1,2,3). If λ ∈ {0, 4}, then v2 = (x1, u2, u2, u2, u2) in v satisfies
the same property as u2 in u; that is, Property 1. If λ ∈ {2, 6}, then
v2 = (x1, u2, u2, u2, u2) + (2,0,2,0,2). By Item 1 of Lemma 2.2, we have

that x1 + 2 is a permutation of (2Z4, 2
t1−1
. . . , 2Z4). Thus, by Lemma 2.4, v2 is

a permutation of

(2Z4, 4n+2t1−1
. . . , 2Z4,Z4\2Z4, 4r+2m. . . ,Z4\2Z4).

Therefore, for λ ∈ 2Z8, v2 satisfies Property 1. Now, we consider the co-
ordinates in v3. From (19), v3 = (x2, u3, 8. . ., u3) + λ(1,0, . . . ,7). By Item
1 of Lemma 2.2, we have that, for λ ∈ 2Z8, x2 + λ1 is a permutation of

(2Z8, 4
t1−1
. . . , 2Z8). If λ = 0, it is easy to see that v3 satisfies Property 1. Note

that λ(0, . . . ,7) is a permutation of (0,2,4,6,0,2,4,6) if λ ∈ {2, 6}, and
a permutation of (0,4,0,4,0,4,0,4) if λ = 4. Thus, by Lemma 2.5, v3
satisfies Property 1. Therefore, if o(v) = 8, then v satisfies Property 1.

Case 2: Assume that o(v) = 4. We have two subcases: when o(z) = 4
and λ ∈ 2Z8, and when o(z) = 2 and λ ∈ {2, 6}. For the first subcase,
since o(z) = 4, we have that o(u) = 4. Moreover, x1 = 0 and x2 is a

permutation of (4Z8, 2·4
t1−1
. . . , 4Z8) by Item 2 of Lemma 2.7. By induction

hypothesis, u satisfies Property 2. Then, u1 = 0, u2 contains the element
in 2Z4\{0} = {2} exactly 4t1−1 times and 4t1−1 − 2t1−1 times the element
0, and u3 is a permutation of

(µ, m. . ., µ, 4Z8, n. . ., 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8)

for some integers m,n, r ≥ 0 and µ ∈ {2, 6}. Since v1 = (u1, u1) +
λ(0,1), u1 = 0, and λ ∈ 2Z8, we have that v1 = 0. From (19), v2 =
(x1, u2, u2, u2, u2)+λ(1,0,1,2,3). If λ ∈ {0, 4}, then v2 = (x1, u2, u2, u2, u2).
Since x1 = 0 is of length 2t1 , it is easy to see that v2 in v satisfies the
same property as u2 in u; that is, Property 2. If λ ∈ {2, 6}, then v2 =
(x1, u2, u2, u2, u2) + (2,0,2,0,2), where x1 = 0 is of length 2t1 . Note that
u2 + 2 contains the element in 2Z4\{0} = {2} as many times as u2 contains
the element 0, and the element 0 as many times as u2 contains the element
2. Thus, v2 contains the element in 2Z4\{0} = {2} exactly 2t1 + 2(4t1−1) +
2(4t1−1−2t1−1) = 4t1 times and 2(4t1−1)+2(4t1−1−2t1−1) = 4t1 −2t1 times
the element 0. Therefore, for λ ∈ 2Z8, v2 satisfies Property 2. Now, we con-
sider the coordinates in v3. From (19), v3 = (x2, u3, 8. . ., u3) + λ(1,0, . . . ,7).
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If λ = 0, it is easy to see that v3 satisfies Property 2. For λ = 4, x2+λ1 is a

permutation of (4Z8, 2·4
t1−1
. . . , 4Z8), and for λ ∈ {2, 6}, it is a permutation of

(2Z8\4Z8, 2·4
t1−1
. . . , 2Z8\4Z8).

Note that λ(0, . . . ,7) is a permutation of (0,2,4,6,0,2,4,6) if λ ∈ {2, 6},
and a permutation of (0,4,0,4,0,4,0,4) if λ = 4. Hence, by Lemma 2.6,
v3 also satisfies Property 2, and so does v.

Now, we consider the second subcase, when o(z) = 2 and λ ∈ {2, 6}.
Since o(z) = 2, we have that o(u) = 2. Then, by Item 3 of Lemma 2.7,
x1 = 0 and x2 = 0. By induction hypothesis, u satisfies Property 3, so
u1 = 0, u2 = 0, and u3 contains the element in 4Z8\{0} = {4} exactly
m = 8t1−1 times and m′ = 8t1−1 − 4t1−1 times the element 0. Since v1 =
(u1, u1) + λ(0,1), u1 = 0, and λ ∈ {2, 6}, we have that v1 = 0. From
(19), v2 = (x1, u2, u2, u2, u2) + (2,0,2,0,2). Since x1 = 0 and u2 = 0, of
length α1 and α2, respectively, we have that v2 = (2,0,2,0,2). Therefore,
v2 contains the element in 2Z4\{0} = {2} exactly α1 + 2α2 = 4t1 times and
2α2 = 4t1−2t1 times the element 0, by (18). Therefore, v2 satisfies Property
2. Now, we consider the coordinates in v3. From (19), v3 = (x2, u3, 8. . .

, u3) + λ(1,0, . . . ,7). Since x2 = 0, x2 + λ1 = (λ, 4
t1. . ., λ). Note that u3 is a

permutation of

(4,m−m′
. . . , 4, 4Z8, m

′
. . ., 4Z8).

Moreover, since λ ∈ {2, 6}, λ(0, . . . ,7) is a permutation of (0,2,4,6,0,2,4,6).
Thus, by Item 1 of Lemma 2.2, (u3, 8. . ., u3) + (0,2,4,6,0,2,4,6) is a per-
mutation of

(2Z8,
2(m−m′)+4m′

. . . , 2Z8).

Thus, v3 is a permutation of (λ, 4
t1. . ., λ, 2Z8,

2(m−m′)+4m′
. . . , 2Z8) with λ ∈ {2, 6},

and hence v3 also satisfies Property 2 and so does v. Therefore, if o(v) = 4,
then v satisfies Property 2.

Case 3: Assume that o(v) = 2. Then, o(z) = 2 and λ ∈ {0, 4}. Since
o(z) = 2, then o(u) = 2. Moreover, x1 = 0 and x2 = 0 by Item 3 of Lemma
2.7. By induction hypothesis, u satisfies Property 3, and then u1 = 0, u2 =
0, and u3 contains the element in 4Z8\{0} = {4} exactly 8t1−1 times and
8t1−1−4t1−1 times the element 0. Since v1 = (u1, u1)+λ(0,1), v1 = 0. From
(19), v2 = (x1, u2, u2, u2, u2) + λ(1,0,1,2,3), where x1 = 0 and u2 = 0, so
v2 = 0. From (19), v3 = (x2, u3, 8. . ., u3) + λ(1,0, . . . ,7), where x2 = 0 is of
length 4t1 . If λ = 0, it is easy to see that v3 satisfies Property 3. If λ = 4,
v3 = (x2, u3, 8. . ., u3) + (4,0,4,0,4,0,4,0,4). Note that u3 + 4 contains
the element in 4Z8\{0} = {4} as many times as u3 contains the element
0, and the element 0 as many times as u3 contains the element 4. Then,
v3 contains the element 4 exactly 4t1 + 4(8t1−1) + 4(8t1−1 − 4t1−1) = 8t1

times and 4(8t1−1) + 4(8t1−1 − 4t1−1) = 8t1 − 4t1 the element 0. Therefore,
v satisfies Property 3. This completes the proof. □
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Lemma 2.10. Let t1 ≥ 1 and t2 ≥ 0 be integers. Let Ht1,t2,1 be the Z2Z4Z8-
additive code of type (α1, α2, α3; t1, t2, 1) generated by At1,t2,1. Let u = (u1 |
u2 | u3) ∈ Gt1,t2,1.

(1) If o(u) = 8, then u has the following property:
(a) u1 contains every element of Z2 the same number of times, u2

is a permutation of (µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4)
for some integers m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a permu-

tation of (µ′, m
′

. . ., µ′, µ′′, m
′

. . ., µ′′, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .,Z8\2Z8)

for some integers m′, n′, r′ ≥ 0 and µ, µ′ ∈ {1, 3, 5, 7}.
(2) If o(u) = 4, then u has one of the following properties:

(a) u1 = 0, u2 contains the element in 2Z4\{0} = {2} exactly
1
2(

α1
2 + α2) = 4t1+t2−1 times and α2

2 −
α1
4 = 4t1+t2−1 − 2t1+t2−1

times the element 0, and u3 is a permutation of (µ, m. . ., µ, 4Z8, n. . .
, 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8) for some integers m,n, r ≥ 0 and
µ ∈ {2, 6}.

(b) u1 contains every element of Z2 the same number of times, u2
is a permutation of (µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4)
for some integers m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a permu-

tation of (4Z8, t. . ., 4Z8, 2Z8\4Z8, t′. . ., 2Z8\4Z8) for some integers
t, t′ ≥ 0.

(3) If o(u) = 2, then u has one of the following properties:
(a) u1 = 0, u2 = 0, and u3 contains the element in 4Z8\{0} = {4}

exactly 1
4(

α1
2 +α2+2α3) = 8t1−14t2 times and α3

2 −
1
4(

α1
2 +α2) =

8t1−14t2 − 4t1+t2−1 times the element 0.
(b) u1 = 0, u2 contains the element in 2Z4\{0} = {2} exactly

1
2(

α1
2 + α2) = 4t1+t2−1 times and α2

2 −
α1
4 = 4t1+t2−1 − 2t1+t2−1

times the element 0, and u3 is a permutation of (4Z8, m. . ., 4Z8)
for some m ≥ 0.

Proof. We prove this lemma by induction on t2 ≥ 0. The lemma holds for
the code Ht1,0,1 by Lemma 2.9. Assume that the lemma holds for the code
Ht1,t2,1 of type (α1, α2, α3; t1, t2, 1) with t1 ≥ 1 and t2 ≥ 0. By Lemma 2.1,
we have that

2t1+t2 = α1, 4
t1+t2 = α1 + 2α2, and 8t14t2 = α1 + 2α2 + 4α3.(20)

We must show that the lemma is also true for the code Ht1,t2+1,1.
Let v = (v1 | v2 | v3) ∈ Gt1,t2+1,1. We can write

v = z+ λw,

where z = (u1, u1 | x1, u2, u2, u2, u2 | u3, u3, u3, u3), w = (0,1 | 1,0,1,2,3 |
0,2,4,6), u = (u1 | u2 | u3) ∈ Gt1,t2,1, λ ∈ {0, 1, 2, 3}, and x1 ∈ (2Z4)

2t1+t2
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such that either x1 = 0 or a permutation of (2Z4, 2
t1+t2−1
. . . , 2Z4). Then,

v1 = (u1, u1) + λ(0,1),

v2 = (x1, u2, u2, u2, u2) + λ(1,0,1,2,3),

v3 = (u3, u3, u3, u3) + λ(0,2,4,6).

(21)

If z = 0, then v = λw. It is easy to see that v satisfies Property 2b if
λ ∈ {1, 3} and Property 3b if λ = 2. Therefore, we focus on the case when
z ̸= 0.

Case 1: Assume that o(v) = 8. Then, o(z) = 8 and λ ∈ {0, 1, 2, 3}.
We have that o(u) = 8 and, by Item 1 of Lemma 2.8, x1 is a permutation

of (2Z4, 2
t1+t2−1
. . . , 2Z4). By induction hypothesis, u satisfies Property 1a.

Then, u1 contains every element of Z2 the same number of times, u2 is a
permutation of

(µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4),

where m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a permutation of

(µ′, m
′

. . ., µ′, µ′′, m
′

. . ., µ′′, 2Z8, n′
. . ., 2Z8,Z8\2Z8, r′. . .,Z8\2Z8),

where m′, n′, r′ ≥ 0 and µ′, µ′′ ∈ {1, 3, 5, 7}. First, since v1 = (u1, u1) +
λ(0,1), v1 contains every element of Z2 the same number of times, for any
λ ∈ {0, 1, 2, 3}. Second, from (21), v2 = (x1, u2, u2, u2, u2) + λ(1,0,1,2,3).
If λ = 0, then v2 clearly satisfies 1a. If λ ∈ {1, 3}, then we have that
(u2, u2, u2, u2)+λ(0,1,2,3) is a permutation of (Z4, α2. . .,Z4) by Lemma 2.3.

For λ ∈ {1, 3}, since x1 + λ1 is a permutation of (Z4\2Z4, 2
t1+t2−1
. . . ,Z4\2Z4)

by Item 3 of Lemma 2.2, we have that v2 satisfies Property 1a. If λ = 2,
v2 = (x1, u2, u2, u2, u2)+(2,0,2,0,2). By Item 1 of Lemma 2.2, we have that

x1+2 is a permutation of (2Z4, 2
t1+t2−1
. . . , 2Z4). Therefore, by Lemma 2.4, v2 is

a permutation of (2Z4, 4n+2t1+t2−1
. . . , 2Z4,Z4\2Z4, 4r+2m. . . ,Z4\2Z4) and then v2

satisfies Property 1a. Finally, we consider the coordinates in v3. From (21),
v3 = (u3, u3, u3, u3)+λ(0,2,4,6). If λ = 0, then v3 clearly satisfies 1a. Note
that λ(0,2,4,6) = (0,4,0,4) if λ = 2 and λ(0,2,4,6) is a permutation of
(0,2,4,6) if λ ∈ {1, 3}. Therefore, by Lemma 2.5, v3 satisfies Property 1a,
and so does v.

Case 2: Assume that o(v) = 4. We have two subcases: when o(z) = 4
and λ ∈ {0, 1, 2, 3}, and when o(z) = 2 and λ ∈ {1, 3}. For the first subcase,
since o(z) = 4, o(u) = 4. By induction hypothesis, u satisfies Property 2a
or 2b. Assume that u satisfies Property 2a. Then, u1 = 0, u2 contains the
element in 2Z4\{0} = {2} exactly 4t1+t2−1 times and 4t1+t2−1 − 2t1+t2−1

times the element 0, and u3 is a permutation of

(µ, m. . ., µ, 4Z8, n. . ., 4Z8, 2Z8\4Z8, r. . ., 2Z8\4Z8)

for some integers m,n, r ≥ 0 and µ ∈ {2, 6}. Note that, in this case,
x1 = 0 by Item 2 of Lemma 2.8. If λ = 0, then it is easy to see that
v satisfies Property 2a. If λ = 2, we show that v satisfies Property 2a.
Since v1 = (u1, u1) + λ(0,1), u1 = 0, and λ = 2, we have that v1 = 0.
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From (21), v2 = (x1, u2, u2, u2, u2) + (2,0,2,0,2), where x1 = 0 is of length
2t1+t2 . Note that u2 + 2 contains the element in 2Z4\{0} = {2} as many
times as u2 contains the element 0, and the element 0 as many times as
u2 contains the element 2. Thus, v2 contains the element in 2Z4\{0} =
{2} exactly 2t1+t2 + 2(4t1+t2−1) + 2(4t1+t2−1 − 2t1+t2−1) = 4t1+t2 times and
2(4t1+t2−1)+ 2(4t1+t2−1− 2t1+t2−1) = 4t1+t2 − 2t1+t2 times the element 0, so
v2 satisfies Property 2a. From (21), v3 = (u3, u3, u3, u3) + (0,4,0,4). By
Item 2 of Lemma 2.6, v3 is a permutation of

(4Z8, 4n. . ., 4Z8, 2Z8\4Z8, 4r+2m. . . , 2Z8\4Z8).

Therefore, for λ = 2, v satisfies Property 2a. Finally, if λ ∈ {1, 3}, we show
that v satisfies Property 2b. Since v1 = (u1, u1) + λ(0,1), u1 = 0, and
λ ∈ {1, 3}, we have that v1 contains every element of Z2 the same number of
times. From (21), v2 = (x1, u2, u2, u2, u2)+λ(1,0,1,2,3), where x1 = 0 is of
length 2t1+t2 . Since λ ∈ {1, 3}, by Lemma 2.3, we have that v2 is a permuta-

tion of (λ, 2
t1+t2. . . , λ,Z4, α2. . .,Z4). From (21), v3 = (u3, u3, u3, u3)+λ(0,2,4,6).

Note that, for λ ∈ {1, 3}, λ(0,2,4,6) is a permutation of (0,2,4,6). Thus,
by Item 1 of Lemma 2.6, v3 satisfies Property 2b, and so does v. There-
fore, if o(u) = 4 and u satisfies Property 2a, we have that v satisfies either
Property 2a or 2b.

We continue with the first subcase, when o(z) = 4 and λ ∈ {0, 1, 2, 3}.
Again, we have that o(u) = 4. Now, we assume that u satisfies Property
2b. Then, u1 contains every element of Z2 the same number of times, u2 is
a permutation of

(µ, m. . ., µ, 2Z4, n. . ., 2Z4,Z4\2Z4, r. . .,Z4\2Z4)

for some integers m,n, r ≥ 0 and µ ∈ {1, 3}, and u3 is a permutation of

(4Z8, t. . ., 4Z8, 2Z8\4Z8, t′. . ., 2Z8\4Z8) for some integers t, t′ ≥ 0. Note that,

in this case, x1 is a permutation of (2Z4, 2
t1+t2−1
. . . , 2Z4) by Item 2 of Lemma

2.8. Now, we show that v satisfies Property 2b. Since v1 = (u1, u1)+λ(0,1)
and u1 contains every element of Z2 the same number of times, we have
that v1 contains every element of Z2 the same number of times, for any
λ ∈ {0, 1, 2, 3}. From (21), v2 = (x1, u2, u2, u2, u2)+λ(1,0,1,2,3). If λ = 0,
it is clear that v2 satisfies Property 2b. Note that x1+λ1 is a permutation of

(2Z4, 2
t1+t2−1
. . . , 2Z4) if λ = 2, and a permutation of (Z4\2Z4, 2

t1+t2−1
. . . ,Z4\2Z4)

if λ ∈ {1, 3}. If λ = 2, then by Lemma 2.4, (u2, u2, u2, u2) + (0,2,0,2) is a
permutation of

(2Z4, 4n. . ., 2Z4,Z4\2Z4, 4r+2m. . . ,Z4\2Z4).

If λ ∈ {1, 3}, then by Lemma 2.3, (u2, u2, u2, u2) + λ(0,1,2,3) is a per-
mutation of (Z4, α2. . .,Z4). Therefore, v2 satisfies Property 2b. From (21),
v3 = (u3, u3, u3, u3)+λ(0,2,4,6). If λ = 0, it is clear that v3 satisfies Prop-
erty 2b. Note that λ(0,2,4,6) is a permutation of (0,2,4,6) if λ ∈ {1, 3},
and λ(0,2,4,6) = (0,4,0,4) if λ = 2. Therefore, by Lemma 2.6, v3 satisfies
Property 2b, and so does v.
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Now, we consider the second subcase when o(v) = 4, that is, when o(z) =
2 and λ ∈ {1, 3}. Since o(z) = 2, o(u) = 2. By induction hypothesis, u
satisfies Property 3a or 3b. Assume that u satisfies Property 3a. Then,
u1 = 0, u2 = 0, and u3 contains the element in 4Z8\{0} = {4} exactly
m = 8t1−14t2 times and m′ = 8t1−14t2 − 4t1+t2−1 times the element 0. By
Item 3 of Lemma 2.8, we have that x1 = 0. Since v1 = (u1, u1) + λ(0,1),
u1 = 0, and λ ∈ {1, 3}, we have that v1 contains every element of Z2 the
same number of times. From (21), v2 = (x1, u2, u2, u2, u2) + λ(1,0,1,2,3),
where x1 = 0 is of length 2t1+t2 . By Lemma 2.3, we have that v2 is a
permutation of

(λ, 2
t1+t2. . . , λ,Z4, α2. . .,Z4),

where λ ∈ {1, 3}. From (21), v3 = (u3, u3, u3, u3) + λ(0,2,4,6). Note

that u3 is a permutation of (4,m−m′
. . . , 4, 4Z8, m

′
. . ., 4Z8) and, since λ ∈ {1, 3},

λ(0,2,4,6) is a permutation of (0,2,4,6). Thus, by Item 1 of Lemma 2.2,

v3 = (u3, u3, u3, u3) + (0,2,4,6) is a permutation of (2Z8,m+m′
. . . , 2Z8), so v3

satisfies Property 2b, and so does v. Therefore, if o(u) = 2 and u satisfies
Property 3a, we have that v satisfies Property 2b.

We continue with the second subcase, when o(z) = 2 and λ ∈ {1, 3}.
Again, we have that o(u) = 2. Now, we assume that u satisfies Property 3b.
Then, u1 = 0, u2 contains the element in 2Z4\{0} = {2} exactly 4t1+t2−1

times and 4t1+t2−1 − 2t1+t2−1 times the element 0, and u3 is a permutation
of (4Z8, m. . ., 4Z8) for some m ≥ 0. By Item 3 of Lemma 2.8, we have that
x1 = 0. Since v1 = (u1, u1) + λ(0,1), u1 = 0, and λ ∈ {1, 3}, we have
that v1 contains every element of Z2 the same number of times. From (21),
v2 = (x1, u2, u2, u2, u2) + λ(1,0,1,2,3), where x1 = 0 is of length 2t1+t2 .
By Lemma 2.3, we have that v2 is a permutation of

(λ, 2
t1+t2. . . , λ,Z4, α2. . .,Z4),

where λ ∈ {1, 3}. From (21), v3 = (u3, u3, u3, u3) + λ(0,2,4,6). Since
λ ∈ {1, 3}, λ(0,2,4,6) is a permutation of (0,2,4,6). Thus, by Item 1 of
Lemma 2.2, v3 = (u3, u3, u3, u3) + (0,2,4,6) is a permutation of (2Z8, 2m. . .
, 2Z8). Therefore, v3 satisfies Property 2b, and so does v.

Case 3: Assume that o(v) = 2. Then, o(z) = 2 and λ ∈ {0, 2}. Since
o(z) = 2, we have that o(u) = 2 and, by Item 3 of Lemma 2.8, x1 = 0.
By induction hypothesis, u satisfies Property 3a or 3b. Assume that u
satisfies Property 3a. Then, u1 = 0, u2 = 0, and u3 contains the element
in 4Z8\{0} = {4} exactly m = 8t1−14t2 times and m′ = 8t1−14t2 − 4t1+t2−1

times the element 0. If λ = 0, then v = (0 | 0 | v3) satisfies Property 3a,
since v3 contains 4m times the element 4 and 4m′ the element 0. Now, we
assume that λ = 2. Since v1 = (u1, u1) + λ(0,1), u1 = 0, and λ = 2, we
have that v1 = 0. From (21), v2 = (x1, u2, u2, u2, u2) + (2,0,2,0,2), where
x1 = 0 is of length 2t1+t2 and u2 = 0. Therefore, v2 contains the element in
2Z4\{0} = {2} exactly α1 + 2α2 = 4t1+t2 times and 2α2 = 4t1+t2 − 2t1+t2

times the element 0, by (20). From (21), v3 = (u3, u3, u3, u3) + (0,4,0,4).
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Note that u3 is a permutation of

(4,m−m′
. . . , 4, 4Z8, m

′
. . ., 4Z8).

Thus, by Item 1 of Lemma 2.2, v3 is a permutation of (4Z8, 2m+2m′
. . . , 4Z8),

so v3 satisfies Property 3b, and so does v. Therefore, if o(u) = 2 and u
satisfies Property 3a, we have that v satisfies Property 3b.

We continue with the case when o(z) = 2 and λ ∈ {0, 2}. Again, we
have that o(u) = 2 and x1 = 0. Now, we assume that u satisfies Property
3b. Then, u1 = 0, u2 contains the element in 2Z4\{0} = {2} exactly
4t1+t2−1 times and 4t1+t2−1 − 2t1+t2−1 times the element 0, and u3 is a
permutation of (4Z8, m. . ., 4Z8) for some m ≥ 0. If λ = 0, then it is easy
to see that v satisfies Property 3b. Now, we assume that λ = 2. Since
v1 = (u1, u1) + λ(0,1), u1 = 0, and λ = 2, we have that v1 = 0. From
(21), v2 = (x1, u2, u2, u2, u2) + (2,0,2,0,2), where x1 = 0 is of length
2t1+t2 . Note that u2 + 2 contains the element in 2Z4\{0} = {2} as many
times as u2 contains the element 0, and the element 0 as many times as u2
contains the element 2. Therefore, v2 contains the element in 2Z4\{0} =
{2} exactly 2t1+t2 + 2(4t1+t2−1) + 2(4t1+t2−1 − 2t1+t2−1) = 4t1+t2 times and
2(4t1+t2−1) + 2(4t1+t2−1 − 2t1+t2−1) = 4t1+t2 − 2t1+t2 times the element 0.
From (21), v3 = (u3, u3, u3, u3) + (0,4,0,4). By Item 1 of Lemma 2.2, v3 is
a permutation of (4Z8, 4m. . ., 4Z8). Therefore, v3 satisfies Property 3b, and so
does v. This completes the proof. □

From [6], related to the generalized Gray map (1) considered in this paper,
we have the following results:

Lemma 2.11. [6] Let λ, µ ∈ Z2. Then, ϕs(λµ2
s−1) = λϕs(µ2

s−1) =
λµϕs(2

s−1).

Lemma 2.12. [6] Let u, v ∈ Z2s. Then, ϕs(2
s−1u+v) = ϕs(2

s−1u)+ϕs(v).

Proposition 2.2. [14, 6] Let u, v ∈ Z2s. Then,

dH(ϕs(u), ϕs(v)) = wtH(ϕs(u− v)).

By Proposition 2.2, the Z2Z4Z8-linear codes obtained from the Gray map
Φ are distance invariant, that is, the Hamming weight distribution is invari-
ant under translation by a codeword. Therefore, their minimum distance
coincides with the minimum weight.

Proposition 2.3. Let t1 ≥ 1 and t2 ≥ 0 be integers. The Z2Z4Z8-additive
code Ht1,t2,1, generated by At1,t2,1, is a Z2Z4Z8-additive Hadamard code.

Proof. Let Ht1,t2,1 be the Z2Z4Z8-additive code of type (α1, α2, α3; t1, t2, 1)
and Ht1,t2,1 be the corresponding Z2Z4Z8-linear code of length N . We have
that N = α1 + 2α2 + 4α3. The cardinality of Ht1,t2,1 is 8t1 · 4t2 · 2 =
2(α1 + 2α2 + 4α3) = 2N by Lemma 2.1. By Proposition 2.2, the minimum
distance of Ht1,t2,1 is equal to the minimum weight of Ht1,t2,1. Therefore,
we need to prove that the minimum weight of Ht1,t2,1 is N/2.
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We can write that Ht1,t2,1 = Gt1,t2,1 ∪ (Gt1,t2,1 + (1 | 2 | 4)). By Lemma
2.12, Ht1,t2,1 = Φ(Gt1,t2,1) ∪ (Φ(Gt1,t2,1) + 1). Let u = (u1 | u2 | u3) ∈
Ht1,t2,1\{0, (1 | 2 | 4)}. We show that wtH(Φ(u)) = N/2. First, consider
u ∈ Gt1,t2,1\{0}. If o(u) = 8, then by Lemma 2.10, u1 contains every
element of Z2 the same number of times, and for i ∈ {2, 3}, ui contains
every element of 2i−1Z2i exactly si times, si ≥ 0, and the remaining αi−2si
coordinates of ui are from Z2i\2i−1Z2i . Thus, from the definition of Φ, we
have that wtH(Φ(u)) = α1/2 + 2s2 + (α2 − 2s2) · 1 + 4s3 + (α3 − 2s3) · 2 =
α1/2+α2+2α3 = N/2. If o(u) = 4, then u satisfies Property 2a or 2b given
in Lemma 2.10. If u satisfies Property 2a, then u3 contains every element
of 4Z8 exactly m times, m ≥ 0, and the remaining coordinates of u3 are
from Z8\4Z8. Thus, wtH(Φ(u)) = α1/2+α2 +4m+(α3− 2m) · 2 = α1/2+
α2 + 2α3 = N/2. Otherwise, if u satisfies Property 2b, then wtH(Φ(u)) =
α1/2 + 2n + (α2 − 2n) · 1 + 4t + (α3 − 2t) · 2 = N/2. If o(u) = 2, then u
satisfies Property 3a or 3b given in Lemma 2.10. If u satisfies Property 3a,
then wtH(Φ(u)) = 1

4(α1/2 + α2 + 2α3) · 4 = N/2. Otherwise, if u satisfies

Property 3b, then \ = 2 · 12(α1/2 + α2) + 4m+ (α3 − 2m) · 2 = N/2.
Finally, note that wtH(Φ(u) + 1) = N/2. Therefore, we have that the

weight of every element of Ht1,t2,1\{0,1} is N/2, that is, the minimum
weight of Ht1,t2,1 is N/2. □

Proposition 2.4. Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. If Ht1,t2,t3

is a Z2Z4Z8-additive Hadamard code of type (α1, α2, α3; t1, t2, t3), then, by
applying Construction (5), Ht1,t2,t3+1 is a Z2Z4Z8-additive Hadamard code
of type (2α1, 2α2, 2α3; t1, t2, t3 + 1).

Proof. By Construction (5), Ht1,t2,t3+1 is a Z2Z4Z8-additive code of type
(α′

1, α
′
2, α

′
3; t1, t2, t3 + 1), where α′

1 = 2α1, α
′
2 = 2α2, and α′

3 = 2α3.
Since Ht1,t2,t3 is a Hadamard code of length N = α1 + 2α2 + 4α3, then

its minimum distance is N/2 and |Ht1,t2,t3 | = 2N . Note that Ht1,t2,t3+1 is a
Z2Z4Z8-linear code of length N ′ = α′

1 + 2α′
2 + 4α′

3 = 2N and |Ht1,t2,t3+1| =
8t14t22t3+1 = 2|Ht1,t2,t3 | = 2 · 2N = 2N ′. By Proposition 2.2, the minimum
distance of Ht1,t2,t3+1 is equal to the minimum weight of Ht1,t2,t3+1. We
only have to prove that the minimum weight of Ht1,t2,t3+1 is N ′/2. Let
Ht1,t2,t3 = (H1 | H2 | H3). Note that

Ht1,t2,t3+1 =
⋃

λ∈{0,1}

((H1,H1 | H2,H2 | H3,H3) + λ(0,1 | 0,2 | 0,4)).

By Lemmas 2.11 and 2.12,

Ht1,t2,t3+1 =
⋃

λ∈{0,1}

(Φ(H1,H1 | H2,H2 | H3,H3) + λ(0,1,0,1,0,1))

= A0 ∪A1,(22)

where Aλ = Φ(H1,H1 | H2,H2 | H3,H3) + λ(0,1,0,1,0,1), λ ∈ {0, 1}.
Next, we show that the minimum weight of Aλ is N ′/2. Any element in Aλ

is of the form Φ(u1, u1 | u2, u2 | u3, u3) + λ(0,1,0,1,0,1), for u = (u1 | u2 |
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u3) ∈ (H1 | H2 | H3). Let u = (u1 | u2 | u3) ∈ (H1 | H2 | H3)\{0}. When
λ = 0, we have that wtH(Φ(u1, u1 | u2, u2 | u3, u3)) = 2wtH(Φ(u)). Thus,
the minimum weight of A0 is 2 · N/2 = N ′/2. Otherwise, when λ = 1, we
have that wtH(Φ(u1, u1 | u2, u2 | u3, u3) + (0,1,0,1,0,1)) = wtH(Φ(u)) +
α1−wtH(u1)+2α2−wtH(Φ2(u2))+4α3−wtH(Φ3(u3)) = wtH(Φ(u))+α1+
2α2 + 4α3 − wtH(Φ(u)) = N = N ′/2. Thus, the minimum weight of A1 is
N ′/2. Therefore, from (22), the minimum weight of Ht1,t2,t3+1 is N ′/2. □

Next, from Proposition 2.3 and Proposition 2.4, one can derive the result
below.

Theorem 2.1. Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. The Z2Z4Z8-
additive code Ht1,t2,t3, generated by At1,t2,t3, is a Z2Z4Z8-additive Hadamard
code.

To illustrate, we present an example.

Example 2.2. The Z2Z4Z8-additive code H1,0,1 generated by A1,0,1, given
in (2), is a Z2Z4Z8-additive Hadamard code of type (2, 1, 1; 1, 0, 1). We can
write H1,0,1 =

⋃
α∈Z2

(A + α1), where A = {λ(0, 1 | 1 | 1) : λ ∈ Z8}. Thus,

H1,0,1 = Φ(H1,0,1) =
⋃

α∈Z2
(Φ(A)+α1), where Φ(A) consists of all the rows

of the Hadamard matrix

H(2, 4) =



0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1


.

Note that Φ(A) is linear and the minimum distance of Φ(A) is 4, so H1,0,1

is a binary linear Hadamard code of length 8.

Proposition 2.5. Let t1 ≥ 1, t2 ≥ 0, and t3 ≥ 1 be integers. Let Ht1,t2,t3

be a Z2Z4Z8-linear Hadamard code of length 2t. Then, t+1 = 3t1+2t2+ t3.

Proof. Since Ht1,t2,t3 is a binary Hadamard code of length 2t, we have that
|Ht1,t2,t3 | = 2 · 2t = 2t+1. Note that |Ht1,t2,t3 | = 23t1+2t2+t3 , and hence
t+ 1 = 3t1 + 2t2 + t3. □

Now, we recall Theorem 2.2 in order to compare the Z2Z4Z8-linear Hadamard
codes Ht1,t2,t3 (with α1 ̸= 0, α2 ̸= 0 and α3 ̸= 0) with the Z2Z4-linear
Hadamard codes (with α1 ̸= 0, α2 ̸= 0) of the same length. Also recall that
the type of a Z2Z4-linear code can be given as (α1, α2, 0; 0, t2, t3) if we see
the code as a Z2Z4Z8-linear code with α3 = 0, or directly (α1, α2; t2, t3).
Note that there are no Z2Z4Z8-linear Hadamard codes neither with only
α1 = 0 nor with only α2 = 0 [24, 33].
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Theorem 2.2. [28] Let t ≥ 3 and t2 ∈ {0, . . . , ⌊t/2⌋}. Let Ht2,t3 be the
nonlinear Z2Z4-linear Hadamard code of length 2t and type (α1, α2; t2, t3),
where α1 = 2t−t2, α2 = 2t−1 − 2t−t2−1, and t3 = t+ 1− 2t2. Then,

rank(Ht2,t3) = t3 + 2t2 +

(
t2
2

)
and ker(Ht2,t3) = t2 + t3.

We also recall the construction of the Z2s-linear Hadamard codes with s ≥
2 studied in [16], and Theorem 2.3 given in [18], in order to compare these
codes with the Z2Z4Z8-linear Hadamard codesHt1,t2,t3 (with α1 ̸= 0, α2 ̸= 0,
and α3 ̸= 0) of the same length. Let Ti = {j·2i−1 : j ∈ {0, 1, . . . , 2s−i+1−1}}
for all i ∈ {1, . . . , s}. Note that T1 = {0, . . . , 2s−1}. Let t1, t2,. . . ,ts be non-
negative integers with t1 ≥ 1. Consider the matrix Āt1,...,ts whose columns
are exactly all the vectors of the form zT , z ∈ {1}×T t1−1

1 ×T t2
2 ×· · ·×T ts

s . Let
H̄t1,...,ts be the Z2s-additive code of type (n; t1, . . . , ts) generated by Āt1,...,ts .
Let H̄t1,...,ts = Φs(H̄t1,...,ts) be the corresponding Z2s-linear Hadamard code.

Theorem 2.3. [18] Let H̄t1,...,ts be the Z2s-linear Hadamard code, with s ≥ 2
and ts ≥ 1. Then, for all ℓ ∈ {1, . . . , ts}, H̄t1,...,ts is permutation equivalent

to the Z2s+ℓ-linear Hadamard code H̄1,0ℓ−1,t1−1,t2,...,ts−1,ts−ℓ.

For 5 ≤ t ≤ 11, Tables 1 and 3 given in [16] show all possible values
of (t1, . . . , ts) corresponding to nonlinear Z2s-linear Hadamard codes, with
s ≥ 2, of length 2t. For each of them, the values (r, k) are shown, where r is
the rank, and k is the dimension of the kernel. Note that if two codes have
different values (r, k), they are not equivalent. The following example shows
that all the nonlinear Z2Z4Z8-linear Hadamard codes Ht1,t2,t3 of length 211

are not equivalent to each other, nor to any Z2Z4-linear Hadamard code,
nor to any Z2s-linear Hadamard code [16], with s ≥ 2, of the same length
211.

Example 2.3. Consider t = 11. By solving equation t + 1 = 3t1 + 2t2 +
t3 given in Proposition 2.5, all Z2Z4Z8-linear Hadamard codes Ht1,t2,t3 of
length 211 are the ones in

T = {H1,0,9, H1,1,7, H1,2,5, H1,3,3, H1,4,1, H2,0,6, H2,1,4, H2,2,2, H3,0,3, H3,1,1}.
By using the computer algebra system Magma [13], their corresponding val-
ues of (r, k), where r is the rank and k is the dimension of the kernel,
are (12, 12), (14, 9), (17, 8), (21, 7), (26, 6), (17, 8), (22, 7), (28, 6), (28, 6),
and (37, 5), respectively. The code H1,0,9 is the only linear code in T since
r = k = 12. Using Magma, we can check that the following codes in
each pair are nonequivalent to each other: (H1,2,5, H2,0,6), (H2,2,2, H3,0,3).
Therefore, the codes in T are not equivalent to each other.

Let T̄ = T \ {H1,0,9}. Similarly, by solving equation t + 1 = 2t2 + t3
given in Theorem 2.2, all nonlinear Z2Z4-linear Hadamard codes of length
211 are H2,8, H3,6, H4,4 and H5,2, and by Theorem 2.2, their corresponding
values of (r, k) are (13, 10), (15, 9), (18, 8), and (22, 7), respectively. Using
Magma, we can check that H2,1,4 and H5,2 are nonequivalent. Therefore,
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all the codes in T̄ are nonequivalent to any Z2Z4-linear Hadamard code of
length 211.

Finally, note that all the codes in T̄ , except H1,1,7 and H2,1,4, are not
equivalent to any Z2s-linear Hadamard code, with s ≥ 2, of length 211, since
they have different values of (r, k). The Z2s-linear Hadamard codes of length
211, having the same values (r, k) = (14, 9) as H1,1,7, are H̄2,0,6, H̄1,1,0,5,
H̄1,0,1,0,4, H̄1,0,0,0,1,0,2, and H̄1,0,0,0,0,0,1,0,0, which are equivalent to each other
by Theorem 2.3. The Z4-linear Hadamard code H̄6,0 is the only Z2s-linear
Hadamard code of length 211, having the same values (r, k) = (22, 7) as
H2,1,4. However, using Magma, we can check that the following codes in
each pair are nonequivalent to each other: (H1,1,7, H̄2,0,6), (H2,1,4, H̄6,0).

Therefore, all the nonlinear Z2Z4Z8-linear Hadamard codes Ht1,t2,t3 of
length 211 are not equivalent to each other, nor to any Z2Z4-linear Hadamard
code, nor to any Z2s-linear Hadamard code [16], with s ≥ 2, of the same
length 211.

Finally, the following example shows that other Z2Z4Z8-linear Hadamard
codes can not be constructed by Construction (3). However, in the next
section, we also show that other constructions of these codes do generate
equivalent codes.

Example 2.4. Consider the matrix

B =

 11 11 22 2222 4444 44444444
01 01 02 1111 0646 11113333
00 11 31 0123 1771 01234725

 .

Using Magma, we can check that the code generated by B is a Z2Z4Z8-linear
Hadamard code of type (4, 6, 12; 2, 0, 1), and it is nonequivalent to the code
H2,0,1 generated by A2,0,1 given in (6).

3. Same type equivalent Z2Z4Z8-linear Hadamard codes

In this section, we see that if we consider other specific starting matri-
ces, instead of the matrix A1,0,1 given in (2), and apply the same recursive
Construction (3), (4) and (5), or new constructions more general than (3)
and (4), and the same Construction (5), we also obtain Z2Z4Z8-additive
Hadamard codes with α1 ̸= 0, α2 ̸= 0 and α3 ̸= 0. Indeed, the corre-
sponding Z2Z4Z8-linear Hadamard codes, after applying the Gray map Φ,
are equivalent to the codes Φ(Ht1,t2,t3) of the same type constructed in Sec-
tion 2.

Let Z∗
2i

be the group of units of Z2i for i ∈ {2, 3}. Then, Z∗
4 = {1, 3} and

Z∗
8 = {1, 3, 5, 7}.

Proposition 3.1. Let ā1 = (a1) and b̄1 = (b1), where a1 ∈ Z∗
4 and b1 ∈ Z∗

8.
Then, the code generated by

(23) Â1,0,1

ā1,b̄1
=

(
1 1 2 4
0 1 a1 b1

)
,
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denoted by Ĥ1,0,1

ā1,b̄1
, is a Z2Z4Z8-additive Hadamard code of type (2, 1, 1; 1, 0, 1).

Moreover, the corresponding Z2Z4Z8-linear Hadamard code Φ(Ĥ1,0,1

ā1,b̄1
) is per-

mutation equivalent to Φ(H1,0,1).

Proof. Let A
1,0,1

ā1,b̄1
be the matrix obtained from Â1,0,1

ā1,b̄1
by applying the row

operation described in Table 1, depending on the values of a1 ∈ Z∗
4 and b1 ∈

Z∗
8. Note that A

1,0,1

ā1,b̄1
is also a generator matrix of Ĥ1,0,1

ā1,b̄1
. After permuting

the first two columns of A
1,0,1

ā1,b̄1
, if necessary, we obtain A1,0,1. Thus, Ĥ1,0,1

ā1,b̄1

and H1,0,1 are permutation equivalent, and so are the codes Φ(Ĥ1,0,1

ā1,b̄1
) and

Φ(H1,0,1). □

Theorem 3.1. Let ℓ ≥ 1. Let āℓ = (a1, . . . , aℓ) ∈ (Z∗
4)

ℓ, b̄ℓ = (b1, . . . , bℓ) ∈
(Z∗

8)
ℓ, ai = (ai, 2

i−1
. . . , ai), and bi = (bi, 4

i−1
. . . , bi), 1 ≤ i ≤ ℓ. Let Ât1,0,1

āt1 ,b̄t1
,

with t1 ≥ 1, be the matrix obtained by using the following construction (in-

stead of Construction (3)). We start with Â1,0,1

ā1,b̄1
given in (23). If we have

Âℓ−1,0,1

āℓ−1,b̄ℓ−1
= (Â1 | Â2 | Â3), with ℓ ≥ 2, we may construct

(24) Âℓ,0,1

āℓ,b̄ℓ
=

(
Â1 Â1 M̂1 Â2 Â2 Â2 Â2 M̂2 Â3 Â3 · · · Â3

0 1 aℓ 0 1 2 3 bℓ 0 1 · · · 7

)
,

where M̂1 = {zT : z ∈ {2}×{0, 2}ℓ−1}, M̂2 = {zT : z ∈ {4}×{0, 2, 4, 6}ℓ−1}.
We repeat Construction (24) until ℓ = t1. Then, the code generated by

Ât1,0,1

āt1 ,b̄t1
, denoted by Ĥt1,0,1

āt1 ,b̄t1
, is a Z2Z4Z8-additive Hadamard code of type

(α1, α2, α3; t1, 0, 1) with α1 ̸= 0, α2 ̸= 0 and α3 ̸= 0. Moreover, the corre-

sponding Z2Z4Z8-linear Hadamard code Φ(Ĥt1,0,1

āt1 ,b̄t1
) is permutation equiva-

lent to Φ(Ht1,0,1).

Proof. It is enough to show that Ĥt1,0,1

āt1 ,b̄t1
and Ht1,0,1 are permutation equiv-

alent. We prove this by induction on t1 ≥ 1. By Proposition 3.1, this is true
for t1 = 1. Assume that Ĥt1,0,1

āt1 ,b̄t1
and Ht1,0,1 are permutation equivalent. Let

Ât1,0,1

āt1 ,b̄t1
= (Â1 | Â2 | Â3) and At1,0,1 = (A1 | A2 | A3). By Construction (24),

we have

Ât1+1,0,1

āt1+1,b̄t1+1
=

(
Â1 Â1 M̂1 Â2 Â2 Â2 Â2 M̂2 Â3 Â3 · · · Â3

0 1 at1+1 0 1 2 3 bt1+1 0 1 · · · 7

)
,

where M̂1 = {zT : z ∈ {2} × {0, 2}t1}, M̂2 = {zT : z ∈ {4} × {0, 2, 4, 6}t1},
at1+1 = (at1+1, 2

t1. . ., at1+1), and bt1+1 = (bt1+1, 4
t1. . ., bt1+1). By Construction

(3), we have

At1+1,0,1 =

(
A1 A1 M1 A2 A2 A2 A2 M2 A3 A3 · · · A3

0 1 1 0 1 2 3 1 0 1 · · · 7

)
,
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where M1 = {zT : z ∈ {2} × {0, 2}t1}, M2 = {zT : z ∈ {4} × {0, 2, 4, 6}t1}.
Let Ĥt1+1,0,1

āt1+1,b̄t1+1
and Ht1+1,0,1 be the codes generated by Ât1+1,0,1

āt1+1,b̄t1+1
and

At1+1,0,1, respectively.
Since Ĥt1,0,1

āt1 ,b̄t1
andHt1,0,1 are permutation equivalent, there exist some row

operations and column permutations so that after applying these operations
on (Â1 | Â2 | Â3), we obtain (A1 | A2 | A3). First, we apply the same

row operations to Ât1+1,0,1

āt1+1,b̄t1+1
and the corresponding column permutations

to each submatrix (
Âi

ki

)
,

for i ∈ {1, 2, 3}, ki ∈ Z2i . Thus, for i ∈ {1, 2, 3}, Âi becomes Ai. Then,
we change the last row by applying the row operation described in Table
1, depending on the values of at1+1 ∈ Z∗

4 and bt1+1 ∈ Z∗
8. After that, we

permute the blocks of the form(
A1

k1

)
,

(
A2

k2

)
and

(
A3

k3

)
,

for ki ∈ Z2i , so that we obtain the submatrices(
A1 A1

0 1

)
,

(
A2 A2 A2 A2

0 1 2 3

)
and

(
A3 A3 · · · A3

0 1 · · · 7

)
,

respectively. Let A
t1+1,0,1

āt1+1,b̄t1+1
be the matrix obtain from Ât1+1,0,1

āt1+1,b̄t1+1
after

applying all these operations. Let M ′
1 and M ′

2 be the matrices M̂1 and M̂2,
respectively, after all these operations. Finally, after a suitable permutation
of the columns corresponding to the blocks of the form(

M ′
1

1

)
and

(
M ′

2

1

)
in A

t1+1,0,1

āt1+1,b̄t1+1
, we obtain At1+1,0,1. Thus, the codes Ĥt1+1,0,1

āt1+1,b̄t1+1
andHt1+1,0,1

are permutation equivalent, and so are the corresponding Z2Z4Z8-linear
codes. This completes the proof. □

Example 3.1. Let ā2 = (1, 3) and b̄2 = (3, 5). Then,

Â2,0,1

ā2,b̄2
=

 11 11 22 2222 4444 44444444
01 01 02 a1 0246 b1

00 11 a2 0123 b2 01234567


=

 11 11 22 2222 4444 44444444
01 01 02 1111 0246 33333333
00 11 33 0123 5555 01234567

 ,

which is obtained by using Construction (24), starting with the matrix Â1,0,1

ā1,b̄1
given in (23).
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ai bi row operation
1 1 ri+1 ← ri+1

1 3 ri+1 ← r1 − ri+1

1 7 ri+1 ← 5r1 − 5ri+1

1 5 ri+1 ← 5ri+1

3 1 ri+1 ← r1 − 3ri+1

3 3 ri+1 ← 3ri+1

3 5 ri+1 ← r1 + ri+1

3 7 ri+1 ← 7ri+1

Table 1. Row operations depending on the values of ai ∈ Z∗
4

and bi ∈ Z∗
8.

First, note that we have

Â1,0,1

ā1,b̄1
=

(
1 1 2 4
0 1 1 3

)
and A1,0,1 =

(
1 1 2 4
0 1 1 1

)
.

Therefore, by using Table 1, A1,0,1 = (A1 | A2 | A3) can be obtained from

Â1,0,1

ā1,b̄1
= (Â1 | Â2 | Â3) by applying the row operation r2 ← r1 − r2 and

the column permutation (1, 2). No column permutation is performed on the

submatrices Â2 and Â3. Then, we apply the same row operation r2 ← r1−r2
to Â2,0,1

ā2,b̄2
and the column permutation (1, 2) to each submatrix

(
Â1

k1

)
, for

k1 ∈ Z2. Thus, for i ∈ {1, 2, 3}, Âi becomes Ai. Then, we apply r3 ← r1+r3,
described in Table 1, so we obtain 11 11 22 2222 4444 44444444

01 01 20 1111 4206 11111111
11 00 11 2301 1111 45670123

 .

After that, we permute the blocks of the form

(
Ai

ki

)
, for ki ∈ Z2i and

i ∈ {1, 2, 3}, so that we obtain

A
2,0,1

ā2,b̄2
=

 11 11 22 2222 4444 44444444
10 10 20 1111 4206 11111111
00 11 11 0123 1111 01234567

 .

Finally, after applying a suitable column permutation to the submatrices, 22
20
11

 and

 4444
4206
1111


in A

2,0,1

ā2,b̄2
, we can obtain A2,0,1. Thus, the codes Ĥ2,0,1

ā2,b̄2
and H2,0,1 are per-

mutation equivalent, which is equivalent to say that the codes Φ(Ĥ2,0,1

ā2,b̄2
) and

Φ(H2,0,1) are permutation equivalent.
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Theorem 3.2. Let t1 ≥ 1, t2 ≥ 0 and ℓ ≥ 0. Let āt1+ℓ = (a1, . . . , at1+ℓ) ∈
(Z∗

4)
t1+ℓ, b̄t1 = (b1, . . . , bt1) ∈ (Z∗

8)
t1, and at1+i = (at1+i, 2

t1+i−1
. . . , at1+i) for

0 ≤ i ≤ ℓ. Let Ât1,t2,1

āt1+t2 ,b̄t1
be the matrix obtained by using the following

construction (instead of Construction (4)), starting with Â1,0,1

ā1,b̄1
given in (23).

If we have Ât1,ℓ−1,1

āt1+ℓ−1,b̄t1
= (Â1 | Â2 | Â3), with ℓ ≥ 1, we may construct

(25) Ât1,ℓ,1

āt1+ℓ,b̄t1
=

(
Â1 Â1 M̂1 Â2 Â2 Â2 Â2 Â3 Â3 Â3 Â3

0 1 at1+ℓ 0 1 2 3 0 2 4 6

)
,

where M̂1 = {zT : z ∈ {2}×{0, 2}t1+ℓ−1}. We repeat Construction (25) until

ℓ = t2. Then, the code generated by Ât1,t2,1

āt1+t2 ,b̄t1
, denoted by Ĥt1,t2,1

āt1+t2 ,b̄t1
, is a

Z2Z4Z8-additive Hadamard code of type (α1, α2, α3; t1, t2, 1) with α1 ̸= 0,
α2 ̸= 0 and α3 ̸= 0. Moreover, the corresponding Z2Z4Z8-linear Hadamard
code Φ(Ĥt1,t2,1

āt1+t2 ,b̄t1
) is permutation equivalent to Φ(Ht1,t2,1).

Proof. It is enough to show that Ĥt1,t2,1

āt1+t2 ,b̄t1
and Ht1,t2,1 are permutation

equivalent. We prove this by induction on t2 ≥ 0. By Theorem 3.1, Ĥt1,0,1

āt1 ,b̄t1

and Ht1,0,1 are permutation equivalent. Assume that Ĥt1,t2,1

āt1+t2 ,b̄t1
and Ht1,t2,1,

generated by Ât1,t2,1

āt1+t2 ,b̄t1
and At1,t2,1, respectively, are permutation equiva-

lent. We have that at1+t2+1 ∈ Z∗
4 = {1, 3}. Let Ĥ

t1,t2+1,1

āt1+t2+1,b̄t1
andHt1,t2+1,1 be

the codes generated by Ât1,t2+1,1

āt1+t2+1,b̄t1
using Construction (25) and At1,t2+1,1

using Construction (4), respectively. Then, by the same arguments as in the
proof of Theorem 3.1 and applying the row operation rt1+t2+1 ← −rt1+t2+1

if at1+t2+1 = 3, the codes Ĥt1,t2+1,1

āt1+t2+1,b̄t1
and Ht1,t2+1,1 are permutation equiv-

alent, and so are the corresponding Z2Z4Z8-linear codes. This completes
the proof. □

Theorem 3.3. t1 ≥ 1, t2 ≥ 0 and t3 ≥ 1. Let āt1+t2 = (a1, . . . , at1+t2) ∈
(Z∗

4)
t1+t2, b̄t1 = (b1, . . . , bt1) ∈ (Z∗

8)
t1. Let Ât1,t2,t3

āt1+t2 ,b̄t1
be the matrix obtained

by using Construction (5) in the following way, starting with Â1,0,1

ā1,b̄1
given in

(23). If we have Ât1,t2,ℓ−1

āt1+t2 ,b̄t1
, ℓ ≥ 2, we may construct Ât1,t2,ℓ

āt1+t2 ,b̄t1
by Construc-

tion (5). We repeat Construction (5) until ℓ = t3. Then, the code generated

by Ât1,t2,t3
āt1+t2 ,b̄t1

, denoted by Ĥt1,t2,t3
āt1+t2 ,b̄t1

, is a Z2Z4Z8-additive Hadamard code

of type (α1, α2, α3; t1, t2, t3) with α1 ̸= 0, α2 ̸= 0 and α3 ̸= 0. Moreover, the

corresponding Z2Z4Z8-linear Hadamard code Φ(Ĥt1,t2,t3
āt1+t2 ,b̄t1

) is permutation

equivalent to Φ(Ht1,t2,t3).

Proof. We have that that Ĥt1,t2,1

āt1+t2 ,b̄t1
and Ht1,t2,1 are permutation equivalent

by Theorem 3.2. Then, by the same arguments as in the proof of Theorem
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3.1, the codes Ĥt1,t2,t3+1

āt1+t2 ,b̄t1
and Ht1,t2,t3+1 are permutation equivalent and the

result follows. □

4. Conclusions and further research

In this paper, we give several recursive constructions of Z2Z4Z8-linear
Hadamard codes with α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0. We show that they all al-
low us to construct the same family of codes since they generate permutation
equivalent codes. Moreover, from Example 2.3, we see that all the nonlinear
Z2Z4Z8-linear Hadamard codes Ht1,t2,t3 of length 211 are not equivalent to
each other, nor to any Z2Z4-linear Hadamard code, nor to any Z2s-linear
Hadamard code [16], with s ≥ 2, of the same length 211. Therefore, we
have that some nonlinear Hadamard codes, without any known structure,
now can be seen as the Gray map image of a Z2Z4Z8-linear Hadamard codes
with α1 ̸= 0, α2 ̸= 0, and α3 ̸= 0. As further research, it would be interesting
to generalize this result, given only for 211, to any length 2t.

Another further research could be to generalize the given construction
of Z2Z4Z8-linear Hadamard codes to Z2Z4 . . .Z2s-linear Hadamard codes
with α1, . . . , αs different to zero, or even to ZpZp2 . . .Zps-linear generalized
Hadamard codes with p prime. The study of Z2Z4Z8-linear Hadamard codes
may represent an important step to study the general case, and other papers
[2, 36] have also focused on this particular case. However, the generalizations
are not feasible using the same techniques employed in this paper.
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[25] Denis S Krotov and Mercè Villanueva, Classification of the Z2Z4-linear Hadamard
codes and their automorphism groups, IEEE Transactions on Information Theory 61
(2015), no. 2, 887–894.

[26] Florence Jessie MacWilliams and Neil James Alexander Sloane, The theory of error-
correcting codes, Elsevier, 1977.

[27] K. Nyberg, Perfect nonlinear S-boxes, EUROCRYPT-91 LNCS 547 (1991), 378–385.
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