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ON RECURSIVE CONSTRUCTIONS OF Z,Z4Zg-LINEAR
HADAMARD CODES

DIPAK K. BHUNIA, CRISTINA FERNANDEZ-CORDOBA, MERCE VILLANUEVA

ABSTRACT. The ZsZ4Zs-additive codes are subgroups of Z5! x Zg? x
Zg‘?’, A ZoZ4Zg-linear Hadamard code is a Hadamard code, which is the
Gray map image of a ZsZ4Zs-additive code. In this paper, we generalize
some known results for ZsZ4-linear Hadamard codes to ZoZ4Zg-linear
Hadamard codes with a1 # 0, ae # 0, and a3 # 0. First, we give
a recursive construction of ZoZiZs-additive Hadamard codes of type
(a1, 2, s ta, ta, t3) with t1 > 1, t2 > 0, and t3 > 1. It is known that
each Zs-linear Hadamard code is equivalent to a ZsZ4-linear Hadamard
code with a1 # 0 and a2 # 0. Unlike Z2Zs-linear Hadamard codes, in
general, this family of Z2Z47Zs-linear Hadamard codes does not include
the family of Zs-linear or Zs-linear Hadamard codes. We show that,
for example, for length 2!, the constructed nonlinear Z,Z,Zs-linear
Hadamard codes are not equivalent to each other, nor to any Z2Zas-linear
Hadamard, nor to any previously constructed Zzs-Hadamard code, with
s > 2. Finally, we also present other recursive constructions of Z2Z47Zs-
additive Hadamard codes having the same type, and we show that,
after applying the Gray map, the codes obtained are equivalent to the
previous ones.

1. INTRODUCTION

Let Zss be the ring of integers modulo 2° with s > 1. The set of n-tuples
over Zgs is denoted by Z3.. In this paper, the elements of Z3. are also called
vectors. A code over Zg of length n is a nonempty subset of Z7, and it is
linear if it is a subspace of Z3. Similarly, a nonempty subset of Zj. is a
Zas-additive code if it is a subgroup of Z3.. A ZyZ4Zg-additive code is a
subgroup of Z5' x Z3y? x Zg*. Note that a ZoZ4Zg-additive code is a linear
code over Zo when as = agz = 0, a Zy-additive or Zg-additive code when
a1 = az = 0 or a; = ag = 0, respectively, and a ZsZ,4-additive code when
a3 = 0. The order of a vector u € Z%,, denoted by o(u), is the smallest
positive integer m such that mu = (0,...,0). Also, the order of a vector
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u € Z3' x Zy? x Zg®, denoted by o(u), is the smallest positive integer m
such that mu = (0,...,0]0,...,0]0,...,0).

The Hamming weight of a vector v € Z%, denoted by wtg(u), is the
number of nonzero coordinates of u. The Hamming distance of two vectors
u,v € Z%, denoted by dp(u,v), is the number of coordinates in which they
differ. Note that dy(u,v) = wtg(u — v). The minimum distance of a code
C over Zsy is d(C) = min{dg(u,v) : u,v € C,u # v}.

In [19], a Gray map from Z4 to Z3 is defined as ¢(0) = (0,0), ¢(1) = (0,1),
#(2) = (1,1) and ¢(3) = (1,0). There exist different generalizations of this
Gray map, which go from Zgs to Z%S_l [14, 12, [15] 20, 24]. The one given in
[20] can be defined in terms of the elements of a Hadamard code [24], and
Carlet’s Gray map [14] is a particular case of the one given in [24] satisfying
ST Xid(2Y) = (> A\;2%) [16]. In this paper, we focus on Carlet’s Gray map
[14], from Zgs to Z2
[33]. Specifically,

, which is also a particular case of the one given in

(1) os(u) = (Us—1,Us—1, ..., Us—1) + (U0, ..., us—2)Ys_1,

where u € Zgs; [ug,u1,...,us—1]2 is the binary expansion of u, that is,
u = Zf;& u;2° with u; € {0,1}; and Y is a matrix of size (s —1) x 257! whose
columns are all the vectors in ngl. Without loss of generality, we assume
that the columns of Y,_; are ordered in ascending order by considering the
elements of Z;‘l as the binary expansions of the elements of Zgys—1. Note
that ¢ is the identity map, and

¢ Ly — 73 #3:  Zg — Zj
0 — (0,0) 0~ (0,0,0,0)
1+ (0,1) 1+ (0,1,0,1)
2 (1,1) 2 (0,0,1,1)
3 (1,0) 3+ (0,1,1,0)
4 (1,1,1,1)
5~ (1,0,1,0)
6 — (1,1,0,0)
7+ (1,0,0,1).

We define &, : Z5. — Zg‘zkl as the component-wise extended map of ¢s.
We can also define a Gray map ® from Z5' x Zj* x Zg* to Z3, where
n = a1 + 209 + 4ag, as follows:

(ur [ ug | uz) = (u1, P2(u2), P3(us)),

for any w; € Z3;, where 1 <14 < 3.

Let C C Z3. be a Zgs-additive code of length n. We say that the Gray
map image of C, say C = ®,(C), is a Zgs-linear code of length n2°~!. Since
C is a subgroup of Z3,, it is isomorphic to Zéls X Zgi_l X oo X ng, and we
say that C, or equivalently C' = ®4(C), is of type (n;ti,...,ts). Note that



ON RECURSIVE CONSTRUCTIONS OF Z3Z4Zg-LINEAR HADAMARD CODES 3

Ic| = 2t120s= V2. 9t Similarly, if C C Z§' x Z$* x Z3? is a ZeZyZs-
additive code, we say that its Gray map image C' = ®(C) is a ZoZ4Zs-
linear code of length a1 4+ 29 + 4a3. Since C can be seen as a subgroup
of Zg'T*2%3 it is isomorphic to Z§ x Z x Z%, and we say that C, or
equivalently C' = ®(C), is of type (a1, g, as;t1,ta,t3). We have that a
ZoZy4-linear code C [10, 11] can can be seen as a ZyZ4Zg-linear code of
type (ai1,a9,0;0,t2,t3). In this case, we also write that the type of C is
directly (aq,ag;te,t3). Unlike linear codes over finite fields, linear codes
over rings do not have a basis, but a generator matrix exists for these codes
with a minimum number of rows. If C is a ZyZ4Zg-additive code of type
(a1, e, as3;t1, 9, t3), then |C| = 8114%22!3 and there exist a generator matrix
with t1 + to + t3 rows.

Two structural properties of codes over Zs are the rank and dimension
of the kernel. The rank of a code C' over Z, is simply the dimension of
the linear span of C, say (C). The kernel of a code C over Zs is defined
as K(C) = {x € Z} : x+ C = C} [3]. If the all-zero vector belongs to
C, then K(C) is a linear subcode of C. Note also that if C is linear, then
K(C) = C = (C). We denote the rank of C' as rank(C') and the dimension of
the kernel as ker(C'). These parameters can be used to distinguish between
nonequivalent codes since equivalent ones have the same rank and dimension
of the kernel.

A binary code with length n, 2n codewords, and minimum distance n/2
is called a Hadamard code. Hadamard codes can be constructed from
Hadamard matrices [I, 26]. Note that linear Hadamard codes are first-
order Reed-Muller codes, or equivalently, the dual of extended Hamming
codes [26, Ch.13 §3]. The Zgs-additive codes such that after the Gray map
®, give Hadamard codes are called Zys-additive Hadamard codes, and the
corresponding images are called Zgs-linear Hadamard codes. Similarly, the
ZoZ4Z.g-additive codes such that after the Gray map ® give Hadamard codes
are called ZoZ47Zg-additive Hadamard codes, and the corresponding images
are called ZyZ47g-linear Hadamard codes.

It is well-known that Zj-linear Hadamard codes (that is, ZsZg4-linear
Hadamard code with ay = 0) and ZyZ4-linear Hadamard codes with a; # 0
can be classified by using either the rank or the dimension of the kernel
[23, 28]. Moreover, in [25], it is shown that each Z4-linear Hadamard code
is equivalent to a ZsZg4-linear Hadamard code with a; # 0. Later, in
[16], 6, [18, [4], a recursive construction for Z,s-linear Hadamard codes, with
p prime, is described, the linearity is established, and a partial classification
by using the dimension of the kernel is obtained, giving the exact amount of
nonequivalent such codes for some parameters. In [I7], a complete classifi-
cation of Zg-linear Hadamard codes by using the rank and dimension of the
kernel is provided, giving the exact amount of nonequivalent such codes. For
any t > 2, the full classification of Z,Z,:-linear Hadamard codes of length
p', with a; # 0, ag # 0, and p > 3 prime, is given in [5, [7], by using just
the dimension of the kernel.
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The paper contributes to the study of codes over rings Z,s, which were
first studied by Blake [9] and Shankar [30] in 1975 and 1979, respectively.
These codes have become more significant after the publication of [19]. It
is also important to note that Hadamard codes are two weight codes, which
have been widely studied in [31]32]. On the other hand, the classification of
nonlinear Hadamard codes is still an open problem. By giving an additive
structure, as Zys-linear, Z,Z2-linear or ZyZsZg-linear codes, to some of
them, and showing whether they are equivalent or not among them, we are
providing a partial classification for these codes.

From a more practical point of view, since Hadamard codes are optimal
and have a high correction capability, they appear in different aspects re-
lated to the transmission of information, such as in digital communication
with satellites [2I], in CDMA phones to modulate the transmission of in-
formation and minimize interference with other transmissions [34] and, in
general, in different OCDMA multiple access systems to allow access to
multiple users asynchronously and simultaneously [22]. Other applications
are found in cryptography [27] or in information hiding (steganography and
watermarking) [35]. See [2I] for more applications in other fields.

This paper is focused specifically on ZyZ4Zg-linear Hadamard codes with
a1 # 0, as # 0, and az # 0, generalizing some results given for ZoZy4-
linear Hadamard codes with a1 # 0 and as # 0 in [28, 29] related to
a recursive construction of such codes. These codes are also compared
with the Zg4-linear, Zg-linear, and in general Zgs-linear Hadamard codes
with s > 2 considered in [16]. In general, the construction of ZyZ4Zs-
linear Hadamard codes allows to construct codes which are not equivalent
to Zgs-linear Hadamard codes, with s > 2. It is known that each Zy4-linear
Hadamard code is equivalent to a ZyZg4-linear Hadamard code with a; # 0
and ag # 0. Unlike ZsZ4-linear Hadamard codes, in general, this family of
ZioZ4Z.g-linear Hadeamard codes does not include the family of Z4-linear or
Zsg-linear Hadamard codes, or Zsgs-linear Hadamard codes with s > 4. In
Example 2.3, we show that all the nonlinear ZsZ4Zsg-linear Hadamard codes
H™:t2:3 of length 2! are not equivalent to each other, nor to any ZsZ,-linear
Hadamard code, nor to any Zss-linear Hadamard code [16], with s > 2, of
the same length 2''. This paper is organized as follows. In Section [2, we
describe a recursive construction of ZyZ47Zg-linear Hadamard codes of type
(a1, a9, a3;t1,to, t3) with ag # 0, s # 0, and a3 # 0. We emphasise
that, unlike ZsZ,4-linear Hadamard codes, in general, this family of ZoZ4Zg-
linear Hadeamard codes does not include the family of Z4-linear or Zg-linear
Hadamard codes. In Section [3] we present other recursive constructions and
show that we obtain ZsZ4Zg-linear Hadamard codes equivalent to the previ-
ous ones. Finally, in Section[d] we give some conclusions and further research
on this topic.
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2. RECURSIVE CONSTRUCTION OF ZgZ4Zg-ADDITIVE HADAMARD CODES

The description of generator matrices having a minimum number of rows
for Z4-additive Hadamard, some families of Zss-additive Hadamard, and in
general Zj,s-additive Hadamard codes, with s > 2 and p prime, are given
in [23], [16], and [6], respectively. Similarly, generator matrices having a
minimum number of rows for Z,Z,»-additive Hadamard codes with oy #
0, g # 0 and p prime, as long as a recursive construction of these matrices,
are given in 28] 29] when p = 2 and in [5] when p > 3. In this section, we
generalize these results for ZyZ4Zg-additive Hadamard codes with aq # 0,
ag # 0, and az # 0. Specifically, we define a recursive construction for
the generator matrices of a family of these codes and establish that they
generate ZoZ47g-additive Hadamard codes.

Let 0,1,2,...,7 be the vectors having the elements 0,1, 2, ..., 7 repeated
in each coordinate, respectively. If A is a generator matrix of a ZoZ4Zs-
additive code, that is, a subgroup of Z5' x Zj? x Zg® for some integers
a1,a9,a3 > 0, then we denote by A; the submatrix of A with the first
o columns over Zsy, As the submatrix with the next ao columns over Zy,
and Az the submatrix with the last a3 columns over Zg. We have that
A = (A1 | A2 | Az), where the number of columns of A4; is «; for ¢ € {1, 2, 3}.

Let t1 > 1, to > 0, and t3 > 1 be integers. Now, we construct recursively
matrices A":%2:% having t; rows of order 8, to rows of order 4, and t3 rows
of order 2 as follows. First, we consider the following matrix:

ot (1 1]2]4
@) A _(0 111 )

Then, we apply the following constructions. If we have a matrix A~101 =
(A1 | Ag | Ag), with ¢ > 2, we may construct the matrix

3) A0 _ A Ay | My Ay Ay Ay Ay | My Az Az - Az
o 0 1 1 0 1 2 3 1 0 1 7 ’

where My = {z' : z € {2} x {0,2}*"'} and My = {27 : z € {4} x
{0,2,4,6}1}. We perform Construction until ¢ = t;. If we have a
matrix A0 = (A | Ay | A3), with ¢; > 1 and £ > 1, we may construct
the matrix

A A
t1,0,1 __ 1 1

M1 AQ A2 A2 A2
1 0 1 2 3

As As; Az Az
0 2 4 6 ’

where My = {z” : z € {2} x {0,2}17¢~1}. We repeat Construction (4)) until
{ = ty. Finally, if we have a matrix A"#2=1 = (A | Ay | A3), with t; > 1,
to > 0, and ¢ > 2, we may construct the matrix

A A A A
t1,t2,0 1 1 2 2
5) A= < 0 1|0 2

Az A
0 4 ’

We repeat Construction until ¢ = t3. Thus, in this way, we obtain
Atrt2sts
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Summarizing, in order to achieve A2 from ALOL first we add t; — 1
rows of order 8 by applying Construction t1—1 times, starting from A0
up to obtain A1:%1: then we add t, rows of order 4 by applying Construction
to times, up to generate A'#2:1; and, finally, we add t3 — 1 rows of order
2 by applying Construction t3 — 1 times to achieve A'2% . Note that
the first row always has the row (1 | 2 | 4).

Example 2.1. By using the constructions described in @, , and (@, we
obtain the following matrices A201, ALLL and AVY2 ) respectively, starting
from AYO1 given in

11 1122 22224444 44444444
(6) AZOL — [ 01 01|02 1111|0246 11111111 |,
00 11|11 0123|1111 01234567

11 11|22 22224444
(7) AL = 01 01]02 1111|1111 |,
00 11|11 0123|0246

1111 1111 | 222222 222222 | 4444 4444
0101 0101 | 021111 021111 1111 1111
0011 0011 | 110123 110123 | 0246 0246
0000 1111 | 000000 222222 | 0000 4444

In order to obtain A>Y1, we start with AY%, we apply Construction (@ to
obtain A2Vl = (A; | Ay | A3) given in (@, and then we apply to obtain

ALL2 —

2222

ein_ | AL AL 002 Ay Ay Ay As | Ag As Az Ag
0202

0o 1 1 0 1 2 3|0 2 4 6

The ZoZ4Zg-additive code generated by Af1+#2:%3 is denoted by H!1:!2:3
and the corresponding ZoZ4Zg-linear code ®(H!1-12:3) by Hint2ts,

Lemma 2.1. Let t; > 1 and to > 0 be integers. Let H!'2! be the ZoZ47s-
additive code of type (a1, a2, as;t1, ta, 1) generated by A+-t2:1. Then, 201+t2 =
ar, 4872 = oy + 200 and 81142 = aq + 209 + 4a3.

Proof. First, we prove this lemma for the code H!%"! by induction on ¢; > 1.
Note that the lemma holds for the code H%! of type (2,1,1;1,0,1). Assume
that the lemma holds for the code H!'%! of type (a1, s, as;ty,0,1), that
is,

(8) 2 = o, 4" = aq + 209 and 8" = aq + 20 + 4das.

By using Construction , the type of HI1 101 is (o, af, afy;t1 +1,0,1),
where

9) o) = 2aq, b = 2" + dag and afy = 4" + 8az.
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Thus, from (8) and (9)), 21! = 204 = of, 447 = da; + 8ay = 207 +
201 +8ag = ) + 21T + 8ay = o) + 24, and 81T = 8ay + 16a2 + 3203 =
201 + (201 +8az) + (4ag +8an+32a3) = 201 4 (20 T +8a) + (411 H! +3203) =
o) + 20l + 4aky. Therefore, the lemma holds for the code H!1:0:1.

Next, we prove this lemma for the code H!2! by induction on ¢t > 0. As-
sume that the lemma holds for the code H!#2:1 of type (a1, ag, as;ty, t2,1),
that is,

(10) ottt — o) A2 — o) 4 209, and 814" = oy + 209 + 4as.

By using Construction , the type of Hiv2Thl s (of, oy, a5ty o + 1, 1),
where

(11) o) = 2aq, ay = 212 4oy and ofy = das.

Thus, from and , otit(tatl) — 9 = o), 4t (2H1) = 40 + 8oy =
201 + 201 +8ag = o + 2112 4 8ay = of +2a), and 8114721 = 4oy +8as+
1603 = 201+ (20 +8ag) +16a3 = o +(21 72T 48y +4ak = o) +2ah+4a.
Therefore, the lemma holds for the code #H!2*th1 This completes the
proof. O

Proposition 2.1. Lett; > 1, to > 0, and t3 > 1 be integers. Let H!2% be
the ZoZ4Zs-additive code of type (a1, e, as;ty, ta,t3) generated by Al:t2ts,
Then,

ay = 2t1+t2+t3—1
(12) aq + 209 = 4l ttzots =1

a1 + 2ao + dag = gligqt2gta—1,
Proof. We prove this result for the code Ht:'2%3 by induction on t3 > 1. By
Lemma the proposition holds for t3 = 1, that is, for the code H! 21,
Assume that it holds for the code H!U!2!3 of type (ay, s, as;ty, ta,t3),

that is, holds. By using Construction , the type of Hivt2l+l jg
(o, oy, ays g, ta, t3 + 1), where

(13) o) = 2aq, 0y, = 29, and oy = 2as.
Thus, from and (L3), 21+t2Ht = 20y = of, 41710228 = 204 + day =

o) +2ad, and 814"22" = 204 + 4 + 8ag = af + 2ah + 4a. Therefore, the
proposition is true for the code H!*2+! This completes the proof. O

Corollary 2.1. Let t1 > 1, to > 0, and t3 > 1 be integers. Let H!2% be
the ZsZ4Zs-additive code of type (a1, o, as;ty, ta, t3) generated by Att21,
Then,

a = 2t1+t2+t3—1,
g = 4t1+t22t3—2 _ 21?1—1—1&2—&—153—27

s = 8t14t2—12t3—1 o 4t1+t2—12t3—1'
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Remark 2.1. By Corollary we have that the ZoZ4Zs-additive codes
Hivt20 of type (a1, o, ag;ty, to, t3) generated by A3 so constructed
recursively from (@, , and (@, satisfy that o # 0, as # 0, and az # 0.

Remark 2.2. The construction of the generator matrices A2 js q gener-
alization of the recursive construction of the generator matrices of the ZoZ.4-
additive Hadamard codes of type (a1, ag;te,ts) with aq # 0 and ag # 0,
given in [29]. Note that if we do not consider the coordinates over Zs in

Constructions (@, , and (@, we have that (@ and become
Ay A | My Ay Ay Ay A
01 _ 1 1 1 Az Az Az Ag
(14) AW = < o 11 o 1 2 3 ) ’

where AN = (A1 | Ag) and My = 2A; = {z" 1 z € {2} x {0,2}"1} (up
to a column permutation); and Construction @ become

Al A1 Ay A
to,l __ 1 1 2 2
(15) A _< 0 1|0 2 >

where A1 = (A | Ay). Then, starting from the following matriz:

i (1 12
(16) = (g 17

and applying and i the same way as above, we obtain the gen-
erator matrices A2 of the known ZoZ4-additive Hadamard codes of type
(a1, 93 to, t3) with ag # 0 and as # 0 [28, 29]. The ZoZ4-additive code
generated by A2 is denoted by H'?'3, and the corresponding ZsZ.4-linear
code ®(H'*'3) by H'>ts,

When we include all the elements of Zgi, where 1 < ¢ < 3, as coordi-
nates of a vector, we place them in increasing order. For a set S C Zo;
and A\ € Zgi, where i € {1,2,3}, we define A\S = {\j : j € S} and
S+A={j+A:j €S} As before, when including all the elements in
those sets as coordinates of a vector, we place them in increasing order.
For example, 2Zs = {0,4,6,8}, (Z4,Z4) = (0,1,2,3,0,1,2,3) € Z§ and
(Zs | Z4 | 2Zs,478) = (0,1]0,1,2,3]0,2,4,6,0,4) € Z3 x 73 x Z8.

Lemma 2.2. Let 1 <i<3 andje€ {0,1,...,i—1}.
(1) If o € 297y, then 20 Zgi + p = 297y
(2) If u € 270, then (20 Zqy:, ™., 29 7o) + 1, where m > 1, is a permu-
tation of the vector (20Zqi, M., 27 7.s:).
(3) If u € 274, then (ZQi\2Z2i) +u= ZQZ’\2Z27L.
(4) If o € T, then (0,...,28 —1) + (u, 42, 1), where £ > 1 and k =
(k,.t. k) for k € Zyi, is a permutation of (Zei,.t., Zgi).

Proof. Ttem 1 follows from the fact that Zy: is a ring and 2/Z: is an ideal
of Zyi. Item 2 follows from Item 1.

For Item 3, it x € (Z9i\2Z9i) + u, then & — p € Z9i\2Z4i. Assume that
x & Z9i\2Zs9i, s0 © € 2Z9i. Since 2Z4i is an ideal of Zgi, we have that
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x — i € 2Z9i, which is a contradiction. Thus, x € Z4i\2Zs and hence

(Z9i\2Z9i) + p C Z9i\2Z9i. In the same way, (Z9i\2Z9i) — p C Z9i\2Zq:.

Hence, Z4i\2Z9i C (Z9i\2Z4i) + p and therefore (Zgi\2Zq:i) + p = Z9i\2Zq;.
For Item 4, note that (0,...,21 — 1) 4 (u, 2., p) is a permutation of

Since Zyi + p = Zoi, is a permutation of (Zgi,.¢., Zg:). O

Lemma 2.3. Let 1 <i <3, A € Z9i\2Zyi, and u € Z};. Then,

(u, 2. u) + X\0,...,21 — 1)
is a permutation of (Zgi,.".,Zgi).
Proof. Since A € Zyi\2Zi, A(0, . ..,2! — 1) is a permutation of (0, ...,2! — 1)
and we may consider A = 1. Then, (u,...,u)+(0,...,2' — 1) is a permuta-
tion of (uy + Zgi, ..., up + Zgi) = (Zgi, .., Zoi ), where u = (u1,...,uy). O

Lemma 2.4. Letu = (i, ™., j1,2Z4, .7, 274, Z4\2Z4, ." ., Z4\2%4) € ZJ2027
where m,n,r > 0 and p € Z4\2Z4 = {1,3}. Then,

(u,u,u,u) +(0,2,0,2)
is a permutation of (224, ., 274, Z.4\2Zy, 7127 74\274).
Proof. By Items (1| and |3| of Lemma u+ 2 is a permutation of (p 4+ 2, ™
S 2,27, .7 27, Z4\2Z4, R Z4\2Z4) Let k = (M, T ,u) Since JUS
{1, 3}, we have that (k,k,k,k)+(0,2,0,2) is a permutation of (Z4\2Z4, 2™
, Z4\2Zy4). Therefore, (u,u,u,u) + (0,2,0,2) is a permutation of (2Z4, ™
27, Toa\ 270, 4 52m 74\ 27y). 0

Lemma 2.5. Letu = (p/, ™., (", V. " 27, 7 ., 27, 7 \2Zg, ."" ., Zg\27g) €
ng,+4n,+4rl, where m/,n',r" >0 and p, i’ € Zg\2%Zs = {1,3,5,7}. Then,
(1) (u,u,u,u)+(0,2,4,6) is a permutation of (2Zg, 47", 27, Zg\2Zg, 4 +2m’
s Zs\2Zs);
(2) (u,u,u,u)+(0,4,0,4) is a permutation of (u', ¥™, p, p/ +4, 47 1/ +
4,278,427, T\ 2Zg, 7., Zg\2Zg) if t/ = i or p' = p" + 4, or a
permutation of (2Zs, ¥., 27g, 75 \2Zg, *"' 2™ | 7.5\27g) otherwise.

Proof. For Item 1, by Itemsandof Lemma if j € {0,2,4,6}, then u+j
is a permutation of (p/+4, ™., w'+j, u"' 434, ™., w435, 27, 7., 27g, 7\ 2Zsg, " .
,Zg\2Zg). Let K' = (p/, ™. p/, " ™., ). Since p/, u" € {1,3,5,7}, we have
that (k,.4.,k') + (0,2,4,6) is a permutation of (Zg\2Zs, 2™, Zg\2Zg) and
hence (u, u, u, u)+(0, 2,4, 6) is a permutation of (2Zg, 4., 2Zg, Zg\2Zg, 4’2’
, Zg\27Zs).

For item 2, we have (k/,.4., k') 4+ (0,4,0,4) is a permutation of (u/, 47
oo 444 - 4) if = '’ or p/ = i + 4, or a permutation of
(Zg\27Zsg, 2™ 7.5\ 27sg) otherwise. Therefore, (u,u,u,u)+(0,4,0,4) is a per-
mutation of (p/, 4™ p!, p' + 4,47 4 + 4,27, 4. 27, T\ 27, 47, Zg\27Zs)
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if 4/ = p" or p/ =y’ + 4, or a permutation of (2Zg, ., 27Zg, 7\ 2Zsg, 4’2’
, Zg\2Zg) otherwise. O

Lemma 2.6. Letu = (/L, .m., M, 4Zg, .7.1., 4Z87 228\4Z8, A . 228\428) c Z§n+2n+2r’
where m,n,r > 0 and p € 27Zg\4Zg = {2,6}. Then,
(1) (u,u,u,u) + (0,2,4,6) is a permutation of (2Zs,? t2n+m 273);
(2) (u,u,u,u)+(0,4,0,4) is a permutation of (4Zs, ., 4Zg, 278 \4Zg, 47+2m
|27:5\dZs).

Proof. By Item (1| of Lemma if j € {0,4}, then u + j is a permutation of
(,u +7,. M u+g,47%s,."., 47, QZS\4Z87 A 2Z8\4Zg) Similarly, if j € {2, 6},
then u + j is a permutation of (u + j,. ™, u + j,47Zs,." ., 42Zg,27g\4Zs, .".
,278\4Zg). Let k = (u, ™., p).

For Ttem 1, since p € {2,6}, we have that (k,.%. k
permutation of (2Zg, ., 2Zs), and hence (u,u,u,u) + (
mutation of (2Zg, 2" t2ntm 27).

For Item 2, we have (k, .., k)+(0,4, 0, 4) is a permutation of (2Zg\4Zg, 2™
,27\4Zs). Therefore, (u,u,u,u) + (0,4,0,4) is a permutation of (4Zsg, ™
AT, 27\ AT, TH2M 2T \AT). 0

)+ (0,2,4,6) is a
0,2,4,6) is a per-

Let t; > 1,t3 > 0, and t3 > 1 be integers. Let G'¥2:%3 be the set of all
codewords of the code generated by the matrix obtained from A2/ after
removing the row (1|2 | 4).

Lemma 2.7. Let t; > 1 be an integer. Let
z = (u1,uy | 21, u2, ug, ug, ug | T2,us,.5.,uz) € GO

where u = (uy | ug | ug) € GO and x4 € (2221-)2(2.71”1 for i € {2,3}.
Then,
1) if o(z) = 8, then x;—1 is a permutation of (2Z i,2(i_%).(t.1_l),2Z i) for
2 2
i€{2,3}.
(2) if o(z) = 4, then z1 = 0 and xy is a permutation of (4Zg, 247" 47Zg).
(3) if o(z) = 2, then x1 = 0 and x2 = 0.

Proof. Let wj, where j € {1,...,t; + 2}, be the jth row of A1+t101 Note
that w; = (1]2]4), and wa,..., W 4o are the rows of order 8, where
w10 =(0,1]1,0,1,2,3|1,0,...,7). Since any element of G1*1.01 can
be written as z + Awy, 42, where A € Zg, then z = 231:21 riw; = (ui,up |
T1, U2, ug, ug, Uz | T2,us,.S.,ug), where r; € Zg. By construction, z; and
x9 are generated by the rows of M| = {z’ : z € {0,2}"*} and M} = {z” :
z € {0,2,4,6}"1}, respectively. Thus, 7 = 0 or x; is a permutation of
(274,227",2Zy4), and 29 = 0 or zp is a permutation of (2Zg,4..",2Zg) or
(428, 2'4.t.1.71, 428)-

For Item 1, there exists at least one j € {2,...,¢; + 1} such that r; €
{1,3,5,7}. Therefore, by Item || of Lemma xi—1 is a permutation of

(2Z.0:, 27007V 97,0:) for i € {2,3}.
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For Item 2, we have that r; € 2Zg for all j € {2,...,t; + 1} and there
exist at least one j € {2,...,¢; +1} such that r; € {2,6}. Therefore, 1 =0
and, by Item [1| of Lemma m Ty is a permutation of (4Zg, 2417 4Z).

For Item 3, we have that r; € 4Zg for all j € {2,...,t; + 1} and there
exist at least one j € {2,...,t; + 1} such that r; = 4. Therefore, z; = 0
and z9 = 0. O

Lemma 2.8. Lett; > 1 and to > 0 be integers. Let

t1,t 1,1
z = (ur,u1 | 1, ug, u2, ug, ug | us, us, us, uz) € GH2LL

where u = (uy | ug | ug) € G121 and xy € (224)%" 2. Then,

(1) if o(z) = 8, then x1 is a permutation of (224,227, 22,).

(2) if o(z) = 4, then x1 = 0 if uy = 0, and 1 is a permutation of
(224,212 27) otherwise.

(3) if o(z) = 2, then x1 = 0.

Proof. Let w;, where i € {1,...,t; +t3 + 2}, be the ith row of Aft:tz+L1
Note that wi = (1|2 ]4), wa,...,ws 41 are the rows of order 8, and
Wi 42, -« -y Wiy +1,+2 are the rows of order 4, where wy, 44,42 = (0,1 1,0,1,2,3 |
0,2,4,6). Since any element of G227 11 can be written as z + Awy, 44,12,
where A € {0,1,2,3}, then z = Zggtﬁl riw; = (ug,uy | 21, u2, ug, ug, ug |
us,us, us, ug), where r; € Zg for i € {2,...,t; + 1} and r; € {0,1,2,3} for
i€ {t1+2,...,t1 +ta + 1}. By construction, x; is generated by the rows
of M{ = {z" : z € {0,2}"**%2}. Thus, 21 = 0 or x1 is a permutation of
(274,272 27y).

For Ttem 1, there exists at least one i € {2,...,¢; + 1} such that r; €
{1,3,5,7}. Therefore, since x; is of order at most two, z1 # 0.

For Item 2, we have that r; € 2Zg for all i € {2,...,¢t1 + 1} and r; €
{0,1,2,3} for all i € {t1 +2,...,t1 + t2 + 1}. Note that, since x; and uy
are of order at most two, x1 # 0 if and only if there exists at least one ¢ for
i€ {t1+2,...,t1 +t2+ 1} such that r; € {1, 3}, or equivalently, if and only
if ul 7& 0.

For Item 2, we have that r; € 4Zg = {0,4} for all i € {2,...,¢; + 1} and
ri € {0,2} for all i € {t; +2,...,t; +t2+ 1}. Therefore, since z; is of order
at most two, x1 = 0. U

Lemma 2.9. Let t; > 1 be an integer. Let HOL be the ZoZ475-additive
code of type (a1,as, asz; t1,0,1) generated by A0 Let u = (uy | ug |
u3) € GOl Then,
(1) if o(u) = 8, then uy contains every element of Zs the same number
of times, uy is a permutation of (w,. ™, p,27%y,."., 2704, Zs\2Zy, ." .
, Z4\274) for some integers m,n,r > 0 and p € {1,3}, and ug is a
permutation of (!, ™. !,y ™ W 27, 1., 22, T \2Zs, " ., Zg\27Zg)
for some integers m’,n’ ;' >0 and p,p’ € {1,3,5,7}.
(2) if o(u) = 4, then u; = 0, uy contains the element in 2Z4\{0} =

{2} exactly $(% + ao) = 4771 times and 9 — 21 = 4h~1 — 2h~1
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times the element 0, and us is a permutation of (p, ™., p,4Zs,.m.
A7, 27.8\4Zsg, ." ., 2Zs\4Zsg) for some integers m,n,r > 0 and p €
{2,6}.

(3) if o(u) = 2, then uy = 0, ug = 0, and uz contains the element in
4Z\{0} = {4} ezactly 3(% + as + 2a3) = 8171 times and % —
(S + ag) = 8171 — 4171 times the element 0.

Proof. We perform a proof by induction on ¢t; > 1. If t; = 1, then by
Lemma a1 =2, a3 =1, a3 = 1, and G1% = ((0,1 | 1] 1)). Let
u= (u | ug | ug) € GH%. Then, u = A(0,1 | 1 | 1), where \ € Zs.
Thus, we have that u; = A(0, 1), ug = (A), and uz = (A). If o(u) = 8, then
A € Zg\2Zg. Therefore, u satisfies Property |1} If o(u) = 4, then X\ € {2,6}.
In this case, u3 = (0,0), ug = (2) contains the element in 2Z4\{0} = {2}
exactly 1 = 3(% + as) time and 0 = % — 2 times the element 0, and
ug = (A). Thus, u satisfies Property [2] If o(u) = 2, then A = 4. In this case,
uy = (0,0), ug = (0), and uz = (4) contains the element in 4Zg\{0} = {4}
exactly 1 = 1(% +as+2a3) time and 0 = 2 — 1 (%! + o) times the element
0. Thus, u satisfies Property [3| Therefore, the lemma holds for ¢t; = 1.

Assume now that the lemma holds for the code H!1:%! of type (a1, ag, a3; 1,0, 1)
with £; > 1. By Lemma |2.1} we have that

(18) 2 = o, 4" = oy + 209, and 8" = oy + 2a9 + 4as.

We must show that the lemma is also true for the code A1 H1L0:1,
Let v = (v1 | vo | v3) € GFTLOL We can write

vV =24+ \w,

where z = (uy,uy | T1, ug, ug, ug, ug | T2, uz,.%.,uz), w=(0,1]1,0,1,2,3 |
1,0,...,7), u= (u1 | uz | ug) € GO X\ € Zs, 1 € (2224)*" such that ei-
ther z; = 0 or z; is a permutation of (2Z4, 2", 2Z,4), and x5 € (2Zg)*" such
that either 3 = 0 or x5 is a permutation of (2Zg, 4", 2Zg) or (4Zg, 241"
,4Zg). Then, vi = (u1,u1) + A(0,1) and, for i € {2, 3},

(19) v = (zi_1,ui, .2 ug) + A(1,0,..., 21 — 1),

If z = 0, then v = Aw and it is easy to see that v satisfies Property [1] if
A € Zg\27Zs = {1,3,5,7}, Property 2/if A € {2,6}, and Property |3|if A = 4.
Therefore, we focus on the case when z # 0.

Case 1: Assume that o(v) = 8. We have two subcases: when o(z) is
arbitrary and A\ € Zg\2Zg, and when o(z) = 8 and A € 2Zg. In both
subcases, note that v; contains every element of Zy the same number of
times. For the first subcase, we have that (u;, 2 u;) + A0, ...,21 — 1), for
i € {2,3}, is a permutation of (Zy:, %, Zy:i) by Lemma Thus, from ,
v; is a permutation of (z;_1 + AL, Zgi, %i., Zgi). Since either z;_1 + A1 = A1,
or z;_1 + Al is a permutation of (Zyi\2Zg:, 2" VY Z9:\2Zy:), v satisfies
Property
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For the second subcase when o(v) = 8, that is, when o(z) = 8 and
\ € 2Zs, we have that o(u) = 8 and, by Item 1 of Lemma[2.7, z;_; is a per-
mutation of (2Zy;, 2Dy 2Z4:) for i € {2,3}. By induction hypothesis,
u satisfies Property [1] and then wus is a permutation of

(pby gy 22y, . 27, Lg\22y, .7 ., Zy\27Zy),
where m,n,r > 0 and p € {1,3}, and ug is a permutation of
(,u', ."P'., /L,, ,u", .”?'., ,u”, 2Z8, .7?/., QZg, Zg\QZg, .7:/., Zg\?Zg),

where m/, n/,r" > 0and ¢/, 1" € {1,3,5,7}. From (19)), vo = (1, ua, ug, u2, uz)+
A(1,0,1,2,3). If A € {0,4}, then vo = (x1,u9,us,uz,us) in v satisfies
the same property as ws in u; that is, Property If A € {2,6}, then

vy = (x1,ug, ug, ug,u2) + (2,0,2,0,2). By Item [I| of Lemma we have
that z1 + 2 is a permutation of (2Z4, 20t 2Z4). Thus, by Lemma vy is

a permutation of

(274, 4042071 97y, Ty \ 2Ly, 4r2m 74\ 2Zy).

Therefore, for A € 2Zg, vy satisfies Property Now, we consider the co-
ordinates in v3. From , vy = (w2,u3,.5.,u3) + A(1,0,...,7). By Item
of Lemma we have that, for A € 2Zg, xo + A1 is a permutation of
(2Zs, anst 27Zg). If A =0, it is easy to see that vs satisfies Property |1} Note
that A(0,...,7) is a permutation of (0,2,4,6,0,2,4,6) if A € {2,6}, and
a permutation of (0,4,0,4,0,4,0,4) if A\ = 4. Thus, by Lemma v3
satisfies Property [I} Therefore, if o(v) = 8, then v satisfies Property

Case 2: Assume that o(v) = 4. We have two subcases: when o(z) = 4
and A\ € 2Zg, and when o(z) = 2 and A € {2,6}. For the first subcase,
since o(z) = 4, we have that o(u) = 4. Moreover, ;1 = 0 and z2 is a
permutation of (4Zg,24''7",4Zg) by Item 2 of Lemma By induction
hypothesis, u satisfies Property 2] Then, u; = 0, ug contains the element
in 2Z4\{0} = {2} exactly 4"*~! times and 4"1~! — 2%1! times the element
0, and ug is a permutation of

(/L, .T.n., M, 4Z8, .7.1., 4Z8, 2Z8\4Z& T o 228\4Z8)

for some integers m,n,r > 0 and p € {2,6}. Since v; = (u1,u1) +
A0,1), uy = 0, and A\ € 2Zs, we have that v; = 0. From (19), vy =
(1, u2, u2, ug, u2)+A(1,0,1,2,3). If A € {0,4}, then vy = (x1, u2, ug, ug, u2).
Since 1 = 0 is of length 211, it is easy to see that v9 in v satisfies the
same property as uo in u; that is, Property If A\ € {2,6}, then vy =
(21, uz, ug, us, uz) + (2,0,2,0,2), where 21 = 0 is of length 2'1. Note that
ug + 2 contains the element in 2Z4\{0} = {2} as many times as uy contains
the element 0, and the element 0 as many times as ug contains the element
2. Thus, vy contains the element in 274\ {0} = {2} exactly 2t + 2(411~1) +
2(4h1—1 —2ti=1) = 4" times and 2(411 1) 4241171 — 20171) = 4h1 211 times
the element 0. Therefore, for A € 2Zg, vq satisfies Property 2 Now, we con-
sider the coordinates in v3. From , v = (w2, us,.8.,u3) + A(1,0,...,7).
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If A =0, it is easy to see that vg satisfies Property [2l For A =4, xo+ Al is a

permutation of (4Zg, 241", 47Zg), and for A € {2,6}, it is a permutation of

(2Z8\4Z8, 2'{175.1.71, 2Zg\4Z8)

Note that A(0,...,7) is a permutation of (0,2,4,6,0,2,4,6) if A € {2,6},
and a permutation of (0,4,0,4,0,4,0,4) if A = 4. Hence, by Lemma
v3 also satisfies Property [2, and so does v.

Now, we consider the second subcase, when o(z) = 2 and A € {2,6}.
Since o(z) = 2, we have that o(u) = 2. Then, by Item 3 of Lemma [2.7]
x1 = 0 and z2 = 0. By induction hypothesis, u satisfies Property 3| so
u; = 0, ug = 0, and uz contains the element in 4Zg\{0} = {4} exactly
m = 8171 times and m/ = 8171 — 411 times the element 0. Since v; =
(ui,u1) + A(0,1), ug = 0, and A € {2,6}, we have that v; = 0. From
(19), va = (z1,u2, uz, uz, uz) + (2,0,2,0,2). Since z1 = 0 and uy = 0, of
length a; and ao, respectively, we have that vo = (2,0, 2,0,2). Therefore,
v contains the element in 2Z4\{0} = {2} exactly a; + 2ao = 4 times and
209 = 41 — 211 times the element 0, by . Therefore, vy satisfies Property
Now, we consider the coordinates in vs. From , vy = (w2,us,.3.
,u3) + A(1,0,...,7). Since 2o = 0, x5 + A1 = (X, 21 )). Note that u3 is a
permutation of

(4,m=m" 4 4Zg, ™. AZg).

Moreover, since A € {2,6}, A(0, ..., 7) is a permutation of (0,2,4,6,0,2,4,6).
Thus, by Item [1| of Lemma 2.2} (us,.%.,u3) + (0,2,4,6,0,2,4,6) is a per-
mutation of

(2Z8 , Q(m_f’?/)“m', 2Z8) .

Thus, vs is a permutation of (X, 471, X, 2Zg, 2("=™)+4’ 97} with A € {2, 6},
and hence v3 also satisfies Property [2] and so does v. Therefore, if o(v) = 4,
then v satisfies Property

Case 3: Assume that o(v) = 2. Then, o(z) = 2 and A € {0,4}. Since
o(z) = 2, then o(u) = 2. Moreover, 1 = 0 and z2 = 0 by Item 3 of Lemma
2.7 By induction hypothesis, u satisfies Property [3| and then u; = 0, us =
0, and u3 contains the element in 4Zg\{0} = {4} exactly 8"1~! times and
81— —4%1~1 times the element 0. Since vy = (u1,u1)+A(0,1), v; = 0. From
(19, vo = (@1, u2, uz, ua, u2) + A(1,0,1,2,3), where z; = 0 and us = 0, so
v = 0. From , vy = (v2,u3,.85.,u3) + \(1,0,...,7), where x5 = 0 is of
length 4. If A = 0, it is easy to see that v3 satisfies Property |3} If A = 4,
vy = (v2,us,.%.,u3) + (4,0,4,0,4,0,4,0,4). Note that usz + 4 contains
the element in 4Zg\{0} = {4} as many times as ug contains the element
0, and the element 0 as many times as us contains the element 4. Then,
v contains the element 4 exactly 4%t + 4(8%1~1) 4 4(8h1~1 — g4hi—1) = g
times and 4(8171) +4(81171 — 41171) = 8% — 4%t the element 0. Therefore,
v satisfies Property [3] This completes the proof. O
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Lemma 2.10. Let t; > 1 and to > 0 be integers. Let H'' 21 be the Zo747-
additive code of type (a1, ag;ty, ta, 1) generated by AU-*21, Let u = (uq |
uy | uz) € Gtista,1,

(1) If o(u) = 8, then u has the following property:

(a) uy contains every element of Zo the same number of times, us
is a permutation of (p, "™, pu, 2724, ."., 2704, Zy\2Zu4, ." ., Zs\27Z4)
for some integers m,n,r > 0 and pn € {1,3}, and ug is a permu-
tation of (', ™., p', p", V. p" 27, 7, 27, Tg\27s, " ., 7ig\27g)
for some integers m',n’,r" >0 and p, ' € {1,3,5,7}.

(2) If o(u) = 4, then u has one of the following properties:

(a) u1 = 0, ug contains the element in 2Z4\{0} = {2} ezactly
(A + ag) = 4271 times and @ — 94 = ghtlzml_ ghitta—l
times the element 0, and us is a permutation of (u, ™., u,4Zg, .m.
,AZg,27.8\4 s, ." ., 2Zg\AZg) for some integers m,n,r > 0 and
pe {2,6}.

(b) uy contains every element of Zs the same number of times, us
is a permutation of (p, "™, pu, 2724, ."., 2724, Zy\2Zu4, ." ., Zs\27Z4)
for some integers m,n,r > 0 and p € {1,3}, and ug is a permu-
tation of (4Zs, .., 47g, 278\4Zs, .t ., 27.g\47s) for some integers
£t >0.

(3) If o(u) = 2, then u has one of the following properties:

(a) up =0, ug = 0, and ug contains the element in 4Zg\{0} = {4}
ezactly (% +ao+2a3) = 81714% times and % — (% +az) =
ghi—lgtz _ ghitt2=1 times the element 0.

(b) uy = 0, uy contains the element in 2Z4\{0} = {2} ezxactly
(S + ag) = 41271 times and 9@ — 9 = ghtzml _ ghtta—l

times the element 0, and us is a permutation of (4Zg, ™., 47Zg)
for some m > 0.

Proof. We prove this lemma by induction on to > 0. The lemma holds for
the code H1'%! by Lemma Assume that the lemma holds for the code
Hivt21 of type (a1, ao, as;ty, te,1) with £ > 1 and t2 > 0. By Lemma
we have that

(20) ouitte — o 42 — o 4 20, and 8142 = o + 2a9 + 4a.

We must show that the lemma is also true for the code H!t2+b1,

Let v = (v1 | v2 | v3) € Git2HL1 We can write
vV=z+\w,

where z = (u1,uy | @1, up, uz, uz, uz | us, us, ug, ug), w = (0,1]1,0,1,2,3 |
0727476)7 u = (Ul | u9 | US) c gt17t271’ >\ c {0’1’2,3}7 and 71 e (224)2t1+t2
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such that either z; = 0 or a permutation of (2Z4,2".""2™",2Z4). Then,
v1 = (ur,u1) + A(0,1),

(21) vy = (21, ug, ug, uz,u2) + A(1,0,1,2,3),
vy = (us, us, us,us) + A(0,2,4,6).

If z = 0, then v = Aw. It is easy to see that v satisfies Property if
A € {1,3} and Property if A = 2. Therefore, we focus on the case when
z # 0.

Case 1: Assume that o(v) = 8. Then, o(z) = 8 and A € {0,1,2,3}.
We have that o(u) = 8 and, by Item 1 of Lemma 21 is a permutation
of (274,227 274). By induction hypothesis, u satisfies Property
Then, u; contains every element of Zo the same number of times, us is a
permutation of

(s 0, 1, 2004, o, 270, Toa\ 2T, .7, Zoa\270),
where m,n,r > 0 and p € {1,3}, and us is a permutation of
(,u', .T':L/., /L,, /,L”, .77.1/., /,L”, 2Z8, .7%'., 228) Zg\?Zg, .T./., Zg\QZg),

where m/,n/;r’ > 0 and p/, " € {1,3,5,7}. First, since v = (uy,u1) +
A(0,1), v; contains every element of Zg the same number of times, for any
A €{0,1,2,3}. Second, from , vy = (x1,ug, ug, ug, u2) + A(1,0,1,2,3).
If A = 0, then vy clearly satisfies If A\ € {1,3}, then we have that
(ug, w2, u2,us) +A(0,1,2,3) is a permutation of (Z4, %2.,7Z4) by Lemma .
For \ € {1,3}, since 21 4+ A1 is a permutation of (Z4\2Z4,2""2 7", Z4\2Z,)
by Item [3] of Lemma, we have that vy satisfies Property If A =2,
vy = (21, ug, Uz, Uz, uz)+(2,0, 2,0, 2). By Item 1] of Lemmal[2.2] we have that
x1+2 is a permutation of (274, 20ttt 27Z4). Therefore, by Lemma vy is
a permutation of (2Z4, A2t 97 Zy\2Z4, %72 7.4\274) and then vy
satisfies Property Finally, we consider the coordinates in v3. From ,
vs = (ug, us, us, ug) +A(0,2,4,6). If \ = 0, then v3 clearly satisﬁes Note
that A(0,2,4,6) = (0,4,0,4) if A =2 and (0, 2,4,6) is a permutation of
(0,2,4,6) if X € {1,3}. Therefore, by Lemma [2.5 vs satisfies Property [1a]
and so does v.

Case 2: Assume that o(v) = 4. We have two subcases: when o(z) = 4
and A € {0,1,2,3}, and when o(z) = 2 and X\ € {1,3}. For the first subcase,
since o(z) = 4, o(u) = 4. By induction hypothesis, u satisfies Property
or Assume that u satisfies Property Then, u; = 0, ug contains the
element in 2Z4\{0} = {2} exactly 4"17%271 times and 4t1Tt2~1 — 2ti+ta—1
times the element 0, and w3 is a permutation of

(M, .”.”‘., M, 4Z8, .7.1., 428, 228\4287 T o 228\428)

for some integers m,n,r > 0 and p € {2,6}. Note that, in this case,
1 = 0 by Item 2 of Lemma If A = 0, then it is easy to see that
v satisfies Property If A = 2, we show that v satisfies Property
Since vy = (u1,u1) + A(0,1), w3 = 0, and A = 2, we have that v; = 0.
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From (21)), v = (1, u2, u2, u2,u2) + (2,0, 2,0, 2), where 1 = 0 is of length
2ltt2  Note that us + 2 contains the element in 2Z4\{0} = {2} as many
times as wo contains the element 0, and the element 0 as many times as
ug contains the element 2. Thus, vy contains the element in 2Z4\{0} =
{2} exactly 201Ht2 4 2(4lrtt2a—1) 4 g(4hitta—l _ olitte—1) — 4hi+t2 times and
2(4titta=1y 4 o(ghitta—l _ghitta—ly — ghittz _ 9hitt2 imes the element 0, so
vo satisfies Property From , vy = (us,us,us,u3) + (0,4,0,4). By
Item [2] of Lemma [2.6] v3 is a permutation of

(4Zg, 4n., AT, 27.5\AZg, Y72, 275\ AZs).

Therefore, for A = 2, v satisfies Property Finally, if A € {1, 3}, we show
that v satisfies Property Since v1 = (u1,u1) + A(0,1), u; = 0, and
A € {1, 3}, we have that v; contains every element of Zg the same number of
times. From (21), va = (21, u2, u2, uz, uz)+A(1,0,1,2,3), where z; = 0 is of
length 211+%2. Since A € {1, 3}, by Lemma we have that vy is a permuta-
tion of (A, 2112, X, Zy, 22, Z4). From (1)), vs = (us, us, us, uz)+A(0, 2,4, 6).
Note that, for A € {1,3}, A\(0,2,4,6) is a permutation of (0,2,4,6). Thus,
by Item [1] of Lemma [2.6] vs satisfies Property and so does v. There-
fore, if o(u) = 4 and u satisfies Property we have that v satisfies either
Property [2a] or

We continue with the first subcase, when o(z) = 4 and A € {0,1,2,3}.
Again, we have that o(u) = 4. Now, we assume that u satisfies Property
Then, u; contains every element of Zs the same number of times, us is
a permutation of

(py 1 oy 224, 7 224, Ly\2Z4, . " ., L4 \2Zs)

for some integers m,n,r > 0 and p € {1,3}, and ug is a permutation of
(4Zsg, .t ., 475,27 \47s, .t ., 27.5\4Zg) for some integers t,t > 0. Note that,
in this case, 1 is a permutation of (2Z4,2""2™",2Z4) by Item 2 of Lemma
Now, we show that v satisfies Property 2b] Since v1 = (u1,u1)+ (0, 1)
and wuq contains every element of Zs the same number of times, we have
that v; contains every element of Zs the same number of times, for any
A € {0,1,2,3}. From (21)), vo = (x1, u2, u, ug, u2) +A(1,0,1,2,3). If A = 0,
it is clear that vy satisfies Property 2b] Note that 21+ A1 is a permutation of
(27.4,27727" 27,) if A = 2, and a permutation of (Z4\2Zy,2" 27", Z4\27Zy)
if X € {1,3}. If A = 2, then by Lemma [2.4] (ug, ug, ug, u2) + (0,2,0,2) is a
permutation of

(2Z4, 47, 274, Z4\2Zg, 727 74\ 27s4).

If A € {1,3}, then by Lemma (ug, ug, ug,uz) + A(0,1,2,3) is a per-
mutation of (Zg4, %2.,7Z4). Therefore, vy satisfies Property From ,
vy = (us3, us, us, us) + A(0,2,4,6). If \ =0, it is clear that v satisfies Prop-
erty 2b] Note that A(0,2,4, 6) is a permutation of (0,2,4,6) if A € {1,3},
and \(0,2,4,6) = (0,4,0,4) if A\ = 2. Therefore, by Lemma v3 satisfies
Property 2B} and so does v.



18 DIPAK K. BHUNIA, CRISTINA FERNA'NDEZ-C(’)RDOBA7 MERCE VILLANUEVA

Now, we consider the second subcase when o(v) = 4, that is, when o(z) =
2 and A € {1,3}. Since o(z) = 2, o(u) = 2. By induction hypothesis, u
satisfies Property [3a] or Assume that u satisfies Property Then,
u; = 0, ug = 0, and w3 contains the element in 4Zg\{0} = {4} exactly
m = 817142 times and m/ = 81 ~14%2 — 4l =1 times the element 0. By
Item 3 of Lemma we have that 1 = 0. Since v; = (u1,u1) + A(0,1),
u; = 0, and A € {1,3}, we have that v; contains every element of Zs the
same number of times. From , vy = (1, ug, ug, ug, uz) + A(1,0,1,2,3),
where 1 = 0 is of length 2872, By Lemma we have that vy is a
permutation of

(N 212N 2y, 02, Ty),

where A € {1,3}. From , vy = (us,us,us,us) + A0,2,4,6). Note
that ug is a permutation of (4,™~™' 4,47Zg, ™", 47g) and, since A € {1,3},
A(0,2,4,6) is a permutation of (0,2,4,6). Thus, by Item [1| of Lemma
v3 = (u3,us, us,uz) + (0,2,4,6) is a permutation of (2Zg, ™17 2Zg), so v3
satisfies Property and so does v. Therefore, if o(u) = 2 and u satisfies
Property [3al, we have that v satisfies Property

We continue with the second subcase, when o(z) = 2 and A € {1,3}.
Again, we have that o(u) = 2. Now, we assume that u satisfies Property
Then, u; = 0, uz contains the element in 27Z4\{0} = {2} exactly 4i1+f2~1
times and 4f1+2—1 _ 9titta=1 timeg the element 0, and ug is a permutation
of (4Zs,.m.,47Zg) for some m > 0. By Item 3 of Lemma we have that
x1 = 0. Since v1 = (uj,u1) + A(0,1), uy = 0, and A € {1,3}, we have
that v1 contains every element of Zy the same number of times. From ,
ve = (x1,us, Uz, us,us) + A(1,0,1,2,3), where 1 = 0 is of length 2172,
By Lemma we have that vo is a permutation of

(N 212N 2y, 02, ),

where A € {1,3}. From (21), vs = (us,us,us,us) + A(0,2,4,6). Since
A € {1,3}, A(0,2,4,6) is a permutation of (0,2,4,6). Thus, by Item [1] of
Lemma vs = (us3,us,us,uz) + (0,2,4,6) is a permutation of (2Zg, 2™
,27s3). Therefore, vs satisfies Property and so does v.

Case 3: Assume that o(v) = 2. Then, o(z) = 2 and A € {0,2}. Since
o(z) = 2, we have that o(u) = 2 and, by Item 3 of Lemma x1 = 0.
By induction hypothesis, u satisfies Property or Assume that u
satisfies Property Then, u; = 0, ug = 0, and ug contains the element
in 4Zg\{0} = {4} exactly m = 81714% times and m' = 8f1~14%2 — g4l1+i2—1
times the element 0. If A = 0, then v = (0 | 0 | v3) satisfies Property
since v3 contains 4m times the element 4 and 4m’ the element 0. Now, we
assume that A = 2. Since v = (u1,u1) + A(0,1), u; = 0, and A = 2, we
have that v; = 0. From , vy = (21, ug, ug, ug, uz) + (2,0,2,0,2), where
x1 = 0 is of length 21172 and uy = 0. Therefore, vy contains the element in
2Z4\{0} = {2} exactly oy + 2c = 4"F"2 times and 2ay = 4117172 — 2hi+t2
times the element 0, by . From , vy = (us,us,us,us) + (0,4,0,4).
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Note that ug is a permutation of
(4,m=m" 4 AZg, ™. ATg).

Thus, by Item [1| of Lemma v3 is a permutation of (4Zg,2m+2m" 47),
so vs satisfies Property and so does v. Therefore, if o(u) = 2 and u
satisfies Property [3a, we have that v satisfies Property

We continue with the case when o(z) = 2 and A € {0,2}. Again, we
have that o(u) = 2 and x; = 0. Now, we assume that u satisfies Property
Then, u; = 0, ug contains the element in 2Z4\{0} = {2} exactly
ghitt2=1 times and 4f1tt2—1 — 2hitte—1 timeg the element 0, and us is a
permutation of (4Zg,.™.,47Zg) for some m > 0. If A = 0, then it is easy
to see that v satisfies Property Now, we assume that A\ = 2. Since
v = (u1,u1) + A(0,1), u; = 0, and A = 2, we have that v; = 0. From
, vy = (x1,ug,us,uz,u2) + (2,0,2,0,2), where ;1 = 0 is of length
2012 Note that ug + 2 contains the element in 2Z4\{0} = {2} as many
times as ug contains the element 0, and the element 0 as many times as uo
contains the element 2. Therefore, va contains the element in 2Z,4\{0} =
{2} exactly 201Ht2 4 2(4trtta=1) 4 g(qtitta=l _ olitta=1) — gli+t2 times and
2(4trttz=ly 4 o(gtittz=l _ ohitta=ly — ghittz _ 9litt> times the element O.
From (21)), v3 = (us, u3, u3, u3) + (0,4, 0,4). By Item [I] of Lemma v3 is
a permutation of (4Zg, #™,4Zs). Therefore, vs satisfies Property nd SO
does v. This completes the proof. ([

From [0], related to the generalized Gray map (1]) considered in this paper,
we have the following results:

Lemma 2.11. [6] Let A\, € Zs. Then, ¢s(Au25"1) = Aps(u2°71) =
Auds(2571).
Lemma 2.12. [6] Let u,v € Zos. Then, ¢s(25 Tu+v) = ¢5(2°71u) + ¢s(v).
Proposition 2.2. [14, [6] Let u,v € Zgs. Then,

dp(ps(u), ¢s(v)) = Wty (ds(u —v)).

By Proposition the ZsZ4Zg-linear codes obtained from the Gray map
® are distance invariant, that is, the Hamming weight distribution is invari-
ant under translation by a codeword. Therefore, their minimum distance
coincides with the minimum weight.

Proposition 2.3. Let t1 > 1 and ta > 0 be integers. The ZoZ4Zs-additive
code H'' 21| generated by AM 21 is a ZyZ4Zs-additive Hadamard code.

Proof. Let H!1*21 be the ZyZ47Zs-additive code of type (a1, o, as;ty, ta, 1)
and H' 2! be the corresponding ZoZ47Zg-linear code of length N. We have
that N = a; + 2as + 4as. The cardinality of H'f2:l s 8 . 4%2 .2 =
2(a1 + 2a9 + 4ag) = 2N by Lemma By Proposition the minimum
distance of H**>! is equal to the minimum weight of H* %21 Therefore,
we need to prove that the minimum weight of H'*2! is N /2.
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We can write that H!21 = gtz y (Givt2l 4 (1] 2 | 4)). By Lemma
Hivt2l = o(Ght21y U (§(GH21) +1). Let u = (uy | ug | ug) €
Hi2\{0,(1 | 2 | 4)}. We show that wty(®(u)) = N/2. First, consider
u € ght21\{0}. If o(u) = 8, then by Lemma up contains every
element of Zy the same number of times, and for ¢ € {2,3}, u; contains
every element of 2071Z,; exactly s; times, s; > 0, and the remaining a; — 2s;
coordinates of u; are from Zq;\2°"'Zy:. Thus, from the definition of ®, we
have that wty(®(u)) = a1/2 + 289 + (g — 2s9) - 1 + 4s3 + (a3 — 2s3) - 2 =
a1/2+as+2a3 = N/2. If o(u) = 4, then u satisfies Property [2a] or [2b| given
in Lemma If u satisfies Property [2a] then us contains every element
of 47Zg exactly m times, m > 0, and the remaining coordinates of us are
from Zg\4Zg. Thus, wtg(®(u)) = o1 /2+as+4m+ (a3 —2m) -2 = a1 /2+
ag + 2a3 = N/2. Otherwise, if u satisfies Property then wtg(®(u)) =
a1/24+2n+ (g —2n) - 1+ 4t + (a3 — 2t) - 2 = N/2. If o(u) = 2, then u
satisfies Property [3a] or [3D] given in Lemma [2.10} If u satisfies Property
then wty (®(u)) = 1(a1/2 + az + 2a3) - 4 = N/2. Otherwise, if u satisfies
Property then \ =2 $(a1/2 4 as) + 4m + (a3 — 2m) - 2 = N/2.

Finally, note that wty(®(u) + 1) = N/2. Therefore, we have that the
weight of every element of H'™f2:1\{0,1} is N/2, that is, the minimum
weight of Hivi2:1 is N/2. O

Proposition 2.4. Let t; > 1, t > 0, and t3 > 1 be integers. If H!1!2:ts
is a ZolysZg-additive Hadamard code of type (a1, ae, as;ty, te, t3), then, by
applying Construction (@, Hivt2ts L s q 757.475-additive Hadamard code
of type (2a1,2ai2, 235 b1, to, t3 + 1).

Proof. By Construction , Hivt2tstl g o 7,57,475-additive code of type
(o, oy, ays 1, ta, t3 + 1), where o = 201, oy = 20, and oy = 2a3.

Since H''*2:3 is a Hadamard code of length N = a7 + 2as + 43, then
its minimum distance is N/2 and |H""'2%3| = 2N. Note that Ht:+ jg
Zo74Zs-linear code of length N’ = o} + 2a/y + 4oy = 2N and |H!1-t2t 11| =
gl14t22ts ¥l — 9| fytit2:3| = 2. 2N = 2N’. By Proposition the minimum
distance of H! 23+l i5 equal to the minimum weight of Hfv:t2f+l  We
only have to prove that the minimum weight of H!t:2%3+1 is N'/2. Let
Hivtts — (Hl ’ Ho ’ Hg). Note that

Hivtztatl — U ((H1,H1 | Ho,Ho | Ha, Hs) + A(0,1]0,2]0,4)).
Ae{0,1}
By Lemmas and
Hio st = | ] (D(Hy, Ha | Ha, Ha | Hs, Hs) + A(0,1,0,1,0,1))
Ae{0,1}
(22) = Ay U Al,
where Ay = ®(Hi,H1 | Ho,H2 | H3,H3) + A(0,1,0,1,0,1), A € {0,1}.

Next, we show that the minimum weight of Ay is N'/2. Any element in A
is of the form ®(uy,uy | ug,ug | us,us) + A(0,1,0,1,0,1), for u = (uy | us |
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ug) € (Hy | Ho | Hs). Let u = (uy | uz | ug) € (H1 | Ha | H3)\{0}. When
A = 0, we have that wtg(P(u1,ur | ug,uz | us,uz)) = 2wty (®(u)). Thus,
the minimum weight of Ay is 2+ N/2 = N’/2. Otherwise, when A\ = 1, we
have that wtg (®(uy,uy | ug,us | us,us) + (0,1,0,1,0,1)) = wtg(P(u)) +
a1 —wtg(ur)+2as —wt g (Pa(ug)) +4as —wty (Ps(us)) = wty(®(u))+ a1+
209 + 4az — wtgyg(®(u)) = N = N’/2. Thus, the minimum weight of A; is
N'/2. Therefore, from (22)), the minimum weight of H*-2%+1 is N'/2. [

Next, from Proposition and Proposition [2.4, one can derive the result
below.

Theorem 2.1. Let t; > 1, toa > 0, and t3 > 1 be integers. The ZoZsZg-
additive code H' 123 | generated by A1t2:13  is a Zo7475-additive Hadamard
code.

To illustrate, we present an example.

Example 2.2. The ZyZ4Zg-additive code HY %' generated by AV, given
n (@), is a ZoZ4Zg-additive Hadamard code of type (2,1,1;1,0,1). We can
write H'O = U, ez, (A + ad), where A= {X(0,1]1]1): X € Zs}. Thus,
HYO U = &(HYOY) = U, e, (P(A)+ad), where D(A) consists of all the rows
of the Hadamard matrix

000 O0O0OO0OTO0OOP O
01010101
00110011
01100110
H(2,4) = 000O0T1T1T171
01011010
00111100
01101001

Note that ®(A) is linear and the minimum distance of ®(A) is 4, so H!
is a binary linear Hadamard code of length 8.

Proposition 2.5. Let t; > 1, to > 0, and t3 > 1 be integers. Let H':!2:3
be a ZoZ4Zg-linear Hadamard code of length 2t. Then, t+1 = 3t1 + 2to +t3.

Proof. Since H!2% is a binary Hadamard code of length 2, we have that
|Hivtzts| = 2. 20 = 241 Note that |Hiv!2:03| = 2301+204t  and hence
t+1 =3t + 2ty + ts. 0

Now, we recall Theoremin order to compare the Zo7Z47g-linear Hadamard
codes H':'2:'3 (with ay # 0, ag # 0 and ag # 0) with the ZsZy-linear
Hadamard codes (with a; # 0, ag # 0) of the same length. Also recall that
the type of a ZsZ4-linear code can be given as (a1, as,0;0,te, t3) if we see
the code as a ZoZyZg-linear code with ag = 0, or directly («aq,ao;ta,ts3).
Note that there are no ZoZ4Zg-linear Hadamard codes neither with only
a1 = 0 nor with only as = 0 [24, [33].
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Theorem 2.2. [28] Let t > 3 and ty € {0,...,[t/2]}. Let H'>' be the
nonlinear ZsZy-linear Hadamard code of length 2t and type (a1, an;ta,t3),
where oy = 28712 g = 2071 — 2071 and ty =t + 1 — 2ty. Then,

t
rank(H™") = t3 + 2ty + <22> and ker(H™") =ty + t3.

We also recall the construction of the Zgs-linear Hadamard codes with s >
2 studied in [16], and Theorem given in [I§], in order to compare these
codes with the ZsZ4Zg-linear Hadamard codes H'!2:3 (with a1 # 0, ag # 0,
and a3 # 0) of the same length. Let T; = {j-2°=1 : j € {0,1,...,257 1 -1}}
foralli € {1,...,s}. Note that T} = {0,...,2°—1}. Let t1, to,.. . ,ts be non-
negative integers with ¢; > 1. Consider the matrix A’"»’ whose columns
are exactly all the vectors of the form 27, z € {1} xT{' P x T8 x- - x Tt Let
H!1ts be the Zgs-additive code of type (n;t1,...,ts) generated by Att-ts,
Let Hiots = @ (H!t) be the corresponding Zgs-linear Hadamard code.

Theorem 2.3. [I8] Let H"' be the Zgys-linear Hadamard code, with s > 2
and ts > 1. Then, for all ¢ € {1,... ts}, H' -t is permutation equivalent
to the Zsso-linear Hadamard code HYO'™ ti=Ltzetsonta=l,

For 5 < t < 11, Tables 1 and 3 given in [I6] show all possible values
of (t1,...,ts) corresponding to nonlinear Zss-linear Hadamard codes, with
s > 2, of length 2¢. For each of them, the values (r, k) are shown, where 7 is
the rank, and £ is the dimension of the kernel. Note that if two codes have
different values (r, k), they are not equivalent. The following example shows
that all the nonlinear ZZ4Zg-linear Hadamard codes H't2:3 of length 21
are not equivalent to each other, nor to any ZsZy-linear Hadamard code,
nor to any Zes-linear Hadamard code [16], with s > 2, of the same length
211,

Example 2.3. Consider t = 11. By solving equation t + 1 = 3t1 + 2t +
t3 given in Proposition all ZoZyZg-linear Hadamard codes H'!2:3 of
length 2™ are the ones in

T — {Hl’o’g,H1’1’7,H1’2’5,H1’3’3,H1’4’1,H2’0’6,H2’1’4,H2’2’2,H3’0’3,H3’1’1}.

By using the computer algebra system MAGMA [13], their corresponding val-
ues of (r,k), where r is the rank and k is the dimension of the kernel,
are (127 12)7 (147 9)7 (177 8): (2177); (2676); (17, 8)7 (2277)7 (2876): (2876);
and (37,5), respectively. The code HY%? is the only linear code in T since
r = k = 12. Using MAGMA, we can check that the following codes in
each pair are nonequivalent to each other: (HY25 H?*06) (H?22 H303),
Therefore, the codes in T are not equivalent to each other.

Let T = T\ {H"9?}. Similarly, by solving equation t + 1 = 2ty + t3
given in Theorem (2.9, all nonlinear ZoZ4-linear Hadamard codes of length
2 are H?8, H35, HY* and H5?, and by Theorem their corresponding
values of (r, k) are (13,10), (15,9), (18,8), and (22,7), respectively. Using
MAGMA, we can check that H>Y* and H®? are nonequivalent. Therefore,
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all the codes in T are nonequivalent to any ZoZas-linear Hadamard code of
length 2.

Finally, note that all the codes in T, except HYV" and H>1*, are not
equivalent to any Zos-linear Hadamard code, with s > 2, of length 21, since
they have different values of (r, k). The Zgs-linear Hadamard codes of length
21 having the same values (r, k) = (14,9) as HYYT, are H?96, H1L05
AHL0.1,0:4 5 [r1,0,0,0,1,0.2 gy g [1,00,0,0,0,1,0.0 “aphich are equivalent to each other
by Theorem . The Z4-linear Hadamard code HOV is the only Zos-linear
Hadamard code of length 2'', having the same values (r,k) = (22,7) as
H>Y4 . However, using MAGMA, we can check that the following codes in
each pair are nonequivalent to each other: (HYL7 H*0.8) (H214 [6.0),

Therefore, all the nonlinear ZoZ4Zg-linear Hadamard codes H' 2% of
length 2'* are not equivalent to each other, nor to any ZoZy-linear Hadamard
code, nor to any Zas-linear Hadamard code [16], with s > 2, of the same
length 2.

Finally, the following example shows that other ZoZ,Zg-linear Hadamard
codes can not be constructed by Construction (3). However, in the next
section, we also show that other constructions of these codes do generate
equivalent codes.

Example 2.4. Consider the matrix

11 11| 22 2222 | 4444 44444444
B=1] 01 01|02 1111|0646 11113333
00 11|31 0123 | 1771 01234725

Using MAGMA, we can check that the code generated by B is a ZoZ.4Z.g-linear
Hadamard code of type (4,6,12;2,0,1), and it is nonequivalent to the code
H?01 generated by A% given in

3. SAME TYPE EQUIVALENT Z9Z478-LINEAR HADAMARD CODES

In this section, we see that if we consider other specific starting matri-
ces, instead of the matrix AM%! given in , and apply the same recursive
Construction , and , or new constructions more general than
and , and the same Construction , we also obtain ZyZ4Zs-additive
Hadamard codes with a3 # 0, as # 0 and a3 # 0. Indeed, the corre-
sponding ZoZ47Zs-linear Hadamard codes, after applying the Gray map &,
are equivalent to the codes ®(H!1-¥2:3) of the same type constructed in Sec-
tion 2

Let Z3; be the group of units of Z,: for 7 € {2,3}. Then, Z; = {1,3} and
Z§ ={1,3,5,7}.
Proposition 3.1. Let a; = (a1) and by = (b1), where a; € Zy and by € Zg.
Then, the code generated by
4
by )’

ito1 (1 12
(23) A5 = < 0 1

ai
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denoted by 7:[;’10;—)11, is a ZoZyZg-additive Hadamard code of type (2,1,1;1,0,1).
Moreover, the corresponding ZoZ.4Z.g-linear Hadamard code @(7:[;’102—)11) 18 per-
mutation equivalent to ®(H01).

—1,0,1 . : A
Proof. Let A% be the matrix obtained from A;’O’l

al,bl 171_71
operation described in Table I} depending on the values of a; € Z} and b, €

by applying the row

—1,0,1 . . 2 .
Z§. Note that Aaloil is also a generator matrix of 7—[;’102;11. After permuting
1

—1,0,1 . . -
the first two columns of Arz1 5, if necessary, we obtain ALOL . Thus, ’H;’IO

b1
and H"%! are permutation equivalent, and so are the codes @(H;’loé—)ll) and
Q(HLOL). O

Theorem 3.1. Let £ > 1. Let a; = (ay,...,ar) € (Z3)¢, by = (by,...,by) €
(22, a; = (a;,%7 ) a;), and by = (b, 471, b;), 1 < i < €. Let A%

atq bty
with t1 > 1, be the matriz obtained by using the following construction (in-

stead of Construction @)) We start with flé’lo;—)ll given in . If we have

Agll’ﬂéz = (Ay | Ay | A3), with £ > 2, we may construct

—1,94—1

(24) AZ,O,} — Al Al Ml AQ AZ AQ AZ MQ AS AB e A3
agbe 0 1 ay 0 1 2 3 | b, O i -7 ’

where My = {27 : z € {2} x{0,2}¢71}, My = {2" : z € {4} x{0,2,4,6}*'}.

We repeat Construction until £ = t1. Then, the code generated by

A0 denoted by 7—[;’0’ , 18 a ZoZyZg-additive Hadamard code of type
1

atl’btl Btl
(a1, a9, a3;t1,0,1) with ap # 0, ae # 0 and as # 0. Moreover, the corre-

sponding ZoZ4Zg-linear Hadamard code @(7:[21’0’51 ) is permutation equiva-

lent to ®(HOL).

t15bty

Proof. Tt is enough to show that 7:121’0’51]:
17t

alent. We prove this by induction on ¢; > 1. By Proposition [3.1} this is true
for t; = 1. Assume that ’Hflt’o’l—)lt and H10! are permutation equivalent. Let
127t

Atlvov_l _ (Al ‘ AQ ’ A?)) and Atl,o,l — (Al ‘ A2 ‘ Ag) By COHStTUCtion 7

aty,beg

and H!0! are permutation equiv-

we have
At1+1,07,1 _ Al A1 M1 Az AQ AQ A2 M2 As A3 A3
Gty +1,bty 41 0 1 |ay,+1 O 1 2 3 | byt O i A ¢ ’

where M) = {27 : z € {2} x {0,2}1}, My = {27 : z € {4} x {0,2,4,6}"1},
as 1 = (ay+1, 2%, ag 1), and by 1 = (by 41, 4%, by, 41). By Construction

, we have

At1+1,0,1:<A1 Ay | Mh Ay Ay Ay A

0 1 1 0 1 2 3 1 0 i

My Ay A - A3>
b
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where My = {z” : z € {2} x {0,2}"1}, My = {zT : z € {4} x {0,2,4,6}"1}.

Yt1+1,0,1 it1+1,0,1
Let H10 and H1 1101 be the codes generated by A;t;% . and
t14+1,0¢q

Aty 41,01 +1
A+L0L regpectively.

. t1,0,1 . . .
Since 7—[&1 = and H!0! are permutation equivalent, there exist some row

t1,0t1

operations and column permutations so that after applying these operations
on (A; | A2 | Asz), we obtain (A; | A2 | As). First, we apply the same

. it14+1,0,1
row operations to AL

and the corresponding column permutations
Aty 41,01 +1

A

ki )’
for i € {1,2,3}, ki € Zgi. Thus, for i € {1,2,3}, A; becomes A;. Then,
we change the last row by applying the row operation described in Table

depending on the values of a;,+1 € Z) and by, 41 € Zg. After that, we
permute the blocks of the form

(1) () ma ().

for k; € Zqi, so that we obtain the submatrices

to each submatrix

Ay Ay Ay Ay Ay Ay q As As - Az
o 1/)°{o 1 2 3 )* (o 1 ... 7 )
respectively. Let ﬂ;t:rll’o,—;i " be the matrix obtain from A?ttll’ol-’)j - after
39ty 1 1

applying all these operations. Let M] and M} be the matrices M, and Mg,
respectively, after all these operations. Finally, after a suitable permutation
of the columns corresponding to the blocks of the form

() m (%)

—t1+1,0,1 . ~ ¢ 1,0,1
G D > Weobtain AMFLO01 Thygs, the codes HTHY and Hh+1.0.1
Aty +1,0t1 41 at1+17bt1+1

are permutation equivalent, and so are the corresponding ZosZ,Zg-linear
codes. This completes the proof. [l

Example 3.1. Let a = (1,3) and by = (3,5). Then,

) 11 11]22 2222|4444 44444444
Az’fé: 01 0102 a; | 0246 b,
’ 00 11|as 0123| by 01234567

11 11| 22 2222 | 4444 44444444
= 01 01]02 1111|0246 33333333 |,
00 11|33 0123|5555 01234567

which is obtained by using Construction , starting with the matriz Aé’loé—}l
given in .
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=
T

row operation

Tit1 € Titl

Titl < T1 — Tip1
Titl €= Orp — Orip1
Tit1 <= DTyl

Tit1 <= 71— 3Tit1
Tit1 <= 3riy1

Titl < 71+ Tiq
Tit1 € TTig1

UL W = Ot g W =

EN|

TABLE 1. Row operations depending on the values of a; € Z}
and b; € Zg.

First, note that we have

11,0,1 1 1 2 4 1,0,1 _ 1 1 2 4
Aa1,51_<0 1] ) mdA =10 1]1]1 )
Therefore, by using Table [1, AV = (A; | Ay | A3) can be obtained from
A(}l’logl = (A1 | Ay | A3) by applying the row operation ro < 11 — T2 and
the column permutation (1,2). No column permutation is performed on the
submatrices As and As. Then, we apply the same row operation ro < 11 —19

to A;;Oé and the column permutation (1,2) to each submatrix ( ’;{11 > , for
7 1

k1 € Zy. Thus, fori € {1,2,3}, A; becomes A;. Then, we apply rs < r1+73,
described in Table[1], so we obtain

11 11|22 2222 | 4444 44444444
01 01]20 1111|4206 11111111
11 00|11 2301|1111 45670123

After that, we permute the blocks of the form ( ﬁl >, for k; € Zyi and

i€ {1,2,3}, so that we obtain

b0l 11 11| 22 2222 | 4444 44444444
7(,1’207;;2 =1 10 10|20 1111|4206 11111111
00 11|11 0123|1111 01234567

Finally, after applying a suitable column permutation to the submatrices,

22 4444
20 | and | 4206
11 1111
—2,0,1 . 201 72,0,1 2,0,1
n AZ5 , we can obtain A=Y, Thus, the codes H5 and H="" are per-
2,02 az,b2

mutation equivalent, which is equivalent to say that the codes @(7%2’20;;12) and

®(H2O1) are permutation equivalent.
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Theorem 3.2. Let t; > 1, to > 0 and ¢ > 0. Let Gy, +¢ = (a1,...,a1+¢) €

(Z5)HE, by = (b, ... btl) € (ZHY, and ag, i = (a4, 227 agy14) for
0 <7</ Let Atl’tQ’ be the matriz obtained by using the following

b1 +tg:bt

construction (instead of Construction ), starting with A;’lo’gll given in .
If we have Atl’e VLo — (A | Ay | As), with € > 1, we may construct

Tty 40—1:bt
(25) Aver (A A| M A A As Ay [ Ay A A Ag
iy 400ty 0 1 |ay4e O 1 2 3 0 2 4 6 ’

where My = {2z : z € {2} x{0,2}' 1}, We repeat Construction until
¢ =ty. Then, the code generated by A1 denoted by H™!

Aty +tg,bty (lt1+t2j)t1;
ZoZ.4Zg-additive Hadamard code of type (al,ag,ag; ti,te,1) with a; # 0,
as £ 0 and asz # 0. Moreover, the corresponding ZoZ4Zs-linear Hadamard

code ®(H™ ) is permutation equivalent to ®(H!t2:1).
Aty +t9,btp

1S a

ti,t .

Proof. It is enough to show that Hal’ 2,1 5 and Hivt21 are permutation
t14to,0t1

~t1,0,1

equivalent. We prove this by induction on t5 > 0. By Theorem (3 ’Hat 3
17t

it ,te,1
and H%! are permutation equivalent. Assume that H 1082 5, and Hivizl
Aty 41950t

generated by Atl,f;ti;275tl and A'!2:1 respectively, are permutation equiva-
lent. We have that as, 14,41 € Z; = {1,3}. Let Hltllt;tij;ibt and Ht2+11 he
the codes generated by Af_lltfi;gillyl;tl using Construction and Afvtzthl
using Construction (4)), respectively. Then, by the same arguments as in the

proof of Theorem [3.1] u and applylng the row operation ¢, 44,41 = =Tt +to+1

“t1,ta+1,1
if a = 3, the codes H ’
t1+to+1 — @ty 9410ty

alent, and so are the corresponding Z,Z47Zsg-linear codes. This completes
the proof. O

and H!-2+51 are permutation equiv-

Theorem 3.3. t1 > 1, t, > 0 and t3 > 1. Let Gy 11, = (a1,...,at,41,) €
(Z3)H2 by = (bry...,by) € (Z5)"™. Le tAtl’tQ’t3 be the matriz obtained

Gty +to 50ty
by using Construction in the following way, starting with A;’logl given in
(.) If we have AL 0> 2 we may construct A by Construc-
Aty +t9,0t;’ Qty+tg,0tq

tion @ We repeat Construction (@ until £ = t3. Then, the code generated
by AP denoted by HV™B s a ZeZyZs-additive Hadamard code

Gty +tg,0t, Aty +t9,btp
of type (o, ag, az; ty, ta, t3) with ay # 0, as # 0 and ag # 0. Moreover, the
corresponding ZoZyZs-linear Hadamard code @(Hilt’ti;t3 5, ) is permutation
27701

equivalent to ®(H!1-12:03),

Proof. We have that that 'Htl’ti’t 5, and H!'>! are permutation equivalent
t1+t2:9t

by Theorem [3.2] Then, by the same arguments as in the proof of Theorem
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Sty ot ts+1 . .
3.1, the codes Halt’ it 3;—; and H!#25+1 are permutation equivalent and the
1 2071

result follows. O

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we give several recursive constructions of ZsZ4Zg-linear
Hadamard codes with a1 # 0, as # 0, and a3 # 0. We show that they all al-
low us to construct the same family of codes since they generate permutation
equivalent codes. Moreover, from Example we see that all the nonlinear
Z7.47s-linear Hadamard codes H!1*2% of length 2!! are not equivalent to
each other, nor to any ZoZg4-linear Hadamard code, nor to any Zss-linear
Hadamard code [I6], with s > 2, of the same length 2''. Therefore, we
have that some nonlinear Hadamard codes, without any known structure,
now can be seen as the Gray map image of a ZyZ4Zg-linear Hadamard codes
with a; # 0, ag # 0, and ag # 0. As further research, it would be interesting
to generalize this result, given only for 2!, to any length 2¢.

Another further research could be to generalize the given construction
of ZoZ4Zg-linear Hadamard codes to ZsZy ... Zss-linear Hadamard codes
with aq,. .., as different to zero, or even to ZyZ,z ... Zps-linear generalized
Hadamard codes with p prime. The study of ZsZ,Zs-linear Hadamard codes
may represent an important step to study the general case, and other papers
[2,136] have also focused on this particular case. However, the generalizations
are not feasible using the same techniques employed in this paper.
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