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Abstract 15 

Widely used Correlative Species Distribution Models (C-SDMs) usually make some 16 

simplifying assumptions, often failing to consider important ecological and evolutionary 17 

attributes potentially hindering the characterization of the species niche. Here, we use the 18 

tree species Taxus baccata to explore the effects of including biologically meaningful 19 

information on processes and features beyond purely abiotic factors that are expected to 20 

determine its niche and range size. To elucidate how these often neglected factors affect 21 

C-SDM results, we modelled the current niche in the species’ southernmost European 22 

range using Maxent. More specifically, we included available basic information regarding 23 

biotic interactions, local adaptation and non-equilibrium demographic dynamics. The 24 

potential effect of biological interactions was introduced using habitat suitability of co-25 

occurring tree species as predictive variables. Local adaptation was included modelling 26 

two distinct regional adaptive groups. We also used individual growth estimated under 27 

field conditions as a surrogate for demographic behaviour to control for the quality of 28 

model predictions and empirically assess the effect of biotic interactions. Including 29 

information on co-occurring tree species improved model performance and decreased the 30 

projected range size in most cases. These effects were not a result of biological 31 

interactions per se, but instead a consequence of co-occurring species accounting for fine-32 

scale environmental variability not described by any of the climatic variables used. 33 

Considering local adaptation allowed detecting the role of different climatic variables in 34 

shaping the niche of each adaptive group that could potentially also act as selective 35 

pressures in the near future. Finally, and more importantly, we found that including 36 

populations that are probably currently found under non-equilibrium suboptimal 37 

conditions might largely overestimate the species niche. 38 
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1. Introduction 42 

About half a century ago, G. Evelyn Hutchinson (1957) provided a quantitative 43 

formalisation of the species ecological niche concept as the n-dimensional hyper-volume 44 

defined by abiotic and biotic variables where a species can potentially survive. From a 45 

demographic perspective, the Hutchinsonian niche of a species represents those habitats 46 

where its intrinsic population growth rate is zero or positive (Holt, 2009). Hutchinson’s 47 

ideas were first related to Correlative Species Distribution Models (C-SDMs) in an early 48 

study assessing the climatic requirements of tree species (Booth, 1988), and this 49 

theoretical and methodological framework has since then been widely used. However, C-50 

SDMs aim to describe patterns rather than mechanisms leading to the association between 51 

species occurrences and environmental data, making their ecological meaning hard to 52 

interpret (Singer et al., 2016). 53 

C-SDMs have become the standard approach to predict species range dynamics 54 

due to the urgency of estimating ecological responses to rapid environmental change and 55 

the general lack of detailed individual-based information necessary to parameterize 56 

mechanistic models, which include explicit processes aiming at defining causality (Singer 57 

et al., 2016). Since C-SDMs are not directly linked to ecological and evolutionary 58 

processes, some of their assumptions may not always be fulfilled. Among the main 59 

assumptions that might not always hold are the following: (1) species’ distributions are 60 

mainly shaped by climatic conditions; (2) the species niche is conserved over space and 61 

time; and (3) species’ distributions will frequently be at equilibrium with the environment 62 

(Araújo and Peterson, 2012). However, biologically informed correlative models might 63 

be able to handle some of these limitations by considering basic information on certain 64 

potential ecological and evolutionary processes (Thuiller et al., 2014; Ehrlén and Morris, 65 

2015). These approaches might be particularly useful for species where C-SDM 66 
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assumptions might not hold up and process-based information is rather limited or hard to 67 

obtain. In these cases, the consideration of any available information about the species 68 

biology when implementing C-SDMs may allow not only to test for the consequences of 69 

potential deviations from model assumptions, but to provide meaningful ecological 70 

insights (Dullinger et al., 2012; Giannini et al., 2012; Marcer et al., 2016; Talluto et al., 71 

2016). 72 

Biotic interactions can sometimes override or modify the effects of climate 73 

(Araújo and Luoto, 2007). For instance, weak competitors can be excluded by dominant 74 

species from their optimal environmental conditions, while they might persist in more 75 

extreme environments that the dominant competitors cannot occupy (Thuiller et al., 76 

2014). Although from a theoretical and empirical point of view biotic interactions are 77 

essential in defining the species’ niche (Wisz et al., 2013), their role in C-SDMs for 78 

predicting species distributions is unclear, and probably depends on the spatial scale 79 

(Pearson and Dawson, 2003) and the type of biotic interaction considered (Araújo and 80 

Rozenfeld, 2014). Different methodological and statistical approaches have been 81 

suggested to better assess the effect of biotic interactions (reviewed in Wisz et al., 2013), 82 

but it remains rather challenging to infer their role in defining the niche, mainly because 83 

of the confounding effects of missing abiotic variables and the temporal and spatial 84 

dependency of interactions on environmental factors (Dormann et al., 2018). This might 85 

be particularly problematic when the role of biotic factors changes according to the life-86 

history stage considered. Although C-SDMs that include co-occurrence information at 87 

large spatial scales do not necessarily describe biotic interactions (Giannini et al., 2012), 88 

they can help to put their potential importance in shaping species niche into perspective 89 

(Dormann et al., 2018). Moreover, including information regarding the distribution of 90 

potential biotic interactions increases the predictive power of the model, as it might 91 
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account for environmental axes not described by widely used climatic data (Zimmermann 92 

et al., 2010; Giannini et al., 2012; Wisz et al., 2013). 93 

Even though in commercial forestry the importance of provenance selection trials 94 

has long been acknowledged, another common assumption behind most studies using C-95 

SDMs for predicting species ranges is that of niche conservatism, meaning that the 96 

suitable niche space does not change over space and time. However, in many cases broad 97 

climatic tolerances at the species level are generally comprised of narrower, 98 

geographically-adapted tolerances at the scale of populations as a consequence of 99 

differential selection pressures and/or population isolation (Wiens et al., 2009; Benito-100 

Garzón et al., 2011, 2019; Peterson et al., 2019). Some approaches have attempted to 101 

incorporate intraspecific variation as a proxy for local or regional adaptations into species 102 

niche modelling (reviewed in Peterson et al., 2019) by, for instance, modelling separately 103 

different taxonomic units (Meynard et al., 2017) or genetic lineages (Marcer et al., 2016), 104 

or even including phenotypic plasticity and adaptation over large geographical scales 105 

(e.g., Valladares et al., 2014; Fréjaville et al., 2020). Including intraspecific variation can 106 

account for deviations from the niche conservatism assumption, being especially useful 107 

when modelling species where local adaptation is known to happen. In such cases, 108 

modelling without taking into account this relevant evolutionary information could lead 109 

to erroneous predictions or forecasts of future range dynamics, increasing (e.g., Pearman 110 

et al., 2010; Benito-Garzon et al., 2011; Bush et al., 2016; Razgour et al., 2019) or 111 

reducing (e.g., Atkins and Travis, 2010; Valladares et al., 2014) the projected 112 

vulnerability to climate change. 113 

Finally, C-SDMs assume that species are at equilibrium with current climatic 114 

conditions, so that the species’ range is expected to fill the entire suitable habitat 115 

available. However, under non-equilibrium situations, species may be absent from 116 
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suitable environments (Booth et al., 2014). In fact, commercial forestry trials have 117 

frequently shown that many tree species can grow successfully under climatic conditions 118 

other that those found in their natural range (Booth, 2017), so that C-SDMs may thus 119 

underestimate a specie’s fundamental niche and its climatic adaptability. In other 120 

situations, species may be present in environments that once were suitable but are 121 

currently unsuitable (Dullinger et al., 2012). This last scenario might be particularly 122 

important in long-lived organisms with declining or remnant population dynamics 123 

(Eriksson and Eriksson, 2000), as well as at the “trailing” edge of species that are 124 

currently contracting their ranges (Elith et al., 2010). In such situations C-SDMs might 125 

overestimate the extension of the species niche, as some populations are wrongly assumed 126 

to be under suitable conditions (Schurr et al., 2012). From a theoretical viewpoint, the 127 

probability of occurrence or suitability projected by C-SDMs is expected to be related to 128 

the species’ demographic performance, measured as the intrinsic population growth rate 129 

or some of their components (survival, growth or reproduction). Few studies have 130 

incorporated functional or demographic traits and/or compared the relation between 131 

demographic parameters and occurrence probability derived from C-SDM models 132 

(Benito-Garzón et al., 2013). Nevertheless, some studies have reported that the 133 

probability of occurrence or suitability does not always co-vary with trait expression as a 134 

proxy of species performance, or with demographic parameters (Thuiller et al., 2009; 135 

Dolos et al., 2015), as it would be expected if model assumptions were met. 136 

In this study, we used the English yew (Taxus baccata L., Taxaceae) to assess the 137 

effects of integrating biological meaningful features that are expected to determine the 138 

species’ distribution beyond purely abiotic factors on the habitat suitability derived from 139 

C-SDMs. This species is an example of a non-model and non-commercial long-lived tree 140 

with remnant and declining population dynamics, particularly in its southern range, for 141 
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which some relevant biological information is available. To that end, we evaluated the 142 

effects of incorporating biological information into C-SDMs regarding (1) co-occurring 143 

species niche distributions and field observations of inter and intraspecific competition, 144 

(2) regional patterns of adaptation and (3) individual performance (growth). In particular, 145 

we are addressing the following questions: (1) Does the inclusion of co-occurring species 146 

niche suitability provide meaningful information about species interactions and/or 147 

increase the predictive power of the model? (2) Does the inclusion of local adaptation 148 

lead to different niche predictions as compared to the whole species approach? (3) Is the 149 

consideration of individual performance useful to inform distribution models and assess 150 

the predictive quality of C-SDMs?  Our aim is not to provide an accurate description of 151 

the species’ niche, but to show that using basic and relevant biological information in C-152 

SDMs helps unravelling the importance of the ecological and evolutionary processes 153 

considered and, more importantly, that it can also be a valuable management tool for 154 

benchmarking the quality of much simpler predictive models. 155 

 156 

2. Materials and methods 157 

2.1 Study species and area 158 

English yew (T. baccata L.) is a dioecious, slow-growing and long-lived gymnosperm 159 

natural of Eurasian temperate and Mediterranean forests (Thomas and Polwart, 2003). 160 

Despite its wide distribution, it forms small stands and/or isolated populations in many 161 

parts of Europe, particularly in the Mediterranean area. In the Iberian Peninsula, the 162 

species is found under quite variable environmental conditions across most of its 163 

latitudinal range. In the south, where climate is characterized by higher temperature and 164 

less precipitation compared to the north, populations are often small, sometimes with no 165 

more than 20-150 reproducing trees that are located in north-facing slopes and shady 166 
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ravines or close to streams and mountain springs. In these populations regeneration is 167 

almost absent, since seedling emergence and recruitment in English yew is partly limited 168 

by water availability (Sanz et al., 2009), suggesting a high extinction risk in the coming 169 

future. In contrast, the species can form relatively large and continuous stands in northern 170 

latitudes, of up to 1,000-3,000 individuals, although it is often found growing with other 171 

tree species in mixed forests of beech, pines and oaks. Potential biotic interactions with 172 

these accompanying species may include facilitation for recruitment and growth during 173 

the first sapling stages (García et al., 2000; García and Obeso, 2003), but also competition 174 

for light under excessive canopy closure that can strongly limit sapling growth and 175 

reproduction of adults (Svenning and Magård, 1999; Iszkuło, 2010; Iszkuło et al., 2012). 176 

As in many other parts of its current range, gene flow among populations of the 177 

Iberian Peninsula is limited, and neutral genetic diversity is highly structured both at the 178 

local (Dubreuil et al., 2010) and the regional scale (González-Martínez et al., 2010; 179 

Maroso et al., 2021). Within the Iberian Peninsula, adaptive variation in response to local 180 

environmental drivers has been reported for some of the genes involved in taxol 181 

biosynthesis (Burgarella et al., 2012) and, more recently, for phenological and growth 182 

traits (Mayol et al., 2020).  183 

 184 

2.2 Individual performance in natural populations 185 

We assessed the performance of individuals in natural populations using tree growth, 186 

estimated from increment cores for a total of 235 trees sampled in 25 natural populations 187 

across the study area (Fig. 1a, Table 1). Most of these populations were visited to assess 188 

demographic (population size and sex ratios) and genetic variability. Since many 189 

populations are protected and the number of available trees per population is usually 190 

limited, the number of trees sampled per population was rather variable (1-26 trees per 191 
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population; mean= 9.4; median = 9.0). Using a 5-mm increment borer, we usually 192 

extracted only one core at breast height in the upslope side of the tree. Increment cores 193 

were mounted on wooden supports, air-dried, sanded, and digitally scanned. Tree rings 194 

were identified using CooRecorder/CDendro software package (Larsson, 2013). Because 195 

of the limited number of sampled tress in many of the populations, we did not perform 196 

cross-dating of ring width variation. For all but two of the 235 sampled trees we also 197 

measured their diameter at breast height and categorized the tree as either uncovered 198 

(UC), i.e., dominant and codominant trees receiving almost full light from above (< 25% 199 

crown cover), or covered (intermediate or suppressed tree by another tree:  ≥ 25% crown 200 

cover). We also recorded the identity of the nearest neighbor dominant tree species. From 201 

this information, covered yew trees were further classified according to leaf size and leaf 202 

habit of the nearest neighbor: (i) needle-like perennials (NP, such as Pinus spp.), (ii) 203 

broad-lived perennials (BP, such as Quercus ilex), (iii) broad-leaved deciduous (BD, e.g. 204 

Fagus sylvatica), and (iv) conspecifics (T, T.baccata). 205 

Information on radial growth increments was converted into basal area increments 206 

during the last five years (BAI5, in cm2). We then used a general linear mixed model to 207 

assess the potential effect of the type of crown cover on BAI5. The model included cover 208 

type (UC, NP, BP, BD and T), individual size (BA: estimated 5-year’s previous basal area 209 

in cm2) and their interaction as covariates, and population identity as a random factor. 210 

Both BAI5 and BA were ln-transformed. The analysis was performed with the lmer 211 

function of the lme4 package version 1.1 (Bates et al., 2015) in R (R Core Team, 2019). 212 

Tests for fixed effects were obtained using the lmerTest package version 1.1 (Kuznetsova 213 

et al., 2016) with the Kenward-Roger's approximation for denominator degrees of 214 

freedom for the F statistics (Kenward and Roger, 1997). 215 
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We also assessed the potential association between plant performance and 216 

climate. We used stepwise regression (StepReg R package version 1.1, Li et al., 2020) 217 

between mean BAI5 per population and average precipitation and daily mean minimum 218 

and maximum temperatures during spring (March-April), summer (June-August), 219 

autumn (September-November) and winter (December-February). 220 

 221 

2.3 Occurrence data 222 

Occurrence records of T. baccata in the Iberian Peninsula were obtained from individual 223 

GPS data points and 1-km spatial resolution records. Individual GPS points included data 224 

collected by the authors from 2005 to 2015, the LIFE-BACCATA project (LIFE15 225 

NAT/ES/000790), and several local botanical experts, as well as information available in 226 

the databases of the Valsaín Clonal Bank (Spanish Ministry of Agriculture, Fisheries and 227 

Food) and the General Directorate for the Natural Environment (Valencian Autonomous 228 

Community).  One-km spatial resolution records were available or reported in Serra and 229 

García (2012), ANTHOS (Plant Biodiversity Data bank of Spain, http://www.anthos.es/) 230 

and BIOCAT (Biodiversity Data Bank of Catalonia, http://biodiver.bio.ub.es/biocat/) 231 

databases. To standardize occurrence data, individual GPS data points were coarsened to 232 

a 1-km spatial grid, finally obtaining 1,817 unique 1-km resolution points from the 233 

original 9,017 occurrence GPS records (Fig. 1a). 234 

 235 

2.4 Climatic and biotic C-SDM predictors 236 

We considered two types of predictive variables: those related to climatic conditions and 237 

those related to biotic interactions (biotic variables hereafter). Two types of datasets 238 

concerning predictor variables were prepared: a) a set with only climatic variables, Clim, 239 

and b) a set with the same climatic variables and biotic variables, ClimBio. Climatic 240 
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variables were downloaded from the Digital Climatic Atlas of the Iberian Peninsula 241 

(Ninyerola et al., 2005) in February 2018. We used the mean value to aggregate the 242 

original spatial resolution of 200 m to 1,000 m, and then generated the Bioclim set of 243 

variables (Booth et al., 2014) using the bioclim function of the R package dismo version 244 

1.1 (Hijmans et al., 2017). We chose a set of five bioclimatic variables with known or 245 

alleged ecological relevance for the species (see Svenning and Skov, 2004; Sanz et al., 246 

2009; Cedro and Cedro, 2015; Mayol et al., 2020): annual precipitation, summer 247 

precipitation, precipitation seasonality, mean winter temperature and temperature 248 

seasonality. 249 

As for biotic variables, we used existing niche model projections (habitat 250 

suitability) of co-occurring tree species (Atlas of Topo-Climatic Suitability of Woody-251 

Plants; Ninyerola et al., 2010, accessed in April 2018). We selected a set of tree species 252 

known to co-occur with T. baccata throughout the Iberian Peninsula: Fagus sylvatica, 253 

Quercus humilis, Quercus pyrenaica, Pinus pinaster and Pinus nigra. All the biotic and 254 

abiotic predictive variables selected showed low collinearity (all pair-wise Pearson 255 

correlation coefficients: r < 0.7) for the combined set of occurrences and background 256 

points.  257 

 258 

2.5 Incorporating geographical patterns of adaptation 259 

Mayol et al. (2020) suggested the existence of local/regional adaptation of T. baccata to 260 

climatic conditions in the Iberian Peninsula. In particular, plant growth and reproduction 261 

(male strobili maturation) recorded in a common environment were found to be related to 262 

several temperature variables. Their results suggested that populations in the Iberian 263 

Peninsula form an adaptive cline from Continental populations adapted to colder 264 

temperatures to Mild populations adapted to warmer temperatures. Since variation in 265 
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shoot growth (often a good fitness proxy for forest trees) among geographical 266 

provenances was mainly associated with temperatures experienced during the colder 267 

season, we used the mean winter (December, January, February) temperature to classify 268 

the experimental provenances from Mayol et al. (2020) into either Continental or Mild. 269 

We used the cut-off value of 3.5ºC to obtain the same frequency of provenances in each 270 

class. This same classification criterion was then applied to the dataset of natural 271 

occurrences: 833 below 3.5ºC were classified as Continental and 984 above or equal to 272 

3.5ºC as Mild (Fig. 1a). To assess the effects of including adaptive variability on model 273 

predictions we used both sets of adaptive groups to generate separate C-SDMs models 274 

and compared them with models using the whole set of occurrences.  275 

 276 

2.6 Using individual performance to assess predictive quality of C-SDMs 277 

Based on the relationship between individual performance and climate (see Results), we 278 

fitted a regression model including spring precipitation and maximum autumn 279 

temperature as predictors and growth (BAI5) as the response variable. We then used this 280 

model to predict the growth at each of the 1,817 natural occurrences. To assess the quality 281 

of the suitability predictions arising from C-SDMs, and to determine the set of 282 

occurrences that maximize the relationship between occurrence-derived suitability and 283 

growth-based estimates of habitat quality, we created nine (filtered) datasets including 284 

the 90%, 80%, 70% ... 10% of the top predicted growth values (BAI5) (Figs. 1b,c,d and 285 

Fig. S1). 286 

 287 

2.7 Correlative species distribution modelling and range size 288 

A scheme of the whole modelling approach is provided in Fig. 2. We extracted values at 289 

each of the 1,817 locations for all predictors and created different datasets and models by 290 
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faceting our data along the following criteria: 1) the type of predictors (Clim and ClimBio 291 

datasets), 2) the incorporation of geographical patterns of adaptation (Continental and 292 

Mild adaptive groups, as well as considering the species as a whole, SP), and 3) the use 293 

of all occurrences (unfiltered models: datasets with 100% of the occurrences) and taking 294 

into account individual performance with 10% filtering steps according to predicted 295 

growth (BAI5), as described above. These combinations resulted in 60 datasets, which 296 

were used as input to the corresponding 60 distribution models: two types of predictors 297 

(Clim and ClimBio) x three groups (Continental, Mild and SP) x ten occurrence datasets. 298 

We generated a total of 20 additional distribution model maps that were not a direct 299 

product of the modelling algorithm but a posteriori composition of the species 300 

distribution after merging the outputs of the distribution models for the Continental and 301 

Mild adaptive groups (C+M). These models were generated by keeping the highest value 302 

of the two models in each cell as in Marcer et al. (2016). 303 

We used Maxent, version 3.3.3k, with the maxent function in the dismo R package 304 

version 1.1 (Hijmans et al., 2017) to build our distribution models. Maxent is a presence-305 

background modelling algorithm based on the maximum entropy principle (Phillips et al., 306 

2006; Elith et al., 2011) which has been shown to outperform other correlative algorithms 307 

of its type (Elith et al., 2006). We used Maxent with its default settings except for feature 308 

types, for which only the hinge type was selected; hence similar to a general additive 309 

model (GAM) (Elith et al., 2011). For each of the 60 modelling datasets, 30% of the 310 

occurrences were randomly separated for a final evaluation of predictive performance and 311 

the remaining 70% occurrences were used to train each model. We selected a single 312 

random set of 10,000 points for which we extracted their environmental values and added 313 

them as background to each modelling set of occurrences. We used Maxent’s permutation 314 

importance to assess the contribution of each variable to the model, i.e. the drop in 315 



15 
 

training AUC normalized as percentage when generating the model with its values 316 

randomly permuted. AUC is the receiver operating characteristic area under the curve, a 317 

threshold-independent measure of predictive performance. Marginal response curves of 318 

each variable were produced by plotting each predictor variable against predicted 319 

suitability while maintaining the rest of the variables at their average sampling value. 320 

To assess the predictive performance of models, we calculated the test-AUC using 321 

the evaluate function in the dismo R package version 1.1 (Hijmans et al., 2017) on the 322 

30% of the test points. In addition, we calculated the Spearman correlation coefficient 323 

between the suitability value obtained for each model and the predicted growth (BAI5) 324 

using the cor.test function (R Core Team, 2019). Then, we selected the best model for 325 

each combination of predictors (Clim and ClimBio), groups (Continental, Mild, SP) and 326 

the ten occurrences (one unfiltered and nine growth-filtered) datasets. We considered as 327 

best models those with the highest significant suitability-growth correlation and a test-328 

AUC value equal or higher than 0.9, a value indicating very good predictive performance 329 

according to Swets (1988). 330 

Finally, we estimated the range size for the unfiltered and the best models by 331 

assuming that the available range for the whole species or adaptive group was 332 

proportional to the predicted suitability of their models as in Oney et al. (2013). Range 333 

size (Areatot) was calculated for each model by multiplying the predicted suitability values 334 

of each j grid cell by grid cell area (i.e., 1 km2), and summing over the M analyzed cells: 335 

𝐴𝑟𝑒𝑎𝑡𝑜𝑡  =   𝑃𝑗 ∗ 𝐴𝑟𝑒𝑎𝑗

𝑀

𝑗=1

 

 336 
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3. Results 337 

3.1 Individual performance in natural populations 338 

Individual values for growth during the last five years (BAI5) ranged from 2.9 to 355.4 339 

cm2 (mean = 45.9 cm2; median = 30.0 cm2). Differences among individual trees in BAI5 340 

were related to the size of the tree (βBA = 0.33; p < 0.001) and the type of tree cover (p < 341 

0.001). We did not find a significant interaction between tree size and type of cover (p = 342 

0.12). As expected, the highest mean growth values were those of uncovered trees, 343 

whereas the lowest growth corresponded to individuals suppressed by conspecifics (Fig. 344 

3). Individuals partially or fully covered by needle-like perennials showed similar growth 345 

values to uncovered trees, and those covered by broad-leaved perennial species showed 346 

similar mean growth values to conspecifics ones. Trees covered by broad-leaved 347 

deciduous species showed intermediate values. 348 

Stepwise regression of mean population growth (BAI5) values on climatic 349 

predictors only selected two dependent variables: the first step included precipitation 350 

during spring, and the second step included mean daily maximum temperature during 351 

autumn. The estimated bivariate regression model (R2 = 0.69) suggested a significant 352 

positive relationship between BAI5 and spring precipitation (partial regression coefficient 353 

= 0.453; t = 6.87; p <0.001) and a positive association with maximum autumn temperature 354 

(partial regression coefficient = 11.021; t = 4.22; p <0.001). Mean performance (BAI5) 355 

values per population where positively correlated with estimated census sizes 356 

(Spearman’s Rho = 0.65; p <0.001) (see Table 1). Predicted BAI5 values for the 1,817 1-357 

km grid species occurrences ranged between -41.979 and 247.251 cm2, 29 of them with 358 

mean predicted values lower than zero and 154 not different from zero (95% CI). These 359 

occurrences corresponded to localities in the lowest range of spring precipitation: all 360 

lower than 300 mm and 75% of them lower than 200 mm. 361 
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 362 

3.2 Model performance and selection of best models 363 

Model accuracy was high, both for models excluding (Clim) and including biotic 364 

variables (ClimBio) (Table 2, Table S1): mean test-AUC ± SD values were 0.937 ± 0.042 365 

and 0.950 ± 0.029 for Clim and ClimBio models, respectively (Table S1). In general, 366 

higher accuracy was obtained when modelling the Continental and Mild adaptive groups 367 

separately than considering the whole set of occurrences (SP). For the Continental group, 368 

test-AUC values were always ≥ 0.970 (mean 0.982 ± 0.007), while they ranged from 369 

0.886-0.995 for the Mild group (mean 0.939 ± 0.031), and from 0.874-0.989 for the SP 370 

models (mean 0.924 ± 0.036; Table 2, Table S1). Unfiltered models, i.e. those based on 371 

datasets with all the occurrences, had lower predictive power (test-AUC range from 0.880 372 

to 0.973, mean 0.917 ± 0.037) than those built on growth-filtered datasets (test-AUC 373 

range from 0.874 to 0.995, mean 0.947 ± 0.036). A particularly good accuracy was 374 

obtained for those filtered models built from datasets with 30% or less of the best 375 

predicted growth values (test-AUC range from 0.953 to 0.995, mean 0.977 ± 0.014; Table 376 

S1). 377 

When compared with filtered datasets, none of the unfiltered models (100% 378 

occurrences) showed the highest significant suitability-growth correlation (Table 2). 379 

Furthermore, for most unfiltered models the correlation between predicted suitability and 380 

growth was negative, with the exception of those built with the Continental group of 381 

occurrences, for which the Spearman’s rank correlation coefficient was rather low (Table 382 

2). Within Clim models, the highest significant suitability-growth correlation for the 383 

Continental adaptive group was found for the filtered model with the 10% of the top 384 

predicted growth values (Spearman’s Rho = 0.811, p <0.001). The best models for Mild 385 

and SP groups were those based on the 30% (Spearman’s Rho = 0.838, p <0.001) and 386 
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20% (Spearman’s Rho = 0.742, p <0.001) of the top predicted growth values, respectively 387 

(Table 2). For C+M models, the highest significant suitability-growth correlation was 388 

found for the model with 40% of the top predicted growth values (Spearman’s Rho = 389 

0.695, p <0.001). As for the ClimBio predictor models, the best ones for the Continental, 390 

Mild and SP groups were found when using the 30% (Spearman’s Rho = 0.805, p <0.001), 391 

30% (Spearman’s Rho = 0.846, p <0.001) and 20% (Spearman’s Rho = 0.792, p <0.001) 392 

of the top growth values, respectively (Table 2). Finally, the highest significant 393 

suitability-growth correlation for C+M models was found for the model with 20% of the 394 

top predicted growth values (Spearman’s Rho = 0.774, p <0.001).  395 

 396 

3.3 Response to predictor variables  397 

The variables with higher permutation importance for Clim models were mean winter 398 

temperature and annual precipitation (Table 3, Table S2). Mean winter temperature was 399 

particularly relevant in all the models for the Continental adaptive group (85.9% and 400 

64.3% for the unfiltered and the best model, respectively), positively influencing 401 

predicted suitability (Table 3, Fig S2). Annual precipitation had the largest and positive 402 

importance in SP models (53.7% and 76.9% for unfiltered and the best model, 403 

respectively) (Table 3, Fig. S2). Annual precipitation also showed a high and positive 404 

influence in the models for the Mild adaptive group (38.4% and 67.2% for unfiltered and 405 

the best model, respectively), although in this case mean winter temperature showed an 406 

important and negative influence on predicted suitability in the model using the unfiltered 407 

dataset (27.9%) (Table 3, Fig. S2). 408 

As for the models build including additional biotic predictors (ClimBio), the sign 409 

and permutation importance of annual precipitation and mean winter temperature were 410 

quite similar to those described above for climatic-only predictors, except for the 411 
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unfiltered Mild and SP occurrence datasets (Table 3). In this case, and for the Mild 412 

adaptive group, the presence of Pinus pinaster was the predictor variable with the largest 413 

permutation importance (24.7%), negatively affecting suitability (Fig. S3), followed by 414 

the negative effect of mean winter temperature (18.0%) and the positive effect of annual 415 

precipitation (17.9%). For SP group of occurrences, the two variables with the largest 416 

relative importance were the presence of Fagus sylvatica (46.1%) and Quercus humilis 417 

(15.0%), showing a positive and negative influence, respectively, on the predicted 418 

suitability of T. baccata (Table 3. Fig. S3).  419 

 420 

3.4 Predicted suitability and range size 421 

Among all the models using unfiltered data, those built with both climatic and biotic 422 

variables (ClimBio) always predicted lower suitability for T. baccata than climatic-only 423 

(Clim) models (Fig. 4), resulting into range size reductions around 30-40% (Fig. 5a). The 424 

predicted suitability and range size were lower for the Continental adaptive group 425 

compared to the Mild one (Figs. 4 and 5a). Habitat suitability for the former was mostly 426 

restricted to the main mountain ranges present in the Iberian Peninsula, characterized by 427 

high elevations and/or continental cold climates, while suitable areas for the latter were 428 

found at lower elevation mountain ranges located near the Mediterranean and Cantabrian 429 

coasts, characterized by warmer climates (Fig. 4). Due to the little overlap between the 430 

predicted suitability for each group, the predicted range size for C+M models was close 431 

to the sum of range sizes obtained for each group separately (Fig. 5a). The predicted range 432 

size obtained for the species as a whole (SP) did not differ substantially from that resulting 433 

from C+M models (Fig. 5a), although it was slightly smaller for Clim models (Fig. 5a). 434 

Overall, and compared with unfiltered models, the predicted suitability and range 435 

size of the best filtered models was strongly reduced (Figs. 4 and 5b). Projected range 436 
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size decreased between 52% to 81%, depending on the type of predictive variables used, 437 

whether the presence of adaptive groups was considered or not, and the type of adaptive 438 

group. In general, the reduction was more or less proportional to the percentage of 439 

occurrences used to train the models. 440 

 441 

3.5 Predicted suitability and individual performance 442 

The correlation between predicted suitability and BAI5 improved progressively when 443 

filtering (Fig. 6, Table S3). For the Continental adaptive group, the maximum correlation 444 

was reached when models were built with the 10-30% of the top predicted growth values, 445 

while for the Mild adaptive group, SP and composite C+M datasets the correlation slightly 446 

decreased when the strongest restrictive filtering categories were applied (Fig. 6). 447 

Spearman’s rank correlation coefficients increased from low values close to zero to 448 

positive values around 0.7-0.8, depending on the model (Fig. 6, Table S3). The effect of 449 

filtering was particularly pronounced for Mild and SP groups of occurrences, changing 450 

from slightly negative to highly positive correlations between predicted suitability and 451 

growth (Fig. 6). The patterns of changes in correlations associated to filtering were very 452 

similar for both Clim and ClimBio type of model predictors (Fig. 6). 453 

 454 

4. Discussion 455 

Purely data-driven models based exclusively on occurrence and climatic data are 456 

nowadays routinely employed for both basic and applied biodiversity research, including 457 

the detection of niche shifts, conservation planning and reserve design, land use planning 458 

and restoration, and to predict the impact of anthropogenic climate changes (see Elith and 459 

Franklin, 2013; Van Echelpoel et al., 2015). Since SDMs are conceptually underpinned 460 

in basic ecological concepts and assumptions (Elith and Franklin, 2013), failure to 461 
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recognise the linkage between these assumptions and common modelling techniques 462 

might be a critical issue limiting their predictive power and overall utility. In that sense, 463 

data-driven models, without substantial integration of existing ecological knowledge, 464 

have long been criticized on several grounds, among them those associated with the role 465 

of interspecific interactions, dispersal and ecological equilibria, time lags, evolution and 466 

sampling of niche space (e.g., Sinclair et al., 2010). By combining data with basic 467 

ecological and evolutionary knowledge models can become more process-based, thereby 468 

supporting predictions with a more sound basis (Van Echelpoel et al., 2015). 469 

Unfortunately, novel and more refined methodological approaches accounting for key 470 

ecological and evolutionary processes (e.g., Benito-Garzón et al., 2019) might only be 471 

applied to species for which extensive empirical knowledge is or might be developed. 472 

However, biologically-informed correlative approaches might still be a useful alternative 473 

when only limited information is available. 474 

Here, using a newly assembled database for T. baccata in the Iberian Peninsula, 475 

we take advantage of the ecological and evolutionary information available on the species 476 

to gauge the predictive power of C-SDMs when some of the basic assumptions are not 477 

met. In doing so In doing so, we offer a guiding protocol that can be further explored and 478 

developed in some other similar species, in particular long-lived tree species that might 479 

be currently experiencing non-equilibrium demographic dynamics in a large part of their 480 

range. Although the current approach is rather demanding, its applicability will depend 481 

on the quantity and quantity of meaningful data available. We show that modifying some 482 

of the most basic assumptions underlying C-SDMs, i.e. niche conservatism, equilibrium 483 

dynamics, and that the niche is mainly constrained by a few and simple climatic variables, 484 

had varying effects on the predicted suitability and geographic species’ range, as well as 485 

on the role of the predictive climatic variables included to define the current niche. Below 486 
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we discuss the potential importance, meaning and implications of addressing each of the 487 

pitfalls or hidden assumptions according to the results obtained. 488 

 489 

4.1 The role of climatic and biotic predictors 490 

As expected based on several observational and empirical studies (Sanz et al., 2009; 491 

Cedro and Cedro, 2015), including the significant relationship between mean population 492 

growth (BAI) and spring precipitation found in our study, the results of the C-SDMs 493 

showed that the presence of T. baccata was positively associated with annual rainfall. In 494 

some models, winter temperature was also found be a relevant climatic variable, with 495 

either positive or negative effects depending on the model and adaptive group considered. 496 

Including biotic variables as predictors had variable effects on the relative importance of 497 

climatic predictive variables in explaining species occurrence, as well as on the resulting 498 

niche projection, depending also on the consideration of adaptive groups (Continental, 499 

Mild, and SP). 500 

When occurrences were not filtered according to predicted individual 501 

performance (growth), including predictive biotic variables did not change the overall 502 

positive or negative effect of the climatic variables, but they decreased both their relative 503 

importance and the total projected range size. This suggests that the use of the standard 504 

correlative model based on a few climatic predictive variables might not be fully 505 

appropriate and that some relevant information is missing when defining the species’ 506 

niche. For example, when modelling the niche without taking into account adaptive 507 

groups (SP) and using only climatic variables (Clim), annual precipitation was the most 508 

important variable, positively associated with the probability of occurrence. However, its 509 

importance decreased when biotic variables (ClimBio) were included, and F. sylvatica 510 

suitability became the best predictor, showing also a positive effect on species occurrence. 511 
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These results did not agree with our empirical field data indicating that the presence of 512 

broad-leaved species such as F. sylvatica had a negative effect on T. baccata growth (BD 513 

in Figure 3), a pattern that has been previously reported in other studies (e.g., Piovesan et 514 

al., 2009). Therefore, the observed positive association suggests that, instead of 515 

accounting for the direct effects of a true biotic interaction, the predicted suitability of F. 516 

sylvativa might act as an informative climatic proxy, whose effects might occur at a much 517 

finer spatial scale. We cannot completely rule out, however, real biotic positive 518 

interactions between both species. Even though F. sylvatica is expected to have a negative 519 

effect on T. baccata through competition for resource acquisition, it might also positively 520 

interact with T. baccata during the early stages of the life cycle trough “nursering” effects 521 

on recruitment and establishment (García and Obeso, 2003; Iszkulo, 2010). If this is true, 522 

these species may coexist except in those places where broadleaves form dense 523 

populations/canopies and competition for light may be severe (Svenning and Magård, 524 

1999), definitely excluding T. baccata (Ruprecht et al., 2010). 525 

The relative importance and effect of including biotic predictors when using all 526 

the available occurrence data (unfiltered models) was also different when modelling 527 

discrete adaptive groups (i.e., Mild or Continental). For the Continental group, none of 528 

the biotic predictors was found to be strongly associated with the probability of 529 

occurrence, and mean winter temperature was the most important climatic predictive 530 

variable, regardless of the set of predictor variables employed. However, the inclusion of 531 

biotic variables produced a reduction of 31% in the projected range size of this adaptive 532 

group. In contrast, when modelling the Mild adaptive group, the relative importance of 533 

climatic variables (annual precipitation and mean winter temperature) was much more 534 

reduced when biotic predictors were included. In this case, the projected range size was 535 

reduced by 40% and the predictor variable with the highest relative importance was the 536 
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projected distribution of P. pinaster, which had a strong and negative effect on the 537 

probability of occurrence of T. baccata. As in the case of F. sylvatica, this negative 538 

relationship was not supported by field observations, which suggested a non-significant 539 

effect of needle-like perennials on T. baccata growth (NP in Fig. 3). These results likely 540 

indicate that this predictor would also not be truly representing a biotic interaction, but a 541 

climate proxy representing warm, open and/or hot-dry conditions with sandy soils, 542 

conditions that are not suitable for T. baccata persistence and where P. pinaster may reach 543 

a high suitability. 544 

Our findings support previous results (Araújo and Rozenfeld, 2014; Godsoe et al., 545 

2017) suggesting that negative interactions such as competition are not easy to capture at 546 

relatively low-resolution scales. However, in some cases, including the suitability of co-547 

occurring species provides new dimensions of the environmental space, gathering niche 548 

requirements that constrain niche distribution and are not reflected in a simpler climatic 549 

characterization at low-resolution scales. In any case, it is worth noting that other studies 550 

have reported the ability to capture biotic interactions at similar spatial scales, especially 551 

when positive biotic interactions, such as diet resource  distribution (De Araújo et al., 552 

2014) or pollination (Giannini et al., 2012), are involved. In this context, it is worth noting 553 

that although T. baccata has traits favouring zoochory (i.e., fleshy fruits), most genetic 554 

analyses suggests that effective dispersal and/or recruitment are currently rather limited 555 

in the Iberian Peninsula  (Dubreuil et al., 2010; González-Martínez et al. 2010; Maroso 556 

et al., 2021). Several biotic processes have been implicated in explaining this pattern, 557 

among them the activity of avian frugivores (Labrave & Garcia, 2015), the presence of 558 

other fleshy-fruited plants (García et al. 2000), and herbivore pressure by livestock and 559 

wild ungulates (Piovesan et al., 2009). We therefore suggest that information on these 560 
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biotic processes is worth exploring and incorporating in future modelling studies when 561 

available. 562 

 563 

4.2 Local adaptation 564 

Previous studies suggested the presence of local adaptation of T. baccata in the Iberian 565 

Peninsula (Mayol et al., 2020). In particular, phenotypic patterns of variation in shoot 566 

growth and phenological development measured in a common garden environment 567 

provided evidence of two basic climatic adaptive groups, with populations from 568 

continental environments growing faster and reproducing earlier than those from mild, 569 

temperate, coastal regions (Mayol et al., 2020). Our modelling results suggest that, while 570 

cold temperature is the main climatic pressure constraining the presence of the 571 

Continental group, warmer temperatures and water availability, i. e. drought, might be 572 

the most important factor limiting the distribution of the Mild group. 573 

Dendroclimatological analyses performed in populations from continental climates in 574 

central-eastern Europe have similarly indicated that the dominant factor affecting 575 

individual performance in T. baccata are thermal conditions during winter, and that 576 

summer drought is an additional secondary factor limiting growth in dry locations (Cedro 577 

and Cedro, 2015, and references therein). Therefore, both water deficit and high winter 578 

temperatures are expected to act as the most important climatic selective pressures in the 579 

near future in populations of the Mild and Continental adaptive groups, respectively. 580 

Importantly, modelling the species as a whole (SP), without considering intraspecific 581 

adaptive variation, greatly reduced the potential effect of temperature on the distribution 582 

of the species, and the requirements of the Continental group were masked by those of 583 

the more widely distributed Mild group. This could produce misleading results when 584 

projecting the current niche space into the future or other geographical locations, since 585 
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the species treated as a whole does not truly represent the species physiological 586 

limitations. The impact of considering adaptive groups in the current extent of the species’ 587 

range and suitability is rather low, as compared to the other factors and predictive 588 

variables considered. However, this intraspecific evolutionary variability may be crucial 589 

to better evaluate the potential impact of climate change scenarios on the species’ range 590 

distribution (Pearman et al., 2010). Previous studies show that for some species, the 591 

incorporation of local adaptation can increase (e.g., Bush et al., 2016) or decrease (e.g. 592 

Valladares et al., 2014) suitability projections under future conditions. Then, even though 593 

we did not explicitly explore the effects of intraspecific adaptive variability on niche 594 

projections in future climate scenarios, they could be crucial to better assess conservation 595 

practices. 596 

However, we must acknowledge the limitations of our approach, since adaptation 597 

to local conditions probably follows an adaptive cline (see Mayol et al., 2020), rather than 598 

conforming to the two-group classification employed. Our aim was not to accurately take 599 

into account the patterns or clines of adaptation as described in Mayol et al. (2020), but 600 

to explore the potential effects of adaptation on niche characterization as compared to 601 

much simpler C-SDM models that do not account for evolutionary process or spatial niche 602 

differentiation. Future work using specific clines or other complex and continuous 603 

geographical patterns of adaptation to assess their effects on T. baccata’s niche space 604 

could be of great interest.  605 

 606 

4.3 Non-equilibrium demographic dynamics 607 

The relationship between species habitat suitability as measured by C-SDMs and 608 

demographic performance has seldom been tested and, when tested, the results are not 609 

usually conclusive (Thuiller et al., 2009; Thuiller et al., 2014; Dolos et al., 2015). We 610 
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explored the importance of using estimates of individual growth as a way to inform C-611 

SDMs with an inferred measure of habitat suitability. Our analyses suggest that, for T. 612 

baccata in the Iberian Peninsula, the commonly used C-SDMs may not in general truly 613 

reflect habitat suitability, contrary to what is expected when modelling the Hutchinsonian 614 

niche (i.e., environmental space where the species can grow and persist; Hutchinson, 615 

1957; Holt, 2009). We only found a significant, albeit rather low, positive relationship 616 

between suitability and projected growth when modelling separately the habitat suitability 617 

of the Continental adaptive group. For the rest of modelling groups considered (Mild, SP, 618 

and C+M), the correlation was not significant or, in most cases, significantly negative. 619 

This furthermore indicates that the positive correlation between habitat suitability and 620 

growth for the Continental group could have been masked by the low correlation reported 621 

for the more widely distributed Mild group when local adaptation was not considered 622 

(i.e., species level results, SP).  In fact, the predicted growth was null for some populations 623 

of the Mild group in locations were spring precipitation was low, suggesting that some of 624 

the occurrences used to train the C-SDMs may actually be outside of the species 625 

Hutchinsonian niche. 626 

Therefore, we show that the standard C-SDM approach does not successfully 627 

incorporate functional or demographic attributes of T. baccata in the Iberian Peninsula, a 628 

finding that agrees with some previous work on other species (Thuiller et al., 2009; Lloret 629 

et al., 2013; Thuiller et al., 2014; Dolos et al., 2015; Swab et al., 2015). However, our 630 

methodology, based on filtering different proportions of occurrences according to their 631 

predicted performance, improved the relationship between growth and suitability, 632 

resulting in a reduction of the range size to those places where the species might be under 633 

more optimal conditions. This is particularly important for populations located in the 634 

species trailing range edge, as in our study case, where filtering by growth had a large 635 
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impact in reducing the estimated range size, helping to discriminate non-suitable areas 636 

from more suitable ones and providing complementary and useful information to that 637 

reported by standard C-SDMs. 638 

Nevertheless, the filtering method implemented has some important caveats that 639 

have to be considered. First, instead of individual growth, other demographic parameters 640 

more closely related to population persistence (e.g., survival, reproduction or a joint 641 

estimate) would better capture which populations are likely to be outside the 642 

Hutchinsonian niche. Second, the relationship between growth and climate was modelled 643 

using a simple linear function, and a more realistic sigmoidal function would probably be 644 

more appropriate. Third, our population and individual tree sampling for estimating 645 

growth in natural populations might also be positively biased towards populations with a 646 

higher number of individuals and/or individuals that are more accessible and easier to 647 

measure, which usually happen to be the ones under more favorable conditions and higher 648 

growth. It is certainly difficult to accurately estimate growth using growth rings for 649 

individuals that are under harsh adverse conditions, as some growth rings might be 650 

missing or be too small to be detected, leading to errors in assessing the time frame 651 

considered (in our case the last five years). However, these limitations and biases would 652 

result in an overestimation of growth for the given period, so we believe that our results 653 

are rather conservative regarding the relationship between growth and suitability, and that 654 

the true relationship might be even lower. In any case, improved data availability may 655 

help to better handle these limitations and it might be worth rerunning these analyses as 656 

soon as more data becomes available. 657 

 658 
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5. Conclusions 659 

Including individual or population features (e.g., ecological, demographic, functional, 660 

etc.) into C-SDMs can be useful even when the data available is rather limited, helping 661 

to test its consistency and to detect potential deviations from model assumptions. This is 662 

of special interest for non-commercial and non-model species for which there is not high-663 

quality data to build mechanistic models, but enough for informing C-SDMs. This could 664 

be particularly useful for species showing non-equilibrium dynamics that might be 665 

currently occupying habitats that are suboptimal for their persistence. By including some 666 

of this basic information into T. baccata niche modelling we obtained a wide range of 667 

outcomes, showing how processes that are usually not considered when modelling 668 

distributions using C-SDM might influence its niche distribution at its southern range. In 669 

particular, the inclusion of patterns of adaptation and, notably, individual performance, 670 

can have strong effects on T. baccata’s niche projection. Although competition between 671 

coexisting species could not be successfully included into C-SDMs, the incorporation of 672 

the niche distribution of co-occurring species was very useful in capturing undetected 673 

environmental niche axes, improving model performance and having an important effect 674 

on estimates of range size. We also report evidence that some occurrences in the study 675 

area may be under non-suitable conditions, leading to an overestimation of the overall 676 

species niche when used to train C-SDMs. 677 

We stress the value of including meaningful biological information in the C-SDM 678 

framework in order to better inform conservation and management policies. Though not 679 

explicitly addressed in this study, we expect that failure to recognize the limitations of 680 

simple C-SDMs when the main assumptions do not hold can have a similarly strong 681 

impact on the quality of predictions under future scenarios of climate change. On the plus 682 

side, however, the suggested protocol might be highly useful for both evaluating the 683 
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quality of predictions and posing new lines of inquiry concerning the biology, 684 

conservation and management of the species considered. 685 
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Figures 956 

Figure 1. Occurrences of Taxus baccata in the Iberian Peninsula used for modelling the 957 

species’ distribution. Different colours indicate distinct adaptive groups, and locations 958 

used to measure tree growth (BAI5) are shown as black triangles. The four figures show 959 

the whole set of occurrences (a), and three of the nine occurrence datasets filtered by their 960 

predicted growth, i.e. including the 50% (b), 30% (c) and 10% (d) of the top predicted 961 

growth (BAI5) values (see text for further details). The number of occurrences is 962 

indicated in each case for both the Continental (C) and Mild (M) adaptive groups and for 963 

the species as a whole (SP). 964 

 965 

 966 

967 
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Figure 2. Scheme of the modelling approach implemented. Models were built following 968 

three main criteria: 1) the type of predictors used: only climatic (Clim) and both climatic 969 

and biotic predictors (ClimBio); 2) groups of occurrences: two adaptive groups 970 

(Continental and Mild) and all occurrences without considering adaptive groups (SP); 3) 971 

unfiltered (100% of the occurrences) or filtered datasets considering individual 972 

performance according to predicted growth. In total, we generated 60 distribution models. 973 

Twenty additional composite models were also obtained combining the results of 974 

Continental and Mild distribution models (C+M). The predictive performance of all 975 

models was assessed using AUC, as well as the correlation coefficient (Spearman’s Rho) 976 

between the predicted model suitability and projected growth. The best model for each 977 

combination of predictor type and group of occurrences (i.e., same group and predictors 978 

but different proportion of occurrences used) was selected by choosing those with the 979 

highest suitability-growth correlation and with AUC ≥ 0.9. Range size was estimated both 980 

for each of the best models and for those considering 100% occurrence data. 981 

 982 

983 
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Figure 3. M Mean estimated tree growth values (BAI5: basal area increments during the 984 

last five years) according to cover type. Bars are standard errors. UC: Uncovered; NP: 985 

covered by needle-like perennials; BD: covered by broad-leaved deciduous; BP: covered 986 

by broad-lived perennials; T: covered by conspecifics (T. baccata). 987 
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Figure 4. Projected suitability for unfiltered (i.e., using 100% of occurrences, top rows) 992 

and the best models (i.e., using a proportion of the best growing occurrences which results 993 

in a high AUC while optimizing the relationship between suitability and growth, bottom 994 

rows), depending on the type of predictive variables (Clim, with only climatic predictors, 995 

or ClimBio, with both climatic and biotic predictors) and the occurrence group 996 

considered: Continental (C) or Mild (M) adaptive groups, the combination of both 997 

adaptive groups (C+M), and without considering adaptive groups (SP). The percentages 998 

in the plots indicate the percentage of top predicted growth values used to build the best 999 

models (see details in Material & Methods).  1000 
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Figure 5. Projected range size (km2) for unfiltered (i.e., using 100% of occurrences, a) 1004 

and the best models (i.e., using a proportion of the best growing occurrences which results 1005 

in a high AUC while optimizing the relationship between suitability and growth, b), 1006 

depending on the type of predictive variables (Clim, with only climatic predictors, or 1007 

ClimBio, with both climatic and biotic predictors) and the occurrence group considered: 1008 

Continental (C) or Mild (M) adaptive groups, the combination of both adaptive groups 1009 

(C+M), and without considering adaptive groups (SP). The percentages in the plots 1010 

indicate the percentage of top predicted growth values used to build the best models (see 1011 

details in Material & Methods). 1012 
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Figure 6. Spearman’s rank correlation coefficients between predicted suitability values 1017 

obtained for each model and the predicted growth (BAI5) for each occurrence. The “X” 1018 

axis indicates the percentage of occurrences used in each case (e.g., 100% refers to the 1019 

unfiltered dataset with all the occurrence data, 90% is a filtered dataset including the 90% 1020 

of the top predicted growth values, and so on). Models using only climate variables (Clim) 1021 

are shown in lilac, while those based on both climate and biotic variables (ClimBio) are 1022 

depicted in green. Significant (p < 0.05) and non-significant correlations are indicated by 1023 

triangles and dots, respectively. C, models for the Continental adaptive group; M, models 1024 

for the Mild adaptive group; C+M, combination of C and M model outputs; SP, models 1025 

not considering the presence of adaptive groups. 1026 
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Tables 1029 

Table 1. Location of the sampled populations used to assess individual performance 1030 

(BAI5: basal area increments during the last five years, in cm2). N: Number of sampled 1031 

individuals; Census size: estimated number of reproducing individuals (Diameter at 1032 

Breast Height > 2.5 cm); SpringP: spring precipitation (mm); AutumnTmax: autumn mean 1033 

daily maximum temperature (oC). Populations are ordered according to increasing 1034 

SpringP. Coordinates are in decimal degrees in the World Geodetic System 1984 1035 

(WGS84). 1036 

 1037 

Locality Latitude Longitude N Census size SpringP AutumnTmax BAI5 

Bruixa 41.294 0.869 4 150 159 17.2 24.6 

Pas de l’Osca 42.039 0.840 14 125 168 15.1 25.8 

Sant Jeroni 41.605 1.815 9 45 171 15.0 20.6 

La Pena 41.355 1.086 12 300 180 16.9 22.7 

Cardó 40.958 0.587 8 110 183 19.3 79.8 

Agulles 41.610 1.788 8 75 185 16.3 19.0 

Taverna 41.285 0.800 15 62 188 17.5 22.1 

Vidalbar 41.288 0.831 26 250 193 17.1 30.5 

Font Fresca 41.271 1.065 2 500 199 18.0 66.9 

Rafalgarí 40.747 0.211 10 80 212 17.6 60.1 

Titllar 41.330 1.006 16 600 215 17.3 60.8 

Font del Teix 40.765 0.233 8 70 220 18.5 30.0 

Espills 42.204 0.800 5 80 222 17.3 44.0 

Canencia 40.873 -3.780 11 200 233 16.1 28.2 

Font Negra 41.780 2.327 1 56 243 13.9 14.2 

Orri 42.287 2.638 13 1000 270 16.8 35.1 

Turó de l’Home 41.772 2.449 5 90 274 11.7 28.4 

Rascafría 40.823 -3.900 6 400 292 14.7 57.9 

Torrent de la Mina 41.766 2.345 13 160 300 12.6 38.4 

Tosande 42.838 -4.552 10 2000 318 14.8 45.3 

Estremera 42.343 2.136 4 4 320 13.4 32.8 

Pineta 42.670 0.095 11 150 328 14.6 25.4 

Bujaruelo 42.700 -0.117 7 4000 354 14.4 99.5 

Penya Mayor 43.294 -5.504 8 4000 407 15.2 130.4 

El Sueve 43.443 -5.253 9 8000 412 16.4 156.9 

  1038 
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Table 2. Predictive performance for unfiltered models (i.e., including 100% of 1040 

occurrences) and the best models, depending on the type of predictive variables (Clim, 1041 

with only climatic predictors, or ClimBio, with both climatic and biotic predictors) and 1042 

the occurrence group considered: Continental (C) or Mild (M) adaptive groups, the 1043 

combined output of both adaptive groups (C+M), and without considering adaptive 1044 

groups (SP). Occurrences – 100%, unfiltered models using the whole set of occurrences; 1045 

40%, 30%, 20%, 10%, filtered models including the 40%, 30%, 20% and 10% of the top 1046 

predicted growth values. AUC – Area Under the Curve for test points. Correlation – 1047 

Spearman’s rank correlation coefficient between occurrence-derived suitability and 1048 

predicted growth (BAI5) for each model. 1049 

 1050 

Predictors Group Occurrences AUC Correlation p-value 

Clim C 100% 0.970 0.157 <0.001 

Clim M 100% 0.886 -0.104 <0.01 

Clim C+M 100% 0.883 -0.001 0.968 

Clim SP 100% 0.880 -0.123 <0.001 

ClimBio C 100% 0.973 0.153 <0.001 

ClimBio M 100% 0.918 -0.213 <0.001 

ClimBio C+M 100% 0.916 -0.065 <0.01 

ClimBio SP 100% 0.912 -0.172 <0.001 

Clim C 10% 0.995 0.811 <0.001 

Clim M 30% 0.971 0.838 <0.001 

Clim C+M 40% 0.915 0.695 <0.001 

Clim SP 20% 0.973 0.742 <0.001 

ClimBio C 30% 0.983 0.805 <0.001 

ClimBio M 30% 0.958 0.846 <0.001 

ClimBio C+M 20% 0.970 0.774 <0.001 

ClimBio SP 20% 0.971 0.792 <0.001 
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Table 3. Permutation importance of the predictive variables for unfiltered models (i.e., including 100% of the occurrences) and the best models, 1052 

depending on the type of predictive variables (Clim, with only climatic predictors, or ClimBio, with both climatic and biotic predictors) and the 1053 

occurrence group considered: Continental (C) or Mild (M) adaptive groups, and without considering adaptive groups (SP). Occurrences – 100%, 1054 

unfiltered models using all the occurrences; 30%, 20%, 10%, filtered models including the 30%, 20% and 10% of the top predicted growth (BAI5) 1055 

values. AP – Annual Precipitation. SuP – Summer Precipitation. PS – Precipitation Seasonality. MeWiT – Mean Winter Temperature. TS – 1056 

Temperature Seasonality. The most important predictive variables, individually or jointly accounting for at least the 50% of the permutation 1057 

importance, are shown in green and orange, indicating positive and negative effects on predicted suitability, respectively.  1058 

 1059 

 1060 

Predictors Group Occurrences AP SuP PS MeWiT TS Quercus humilis Quercus pyrenaica Pinus pinaster Pinus nigra Fagus sylvatica 

Clim C 100% 6.272 4.731 1.203 85.884 1.910      

Clim M 100% 38.445 17.001 11.238 27.866 5.449      

Clim SP 100% 53.681 13.373 13.610 8.065 11.271      

ClimBio C 100% 1.335 3.511 1.453 76.306 2.492 2.722 1.216 1.932 1.225 7.808 

ClimBio M 100% 17.919 4.357 1.596 18.032 3.229 12.697 3.791 24.695 1.581 12.103 

ClimBio SP 100% 13.663 3.833 3.836 1.510 1.761 14.954 6.503 4.073 3.765 46.103 

Clim C 10% 34.364 0.362 0.165 64.273 0.835      

Clim M 30% 67.216 2.399 13.268 14.495 2.623      

Clim SP 20% 76.887 4.202 14.379 1.767 2.766      

ClimBio C 30% 9.082 1.015 3.606 71.149 2.962 0.582 2.460 2.101 4.646 2.397 

ClimBio M 30% 73.218 0.546 1.194 18.693 1.527 1.808 0.151 0.979 0.499 1.386 

ClimBio SP 20% 86.721 0.974 3.428 0.310 2.844 1.991 0.350 1.209 1.604 0.569 


