
Evolutionary Diversity Optimisation for
Combinatorial Problems

Adel Nikfarjam

Supervisor:
Prof. Frank Neumann

Co-Supervisors:
Dr. Aneta Neumann

Dr. Jakob Bossek

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

November 17, 2023

i

Contents

Abstract xi

Declaration of Authorship xii

Acknowledgements xiii

1 Introduction 1
1.1 Our Contribution . 2
1.2 Underlying Publications . 5

2 Basics 6
2.1 Optimisation and Heuristics . 6

2.1.1 Local Search . 7
2.1.2 Swarm Intelligence Algorithms 9

2.2 Evolutionary Algorithms . 11
2.2.1 Components of Evolutionary Algorithms 11

Representation . 12
Variation Operators . 12
Selection Methods . 14

2.3 Diversity in Evolutionary Computation 15
2.3.1 Quality Diversity . 16
2.3.2 Evolutionary Diversity Optimisation 17

2.4 Combinatorial Problems . 18
2.4.1 Knapsack Problem . 19

Dynamic Programming . 19
2.4.2 Traveling Salesperson Problem 20

EAX . 20
2-OPT . 21

2.4.3 Traveling Thief Problem . 22
Dynamic Programming . 23

2.4.4 Boolean Satisfiability Problem 23
2.5 Methodology . 24
2.6 Conclusions . 24

3 Entropy-based diversity in the Traveling Salesperson Problem 26

ii

3.1 Introduction . 26
3.2 Maximising Diversity in TSP . 27
3.3 High-Order Entropy Measure . 28

3.3.1 Maximum High-Order Entropy 29
3.4 Mixed-Integer Programming Formulation 32

Linearisation . 33
3.5 Entropy-based Evolutionary Diversity Optimisation 33

3.5.1 Biased 2-OPT . 34
3.6 Experimental Investigation . 35

3.6.1 Validation of the Proposed EA 35
Survival Selection Procedure 35
Comparison between the exact solver and the proposed EA . . 36

3.6.2 Unconstrained Diversity Optimisation 39
3.6.3 Constrained Diversity Optimisation 40

3.7 Evolutionary Diversity Optimisation with a (µ+ λ) EA 43
3.8 Experimental Investigation . 45

3.8.1 Unconstrained Diversity Optimisation 45
3.8.2 Constrained Diversity Optimisation 47

3.9 Conclusion . 50

4 EAX-based Crossover in the Traveling Salesperson Problem 51
4.1 EAX-EDO Crossover . 52
4.2 EAX-EDO for Known Optimal Solution 54
4.3 EAX-EDO for Unknown Optimal Solution 55
4.4 Experimental Investigation . 56

4.4.1 Known Optimal Solution . 56
4.4.2 Unknown Optimal Solution . 59

Algorithm Configuration . 60
Experiments . 61
Robustness of the populations 65

4.5 Conclusion . 68

5 Quality Diversity Algorithms for the Traveling Thief Problem 69
5.1 Introduction . 69
5.2 The Traveling Thief Problem . 70
5.3 Bi-level Map-Elites-based Evolutionary Algorithm 71

5.3.1 Search Operators for TSP . 73
5.3.2 Search Operators for KP . 73

(1 + 1) Evolutionary Algorithm 74
5.3.3 Initialisation . 74
5.3.4 A More Relaxed Map . 74
5.3.5 (µ+ 1) EA . 75
5.3.6 Entropy-based Evolutionary Algorithm 75

iii

5.4 Experimental Investigation . 76
5.4.1 Analysis of the maps . 77

MAP-Elitism vs. (µ+ 1)EA . 79
Maps With The Relaxed Approach 80

5.4.2 Best found TTP Solutions . 80
Operators . 80
(µ+ 1)EA vs. BMBEA vs. EnBEA 82
Relaxed Method . 83

5.5 Conclusion . 84

6 Analysis of inter-dependency of the Traveling Thief Problem 88
6.1 Introduction . 88
6.2 Diversity in TTP . 90
6.3 Bi-level Evolutionary Algorithm . 91

6.3.1 Initial Population . 92
6.4 Experimental Investigation . 93

6.4.1 Comparison in KP search operators operators 93
6.4.2 Comparison in fitness functions 94
6.4.3 Comparison of EDO and QD 97

6.5 Co-Evolutionary Algorithm . 98
6.5.1 Parent Selection and Operators 98
6.5.2 Survival Selection Procedures 98
6.5.3 Self Adaptation . 99

6.6 Experimental Investigation of Co-EA 100
6.6.1 Analysis of Self-Adaptation . 102
6.6.2 Analysis of Co-EA . 104

6.7 Conclusion . 104

7 Analysis of Quality Diversity in the Knapsack Problem 106
7.1 Introduction . 106
7.2 Quality-Diversity for the knapsack problem 107

7.2.1 Weight-based space . 108
7.2.2 Profit-based space . 108
7.2.3 DP-based filtering scheme . 108

7.3 Theoretical analysis . 109
7.4 Experimental investigations . 113
7.5 Conclusions . 117

8 Constructing Diverse Satisfying Assignments 118
8.1 Introduction . 118
8.2 SAT and Diversity . 119

8.2.1 Diversity . 119
8.3 Diversity Algorithms . 120

iv

8.4 Experimental Investigation . 125
8.4.1 Comparison of algorithms employing H1 as the fitness 125
8.4.2 Comparison of algorithms employing H2 as the fitness 129
8.4.3 Investigation on Unsatisfiablity 129

8.5 Conclusion . 130

9 Conclusion 132
9.1 Future Studies . 133

Bibliography 135

v

List of Figures

2.1 The representation of the steps to implement EAX. 21

3.1 Illustration of building all segments of length k = 3 for a TSP tour. . . 29
3.2 Comparison between convergence pace of biased (orange) and classic

2-OPT (green). 37
3.3 The number evaluations in reaching Hmax for the biased (orange) and

the classic 2-OPT (green). The red × and + show the mean of the
results and the outliers, respectively. 37

3.4 Impact of number of fitness evaluation, segment size, and threshold on
the algorithms in eil101. The percentages shows the allowed threshold. 41

3.5 Overlay of the edges (coloured based on their frequency) incorporated
into the population of the introduced EA on eil101 where α increases
from 0 to +∞. 41

3.6 Distributions of H-values of the final populations based on 10 inde-
pendent runs for (µ + λ) EA (E) and Greedy (G) subset selection on
instance st70. The plots show results for α ∈ {0.02, 0.12, 0.25, 1, 3}
(row-wise) and λ ∈ {2, 5, 50, 125} (from left to right). 48

3.7 Representative trajectories of the proposed subset selection methods on
instance st70 with α = 0.12 and λ ∈ {2, 125}. 49

4.1 The representation of the steps to implement EAX-1AB and EAX-
EDO. Up to step three the process of implementation for both crossover
operators is the same. In step four, EAX-1AB (top) constructs the
shortest tour possible, while EAX-EDO (bottom) generates a tour con-
tributing to entropy the most while employing quality threshold (the
numbers correspond to occurrences of associated edges in an imaginary
population). 54

4.2 Distributions of diversity scores (to be maximised) of populations ob-
tained by Algorithm 11 with EAX-EDO CO (A), EAX-1AB CO (B),
and 2-OPT (C) for instances eil51, eil76, and eil101. Labels above the
box plots indicate (α, µ). 60

4.3 Representative trajectories in the setting of unknown optimal solutions.
The plots show the best tour length in the population (first row) and
diversity measured by the entropy (second row). 64

vi

4.4 Overlay of all edges used in exemplary final populations. Edges are
coloured by their frequency. 65

5.1 The representation of an empty map. There are δ1× δ2 cells within the
map. 72

5.2 The distribution of TTP solutions of the four competitors over the be-
haviour space on instance eil51_n250_uncorr-similar-weights_01 (top),
pr152_n453_uncorr_01 (middle), and a280_n279_bounded-strongly-
corr_01 (bottom). The cells are coloured based on the average TTP
scores of the solutions in the cell over 10 independent runs. The colour
bar indicates the TTP scores associated with the colours. 77

5.3 The frequency of cells housing a TTP solution over 10 independent runs
on instance eil51_n250_uncorr-similar-weights_01 (top), pr152_n453_uncorr_01
(middle), and a280_n279_bounded-strongly-corr_01 (bottom). The
cells are coloured based on The frequency of cells having a TTP solu-
tion in the cell over ten independent runs, as the colour bar indicates
the frequencies associated with colours. 78

5.4 The illustrations of solutions obtained by (µ+1)EA and Map-elitism in
the behavioral space on instance eil51_n250_uncorr-similar-weights_01
(top), pr152_n453_uncorr_01 (middle), and a280_n279_bounded-strongly-
corr_01 (bottom). The cells are coloured based on the TTP scores of
the solutions in the cell over one single run, as the colour bars show the
TTP scores associated with the colours. 79

5.5 The values of α1 and α2 in the relaxed method 81

6.1 Representation of trajectories of incorporation of the different fitness
functions, H, He, and Hi over test instance 1 (first row), and test
instance 16 (second row) . 95

6.2 Evolution of P1 and P2 over 4000m and 1000000m fitness evaluations
on instance 1 with α = 2%. The first row depicts the distribution of
high-quality solutions in the behavioural space (P1). The second and
the third rows show the overlay of all edges and items used in exemplary
P2, respectively. Edges and items are coloured by their frequency. . . . 100

6.3 Overlay of all edges and items used in an exemplary final population
P2 on instance 1 with α = 10% (left) and α = 50% (right). Edges and
items are coloured by their frequency. 101

6.4 Representative trajectories of Co-EA and standard EDO EA on in-
stances 16, 17, 18. The top row shows H(p2) while the second row
shows the best solution in P1. 103

7.1 The representation of the empty maps in the behavioural spaces. . . . 108

vii

7.2 The distribution of high-performing solutions in the weight-based be-
havioural space. The title of sub-figures shows (Ints. No, γ). Colors
are scaled to OPT. 113

7.3 The distribution of high-performing solutions in the profit-based be-
havioural space. Analogous to Figure 7.2. 114

7.4 Means and standard deviations of population sizes over fitness evalua-
tions (the filtering scheme is used). 115

8.1 The representation of solution y, the mutation, and the crossover in the
EDO algorithm 25. 122

8.2 The representative trajectories of the bit-flip algorithm’s diversity and
the number of false Φ. In the first row, H1 serves as the fitness function,
while it is H2 in the second row. 130

viii

List of Tables

3.1 Comparison of the entropy of final populations obtained by Cplex and
the EA (symbols O and N indicate whether Cplex converged within
the given time-bound). 35

3.2 Comparison between the high-order entropy values of the final popula-
tions of the introduced EA and ones based on ED and PD. Stat shows
the results of a Kruskal-Wallis test at the significance level of 95% with
Bonferroni correction. X+ means the median of the measure is better
than the one for variant X, X− means it is worse and X∗ indicates no
significant difference. 38

3.3 Comparison between the high-order entropy values of final populations
of the introduced EA and EAs based on ED and PD on TSPlib instances
eil51, eil76 and eil101 (threshold is equal to α = 0.05). Tests and
notations are in line with Table 3.2. 42

3.4 Comparison of the proposed subset selection schemes and (µ + 1) EA
in the unconstrained optimisation setting. The column rate shows the
number of times obtaining the optimal diversity out of 30 independent
runs. 46

3.5 Comparison of the proposed subset selection schemes and (µ+ 1) EA.
The termination criterion is 107 H-evaluations. 47

4.1 Comparison of diversity measures. In columns stat, the notation X+

means the median of the measure is better than the one for variant
X, X− means it is worse and X∗ indicates no significant difference.
Stat indicates the results of the Kruskal-Wallis statistical test at the
significance level 5% and Bonferroni correction. 58

4.2 Tested parameter values during the tuning procedure. 61
4.3 Comparison of the proposed algorithms with EAX in terms of diver-

sity (H) and solution quality of the best solution (c). Here, ∆H shows
the entropy of the final population P on top of Hmin, i.e, ∆H =

H(P)−Hmin. Columns statH and statc contain the results of Kruskal-
Wallis tests on the entropy of the final population and best tour length,
respectively. 63

ix

4.4 Comparison of the robustness of the populations obtained from single-
stage EAX-EDO (1), two-stage EAX-EDO (2), EAX (3), and Gurobi
(4) in case one, two, or three random edges from the optimal solution
become unavailable in 100 runs. a denotes the percentage of times the
population has at least one alternative for the eliminated edges, while
d represents the number of alternative tours avoiding the eliminated
edges on average. 67

5.1 The names of the TTP instances are used in this chapter. 76
5.2 Comparison of the search operators in terms of the TTP score and CPU

time on the small size instances. In columns Stat, the notation X+

means the median of the measure is better than the one for variant X,
X− means it is worse, and X∗ indicates no significant difference. Stat
shows the results of the Kruskal-Wallis statistical test at significance
level 5% and the Bonferroni correction. The CPU time unit is second. 85

5.3 Performance of the MAP-Elites-based approach in terms of the TTP
score. The notations are in line with Table 5.2. 86

5.4 Performance of the MAP-Elites-based approach on the unbalanced in-
stances. The notations are in line with Table 5.2 86

5.5 The comparison of (µ + 1)EA and MAP-Elites in solving TTP using
DP as KP operator. The notations are in line with Table 5.2. 86

5.6 The comparison of (µ + 1)EA and MAP-Elites in solving TTP with
using (1 + 1)EA as the KP operator. The notations are in line with
Table 5.2. 87

5.7 The comparison of the Relaxed method with the prefixed BMBEA in
solving TTP using (1+1)EA as KP operator. The notations are in line
with Table 5.2. 87

6.1 Comparison of the KP operators. In columns Stat, the notation X+

means the median of the measure is better than the one for variant X,
X− means it is worse, and X∗ indicates no significant difference. Stat
shows the results of Mann-Whitney U-test at significance level 5% . . 92

6.2 Comparison of different fitness functions (DP used as the KP opera-
tor). Stat shows the results of the Kruskal-Wallis statistical test at
significance level 5% and Bonferroni correction. The notations are in
line with Table 6.1 . 93

6.3 Comparison of different fitness function (EA used as the KP opera-
tor).The notations are in line with Table 6.2 94

6.4 Comparison of the EDO and QD (DP used as the KP operator). The
notations are in line with Table 6.1. 95

6.5 Comparison of the EDO and QD (EA used as the KP operator). The
notations are in line with Table 6.1. 96

x

6.6 Comparison of the robustness of the populations obtained from the
EDO-based EA (1) and the QD-based EA (2). The E and I denotes
the percentage of times the population has at least one alternative for
the eliminated edges and item, respectively. The Stat notations are in
line with Table 6.1. 96

6.7 Comparison of Gamma1 (1) and Gamma2 (2), and the fixed method (3).
In columns Stat, the notation X+ means the median of the measure
is better than the one for variant X, X− means it is worse, and X∗

indicates no significant difference. Stat shows the results of the Kruskal-
Wallis statistical test at a significance level of 5% and Bonferroni cor-
rection. Also, (x, y)∗ = max(x,y)∈P1

{z(p)}. 102
6.8 Comparison of the Co-EA and QD from [88] in terms of z((x, y)∗),

and EDO algorithm from [87] in H(P2). Stat shows the results of the
Mann-Whitney U-test at significance level 5%. The notations are in
line with Table 6.7. 103

7.1 Number of fitness evaluations needed by Algorithm 21 to obtain the
optimal solutions. 116

7.2 Number of fitness evaluations needed by Algorithm 22 to obtain the
optimal solutions . 116

7.3 Comparison in ratio, number of required fitness evaluations and re-
quired CPU time for hitting the optimal value in 30 independent runs. 117

8.1 The diversity obtained from the algorithms using H1 as the fitness
function in 30 independent runs. Stat shows the results of the Kruskal-
Wallis statistical test at a 5% significance level with Bonferroni correc-
tion. In row Stat, the notation X+ means the median of the measure
(H1) is better than the one for variant X, X− means it is worse, and
X∗ indicates no significant difference. 123

8.2 The diversity obtained from the algorithms using H1 as the fitness func-
tion. The variables appear in clauses based on a uniform distribution
with n = 100 and k = 3. The notations are in line with Table 8.1 . . . 124

8.3 The diversity obtained from the algorithms using H2 as the fitness func-
tion on the same instances in Table 8.1. The Kruskal-Wallis statistical
test is conducted on H2. The notations are in line with Table 8.1 . . . 127

8.4 The diversity obtained from the algorithms using H2 the fitness on the
same instances in Table 8.2. The notations are in line with Table 8.3. . 128

xi

University of Adelaide

Abstract

Evolutionary Diversity Optimisation for Combinatorial Problems

by Adel Nikfarjam

Diversity optimisation explores a variety of solutions for the intended problem and is
rapidly growing and getting more popular within the evolutionary computation com-
munity as a result. There can be found several studies that introduce and examine
evolutionary approaches to compute a diverse set of solutions for optimisation prob-
lems in the continuous domain. To the best of our knowledge, the discrete problems
are yet to be studied in the context of diversity optimisation. Thus, this thesis focuses
on combinatorial optimisation problems with discrete solution spaces. Here, we com-
pute and explore such solution sets for several noticeable combinatorial problems. We
aim to introduce and design evolutionary algorithms capable of computing a diverse
set of solutions for the given combinatorial optimisation problem.

First, we begin with a comprehensive literature review of the recent developments
and then dig deep into two prominent diverse paradigms in evolutionary computation:
evolutionary diversity optimisation and quality diversity. These concepts have gained
a considerable amount of attention in recent years. Quality diversity aims to achieve
diversity in behavioural spaces, while evolutionary diversity optimisation sees diversity
in the structural properties of solutions.

We study the evolutionary algorithms for the travelling salesperson problem, the
travelling thief program, the knapsack problem, and finally, the Boolean satisfiabil-
ity problem. The prospective results demonstrate the capability of the introduced
algorithms to achieve diverse and high-quality solutions.

http://www.adelaide.edu.au

xii

Declaration of Authorship

I certify that this work contains no material which has been accepted for the
award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint award of this degree.

I give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Adel Nikfarjam

June 2023

xiii

Acknowledgements
I would like to express my sincere appreciation to all the individuals who have

provided encouragement and assistance throughout my PhD study. Their contribu-
tions have been instrumental in enabling the completion of this study.

First and foremost, I am deeply grateful to my principal supervisor, Prof. Frank
Neumann, for his constant inspiration, unwavering support, and invaluable expertise
in the field. It has been an honor to learn from him and be a part of his esteemed
research group.

I would also like to extend my gratitude to my co-supervisors, Dr. Aneta Neu-
mann and Dr. Jakob Bossek, for their guidance and support throughout my research
journey.

Furthermore, I would like to express my appreciation to all the co-authors of
the papers, including Prof. Tobias Friedrich, Dr. Ralf Rothenberger, Viet Anh Do,
and Amirhossien Moosavi. Collaborating with them has been a tremendous learning
experience.

I am also grateful to my friends in Adelaide who have provided support and
assistance during the past three and a half years.

Last but certainly not least, I would like to express my deepest gratitude to
my beloved parents, Abbas and Touran, my caring siblings Soodeh and Ali, my kind
sister-in-law Pariya, and my lovely girlfriend Nasim. Their kindness and generous
support have meant the world to me.

1

Chapter 1

Introduction

In various real-world industries, businesses, and machines, practitioners must find a
high-performing setting in their systems to perform desirably. Optimisation is the
procedure of finding the best or a high-quality solution (setting) out of all possible
solutions with respect to an objective function. In many systems, an optimisation
problem can be found that needs to be addressed in pursuit of better performance.
Therefore, we can observe optimisation problems in various subjects, from computer
science and engineering to health and educational systems.

Various algorithms have been proposed to solve optimisation problems, depend-
ing on the problems’ characteristics, the size of the problem, and the time budget we
have for solving it. These algorithms range from exact algorithms to approximation
methods, heuristics and metaheuristics. Exact algorithms are methods to solve an
optimisation problem to optimality and provide the decision-makers with the proven
global optimum, referred to as the best possible solution in the entire solution space.
However, many algorithms in this class are not time-efficient and cannot solve many
real-world problems in a practical time window.

Heuristics and metaheuristics, on the other hand, produce high-quality solutions
in a reasonable time window, but they cannot guarantee the optimality of solutions.
This class of algorithms often aim for a high-quality solution, although these algo-
rithms may find a local or global optimum. A local optimum is referred to as the best
solution compared to their neighbouring solutions. Examples of these algorithms in-
clude simulated annealing [54], ant colony optimisation [31], evolutionary algorithms
[64], among others. This thesis focuses on bio-inspired metaheuristics, particularly
evolutionary algorithms (EAs). EAs are iterative population-based algorithms where
a population of solutions compete for reproduction and survival. In each iteration,
several offspring solutions are generated; then, old and young solutions compete to
survive for the next generation.

Classical optimisation algorithms often aim for a single global or local optimal
solution [14, 43]. A few concepts have evolved around finding multiple diverse solu-
tions for an optimisation problem in the literature on evolutionary computation (EC),

Chapter 1. Introduction 2

such as multimodal optimisation, quality diversity, and evolutionary diversity optimi-
sation. However, these concepts are considerably less studied than the conventional
approaches, especially evolutionary diversity optimisation (EDO) and quality diver-
sity (QD). QD sees diversity in computing best-performing solutions with different,
diverse behaviours, while EDO aims to diversify the structural properties of solutions,
such as edges included in a solution for the travelling salesperson problem (TSP) or
items included in a packing list, subject to the quality of solutions.

Several studies in the literature can be found investigating QD approaches in
the context of optimisation problems in the continuous domain, such as robotics and
games [36, 96]. Also, several studies can be found in the literature on EDO that
focus on diversity in a continuous feature space such as images or benchmarking in-
stances [2, 77, 78]. However, investigating the performance of QD-based methods and
EDO approaches in combinatorial optimisation problems is neglected. Combinatorial
optimisation problems are problems with a finite set of possible solutions where so-
lution space is discrete. This lack of studies motivates us to conduct this research
work. Within this thesis, we aim to design and introduce EAs based on QD and
EDO frameworks to compute a diverse set of solutions for combinatorial optimisation
problems.

Finding a diverse set of high-quality solutions has several clear advantages. Here,
we mention a few critical merits to highlight the importance of diversity in solutions.
Firstly, computing a diverse set of high-quality solutions provides researchers and
practitioners with invaluable information about the solution space. For instance, how
high-quality solutions look like in the problem under consideration or which compo-
nents of high-quality solutions are irreplaceable. Secondly, such sets of solutions boost
the robustness of algorithms against imperfect modelling and minor changes in the
problem. In TSP, for instance, if an edge becomes unavailable for some reason, a
solution that excludes that particular edge becomes beneficial; having such a solu-
tion helps us to avoid re-computation. Finally, it provides the decision-makers with
alternative options instead of imposing them with a single solution. Having several
solutions at hand enables decision-makers to discuss and consider the preferences of
different stakeholders who may have conflicting interests in some cases and select a
solution accordingly.

1.1 Our Contribution

This thesis consists of nine following chapters. Chapter 1 and 2 are dedicated to an
introduction and defining preliminaries, respectively. The rest seven chapters come as
follows: Chapter 3 employ a population diversity measure, called the high-order en-
tropy measure, in an evolutionary algorithm to compute a diverse set of high-quality
solutions for the TSP. In contrast to previous studies, our approach allows diversifying

Chapter 1. Introduction 3

segments of tours containing several edges based on the entropy measure. We exam-
ine the resulting evolutionary diversity optimisation approach precisely in terms of
the final set of solutions and theoretical properties. Experimental results show signifi-
cant improvements compared to a recently proposed edge-based diversity optimisation
approach when working with a large population of solutions or long segments.

Moreover, most studies in the literature on EDO used a specific EA where only
one offspring solution is created in each generation. The rationale behind this is rooted
in the complex nature of diversity calculation. Increasing the number of offspring
solutions raises the computational cost of survival selection substantially. In this
chapter, we propose three survival selections to overcome this issue. The results show
that the EA-based survival selection outperforms the commonly used EA.

Evolutionary algorithms based on edge assembly crossover (EAX) [72] constitute
some of the best-performing incomplete solvers for the well-known TSP. Currently,
there are only a few approaches for computing a diverse solution set for the TSP.
Furthermore, almost all of them assume that the optimal solution is known. Chapter
4 introduces EDO-based approaches for the TSP that find a diverse set of tours when
the optimal tour may be unknown. We show how to adopt EAX not only to find a
high-quality solution but also to maximise the diversity of the population. The result-
ing EAX-based EDO approach, termed EAX-EDO, is capable of obtaining diverse,
high-quality solutions when the optimal solution for the TSP is known or unknown.
Comparison to existing approaches shows that EAX-EDO clearly outperforms them.

In real-world optimisation, it is common to face several sub-problems interact-
ing and forming the main problem. There is an inter-dependency between the sub-
problems, making it impossible to solve such a problem by focusing on only one com-
ponent. The travelling thief problem (TTP) belongs to this category and is formed by
the integration of the TSP and the knapsack (KP). In Chapter 5, we investigate the
inter-dependency of the TSP and the KP by means of QD approaches. QD algorithms
provide a powerful tool not only to obtain high-quality solutions but also to illustrate
the distribution of high-performing solutions in a behavioural space.

We introduce a QD-based evolutionary algorithm using the well-known TSP and
KP search operators, taking the TSP and KP score as the behavioural descriptor (BD).
Afterwards, we conduct comprehensive experimental studies that show the efficiency
of the QD approach applied to the TTP. First, we provide insights regarding high-
quality TTP solutions in the TSP/KP behavioural space. Then, we show that better
solutions for the TTP can be obtained by using our QD approach, and it can improve
the best-known solutions for a number of TTP instances used for benchmarking in
the literature.

Chapter 6 investigates a prominent multi-component optimisation problem, the

Chapter 1. Introduction 4

TTP, in the context of EDO for the first time. We introduce a bi-level evolutionary al-
gorithm to maximise the structural diversity among the TTP solutions. Moreover, we
examine the inter-dependency between the problem’s components and investigate its
impact on structural diversity solutions. We empirically determine the best method to
maximise diversity and conduct a comprehensive experimental investigation to exam-
ine the introduced algorithm. We also compare the results to the QD-based framework
introduced in Chapter 5. Our experimental results show a significant improvement in
the QD approach in terms of structural diversity for most TTP benchmark instances.

The chapter also presents a co-evolutionary algorithm to simultaneously explore
the two spaces for the multi-component travelling thief problem. Co-evolutionary
algorithms are methods that let several populations evolve in parallel and interact with
each other. The results show the capability of the co-evolutionary algorithm to achieve
significantly higher diversity compared to the EDO-based algorithm introduced earlier.

As mentioned, QD algorithms have been shown to be very successful when deal-
ing with problems in areas such as robotics and games. They aim to maximise the
quality of solutions for different regions of the so-called behavioural space of the under-
lying problem. Chapter 7 applies the QD paradigm to simulate dynamic programming
behaviours on the KP and provides a first runtime analysis of QD algorithms. We
show that they are able to compute an optimal solution within expected pseudo-
polynomial time and reveal parameter settings that lead to a fully polynomial ran-
domised approximation scheme (FPRAS). Our experimental investigations evaluate
the different approaches on classical benchmark sets in terms of solutions constructed
in the behavioural space as well as the runtime needed to obtain an optimal solution.

Chapter 8 studies the Boolean satisfiability problem (SAT) in the context of
EDO. The SAT is one of the most important problems in computer science due to its
applications. The SAT also differs from the other problems studied in the literature of
EDO and previous chapters, such as the KP and the TSP. SAT is heavily constrained,
and random operators are incapable of generating feasible SAT solutions. Therefore,
we introduced an EA-based approach with the following features: 1) it iteratively adds
and removes constraints (clauses) to the problem to forbid solutions or to fix variables;
2) it incorporates powerful solvers in the literature on SAT, such as minisat into the
EA to construct a diverse set of SAT solutions. The EA-based method explicitly
maximises diversity among a set of SAT solutions. Experimental investigations show
the introduced algorithm’s capability to maximise diversity among the SAT solutions.
Finally, Chapter 9 is dedicated to some concluding remarks and suggestions for future
studies and the extension of this research.

Chapter 1. Introduction 5

1.2 Underlying Publications

This subsection is dedicated to providing the list of the papers published from this
PhD research work:

• Chapter 3: Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neu-
mann. “Entropy-based evolutionary diversity optimisation for the traveling
salesperson problem”. In: GECCO. ACM, 2021, pp. 600–608.

• Chapter 4: Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neu-
mann. “Computing diverse sets of high quality TSP tours by EAX-based evo-
lutionary diversity optimisation”. In: FOGA. ACM, 2021, 9:1–9:11.

• Chapter 5: Adel Nikfarjam, Aneta Neumann, and Frank Neumann. “On the use
of quality diversity algorithms for the traveling thief problem”. In: GECCO.
ACM, 2022, pp. 260–268.

• Chapter 6: Adel Nikfarjam, Aneta Neumann, and Frank Neumann. “Evolu-
tionary diversity optimisation for the traveling thief problem”. In: GECCO.
ACM, 2022, pp. 749–756. Adel Nikfarjam, Aneta Neumann, Jakob Bossek,
and Frank Neumann. “Co-evolutionary Diversity Optimisation for the Travel-
ing Thief Problem”. In: PPSN(1). Vol. 13398. Lecture Notes in Computer
Science. Springer, 2022, pp. 237–249.

• Chapter 7: Adel Nikfarjam, Anh Viet Do, and Frank Neumann. “Analysis of
Quality Diver-sity Algorithms for the Knapsack Problem”. In: PPSN (2). Vol.
13399. Lecture Notes in Computer Science. Springer, 2022, pp. 413–427.

• Chapter 8: Adel Nikfarjam, Ralf Rothenberger, Frank Neumann, and Tobias
Friedrich.“Evolutionary Diversity Optimisation in Constructing Satisfying As-
signments”. In: GECCO. ACM, 2023.

6

Chapter 2

Basics

This chapter is dedicated to defining the preliminaries and reviewing the background
of diversity in evolutionary computation literature, with an orientation towards evo-
lutionary diversity optimisation (EDO) and quality diversity (QD). The chapter is
structured as follows: Section 2.1 looks into the notions of optimisation, heuristics,
and meta-heuristic algorithms. Section 2.2 introduces EAs, while Section 2.3 reviews
the literature on diversity in EC. Section 2.4 defines the combinatorial problems that
are studied in this research. Finally, we finish with some concluding remarks.

2.1 Optimisation and Heuristics

Optimisation can be defined as the process of computing one of the best possible
solutions from the set of all feasible solutions to the problem at hand. Optimisation
problems are expanded in numerous domains, such as computer science, operations
research, logistics and engineering. Optimisation problems usually consist of an ob-
jective function and a set of constraints that impose some limitations or conditions
on the problem. A typical optimisation problem can be formulated as follows:

Minimise Z(x)

Subject to:

ω(x) ∀ω ∈ Ω.

Here, x denotes a solution to the problem and Z(x) is a function quantifying the
objective. Also, Ω denotes the set of constraints of the problem. A typical constraint
usually is an inequality or an equality function. The formula is a minimisation prob-
lem such as minimising cost, waste, or waiting times. Note that minimisation is no
restriction as minimising Z is equivalent to maximising −Z.

In practice, it is often challenging to compute one of the best possible solutions,
called optimal solutions, for a real-world problem within a reasonable time window.

Chapter 2. Basics 7

Thus, researchers and practitioners often turn to heuristic and metaheuristics solution
approaches instead of exact algorithms that result in proven optimal solutions. On
the contrary, metaheuristics algorithms cannot guarantee the optimality of solutions.
Nevertheless, these types of algorithms are able to find high-quality solutions in a
reasonable amount of time. Metaheuristics are referred to as a strategy of iteratively
creating and improving solutions to find near-optimal solutions [91]. Heuristics and
metaheuristics such as EAs, local search, simulated annealing, and ant colony opti-
misation have been shown to be suitable for optimisation problems, and in particular
for combinatorial optimisation problems [1].

2.1.1 Local Search

Local search algorithms are well-known metaheuristics often employed for solving
complex optimisation problems [1]. Unlike exact algorithms, local search methods are
designed to explore neighbourhoods and find a local optimum rather than aiming for
the global optima. Although these algorithms cannot result in proven global optima,
they have received increasing attention due to their performance in solving computa-
tionally complex problems. Local search works on an initial solution and iteratively
improves it by searching the neighbouring solutions and replacing the current solution
with another one, usually with a solution with better or the same quality.

Hill climbing is a method used in solving optimisation problems that belong to
the class of local search. Hill climbing starts with an initial algorithm and iteratively
generates new solutions by making small changes to the solution. If the new solution
has a better objective value, it is replaced with the old solution. These steps con-
tinue until there is no further improvement. Hill climbing algorithms are capable of
solving convex problems to optimality. For other problems, they can only compute a
local optimum. The greedy algorithms belong to this class of algorithms, where the
move with the most significant improvement of the objective value is selected in each
iteration.

Although hill climbing is a powerful tool in finding local optima, they are in-
capable of escaping one. Getting stuck in local optima can be considered the most
critical drawback of hill climbing. A plausible approach to overcome this limitation is
the notion of accepting downhill moves. Several methods in the class of local search
utilise such a notion. One of these algorithms is simulated annealing [54].

Simulated annealing is a local search algorithm that goes beyond finding local
optima and is considerably used to approximate the global optimum for the optimi-
sation problem at hand. Simulated annealing is inspired by metallurgy, a method
used to change the physical properties of metals by heating them and then cooling
them down gradually. Similarly, simulated annealing accepts downhill moves mainly
at the early stages. Downhill moves are referred to as accepting solutions with a worse
objective value.

Chapter 2. Basics 8

Algorithm 1 Simulated Annealing
Require: Initial temperature t, cooling schedule CS(t), stopping temperature T .
1: Generate an initial solution x.
2: x∗ ← x.
3: while t ≥ T do
4: Generate a random neighbourhood solution x′.
5: δ ← f(x′)− f(x).
6: if δ ≤ 0 then
7: x← x′.
8: if f(x) ≤ f(x∗) then
9: x∗ ← x.

10: else
11: Generate a number v uniformly at random between 0 and 1.
12: if v < exp

(−δ
t

)
then

13: x← x′.
14: t← CS(t).

The motivation behind simulated annealing and accepting downhill moves is to
escape the local optima and explore a broader range of the solution space. Simulated
annealing has been successfully employed in several applications [55]. In simulated
annealing, there is a parameter named temperature that controls the rate of accepting
downhill moves. Temperature is typically high at the early stage of the search, and
then it decreases based on a cooling down schedule so as the probability of accepting
worse solutions, such that the algorithm can converge to high-quality solutions. The
downhill moves and the cooling down schedule are necessary for escaping local optima
and the convergence of the algorithm. Algorithm 1 represents a typical simulated
annealing algorithm.

The algorithm should be passed an initial solution x, an initial temperature t,
a cooling schedule function CS(t), and a stopping temperature (T). The cooling
function CS(t) reduces t, such that the algorithm decreases the acceptance rate of
worse solutions. First, x∗, which holds on the best solution found so far, is set to x.
Next, a random neighbourhood solution x′ is generated, and the difference between
the f(x′) and f(x) is stored in δ. If δ ≤ 0, x is replaced by x′, and x∗ is also replaced
with x′ in case x′ is the best solution so far. Otherwise, a random number v between
0 and 1 is generated. If v < exp

(−δ
t

)
, x is set to x′. Afterwards, the temperature t

cools down according to CS(t). These steps are repeated until t < T .

Iterated local search (ILS) [60] and tabu search [42] are other local search algo-
rithms introduced to avoid getting stuck in local optima. Tabu search benefits form a
list that stores the recently visited solutions to avoid the algorithm revisiting them for
the sake of saving time and computational affords, as well as encouraging accepting
new solutions and exploring new neighbourhoods. However, it is possible to override
the tabu status of a solution according to some criteria, such as the possibility of

Chapter 2. Basics 9

Algorithm 2 Iterated Local Search
Require: Initial solution x.
1: Perform a local search on x.
2: while a termination criterion is not met do
3: Perform perturbation to solution x and store it in x′

4: Perform a local search on x′.
5: if Z(x′) ≤ Z(x) then
6: Replace x with x′

a solution leading to a more promising area. Moreover, tabu search accepts down-
hill moves if there cannot be found a solution with a higher objective value in the
neighbourhood.

ILS is another metaheuristics algorithm within the domain of local search. ILS
can successfully overcome the conventional local search limitation, meaning escaping
local optima. ILS iteratively switches between the local search phase and the pertur-
bation phase. The local search phase is similar to hill climbing, where a solution is
iteratively improved until no further improvements can be found. In the perturbation
phase, changes are made to a local optimum solution through rules that ensure lead-
ing the solution to a different neighbourhood of solution space. The perturbations
assist the algorithm in switching from an explored neighbourhood to a new region.
Algorithm 2 represents a typical ILS algorithm. The algorithm starts with an initial
solution x. First, the solution goes through a round local search phase, which means
a local search algorithm is applied to the solution and improves iteratively until no
further improvement can be made. Then, the solution goes through a perturbation
phase and generates a new solution x′. Another round of local search applies to x′

until a local optimum is found. If Z(x′) ≤ Z(x), solution x′ is replaced with x. These
steps continue until a termination criterion is met.

2.1.2 Swarm Intelligence Algorithms

Swarm intelligence algorithm is another class of bio-inspired population-based meta-
heuristic approaches that have been widely applied to optimisation problems. The
term of swarm intelligence first has been introduced by Beni and Wang [7]. Swarm in-
telligence algorithms mimic collective behaviours of biological systems found in nature
to solve optimisation problems. Several well-known metaheuristics in the literature
are categorised in this class, including stochastic diffusion search [75], artificial swarm
intelligence [99], ant colony optimisation [31], and particle swarm optimisation [53].
Here, we introduce ant colony optimisation (ACO) [31], and particle swarm optimi-
sation (PSO) [53].

ACO draws inspiration from the collective behaviours of ants in nature. Ants
face the problem of finding food in their everyday lives. To address the problem and
find the shortest route possible from their nest to the food sources, ants incorporate

Chapter 2. Basics 10

Algorithm 3 Ant Colony optimisation
1: Initialise pheromone trails and ant solutions P = {x1, · · · , xµ}.
2: x∗ ← xi where argminxi∈P Z(xi).
3: while a termination criterion is not met do
4: for each ant (xi ∈ P) do
5: while an ant solution is not complete do
6: Choose one neighbour at each step probabilistically.
7: if Z(xi) ≤ Z(x∗) then
8: x∗ ← xi.
9: Evaporate the pheromone trails.

10: Deposit the pheromone trails.

an interesting system to communicate with each other and direct others towards food.
Ants leave a substance called pheromone on the way back to their nest carrying foods.
The pheromone attracts the other ants and guides them towards the food source. As
the number of ants coming back from a food source increases, more pheromone is left
for the other ants.

ACO incorporate a similar concept into finding high-quality solutions for the
optimisation problems that can be mapped to finding the shortest paths through a
graph. Artificial ants, so-called agents, choose their next move randomly based on
artificial pheromones. After the solution is constructed, the ants leave the pheromone
on the path they took based on the quality of the solution. Through the collective
efforts of artificial ant, the density of high-quality solutions’ pheromone increase and
the algorithm converges. Similar to nature, pheromone evaporates in ACO over time.
The evaporation of the pheromone aids the algorithm in escaping local optima and
avoiding premature convergence. Algorithm 3 outlines a typical ACO algorithm.

The algorithm starts with an initial population of solutions (ants) and pheromone
trails. First, the best solution in the population is stored in x∗. Then, for each ant
within the population (xi ∈ P), neighbours are probabilistically selected one by one
based on pheromone trails and heuristic information. If Z(xi) ≤ Z(x∗), x∗ is replaced
with xi. Having repeated these steps for all ants in the population, we evaporate, then
deposit the pheromone trails on all edges. These steps continue until a termination
criterion is met. We refer the interested reader to López-Ibáñez, Stützle, and Dorigo
[59] for an overview of ACO.

Particle swarm optimisation (PSO) [53] is another well-known population-based
metaheuristics in the category of swarm intelligence. PSO is inspired by the behaviour
of bird flocks, humans, or fish schools. Birds and fish move in groups to find food and
avoid predators. Birds, similarly to humans, try to learn from their experiences and
from the ones within the group who perform well.

PSO employs a similar concept in solving problems. Individuals are called par-
ticles in PSO, representing a solution to the problem. Particles explore the solution

Chapter 2. Basics 11

space and use the information obtained from their previous positions and shared by
other particles in the population, the so-called swarm. Particles tune their position
based on their personal (local best) position and the best position found so far within
the swarm (global best). Paricles are also allocated a velocity changing over time
to adjust their position. As the algorithm continues, the swarm tends to converge
towards high-quality solutions. A drawback of PSO is that the algorithm tends to
converge so fast and get stuck in local optima. We refer interested readers to Bonyadi
and Michalewicz [8] for a comprehensive review of PSO.

EAs are another well-known bio-inspired concept in the class of Population-
based metaheuristics. Since this research focuses on EC, we formally introduce EAs
in a separate section.

2.2 Evolutionary Algorithms

EAs are well-known population-based bio-inspired metaheuristics that are applied to
many optimisation problems in various fields ranging from art and logistics to engi-
neering and computer science [63]. As its name indicates, EAs draw inspiration from
evolution mechanisms in nature, such as the selection of the fittest and reproduction
[64].

EAs use a fitness function, which is often the objective function to quantify the
quality of solutions and measure their fitness to be selected to seed the next generation
or survive within the population. EAs also utilise bio-inspired operators to generate a
new generation, such as mutation and crossover. The underlying principle is that the
environment’s pressure causes a natural selection within the population, leading to a
new generation enhancing the population’s fitness [33]. This process continues until
a termination criterion is met.

2.2.1 Components of Evolutionary Algorithms

EAs start with an initial set of solutions (individuals) that resembles a population of
species, such as humans or animals in nature. These individuals compete with each
other to take part in reproduction and the creation of offspring. Like nature, where
stronger animals have a higher chance to mate, fitter individuals often stand a higher
chance to be selected and pass their genes. For reproduction, EAs use some variation
operators inspired by nature to combine, mix, and mutate the parent individuals to
generate new ones. Then, all individuals, including parents and offspring, fight for
survival. Once again, the fitter individuals, the higher their chance for survival.

Let us go back to the optimisation formula above; EAs employ a fitness function
Z(x) to measure the quality of x to determine its probability of being selected to
serve as a parent or to survive to the next generation. Algorithm 4 represents the
sketch of a typical EA. The algorithm starts with an initial population. The diversity

Chapter 2. Basics 12

Algorithm 4 Evolutionary Algorithm
1: Initialise a population of solutions P = {x1, · · · , xµ}.
2: x∗ ← xi where argminxi∈P Z(xi).
3: while a termination criterion is not met do
4: Select parents.
5: Apply variation operators (crossover and mutation) to generate offspring.
6: Select the next generation.
7: if argminxi∈P Z(xi) ≤ Z(x∗) then
8: x∗ ← xi.

of the initial population plays a crucial role in covering a broad range of the solution
space. Poorly diverse initial solutions can cause premature convergence, while a highly
diverse population may jump between the different regions through recombination and
mutation. Next, through a selection process, a number of individuals serve as parents
and take part in generating offspring individuals using variation operators. Then, the
next generation is selected from a pool of old individuals and offspring. These steps
continue until a termination criterion is met.

Representation

EAs are powerful methods to address optimisation problems in a broad range of
domains. However, they can only generate feasible, high-quality results if the problem
is appropriately modelled. The first challenge that algorithm engineers encounter
is a plausible design for solution representation. Many solution representations are
commonly used in EAs, such as bit string, real value vector, and permutation. The
algorithm designers should take into account the characteristics and features of the
problem at hand and design or select a solution representation that maps all conditions
of the problem onto the solutions.

A poor choice can result in imperfect modelling and eliminating regions of feasible
solution space that can obtain high-performing solutions. This is why good design can
not only boost the performance of the EAs, but also variation operators can benefit
from it [101]. For instance, one may use binary variables to represent TSP solutions.
However, the success rate of random variation operators decreases since they can
quickly create an infeasible solution. This problem can be solved by using permutation
representation and their specific operators such that the infeasible solution space is
eliminated without reducing the feasible space. Thus, the choice of variation operators
should also be considered when designing a solution representation. Another aspect
in the design of solution representation we can take into consideration is their memory
computation which can considerably affect the time efficiency of algorithms.

Variation Operators

Variation operators are arguably one of the most important components of an effective
EA. These operators are responsible for the generation of new individuals. They

Chapter 2. Basics 13

operate on the parents and create offspring to give the population new blood for
exploring the solution space. Therefore, it is of great importance to design operators
to make a balance between exploration and exploitation. The balance can only be
achieved by operators fitting to the solution representing. There are two classes of
variation operators, crossover and mutation.

Crossovers are inspired by mating animals in nature. Like in nature, crossovers
combine and mix the genes and components of parents to create offspring. Most
crossover in the literature takes two parents for operation although some variants
require more than two parents. As mentioned, variation operators should fit the
representation, and crossovers are no exceptions.

Some well-known crossovers in the domain of bit strings include single-point,
double-point [18, 34], and uniform crossovers [109]. For instance, consider solution
x = (x1, · · · , xn) and y = (y1, · · · , yn); the single-point crossover selects a point i ∈
{1 · · ·n−1} uniformly at random, cut both parent from the point i, and connect them
alternatively. Then, we have two offspring individuals ox = (x1 · · · , xi, yi+1, · · · , yn)
and oy = (y1 · · · , yi, xi+1, · · · , xn). The double-point crossover cuts the parents from
two points, while uniform crossover selects bit j∀j ∈ {1 · · ·n} from {xj , yj} uniformly
at random.

The above crossovers are mainly used on bit-string solutions. The use of them on
permutation mainly results in infeasible solutions since the chance of generation of a
permutation with those crossovers is small. Some specific considerations are required
to design crossovers for permutations so as to enforce the feasibility of solutions. Thus,
this class of crossovers often tend to be more complicated. Some popular permutation
crossovers include cycle crossover [90], order crossover [18], and edge crossover [118].
Here, we describe the steps involved in the implementation of order crossover:

• Select two individuals p1 and p2 from the population to serve as the parents.

• Randomly select segments from P1.

• Transfer the selected segments to the offspring o in the same position as p1.

• Identify the missing components in o.

• Transfer the missing components to the empty positions in o in the order they
appear in p2.

Unlike crossover, mutations work on a singular parent and make small changes
to generate offspring. Sometimes, a mutation crossover is applied to random offspring
to introduce the elements that no individuals in the population possess. This process
is similar to mutated genes in newborn babies in mammals. It is also possible to use
a mutation operator directly to a parent. This process can be compared to partheno-
genesis in nature. Like parthenogenesis, the offspring is similar to the parent. The

Chapter 2. Basics 14

standard bitflip mutation is a well-known mutation operator in the literature, where
each bit of the parent flips with the probability of 1

n .

Selection Methods

Last but certainly not least, selection methods are a crucial part of EAs since EAs
are developed around the notion that nature selects fitter individuals to flourish in
their environments. Here, EAs use a function to measure the fitness of individuals
and select individuals for reproduction and survival through some mechanisms based
on their fitness. The objective function Z(x) often serves as the fitness function.
However, the objective function may be integrated with other features, such as a
diversity measure and penalty functions and form the fitness function in some cases.

Selection occurs in two places in EAs, parent selection and survival selection.
Parent selection is the procedure that selects individuals to go through reproduction.
Parent selection may consider the fitness of function owing to a higher chance of
fitter individuals in the construction of high-quality offspring. This bias increases
the chance of passing good genes of high-quality solutions to the next generation.
Nevertheless, parent selection must be a probabilistic procedure and give a chance
to the individuals with worse fitness to serve as parents. The motivation behind it
is rooted in the fact that sometimes worse quality solutions possess unique features;
combining those features with other solutions may produce decent results.

The second selection phase is called survival selection, a mechanism to select
the next generation from a pool of old and offspring individuals. Survival selection
is a sensitive procedure and can substantially affect the performance of EAs. If the
selection is highly biased towards high-quality individuals, the algorithm may converge
too fast and get stuck in a local optimum. On the other hand, if an EA has an unbiased
survival selection, it never converges. Thus, the selection pressure controls the balance
of exploration and exploitation. Both deterministic and probabilistic survival selection
mechanisms can be found in the literature.

Proportional selection, the so-called roulette wheel, can be considered a well-
known mechanism in EAs. Proportional selection determines the probability of select-
ing a solution x based on its fitness function Z(x). The chance of selecting individual
xi from the population P can be calculated from the following formula:

pr(xi) =
Z(xi)∑µ
j=1 Z(xj)

Where µ is the cardinality of set P . There is a clear bias towards the high-quality
of solutions in the fitness proportional selection, which makes it a better choice for
parent selection. Nevertheless, the selection can also be incorporated into the survival

Chapter 2. Basics 15

selection. Also, it should be noted that there are some limitations with the formula;
for instance, the fitness values should always be positive.

k-tournament selection is another commonly used selection in the literature of
EC. The mechanism selects k individuals uniformly at random; then, the solution
with the highest fitness survives to the next generation and is removed from the pool.
These steps are repeated until the following generation population forms. Here, k

controls the selection pressure. As k increases, so does the selection pressure and a
decrease of k raises the selection’s randomness.

Termination criteria may be considered another component of EAs. There can
be several termination criteria, such as the number of generations, fitness evaluations,
and achieving a desirable objective value. In many cases, termination criteria are set
considering the computational budget.

2.3 Diversity in Evolutionary Computation

Traditionally, among researchers in the EC community, diversity is seen as a means
to explore local optima, also called niches in the fitness landscape. The process of
finding a set of local optima in a single try is referred to as multimodal optimisation.
EAs have been shown to be very successful in addressing multimodal optimisation
problems if niching methods are incorporated. Niching methods are strategies to
preserve diversity among the individuals of a population. Here, diversity is mainly
seen as solutions with different fitness values.

Several niching methods can be found in the literature on multimodal optimisa-
tion. The classic niching methods include crowding techniques [52] and fitness sharing
[49], which were introduced in the early 80s. Fitness sharing methods divide the pop-
ulation into several subpopulations according to the resemblance of solutions. The
method draws inspiration from sharing notions in nature, where individuals in an en-
vironment have access to limited resources and need to save and share it among all
living there.

Crowding techniques randomly draw a number of individuals from the popula-
tion and remove the one with the most similarity to the others. Crowding techniques
were first introduced as a means to preserve the diversity of the population to pre-
vent premature convergence. Then, they have been widely studied in the context of
multimodal optimisation.

Some other niching methods include restricted tournament selection [46], spatial
[92] and density-based techniques [125]. Interested readers are referred to [103, 107]
for well-established niching techniques. Also, Li et al. [57] provides a comprehensive
review of recent developments in niching methods. Niching and multimodal optimi-
sation have been extensively studied in the literature. In this research, we focus on

Chapter 2. Basics 16

two other paradigms that have recently evolved in the EC community in the context
of diversity, QD and EDO, which have drawn less attention than niching.

2.3.1 Quality Diversity

QD [94, 95] is a recent but well-established paradigm in the field of EC that has gained
increasing attention in the literature. QD sees diversity as a means to extensively ex-
plore the niches present in a pre-defined behavioural space of the optimisation problem
under consideration. QD algorithms aim to find the best-performing solutions with
distinctive behaviours.

Behavioural descriptors (BDs) are a critical component of QD algorithms. BDs
can be a vector representing the behaviours of a solution or, in other words, the
solution’s position in the pre-defined behavioural space. In QD algorithms, solutions
with similar BDs only compete with each other to survive for the next generation. This
selection procedure ensures that solutions with unique behaviours are not replaced by
each other and increases the behavioural diversity of solutions.

MAP-Elite algorithm is the best-known method in the literature of QD. Here,
the behavioural space is discretised into a grid. A solution can be placed into the
cell it belongs to, which is determined based on its BDs. If the cell is already taken
by another individual, the offspring and old individuals compete for survival, and the
solution with a higher objective value occupies the cell. QD algorithms, particularly
MAP-Elite, are highly efficient in illustrating the distribution of high-quality solutions
to an optimisation problem over a behavioural or feature space. Moreover, this class
of EAs has also been shown surprisingly effective in finding solutions with decent
objective values in many fields such as robotics and gaming [36, 96] owing to its
unique diversity mechanism.

QD has emerged from the concept of novelty search, where algorithms aim to find
new behaviours without considering fitness [56]. Cully and Mouret [21] introduced a
mechanism to only keep the best-performing solutions while seeking new behaviours.
Concurrently, Clune, Mouret, and Lipson [17] proposed a simple algorithm to plot
the distribution of high-quality solutions over a feature/behavioural space. Inter-
estingly, the proposed algorithm, named MAP-Elites, efficiently evolves behavioural
repertoires. Pugh, Soros, and Stanley [94] and Pugh et al. [95] formulated the concept
of computing a diverse set of high-quality solutions differing in features or behaviours
and named it QD.

The paradigm has been widely applied to the areas of robotics [3, 96, 126] and
games [35, 36, 108] as well as other continuous problems such as urban design [40].
In addition, the use of QD algorithms to evolve a diverse set of instances for the
TSP has been studied in [13]. We refer interested readers to the review paper of
Chatzilygeroudis et al. [16]. To the best of our knowledge, QD algorithms have not

Chapter 2. Basics 17

previously been used to solve and study a combinatorial optimisation problem until
conducting this research. Therefore, this gap motivates us to provide the first study
on this subject.

2.3.2 Evolutionary Diversity Optimisation

Unlike niching and QD, EDO explicitly maximises the structural diversity of the
population subject to the quality of solutions. EDO employs a measure to quantify
the diversity among individuals and use it as the fitness function. Also, EDO treats
the objective value or the quality of solutions as constraints.

Consider the minimisation problem in Section 2.1 with an objective function
Z(x) and a set of constraints ω ∈ Ω. The goal of EDO is to maximise the diversity of
the set of solutions P = {x1, . . . , xµ}. For this purpose, it utilises a diversity measure
function D(P) as the fitness function while solution x must comply with the quality
constraints Z(x)|x ∈ P .

Formally, the EDO problem can be defined as follows:

Maximise D(P)

Subject to:

Z(xj) ≤ (1 + α) ·OPT ∀xj ∈ P

ω(xj) ∀ω ∈ Ω, ∀xj ∈ P.

Here, OPT represents the optimal value of the problem at hand, and α is a factor
that controls the quality pressure of the solutions. The objective is to maximise the
diversity among the solutions subject to the objective values of the solutions in P

(Z(x) ≤ (1 + α) ·OPT|x ∈ P). Obviously, the other constraints of the problem must
be satisfied by each solution in P .

EDO makes sure we get the most diverse set of solutions possible in the accept-
able range of objective values through this unique formulation. However, a drawback
of this formulation is that it most likely results in solutions with objective values close
to (1 + α), and better quality solutions are usually lost.

EDO was first introduced by Ulrich and Thiele [112]. In recent years, many
of the studies in the context of EDO focused on generating diverse sets of images
and benchmark instances for the TSP [2, 41]. They generated sets of similar images
differing in aesthetics and TSP instances with regard to the characteristics of the
problem that make an instance easy or difficult to solve for different TSP solvers. In
terms of different diversity measures, studies evolving diverse sets of TSP instances
and sets of images by using the star-discrepancy measure [77] and indicators from

Chapter 2. Basics 18

multi-objective optimisation [78] have been carried out recently. Specific mutation
operators to achieve high diversity in TSP instances without using diversity preserva-
tion mechanisms explicitly have been introduced in [11].

To the best of our knowledge, only Do et al. [24] investigated EDO to compute
diverse sets of tours for the TSP before the conduction of the research of this thesis.
Do et al. [24] introduced two distance-based diversity measures and studied simple
EAs with k-OPT neighborhood search operators exclusively. The authors introduced
two different diversity measures, edge diversity (ED) and pairwise distance (PD),
based on pairwise edge overlap. They embedded k-OPT mutation operators with
different values of k in an EA introduced to solve the EDO problem, and empirically
studied the mutations’ impact on the EA performance. They also assumed that the
optimal values of the TSP instances are known. The lack of comprehensive studies
in EDO motivates us to concentrate on this subject and study it in the context of
combinatorial optimisation problems.

During the conduction of our research, other studies investigated EDO in gener-
ating diverse solutions. Do et al. [25] theoretically investigated diversity optimisation
in permutation problems such as the TSP and quadratic assignment problem. Also,
Bossek and Neumann [12] investigated the Minimum Spanning Tree problem in the
context of EDO. They proved that for a small set including two solutions, diversity
can be obtained in polynomial time. Neumann, Bossek, and Neumann [76] presented
a method to compute diverse sets of solutions for submodular optimisation problems
with uniform and knapsack constraints. They first introduced a sampling-based greedy
algorithm to obtain diversity; then, they presented an EDO approach to improve the
results. They also showed that their proposed EDO algorithm outperforms the greedy
algorithm in submodular function problems. An EDO approach was recently adopted
to effectively provide diverse sets of high-quality solutions for the detection and con-
cealment of communication networks in large settings [79].

2.4 Combinatorial Problems

Any optimisation problem with a finite number of solutions can be defined as a com-
binatorial problem. This definition covers a broad range of real-world problems, from
routing to scheduling or allocation problems. A combinatorial problem can be for-
mally defined on a triple (S,Z,Ω) where S is the solution space, Z is the fitness
function, and Ω is the set of constraints. As the definition above, solution space S

must be discrete, and solutions can only take discrete value types.

In combinatorial optimisation problems, the objective is to compute a global
optimum x∗ with respect to the fitness function Z(x) that complies with all problem
constraints Ω. Finding global optima is not straightforward in many real-world prob-
lems due to its complex nature. Thus, the use of heuristics and metaheuristics, such

Chapter 2. Basics 19

as EAs, is very popular among researchers studying such problems. In this thesis, we
study three well-known combinatorial problems, the TSP, the KP, and the TTP. We
aim to introduce evolutionary-based methods inspired by EDO and QD frameworks
to compute a diverse set of solutions for those problems. We seek to expand the
literature on EDO and QD and our understanding of these problems.

2.4.1 Knapsack Problem

The KP is one of the best-known combinatorial problems. The KP is defined on a set
of items I, where the cardinality of the set I is n (|I| = n) and each item i corresponds
to a weight value wi and a profit value pi. Here, the goal is to find a selection of item
y = (y1, y2, . . . , yn) that maximises the profit while the weight of selected items is
constrained to a capacity W . Here, y is the characteristic vector of the selection of
items where yi is set to 0 if the item i is excluded from the selection y; otherwise, it
is set to 1. Formally, we can formulate the KP as follows:

Maximise g(y) =
m∑
j=1

pjyj

subject to
m∑
j=1

wjyj ≤W.

We assume that all items have weights in {0, 1, 2, · · · ,W} since any item violating
this can be removed from the problem instance. The KP and its applications have
been investigated extensively in the literature [100, 105]. Several algorithms have
been proposed for solving the KP, such as dynamic programming [111] and meet-
in-the-middle [51]. There are also several methods aiming for the approximation of
the KP, including greedy approximation algorithm [22], and fully polynomial-time
approximation scheme (FPTAS) [114]. here, we review the dynamic programming
[111] since we utilse the algorithm in Chapter 5 and 6.

Dynamic Programming

Dynamic programming (DP) is a classical, exact approach to solving the KP to op-
timality, which is presented in [111]. The DP consists of a Table β including m rows
from 1 to m and W + 1 columns from 0 to W . Here, items are processed in order of
their indices. The lower the index, the sooner the item is to be processed. Let denote
each table entry by βi,w, which represents the maximum profit we can obtain when we
only consider the first i items and use the knapsack capacity of w. For the first row
of the table, we have β1,w = 0∀w < w1 and β1,w = p1∀w ≥ w1 since we cannot pack
item 1 at a capacity lower than w1. Let j − 1 be the predecessor of item j. Then, we
can calculate the rest of the table from:

Chapter 2. Basics 20

βj,w = max(βj−1,w, pj + βj−1,w−wj)

Once we complete the table, the optimal profit can be found in the last cell of
the table (βm,W), where we take into account all the items and the full capacity of the
knapsack. From that cell, we can go back and trace down all items that are included
in the optimal solution and result in the maximum profit.

2.4.2 Traveling Salesperson Problem

The TSP is a well-known NP-hard combinatorial optimisation problem. The problem
includes a salesperson who aims to find the shortest path possible to visit a number
of cities exactly once and then return to the first city. The problem is defined on a
complete graph G = (V,E) where V is a set of nodes and E is a set of pairwise edges
between the nodes, e = (i, j) ∈ E, each associated with a positive weight, d(e).

In this research, we assume that the TSP instances are symmetric (i. e., d(i, j) =
d(j, i) ∀i, j ∈ V). We denote by n = |V | and m = |E| = n(n− 1)/2 the cardinality of
these sets. The objective is to compute a permutation x : V → V that minimises the
following cost function:

c(x) = d(x(n), x(1)) +
n−1∑
i=1

d(x(i), x(i+ 1)).

This objective returns the distance solution x takes to finish the tour. The TSP
has been extensively studied both practically and theoretically and has various real-
world applications, such as drilling problem [44], school bus routing problem [4], the
navigation satellite system [102]. Many other studies can be found in the literature
that directly or indirectly are related to the TSP. The TSP also has been used for
benchmarking and testing the performance of the algorithms. Therefore, Several
algorithms can be found in literature capable of addressing the TSP efficiently [48,
58, 72, 121]. Here, we review two variation operators we use later in this thesis.

EAX

We consider EAX crossover [72] to generate new TSP tours. EAX is a highly perform-
ing TSP crossover known as one of the state-of-the-art operators in solving TSP. EAX
has several variants; we incorporate the EAX-1AB due to its simplicity and efficiency.
The EAX consists of three steps. Figure 2.1 depicts the three steps to implement the
EAX-1Ab.

• AB-cycle: Generating one AB-cycle from the two parents by alternatively choos-
ing edges from the first and second parents until a cycle is formed (Fig 2.1.2).

Chapter 2. Basics 21

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Tour generated by EAX-EDO

Offspring by
EAX-1AB

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Intermediate
solution

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Parent one

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Parent two

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Tour generated by EAX-EDO

AB-cycle

1 2 3 4

Figure 2.1. The representation of the steps to implement EAX.

• Intermediate Solution: Copying all edges of the first parent to the offspring; then
removing the Ab-cycle’s edges that belong to the first parent from the offspring,
and adding the other edges of the AB-cycle to it (Fig 2.1.3).

• The Complete Tour: Connecting all sub-tours of the intermediate solution to
form a complete tour (Fig 2.1.4).

To connect two sub-tours, we require discarding one edge from each sub-tour and
adding two new edges to connect each end of the deleted edges. For Step 3, we start
with the sub-tour (r) with the minimum edge number. Then, we select the 4-tuples
of edges such that {e1, e2, e3, e4} = argmin{−d(e1) − d(e2) + d(e3) + d(e4)} where
e1 ∈ E(r) and e2 ∈ E(t) \ E(r). E(t) and E(r) represent the set of edges formed the
intermediate solution t and sub-tour r, respectively. We refer interested readers to
[72] for more details about the process of generating a new tour by the EAX. In this
research, we also incorporate 2-OPT mutation into EAs to generate new TSP tours.
In the following, we will review 2-OPT.

2-OPT

The 2-OPT [20] is originally a randomised neighbourhood search algorithm introduced
for permutation problems. However, the operator that is used to change a solution
and generate a new one has been extensively employed in other algorithms, such as
EAs, as the variation operator. The operator is also called 2-OPT. The steps needed
to implement the 2-OPT operator come as follows:

• Select two elements from the permutation uniformly at random.

• Swap the positions of the selected elements in the permutation.

Chapter 2. Basics 22

• Reorder the elements between two selected elements in the backward direction.

2.4.3 Traveling Thief Problem

The TTP is formed by the integration of the travelling TSP and the KP. The TTP is
defined on the graph G, same as TSP and a set of items I where items are scattered
on the cities equally. Formally, every city i except the first one contains a set of items
Mi (a subset of I). Same as KP, each item k located in the city i is associated with
a profit pik and a weight wik. To ease the presentation, we do not use the double
subscripts for the profits and weights in the following but refer directly to the items
at one particular city when required.

The thief should visit all the cities exactly once, pick some items into the knap-
sack, and return to the first city. A rent R should be paid for the knapsack per time
unit. The thief’s speed non-linearly depends on the weight of the knapsack. In TTP,
we aim to find a solution t = (x, y) consisting of a tour x and a KP solution y (called
a packing list in the context of TTP) that maximises the following profit function:

z(x, y) = g(y)−R

(
dxnx1

νmax − νWxn

+

n−1∑
i=1

dxixi+1

νmax − νWxi

)

subject to
m∑
j=1

wjyj ≤W.

Here, νmax and νmin are the maximal and minimal travelling speed, ν = νmax−νmin
W is

a constant, and Wxi is the cumulative weight of the items collected from the start of
the tour up to city xi.

TTP was introduced in 2013 by Bonyadi, Michalewicz, and Barone [9]. TTP is
the combination of the classical TSP and the KP. Both TSP and KP are well-known,
well-studied combinatorial problems. In a nutshell, they integrate the TSP and the
KP so that the travelling cost between two cities depends not only on the distance
between the cities but also on the weight of the items collected so far.

In recent years, several solution approaches have been introduced to TTP. This
includes algorithms based on co-evolutionary strategies [10, 123], local search heuris-
tics [62, 93], profit-based heuristic that modifies tours based on the items’ value [73],
simulated annealing [124], swarm intelligence approaches [115, 128]. Furthermore,
an adaptive surrogate model was proposed in [74] to filter our non-promising tours.
Exact methods based on dynamic programming have been introduced in [119], but
they are limited to solving only small instances. Moreover, Wuijts and Thierens [120]
investigated the fitness landscape of some small instances of TTP. They studied local
search and genetic algorithms using a wide range of operators such as 2-opt, insertion,
EAX, and PMX. They conclude that genetic algorithms using EAX can outperform
the other algorithms under investigation in those instances.

Chapter 2. Basics 23

In cases where the tour is fixed, and the packing list is to be optimised, the prob-
lem is referred to as packing while travelling (PWT) [93] in the literature. Neumann
et al. [81] introduced a DP algorithm to solve the PWT problem to optimality.

Dynamic Programming

DP is a classical approach to solving the KP. Here, we employ the DP introduced
in [81] to solve the PWT problem. The DP includes a table β consisting of m rows
from 1 to m and W + 1 columns from 0 to W . In the DP, items are processed
in the order that their corresponding node appears in the tour. For example, Ii is
processed sooner than Ij if the node to which Ii belongs is visited sooner than the
node of Ij . If two items belong to the same node, they are processed according to
their indices. The entry βi,j represents the maximal profit that the thief can obtain
among all combinations of items Ik with Ik ⪯ Ii, bringing about the weight exactly
equal to j. If no combinations lead to the weight j, βi,j is set to −∞.

Let denote the profit of the empty set by B(∅), which is equal to the travelling
cost with an empty knapsack. Moreover, we denote the profit by B(I1) when only
item I1 is collected. Thus, for the first item I1 (the first row of the table β) based on
the order aforementioned, we have:

β1,0 = B(∅), β1,w1 = B(I1), β1,j = −∞,∀j /∈ {0, w1}

Let denote the predecessor of Ii by Ii−1. For the rest of the table, each entry
βi,j can be computed from max(βi−1,j , T), where

T = βi−1,j−wi + pi −R

n∑
l=1

dl

(
1

νmax − νj
− 1

νmax − νj − wi

)

The maxj βm,j is reported as the optimal profit that the thief can gain from the
given tour. The interested readers are referred to [81], which analysed the runtime of
the DP.

2.4.4 Boolean Satisfiability Problem

The boolean satisfiability problem (SAT) consists of determining the existence of
an assignment (also called model, interpretation, or solution) satisfying a Boolean
formula. A Boolean formula is several literals combined by logical connectives, AND
(∧), and OR (∨), and a literal is a Boolean variable or a negation of a variable (¬).
A formula that is formed by the conjunction of a number of clauses (a disjunction of
literals) is in conjunctive normal form (CNF). A formula in CNF is satisfiable if there
is at least one assignment of the variables such that the formula evaluates to true. In
other words, a given CNF formula Φ is true if an assignment x satisfies all clauses in
Φ; otherwise, Φ is false.

Chapter 2. Basics 24

Several efficient approaches have been developed for SAT in recent years, like
conflict-driven clause-learning (CDCL) [106] and the variable state independent de-
caying sum (VSIDS) branching heuristic [66]. One very versatile solver incorporating
those heuristics is minisat [32]. Minisat has been widely adopted and used as the
benchmark solver in the literature. To the best of our knowledge, Nadel [68] is the
only study focusing on the diversity of SAT solutions. The maximum satisfiability
problem (MAX-SAT) is a generalisation of the SAT, where the problem is defined as
the determination of the maximum number of clauses that can be made true by an
assignment. Since MAX-SAT can fit into the category of optimisation problems, it
has been studied in the context of EC more frequently compared to SAT.

2.5 Methodology

In this thesis, we first define diversity for the optimisation problems under investiga-
tion; then, we design algorithms to compute a diverse set of solutions for the prob-
lems by taking into account the problems’ characteristics. Afterwards, we empirically
scrutinise and investigate the algorithms’ performance by designing appropriate ex-
periments and comparing the algorithms with baselines in the literature. We compare
the mean of several independent runs of the algorithms, and we also use statistical
hypothesis testing to examine the significance of differences in the results.

Statistical hypothesis testing refers to determining if the obtained data supports
a hypothesis. This kind of test can help us to make probabilistic statements about
the results we obtain from the EAs. Here, we utilise the Kruskal–Wallis at signifi-
cance level 5% test with Bonferroni correction. The Kruskal-Wallis test is a method
to determine whether two or more independent samples belong to the same distribu-
tion, and Bonferroni correction is a method to counteract testing multiple hypotheses.
Interested readers are referred to [98] for more details about the statistical tests. More-
over, we conduct other experimental investigations when they are appropriate. For
instance, we look into the trajectory of the algorithms or design simulations to test
the diversity of solutions.

In this thesis, the experimental setting is chosen based on several factors, such
as the problems under investigation, the proposed algorithms, the aims of the exper-
iments, and the computational budget. Since these factors are not static throughout
the thesis, the experiment setting changes to adopt the requirements. We specify the
setting at the beginning of the experimental sections.

2.6 Conclusions

This chapter gave an introduction to combinatorial optimisation problems and the so-
lution approaches to address them, including well-known bio-inspired meta-heuristics
in the literature, such as EA. We also provided a review of the studies investigating the

Chapter 2. Basics 25

diversity of solutions and aimed for the construction of a set of diverse, high-quality
solutions for the problem at hand. In Ec, diversity is seen as niching in solutions’
fitness or behavioural landscape or structural properties.

Computing diverse solutions has received increasing attention among researchers
in the EC community. The benefits of diverse solutions have been highlighted in
several studies, including in [79, 80]. The invaluable knowledge in solution space,
robustness against imperfect modelling, and freedom of choice, among others, can be
cited as the advantages of a diverse set of solutions compared to a single optimal
solution.

26

Chapter 3

Entropy-based diversity in the
Traveling Salesperson Problem

3.1 Introduction

Several algorithms have been introduced to find an (approximately) optimal solution
for the TSP [48, 58, 72, 121], but only a few studies focused on maximising the
diversity of solutions (see, e.g., Do et al. [24]). The diversity measures adopted in
Do et al. [24] do not consider dependencies between nodes in the TSP but focus on
the frequency of the occurrence of edges in the EAs’ population. This is while the
nodes in a TSP tour are strongly correlated to each other [70] (we will explain this
matter further in Section 3.2). Therefore, we incorporate a diversity measure based
on entropy into EDO for the TSP in this study. This measure explicitly addresses the
dependency between nodes in the TSP tours.

We examine the diversity measure’s theoretical properties and determine charac-
teristics that a maximally/minimally diverse set of tours should possess. Besides, we
propose a Mixed-Integer Programming (MIP) formulation of the considered diversity
problem and solve it with an exact solver to a) support the theoretical proofs and
b) use it as a baseline for experimentation. Then, we introduce the biased 2-OPT
mutation, which mainly focuses on more frequent components in the population and
aims to decrease their frequency to increase diversity. We perform an extensive ex-
perimental study in the unconstrained case (no quality criterion) and the constrained
case with (un)biased 2-OPT mutation operators. Our results indicate a clear advan-
tage of the entropy-based driven EA compared to EAs based on the distance-based
diversity measures introduced by Do et al. [24]. The results also show that biased
2-OPT brings faster convergence, especially in unconstrained diversity optimisation.

Furthermore, previous studies have overlooked a potential impact of the (µ +

λ) EA where λ ≥ 2 due to the complexity of diversity calculations. Here, µ and λ

denote the size of the main population and offspring pool. This complexity is rooted
in the fact that diversity is a measure calculated for a set of solutions, and thus,

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 27

finding the best µ solutions from a pool of µ + λ is a complex task. In fact, there
are

(
µ+λ
µ

)
possible sets, and an increase in λ leads to a substantial increase in the

complexity of the subset selection problem at hand. To overcome this challenge, we
introduce multiple selection methods, including greedy, tournament, and EA-based
selection, which not only deal with the increased complexity but also examine the
impact of (µ+ λ) EA where λ ≥ 2 on the results. Moreover, we calculate how many
diversity evaluations each selection method requires in each generation. We examine
the methods empirically and compare them with the conventional (µ+1) EA for both
constrained and unconstrained diversity optimisation. The investigation indicates
that the (µ+λ) EA version using the EA-based selection outperforms the conventional
(µ+ 1) EA in both unconstrained and constrained optimisation.

The work of this chapter is based on a conference paper [83] presented at the
genetic and evolutionary computation conference (GECCO 2021) and its extended ver-
sion that is submitted to evolutionary computation journal. The chapter is structured
as follows: In Section 3.2, we define the TSP problem and diversity and determine
the maximum and minimum values for the high-order entropy measure in 3.3. Section
3.4 presents a MIP formulation, while Section 3.5 proposes an EA and the (un)biased
2-OPT mutation. Section 3.6 empirically compares the MIP and EA, biased and un-
biased mutation, and entropy-based and distance-based diversity measures. Sections
3.7 and 3.8 introduce and experimentally compare three different sub-set selection
methods and the conventional (µ + 1)EA. Finally, we conclude with some remarks
and promising future research perspectives.

3.2 Maximising Diversity in TSP

In this chapter, we examine the TSP in the context of EDO. TSP is formally defined
in 2.4.2. Given a TSP instance G, let OPT be the cost of the optimal tour for
G and α > 0 be a predefined parameter. The objective is to compute a diverse
set of tours where a) the diversity value of the population is maximised in terms
of a given diversity measure; b) all individuals comply with a maximum cost, i. e.,
c(pi) ≤ (1+α)OPT,∀pi ∈ P . In this chapter, p represents a solution in the population
P . Here, the goal is to maximise the diversity of the set of solutions subject to
the quality constraint. Maximising the diversity of tours provides us with valuable
information on the solution space around the optimal tour. It can indicate which
edges are irreplaceable or complex to replace if we aim to stay within the quality
threshold. Moreover, it enables decision-makers to choose between different tours;
they may decide to visit a city earlier than another or avoid an edge if provided with
various alternatives with reasonable costs.

Recently, Do et al. [24] studied EDO on TSP for the first time. The authors
tailored two edge-based diversity measures, edge diversity (ED) and pairwise dis-
tance (PD), towards the TSP. ED measures the diversity based on the equalisation of

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 28

the frequency of edges in the population. For this purpose, they used the notion of
genotypic diversity [127] defined as the mean of pairwise distances:

ED(P) =
∑
p∈P

∑
q∈P
|E(p) \ E(q)|,

where E(p) is the set of edges of p = (p(1), . . . , p(n)).

(i. e., E(p) = {(p(1), p(2)), (p(2), p(1)) . . . , (p(n), p(1)), (p(1), p(n))})

On the other hand, PD is defined as

PD(P) =
1

nµ

∑
p∈P

min
q∈P\{p}

|E(p) \ E(q)|.

and emphasises uniform pairwise edge distances. PD is closely aligned with the diver-
sity measure discussed by Wang, Jin, and Yao [117]. For the sake of brevity, we refer
the reader to Do et al. [24] for further details.

One disadvantage of both ED and PD is that the dependency of the occurrence
of nodes in a tour is not considered. This is while the occurrence of nodes in a
tour is significantly dependent on each other in the TSP. Here, we show a tour as a
permutation p consisting n decision variables p(i) representing the i-th node visited
in the tour. For instance, if we construct a tour manually, the next node we choose
(the value of p(i+1)) is heavily dependent on the current node (p(i)), and all already
visited nodes [70]. This is because we must not choose any already visited node.
This issue can result in an inaccurate diversity evaluation. We employ an entropy-
based diversity measure introduced by Nagata [70], termed high-order entropy, to
resolve this issue. The measure considers the sequence of k nodes (k − 1 edges) in
tours instead of focusing on edges one by one. Nagata [70] showed that the high-order
entropy measure outperforms the independent entropy measure in terms of preventing
premature convergence.

3.3 High-Order Entropy Measure

In the high-order entropy measure, the sequence of 2 ≤ k ≤ n nodes (k − 1 edges)
in tours is the feature intended to be diversified. Let s = {v1, . . . , vk}, vi ∈ V for
i = 1, . . . , k be a segment consisting of k nodes. Then, its contribution to the overall
entropy of the population P is given as

h(s) = −
(
f(s)

2nµ

)
· ln
(
f(s)

2nµ

)
,

where f(s) is the absolute number of occurrences of segment s in P . Note that 2nµ is
the total number of occurrences of all segments in a population of size µ since we are

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 29

· · ·

· · ·

Figure 3.1. Illustration of building all segments of length k = 3 for
a TSP tour.

able to traverse each tour in both directions. Each tour contains exactly 2n different
segments (see Figure 3.1 for an example). In the following, it is sometimes useful to
represent a segment by means of its set of edges. For instance, s = {s(1), s(2), s(3)}
can be also written as E(s) = {(s(1), s(2)), (s(2), s(3))}. Summing over all segments
included in the population P , the entropy of P is defined as

H(P) =
∑
s∈P

h(s).

Let S = {s1, . . . , su} be the set of all possible segments of k nodes for a given TSP
instance G, and let u = |S| = n!

(n−k)! denote the cardinality of S. We sort the segments
according to the number of their occurrences within P in an increasing order to obtain
the vector F (P) = (f(s1), . . . , f(su)). It means that f(s1) ≤ f(s2) ≤ . . . ≤ f(su).
We define fmin = f(s1), fmax = f(su), and C = fmax − fmin where fmin and fmax

are the smallest and the largest number of occurrences of segments in P , respectively.
Intuitively, a maximally diverse population would have all f(si) almost equalised.
We will use F (P) later to analyse whether a given population P has the maximum
achievable entropy.

3.3.1 Maximum High-Order Entropy

Next, we aim to determine the characteristics of an ideal set of tours having the
maximum high-order entropy value Hmax for a given TSP instance.

Knowing Hmax is important for two main reasons: a) it enables us to have a
better understanding of an algorithm’s performance by comparing the entropy of the
final population with Hmax and b) it allows us to use it as a termination criterion for
an EA in the course of experimental evaluation with a fixed-target perspective.

Lemma 1. Let P2 be a population obtained from a population P1 by decreasing fmax

and increasing fmin by one unit each. If C ≥ 2, then we have H(P2) > H(P1).

In order to show Lemma 1, we work under the assumption that C ≥ 2 (C =

fmax−fmin) and show that H(P2)−H(P1) > 0 holds. We show that H(P2)−H(P1) is

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 30

monotonically decreasing in fmax and limfmax→+∞H(P2)−H(P1) converges to zero.
This implies that Lemma 1 is true. The differences in P1 and P2 can be summarised
in fmin and fmax where fmax decreased and fmin increased by one unit each in P2.
The number of occurrences of other segments is the same in both populations. Also,
we have fmax = fmin + C. To simplify the following presentation, we use f = fmax

and fmin = f − C. Thus, we have:

H(P2)−H(P1) = −
f − 1

2nµ
ln

(
f − 1

2nµ

)
− f − C + 1

2nµ
ln

(
f − C + 1

2nµ

)
+

f

2nµ
ln

(
f

2nµ

)
+

f − C

2nµ
ln

(
f − C

2nµ

)

We now show that H(P2)−H(P1) is monotonically decreasing in f if and only
if C ≥ 2.

Lemma 2. If C ≥ 2 then H(P2)−H(P1) is monotonically decreasing in f .

Proof. To prove H(P2)−H(P1) is monotonically decreasing, we show that d(H(P2)−H(P1))
df <

0. We have

d(H(P2)−H(P1))

df
< 0

⇔ 1

2nµ

(
ln

(
f

2nµ

)
+ ln

(
f − C

2nµ

))
−

1

2nµ

(
ln

(
f − 1

2nµ

)
+ ln

(
f − C + 1

2nµ

))
< 0

⇔ ln
f(f − C)

(f − 1)(f − C + 1)
< 0

⇔ f(f − C)

(f − 1)(f − C + 1)
< 1

⇔ (f − 1)(f − C + 1) > f(f − C)

⇔ f2 − f · C + C − 1 > f2 − f · C

The last expression holds as C ≥ 2, which completes the proof.

Owing to Lemma 2, if H(P2)−H(P1) is still positive for an extremely large f ,
it is positive for all smaller values of f . We now investigate f approaching to +∞.

Lemma 3. H(P2)−H(P1) > 0 holds for any fixed population size µ and C ≥ 2.

Proof. As one can notice, f is bounded by µ. that means f can approaches to +∞,
only if µ approaches to +∞ as well. Thus, we investigate H(P2)−H(P1) in the most

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 31

extreme case where µ and f → +∞.

H(P2)−H(P1) ⇔
(
f − C

2nµ

)
ln

(
f − C

2nµ

)
−
(
f − 1

2nµ

)
ln

(
f − 1

2nµ

)
+(

f

2nµ

)
ln

(
f

2nµ

)
−
(
f − C + 1

2nµ

)
ln

(
f − C + 1

2nµ

)
We compute the limit for µ and f → +∞ by applying L’Hopital’s rule and have:(

1

2n

)
ln

(
1

2n

)
−
(

1

2n

)
ln

(
1

2n

)
+(

1

2n

)
ln

(
1

2n

)
−
(

1

2n

)
ln

(
1

2n

)
= 0

The last expression shows that H(P2) −H(P1) converges to 0 if f → +∞. We have
f ≤ µ and using Lemma 2, this implies that H(P2) − H(P1) > 0 for any fixed µ if
C ≥ 2.

Theorem 1. For every complete graph with n nodes and every population size µ ≥ 2,
the entropy of a population P with µ individuals is maximum if and only if C is equal
to zero or one.

Proof. Lemma 1 shows that a population’s entropy can be increased as long as C ≥ 2.
Therefore, C should be equal to 0 or 1 to have a maximum entropy population.

To have C to 0 or 1, the number of occurrences of all possible segments should be
equalised. For every TSP instance, there are u possible segments and 2nµ occurrences
of all segments for every population. The optimal value of fmin is equal to [2nµu]. Let
f∗
min and C∗ be the values of fmin and C in an optimal population. It should be noted

that based on the Pigeonhole principle if 2nµ
u is an integer, C ∈ {0, 2, 3, . . . , u} and

C∗ = 0; otherwise, C ∈ {1, 2, . . . , u} and C∗ = 1. In other words, C can get only one
of the values of 0 or 1 depending on the parameters of the problem, such as the size of
the population, segments, and TSP instances. All in all, (f∗

min+1)u− (2nµ) segments
occur f∗

min times in an optimal population whereby, the number of occurrences of the
other segments is equal to f∗

min + C∗ = f∗
max.

Hmax = −((2nµ)− (f∗
min · u))

(
f∗
max

2nµ

)
ln

(
f∗
max

2nµ

)
− ((f∗

min + 1)u− (2nµ))

(
f∗
min

2nµ

)
ln

(
f∗
min

2nµ

)
(3.1)

Note that the entropy of any set of TSP tours is always greater than zero. This
is because no segments are allowed to occur within a tour more than once. In the
worst-case scenario where a population consists of µ copies of a single tour, we have 2n

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 32

different segments with the number of occurrences µ. We can determine the entropy
value of a population with such characteristics from:

Hmin = −2n
(

1

2n
ln

(
1

2n

))
= ln(2n) (3.2)

3.4 Mixed-Integer Programming Formulation

This section presents a MIP formulation for the considered problem. Solving the
proposed MIP with an exact solver such as the Cplex [19] can help us to observe
whether the solver obtains the same results as Formula 3.1. Also, it would provide
us with a baseline to investigate the performance of other algorithms. The objective
function is formulated as follows:

H(P) =
∑
s∈P
−
(
f(s)

2nµ

)
ln

(
f(s)

2nµ

)
→ max! (3.3)

where f(s), s = {vi, . . . , vq}, is calculated from

f(s) =
∑
p∈P

xpij · · ·x
p
tq +

∑
p∈P

xpji · · ·x
p
qt (3.4)

Here, xpij is a binary variable; it is set to 1 if edge e = (i, j) is included in
tour p; otherwise, it is equal to zero. For example, if s = (v3, v5, v2, v1), f(s) =∑

p∈P (x
p
35 · x

p
52 · x

p
21) +

∑
p∈P (x

p
12 · x

p
25 · x

p
53). The maximisation of the objective

function in Eq. 3.3 is subject to the following constraints:

n∑
i=1

n∑
j=1

d(i, j)xpij ≤ (1 + α) ·OPT, ∀p ∈ P (3.5)

n∑
i=1,i ̸=j

xpij = 1, ∀j ∈ V, p ∈ P (3.6)

n∑
j=1,i ̸=j

xpij = 1, ∀i ∈ V, p ∈ P (3.7)

wp
i − wp

j + nxpij ⩽ n− 1,∀i, j ∈ V, i ̸= j, p ∈ P (3.8)

wp
i ⩽ n− 1, ∀i ∈ {2, . . . , n}, p ∈ P (3.9)

xpij ∈ {0, 1}, wi ≥ 0,∀i, j ∈ V, p ∈ P. (3.10)

Here, wp
i is a positive integer showing the position of node i in the tour p. Equation 3.5

makes sure that all solutions satisfy a minimal quality with respect to tour length.
Equations 3.6 and 3.7 guarantee that all nodes are visited exactly once in each tour,

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 33

while Equations 3.8 and 3.9 prevent the creation of sub-tours as proposed by Miller,
Tucker, and Zemlin [65]. The objective function (Eq. 3.3) should be linearised to use
the MIP solvers.

Linearisation

In Section 3.3.1, we showed that the entropy value of a population P is maximum if
and only if C = fmax − fmin ∈ {0, 1}. In other words, Equation 3.3 is maximised if
and only if C is set to zero or one. Therefore, We can replace the objective function
with

C = fmax − fmin → min! (3.11)

Here, fmin and fmax are dependent on xpij . Thus, the correlation between these two
variables and the other MIP variables should be explicitly defined in the MIP formu-
lation before using Equation 3.11 as the MIP’s objective function. For this purpose,
we need to add new constraints and variables.

ypij···s ≥ xpij + . . .+ xptq − k + 2, ∀i, . . . , q ∈ V, p ∈ P (3.12)

ypij...s ≥ xpqt + · · ·+ xpji − k + 2, ∀i, . . . , q ∈ V, p ∈ P (3.13)∑
i

∑
j

· · ·
∑
t

∑
p

ypij···sq ≤ 2nµ (3.14)

fmax ≥
∑
p∈P

ypij···tq, ∀i, . . . , q ∈ V (3.15)

fmin ≤
∑
p∈P

ypij···tq, ∀i, . . . , q ∈ V (3.16)

Here, ypij···tq is a binary variable set to 1 if segment s = {vi,
..., vq} or s′ = {vq,

...vi}
is included in tour p. For example, if the tour p includes either of the segments
s = {v3, v5, v2, v1} (i. e. E(s) = {(3, 5), (5, 2), (2, 1)}) or s′ = {v1, v2, v5, v3}, both
yp3521 and yp1253 are set to 1. Note that segments s and s′ are identical since we can
traverse a tour in both directions. Equations 3.12 and 3.13 ensure that ypij···q is set to
1 if segment s is included in tour p. Equation 3.14 guarantees that ypij···q is equal to
zero if the segment s is not included in the tour p. Finally, Equations 3.15 and 3.16
determine fmin and fmax. Moreover, f(s) can be calculated from summing up ypij···q
over p. In the final MIP formulation, Equation 3.11 serves as the objective function
subject to the constraints [3.5-3.10] and [3.12-3.16].

3.5 Entropy-based Evolutionary Diversity Optimisation

We introduce an EA to address EDO for TSP tours (see Algorithm 5 for an outline).
The algorithm is initialised with a population P consisting of µ copies of an optimal
tour/permutation for the given TSP instance. A broad range of successful algorithms

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 34

Algorithm 5 Diversity maximising EA
1: Initialise the population P with µ copies of the optimal TSP tours.
2: Choose p ∈ P uniformly at random and generate a offspring p′ by mutation
3: if c(p′) ≤ (1 + α) ·OPT and H(P \ {p} ∪ {p′}) ≥ H(P) then
4: Replace P with P ′.
5: Repeat steps 2 to 6 until a termination criterion is reached.

is proposed in the literature to find the optimal tour in TSP, such as Concorde by
Applegate et al. [6]. Moreover, the optimal tours have been provided for most bench-
mark instances in the well-known TSPlib [97]. Next, a parent p is selected uniformly
at random, and mutation operators generate offspring individuals, p′. Then, p is re-
placed with p′ if p′ satisfies the quality constraint and P \ {p} ∪ {p′} has a higher
diversity than P . From the entire population, we solely consider parents for survival
selection to increase time efficiency. We will discuss that the exclusion of the rest of
the population does not affect the results significantly. These steps are repeated until
a termination criterion is met.

3.5.1 Biased 2-OPT

We present two biased versions of the 2-OPT mutation operator, which is widely used
in TSP. In the classic 2-OPT, two edges are randomly selected and swapped, and
the nodes between them are reversed. However, this operator may not be effective
in maintaining diversity in the population. Our biased versions aim to address this
by incorporating a bias towards high-frequency segments in the population. In the
normalised biased 2-OPT, there is competition among the high-frequency segments,
where each segment’s likelihood is proportional to its frequency. On the other hand,
the absolute biased 2-OPT only selects the segment with the highest frequency. Since
the latter version focuses only on the most frequent segments, it is useful in un-
constrained diversity optimisation where the quality constraint is not a concern. In
constrained diversity optimisation, the normalised biased version is more appropriate.
By considering the frequency of each segment, this version increases the probability of
generating offspring that meet the quality criterion while still increasing diversity in
the population. Overall, these biased versions of 2-OPT can improve the performance
of TSP algorithms in maintaining diversity and exploring new solutions.

Owing to the parent and the offspring’s similarity, the algorithm compares the
offspring with its parent rather than the entire population. All versions of 2-OPT
change solely two edges of a parent. So, the population’s entropy is likely to decrease
if both parent and offspring remain in the population, especially in unconstrained
diversity optimisation. In constrained diversity optimisation, it can be beneficial to
compare an offspring to the entire population, but it increases the computational
costs. We introduce different selection methods that allow us to generate a pool of
offspring and replace more than one individual in each generation in Section 3.7 and
3.8.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 35

Table 3.1. Comparison of the entropy of final populations obtained
by Cplex and the EA (symbols O and N indicate whether Cplex con-

verged within the given time-bound).

n = 5 n = 10 n = 15 n = 20

µ k ENT Cplex Hmax ENT Cplex Hmax ENT Cplex Hmax ENT Cplex Hmax

6 2 3.00 3.00 (O) 3.00 4.44 4.44 (O) 4.44 5.19 5.19 (O) 5.19 5.48 5.48 (O) 5.48
6 3 4.09 4.09 (O) 4.09 4.79 4.79 (O) 4.79 5.19 5.19 (O) 5.19 5.48 5.48 (O) 5.48
12 2 3.00 3.00 (O) 3.00 4.48 4.48 (O) 4.48 5.31 5.31 (O) 5.31 5.88 5.88 (O) 5.88
12 3 4.09 4.09 (O) 4.09 5.48 5.48 (O) 5.48 5.89 5.89 (O) 5.89 6.17 6.17 (O) 6.17
24 2 3.00 3.00 (O) 3.00 4.50 4.50 (O) 4.50 5.34 5.33 (O) 5.34 5.92 5.91 (N) 5.92
24 3 4.09 4.09 (O) 4.09 6.17 - 6.17 6.58 - 6.58 6.87 - 6.87

3.6 Experimental Investigation

In this section, we conduct a series of experiments to evaluate the suitability of the
proposed algorithm and diversity measure while Section 3.8 is dedicated to investi-
gation of survival selection methods. Here, the experiments are classified into three
parts. First, we examine the algorithm’s results to make sure that a) the considered
survival selection does not affect the entropy of the final population by comparing the
results with an EA including the entire population in the survival selection procedure
and b) the results obtained from our EA are consistent with the results of the Cplex
solver and Hmax (see Eq. 3.1). Subsections 3.6.2 and 3.6.3 are dedicated to comparing
the introduced EA and the EAs based on PD and ED by Do et al. [24] in unconstrained
diversity optimisation and constrained diversity optimisation, respectively.

3.6.1 Validation of the Proposed EA

This subsection scrutinises the performance of the introduced EA. Initially, we ex-
amine the survival selection method by comparing the proposed approach to a more
general version where the offspring is compared to the entire population. Later, we
draw an analogy between the EA and an exact method.

Survival Selection Procedure

As mentioned, it is more efficient to compare the offspring with the parent than
the entire population, especially in unconstrained optimisation. Here, we analyse
the algorithm’s survival selection and compare it with the same algorithm where the
offspring is compared with all individuals in the population. All combinations of
n = {25, 50}, µ = {12, 20, 50}, and k = {2, 3, 4} are subject to experimentation.
Due to the relaxation of the quality constraint, we consider complete graphs where
the edges’ weights are all equal to one as TSP instances for unconstrained diversity
optimisation. The termination criterion is reaching the limit of 100 000 generated
offspring. The results show no significant differences in the mean of entropy values over
all the cases. The observation is confirmed with the Kruskal-Wallis test at significance
level 95% and the Bonferroni correction method. Note that in the constrained version,
if a tight threshold is considered, it is beneficial to have the entire population included

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 36

in survival selection. Also, it can sometimes be beneficial to increase the offspring
pool and change more than one individual in the population to escape local optima,
although it increases the problem complexity. Thus, we introduce different selection
methods where it is possible to change more than one solution in each generation in
Section 3.7.

Comparison between the exact solver and the proposed EA

In this section, we focus on unconstrained diversity optimisation to examine the re-
sults obtained from solving the MIP formulation using the Cplex solver. We do not
consider constrained optimisation for two reasons. Firstly, our main objective in using
an exact solver such as Cplex is to support the formula for Hmax, which can serve as
a baseline for larger instances where the Cplex solver is unable to solve the problem
within a bounded time. However, imposing quality constraints can remove parts of the
solution space to which Hmax belongs, making it difficult to verify the formula in con-
strained diversity optimisation. Secondly, the Cplex solver is not suitable for solving
medium or large instances, even in unconstrained diversity optimisation. Therefore,
investigating small instances alone serves no purpose. The experiments take place on
all combinations of µ ∈ {6, 12, 24}, n ∈ {5, 10, 15, 20} and k ∈ {2, 3}. A time-bound of
24 hours is considered for the Cplex solver. The results are summarised in Table 3.1.
Note that the MIP formulation’s objective function is to minimise fmax − fmin, while
the EA uses the entropy value as the fitness function.

In Table 3.1, O and N represent the capability and incapability of the Cplex
solver in converging to the global optimum within the time-bound, respectively. As
Table 3.1 indicates, there are cases where Cplex cannot solve instances to the optimal
value (n = 20, µ = 24, and k = 2), and cases where Cplex cannot find a feasible
solution, n ∈ {10, 15, 20}, µ = 24, and k = 3. These cases highlight the need for a
time-efficient algorithm. More importantly, Table 3.1 shows that if the Cplex solver
finds the optimal solution, the proposed EA converges to a population with the same
entropy, which is consistent with the Hmax 3.1. The fact that both Cplex and the EA
converged to Hmax supports Equation 3.1. Therefore, we can use Hmax as another
termination criterion of the introduced EA and the baseline for further experimental
investigation. Note that the introduced EA converges in less than two minutes.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 37

0 2,0004,0006,000

0.95

1

Iteration

D
iv

er
si

ty

µ = 25

0 1 2

·104

0.96

0.98

1

Iteration

µ = 125
B 2-OPT C 2-OPT

0 1 2 3

·104

0.98

0.99

1

Iteration

µ = 250

Figure 3.2. Comparison between convergence pace of biased (orange)
and classic 2-OPT (green).

(Operator, Population size)

N
um

be
r

of
 c

os
t e

va
lu

at
io

ns

(B,25)

2200

2300

2400

2500

2600

(G,25)
1

1.2

1.4

1.6

1.8

104

(B,125)
2.5

3

3.5

4

4.5

5

104

(G,125)

7.5

8

8.5

104

Figure 3.3. The number evaluations in reaching Hmax for the biased
(orange) and the classic 2-OPT (green). The red × and + show the

mean of the results and the outliers, respectively.

C
hapter

3.
E

ntropy-based
diversity

in
the

T
raveling

Salesperson
P

roblem
38

Table 3.2. Comparison between the high-order entropy values of the final populations of the introduced EA and ones based on ED and
PD. Stat shows the results of a Kruskal-Wallis test at the significance level of 95% with Bonferroni correction. X+ means the median of

the measure is better than the one for variant X, X− means it is worse and X∗ indicates no significant difference.

n = 50 n = 100

ENT (1) ED (2) PD (3) Range ENT (1) ED (2) PD (3) Range

µ k mean stat mean stat mean stat Hmin Hmax mean stat mean stat mean stat Hmin Hmax

12 2 7.09 2∗3∗ 7.09 1∗3∗ 7.09 1∗2∗ 4.6052 7.0901 7.78 2∗3∗ 7.78 1∗3∗ 7.78 1∗2∗ 5.2983 7.7832
12 3 7.09 2∗3∗ 7.09 1∗3∗ 7.09 1∗2∗ 4.6052 7.0901 7.78 2∗3∗ 7.78 1∗3∗ 7.78 1∗2∗ 5.2983 7.7832
12 4 7.09 2∗3∗ 7.09 1∗3∗ 7.09 1∗2∗ 4.6052 7.0901 7.78 2∗3∗ 7.78 1∗3∗ 7.78 1∗2∗ 5.2983 7.7832

20 2 7.60 2∗3∗ 7.60 1∗3∗ 7.60 1∗2∗ 4.6052 7.6006 8.29 2∗3∗ 8.29 1∗3∗ 8.29 1∗2∗ 5.2983 8.2940
20 3 7.60 2∗3∗ 7.60 1∗3∗ 7.60 1∗2∗ 4.6052 7.6006 8.29 2∗3∗ 8.29 1∗3∗ 8.29 1∗2∗ 5.2983 8.2940
20 3 7.60 2∗3∗ 7.60 1∗3∗ 7.60 1∗2∗ 4.6052 7.6006 8.29 2∗3∗ 8.29 1∗3∗ 8.29 1∗2∗ 5.2983 8.2940

50 2 7.80 2∗3∗ 7.80 1∗3∗ 7.80 1∗2∗ 4.6052 7.7997 9.17 2+3+ 9.14 1−3∗ 9.13 1−3∗ 5.2983 9.1965
50 3 8.52 2+3+ 8.51 1−3∗ 8.51 1−2∗ 4.6052 8.5172 9.21 2∗3∗ 9.21 1∗3∗ 9.21 1∗2∗ 5.2983 9.2103
50 4 8.52 2∗3∗ 8.52 1∗3∗ 8.52 1∗2∗ 4.6052 8.5172 9.21 2∗3∗ 9.21 1∗3∗ 9.21 1∗2∗ 5.2983 9.2103

100 2 7.80 2∗3+ 7.80 1∗3+ 7.79 1−2− 4.6052 7.8017 9.19 2+3+ 9.18 1−3∗ 9.16 1−2∗ 5.2983 9.1982
100 3 9.21 2+3+ 9.18 1−3∗ 9.19 1−2∗ 4.6052 9.2103 9.90 2+3+ 9.90 1−3∗ 9.90 1−2∗ 5.2983 9.9035
100 4 9.21 2+3∗ 9.21 1−3− 9.21 1∗2+ 4.6052 9.2103 9.90 2+3∗ 9.90 1−3− 9.90 1∗2+ 5.2983 9.9035

500 2 7.80 2∗3+ 7.80 1∗3+ 7.80 1−2− 4.6052 7.8036 9.20 2+3+ 9.20 1−3+ 9.16 1−2− 5.2983 9.1999
500 3 10.82 2+3+ 10.45 1−3∗ 10.60 1−2∗ 4.6052 10.8198 11.51 2+3+ 11.34 1−3∗ 11.45 1−2∗ 5.2983 11.5129
500 4 10.82 2+3+ 10.76 1−3∗ 10.82 1−2∗ 4.6052 10.8198 11.51 2+3+ 11.47 1−3∗ 11.51 1−2∗ 5.2983 11.5129

1000 2 7.80 2∗3+ 7.80 1∗3+ 7.79 1−20− 4.6052 7.8038 9.20 3∗4+ 9.16 1∗3+ 9.01 1−2− 5.2983 9.2001
1000 3 11.35 2+3+ 10.73 1−3∗ 11.03 1−2∗ 4.6052 11.5129 12.16 2+3+ 11.33 1−3∗ 11.89 1−3∗ 5.2983 12.2061
1000 4 11.52 2+3+ 11.30 1−3∗ 11.50 1−2∗ 4.6052 11.5129 12.21 3+4+ 10.36 1−3− 11.90 1−2+ 5.2983 12.2061

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 39

3.6.2 Unconstrained Diversity Optimisation

In this section, we first compare classic 2-OPT with biased 2-OPT. Our hypothesis
is that biased 2-OPT is more likely to generate offspring that contribute to the pop-
ulation’s entropy, while classic 2-OPT may be better at generating tours that satisfy
quality constraints. Since no quality constraints are imposed here, we expect that
biased 2-OPT will perform better. To compare the two algorithms, we conducted
experiments on a complete graph with 100 nodes, using k = 2 and µ ∈ 25, 125, 250.

Figure 3.2 compares the convergence pace of classic 2-OPT and biased 2-OPT.
The entropy value is shown on the y-axis, whereby the x-axis represents the number
of cost evaluations (iterations). Note that diversity scores shown in the figure are
normalised by using Equations 3.1 and 3.2. Figure 3.2 indicates that both operators
eventually converge to Hmax in most cases. However, biased 2-OPT is faster than the
classic 2-OPT, especially with a smaller population.

Figure 3.3 compares the number of cost evaluations required to converge to
Hmax in the introduced EA using classic and biased 2-OPT over ten runs. One can
observe that the number of required cost evaluations is significantly higher for classic
2-OPT. Biased 2-OPT, for example, requires around 2, 350 evaluations on average
when µ = 25. On the other hand, the figure is around 14 000 for classic 2-OPT.
Moreover, none of the operators converges to Hmax within the limit of 100 000 cost
evaluations where µ = 250. In this case, the mean of the entropy value of biased and
classic 2-OPT are 9.1993 and 9.1983, respectively, while Hmax is equal to 9.1994.

Next, we provide a comprehensive comparison between the proposed EA and
EAs based on ED and PD proposed by Do et al. [24]. We conduct experiments on all
combinations of n ∈ {50, 100}, µ ∈ {12, 20, 50, 100, 500, 1 000} and k ∈ {2, 3, 4}. The
termination criteria are reaching either the entropy value of Hmax or the limitation
of 100 000 cost evaluations. Note that the EAs based on ED and PD compare the
offspring to the entire population, requiring considerably more diversity evaluations
per generated offspring. Table 3.2 compares the entropy of the final population ob-
tained from the algorithms. Here, we solely use biased 2-OPT due to its efficiency in
unconstrained diversity optimisation. The results show that the proposed algorithm
outperforms the algorithms based on ED and PD over large populations and long seg-
ments (i. e. µ ∈ {500, 1000} and k ∈ {3, 4}). In the case n = 50, k = 3 and µ = 1000,
for instance, the introduced EA scores 11.35 entropy value while the algorithms based
on ED and PD achieve 10.73 and 11.03, respectively. According to the pigeon’s hole
principle, the most challenging cases in unconstrained optimisation are where 2nµ is
close to a factor of u (number of segments). For instance, if n = 100, k = 2, the most
challenging cases arise where µ is close to a factor of 49.5. As Table 3.2 shows the EA
is incapable of hitting Hmax when n = 100 and µ = 50. We take a closer look at such
cases in Section 3.8.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 40

3.6.3 Constrained Diversity Optimisation

In constrained diversity optimisation, the performance of classic 2-OPT and biased
2-OPT is strongly correlated to the threshold; the wider the threshold, the better
the performance of biased 2-OPT, and vice versa. Therefore, we used both operators
simultaneously in this subsection. Having selected a parent, we generate two offspring
individuals, one by classical 2-OPT, the other by biased version. The offspring that
complies with the quality criterion and results in a higher diversity is replaced with
the parent. Here, the experiments are conducted on eil51, eil76, and eil101 from the
TSPlib, [97] where a threshold of α = 5% is considered. Moreover, the limit of cost
evaluations increases to 300 000 due to the imposition of the quality constraint.

Table 3.3 compares the entropy value of the final population obtained from the
introduced algorithm and the algorithms based on ED and PD in [24]. Table 3.3
indicates that the introduced EA outperforms the ones based on ED and PD in most
instances. The algorithm based on PD has achieved a better entropy value over only
four cases. Given that all these four cases are among the largest ones, a possible
reason could be differences in the algorithms’ survival selection resulting in slower
convergence of the introduced EA than the others in terms of cost evaluations. How-
ever, the smaller instances show that if the number of cost evaluations is sufficient,
the introduced EA is likely to outperform the others. We conduct another experiment
summarised in Figure 3.4 to elaborate more on this matter.

Figure 3.4 illustrates the relationship between the number of cost evaluations
and the final population’s entropy for the introduced EA on eil101 with µ = 500,
k ∈ 2, 3, 4 and α ∈ 0.05, 0.1, 0.2. Similar patterns were observed for the other cases,
which are omitted for brevity. The x-axis shows the number of cost evaluations, and
the y-axis represents the final population’s entropy. The figure reveals that when the
number of cost evaluations is low, the introduced EA results in a lower entropy value
than the other algorithms. However, it always converges to a higher entropy value.
This pattern holds for all nine combinations of k and α. The figure also depicts that
as k increases, the introduced EA outperforms the other two algorithms in fewer cost
evaluations. When comparing ED and PD, the former converges faster but at a lower
entropy level.

Figure 3.5 shows the edges used in the sets of 125 tours obtained from the intro-
duced EA in constrained (α ∈ {0, 0.05, 0.5}) and unconstrained diversity optimisation
on eil101. The figure clearly demonstrates the proportional relationship between α

and population diversity. Additionally, Figure 3.5 compares a population with the en-
tropy value of Hmin (left) with a population with Hmax entropy (right), highlighting
the differences between the two. As the population’s entropy increases, the number
of incorporated edges (segments) also rises while the frequency of edges decreases.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 41

0.1 0.5 1 1.5 2
5.6

5.8

6

6.2

6.4

H
ig

h-
or

de
r

E
nt

ro
py

K is equal to 2

0.1 0.5 1 1.5 2

6

6.5

7

7.5

8

Number of fitness evaluation

K is equal to 3

0.1 0.5 1 1.5 2
6

7

8

9

K is equal to 4

ENT(5%) ED(5%) PD(5%) ENT(10%) ED(10%) PD(10%) ENT(20%) ED(20%) PD(20%)

Figure 3.4. Impact of number of fitness evaluation, segment size,
and threshold on the algorithms in eil101. The percentages shows the

allowed threshold.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

low medium high
Figure 3.5. Overlay of the edges (coloured based on their frequency)
incorporated into the population of the introduced EA on eil101 where

α increases from 0 to +∞.

C
hapter

3.
E

ntropy-based
diversity

in
the

T
raveling

Salesperson
P

roblem
42

Table 3.3. Comparison between the high-order entropy values of final populations of the introduced EA and EAs based on ED and PD
on TSPlib instances eil51, eil76 and eil101 (threshold is equal to α = 0.05). Tests and notations are in line with Table 3.2.

eil51 (Hmin = 4.6250) eil76 (Hmin = 5.0239) eil101 (Hmin = 5.3083)

ENT (1) ED (2) PD (3) ENT (1) ED (2) PD (3) ENT (1) ED (2) PD (3)

µ k mean stat mean stat mean stat mean stat mean stat mean stat mean stat mean stat mean stat

12 2 5.1133 2+3+ 5.0586 1−3+ 5.0381 1−2+ 5.4617 2+3+ 5.4047 1−3∗ 5.3872 1−2∗ 5.8137 2+3+ 5.7674 1−3∗ 5.7580 1−2∗

12 3 5.5648 2∗3+ 5.4964 1∗3+ 5.4216 1−2− 5.8517 2∗3+ 5.7699 1−3∗ 5.6977 1−2∗ 6.2213 2∗3+ 6.1784 1−3+ 6.1275 1−2−

12 4 5.7640 2+3+ 5.6764 1∗3∗ 5.6043 1−2∗ 6.0499 2+3+ 5.9346 1−3∗ 5.8546 1−2∗ 6.4660 2+3+ 6.3742 1−3∗ 6.3058 1−2∗

20 2 5.1354 2+3+ 5.0543 1−3∗ 5.0687 1−2∗ 5.4843 2+3+ 5.4205 1−3∗ 5.4241 1−2∗ 5.8232 2+3+ 5.7961 1−3∗ 5.7822 1−2∗

20 3 5.6557 2+3+ 5.4943 1−3∗ 5.5157 1−2∗ 5.9351 2+3+ 5.7911 1−3∗ 6.7810 1−2∗ 6.3098 2+3+ 6.1778 1−3∗ 6.1812 1−2∗

20 4 5.9247 2+3+ 5.6846 1−2∗ 5.7386 1−2∗ 6.1831 2+3+ 5.9656 1−3∗ 5.9623 1−2∗ 6.5566 2+2+ 6.3810 1−3∗ 6.3834 1−2∗

50 2 5.1704 2+3+ 5.0618 1−3− 5.1017 1−2+ 5.5015 2+3+ 5.4194 1−3− 4.4454 1−2+ 5.8262 2+3+ 5.7607 1−3− 5.7938 1−2+

50 3 5.7371 2+3+ 5.5087 1−3− 5.6150 1−2+ 5.9961 2+3+ 5.7861 1−3− 5.8497 1−2+ 6.3594 2+3+ 6.1816 1−3− 6.2370 1−2+

50 4 6.0927 2+3+ 5.7123 1−3− 5.8982 1−2+ 6.2776 2+3+ 5.9674 1−3∗ 6.0776 1−2∗ 6.6490 2+3+ 6.3997 1−3− 6.4858 1−2+

100 2 5.1683 2+3+ 5.0623 1−3− 5.1033 1−2+ 5.4911 2+3+ 5.4227 1−3− 5.4464 1−2+ 5.7980 2+3+ 5.7569 1−3− 5.7804 1−2+

100 3 5.7503 2+3+ 5.5175 1−2− 5.6452 1−2+ 5.9870 2+3+ 5.8120 1−3− 5.8658 1−2+ 6.2890 2+3+ 6.1838 1−3− 6.2291 1−2+

100 4 6.1436 2+3+ 5.7319 1−3− 5.9646 1−2+ 6.3027 2+3+ 6.0127 1−3− 6.1098 1−2+ 6.6246 2+3+ 6.4137 1−3− 6.4938 1−2+

500 2 5.1203 2+3+ 5.0396 1−3− 5.0815 1−2+ 5.4320 2+3∗ 5.4013 1−3− 5.4244 1∗2+ 5.7070 2∗3− 5.7111 1∗3− 5.7377 1+2+

500 3 5.6794 2+3+ 5.5131 1−3− 5.6359 1−2+ 5.8876 2+3+ 5.8077 1−3− 5.8653 1−2+ 6.1379 2∗3− 6.1180 1∗3− 6.1808 1+2+

500 4 6.0864 2+3+ 5.7660 1−3− 5.9991 1−2+ 6.2218 2+3+ 6.0399 1−3− 6.1469 1−2+ 6.5770 2+3∗ 6.3648 1−3− 6.4616 1∗2+

1000 2 5.0909 2+3+ 5.0187 1−3− 5.0585 1−2+ 5.4074 2+3∗ 5.3811 1−3− 5.6926 1∗2+ 5.7194 2∗3− 5.6933 1∗3∗ 5.7194 1+2∗

1000 3 5.6291 2+3+ 5.4760 1−3− 5.5943 1∗2+ 5.8442 2+3∗ 5.7712 1−3− 5.8333 1∗2+ 6.0987 2∗3− 6.0891 1∗3− 6.1495 1∗2+

1000 4 6.0238 2+3+ 5.7357 1−3− 5.9498 1∗2+ 6.1771 2+3+ 6.0039 1−3− 6.1116 1−2+ 6.4372 2+3∗ 6.3372 1−3− 6.4348 1∗2+

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 43

3.7 Evolutionary Diversity Optimisation with a (µ+λ) EA

Most studies in the EDO literature use a (µ + 1) EA to maximise the diversity of
tours, where the offspring can replace either the parent or one of the individuals in
the population P (see, e.g., [12] or [76]). In the preceding section, exactly two offspring
individuals are generated in every iteration: one by 2-OPT and the other by biased
2-OPT. However, similar to the referenced studies, only one offspring can survive
to the next generation to avoid increasing the complexity of the problem. Unlike
classical optimisation problems, where the fitness of a solution is independent of other
solutions, diversity optimisation problems require the calculation of diversity values
for a set of solutions, making the fitness of solutions dependent on other individuals
in the population. This increases the complexity of the problem by adding a subset
selection sub-problem: how do we select a subset of µ individuals from a set of µ+ λ

individuals efficiently? Nevertheless, increasing the size λ of the children’s pool by
using a (µ + λ) EA can potentially boost the performance of the EA if a suitable
method for subset selection is incorporated into the algorithm.

This section aims to answer two questions: 1) Is it beneficial to increase the
pool of offspring? 2) Given the complexity of the diversity problem, what is the best
survival selection approach to determine the next generation?

Algorithm 6 Diversity maximising (µ+ λ) EA
Require: Population size µ, size of offspring pool λ ≥ 1
1: Initialise the population P with µ TSP tours such that

c(I) ≤ (1 + α) ·OPT for all I ∈ P .
2: Set Q = ∅.
3: while |Q| < λ do
4: Choose I ∈ P uniformly at random and produce an offspring I ′ of I by mutation.
5: If c(I ′) ≤ (1 + α) ·OPT , add I ′ to Q.
6: Set P = SELECT(S = P ∪Q). {Subset selection.}
7: Repeat steps 2 to 6 until a termination criterion is reached.

Recall that in Algorithm 5 in every iteration, exactly two offspring individuals are
generated, one by 2-OPT and the other by biased 2-OPT. A greedy survival selection
strategy then decides which individual survives (only one of the offspring individuals
can survive to the next generation). Algorithm 6 implements a generalisation of the
(µ + 1) EA in Algorithm 5) with a parameterisable subset selection procedure (see
call to function SELECT in line 6 of Algorithm 6). In order to focus solely on the effect
of subset selection themes, offspring individuals are generated by unbiased mutation
only. The main challenge is, given a population P with |P | = µ, a set of offspring
individuals Q with |Q| = λ ≥ 1, to select a subset S∗ of the union set S = P ∪Q such
that

S∗ = argmax
S′⊂S,|S′|=λ

H(S \ S′).

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 44

There are
(
µ+λ
µ

)
possible subsets. As a consequence, iterating over all these subsets

is computationally infeasible. We therefore tackle this subset-selection problem by
means of three different heuristics.

Algorithm 7 Greedy subset selection.
Require: Multi-set S with |S| = µ+ λ
1: while |S| > µ do
2: Remove one individual p from S, where p = argmaxq∈S H(S \ {q}).

Greedy selection

The greedy selection strategy (see Algorithm 7) is a straightforward generalisation
of the greedy survival selection adopted in Algorithm 5. In the ith iteration, the
algorithm removes an individual from the set S whose deletion leads to a locally
optimal maximisation of the diversity measure. Note that this selection method is
computationally costly. It requires, assuming that all λ offspring individuals adhere
to the quality constraint (see line 5 in Algorithm 6), (µ+ λ− i) H-evaluations in the
ith iteration for i = 0, . . . , λ− 1 and thus the overall number of H-evaluations is

λ−1∑
i=0

(µ+ λ− i) =

λ∑
i=1

(µ+ i) = λµ+
λ(λ+ 1)

2
= λ

(
2µ+ λ+ 1

2

)
= Θ(λµ+ λ2).

Algorithm 8 Tournament subset selection.
Require: Multi-set S with |S| = µ+ λ, tournament size r ≥ 2
1: while |S| > µ do
2: Select a subset R ⊆ S of r individuals uniformly at random.
3: Remove one individual p from S, where p = argmaxq∈R H(S \ {q}).

Tournament selection

We adopt a tournament selection strategy iteratively (see Algorithm 8). In λ itera-
tions, the algorithm samples a subset R with |R| = r – r ≥ 2 being the tournament
size – individuals from the set uniformly at random (with replacement). Eventually,
the individual q ∈ R is dropped, whose deletion yields the maximal H-value. The
number of H-evaluations is λ · r since the H-value is calculated r times per iteration,
and it takes λ iterations until the set is reduced to µ individuals. Note that this is
Θ(λ) for constant r.

EA-based selection

The subset-selection process itself is optimised with a (1 + 1) EA. To this end we
maintain a bitstring x ∈ {0, 1}µ+λ and optimise the diversity of the set S′ = {pi ∈ S |
xi = 1} under the equality constraint |x|1 = µ (see Algorithm 9). The algorithm is
initialised such that exactly µ individuals are selected (i.e., |x|1 = µ). In L iterations
– L being a parameter – the algorithm generates an offspring y by flipping zero-bits to

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 45

Algorithm 9 (µ+ λ) EA-based subset selection.
Require: Multi-set S with |S| = µ+ λ
1: Initialise x ∈ {0, 1}|S| where |x|1 = µ.
2: for L iterations do
3: Generate y from x by flipping one-bits independently with probability of w/µ,

where w is selected based on power of law distribution. Then flip the same num-
ber of bits flip from zero to one randomly to maintain the equality constraint,
i. e., |y|1 = |x|1 = µ).

4: if F (y) ≥ F (x) then {Refer to Equation 3.17}
5: Replace x with y.

ones and the same amount of one-bits to zero in the parent x. The number of flipped
bits is 2 · l where l is sampled from a Binomial distribution with parameters µ + λ

and w
n ∈ [0, 1] where w is selected based on a power-law distribution as it is done in

the heavy-tailed mutation [29]. This is done to allow the algorithm to escape from
being trapped in local optima by increasing the probability of flipping multiple one
and zero bits. In addition, we introduce a diversity mechanism based on the length
of the tour to avoid getting stuck in local optima. We first calculate H0 and l0, which
are the diversity of the population P and the summation of the length of individuals
in P , respectively. The fitness of offspring in Algorithm 9 can be calculated from:

F (x) =

∆H
∆l if ∆H > 0 and ∆l ≥ 0

M if ∆H ≥ 0 and ∆l < 0

−M if ∆H < 0

(3.17)

where ∆H and ∆l are H(y)−H0 and l(y)− l0, respectively. We use F as the fitness
function, a higher F , a fitter solution. Note that L is set to 2µλ in this study based
on preliminary investigations. Note that if ∆H ≥ 0 and ∆l < 0, we stop the search
for the iteration and go to the next generation.

3.8 Experimental Investigation

Analogous to the experiments in Section 3.6, we conduct two series of empirical in-
vestigations to study the impact of an offspring pool λ ≥ 2. We first look at the
algorithms’ performance in the setting of unconstrained diversity optimisation. Then,
we analyse constrained diversity optimisation. For the sake of fair comparison, we con-
sider the number of diversity evaluations (H-evaluations) as the termination criterion.
Moreover, we consider k = 2 in these series of experiments.

3.8.1 Unconstrained Diversity Optimisation

We first scrutinise the algorithms’ performance in the unconstrained case, where no
constraints are imposed on the quality of the tours. We conduct the experiments on
a complete graph with n = 50 nodes, and consider the following values for the other

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 46

Table 3.4. Comparison of the proposed subset selection schemes and
(µ+1) EA in the unconstrained optimisation setting. The column rate
shows the number of times obtaining the optimal diversity out of 30

independent runs.

(µ+ λ) EA Tournament Greedy (µ+ 1) EA

µ H Stat (1) rate H Stat (2) rate H Stat (3) rate H Stat (4) rate

20 7.6 2+3+4∗ 30 6.83 1−3−4− 0 7.49 1−2+4− 0 7.6 1∗2+3+ 29
21 7.65 2+3+4∗ 30 6.86 1−3−4− 0 7.53 1−2+4− 0 7.65 1∗2+3+ 18
22 7.7 2+3+4∗ 30 6.89 1−3−4− 0 7.57 1−2+4− 0 7.69 1∗2+3+ 11
23 7.74 2+3+4+ 30 6.92 1−3−4− 0 7.6 1−2+4− 0 7.73 1−2+3+ 0
24 7.78 2+3+4+ 10 6.93 1−3−4− 0 7.63 1−2+4− 0 7.77 1−2+3+ 0
25 7.8 2+3+4+ 16 6.96 1−3−4− 0 7.65 1−2+4− 0 7.78 1−2+3+ 0
26 7.78 2+3+4+ 30 6.98 1−3−4− 0 7.67 1−2+4− 0 7.78 1−2+3+ 1
27 7.77 2+3+4∗ 30 7 1−3−4− 0 7.69 1−2+4− 0 7.77 1∗2+3+ 24
28 7.76 2+3+4∗ 30 7.03 1−3−4− 0 7.7 1−2+4− 0 7.76 1∗2+3+ 29
29 7.76 2+3+4∗ 30 7.04 1−3−4− 0 7.71 1−2+4− 0 7.76 1∗2+3+ 30
30 7.75 2+3+4∗ 30 7.07 1−3−4− 0 7.71 1−2+4− 0 7.75 1∗2+3+ 30

parameters: k = 2, λ = 12, and µ ∈ {20, 21, . . . , 30}. The termination criterion is
set to 5 × 107 diversity evaluations. According to the pigeonhole principle, the most
challenging case in unconstrained diversity optimisation occurs when 2nµ is a factor
of u (the number of segments), as observed in Table 3.2. While Algorithm 9 can
achieve Hmax in cases where 2nµ is not close to any factor of u, it cannot do so when
n = 50, k = 2, and µ = 25. For n = 50 and k = 2, the most difficult cases arise when
µ is any factor of 24. Thus, we set µ ∈ {20, 21, . . . , 30} to take such challenging cases
into account. Table 3.4 summarises the results of these experiments. One can observe
that the EA-based subset selection algorithm 9 outperforms the competitors, followed
by the conventional (µ+1) EA and the Greedy algorithm. The EA algorithm always
hits Hmax on all instances except where µ ∈ {24, 25}. In these cases, the EA selection
hits the optimum 10 and 16 times, respectively. The (µ+ 1) EA cannot bring about
the optimal population when µ ∈ {23, 24, 25} out of 30 runs, and it hits the optimum
only one time when µ = 26. The (µ + 1) EA performance gets better as we deviate
from µ = 24, and it results in the optimum for the two largest µ values in all 30
independent runs, similar to the EA algorithm. Moreover, the statistical observation
confirms a significant difference between the EA algorithm and the (µ + 1) EA in
cases µ ∈ {23, . . . , 25}. The tournament and the greedy algorithm never resulted in
the optimal values in this setting. In fact, the tournament algorithm’s results are far
away from the optimums.

In conclusion, we can confirm that an offspring pool of λ ≥ 2 can boost the
algorithm performance in the unconstrained optimisation if a suitable subset selection
method such as the EA-based approach in 5 is employed. Next, we analyse the
methods where a quality constraint is imposed on the problem.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 47

Table 3.5. Comparison of the proposed subset selection schemes and
(µ+ 1) EA. The termination criterion is 107 H-evaluations.

EA Tournament Greedy (µ+ 1) EA

Inst. α µ H Stat (1) H Stat (2) H Stat (3) H Stat (4)

st70 0.05 50 5.67 2−3+4+ 5.7 1+3+4+ 5.64 1−2−4+ 5.62 1−2−3−

st70 0.05 100 5.7 2∗3+4+ 5.73 1∗3+4+ 5.65 1−2−4∗ 5.65 1−2−3∗

st70 0.12 50 5.98 2+3∗4+ 5.95 1−3−4+ 5.97 1∗2+4+ 5.93 1−2−3−

st70 0.12 100 6.01 2+3+4+ 5.98 1−3∗4+ 5.98 1−2∗4+ 5.96 1−2−3−

st70 0.25 50 6.28 2+3∗4+ 6.2 1−3−4− 6.28 1∗2+4+ 6.25 1−2+3−

st70 0.25 100 6.3 2+3∗4+ 6.25 1−3−4− 6.3 1∗2+4+ 6.28 1−2+3−

eil101 0.05 50 6.02 2−3+4+ 6.04 1+3+4+ 5.97 1−2−4+ 5.93 1−2−3−

eil101 0.05 100 6.05 2−3+4+ 6.06 1+3+4+ 5.98 1−2−4∗ 5.97 1−2−3∗

eil101 0.12 50 6.35 2+3+4+ 6.31 1−3−4∗ 6.34 1−2+4+ 6.3 1−2∗3−

eil101 0.12 100 6.37 2+3+4+ 6.34 1−3∗4+ 6.34 1−2∗4+ 6.33 1−2−3−

eil101 0.25 50 6.73 2+3∗4+ 6.63 1−3−4− 6.73 1∗2+4+ 6.7 1−2+3−

eil101 0.25 100 6.75 2+3+4+ 6.68 1−3−4− 6.74 1−2+4+ 6.73 1−2+3−

a280 0.05 50 6.87 2−3+4+ 6.88 1+3+4+ 6.84 1−2−4+ 6.82 1−2−3−

a280 0.05 100 6.89 2−3+4+ 6.9 1+3+4+ 6.85 1−2−4∗ 6.84 1−2−3∗

a280 0.12 50 7.15 2+3+4+ 7.11 1−3−4+ 7.13 1−2+4+ 7.1 1−2−3−

a280 0.12 100 7.16 2+3+4+ 7.15 1−3∗4+ 7.14 1−2∗4+ 7.14 1−2−3−

a280 0.25 50 7.49 2+3+4+ 7.4 1−3−4− 7.48 1−2+4+ 7.45 1−2+3−

a280 0.25 100 7.45 2∗3−4− 7.45 1∗3−4− 7.49 1+2+4∗ 7.48 1+2+3∗

3.8.2 Constrained Diversity Optimisation

We conduct a series of experiments to evaluate the proposed methods’ performance
in constrained diversity optimisation. We test the algorithms on the instances st70,
eil101, and a 280 from the TSPlib [97]. We set the tournament size to r = 3, the
offspring pool size to λ = 50, and experiments with several values for the quality con-
straint α = { 0.05, 0.12, 0, 25} and the population size µ = {50, 100}. The termination
criterion is set to 107 H-evaluations.

The results are summarised in Table 3.5. The table presented in this section re-
veals some interesting findings. Firstly, the tournament selection method outperforms
the other methods when the smallest considered α-value (α = 0.05) is used, with the
EA algorithm following closely behind. Conversely, the vanilla (µ + 1) EA performs
the worst in these cases. This may be due to its inferior exploration capabilities, as
K-tournament selection encourages exploration over exploitation. As α increases to
0.12, the EA-based selection method produces the best results, followed by the greedy
and tournament methods. The greedy algorithm produces sets with slightly higher
diversity when compared to tournament selection, but again, the (µ+1) EA performs
poorly with respect to diversity. For α = 0.25, the greedy algorithm performs best
for µ = 50, while the EA outperforms the others for µ = 100, with the (µ + 1) EA
ranking closely behind. The tournament selection method performs worst in these
cases. Overall, the EA exhibits the most stable performance across all instances,

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 48

E = EA, G = Greedy, Numbers are values.

H

E2 G2 E5 G5 E25 G25 E50 G50 E75 G75 E125 G125

5.62
5.64
5.66
5.68

5.7
 = 0.05

E2 G2 E5 G5 E25 G25 E50 G50 E75 G75 E125 G125

5.95

6
 = 0.12

E2 G2 E5 G5 E25 G25 E50 G50 E75 G75 E125 G125

6.26

6.28

 = 0.25

E2 G2 E5 G5 E25 G25 E50 G50 E75 G75 E125 G125

7.19

7.2

 = 1

E2 G2 E5 G5 E25 G25 E50 G50 E75 G75 E125 G125

8.18
8.2

8.22

 = 3

Figure 3.6. Distributions of H-values of the final populations based
on 10 independent runs for (µ + λ) EA (E) and Greedy (G) sub-
set selection on instance st70. The plots show results for α ∈
{0.02, 0.12, 0.25, 1, 3} (row-wise) and λ ∈ {2, 5, 50, 125} (from left to

right).

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 49

No. H-evaluations (105)

H

1 5 10 15 20 25 30

5.86

5.88

5.9

5.92

5.94

5.96
 = 2

1 5 10 15 20 25 30

5

5.2

5.4

5.6

5.8

6

 = 125

Greedy
Tournament
EA

Figure 3.7. Representative trajectories of the proposed subset selec-
tion methods on instance st70 with α = 0.12 and λ ∈ {2, 125}.

always ranking as the best or second-best method. This may be attributed to the bal-
ance between exploration and exploitation that the EA offers. Selection methods with
more exploration appear to perform better with tight quality constraints, whereas al-
gorithms that require more exploitation perform better when α is large. Finally, we
examine the impact of different values of λ on the performance of the EA and greedy
selection methods.

Figure 3.6 depicts the performance of the EA and greedy methods on st70 when
α ∈ {0.02, 0.12, 0.25, 1, 3} and λ ∈ {2, 5, 50, 125}. Figure 3.6 shows that the per-
formance of the EA is slightly better for larger λ-values (75, 125), while it strongly
depends on the α-value for the greedy approach. The greedy method preforms slightly
better with large λ when α is small (0.05), it is the other way around in the cases of
large α-values (α = 3). As λ → 1, the greedy algorithm becomes equivalent to the
vanilla (µ+ 1) EA. We observed that (µ+ 1) EA outperforms the greedy method in
unconstrained diversity. Thus, one could guess that in cases where the quality con-
straint is relaxed, smaller values of λ work better for the greedy method. In general,
the EA’s performance is more stable and gets less affected by different values of α,
µ, and λ. Figure 3.7 illustrates representative trajectories of the proposed selection
methods on st70 where α = 0.12 and λ = {2, 125}. The tournament selection has the
fastest convergence, and the increase in λ affects the convergence pace less compared
to the other methods. The increase in λ has the most significant impact on the EA’s
convergence pace since there is a linear relation between L and λ (we set L = 2µλ).
Therefore, when λ increases, more H-evaluations are spent on each loop of the EA
selection. The increase in λ also makes an impact on the greedy convergence pace,
but not as severely as it does on the EA selection.

Chapter 3. Entropy-based diversity in the Traveling Salesperson Problem 50

3.9 Conclusion

In the context of EDO, we introduced a method to evolve diverse sets of solutions
meeting minimal quality criteria. We adopted a new diversity measure based on high-
order entropy to maximise the diversity of a population of TSP solutions. The diversity
measure allows equalising the share of segments of multiple nodes, whereas previously
proposed diversity measures by [24] in the TSP context focus on the frequency of
single edges in the population. We show theoretical properties that a maximally/min-
imally diverse set of solutions has to fulfil. Furthermore, we study the effects of the
high-order entropy measure embedded into a simple population-based evolutionary
algorithm experimentally. This algorithm uses different versions of 2-OPT mutations
partially biased towards favouring high-frequency segments in TSP tours. Our results
in the unconstrained setting without quality restriction and the constrained setting
on TSPlib instances show the superiority of the proposed approach if the number of
cost evaluations is high. Moreover, we introduced three subset selection methods that
enable us to replace more than one individual with offspring for the next generation.
Due to the dependency of individuals in the diversity calculation, most studies used
the standard (µ + 1) EA, where at most one individual is replaced in each genera-
tion. Our results show that an EA-based selection method as a sub-procedure of a
(µ+ λ) EA with λ ≥ 2 outperforms the standard (µ+ 1) EA and the other proposed
selection methods in most cases.

For future studies, there are several real-world optimisation problems in which
EDO can be beneficial and provide practitioners with multiple high-quality solutions.
Also, EDO is yet to be studied in multi-objective optimisation problems.

51

Chapter 4

EAX-based Crossover in the
Traveling Salesperson Problem

In the previous chapter, we introduced an EDO-based algorithm specifically designed
for computing a structurally diverse set of TSP tours. In line with most studies in
the literature on EDO, we made the assumption that the optimal solution is known
a priori, as discussed in Chapter 3. In this chapter, we extend our investigation to
consider scenarios where the optimal solution may be unknown. Additionally, we
adopt EAX [72] in the context of evolutionary diversity optimisation and introduce
an approach called EAX-EDO in order to obtain high-quality tours for the TSP while
maximising the diversity of the population simultaneously.

In classical EAs, typically, a loss of diversity in the population can be observed
when improving the quality of solutions. Although EAX benefits from an entropy-
based diversity preservation mechanism, it merely focuses on avoiding premature con-
vergence rather than maximising the diversity of the final population. To address
this limitation, we adopt the state-of-the-art EAX crossover operator for solving TSP
instances and introduce a modification called EAX-EDO crossover, which is tailored
towards simultaneous optimisation of solution quality and population diversity.

We incorporate the EAX-EDO crossover into three EDO approaches. In the
case of unknown optimal solutions, we introduce two algorithms. First, we adopt a
two-stage framework from the literature of EDO, which alternates between phases of
optimising the cost and optimising the diversity (the two-stage EAX-EDO). Second,
we introduce the single-stage EAX-EDO designed to simultaneously optimise both
the quality of solutions and population diversity. Moreover, we conduct a comparison
between the frameworks with the classical EAX and the exact Gurobi optimiser.

Our experimental investigations show that EAX-EDO is capable of generating
solutions with very decent quality. More importantly, EAX-EDO can maintain and
even increase the diversity of the population during the process of optimising the
quality of solutions. This is while EAX requires the sacrifice of the diversity of the

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 52

Algorithm 10 EAX-EDO Crossover
Require: Two parent tours p1 and p2.
1: Derive an AB-cycle from p1 and p2
2: Construct an intermediate tour from p1 by removing the edges of E(p1) and adding

edges of E(p2) in the AB-cycle.
3: Count the number of sub-tours in the intermediate solution and store it in nsub.
4: while nsub > 2 do
5: Connect two sub-tours based on the neighbourhood search A and update nsub.
6: if nsub = 2 then
7: Connect two sub-tours based on the neighbourhood search B.

population to gain solutions of higher quality. Moreover, we conduct a series of ex-
periments to examine the robustness of the four competitors’ populations against
minor changes. The outcome indicates the single-EAX-EDO’s superiority in terms of
populations’ robustness.

The work of this chapter is based on a conference paper [82] presented at the
foundations of genetic algorithms (FOGA 2021). The remainder of the chapter is
structured as follows. We present the EAX-EDO crossover in Section 4.1 and evolu-
tionary algorithms for the case where an optimal solution is known (Section 4.2) or
unknown (Section 4.3). In Section 4.4, we conduct a series of experiments showing the
advantage of EAX-EDO when the optimal solution for the TSP is known and unknown
on TSP benchmark instances. Finally, we finish with some concluding remarks.

4.1 EAX-EDO Crossover

EAX crossover (EAX CO) is a permutation-based crossover operator which is used
in a genetic algorithm (GA) named EAX as well. It was first introduced by Nagata
[69]. Several versions of EAX can be found in the literature [70–72]. The version
introduced by Nagata and Kobayashi [72] constitutes a key component in one of the
best-performing incomplete algorithms for solving the TSP. It is shown that the algo-
rithm is capable of obtaining the optimal or best-known solutions for most benchmark
instances and, more importantly, improved 11 best-known solutions. The GA works
in two stages. The first stage, which is the main part of the algorithm uses EAX-1AB
for crossover, while EAX-Block2 crossover is utilised in the second stage. While EAX-
1AB results in offspring very similar to one of the parents, EAX-Block2 brings about
more different offspring. Having the first stage converged and incapable of improving
the objective function any further, the second stage is initialised to explore solution
areas for possible improvements. The algorithm also benefits from an entropy-based
diversity mechanism.

During each iteration, the GA generates λ tours from the same parents. Among
those tours, it chooses the tours that improve the cost of the solution compared to its
parents as well as the entropy score of the population simultaneously if there is such

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 53

a tour; otherwise, it selects the tour with minimum loss of entropy per improvement
of the cost. It is crucial to notice that entropy is used merely to avoid premature
convergence and not for the sake of a structurally diverse final population. We refer
the interested reader to [72] for more details about the variants of EAX and the
diversity preservation mechanism.

In this chapter, we utilise EAX-1AB due to the efficiency and simplicity of this
version compared to other variants. EAX-1AB consists of three steps. Let p1 and
p2 be two parents selected from the population, and E(p1) and E(p2) be the sets of
edges forming p1 and p2, respectively. Firstly, an AB-cycle is derived from p1 and
p2. An AB-cycle (see Figure 4.1.2) is a cycle where edges of E(p1) and E(p2) are
linked, alternately. To form an AB-cycle, we start from a random node v. Then, we
randomly select an edge (v, u) from E(p1) and set v = u. In a similar manner, we add
another edge to the tracing path from p2 going through v, and reset v. We continue
tracing nodes between p1 and p2 until an AB-cycle is formed in the trace path. Next,
an intermediate solution t (see Figure 4.1.3) is constructed from p1 by adding edges
of E(p2) and removing edges of E(p1) in the AB-cycle. Finally, a tour is generated
by connecting all sub-tours of the intermediate solution (see Figure 4.1.4). Note that
some AB-cycles are formed by two overlapping edges, one from P1, the other from p2.
Such an AB-cycle is ineffective because it results in an intermediate solution, same
as p1. In this case, discard the ineffective AB-cycle from the tracing path, set v to
the last node in the tracing path, and this time select the other edge going through v

(there are always two edges going through v).

Algorithm 10 outlines EAX-EDO Crossover (EAX-EDO CO). The difference
between EAX-EDO CO and EAX-1AB is the last step, where the sub-tours are
connected into a valid TSP tour (compare Figure 4.1.4.a (The Above) and Fig-
ure 4.1.4.b). In EAX, the sub-tour r with the minimum number of edges is se-
lected and connected to another sub-tour r′ by removing an edge from each of them
and adding two new edges. For this purpose, 4-tuples of edges are selected such
that {e1, e2, e3, e4} = argmax{−d(e1) − d(e2) + d(e3) + d(e4)} where e1 ∈ E(r) and
e2 ∈ E(t) \ E(r) . Where E(r) and E(t) denotes the set of edges formed sub-tour
r and the intermediate solution t. For the sake of reduced computational cost, the
search is limited in the way that either end of e3 should be among the Nnear nearest
nodes to either end of e3 (here, Nnear is set to 10). we refer these steps as neigh-
borhood search A. In EAX-EDO CO, the neighbourhood search A is implemented
until two sub-tours are left. Then, neighbourhood search B is started. First, all pos-
sible 4-tuples of edges complying c(r) + c(r′) − d(e1) − d(e2) + d(e3) + d(e4) ≤ cmax

are stored. From all the possible candidates, the 4-tuple of edges is selected where
{e1, e2, e3, e4} = argmax{∆h(e1) + ∆h(e2) + ∆h(e3) + ∆h(e4)}. Here, ∆h(ei) is the
difference to the contribution of edge i when it is either added or removed from the
intermediate solution.

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 54

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Tour generated by EAX-EDO

Offspring by
EAX-EDO

11
12

3
1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Tour generated by EAX-EDO

Offspring by
EAX-1AB

5

9

21

17

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Intermediate
solution

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Parent one

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Parent two

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

Tour generated by EAX-EDO

AB-cycle

1 2 3 4

a

b

Figure 4.1. The representation of the steps to implement EAX-
1AB and EAX-EDO. Up to step three the process of implementation
for both crossover operators is the same. In step four, EAX-1AB
(top) constructs the shortest tour possible, while EAX-EDO (bottom)
generates a tour contributing to entropy the most while employing
quality threshold (the numbers correspond to occurrences of associated

edges in an imaginary population).

4.2 EAX-EDO for Known Optimal Solution

A wide range of highly successful algorithms have been proposed in the literature to
solve the TSP, and optimal solutions can be obtained for a wide range of even large
instances. In the following, we introduce an EAX-EDO approach that starts with
an optimal solution and computes a diverse set of high-quality solutions based on
it. The algorithm is outlined in Algorithm 11. The algorithm is initialised with µ

copies of an optimal tour. Then, the entropy value of the population is calculated and
stored in H. In this stage, H should be equal to Hmin. Having selected the parents,
one offspring is generated by EAX-EDO CO. If the cost of the offspring is at most
cmax = (1 + α)OPT , it is added to P ; then, an individual with argmaxH(P \ {p})
is removed. Otherwise, the offspring is discarded. We repeat these steps until a
termination criterion is met. Note that since the algorithm is initialized with µ copies
of a single tour, a mutation operator should be used in initial iterations (1 000 fitness
evaluation in our experiments). This is because EAX-EDO, as a crossover operator,
requires two different parent solutions to generate a new offspring. For this purpose,
we used 2-OPT in this study. 2-OPT is a random neighbourhood search. In 2-OPT,
offspring is first formed by coping all the parent’s edges. Then, having removed two
edges randomly, we connect each end of the edges to the other edge in a way that it
forms a complete TSP tour.

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 55

Algorithm 11 Diversity-Maximising-EA
Require: Population P , minimal quality threshold cmax

1: while termination criterion is not met do
2: Choose p1 and p2 ∈ P based on parent selection procedure, produce one off-

spring p3 by crossover.
3: if c(p3) ≤ cmax then
4: Add p3 to P .
5: if |P | = µ+ 1 then
6: Remove one individual p from P , where p = argmaxq∈P H(P \ {q}).

4.3 EAX-EDO for Unknown Optimal Solution

We now discuss the more general case where an optimal solution is unknown. In
this case, it is important to diversify the set of solutions and increase the quality
of the solution set. Ulrich and Thiele [112] introduced an approach to achieve both
goals. In this approach, the algorithm switches between cost minimisation and di-
versity maximisation. The approach is shown in Algorithm 12. It starts with a cost
minimisation phase (see Algorithm 13). The cost minimisation algorithm is initialised
with a population optimised by 2-OPT in terms of cost (as it is done by the EAX
genetic algorithm in [72]). Next, two individuals are selected to serve as the parents
and one tour is generated by EAX-1AB CO. The offspring replaces the first parent
if it has a lower cost. Otherwise, it is discarded. These steps continue until an inner
termination criterion is met for the cost optimisation stage. The worst found solution
within the population dictates the least quality threshold cmax for the diversity opti-
misation phase (see Algorithm 11). The algorithm switches between these stages until
an overall termination criterion is met. Note that we switch the cost minimisation
phase off after M consecutive failures in finding a shorter tour. There are, however,
two disadvantages to this approach. First, several parameters need to be tuned to al-
locate the budget between the two phases. More importantly, diversity maximisation
is neglected during the cost minimisation phase and vice versa. This causes a negative
impact on the algorithm’s efficiency.

Next, we introduce a single-stage algorithm to overcome the aforementioned
issues. In this algorithm, two tours p1 and p2 are simultaneously generated such that
c(p1) ≤ c(p2) and H(P \{p1}) ≤ H(P \{p2}). I.e. p1 is dedicated to cost optimisation,
while p2 is generated to increase the entropy of the population. Algorithm 14 outlines
the approach by means of pseudo-code. The algorithm is initialised with a population
of tours optimised locally by 2-OPT. Let Best be the best-found solution in P . Within
the evolutionary loop, two individuals p1 and p2 are selected uniformly at random to
serve as parents and two tours are generated from these parents; one by EAX-1AB CO
(p3, focus on solution quality) and another with EAX-EDO CO (p4, focus on diversity).
p1 is replaced with p3 if p3 has lower costs than Best or it has a lower cost than
p1 and the algorithm has not violated the M consecutive fitness evaluations without

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 56

Algorithm 12 Two-stage EAX-EDO
Require: Initial Population P , and a limit for consecutive failures in improvement

of the shortest tour M .
1: Let Best be the shortest tour in P .
2: q ← 0 // q number of consecutive failures in improvement of the shortest tour
3: while termination criterion is not met do
4: if q < M then
5: P ← Cost-Minimising-EA(P). // Alg. 13
6: Let cmax be the largest tour length in P .
7: if c(p) < c(Best) then
8: Update Best
9: q ← 0

10: else
11: Set q ← q + 1
12: P ← Diversity-Maximising-EA(P, cmax) // Alg. 11

Algorithm 13 Cost-Minimising-EA
Require: Population P
1: while termination criterion is not met do
2: Choose randomly two individuals, p1, p2 ∈ P , as the parents and generate on

offspring p3 by EAX-1AB
3: if c(p3) ≤ c(p1) then
4: Replace p1 with p3 in P .

improvement in Best. Otherwise, p4 is added to the population if c(p4) ≤ cmax. Next,
if the size of the population is µ + 1, the algorithm drops the individual p ∈ P \ P ∗

whose deletion results in the smallest decrease in population diversity. A subset P ∗ of
the best k% of the population in terms of costs always remains in the population to
avoid loss of high-quality candidates until M consecutive failures in the improvement
of Best. Eventually, P ∗ and cmax are updated and the next iteration begins. These
steps continue until a termination criterion is met. Note that it is not required to
generate the two offspring separately. The vast majority of necessary calculations are
identical for both tours. Thus, one can simultaneously generate both tours with a
single calculation to decrease computational costs.

4.4 Experimental Investigation

We perform extensive experiments in order to evaluate the introduced algorithms and
the EAX-EDO CO in the settings when the optimal solution for the TSP is known
and unknown.

4.4.1 Known Optimal Solution

First, we compare results where ED, PD, and H are incorporated into Algorithm 11
as the fitness function in order to select the best diversity measure. Having selected
the diversity measure, we examine the performance of the operators EAX-EDO CO,

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 57

Algorithm 14 Single-stage EAX-EDO
Require: Initial Population P , and a limit for consecutive failures in the improvement

of the shortest tour M .
1: Store the k% of P with shortest tours in P ∗.
2: Store the shortest tour in Best
3: Let cmax be the maximum cost within the population.
4: q ← 0 // counts the number of consecutive failures in improvement of the

shortest tour
5: while termination criterion is not met do
6: Choose p1 and p2 ∈ P based on parent selection procedure, produce two off-

spring p3 and p4 by Crossover.
7: if c(p3) < Best then
8: Replace p1 with p3 in P and update P ∗ and Best, and set q = 0
9: else if c(p3) < c(p1) & q < M then

10: Replace p1 with p3 in P , update P ∗, and set q ← q + 1.
11: else if c(p4) ≤ cmax then
12: Add p4 to P .
13: if q < M then
14: Remove one individual p from P , where p = argmaxq∈P\P ∗ H(P \{q}) and

update cmax

15: else
16: Remove one individual p from P , where p = argmaxq∈P\BestH(P \ {q})

and update cmax

17: q ← q + 1
18: else
19: Set q ← q + 1

EAX-1AB and 2-OPT. For this purpose, we conduct experiments for all combinations
of µ ∈ {50, 100} and α ∈ {0.05, 0.1, 0.5} on instances eil51, eil76, and eil101 from the
TSPlib [97] for 10 independent runs.

Comparison between diversity measures

In this subsection, we examine the performance of Algorithm 11 in the case where H,
ED, and PD are embedded into the algorithm as the fitness function. The algorithm
is initialised with µ copies of an optimal solution, and 2-OPT is used as the operator
to generate offspring.

C
hapter

4.
E

A
X

-based
C

rossover
in

the
T
raveling

Salesperson
P

roblem
58

Table 4.1. Comparison of diversity measures. In columns stat, the notation X+ means the median of the measure is better than the
one for variant X, X− means it is worse and X∗ indicates no significant difference. Stat indicates the results of the Kruskal-Wallis

statistical test at the significance level 5% and Bonferroni correction.

ENT (1) ED (2) PD (3)

µ α H stat ED stat PD stat H stat ED stat PD stat H stat ED stat PD stat

eil51 50 0.05 0.60 2+3+ 0.35 2∗3+ 0.05 2∗3− 0.51 1−3− 0.32 1∗3+ 0.02 1−3− 0.52 1−2+ 0.28 1−2− 0.18 1+2+

eil51 50 0.1 0.86 2+3+ 0.47 2∗3+ 0.12 2+3− 0.73 1−3− 0.46 1∗3+ 0.04 1−3− 0.79 1−2+ 0.41 1−2− 0.30 1+2+

eil51 50 0.5 1.79 2+3+ 0.77 2−3∗ 0.55 2+3− 1.60 1−3− 0.81 1+3+ 0.20 1−3− 1.75 1−2+ 0.78 1∗2− 0.71 1+2+

eil51 100 0.05 0.60 2+3+ 0.34 2+3+ 0.05 2∗3− 0.50 1−3− 0.29 1−3+ 0.02 1−3− 0.51 1−2+ 0.26 1−2− 0.15 1+2+

eil51 100 0.1 0.88 2+3+ 0.47 2+3+ 0.08 2+3− 0.73 1−3− 0.44 1−3+ 0.03 1−3− 0.76 1−2+ 0.37 1−2− 0.24 1+2+

eil51 100 0.5 1.81 2+3+ 0.77 2−3+ 0.39 2+3− 1.59 1−3− 0.80 1+3+ 0.10 1−3− 1.77 1−2+ 0.77 1−2− 0.65 1+2+

eil76 50 0.05 0.51 2+3+ 0.28 2+3+ 0.06 2∗3− 0.43 1−3− 0.24 1−3+ 0.03 1∗3− 0.43 1−2+ 0.22 1−2− 0.15 1+2+

eil76 50 0.1 0.77 2+3+ 0.41 2+3+ 0.11 2+3− 0.68 1−3− 0.38 1−3+ 0.05 1−3− 0.68 1−2+ 0.33 1−2− 0.25 1+2+

eil76 50 0.5 1.78 2+3+ 0.75 2−3+ 0.55 2+3− 1.62 1−3− 0.8 1+3+ 0.13 1−3− 1.74 1−2+ 0.75 1∗2− 0.68 1+2+

eil76 100 0.05 0.50 2+3+ 0.26 2+3+ 0.05 2∗3− 0.41 1−3− 0.22 1−3+ 0.03 1−3− 0.41 1−2+ 0.19 1−2− 0.11 1+2+

eil76 100 0.1 0.76 2+3+ 0.38 2+3+ 0.08 2∗3− 0.65 1−3− 0.34 1−3+ 0.04 1−3− 0.64 1−2+ 0.29 1−2− 0.19 1+2+

eil76 100 0.5 1.79 2+3+ 0.74 2−3+ 0.35 2+3− 1.63 1−3− 0.79 1+3+ 0.07 1−3− 1.72 1−2+ 0.69 1−2− 0.56 1+2+

eil101 50 0.05 0.52 2+3+ 0.28 2+3+ 0.07 2∗3− 0.45 1−3− 0.24 1−3+ 0.05 1∗3− 0.43 1−2+ 0.21 1−2− 0.15 1+2+

eil101 50 0.1 0.75 2+3+ 0.39 2+3+ 0.11 2+3− 0.67 1−3− 0.37 1∗3+ 0.05 1−3− 0.66 1−2+ 0.31 1−2− 0.23 1+2+

eil101 50 0.5 1.76 2+3+ 0.72 2−3+ 0.53 2+3− 1.56 1−3− 0.76 1+3+ 0.08 1−3− 1.71 1−2+ 0.71 1−2− 0.61 1+2+

eil101 100 0.05 0.49 2+3+ 0.24 2+3+ 0.05 2∗3− 0.42 1−3− 0.21 1∗3+ 0.03 1∗3− 0.4 1−2+ 0.18 1−2− 0.11 1+2+

eil101 100 0.1 0.72 2+3+ 0.35 2+3+ 0.06 2∗3− 0.62 1−3− 0.32 1−3+ 0.04 1−3− 0.58 1−2+ 0.25 1−2− 0.17 1+2+

eil101 100 0.5 1.74 2+3+ 0.70 2−3+ 0.23 2+3− 1.54 1−3− 0.74 1+3+ 0.04 1−3− 1.61 1−2+ 0.62 1−2− 0.53 1+2+

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 59

Table 4.1 shows that the algorithm using entropy H as the fitness function not
only outperforms its counterparts in terms of entropy value (H) in all the cases. It also
leads to higher ED scores compared to the algorithm using ED as the fitness function
when α is equal to 0.05 or 0.1. Moreover, the entropy-based algorithm (H) results
in higher PD scores compared to the ED-based algorithm and higher ED scores in
comparison to the PD-based algorithm. These observations are supported by the
results of the Kruskal-Wallis test at significance level 5% and Bonferroni correction.
One underlying reason for observing these significant differences in the results is that
the algorithms have different fitness functions, which have been used alternatively in
these statistical tests. The entropy-based measure is selected as the fitness function
for the following experiments.

Comparison between EAX-EDO CO, EAX-1AB CO, 2-OPT

Here, we investigate the performance of the proposed EAX-EDO CO in comparison
to EAX-1AB and 2-OPT. Note that we used 2-OPT in the first 1 000 iterations for all
competitors since EAX-EDO CO and EAX-1AB as crossover operators require two
different parents to generate an offspring that is no clone, while the initial population
consists of µ copies of a single solution. The experimental settings and instances are
in line with the previous subsection.

Figure 4.2 shows the performance of EAX-EDO CO, EAX-1AB CO, and 2-
OPT (encapsulated in Algorithm 11). The figure illustrates that not only does EAX-
EDO CO outperform EAX-1AB CO and 2-OPT in terms of the mean diversity score in
all cases, but also has a lower standard deviation. These observations are confirmed by
the results of a Kruskal-Wallis test at significance level 5% and Bonferroni correction
that indicates a significant difference is found in the median of entropy scores of the
final populations obtained by EAX-EDO CO and that of the EAX-1AB and 2-OPT
in all considered settings. Turning to the comparison between EAX-1AB and 2-OPT,
the former brings about more diverse populations in most of the cases, except for the
setting with α = 0.5 and µ = 50 on eil51. One can notice that the smaller α is, the
larger is the gap between EAX-based crossovers and 2-OPT. This is because 2-OPT
is a random neighbourhood search; therefore, the tighter the threshold is, the lower
the chance of generating an offspring individual with acceptable quality. Note that a
larger neighbourhood search would be necessary to escape local optima.

4.4.2 Unknown Optimal Solution

The two-stage EAX-EDO introduced for unknown optimal cases includes several pa-
rameters, such as parameters associated with the allocation of the budget between
the cost minimisation and diversity maximisation phases. It is crucial to tune the
parameters in order to deliver the algorithm’s best performance.

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 60

A B C

0.6

0.65

0.7

0.75
ei

l5
1

(0.05, 50)

A B C

0.85

0.9

0.95

(0.1, 50)

A B C

1.78

1.8

1.82

(0.5, 50)

A B C

0.6

0.65

0.7

0.75

(0.05, 100)

A B C

0.86

0.88

0.9

0.92

0.94

0.96

(0.1, 100)

A B C

1.81

1.82

1.83

1.84

(0.5, 100)

A B C

0.5

0.55

0.6

0.65

0.7

ei
l7

6

(0.05, 50)

A B C
0.75

0.8

0.85

0.9

0.95

(0.1, 50)

A B C

1.78

1.8

1.82

1.84

1.86

(0.5, 50)

A B C

0.5

0.6

0.7

(0.05, 100)

A B C

0.75

0.8

0.85

0.9

0.95

(0.1, 100)

A B C
1.78

1.8

1.82

1.84

1.86

1.88

(0.5, 100)

A B C

0

0.2

0.4

0.6

0.8

ei
l1

01

(0.05, 50)

A B C

0

0.5

1
(0.1, 50)

A B C

0

0.5

1

1.5

2
(0.5, 50)

A B C

0

0.2

0.4

0.6

0.8
(0.05, 100)

A B C

0

0.5

1

(0.1, 100)

A B C

0

0.5

1

1.5

2
(0.5, 100)

Figure 4.2. Distributions of diversity scores (to be maximised) of
populations obtained by Algorithm 11 with EAX-EDO CO (A), EAX-
1AB CO (B), and 2-OPT (C) for instances eil51, eil76, and eil101.

Labels above the box plots indicate (α, µ).

Algorithm Configuration

The goal of automatic algorithm configuration is to find, in an automated fashion, a
parameter configuration to deliver the algorithms’ best (average) performance for a
given set of instances. Here, the algorithm parameters are tuned by iRace [61], which
performs an iterated racing procedure between different parameter configurations to
find the best parameter setting. In our experimental investigation, we consider the
minimum budget of 96 runs to be performed by iRace for each algorithm due to the
fact that the algorithms are computationally expensive.

The two-stage algorithm includes four input parameters. Since the budget is
limited, there are three parameters associated with the allocation of the budget, which
include budget allocation to each repetition of the main loop (X), and the proportions
of X are allocated to cost minimisation and diversity maximisation phases, xc and
xd, respectively. The last parameter is the number of consecutive failures M of the
cost minimisation phase in finding a tour with better costs. Note that there exist
dependencies between these parameters. First, X is a proportion of the total budget
(It). Second, xd can be determined as 1 − xc. Finally, M should be lower than
the total number of repetitions of the main loop, i.e. M1 < It/X; therefore, we set

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 61

Table 4.2. Tested parameter values during the tuning procedure.

Parameter X xc m

Range (0.03, 0.2) (0.2, 0.8) (0.1, 0.5)

Best setting 0.0614 0.4888 0.2413

M = m · (It/X), where m ∈ (0, 1).

Table 4.2 shows the parameter ranges considered in the tuning procedure and
the best setting found by iRace. The other parameters can be calculated from the
aforementioned equations.

Experiments

We now compare the performance of single-stage and two-stage EAX-EDO against
standard EAX and the Gurobi optimiser [45] in terms of solution quality and entropy-
based diversity. The Gurobi optimizer is a well-known mixed integer programming (MIP)
solver. Although Gurobi is usually used to obtain the optimal or a high-quality so-
lution for a given optimisation problem, it is capable of providing its users with µ

different solutions within a specific gap α to the optimal solution. Here, we use the
Dantzig–Fulkerson–Johnson formulation [23]. We use Gurobi to generate µ different
solutions and use it as a baseline for comparison in our studies.

The benchmark instances considered in this section include eil101, a280, pr493,
u574, rat575, p654, rat783, u1060, pr2392, and fnl4461 [97]. Moreover, we set µ to 50.
Note that all algorithms are initialized with a population of individuals optimised by
2-OPT. The results are summarised in Table 4.3.

The outcome indicates that the introduced single-stage EAX-EDO outperforms
the other algorithms in terms of diversity. Table 4.3 shows that both single-stage
EAX-EDO and two-stage EAX-EDO are capable of computing tours with decent
costs. The Gurobi optimiser and EAX result in marginally better quality, while they
are outperformed by the single-stage EAX-EDO in terms of diversity in all instances
except on instance fnl4461. In this instance, single-stage EAX-EDO leads to a higher
quality but less diverse population compared to EAX.

This can be attributed to EAX generating λ = 25 offspring per iteration, which
makes it converge slower than the two variants of EAX-EDO. Therefore, the EAX-
EDO algorithms achieve better quality but less diverse populations in 500 000 fitness
evaluations. Should EAX continue to run, we expect that it converges to a slightly
higher quality but less diverse population compared to EAX-EDO; the same trend
can be observed for smaller instances. Figure 4.3 illustrates this matter visually.
The figure depicts the quality of best solutions and diversity of populations over fit-
ness evaluations for the single-stage EAX-EDO, the two-stage EAX-EDO, and vanilla

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 62

EAX. Figure 4.3 shows that having a lower entropy in preliminary iterations, single-
stage EAX-EDO finally converges to higher entropy compared to the vanilla EAX on
rat783, u1060, pr2392. It is the other way around for the quality of tours; EDO-based
algorithms converge faster in terms of quality, while vanilla EAX results in slightly
higher-quality tours. The same patterns can be observed for other instances except
fnl4461. In this instance, none of the algorithms converges in this setting. Here, Fig-
ure 4.3 indicates that 500 000 fitness evaluations are insufficient to have the algorithms
converged.

C
hapter

4.
E

A
X

-based
C

rossover
in

the
T
raveling

Salesperson
P

roblem
63

Table 4.3. Comparison of the proposed algorithms with EAX in terms of diversity (H) and solution quality of the best solution (c).
Here, ∆H shows the entropy of the final population P on top of Hmin, i.e, ∆H = H(P)−Hmin. Columns statH and statc contain the

results of Kruskal-Wallis tests on the entropy of the final population and best tour length, respectively.

Gurobi 1-stage EAX-EDO (1) 2-stage EAX-EDO (2) EAX (3)

Hmin OPT ∆H c ∆H c statH statc ∆H c statH statc ∆H c statH statc

eil101 5.31 629 0.11 629 0.79 629 2+3+ 2∗3∗ 0.34 629 1−3+ 1∗3∗ 0.11 629 1−2− 1∗2∗

a280 6.33 2 579 0.1 2 579 0.6 2 579 2+3+ 2∗3∗ 0.30 2 579 1−3+ 1∗3∗ 0.12 2 579 1−2− 1∗2∗

pr439 6.78 107 217 0.03 107 217 0.66 107 262 2−3∗ 2−3∗ 0.27 107 217 1∗3+ 1+3∗ 0.05 107 226 1−2− 1∗2∗

u574 7.05 36 9054 0.02 36 905 0.67 36 914 2+3+ 2−3− 0.29 36 908 1−3+ 1∗3∗ 0.01 36 905 1−2− 1∗2∗

rat575 7.05 6 773 0.05 6 773 0.63 6 777 2+3+ 2−3− 0.35 6 775 1−3+ 1∗3∗ 0.11 6 774 1−2− 1+2∗

p654 7.18 34 643 0.08 34 643 1.15 34 643 2+3+ 2∗3∗ 0.55 34 646 1−3+ 1∗3− 0.28 34 643 1−2− 1∗2+

rat783 7.36 8 806 0.02 8 806 0.57 8 809 2+3+ 2∗3− 0.31 8 807 1−3+ 1∗3∗ 0.07 8 806 1−2− 1+2∗

u1060 7.66 224 094 - - 0.69 224 275 2+3+ 2∗3− 0.35 224 131 1−3+ 1∗3∗ 0.07 224 109 1−2− 1+2∗

pr2392 8.47 378 032 - - 0.56 378 813 2+3+ 2∗3− 0.28 378 926 1−3+ 1∗3− 0.02 378 059 1−2− 1+2+

fnl4461 9.1 182 566 - - 0.33 182 297 2∗3− 2∗3+ 0.32 183 200 1+3− 1−3+ 0.42 184 230 1+2+ 1−2−

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 64

0 0.5 1 1.5 2 2.5
No. evaluation 105

8800

8850

8900

8950

9000

9050

9100

9150

9200

9250

c

rat783

Single stage EAX-EDO
Two stage EAX EDO
EAX

0 1 2 3 4 5
No. evaluation 105

2.24

2.26

2.28

2.3

2.32

2.34

2.36

c

105 u1060

0 1 2 3 4 5
No. evaluation 105

3.8

3.85

3.9

3.95

4

c

105 pr2392

0 1 2 3 4 5
No. evaluation 105

1.82

1.84

1.86

1.88

1.9

1.92

1.94

c

105 fnl4461

0 0.5 1 1.5 2 2.5
No. evaluation 105

0

0.1

0.2

0.3

0.4

0.5

0.6

H

0 1 2 3 4 5
No. evaluation 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H

0 1 2 3 4 5
No. evaluation 105

0

0.1

0.2

0.3

0.4

0.5

0.6

H

0 1 2 3 4 5
No. evaluation 105

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

H

Figure 4.3. Representative trajectories in the setting of unknown
optimal solutions. The plots show the best tour length in the popula-
tion (first row) and diversity measured by the entropy (second row).

Moreover, Figure 4.3 shows that EAX sacrifices the entropy of the population
to gain shorter tours. On the contrary, single-stage EAX-EDO increases the entropy
while in the course of optimising the solution quality. In addition, Figure 4.3 highlights
the room for improvement in the EAX-EDO algorithms. First, tuning the single-stage
EAX-EDO’s parameters is likely to boost the performance of the algorithm, although
it outperforms the other counterparts in terms of diversity in the current state. Second,
the EAX-EDO algorithms generate one offspring per iteration; generating λ number
of offspring from the same parents and incorporating the selection procedure to choose
between them (same as the standard EAX), EAX-EDO is likely to achieve even higher
diversity and quality. However, the selection of µ tours from µ+λ tours in a way that
maximises diversity is a complicated problem. For instance, there are

(
µ+λ
µ

)
possible

candidates for Brute-force search. This makes the algorithm computationally more
expensive. We already investigated λ ≥ 2 in the EDO algorithm designed for scenarios
where the optimal tour is known a priori in Section 3.7.

Figure 4.4 visualises exemplary populations obtained by the single-stage and
the two-stage EAX-EDO, Gurobi and EAX. The figure aids in comprehending how
populations obtained by the EAX-EDO algorithms differ from the ones computed
by standard EAX and Gurobi. As one can notice from Figure 4.4, the single-stage
EAX-EDO incorporates a higher number of edges into the population compared to
the other algorithms. For example, on eil101, the population obtained from the single-
stage EAX-EDO includes 758 unique edges, while the number of edges for two-stage
EAX-EDO, Gurobi and EAX are 416, 238, and 238, respectively. A similar pattern
can be observed in all the other instances; this includes a280 and u575, as it is shown
in Figure 4.4. Moreover, the figure depicts that EAX and Gurobi are almost incapable
of having low frequent edges in the populations. However, the two EDO frameworks,
especially those of the single-stage EAX-EDO, incorporate many low frequent edges
into the populations.

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 65

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80 Single-stage EAX-EDO
ei

l1
01

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80 Two –stage EAX-EDO

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80 Gurobi

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80 EAX

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

a2
80

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

500 1000 1500 2000 2500 3000 3500

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

u5
74

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

low medium high

Figure 4.4. Overlay of all edges used in exemplary final populations.
Edges are coloured by their frequency.

Robustness of the populations

One motivation for EDO is, as stated earlier that decision-makers can choose between
different alternatives if they are provided with a diverse set of high-quality solutions.
For instance, decision-makers can avoid a certain edge if they prefer to, or the edge
becomes unavailable for some reason. In this section, we compare the robustness of
the population obtained from the four competitors when one or more edges of the
optimal tour for a given TSP instance suddenly become unavailable. To this end, we
randomly make one, two, and three edges of the optimal solution unavailable. Next,
we determine 1) the percentage of occasions (over 1000 independent experiments)
where there is at least one alternative tour in the population (encoded by a) and 2)
the mean of different alternative tours in populations that avoid those edges (encoded
by d). Table 4.4 summarises the results of this series of experiments.

The outcome indicates that the two variants of EAX-EDO lead to more ro-
bust populations against minor changes compared to EAX and Gurobi. In fact, the
single-stage EAX-EDO has superior performance compared to its competitors: its
population, e.g. on a280, succeeds in 83% of occasions to offer an alternative when an
edge becomes unavailable, whereas the Two-stage EAX-EDO scores 55%, the EAX
scores 23% and the Gurobi achieves 26%, respectively. Moreover, the population of
the single-stage EDO includes 5.8 alternative tours to the optimal on average when
two edges become unavailable. This is while this figure is 1.69 for the Two-stage EAX-
EDO, and the populations of EAX and the Gurobi optimiser are incapable of offering

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 66

any alternative on two and three instances, respectively. In case three edges are elim-
inated, the standard EAX and Gurobi are barely able to offer any alternatives, while
success rates of the single-stage and the two-stage EAX-EDO are 42% and 8.86%,
respectively. Therefore, considering Table 4.4, we can claim that the single-stage
EAX-EDO framework outperforms the classic and the two-stage EDO frameworks in
terms of population robustness.

C
hapter

4.
E

A
X

-based
C

rossover
in

the
T
raveling

Salesperson
P

roblem
67

Table 4.4. Comparison of the robustness of the populations obtained from single-stage EAX-EDO (1), two-stage EAX-EDO (2), EAX
(3), and Gurobi (4) in case one, two, or three random edges from the optimal solution become unavailable in 100 runs. a denotes the
percentage of times the population has at least one alternative for the eliminated edges, while d represents the number of alternative

tours avoiding the eliminated edges on average.

One edge Two edges Three edges

EDO (1)EDO (2)EAX (3)Gurobi (4)EDO (1)EDO (2)EAX (3)Gurobi (4)EDO (1)EDO (2)EAX (3)Gurobi (4)

a d a d a d a d a d a d a d a d a d a d a d a d

eil101 90 18.07 50 9.5 18 4.34 18 3.79 74 6.57 20 1.82 3 0.33 3 0.27 50 2.29 8 0.43 1 0.04 0 0.03

a280 83 15.15 55 7.58 23 3.83 26 1.89 64 5.03 21 1.21 5 0.34 3 0.18 40 1.58 7 0.25 1 0.04 0 0.01

pr439 82 14.95 36 5.05 0 0 10 0.70 58 4.41 7 0.40 0 0 0 0.01 30 1.20 2 0.07 0 0 0 0

u574 88 15.37 46 6.79 1 0.27 6 0.42 65 5.08 15 1.13 0 0 0 0.01 39 1.58 5 0.252 0 0 0 0

rat57585 14.40 61 9.06 26 4.64 21 0.94 57 4.08 29 1.92 4 0.391 1 0.02 33 1.30 9 0.36 1 0.04 0 0

p654 90 23.84 61 14.19 55 10.24 33 8.20 79 11.48 39 4.15 27 2.16 9 1.89 70 6.08 24 1.28 11 0.49 2 0.26

rat78382 13.54 55 7.33 19 2.02 4 0.65 56 3.98 19 1.18 3 0.12 0 0.016 32 1.24 7 0.21 1 0.006 0 0

Chapter 4. EAX-based Crossover in the Traveling Salesperson Problem 68

4.5 Conclusion

In this chapter, we introduced EAX-based evolutionary diversity optimisation ap-
proaches for the well-known TSP, which are able to compute diverse sets of high-
quality TSP tours. We designed an entropy-based diversity measure for the TSP and
modified the powerful EAX operator towards a variant called EAX-EDO crossover
that allows to simultaneously minimise the tour length and maximise the population
diversity. The resulting EAX-EDO algorithms allow computing high-quality, diverse
sets of TSP tours through a two-stage approach that alternates between optimised
tour lengths and the diversity of the population or a single-stage method that opti-
mises both criteria simultaneously. Our experimental results show that (1) EAX-EDO
crossover outperforms recent approaches from the literature based on k-OPT neigh-
bourhood search in a setting where the optimal tour is known and (2) the introduced
algorithms show superior performance with respect to diversity while being compet-
itive with respect to the objective function in comparison with the pure EAX and
the Gurobi optimiser on a subset of classical TSP benchmark instances when an op-
timal solution is unknown. Moreover, our results indicate that EAX-EDO algorithms
compute more robust populations compared to the classic optimisation frameworks.

Future work will focus on the enhancement of EAX-EDO in terms of (1) gener-
ating several offspring in each iteration and (2) a method to select a population from
a pool of new offspring and old individuals. We expect these modifications to boost
the performance of EAX-EDO in terms of both quality and diversity. Moreover, it is
intriguing to investigate the application of EDO on real-world problems.

69

Chapter 5

Quality Diversity Algorithms for
the Traveling Thief Problem

5.1 Introduction

We studied TSP in the context of EDO in previous chapters. We now investigate
diversity in TTP solutions in the following two chapters, starting with QD algo-
rithms. QD has been shown to be very powerful in diversifying solutions in terms of
behavioural properties. It is also capable of efficiently illustrating the distribution of
high-quality solutions in behavioural space. The use of QD in continuous optimisation
problems has been investigated extensively and shown that the QD-based algorithm
yields decent results.

The decent results of QD algorithms in the continuous domain and the lack of
study in the context of combinatorial optimisation problems motivate us to introduce
a QD-based algorithm in a problem in the discrete domain, the TTP. QD is a pow-
erful tool to maintain diversity among solutions, and we believe it can result in TTP
solutions with decent results.

We employ the concept of QD for solving the TTP. By this means, we scrutinise
the distribution of high-performing TTP solutions in the behavioural space of the
TSP and the KP and compute very high-quality solutions. We introduce a bi-level
MAP-Elite-based evolutionary algorithm called BMBEA. The algorithm generates
new solutions in a two-stage procedure. First, it generates new high-quality TSP
tours from old ones by the well-established EAX crossover operator [72] for the TSP
or as an alternative by 2-OPT [20]. Second, it utilises dynamic programming [81] or
an (1+1) evolutionary algorithm to compute an optimal (or near-optimal) packing list
for the given TSP tour. Having generated a new solution, BMBEA applies a MAP-
Elites-based survival selection to achieve a diverse set of high-quality TTP solutions.
To achieve diversity, MAP-Elites is applied with respect to the two-dimensional space
given by the TSP and KP quality of the TTP solutions. To form such as behavioural

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 70

space, we should know the optimal values for the sub-problems. Here, we use EAX
[72] and DP [111] to compute those values.

We conduct a comprehensive experimental investigation to analyse and visualise
the distribution of high-quality TTP solutions for different TTP instances. Further-
more, we show the capability of BMBEA to generate high-performing TTP solutions.
The algorithm results in very high TTP values and improves the best-known TTP so-
lution for some benchmark instances. Moreover, we propose a method that eliminates
two influential input parameters that need to be tuned for each instance individually.
Using the method requires a higher number of generations to converge compared to the
previous method with the considered input values. However, it improves the results,
especially for the larger instances. We also investigate the impact of Map-Elite-based
survival selection. We show that the survival selection brings about a diverse set of
solutions that prevents premature convergence.

The work of this chapter is based on a conference paper [88] presented at the
genetic and evolutionary computation conference (GECCO 2022) and its extended
version that is submitted to ACM Transactions on Evolutionary Learning and Op-
timization journal. We also correct some incorrect experimental results from the
conference version, which were due to an implementation error.

The remainder of this chapter is structured as follows. In Section 5.2, we formally
define the TTP problem. We introduce the MAP-Elites-based approach for TTP
and the BMBEA algorithm in Section 5.3. We also propose a baseline algorithm to
investigate the impact of MAP-Elitism in Section 5.3. We examine the high-quality
TTP solutions in terms of their TSP and KP score and report on our results using
BMBEA for solving the TTP are shown in Section 5.4. Finally, we finish with some
concluding remarks.

5.2 The Traveling Thief Problem

We formally defined the TTP in Chapter 2.4.3. To ease the reading, we shortly
redefine it here as well. As mentioned, TTP is formed by the integration of the TSP
and the KP. The TTP is formed by a graph G and a set of items I where items are
equally scattered on the cities. Each city i except the first one contains a set of items
Mi (a subset of I), and each item k located in the city i is associated with a profit
pik and a weight wik. A TTP solution (x, y) consists of a tour x and a packing list y

that maximises:

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 71

z(x, y) =

m∑
j=1

pjyj −R

(
dxnx1

νmax − νWxn

+

n−1∑
i=1

dxixi+1

νmax − νWxi

)

subject to
m∑
j=1

wjyj ≤W.

Here, νmax and νmin are the maximal and minimal travelling speed, ν = νmax−νmin
W is a

constant, and Wxi is the cumulative weight of the items collected from the start of the
tour up to city xi. In this chapter, z(x, y) serves as the fitness function, while f(x),
the TSP function and g(y) the KP function serve as the behavioural descriptor (BD):

f(x) = d(x(n), x(1)) +

n−1∑
i=1

d(x(i), x(i+ 1)).

g(y) =

m∑
j=1

pjyj

subject to
m∑
j=1

wjyj ≤W.

Generally, the fitness function indicates how well a solution solves the given
problem, while the BD shows how it solves the problem and behaves in terms of the
features. In this case, the BD presents the length of the tour (f) and the value of
items collected (g), whereby the fitness function returns the overall profit (z). Here,
we aim to compute a diverse set of high-quality solutions differing in the BD. By this
means, we can look into the distribution of high-performing TTP solutions over the
2D space of TSP and KP.

5.3 Bi-level Map-Elites-based Evolutionary Algorithm

Map-Elites is an evolutionary computation approach where solutions compete with
each other to survive. However, competition is only among solutions with a similar
BD value in order to maintain diversity. We require a hyperparameter to define the
similarity and the tolerance of acceptable differences between two descriptors. In the
MAP-Elites algorithms, the BD space is discretised into a grid, where each cell is
associated with one BD type. It means each solution belongs to at most one cell in
the behavioural space (the map). Map-Elite algorithms typically keep only the best
solution in each cell. When a solution is generated, it is assessed and potentially added
to the cell with the associated BD. If the cell is empty, the solution occupies the cell;
otherwise, the best solution is kept in the cell. The map aids in understanding and

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 72

!∗

(1
−
% "
)'

∗
'∗

("

(# 1 + %# !∗

Figure 5.1. The representation of an empty map. There are δ1 × δ2
cells within the map.

visualising the distribution of high-quality TTP solutions. For instance, how much
should we move away from the optimal TSP tour and the optimal KP solution to
generate high-performing TTP solutions?

Generally, the behavioural space can be extremely large. Thus, it is rational to
limit the map to a promising part of the space; otherwise, either the number or the
size of the cells increases severely, and as a result, the performance and efficiency of
the algorithms is undermined. As mentioned, a TTP solution consists of a tour and a
packing list that belong to the TSP and the KP components of the problem. Although
solving each sub-problem separately does not necessarily result in a high-quality TTP
solution, a TTP solution should score fairly well in both features in order to gain high
profits. Thus, we focus on solutions within α1 and α2 gap to the optimal TSP value
(f∗) and the optimal KP value (g∗), respectively. In this chapter, α1 and α2 are set to
5 and 20, respectively, based on initial experimental investigations. Figure 5.1 depicts
an empty map. There are δ1 × δ2 cells. Cell (i, j), 1 ≤ i ≤ δ1, 1 ≤ j ≤ δ2 contains
the best found solution with TSP score in

[
f∗ + (i− 1)

(
α1f∗

δ1

)
, f∗ + (i)

(
α1f∗

δ1

))
and

KP score in
[
(1− α2)g

∗ + (j − 1)
(
α2g∗

δ2

)
, (1− α2)g

∗ + (j)
(
α2g∗

δ2

))
, the correspond-

ing BD. The cell (1, δ2) consists of TTP solutions with TSP and KP values closest
to the optimums. In this chapter, we require to know f∗ and g∗. For this purpose,
we can use EAX [72] and dynamic programming (DP) [111] to compute f∗ and g∗ for
the TTP instances, respectively.

Algorithm 15 describes the BMBEA. The initialising procedure and the operators
to generate a new TTP solution will be discussed later. Having generated an empty
map, we populate it with an initialising procedure. After generating offspring, we

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 73

Algorithm 15 The MAP-Elites-Based Evolutionary Algorithm
1: Find the optimal/near-optimal values of the TSP and the KP by algorithms in

[72, 111], respectively.
2: Generate an empty map and populate it with the initialising procedure.
3: while termination criterion is not met do
4: Generate an offspring and calculate the TSP and the KP scores.
5: if The TSP and the KP scores are within α1%, and α2% gaps to the optimal

values of BD. then
6: Find the corresponding cell to the TSP and the KP scores.
7: if The cell is empty then
8: Store the offspring in the cell.
9: else

10: Compare the offspring and the individual occupying the cell and store the
best individual in terms of TTP score in the cell.

calculate the TSP score and the KP score of the offspring. If the TSP and the
KP scores are within α1% and α2% gap of the optimal values, respectively, we find
the cell corresponding to those scores; otherwise, the offspring is discarded. If the
corresponding cell is empty, the offspring is kept in the cell; otherwise, we compare
the offspring and the individual in the cell and keep the individual with the highest
TTP score. We repeat steps 3 to 10 until a termination criterion is met.

Evolutionary algorithms require some operators to generate new solutions (off-
spring) from old ones (parents); BMBEA is no exception. One can see the generating
of TTP solutions as a bi-level process. First, new tours can be generated by mutation
or crossovers; then, we can compute a suitable packing list for the new tours to have
complete TTP solutions.

5.3.1 Search Operators for TSP

We consider EAX crossover [72] to generate new TSP tours. As mentioned in Section
2.4.2, EAX is a highly performing TSP crossover known as one of the state-of-the-art
operators in solving TSP. The use of EAX has also been shown to lead to high-quality
solutions for the TTP in [120]. EAX has several variants; we incorporate the EAX-
1AB due to its simplicity and efficiency. We already described the EAX in section
2.4.2. Alternatively, we can employ 2-OPT to generate TSP tours.

5.3.2 Search Operators for KP

In the second phase, we optimise the packing list to match the TSP tour and form
a good TTP solution. To this means, inner algorithms are required to optimise the
packing list. When the tour is fixed and the packing list is optimised, the problem
is referred to as the packing while travelling problem (PWT). [93] in the literature.
Neumann et al. [81] introduced a DP algorithm (introduced in Section 2.4) to solve
the PWT problem to optimality. Here, we use the DP to obtain the optimal packing
selection for the tour generated by the TSP operators.

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 74

(1 + 1) Evolutionary Algorithm

The (1 + 1) EA is a well-known simple EA that we may hope to converge fast since
it only keeps the best-found solution. First, the new tour generated by the TSP
operators inherits its parent’s packing list. Next, a new packing list is generated by
mutation. If the new packing list results in a higher TTP score, the new packing list
is replaced with the old one. We continue these steps until a termination criterion
is met. For mutation, the bit-flip is used, where each bit is independently flipped by
mutation rate 1

m .

The mutation can result in packing lists violating the knapsack’s capacity. We
incorporate a repair function into the (1 + 1) EA to avoid the violation. After the
offspring is mutated, the repair function fixes the offspring’s violation. The repair
function removes collected items uniformly at random one by one until the packing
list complies with the capacity constraint.

5.3.3 Initialisation

One may notice that it is doubtful to populate the map with random solutions. This
is because the map only accepts TTP individuals with fairly good TSP and KP scores.
Therefore, a heuristic approach is required to populate the map initially. We can use
the EAX-based algorithm in [72] to find the optimal/near-optimal TSP tours in terms
of length. Having extracted the tours, we can compute a good quality packing list
for each tour by one of the KP operators mentioned in section 5.3.2. This results
in TTP solutions with high TSP and KP scores. Let us denote the set of solutions
by P0. This initial population enables us to populate the map at the beginning of
the BMBEA. In this study, we use a target length (f∗) as a termination criterion for
the EAX-based algorithm in [72] so as to increase the time efficiency and diversity of
tours. If we do not have the target values, it is important to tune the running time of
the algorithm for each instance individually. Note that in the case of using (1+ 1)EA
as the KP operator, it will boost the performance of BMBEA if we start with the
optimal packing plan obtained by [111].

5.3.4 A More Relaxed Map

Treating α1 and α2 as input required intensive tuning and preliminary experimental
investigations. Randomly selecting values for α1 and α2 not only affects the algo-
rithm’s efficiency, but it may also bring about an infeasible map that is impossible to
fill. As a result, the algorithm cannot produce any solution in such cases. Therefore,
α1 and α2 need to be set carefully, and sometimes they should be re-tuned for different
instances. To address this limitation, we propose a relaxed method in which we set
the thresholds after the initialisation. Having computed P0 as mentioned above, we
set the α1 =

(
fmax

f∗

)
− 1 and α2 = 1−

(
gmin

g∗

)
, where fmax and gmin are the largest

tour and the minimum packing value in P0, respectively.

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 75

5.3.5 (µ+ 1) EA

We require a similar algorithm with a conventional survival selection to investigate
the impact of QD and MAP-Elitism on the results. We consider (µ + 1)EA since it
has the same offspring size as the introduced algorithm. Here, we generate an initial
population P0, same as Section 5.3.3. The parents are selected uniformly at random;
then, an offspring is generated as described in Section 5.3.1 and 5.3.2. After adding
the offspring to the population, we remove one individual with the worst TTP score.
Algorithm 16 outlines steps required for (µ+ 1)EA.

Algorithm 16 (µ+ 1) Evolutionary Algorithm
1: Generate an initial population as explained in Section 5.3.3.
2: while termination criterion is not met do
3: Generate an offspring and add it to the population P .
4: Discard one individual p from P , where argminp∈P z(p).

5.3.6 Entropy-based Evolutionary Algorithm

For the sake of comparison, we also propose another algorithm equipped with a struc-
tural diversity mechanism to avoid premature convergence. We use a similar mecha-
nism that has been tailored toward EAX and the TSP in [72]. The mechanism employs
an entropy-based diversity measure. We name the algorithm entropy-based evolution-
ary algorithm (EnBEA). Algorithm 17 outlines the steps required for EnBEA.

He(P) =
∑

e∈E(P)

h(e) with h(e) = −

(
f(e)∑

e∈E(P) f(e)

)
· ln

(
f(e)∑

e∈E(P) f(e)

)

Let E(P) be the set of edges that have been used in the individuals of P , let
h(e) be the contribution of edge e to the overall entropy H(P), and let f(e) be
the number of individuals in P which use edge e. During the process of EAX, we
derive λ AB-cycles from the two parents. Then, we use the AB-cycles one by one to
generate λ new tours. Let us denote the first parent and offspring individual by tp

and to, respectively. Having computed a packing list for the new tours using the KP
operators, we discard the offspring individuals having a TTP score higher than the
first parent (∆z = z(to)−z(tp) > 0). We calculate ∆H = H(P \{tp}∪{to})−H(P) for
the remaining offspring individuals; H(P \{tp}∪{to}) indicates the population where
the first parent is replaced with the offspring individual to. If offspring individuals
with a positive value of ∆H exist, we replace the parent with the one with the highest
TTP score. However, if all offspring individuals result in a less diverse population (all
∆H are negative), we calculate ∆z

∆H . Then, we replace the parent with the individual
with the smallest ∆z

∆H value. Note that it is not always possible to derive λ AB-cycles

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 76

No. Original Name No. Original Name
1 eil51_n50_bounded-strongly-corr_01 18 a280_n279_uncorr_01
2 eil51_n150_bounded-strongly-corr_01 19 rat575_n574_bounded-strongly-corr_01
3 eil51_n250_bounded-strongly-corr_01 20 rat575_n574_uncorr-similar-weights_01
4 eil51_n50_uncorr-similar-weights_01 21 rat575_n574_uncorr_01
5 eil51_n150_uncorr-similar-weights_01 22 dsj1000_n999_bounded-strongly-corr_02
6 eil51_n250_uncorr-similar-weights_01 23 dsj1000_n999_uncorr-similar-weights_06
7 eil51_n50_uncorr_01 24 dsj1000_n999_uncorr_04
8 eil51_n150_uncorr_01 25 u2152_n2151_bounded-strongly-corr_01
9 eil51_n250_uncorr_01 26 u2152_n2151_uncorr-similar-weights_01
10 pr152_n151_bounded-strongly-corr_01 27 u2152_n2151_uncorr_01
11 pr152_n453_bounded-strongly-corr_01 28 fnl4461_n4460_bounded-strongly-corr_01
12 pr152_n151_uncorr-similar-weights_01 29 fnl4461_n4460_uncorr-similar-weights_01
13 pr152_n453_uncorr-similar-weights_01 30 fnl4461_n4460_uncorr_01
14 pr152_n151_uncorr_01 31 dsj1000_n999_uncorr_02
15 pr152_n453_uncorr_01 32 dsj1000_n999_uncorr_03
16 a280_n279_bounded-strongly-corr_01 33 dsj1000_n999_uncorr-similar-weights_03
17 a280_n279_uncorr-similar-weights_01 34 dsj1000_n999_uncorr-similar-weights_04

Table 5.1. The names of the TTP instances are used in this chapter.

for the parents. That means the number of AB-cycles and the offspring individuals
are capped at λ. In this study, we set λ to 30, which is the same value as used in [72].

Algorithm 17 Entropy-based Evolutionary Algorithm
1: Generate an initial population as explained in Section 5.3.3.
2: while termination criterion is not met do
3: Generate λ offspring individuals from tp1 and tp2 using EAX and a KP operator

and store them in P ′.
4: Discard offspring individuals with TTP score less or equal to tp1 .
5: if P ′ ̸= ∅ then
6: Calculate ∆H = H(P \ {tp} ∪ {to})−H(P) for each individuals.
7: if There exists individuals with ∆H ≥ 0 then
8: Discard the individuals with ∆H < 0.
9: Replace tp1 with argmaxto∈P ′ z(to).

10: else
11: Replace tp1 with argminto∈P ′

∆z
∆H .

5.4 Experimental Investigation

In this section, we use the BMBEA to compute a set of solutions for several TTP
instances; then, we plot the map to illuminate the distribution of the solutions over
the space of f and g. Moreover, we comprehensively compare different search operators
and their effects on the distributions and the final maps. We consider the EAX and the
2-OPT for generating tours and the DP and the (1+1)EA for computing the packing
lists. Employing the operators alternatively, we have four different operator settings.
The algorithms are terminated when they reach either of 10000 iterations or 72 hours
of CPU time. Here, the iteration is referred to as the main loop of the BMBEA and
does not include the time required to obtain f∗, g∗ and the initialisation. We use the
TTP instances developed in [93]. Table 5.1 presents the names of the instances used
in the paper. Please note that we select the first instance of each sub-group except
for the dsj1000 where the renting rate is 0, and therefore, these instances constitute

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 77

EAX-DP EAX-EA 2-OPT-DP 2-OPT-EA

5500
2500

5500
3500

5500
2500

5000
2000

5200
3800

x 1042
1.5

x 1042
1.4

x 1041.9
1.2

1.85
1.45

x 104 x 1041.8
1.3

x 1041.8
1.45

x 1041.75
1.25

Figure 5.2. The distribution of TTP solutions of the four com-
petitors over the behaviour space on instance eil51_n250_uncorr-
similar-weights_01 (top), pr152_n453_uncorr_01 (middle), and
a280_n279_bounded-strongly-corr_01 (bottom). The cells are
coloured based on the average TTP scores of the solutions in the cell
over 10 independent runs. The colour bar indicates the TTP scores

associated with the colours.

classical knapsack problems. We separate the instances into two categories, small and
medium. Since DP’s time efficiency is correlated with the number of items, we select
instances where m ≤ 500 for small instances.

5.4.1 Analysis of the maps

This section visualises and scrutinises the final map obtained from the BMBEA using
different search operators, namely EAX, 2-OPT, DP, and (1 + 1)EA. Figure 5.2 vi-
sualises the final maps obtained from the four competitors in instances 6, 15, and 16.
The TSP value increases when we move in the direction of x axis, while moving in the
y axis results in a rise in the KP score. Since the TSP is a minimisation and the KP
is a maximisation problem, Cell (1,20) consists of the solution with a BD closest to
f∗ and g∗. The maps clearly indicate the trade-off between the sub-problems in the
tested instances since the best TTP solutions should come from Cell (1,20) if there
are no interactions. However, the maps show that this is not the case and that we
cannot limit our search to the regions that are extremely close to the optimal values
for the sub-problems, and we need to extend the search to other neighbouring regions
in order to find high-performing solutions for the TTP problem. The maps’ cells are
coloured based on the average TTP score of the solutions within the cells over 10
independent runs; the hotter the colour, the higher the TTP score. We can observe
that the western part of the maps tends to contain better TTP solutions. In 8 out

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 78

EAX-DP EAX-EA 2-OPT-DP 2-OPT-EA

10
2

10
1

10
1

10
1

10
3

10
1

10
1

10
1

10
1 1

10 10
1

10
1

Figure 5.3. The frequency of cells housing a TTP solution over 10
independent runs on instance eil51_n250_uncorr-similar-weights_01
(top), pr152_n453_uncorr_01 (middle), and a280_n279_bounded-
strongly-corr_01 (bottom). The cells are coloured based on The fre-
quency of cells having a TTP solution in the cell over ten indepen-
dent runs, as the colour bar indicates the frequencies associated with

colours.

of 9 cases, the best solutions are located in a BD of (1, 1.005)f∗ and (0.9, 0.95)g∗.
Moreover, the figure depicts that the maps obtained from BMBEAs using EAX have
more hot-coloured cells than the ones with 2-OPT, which shows the consistency of
EAX in generating high-quality solutions. Turning to the comparison between DP
and (1 + 1)EA, the latter can populate a larger part of the map.

Figure 5.3 illustrates the frequency of cells containing a solution over ten in-
dependent runs. The instances are the same as Figure 5.2. Here, a hotter colour
indicates a higher frequency. The figure depicts that the algorithms cannot populate
the cells close to the optimal KP. Because the algorithms compute the packing list as
the second level of a bi-level optimisation procedure. Thus, the KP values are con-
strained by the given tour. Interestingly, most cells corresponding to the KP values
close to (1−α2)g

∗ also remain empty for the same reason, especially when DP is used.
Moreover, one may notice that the most red-coloured cells in Figure 5.2 are coloured
red here as well. It illustrates a proportional relationship between the quality of solu-
tions and the frequency. Furthermore, the cells associated with low TSP values (left)
of maps are more likely to be empty than the other side. As the TSP value increases,
so does the number of tours resulting in such a TSP value rise. This results in a more
diverse set of tours and, eventually, a more diverse set of packing lists and a broader
range of the KP score.

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 79

Initial-Pop All-Individuals Final-Pop Map-elitism

5600
4200

5600
4200

5000
0

5500
2500

x 1042
1.6

x 1042
1.6

x 1042
0

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1.4

1.5

1.6

1.7

1.8

1.9

2

104

1.84
1.66

x 104 1.84
1.66

x 104 18000
0

1.8
1.5

x 104

Figure 5.4. The illustrations of solutions obtained by (µ+1)EA and
Map-elitism in the behavioral space on instance eil51_n250_uncorr-
similar-weights_01 (top), pr152_n453_uncorr_01 (middle), and
a280_n279_bounded-strongly-corr_01 (bottom). The cells are
coloured based on the TTP scores of the solutions in the cell over
one single run, as the colour bars show the TTP scores associated

with the colours.

MAP-Elitism vs. (µ+ 1)EA

In this section, we compare the sets of solutions obtained by BMBEA and (µ +

1)EA. Both algorithms have identical initialisation, parent selection, and offspring
generation. Therefore, the difference between these algorithms is limited to survival
selection. The aim is to investigate the impact of MAP-Elitism.

Figure 5.4 compares MAP-Elitism and elitism in survival selection. The first
three columns belong to (µ + 1)EA and show the initial population, all solutions
generated during the search, and the final population, respectively. The fourth col-
umn illustrates the population obtained by BMBEA. One can observe that (µ+1)EA
converges to a single solution. Since the algorithm uses EAX crossover and DP as
operators, it’s impossible for the algorithm to find any other solutions from this point.
On the other hand, the BMBEA’s final population consists of a vast number of solu-
tions with different properties. Thus, it can potentially find better-quality solutions
if we let the algorithm continue the search. The other difference we can observe in
Figure 5.4 is that the diversity of solutions decreases during the search (µ+1)EA. On
the contrary, the diversity increases using MAP-Elitism survival selection.

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 80

Maps With The Relaxed Approach

The prefix method can focus on infeasible behavioural space if α1 and α2 are set to
wrong values. The relaxed method, on the other hand, is more flexible and makes sure
that we do not concentrate on an infeasible region of the behavioural space. Figure
5.5 illustrates the α1 and α2 in 10 independent runs on instances 1 to 18. Since α1

and α2 can differ in each run, we use the figure to compare their distributions in the
relaxed method with the values that we used in the prefixed version. Here, after using
EAX [72] to generate high-quality tours, we compute an optimal packing list for the
tours by DP. Note that we used TSP optimal value as the termination criterion to
boost time efficiency and diversity in tours. Figure 5.5 shows α1 and α2 belongs to
[0.04 0.14] and [0.11 0.33], respectively. Since the TSP sub-problem is identical
on instances 1 to 9, we can observe a similar trend for α1 on those instances. This
argument is also true for instances 10 to 15 and 16 to 18. On the other hand, KP
sub-problems are unique for all cases. Therefore, α2 is different in each instance. Also,
by comparing the distributions of α2 and the value in the prefixed version (0.2), we
can see the values are similar in some cases, such as instances 6, 13, and 18, and
different in other cases, such as instances 4 and 7. These observations can support
our claim that tuning α1 and α2 for each instance separately can yield better results
in the prefixed method.

We showed that the BMBEA could bring about diversity in the behavioural
space. In the next section, we study the algorithm’s performance in terms of TTP
score, examine the behavioural diversity’s effectiveness in achieving solutions with
decent objective value, and compare the introduced algorithm’s results with similar
selection methods. We expect that using the MAP-Elites-based selection will result
in finding better solutions compared to a greedy selection like one the (µ+1)EA uses
through enforcing diversity. The diversity should help with premature convergence.

5.4.2 Best found TTP Solutions

In this section, we analyse the performance of BMBEA in solving TTP. First, we
investigate the use of the operators and compare the results when using different
alternatives of the proposed operators as part of BMBEA. Then, we scrutinise the
algorithm’s survival selection by comparing BMBEA to (µ + 1)EA. Last, we study
the method proposed for relaxing α1 and α2 and compared it to BMBEA with fixed
α1 and α2.

Operators

We now compare the search operators, EAX, 2OPT, DP, and (1 + 1)EA, in terms of
the best-found TTP solution in this section. We consider instances in a range of 51 to
280 cities and 50 to 453 items from [93]. Table 5.2 shows the average and the best TTP
solutions and the average CPU time in ten independent runs for the four competitors

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 81

Instances

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14
1

Treshholds on TSP values

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18

0.1

0.15

0.2

0.25

0.3

2

Treshholds on KP values

Figure 5.5. The values of α1 and α2 in the relaxed method

and the best-known TTP values. The best-known values are obtained from [15], and
[120]; both these papers compared their results to those of 21 algorithms analysed in
[116]. Wagner et al. [116] reported their results on all instances from Table 5.1, while
Wuijts and Thierens [120] and Chagas and Wagner [15] used some of the instances in
their studies. The best-known values include Chagas and Wagner [15] in instances 1
to 18, 22 to 24, and 28 to 34, and Wuijts and Thierens [120] in instances 1 to 9 and
15 to 18. Note that our termination criterion differs from 10 minutes CPU time in
[116], and 2500 local searches in [120]. The results indicate that EAX outperforms
2-OPT in terms of TTP score in most cases. The observations are confirmed by a
Kruskal-Wallis test at significance level 5% and the Bonferroni correction. Turning to
the comparison of the KP operators, (1+1)EA yields very decent objective values and
can compete with DP, which results in the optimal packing list. In general, an increase
in the size of instances severely affects the run time of the BMBEA using DP. On the
other hand, the run times of (1 + 1)EA are significantly shorter. For example, the
EAX-EA averagely finishes the 10000 iterations in 240.9 seconds on instance 3. The
figure is about 18990.2 seconds for EAX-DP. This is while the algorithm’s run time
employing (1 + 1)EA remains reasonable. More interestingly, Table 5.2 also indicates
that all variants of BMBEA result in high-quality TTP solutions. In instances 10 and
13, the introduced algorithms beat the best TTP scores and can hit the best known
on instances 1 and 4.

Since the DP is not time-efficient in larger instances, we consider the (1 + 1)EA

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 82

for computing the packing list. Table 5.3 shows the results on 12 instances from 575
to 4661 cities and 574 to 4460 items. As one can observe, EAX dominates 2-OPT in
these instances. Moreover, the algorithm using EAX improved the best-found solution
in 8 out of 12 cases. For example, the TTP score significantly increased from 893 to
1137.5 in instance 22. One can notice that the TTP score of the algorithm using
2-OPT is negative in this instance. Polyakovskiy et al. [93] balanced the instances
in the TSP and the KP, but the TSP sub-problem is more dominating in some of
the dsj1000 sub-group. The travelling cost is high in these particular instances, and
the items do not compensate for the high cost. Having the TSP sub-problem more
dominating, it is not surprising that the EAX outperforms the 2-OPT. Moreover,
the domination is even stronger in four other instances of the dsj1000 sub-group
in a way that the best-known values are negative. We investigate the 4 instances
separated from the others due to the dominance of the TSP sub-problem over the KP.
It means that the high-quality TTP solutions are closer to the TSP optimal value
and farther away from the KP optimal values. The current α1 and α2 are set for the
balanced instances. Thus, we need to reset α1 and α2 to populate the map. Based
on initial experimental investigations on these instances, we set α1 and α2 to 0.2 and
0.6, respectively. Table 5.4 summarises the results on the 4 instances. The EAX,
as expected, outperforms the 2-OPT in all four cases. More importantly, the EAX-
based algorithm improved the TTP values for instances 31 and 32 by 1.1 and 37.1,
respectively 1. Note that the results presented in Tables 5.2, 5.3, and 5.4 are different
from the ones presented in the conference version [88], which are incorrect due to an
implementation mistake.

(µ+ 1)EA vs. BMBEA vs. EnBEA

We now compare the BMBEA to (µ + 1)EA and EnBEA in solving the problem
instances. The difference between these algorithms is in survival selection, where
BMBEA selects the next generation based on MAP-Elitism, (µ + 1)EA takes the
most elite solutions, and EnBEA uses an entropy-based survival selection. Table 5.5
summarises the results of these algorithms where EAX and DP are considered as the
operators. The table shows that the BMBEA has the highest average in 7 cases out of
18, while the figure is 3 and 6 for (µ+1)EA and EnBEA, respectively. The statistical
test confirms the BEMBEA outperforms the (µ + 1)EA in cases 13 and 16. It also
outperforms EnBEA in instances 15, 17 and 18. Comparing (µ + 1)EA and EnBEA
statistically, the first algorithm performs better in the last 3 instances while the latter
works better on instance 5. As one can observe, the EnBEA deteriorates in the last
3 instances, which are the largest in the set of instances we used for this comparison.
One reason could be that as the size of the instance increases, more AB-cycles can be
generated, which affects the convergence pace of EnBEA, and the algorithm requires
more runs to converge. The next series of experiments shed light on the matter.

1The TTP solutions can be accessed at https://github.com/NikfarjamAdel/
Traveling-Thief-Problem

https://github.com/NikfarjamAdel/Traveling-Thief-Problem
https://github.com/NikfarjamAdel/Traveling-Thief-Problem

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 83

Figure 5.4 shows that the (µ + 1)EA converges to a single solution; therefore,
there is little hope of finding better solutions by increasing the number of iterations.
On the other hand, there is a good chance that an increase in the number of iterations
results in better solutions for BMBEA and EnBEA. We investigate this by comparing
the results in 10000 and 100000 iterations. Since DP can be time-consuming, we used
(1 + 1)EA as the KP operator for this round of experiments.

Table 5.6 indicates results for BMBEA, (µ+1)EA, EnBEA when the KP operator
is altered to the (1+1)EA, and the number of iterations is equal to 104 and 105. The
table shows that BMBEA, (µ+ 1)EA, and EnBEA bring about the highest mean of
TTP score in 11, 7, and 1 instances, respectively, when the termination criterion is
set to 104 iterations. Comparing the algorithms statistically, EnBEA is outperformed
by the other algorithms. One can notice the differences between this part of the
table and Table 5.5. This is because the algorithms need more iterations to converge
when we use (1 + 1)EA as the KP operator instead of DP. Increasing the number of
iterations results in different conclusions. The other part of Table 5.6 can delineate
the algorithm’s performance.

We can see that both BMBEA and EnBEA statistically outperform the (µ+ 1)

in most instances when the number of iterations is set to 105. BMBEA, (µ+1)EA and
EnBEA have the highest average TTP scores in 8, 2, and 10 instances, respectively.
Increasing the number of iterations has no effect on the results of the (µ + 1)EA
since the algorithm converges within 104 iterations in those instances. On the other
hand, it considerably improves the BMBEA and EnBEA performances, while the
most significant improvements belong to EnBEA. This shows that both behavioural
diversity and structural diversity can be beneficial to prevent premature convergence
and escape local optima. Here, we can observe that BMBEA can converge faster than
EnBEA and can combine efficiency and effectiveness.

Relaxed Method

Tuning α1 and α2 requires a lot of computational effort. It should be done for each
instance separately to make sure the area of focus in the feature space is not infeasible
and is promising. As we observed in the previous section, the initial values (α1 = 0.05,
and α2 = 0.2) result in an infeasible focused area for instances 31 to 34. For this
purpose, we proposed the relaxed method where α1 and α2 are set based on the
initial population , where α1 =

(
fmax

f∗

)
−1 and α2 = 1−

(
gmin

g∗

)
. Here, we investigate

the impact of this method on the performance of BMBEA. To do so, we compare the
BMBEA using the relaxed method with the prefixed α1 and α2.

Table 5.7 summarises the experimental investigation. EAX and (1 + 1)EA are
considered for the operators. When the termination criterion is set to 104 iterations,
the prefixed method performs statistically better in 4 out of 27 cases. A meaningful
difference can be found in one instance in favour of the relaxed method. At the same

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 84

time, there is no statistically significant difference in the rest of the cases. However,
the average TTP score of the relaxed method is higher in four instances. We can
observe that this method performs better in experiments with longer runs. It has a
higher average TTP score in 19 cases, while the prefixed approach outperforms it in
5 instances. Both algorithms perform equally in three cases. Statistical tests confirm
significant differences in the 2 instances for the relaxed approach. We can conclude
that the relaxed method can result in a decent TTP score. At the same time, it
eliminates the need to tune two influential parameters. It is noteworthy that both
algorithms can beat the best-known TTP values in instances 20 and 25 in the longer
runs.

5.5 Conclusion

In this chapter, we incorporated the concept of QD into solving the TTP. To the
best of our knowledge, this is the first time the QD concept has been used to solve a
combinatorial problem. The behaviour descriptor for our approach is defined on the
TSP and the KP scores of a TTP solution. Having described a 2D MAP-Elite-based
survival selection, we introduced the BMBEA algorithm to generate high-quality TTP
solutions. BMBEA involves EAX crossover to create new tours. Afterwards, the algo-
rithm computes a high-quality packing list by dynamic programming or the (1+1) EA.
By visualising the map obtained from BMBEA, we observed the distribution of high-
performing TTP solutions over the behavioural space of TSP and KP. Moreover, we
conducted a comprehensive experimental comparison involving four different search
operators for BMBEA. Moreover, we investigated the impact of MAP-Elitism on the
final solutions by comparing it to a simple (µ + 1)EA. The results indicated that
MAP-elitism boosts both the diversity and quality of solutions.

It would be interesting to incorporate more complex MAP-Elite approaches such
as CVT-MAP-Elites [113] into the introduced algorithm. Using such an approach
can discretise the behavioural space more intelligently. Also, it would be beneficial to
study the interdependency of the sub-problems theoretically. Moreover, several multi-
component combinatorial optimisation problems can be found in literature where QD
is highly beneficial to understanding the inter-dependencies of components and the
distribution of solutions in the behavioural space.

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 85

Table 5.2. Comparison of the search operators in terms of the TTP
score and CPU time on the small size instances. In columns Stat, the
notation X+ means the median of the measure is better than the one
for variant X, X− means it is worse, and X∗ indicates no significant
difference. Stat shows the results of the Kruskal-Wallis statistical test
at significance level 5% and the Bonferroni correction. The CPU time

unit is second.

In. EAX-DP (1) EAX-EA (2) Best-known
Average Stat Best CPU time Average Stat Best CPU time value

1 4267.1 2∗3+4+ 4269.4 86.5 4243.1 1∗3∗4+ 4269.4 29.4 4269.4
2 7236 2∗3∗4+ 7252.8 2275 7086.6 1∗3∗4+ 7216.4 112.6 7532
3 11713 2∗3+4+ 11733.9 18990.2 11621.1 1∗3∗4+ 11647.5 240.9 12804
4 1449.8 2∗3+4+ 1460 31.1 1443.6 1∗3+4+ 1460 26.9 1460
5 4250.1 2∗3+4+ 4269.6 259.2 4235.1 1∗3∗4+ 4248.3 112.2 4365
6 5739.1 2∗3+4+ 5792.2 884.3 5712.1 1∗3∗4+ 5792.2 219.7 6359
7 2808 2∗3+4+ 2854.5 40.2 2781.2 1∗3∗4+ 2848.1 30.5 2871.1
8 6838.8 2∗3+4+ 6884.4 456 6834.8 1∗3∗4+ 6884.4 98.7 7037
9 11753.2 2∗3∗4+ 11753.2 2185 11748.2 1∗3+4+ 11753.2 214.7 12478
10 11140.5 2+3+4+ 11140.5 3639.7 11113.3 1−3∗4+ 11134.8 119.7 11117.4
11 25507.5 2∗3+4+ 25525.5 224858.5 25148.2 1∗3+4∗ 25405.3 552.8 25664.4
12 3540.2 2∗3∗4+ 3669 253.6 3520.6 1∗3∗4+ 3665.4 112.8 3791.9
13 13374.8 2∗3∗4+ 13628.3 5234.4 13210.6 1∗3∗4+ 13345.5 521.9 13556.9
14 5398.3 2∗3∗4+ 5398.3 386.8 5398.3 1∗3+4+ 5398.3 99.5 5615
15 20456.8 2∗3+4+ 20456.8 16047.8 20455.4 1∗3+4+ 20456.8 476.2 20705.8
16 18449.6 2+3∗4+ 18595.5 39024.7 18190.3 1−3∗4∗ 18244.5 254.5 19499
17 9163.3 2∗3+4+ 9201.1 1496.5 9122 1∗3∗4+ 9176.8 241.9 9998
18 19419.2 2∗3+4+ 19493.4 3588.3 19375.8 1∗3+4+ 19495.4 215.8 20491
In. 2-OPT-DP (3) 2-OPT-EA (4) Best-known

Average Stat Best CPU time Average Stat Best CPU time value
1 4208.3 1−2∗4∗ 4237.2 70.5 3969 1−2−3∗ 4104.4 23.2 4296.4
2 7076 1∗2∗4+ 7252.8 2049.4 6510.7 1−2−3− 6710.9 110.4 7532
3 11550.7 1−2∗4∗ 11647.5 16785 10516.4 1−2−3∗ 10964.3 234 12804
4 1407 1−2−4∗ 1428.6 20.1 1364.7 1−2−3∗ 1409.7 21.5 1460
5 4185.9 1−2∗4∗ 4255.8 232 3903.8 1−2−3∗ 4018.1 100.5 4365
6 5610.2 1−2∗4∗ 5699.2 797.9 5118.4 1−2−3∗ 5277.1 219.1 6359
7 2663.1 1−2∗4∗ 2734.3 26.7 2550.6 1−2−3∗ 2619.2 22.3 2871.1
8 6683 1−2∗4∗ 6858.8 375.4 6442 1−2−3∗ 6688.4 97.6 7037
9 11480.3 1∗2−4∗ 11744.4 1956.5 10890.1 1−2−3∗ 11157.8 205 12478
10 11124.4 1−2∗4+ 11140.1 3070.9 10515.7 1−2−3− 10623.3 98.4 11117.4
11 25138 1∗2∗4+ 25572.4 116932.7 22722.5 1−2−3− 23539.2 553 25664.4
12 3627.5 1∗2∗4+ 3752.2 215.5 3266.5 1−2−3− 3482.6 94.7 3791.9
13 13190.5 1∗2∗4+ 13560.9 4494.9 12407.3 1−2−3− 12828.1 477.3 13556.9
14 5238.5 1∗2−4∗ 5397.9 321.9 5019.5 1−2−3∗ 5319.3 86.3 5615
15 19725.3 1−2−4∗ 20259.1 12978.6 18931.5 1−2−3∗ 19764.6 474.9 20705.8
16 18273.2 1∗2∗4+ 18355.6 36393 17157.6 1−2∗3− 17307.9 244.2 19499
17 8972.7 1−2∗4∗ 9104.9 1479.1 8523.3 1−2−3∗ 8714.4 217.9 9998
18 18901.1 1−2−4∗ 19107.2 3370 18389.3 1−2−3∗ 18763.1 209.9 20491

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 86

Table 5.3. Performance of the MAP-Elites-based approach in terms
of the TTP score. The notations are in line with Table 5.2.

In. EAX-EA (1) 2-OPT-EA (2) Best-known
Average Stat Best CPU time Average Stat Best CPU time value

19 32625.3 2+ 33092 835 29687.5 1− 30065.8 728 32993.1
20 18975.9 2+ 19188.4 708 17622.2 1− 17803.8 685 19379.7
21 35175.8 2+ 35512.2 696 33456.6 1− 34455.2 674 35015.2
22 642.3 2+ 1137.5 1625 -4337 1− -2693.5 1696 893.4
23 51988.6 2+ 52651.8 1624 48382.8 1− 49830.4 1685 51303.4
24 29201.5 2+ 32072.9 1627 25214.6 1− 25618 1620 28304
25 104549.9 2+ 105434.5 7937 95300.4 1− 96468.9 7975 105908.1
26 71829.9 2+ 73152.8 6914 67954.6 1− 69060.6 7285 72308.7
27 107975.3 2+ 109395.1 6848 104852.4 1− 106735 7091 108236.1
28 258901.5 2+ 260839.7 38669 238212.3 1− 240916 45390 263040.2
29 129168.4 2+ 131072 36670 122606.8 1− 123626.8 39520 131486.2
30 230888.9 2+ 237097.6 32136 225694.2 1− 227466.4 31796 233343

Table 5.4. Performance of the MAP-Elites-based approach on the
unbalanced instances. The notations are in line with Table 5.2

In. EAX-EA (1) 2-OPT-EA (2) Best-known
Average Stat Best CPU time Average Stat Best CPU time value

31 -49282 2+ -48622.8 1555 -51704.2 1− -51635 1671 -49149.9
32 -7241 2+ -4855 1549 -10493 1− -9906.8 1709 -7714.6
33 -63137 2+ -61797.3 1560 –66602 1− -63939 1709 -61709.1
34 -24508 2+ -24263.5 1631 -27573 1− -26654 1684 -19215.2

Table 5.5. The comparison of (µ+1)EA and MAP-Elites in solving
TTP using DP as KP operator. The notations are in line with Table

5.2.

In. Map-Elitism (1) (µ+ 1) (2) EnBEA (3)
Average Stat Best Average Stat Best Average Stat Best

1 4261.6 2∗3∗ 4269.4 4264.9 1∗3∗ 4269.4 4266.2 1∗2∗ 4269.4
2 7214.8 2∗3∗ 7252.8 7193.4 1∗3∗ 7252.8 7235.4 1∗2∗ 7252.8
3 11705.8 2∗3∗ 11733.9 11693.5 1∗3∗ 11733.9 11719.4 1∗2∗ 11733.9
4 1445.1 2∗3∗ 1449.6 1441.6 1∗3∗ 1460 1444.4 1∗2∗ 1460
5 4259.5 2∗3∗ 4286.3 4243.8 1∗3− 4260.7 4263.7 1∗2+ 4286.3
6 5777.4 2∗3∗ 5792.2 5761 1∗3∗ 5792.2 5786.2 1∗2∗ 5792.2
7 2801.8 2∗3∗ 2844.7 2785 1∗3∗ 2833.6 2798.5 1∗2∗ 2844.7
8 6854.8 2∗3∗ 6884.4 6830.3 1∗3∗ 6884.4 6846.2 1∗2∗ 6884.4
9 11753.2 2∗3∗ 11753.2 11753.2 1∗3∗ 11753.2 11740.8 1∗2∗ 11753.2
10 11140.5 2∗3∗ 11140.5 11140.5 1∗3∗ 11140.5 11140.5 1∗2∗ 11140.5
11 25580.1 2∗3∗ 26211.7 25520.8 1∗3∗ 25525.5 25607 1∗2∗ 26211.7
12 3542.9 2∗3∗ 3624 3549.4 1∗3∗ 3687.1 3546.9 1∗2∗ 3563.6
13 13368.2 2+3∗ 13566.5 13243.4 1−3∗ 13345.5 13345.4 1∗2∗ 13345.5
14 5406.7 2∗3∗ 5482.2 5398.3 1∗3∗ 5398.3 5398.3 1∗2∗ 5398.3
15 20419.1 2∗3∗ 20456.8 20456.8 1∗3∗ 20456.8 20456.6 1∗2∗ 20456.8
16 18497.9 2+3+ 18627.6 18418.2 1−3+ 18444.1 18353.1 1−2− 18404.5
17 9213.2 2∗3+ 9294.7 9164.5 1∗3+ 9277.7 9094.3 1−2− 9123.4
18 19412.6 2∗3+ 19804.1 19447.7 1∗3+ 19507 19248.9 1−2− 19370.7

Chapter 5. Quality Diversity Algorithms for the Traveling Thief Problem 87

Table 5.6. The comparison of (µ+1)EA and MAP-Elites in solving
TTP with using (1 + 1)EA as the KP operator. The notations are in

line with Table 5.2.

In.
104 iterations 105 iterations

BMBEA (1) (µ+ 1) (2) (EnBEA) (3) BMBEA (1) (µ+ 1) (2) (EnBEA) (3)
Average Stat Best Average Stat Best Average Stat Best Average Stat Best Average Stat Best Average Stat Best

1 4243.1 2∗3∗ 4269.4 4188.9 1∗3∗ 4269.4 4231.9 1∗2∗ 4255 4269.4 2+3∗ 4269.4 4188.9 1−3− 4269.4 4269.4 1∗2+ 4269.4
2 7086.6 2∗3+ 7216.4 7067.4 1∗3+ 7231.1 6954.9 1−2− 7068.4 7202.5 2+3∗ 7252.8 7067.4 1−3− 7231.1 7220.8 1∗2+ 7252.8
3 11621.1 2∗3+ 11647.5 11637.2 1∗3+ 11689.2 11500.3 1−2− 11602.2 11651.9 2∗3∗ 11733.9 11637.8 1∗3− 11695.5 11677.2 1∗2+ 11695.5
4 1443.6 2∗3∗ 1460 1434.2 1∗3∗ 1447.5 1441.6 1∗2∗ 1448.5 1458.9 2+3∗ 1460 1434.2 1−3− 1447.5 1458.7 1∗2+ 1460
5 4235.1 2∗3+ 4248.3 4202.2 1∗3∗ 4246.7 4179 1−2∗ 4211.5 4255.2 2+3∗ 4274.5 4202.2 1−3− 4246.7 4277.1 1∗2+ 4286.3
6 5712.1 2∗3+ 5792.2 5663.4 1∗3∗ 5729.2 5651.7 1−2∗ 5699.2 5776.6 2+3∗ 5792.2 5663.4 1−3− 5729.2 5761.5 1∗2+ 5792.2
7 2774 2∗3∗ 2848.1 2748.8 1∗3∗ 2844.7 2788.1 1∗2∗ 2830.2 2804.7 2∗3∗ 2854.5 2748.8 1∗3− 2844.7 2841.7 1∗2+ 2848.1
8 6834.8 2+3∗ 6884.4 6776.9 1−3∗ 6843.4 6793.2 1∗2∗ 6807.1 6858.8 2+3∗ 6884.4 6776.9 1−3− 6843.4 6884.4 1∗2+ 6884.4
9 11748.2 2∗3+ 11753.2 11613.2 1∗3∗ 11753.2 11616.4 1−2∗ 11753.2 11749 2+3∗ 11753.2 11613.2 1−3− 11753.2 11753.2 1∗2+ 11753.2
10 11113.3 2∗3+ 11134.8 11133.1 1∗3+ 11137.9 10882.4 1−2− 11127.9 11137.7 2∗3+ 11140.4 11133.1 1∗3∗ 11137.9 11119.6 1−2∗ 11135.4
11 25148.2 2∗3+ 25405.3 25225.8 1∗3+ 25484 23843.3 1−2− 24251.7 25396.9 2∗3∗ 25524.3 25225.8 1∗3∗ 25484 25609.4 1∗2∗ 26018.3
12 3520.6 2∗3+ 3665.4 3431.2 1∗3∗ 3547.6 3422.2 1−2∗ 3517.4 3528.3 2+3∗ 3687.1 3431.2 1−3− 3547.6 3527.8 1∗2+ 3755.3
13 13210.6 2∗3+ 13345.5 13278.5 1∗3+ 13345.5 12993.9 1−2− 13116.1 13326.6 2∗3∗ 13345.5 13278.5 1∗3− 13345.5 13455.7 1∗2+ 13566.5
14 5398.3 2∗3+ 5398.3 5398.3 1∗3+ 5398.3 5376.1 1−2− 5398.3 5398.3 2∗3− 5398.3 5398.3 1∗3− 5398.3 5351.7 1+2+ 5482.2
15 20455.4 2∗3+ 20456.8 20267.7 1∗3+ 20456.8 20173 1−2− 20392.6 20456.8 2∗3∗ 20456.8 20267.7 1∗3− 20456.8 20472.7 1∗2+ 20496.5
16 18190.3 2−3+ 18244.5 18383.8 1+3+ 18409.3 17803.6 1−2− 17913.3 18381 2∗3+ 18438.6 18392.9 1∗3+ 18409.3 18329.9 1−2− 18389.4
17 9122 2∗3+ 9176.8 9129.5 1∗3+ 9203.1 8867.7 1−2− 9003.3 9249.3 2+3∗ 9331.3 9129.5 1−3− 9203.1 9193.8 1∗2+ 9224.2
18 19375.8 2∗3+ 19495.4 19359.9 1∗3+ 19575.5 19022.7 1−2− 19158.5 19559 2+3∗ 19738.3 19359.9 1−3∗ 19575.5 19489 1∗2∗ 19504.9

Table 5.7. The comparison of the Relaxed method with the prefixed
BMBEA in solving TTP using (1 + 1)EA as KP operator. The nota-

tions are in line with Table 5.2.

In.
104 iterations 105 iterations

Prefixed (1) Relaxed (2) Prefixed (1) Relaxed (2)
Average Stat Best Average Stat Best Average Stat Best Average Stat Best

1 4243.1 2∗ 4269.4 4246 1∗ 4269.4 4269.4 2∗ 4269.4 4269.4 1∗ 4269.4
2 7086.6 2∗ 7216.4 7116.7 1∗ 7231. 7202.5 2∗ 7252.8 7195.4 1∗ 7252.8
3 11621.1 2∗ 11647.5 11619.5 1∗ 11697.5 11651.9 2∗ 11733.9 11667.9 1∗ 11733.3
4 1443.6 2∗ 1460 1437.1 1∗ 1445.8 1458.9 2∗ 1460 1458.7 1∗ 1460
5 4235.1 2∗ 4248.3 4235.8 1∗ 4260. 4255.2 2∗ 4274.5 4264.2 1∗ 4286.3
6 5712.1 2+ 5792.2 5655 1− 5729. 5776.6 2∗ 5792.2 5762.1 1∗ 5792.2
7 2781.2 2∗ 2848.1 2799.1 1∗ 2840 2804.7 2∗ 2854.5 2847.5 1∗ 2854.5
8 6834.8 2∗ 6884.4 6833.8 1∗ 6884.4 6858.8 2− 6884.4 6884.4 1+ 6884.4
9 11748.2 2∗ 11753.2 11744.7 1∗ 11753. 11749 2∗ 11753.2 11753.2 1∗ 11753.2
10 11113.3 2∗ 11134.8 11103 1∗ 11135.4 11137.7 2∗ 11140.4 11136.9 1∗ 11137.9
11 25148.2 2∗ 25405.3 25036.9 1∗ 25332.2 25396.9 2∗ 25524.3 25441 1∗ 25525.5
12 3520.6 2∗ 3665.4 3487.4 1∗ 3547.6 3528.3 2∗ 3687.1 3564.7 1∗ 3789.8
13 13210.6 2∗ 13345.5 13270 1∗ 13345.5 13326.6 2∗ 13345.5 13345.5 1∗ 13345.5
14 5398.3 2+ 5398.3 5387.6 1− 5398.3 5398.3 2∗ 5398.3 5398.3 1∗ 5398.3
15 20455.4 2∗ 20456.8 20421.6 1∗ 20456.8 20456.8 2∗ 20456.8 20456.8 1∗ 20456.8
16 18190.3 2∗ 18244.5 18187.2 1∗ 18330.5 18381 2∗ 18438.6 18388.1 1∗ 18472
17 9122 2+ 9176.8 9074.2 1− 9143.1 9249.3 2∗ 9331.3 9237.7 1∗ 9294.1
18 19375.8 2∗ 19495.4 19247 1∗ 19432. 19559 2∗ 19738.3 19573.8 1∗ 19628.9
19 32625.3 2∗ 33092 32354.2 1∗ 33080 33358.4 2∗ 33759 33496.8 1∗ 34007
20 18975.9 2∗ 19188.4 18965.4 1∗ 19092.8 19279.8 2∗ 19538.3 19423.5 1∗ 19650.7
21 35175.8 2∗ 35512.2 35101.1 1∗ 35429.5 35720.2 2∗ 36021.4 35762.2 1∗ 36133.8
22 642.3 2∗ 1137.5 541.5 1∗ 879.3 1535.5 2− 2621.1 2356.1 1+ 2964
23 51988.6 2∗ 52651.8 51885.5 1∗ 52345.7 52292.8 2∗ 52973.6 52954.2 1∗ 55260.9
24 29201.5 2∗ 32072.9 28711.7 1∗ 29299.3 29492.5 2∗ 32085.1 29500.7 1∗ 30411
25 104549.9 2+ 105434.5 103863.4 1− 105025 105442.9 2∗ 106465.7 106146.9 1∗ 107250.6
26 71829.9 2∗ 73152.8 71615.1 1∗ 73141 72110.7 2∗ 73348.2 72149.4 1∗ 73291.9
27 107975.3 2− 109395.1 108885.5 1+ 109929 109402.2 2∗ 110346 109846 1∗ 110681

88

Chapter 6

Analysis of inter-dependency of the
Traveling Thief Problem

6.1 Introduction

In the previous chapter, we introduced a QD-based method to study the TTP. We
showed the effectiveness of the introduced QD method in illustrating the distribu-
tion of high-quality solutions within the behavioural space of the TSP and the KP.
Moreover, we conducted comprehensive experiments showing the Qd-based algorithm
results in TTP solutions with very decent objective values. Those findings motivate
us to investigate the TTP in the context of EDO. Also, there is a lack of studies fo-
cusing on EDO in multi-component combinatorial problems that must be addressed.
Several advantages can be found in having a structurally diverse set of high-quality
solutions for TTP that EDO brings about. First, we can study the inter-dependency
of the sub-problems in terms of structural diversity and find the best method to max-
imise it. Second, EDO provides us with invaluable insight into the solutions space.
For example, it can show which elements of an optimal/near-optimal solution can be
replaced and which are irreplaceable. Finally, it brings about robustness against the
minor changes as mentioned in Chapter 2.

To the best of our knowledge, this study is the first to investigate EDO in the
context of a multi-component problem. We first establish a method to calculate the
structural diversity of TTP solutions. Then, we use a similar bi-level EA introduced
in the previous chapter, this time to maximise the structural diversity. Similar to the
EA presented in the previous chapter, the first level involves generating the TSP part
of a TTP solution, whereby the second level is an inner algorithm to optimise the
KP part of the solution with respect to the first part. The difference is in survival
selection, where an EDO-based selection is exercised to maximise the diversity.

We first examine the impact that incorporating different inner algorithms into
the EA can make on the diversity of the solutions. Moreover, We empirically study the
inter-dependency between the sub-problems and show how focusing on the diversity

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 89

of one sub-problem affects the other’s and determines the best method to obtain
diversity. Interestingly, the results indicate that focusing on overall diversity brings
about greater KP diversity than solely emphasising KP diversity. In addition, we
compare the set of solutions obtained from the introduced algorithm with a recently
developed QD-based EA in terms of structural diversity. The results show that the
introduced bi-level EA can bring higher structural diversity for most test instances.
We also conduct a simulation test to evaluate the robustness of populations obtained
from the two algorithms against changes in the problem.

The chapter also presents a co-evolutionary algorithm (Co-EA) where two popu-
lations evolve around the concepts of QD and EDO simultaneously. The co-evolution
results in several advantages:

• QD provides researchers with invaluable information about the distribution of
best-performing solutions in behavioural space and enables decision-makers to
select the best solution having their desirable behaviour. On the other hand,
EDO provides us with robustness against imperfect modelling and minor changes
in problems. we can benefit from both paradigms by using the Co-EA.

• Optimal or close-to-optimal solutions are required in most EDO studies for
initialization. The Co-EA eliminates this restriction.

• We expect the Co-EA to bring about better results, especially in terms of struc-
tural diversity, since the previous frameworks are built upon a single solution
(the optimal solution). The Co-EA eliminates this drawback.

• The Co-EA benefits from a self-adaptation method to tune and adjust some
hyper-parameters during the search improving the results meaningfully.

The work of this chapter is based on a conference paper [87] presented at the
genetic and evolutionary computation conference (GECCO 2022). Also, the Co-EA
is based on another conference paper [86] presented in the parallel problem solving
from nature (PPSN 2022). The remainder of the chapter is structured as follows.
We formally define the diversity in a set of TTP solutions in Section 6.2. In Section
6.3, We introduce the two-stage EA. A comprehensive experimental investigation is
conducted in Section 6.4. The Co-EA is introduced in Section 6.5. We conduct a
comprehensive experimental investigation to evaluate Co-EA in Section 6.6. Finally,
we finish with some concluding remarks.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 90

6.2 Diversity in TTP

This chapter aims to compute a structurally diverse set of TTP solutions that all
comply with a minimum quality threshold but differ in terms of structural proper-
ties. In other words, the objective is to maximise the diversity of the set of so-
lutions subject to a quality constraint. Let denote the set of TTP solutions by
P = {p1(x1, y1), · · · , pµ(xµ, yµ)}, where |P | = µ, and a TTP solution p consists of
a TSP tour x and a packing selection y. Therefore, we can formally formulate the
problem as:

MaxH(P)

subject to

zp ≥ (1− α)z∗ ∀p ∈ P
m∑
j=1

wjyjp ≤W ∀p ∈ P yjp ∈ {0, 1}

Where H(P) is a measure quantifying the diversity of P , z∗ is the optimal or the best-
known value of objective function z for a given TTP instance, α is the acceptable
quality threshold, and yjp shows yj ∈ p. In line with most of the studies in EDO
literature, we assumed that the optimal or high-quality solution of TTP instances is
already known.

To maximise the diversity, we require a measure to quantify the diversity of a set
of solutions. As mentioned, a TTP solution includes two different parts, a tour and
a packing list. That means a function is required to calculate the structural diversity
of tours and another one for packing lists. We adopt the well-known information-
theoretic concept of entropy for this purpose.

We employ the diversity measure based on entropy to compute the entropy of
the tours. Let P be a set of TTP solutions. Here, the diversity is defined on the
proportion of edges including in E(P), where E(P) is the set of edges included in P .
The edge entropy of P can be calculated from:

He(P) =
∑

e∈E(P)

h(e) with h(e) = −
(
f(e)

2nµ

)
ln

(
f(e)

2nµ

)
.

where h(e) is the contribution of an edge e ∈ E to the entropy, and f(e) is the number
of tours in P including e. The contribution of edges with zero frequency is equal to
zero (h(e) = 0 ⇐⇒ f(e) = 0). 2nµ is the summation of the frequency of all edges
over the population.

The same concept is adopted for the calculation of the entropy of items. The

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 91

Algorithm 18 Two-stage-EA
Require: Population P , minimal quality threshold zmin

1: while termination criterion is not met do
2: Choose x1 and x2 ∈ P uniformly at random, and generate one tour x3 by

crossover.
3: Generate a corresponding packing list (y3) by a KP operator to have a complete

TTP solution
4: if z((x3, y3))) ≥ zmin then
5: Add (x3, y3) to P .
6: if |P | = µ+ 1 then
7: Remove one individual (x, y)) from P , where p = argmax(x,y)∈P H(P \

{(x, y)}).

diversity of the packing list on the proportion of items being included in P (I), where
P (I) is the set of items included in P . The item entropy of P can be computed from:

Hi(P) =
∑

i∈P (I)

h(i) with h(i) = −
(

f(i)∑
i∈I f(i)

)
ln

(
f(i)∑
i∈I f(i)

)
.

where h(i) is the contribution of an item i ∈ I to the entropy, and f(i) is the number
of packing lists in P including i. The contribution of items with zero frequency is
equal to zero (h(i) = 0 ⇐⇒ f(i) = 0).

A simple way to calculate the overall entropy is to sum up the entropy of edges
and items. This is because He and Hi are basically the summation of the contribution
of edges and items. Therefore, we have: H(P) = He(P) +Hi(P)

6.3 Bi-level Evolutionary Algorithm

We introduce a bi-level EA to compute a diverse set of TTP solutions. The EA
is started with an initial population that all individuals comply with the quality
constraint. The procedure to construct such a population will be explained later.
Having selected two tours uniformly at random, the EA generates a new tour by
crossover. Then, an inner algorithm is initiated to compute a corresponding packing
list for the new tour in order to have a complete TTP solution; we refer to the inner
algorithms as the KP operators. If the TTP score of the new solution is higher than
the minimum requirement, it will be added to the population; otherwise, it will be
discarded. Finally, an individual with the minimum contribution to the diversity of
the population will be discarded if the size of the population is µ+1. These steps are
continued until a termination criterion is met. Algorithm 18 outlines the bi-level EA.
The TSP and the KP operators are in line with the previous chapter.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 92

Algorithm 19 Initial Population Procedure
Require: A TTP solution (x, y) complying the quality criterion, population size µ
1: while |P | < µ do
2: Choose (x, y) ∈ P uniformly at random, generate a tour x′ by mutation.
3: Compute a packing list y′ by the DP to form (x′, y′))
4: if z(p′) ≥ zmin then
5: Add (x′, y′) to P .

Table 6.1. Comparison of the KP operators. In columns Stat, the
notation X+ means the median of the measure is better than the one
for variant X, X− means it is worse, and X∗ indicates no significant
difference. Stat shows the results of Mann-Whitney U-test at signifi-

cance level 5%

Int DP (1) EA (2) DP (1) EA (2) DP (1) EA (2)

H Stat H Stat He Stat He Stat Hi Stat Hi Stat

1 8.5 2∗ 8.3 1∗ 5.4 2− 5.7 1+ 3 2+ 2.6 1−

2 9 2+ 8.8 1− 5.2 2+ 5 1− 3.8 2∗ 3.8 1∗

3 9.5 2+ 9.3 1− 5.1 2+ 5 1− 4.3 2∗ 4.4 1∗

4 7.1 2∗ 7.2 1∗ 5.3 2+ 5.2 1− 1.9 2∗ 2 1∗

5 8.7 2+ 8.3 1− 5.2 2+ 5 1− 3.4 2+ 3.3 1−

6 8.9 2+ 8.8 1− 5.2 2+ 5 1− 3.8 2∗ 3.8 1∗

7 7.9 2∗ 7.8 1∗ 5.3 2∗ 5.3 1∗ 2.5 2∗ 2.5 1∗

8 8.6 2∗ 8.6 1∗ 5 2∗ 5 1∗ 3.5 2− 3.6 1+

9 9.2 2∗ 9.2 1∗ 5.1 2∗ 5 1∗ 4.1 2− 4.1 1+

10 9.8 2∗ 9.8 1∗ 6 2+ 5.9 1− 3.8 2− 3.9 1+

11 10.7 2− 10.7 1+ 6 2∗ 6 1∗ 4.7 2∗ 4.7 1∗

12 8.6 2− 8.8 1+ 6 2∗ 5.9 1∗ 2.7 2− 2.8 1+

13 9.9 2∗ 10 1∗ 6 2+ 5.8 1− 3.9 2− 4.2 1+

14 9.4 2∗ 9.4 1∗ 5.9 2∗ 5.9 1∗ 3.4 2∗ 3.5 1∗

15 10.6 2∗ 10.6 1∗ 6 2∗ 6 1∗ 4.6 2− 4.6 1+

16 10.7 2∗ 10.7 1∗ 6.5 2+ 6.4 1− 4.3 2− 4.4 1+

17 10.1 2∗ 10.1 1∗ 6.5 2+ 6.4 1− 3.6 2∗ 3.8 1∗

18 10.7 2∗ 10.7 1∗ 6.5 2+ 6.4 1− 4.2 2− 4.2 1+

6.3.1 Initial Population

As mentioned, we assumed that we know the optimal/near-optimal solution for given
TTP instances; such an assumption is in line with most studies in the literature of
EDO. The procedure is initialised with a single high-quality solution solution (x, y) in
P , where z(x, y) ∈ ((1−α)z∗z∗). First, an individual (x, y) ∈ P is selected uniformly
at random. Then, the tour of the individual (x) is mutated by 2-OPT, which is a
well-known random neighbourhood search in TSP. Afterwards, we compute a packing
list y′ by KP and match it with the mutated tour x′ to have a TTP solution (x′, y′).
If (x′, y′) complies with the quality constraint, it will be added to P ; otherwise, it is
discarded. We continue these steps until |P | = µ. Note that We used the algorithm
introduced in [88] to obtain the initial (x, y). Algorithm 19 outlines the initialising
procedure.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 93

Table 6.2. Comparison of different fitness functions (DP used as the
KP operator). Stat shows the results of the Kruskal-Wallis statistical
test at significance level 5% and Bonferroni correction. The notations

are in line with Table 6.1

Ins H (1) He (2) Hi (3) H (1) He (2) Hi (3) H (1) He (2) Hi (3)
H Stat H Stat H Stat He Stat He Stat He Stat Hi Stat Hi Stat Hi Stat

1 8.5 2∗3+ 8.3 1∗3+ 7.5 1−2− 5.4 2−3+ 5.8 1+3+ 4.8 1−2− 3 2+3+ 2.6 1−3∗ 2.7 1−2∗

2 9 2∗3+ 9.1 1∗3+ 8.6 1−2− 5.2 2−3+ 5.4 1+3+ 4.8 1−2− 3.8 2+3+ 3.7 1−3∗ 3.8 1−2∗

3 9.5 2∗3+ 9.6 1∗3+ 9.1 1−2− 5.1 2−3+ 5.3 1+3+ 4.8 1−2− 4.3 2∗3∗ 4.3 1∗3∗ 4.3 1∗2∗

4 7.1 2∗3+ 6.8 1∗3+ 6.4 1−2− 5.3 2∗3+ 5.4 1∗3+ 4.8 1−2− 1.9 2+3∗ 1.5 1−3∗ 1.6 1∗2∗

5 8.7 2+3+ 8.3 1−3∗ 7.7 1−2∗ 5.2 2−3+ 5.4 1+3+ 4.8 1−2− 3.4 2+3+ 2.8 1−3∗ 2.9 1−2∗

6 8.9 2∗3+ 8.7 1∗3+ 8.3 1−2− 5.2 2−3+ 5.3 1+3+ 4.8 1−2− 3.8 2+3+ 3.4 1−3∗ 3.5 1−2∗

7 7.9 2∗3+ 7.8 1∗3+ 7.3 1−2− 5.3 2∗3+ 5.4 1∗3+ 4.8 1−2− 2.5 2+3+ 2.4 1−3∗ 2.5 1−2∗

8 8.6 2−3+ 8.7 1+3+ 8.2 1−2− 5 2−3+ 5.2 1+3+ 4.7 1−2− 3.5 2+3+ 3.5 1−3∗ 3.5 1−2∗

9 9.2 2∗3+ 9.3 1∗3+ 8.8 1−2− 5.1 2∗3+ 5.2 1∗3+ 4.7 1−2− 4.1 2+3∗ 4.1 1−3∗ 4.1 1∗2∗

10 9.8 2∗3+ 9.9 1∗3+ 9.6 1−2− 6 2−3+ 6.2 1+3+ 5.8 1−2− 3.8 2+3∗ 3.7 1−3− 3.8 1∗2+

11 10.7 2∗3+ 10.8 1∗3+ 10.5 1−2− 6 2∗3+ 6.1 1∗3+ 5.8 1−2− 4.7 2+3∗ 4.7 1−3∗ 4.7 1∗2∗

12 8.6 2∗3+ 8.6 1∗3+ 8.5 1−2− 6 2∗3+ 6 1∗3+ 5.8 1−2− 2.7 2+3∗ 2.6 1−3− 2.7 1∗2+

13 9.9 2∗3+ 9.9 1∗3+ 9.7 1−2− 6 2∗3+ 6.1 1∗3+ 5.8 1−2− 3.9 2+3∗ 3.8 1−3− 3.9 1∗2+

14 9.4 2∗3+ 9.4 1∗3+ 9.2 1−2− 5.9 2∗3+ 6 1∗3+ 5.8 1−2− 3.4 2+3∗ 3.4 1−3− 3.4 1∗2+

15 10.6 2∗3+ 10.6 1∗3+ 10.4 1−2− 6 2∗3+ 6 1∗3+ 5.8 1−2− 4.6 2∗3∗ 4.6 1∗3∗ 4.6 1∗2∗

16 10.7 2∗3+ 10.8 1∗3+ 10.6 1−2− 6.5 2∗3+ 6.6 1∗3+ 6.4 1−2− 4.3 2+3∗ 4.2 1−3∗ 4.2 1∗2∗

17 10.1 2∗3∗ 9.9 1∗3∗ 9.9 1∗2∗ 6.5 2∗3+ 6.6 1∗3+ 6.4 1−2− 3.6 2+3∗ 3.4 1−3− 3.6 1∗2+

18 10.7 2∗3+ 10.8 1∗3+ 10.6 1−2− 6.5 2∗3+ 6.6 1∗3+ 6.4 1−2− 4.2 2+3∗ 4.2 1−3− 4.2 1∗2+

6.4 Experimental Investigation

Here, we conduct a comprehensive experimental investigation on the introduced frame-
work to analyse the inter-dependency of the TTP’s sub-problems in terms of structural
diversity and find the best method to maximise it. First, we compare the two KP
search operators, DP and (1+1)EA; then, we incorporate the H, He, and Hi into the
algorithm as the fitness function and analyse the populations obtained. Finally, we
conduct a comparison of the introduced framework with the QD-based EA introduced
in the previous chapter in terms of structural diversity and robustness against small
changes in the availability of edges and items. In terms of the experimental setting,
we used 18 TTP instances from [93], and the algorithms are terminated after 10000

iterations. The TTP instances are in line with the previous chapter. The internal ter-
mination criterion for the (1 + 1)EA is set to 2m based on preliminary experiments.
We consider 10 independent runs for each algorithm on each test instance.

6.4.1 Comparison in KP search operators operators

In this section, we compute two sets of solutions for each test instance, one by use
of DP and another with (1 + 1)EA, and scrutinise the diversity of the sets. Here, H
serves as fitness function and α and µ are set to 0.1 and 50, respectively. Table 6.1
summarises the results. As Table 6.1 shows, the use of DP results in a population
with higher diversity in edges (He), while Hi is higher in the population obtained
from (1+ 1)EA in most cases. Turning to overall diversity (H), the use of DP brings
about populations with higher diversity in 4 out of 18 cases. On the other hand, there

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 94

Table 6.3. Comparison of different fitness function (EA used as the
KP operator).The notations are in line with Table 6.2

Ins H (1) He (2) Hi (3) H (1) He (2) Hi (3) H (1) He (2) Hi (3)
H Stat H Stat H Stat He Stat He Stat He Stat Hi Stat Hi Stat Hi Stat

01 8.3 2∗3+ 8.3 1∗3+ 7.5 1−2− 5.7 2∗3+ 5.8 1∗3+ 4.9 1−2− 2.6 2+3∗ 2.5 1−3− 2.6 1∗2+

02 8.8 2∗3+ 9 1∗3+ 8.4 1−2− 5 2−3+ 5.3 1+3+ 4.7 1−2− 3.8 2+3∗ 3.7 1−3− 3.8 1∗2+

03 9.3 2∗3+ 9.4 1∗3+ 9 1−2− 5 2−3+ 5.2 1+3+ 4.7 1−2− 4.4 2+3∗ 4.2 1−3− 4.3 1∗2+

04 7.2 2+3+ 6.9 1−3+ 6.4 1−2− 5.2 2−3+ 5.4 1+3+ 4.8 1−2− 2 2+3+ 1.5 1−3∗ 1.6 1−2∗

05 8.3 2∗3+ 8.1 1∗3+ 7.7 1−2− 5 2−3∗ 5.4 1+3+ 4.7 1∗2− 3.3 2+3+ 2.7 1−3∗ 3 1−2∗

06 8.8 2+3+ 8.6 1−3∗ 8.2 1−2∗ 5 2−3+ 5.3 1+3+ 4.7 1−2− 3.8 2+3∗ 3.3 1−3− 3.6 1∗2+

07 7.8 2∗3+ 7.8 1∗3+ 7.3 1−2− 5.3 2∗3+ 5.4 1∗3+ 4.8 1−2− 2.5 2+3∗ 2.4 1−3∗ 2.5 1∗2∗

08 8.6 2∗3+ 8.7 1∗3+ 8.3 1−2− 5 2−3+ 5.2 1+3+ 4.7 1−2− 3.6 2+3∗ 3.5 1−3− 3.6 1∗2+

09 9.2 2∗3+ 9.3 1∗3+ 8.8 1−2− 5 2−3+ 5.2 1+3+ 4.7 1−2− 4.1 2+3∗ 4.1 1−3− 4.1 1∗2+

10 9.8 2∗3+ 10 1∗3+ 9.6 1−2− 5.9 2−3+ 6.2 1+3+ 5.7 1−2− 3.9 2+3∗ 3.8 1−3− 3.9 1∗2+

11 10.7 2∗3+ 10.8 1∗3+ 10.5 1−2− 6 2∗3+ 6.1 1∗3+ 5.7 1−2− 4.7 2∗3∗ 4.7 1∗3− 4.8 1∗2+

12 8.8 2∗3∗ 8.7 1∗3∗ 8.7 1∗2∗ 5.9 2∗3+ 6 1∗3+ 5.7 1−2− 2.8 2+3∗ 2.6 1−3− 2.9 1∗2+

13 10 2+3∗ 9.9 1−3∗ 9.9 1∗2∗ 5.8 2−3+ 6.1 1+3+ 5.7 1−2− 4.2 2+3∗ 3.8 1−3− 4.2 1∗2+

14 9.4 2∗3+ 9.4 1∗3+ 9.2 1−2− 5.9 2−3+ 6 1+3+ 5.8 1−2− 3.5 2+3∗ 3.4 1−3− 3.5 1∗2+

15 10.6 2∗3+ 10.6 1∗3+ 10.3 1−2− 6 2∗3+ 6 1∗3+ 5.7 1−2− 4.6 2+3∗ 4.6 1−3∗ 4.6 1∗2∗

16 10.7 2∗3∗ 10.8 1∗3+ 10.7 1∗2− 6.4 2−3+ 6.6 1+3+ 6.3 1−2− 4.4 2+3∗ 4.2 1−3− 4.4 1∗2+

17 10.1 2+3∗ 9.9 1−3− 10.1 1∗2+ 6.4 2−3∗ 6.6 1+3+ 6.3 1∗2− 3.8 2+3∗ 3.3 1−3− 3.7 1∗2+

18 10.7 2∗3∗ 10.7 1∗3+ 10.6 1∗2− 6.4 2∗3+ 6.6 1∗3+ 6.3 1−2− 4.2 2+3∗ 4.2 1−3− 4.2 1∗2+

are 2 cases in which (1 + 1)EA outperforms the DP. There are found no significant
differences in overall diversity for the rest of the test instances. One may ask the
question why using DP results in a higher He, while EAX is used to generate new
tours in both competitors. One explanation is that DP computes the same packing
list for two identical tours. This is while (1 + 1)EA can generate different packing
lists, which results in a higher Hi but a lower He.

6.4.2 Comparison in fitness functions

Next, we investigate the use of He or Hi as the fitness functions instead of H. Table
6.2 compares three algorithms using the fitness functions where DP is used as the KP
operator. The table shows there are no significant differences in overall diversity when
either H or He serve as the fitness function. However, the EA using item diversity
(Hi) results in the populations with an overall entropy significantly less than the other
EAs. It also gets outperformed by the EA using H in terms of item diversity. This
is because the introduced framework is a bi-level optimisation procedure where it
generates a tour first; then, it computes the packing list based on the tour. Therefore,
the use of diversity in edge can aid in increasing the diversity of items, especially where
the EA uses DP. Figure 6.1 depicts the trajectories of the EAs using the three fitness
functions over 10000 iterations in the test instances 1 and 16. The figure explicitly
confirms the previous observations; using Hi as the fitness function makes the EA
incapable of maximising overall and edge diversity. It also gets outperformed in terms
of item entropy Hi. On the other hand, incorporating He as the fitness functions
results in decent overall and edge diversity. However, it can not increase the item
entropy. Figure 6.1 also shows the EAs using H and He as the fitness function do not

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 95

0 2 4 6 8 10
No. evaluation

7.4

7.6

7.8

8

8.2

8.4

8.6

H

H
H

e

H
i

0 2 4 6 8 10
No. evaluation

4.8

5

5.2

5.4

5.6

5.8

H
e

0 2 4 6 8 10
No. evaluation

2.5

2.6

2.7

2.8

2.9

3

3.1

H
i

0 2 4 6 8 10
No. evaluation

10.6

10.65

10.7

10.75

10.8

10.85

H

0 2 4 6 8 10
No. evaluation

6.35

6.4

6.45

6.5

6.55

6.6

6.65

H
e

0 2 4 6 8 10
No. evaluation

4.18

4.2

4.22

4.24

4.26

H
i

Figure 6.1. Representation of trajectories of incorporation of the
different fitness functions, H, He, and Hi over test instance 1 (first

row), and test instance 16 (second row)

Table 6.4. Comparison of the EDO and QD (DP used as the KP
operator). The notations are in line with Table 6.1.

Int EDO (1) QD (2) EDO (1) QD (2) EDO (1) QD (2)
H Stat H Stat He Stat He Stat Hi Stat Hi Stat

01 9.1 2+ 8.1 1− 5.9 2+ 5.1 1− 3.2 2+ 3 1−

02 9.8 2+ 9.1 1− 5.6 2+ 5.1 1− 4.2 2+ 3.9 1−

03 10.2 2+ 9.5 1− 5.5 2+ 5.1 1− 4.6 2+ 4.4 1−

04 9.1 2+ 7.7 1− 5.9 2+ 5.2 1− 3.2 2+ 2.5 1−

05 9.7 2+ 8.7 1− 5.7 2+ 5.1 1− 4 2+ 3.5 1−

06 10.3 2+ 9.2 1− 5.8 2+ 5.1 1− 4.5 2+ 4.1 1−

07 8.6 2+ 7.8 1− 5.8 2+ 5.1 1− 2.8 2+ 2.7 1−

08 9.3 2+ 8.8 1− 5.5 2+ 5.1 1− 3.8 2+ 3.7 1−

09 9.9 2+ 9.3 1− 5.6 2+ 5.1 1− 4.3 2+ 4.2 1−

10 10 2+ 9.9 1− 6.1 2+ 6 1− 3.9 2∗ 3.9 1∗

11 11.1 2+ 11 1− 6.2 2+ 6 1− 5 2∗ 5 1∗

12 9.6 2+ 9.5 1− 6.1 2+ 6 1− 3.5 2∗ 3.5 1∗

13 10.7 2∗ 10.6 1∗ 6.1 2+ 6 1− 4.5 2∗ 4.6 1∗

14 9.8 2+ 9.5 1− 6.3 2+ 6 1− 3.5 2− 3.6 1+

15 10.9 2+ 10.8 1− 6.3 2+ 6 1− 4.7 2− 4.8 1+

16 10.9 2− 11.2 1+ 6.5 2− 6.6 1+ 4.4 2∗ 4.5 1∗

17 10.8 2∗ 10.7 1∗ 6.5 2− 6.7 1+ 4.3 2+ 4 1−

18 10.8 2− 11.1 1+ 6.5 2− 6.7 1+ 4.3 2− 4.4 1+

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 96

Table 6.5. Comparison of the EDO and QD (EA used as the KP
operator). The notations are in line with Table 6.1.

Int EDO (1) QD (2) EDO (1) QD (2) EDO (1) QD (2)
H Stat H Stat He Stat He Stat Hi Stat Hi Stat

01 9 2+ 8.1 1− 5.8 2+ 5.1 1− 3.2 2+ 3 1−

02 9.7 2+ 9.1 1− 5.5 2+ 5.1 1− 4.2 2+ 3.9 1−

03 10.1 2+ 9.5 1− 5.5 2+ 5.1 1− 4.6 2+ 4.4 1−

04 9 2+ 7.7 1− 5.8 2+ 5.2 1− 3.2 2+ 2.5 1−

05 9.6 2+ 8.7 1− 5.5 2+ 5.1 1− 4.1 2+ 3.5 1−

06 10.2 2+ 9.2 1− 5.6 2+ 5.1 1− 4.6 2+ 4.1 1−

07 8.5 2+ 7.8 1− 5.8 2+ 5.1 1− 2.8 2+ 2.7 1−

08 9.2 2+ 8.8 1− 5.4 2+ 5.1 1− 3.8 2+ 3.7 1−

09 9.9 2+ 9.3 1− 5.5 2+ 5.1 1− 4.3 2+ 4.2 1−

10 10 2+ 9.9 1− 6 2+ 6 1− 4 2+ 3.9 1−

11 11.1 2∗ 11 1∗ 6 2∗ 6 1∗ 5 2∗ 5 1∗

12 9.6 2∗ 9.5 1∗ 5.9 2− 6 1+ 3.7 2+ 3.5 1−

13 10.6 2∗ 10.6 1∗ 5.9 2− 6 1+ 4.7 2+ 4.6 1−

14 9.7 2+ 9.5 1− 6.1 2+ 6 1− 3.5 2∗ 3.6 1∗

15 10.9 2+ 10.8 1− 6.3 2+ 6 1− 4.6 2− 4.8 1+

16 11 2− 11.2 1+ 6.4 2− 6.6 1+ 4.6 2∗ 4.5 1∗

17 10.9 2+ 10.7 1− 6.4 2− 6.7 1+ 4.5 2+ 4 1−

18 10.8 2− 11.1 1+ 6.4 2− 6.7 1+ 4.4 2− 4.4 1+

Table 6.6. Comparison of the robustness of the populations obtained
from the EDO-based EA (1) and the QD-based EA (2). The E and
I denotes the percentage of times the population has at least one
alternative for the eliminated edges and item, respectively. The Stat

notations are in line with Table 6.1.

Int EDO (1) QD (2) EDO (1) QD (2)
E Stat E Stat I Stat I Stat

1 99.6 2+ 87.5 1− 70 2+ 51.6 1−

2 98.2 2+ 92 1− 60.7 2+ 43.9 1−

3 97.3 2+ 85.5 1− 56.2 2+ 43.6 1−

4 99.8 2+ 90.2 1− 51.2 2+ 36.8 1−

5 99.8 2+ 89 1− 41.6 2+ 32.5 1−

6 99.6 2+ 86.9 1− 43.8 2+ 33.2 1−

7 98.4 2+ 90.2 1− 30.4 2+ 26.4 1−

8 98.2 2+ 85.1 1− 28.7 2+ 22.5 1−

9 99 2+ 89.8 1− 28.6 2+ 26.1 1−

10 64.1 2+ 54.4 1− 27.7 2− 31.1 1+

11 61.5 2+ 49.9 1− 30.8 2∗ 34.9 1∗

12 67 2+ 54.6 1− 25.4 2− 28.9 1+

13 68.8 2+ 54 1− 23.5 2− 26.2 1+

14 67.8 2+ 47 1− 7.7 2− 15.5 1+

15 71.4 2+ 52.8 1− 7.7 2− 18.4 1+

16 29 2− 67.4 1+ 24.8 2− 35.8 1+

17 31 2− 74.4 1+ 31 2+ 26.5 1−

18 33.4 2− 76.3 1+ 16.7 2− 22 1+

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 97

converge in 10000 iterations for the test instance 16 (a280_n279_bounded-strongly-
corr_01). Overall, if we aim to increase the total or edge diversity, using He as the
fitness function would be better. This is because we achieve similar total diversity
with the use of He, but it results in higher entropy in the edges, and more importantly,
it requires less calculation. However, H works best if we focus on the diversity of items
or a more balanced diversity between items and edges.

Now, we conduct the same experiments with (1+1)EA to observe the changes in
the results. Table 6.3 summarises the results for this round of experiments. Here, one
can observe that using H slightly outperforms He if we aim for total diversity. The
underlying reason is that DP is an exact algorithm that results in the same packing
list for identical tours. Thus, identical tours have no contribution to the diversity
of edges or items. This is while the (1 + 1)EA can return different packing lists for
identical tours and contribute to the diversity of items and overall diversity. Thus,
overall diversity is slightly higher when H is used as the fitness function when we
incorporate (1 + 1)EA as the inner algorithm.

6.4.3 Comparison of EDO and QD

We compare the introduced EDO-based framework with the QD-based EA in this
section. We first run the QD-based EA for 10000 iterations. Then, we set the quality
threshold to the minimum quality found in the population obtained by the EA and
set µ to the size of the set of solutions obtained. Having set the input parameters, we
run the introduced EDO-based algorithm for the same number of iterations. Finally,
we compare the two populations in terms of structural diversity (H, He, and Hi).

In line with the previous section, we first employ DP as the KP operator; then,
(1 + 1)EA is replaced with DP to analyse the impact of using different KP search
operators in the results. Table 6.4 shows the results when DP is employed. Compared
to the QD-based algorithm, the introduced EA results in a higher H, He, and Hi in
14, 15, and 9 cases out of 18, respectively. Table 6.5 summarises the results when
(1 + 1)EA is used as the KP operator. The results are almost in line with Table 6.4.
Here, the performance of EDO-based EA improves in increasing the entropy of items
while it deteriorates in overall and edge diversity. The table shows that the number
of cases in favour of EDO-based EA increases to 13 cases taking Hi into account. On
the other hand, there is a fall of 1 and 3 cases in terms of H and Hi, respectively.

Furthermore, we conduct an experiment to test the robustness of populations
obtained from the EDO and QD-based EAs against changes in the availability of
edges and items. In this series of experiments, we make an edge of the best solution of
the population unavailable and look into the population to check if there is a solution
not using the excluded edge. For items, we look for solutions that behave the opposite
of the best solution. For example, if item i is included in the packing list of the best
solution, we check if there is a solution excluding item i, and vice versa. We repeat

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 98

the experiments for all edges and items of the best solution. Table 6.6 summarises the
results of the robustness experiment. The results show the EDO-based EA results in
more robust sets of solutions. In the edges entropy He, it strongly outperforms the
QD-based EA in 15 out of 18 test instances, while the figure is 10 for the entropy
of items Hi. The results of the small instances (the first 9) where the EDO-based
EA converges in 10000 iterations indicate that EDO-based EA can provide a highly
robust set of solutions if given sufficient time. Also, we can improve the robustness in
edges if we alter the focus on the diversity of edges by using He as the fitness function;
however, the robustness in items is likely to decrease in this case.

6.5 Co-Evolutionary Algorithm

In Chapter 5, we scrutinise TTP in terms of QD, while Chapter 6 looked into the
EDO perspective of the problem. This section presents a co-evolutionary algorithm
– outlined in Algorithm 20 – to simultaneously tackle QD and EDO problems in the
context of TTP. The algorithm involves two populations P1 and P2, employing MAP-
Elite-based and EDO-based selection procedures. In other words, P1 explores niches
in the behavioural space, and the P2 maximises its structural diversity subject to a
quality constraint. In QD, a behavioural descriptor (BD) is defined to determine to
which part of the behavioural space a solution belongs. In line with Section 5.3, we
consider the length of tours f(x), and the profit of selected items g(y), to serve as
the BD. To explore niches in the behavioural space, we propose a MAP-Elites-based
approach in the next section.

For maximising structural diversity, we utilise the overall entropy measure intro-
duced in section 6.2. Overall, We maximise the solutions’ quality and their diversity in
the feature space through P1, while we utilise P2 to maximise the structural diversity.

6.5.1 Parent Selection and Operators

A bi-level optimisation procedure is employed to generate offspring. A new tour is
generated by crossover at the first level; then, (1+1) EA is run to optimise the packing
list for the tour. The crossover is the only bridge between P1 and P2. For the first
parent, we first select P1 or P2 uniformly at random. Then, one individual, (x1, y1) is
selected again uniformly at random from the chosen population; the same procedure
is repeated for the selection of the second parent (x2, y2). To generate a new solution
(x′, y′) from (x1, y1) and (x2, y2), a new tour x′ ← crossover(x1, x2) is first generated
by EAX-1AB crossover same as the previous section. Then, the (1 + 1)EA 5.3.2 is
initialised to compute a desirable packing list.

6.5.2 Survival Selection Procedures

In this chapter, we discretize P1 in the behavioural space in the same way in Section5.3.
After generating a new solution (x′, y′), we find the cell corresponding with its BD

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 99

Algorithm 20 The Co-Evolutionary Diversity Algorithm
1: Find the optimal/near-optimal values of the TSP and the KP by algorithms in [72,

111], respectively.
2: Generate an empty map and populate it with the initialising procedure.
3: while termination criterion is not met do
4: Select two individuals based on the parent selection procedure and generate

offspring by EAX and (1 + 1) EA.
5: if The offspring’s TSP and the KP scores are within α1, and α2 thresholds to

the optimal values of BD. then
6: Find the corresponding cell to the TSP and the KP scores in the QD map.
7: if The cell is empty then
8: Store the offspring in the cell.
9: else

10: Compare the offspring and the individual occupying the cell and store the
best individual in terms of TTP score in the cell.

11: if The offspring complies with the quality criterion then
12: Add the offspring to the EDO population.
13: if The size of EDO population is equal to µ+ 1 then
14: Remove one individual from the EDO population with the least contribu-

tion to diversity.

(f(x′), g(y′)); if the cell is empty, solution (x′, y′) is added to the cell. Otherwise, the
solution with the highest TTP value is kept in the cell.

Having defined the survival selection of P1, we now look at P2’s survival selection
based on EDO. We add (x′, y′) to P2 if the quality criterion is met, i. e., z(x′, y′) ≥ zmin.
If |P2| = µ+ 1, a solution with the least contribution to H(P) will be discarded.

6.5.3 Self Adaptation

Generating offspring includes the internal (1+1) EA to compute a high-quality packing
list for the generated tour. In [88], the (1 + 1) EA is terminated after a fixed number
of t = 2m fitness evaluations. However, improving the quality of solutions is easier
in the beginning and gets more difficult as the search goes on. Thus, we adopt a
similar self-adaptation method proposed in [26, 80] to adjust t during the search. Let
Z = argmax(x,y)∈P1

{z(x, y)}. Success defines an increase in Z. We discretize the
search to intervals of u fitness evaluations. An interval is successful if Z increases;
otherwise, it is a failure. We reset t after each interval; t decreases if Z increases
during the last interval. Otherwise, t increases to give the internal (1 + 1) EA more
budget in the hope of finding better packing lists and better TTP solutions. Here, we
set t = γm where γ can take any value in [γmin, γmax]. We set

γ := max{γ · F1, γmin} and γ := min{γ · F2, γmax}

in case of success and failure, respectively. In our experiments, we use F1 = 0.5,
F2 = 1.2, γmin = 1, γmax = 10, and u = 2000m based on preliminary experiments.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 100

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2000m

3000

3200

3400

3600

3800

4000

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1000000m

3400

3500

3600

3700

3800

3900

4000

4100

4200

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

low medium high

Figure 6.2. Evolution of P1 and P2 over 4000m and 1000000m fitness
evaluations on instance 1 with α = 2%. The first row depicts the
distribution of high-quality solutions in the behavioural space (P1).
The second and the third rows show the overlay of all edges and items
used in exemplary P2, respectively. Edges and items are coloured by

their frequency.

We refer to this method as Gamma1.

Moreover, we propose an alternative terminating criterion for the internal (1 +
1) EA and denote it Gamma2. Instead of running the (1 + 1) EA for t = γm, we
terminate (1+1) EA when it fails in improving the packing list in t′ = γ′m consecutive
fitness evaluations. γ′ is updated in the same way as γ. Based on the preliminary
experiments, we set γ′min and γ′max to 0.1 and 1, respectively.

6.6 Experimental Investigation of Co-EA

We empirically study the Co-EA in this section. We run the Co-EA on eighteen TTP
instances from [93]. The same instances are used in the previous chapter. We first
illustrate the distribution of solutions in P1, and the structural diversity of solutions
in P2. Then, we compare the self-adaptation methods with the fixed parameter set-
ting. Afterwards, we conduct a comprehensive comparison between P1 and P2 and
the populations obtained by the QD-based algorithm and the EDO-based algorithm
introduced in the previous chapter and earlier this chapter, respectively. Here, the
termination criterion and α are set on 1000000m fitness evaluations and 10%, respec-
tively.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 101

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

low medium high

Figure 6.3. Overlay of all edges and items used in an exemplary final
population P2 on instance 1 with α = 10% (left) and α = 50% (right).

Edges and items are coloured by their frequency.

MAP-Elite selection can be beneficial to illustrate the distribution of high-quality
solutions in the behaviour space. On the other hand, EDO selection aims to under-
stand which elements in high-quality solutions are easy/difficult to replace. Figure 6.2
depicts exemplary populations P1 and P2 after 4000m and 1000000m fitness evalua-
tions of Co-EA on instance 1, where α = 2%. The first row illustrates the distribution
P1’s high-performing solutions over the behavioural space of f(x) and g(y). The sec-
ond and the third rows represent the overlay of edges and items in P2, respectively.
The figure shows the solutions with the highest quality are located on the top-right
of the map on this test instance where the gaps of f(x) and g(y) to f∗ and g∗ are in
[0.0150.035] and [0.150.18], respectively. In the second row of the figure, we can ob-
serve that Co-EA successfully incorporates new edges into P2 and reduces the edges’
frequency within the population. However, it is unsuccessful in incorporating new
items in P2. The reason can be that there is a strong correlation between items in
this particular test instance, and the difference in the weight and profit of items is
significant. It means that there is not many other good items to be replaced with the
current selection. Thus, we cannot change the items easily when the quality criterion
is fairly tight (α = 2%). As shown on the third row of the figure, the algorithm can
change i8 with i43 in some packing lists.

Figure 6.3 reveals that, as α increases, so does the room to involve more items
and edges in P2. In other words, there can be found more edges and items to be
included in P2. Figure 6.3 shows the overlays on the same instances, where α is set to
10% (left) and 50% (right). Not only more edges and items are included in P2 with
the increase of α, but also Co-EA reduces the frequency of the edges and items in
P2 to such a degree that we can barely see any high-frequent edges or items in the
figures associated with α = 50%. Moreover, the algorithm can successfully include
almost all items in P2 except item i39. Checking the item’s weight, we notice that it
is impossible to incorporate the item into any solution. This is because wi39 = 4400,

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 102

Table 6.7. Comparison of Gamma1 (1) and Gamma2 (2), and the
fixed method (3). In columns Stat, the notation X+ means the median
of the measure is better than the one for variant X, X− means it
is worse, and X∗ indicates no significant difference. Stat shows the
results of the Kruskal-Wallis statistical test at a significance level of
5% and Bonferroni correction. Also, (x, y)∗ = max(x,y)∈P1

{z(p)}.

H(P2) z((x, y)∗)

Inst. Gamma1 (1) Gamma2 (2) fixed (3) Gamma1 (1) Gamma2 (2) fixed (3)

mean Stat mean Stat mean Stat mean Stat mean Stat mean Stat

1 8.7 2−3+ 8.9 1+3+ 8.2 1−2− 4262.8 2∗3∗ 4269.4 1∗3∗ 4269.4 1∗2∗

2 9.3 2∗3+ 9.4 1∗3+ 9.1 1−2− 7245.8 2∗3∗ 7241.9 1∗3∗ 7228.3 1∗2∗

3 9.9 2∗3+ 9.9 1∗3+ 9.6 1−2− 11724.7 2∗3∗ 11712.3 1∗3∗ 11673 1∗2∗

4 7.6 2−3+ 7.7 1+3+ 7.3 1−2− 1460 2∗3∗ 1460 1∗3∗ 1460 1∗2∗

5 8.9 2−3+ 9 1+3+ 8.7 1−2− 4265.6 2∗3∗ 4276.3 1∗3+ 4253.5 1∗2−

6 9.3 2∗3+ 9.3 1∗3+ 9.1 1−2− 5772.6 2∗3∗ 5792.2 1∗3+ 5719.8 1∗2−

7 8 2−3+ 8.1 1+3+ 7.5 1−2− 2835.6 2∗3∗ 2850.2 1∗3+ 2786.1 1∗2−

8 8.9 2−3+ 9 1+3+ 8.7 1−2− 6854.3 2−3∗ 6884.4 1+3∗ 6864.8 1∗2∗

9 9.4 2−3+ 9.5 1+3+ 9.2 1−2− 11753.2 2∗3∗ 11753.2 1∗3∗ 11753.2 1∗2∗

10 10.5 2−3+ 10.6 1+3+ 10.2 1−2− 11135.9 2∗3∗ 11137.8 1∗3∗ 11137 1∗2∗

11 11.3 2−3+ 11.4 1+3+ 11.1 1−2− 25553.5 2∗3∗ 25508.2 1∗3∗ 25505.6 1∗2∗

12 9.3 2∗3∗ 9.3 1∗3∗ 9.2 1∗2∗ 3544.7 2∗3∗ 3562.9 1∗3∗ 3554.3 1∗2∗

13 10.6 2∗3+ 10.7 1∗3+ 10.5 1−2− 13283 2∗3∗ 13294.3 1∗3∗ 13330.2 1∗2∗

14 9.7 2∗3+ 9.8 1∗3+ 9.5 1−2− 5371.7 2∗3∗ 5393.6 1∗3∗ 5398.3 1∗2∗

15 10.9 2−3+ 11 1+3+ 10.7 1−2− 20456.8 2∗3∗ 20456.8 1∗3∗ 20456.8 1∗2∗

16 11.6 2−3∗ 11.7 1+3+ 11.4 1∗2− 18388.9 2−3∗ 18474.7 1+3∗ 18399.3 1∗2∗

17 11.2 2−3+ 11.3 1+3+ 11.1 1−2− 9195.7 2−3∗ 9277.2 1+3∗ 9258.9 1∗2∗

18 11.4 2−3+ 11.5 1+3+ 11.1 1−2− 19554.4 2−3∗ 19759.5 1+3+ 19588.5 1∗2−

while the capacity of the knapsack is set to 4 029. In other words, wi39 > W .

6.6.1 Analysis of Self-Adaptation

In this sub-section, we compare the two proposed termination criteria and self-adaptation
methods Gamma1 and Gamma2 with the fixed method employed in the QD-based
algorithm. We incorporate these methods into the Co-EA and run it for ten inde-
pendent runs. Table 6.7 summarises the mean of P2’s entropy obtained from the
competitors. The table indicates that both Gamma1 and Gamma2 outperform the
fixed method on all test instances. Kruskal-Wallis statistical tests at significance level
5% and Bonferroni correction also confirm a meaningful difference in the median of
results for all instances except instance 12, where there is no significant difference
in the mean of Gamma1, Gamma2 and the fixed method. In comparison between
Gamma1 and Gamma2, the latter outperforms the first in 15 test instances in terms
of the mean of entropy. Moreover, the statistical test i indicates the superiority of
Gamma2 in 12 instances. In conclusion, Table 6.7 indicates that Gamma2 works the
best with respect to the entropy of P2.

Moreover, Table 6.7 also shows the mean TTP score of the best solution in
P1 obtained from the three competitors. Table 6.7 indicates that the statistical test
confirms a significant difference in the best TTP scores in favour of Gamma2 method
in four instances. If we look at the average TTP scores, the results’ Gamma2 are
slightly better in 9 cases, while Gamma1 and fixed have better results in 3 and 2

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 103

Table 6.8. Comparison of the Co-EA and QD from [88] in terms
of z((x, y)∗), and EDO algorithm from [87] in H(P2). Stat shows
the results of the Mann-Whitney U-test at significance level 5%. The

notations are in line with Table 6.7.

Inst. Co-EA (1) QD (2) Co-EA (1) EDO (2)

Q Stat Q Stat H Stat H Stat

1 4269.4 2+ 4269.4 1− 8.9 2∗ 8.6 1∗

2 7241.9 2∗ 7230.8 1∗ 9.4 2∗ 9.3 1∗

3 11712.3 2∗ 11672.7 1∗ 9.9 2+ 9.7 1−

4 1460 2+ 1460 1− 7.7 2+ 7.6 1−

5 4276.3 2∗ 4270.5 1∗ 9 2+ 8.9 1−

6 5792.2 2+ 5792.2 1− 9.3 2+ 9.2 1−

7 2850.2 2∗ 2834.2 1∗ 8.1 2+ 8 1−

8 6884.4 2∗ 6876.2 1∗ 9 2+ 8.9 1−

9 11753.2 2+ 11753.2 1− 9.5 2+ 9.4 1−

10 11137.8 2− 11140.2 1+ 10.6 2+ 10.2 1−

11 25508.2 2∗ 25518.4 1∗ 11.4 2+ 11.1 1−

12 3562.9 2∗ 3549.9 1∗ 9.3 2+ 8.9 1−

13 13294.3 2∗ 13291.7 1∗ 10.7 2+ 10.2 1−

14 5393.6 2∗ 5404.4 1∗ 9.8 2+ 9.5 1−

15 20456.8 2+ 20456.8 1− 11 2+ 10.7 1−

16 18474.7 2∗ 18458.5 1∗ 11.7 2+ 11.1 1−

17 9277.2 2∗ 9254.1 1∗ 11.3 2+ 10.4 1−

18 19759.5 2+ 19553.5 1− 11.5 2+ 11 1−

0 5 10

105

1.79

1.8

1.81

1.82

1.83

1.84

1.85

1.86

z(
P)

104

0 5 10

105

8900

9000

9100

9200

9300

9400

0 5 10

105

10.6

10.8

11

11.2

11.4

11.6

11.8

H
(P

)

0 5 10
No. Evaluation 105

10

10.2

10.4

10.6

10.8

11

11.2

0 5 10

105

10.8

11

11.2

11.4

11.6

0 5 10

105

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98
104

Co-EA
Standard Deviation
EDO
Standard Deviation

Co-EA
Standard deviation
QD
Standard Deviation

Trend

Figure 6.4. Representative trajectories of Co-EA and standard
EDO EA on instances 16, 17, 18. The top row shows H(p2) while

the second row shows the best solution in P1.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 104

cases, respectively. Overall, Gamma2 outperforms the other methods in both entropy
and TTP scores. We employ it for the Co-EA in the rest of the study.

6.6.2 Analysis of Co-EA

This section compares P1 and P2 with the QD-based EA and the standard EDO
algorithm, respectively. Table 6.8 summarises this series of experiments. The results
indicate that the Co-EA outperforms the standard EDO in all instances. Except for
the first two test instances, the statistical test confirms a significant difference between
the EDO algorithm and Co-EA. Moreover, the Co-EA yields competitive results in
terms of the quality of the best solution compared to the QD-based EA; in fact, the
Co-EA results in a higher mean of TTP scores on 10 test instances. For example,
the best solutions found by Co-EA score 19759.5 on average in instance 18, whereby
the figure stands at 19553.5 for the QD-based algorithms. The statistical test shows
the superiority of CO-EA in four instances over the QD, while the latter algorithm
outperforms the prior one in only one instance.

Figure 6.4 depicts the trajectories of Co-EA and the standard EDO algorithm
in entropy of the population (the first row) and that of Co-EA and QD-based EA in
quality of the best solution (the second row). Note that in the first row, the x-axis
shows fitness evaluations from 4000m to 1000000m. This is because P2 is empty in
the early stages of running Co-EA, and we cannot calculate the entropy of P2 until
|P2| = µ for the sake of fair comparison. The figure shows that Co-EA converges
faster and to a higher entropy than the standard EDO algorithm. Moreover, it also
depicts results obtained by Co-EA have much less standard deviation. Regarding the
quality of the best solution, both Co-EA and QD-based EA follow a similar trend,
but the prior algorithm converges to a higher TTP value.

6.7 Conclusion

We introduced a framework to generate a set of high-quality TTP solutions differing
in structural diversity. We examined the inter-dependency of TTP’s sub-problems,
TSP and KP, and determined the best method to achieve a highly diverse set of
solutions. Moreover, We empirically analysed the introduced framework and com-
pared the results with a recently developed QD-based algorithm in terms of diversity.
The results showed a considerable improvement in the diversity of the population
compared to the QD-based algorithm. We conduct a simulation test to evaluate the
robustness of the population obtained from the two frameworks. We also introduced
a co-evolutionary algorithm to simultaneously evolve two populations for the travel-
ling thief problem. The first population explore niches in a behavioural space, and
the other maximises structural diversity. The results showed the superiority of the
algorithm to the standard framework in the literature in maximising diversity. The
co-evolutionary algorithm also yields competitive results in terms of quality.

Chapter 6. Analysis of inter-dependency of the Traveling Thief Problem 105

For future study, it is intriguing to incorporate indicators from multi-objective
optimisation frameworks into the algorithm to focus on diversities of edges and items
and compare them to the incumbent method. It is also interesting to adopt a more
complicated MAP-Elites-based survival selection for exploring the behavioural space.
Also, other co-evolutionary algorithms in the literature can be studied to make a com-
parison to the introduced algorithms. Moreover, this study can be a transition from
benchmark problems to real-world optimisation problems where imperfect modelling
is common, and diversity in solutions can be beneficial.

106

Chapter 7

Analysis of Quality Diversity in the
Knapsack Problem

7.1 Introduction

In Chapters 5 and 6, we conducted comprehensive empirical investigations into the
application of QD in the context of TTP. These empirical results demonstrate the
efficiency of QD in the diversification of TTP solutions and solving the TTP. Having
studied QD empirically, we now aim to provide a theoretical analysis of QD to expand
our understating of these methods in combinatorial problems. We seek to comprehen-
sively understand how these approaches’ search mechanism works and how it leads to
high-quality solutions.

In this chapter, we scrutinise QD-based algorithms regarding runtime for the first
in the literature. The runtime analysis is the computational examination of algorithms
taking into account the number of evaluations required to achieve the optimal solution
with respect to the size of the input. The field began with [67] studying a basic EA
in a number of simple binary functions such as ONEMAX. Several advancements and
theoretical tools such as fitness-based partitions [104] and Drift analysis [47] have
been developed that can become handy in performing runtime analysis of bio-inspired
algorithms. In recent years, several studies conducted runtime analysis and drew a
comparison among EAs in various problems [27, 37, 122]. We refer readers interested
in recent developments of runtime analysis to [30].

We contribute to the research line of evolutionary diversity by theoretically and
empirically studying QD for the KP, with a focus on connections between populating
behavioural spaces and constructing solutions in a dynamic programming (DP) man-
ner. The use of evolutionary algorithms building populations of specific structures to
carry out dynamic programming has been studied in [28, 50, 110]. We consider mim-
icking dynamic programming behaviour by using QD algorithms with appropriately
defined behavioural spaces. To this end, we define two behavioural spaces based on

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 107

weights, profits and the subset of the first i items, as inspired by dynamic program-
ming (DP) [111] and the classic fully polynomial-time approximation scheme (FPTAS)
[114]. Here, the scaling factor used in the FPTAS adjusts the niche size along the
weight/profit dimension. We formulate two simple mutation-only algorithms based
on MAP-Elite to populate these spaces. We show that both algorithms mimic DP and
find an optimum within the pseudo-polynomial expected runtime. Moreover, we show
that in the profit-based space, the algorithm can be made into a fully polynomial-time
randomised approximation scheme (FPRAS) with an appropriate choice of scaling
value. Our experimental investigation on various instances suggests that these algo-
rithms significantly outperform (1 + 1)EA and (µ + 1)EA, especially in hard cases.
With this, we demonstrate the ability of QD-based mechanisms to imitate DP-like
behaviours in KP and thus its potential value in black-box optimisers for problems
with recursive subproblem structures.

The work of this chapter is based on a conference paper [84] presented at the
parallel problem solving from nature (PPSN 2022). The remainder of this chapter
is structured as follows. We formally define the knapsack problem, the behavioural
spaces, and the algorithms in 7.2. Next, we provide a runtime analysis for the algo-
rithms in 7.3. In Section 7.4, we examine the distribution of high-quality knapsack
solutions in the behavioural spaces and compare QD-based algorithms to other EAs.
Finally, we finish with some concluding remarks.

7.2 Quality-Diversity for the knapsack problem

As described in Section 2.4.1, the knapsack problem is defined on a set of items
I, where |I| = n and each item i corresponds to a weight wi and a profit pi.
Here, the goal is to find a selection of item x = (x1, x2, . . . , xn) that maximises
the profit while the weight of selected items is constrained to a capacity W . Here,
x is the characteristic vector of the selection of items. Technically, KP is a bi-
nary linear programming problem: let w = (w1, . . . , wn) and p = (p1, . . . , pn), find
argmaxx∈{0,1}n

{
pTx | wTx ≤W

}
. We assume that all items have weights in {0, 1, · · · ,W],

since any item violating this can be removed from the problem instance.

In this section, we introduce two MAP-Elite-based algorithms exploring two
different behavioural spaces. To determine the behaviour of a solution in a particular
space, a behaviour descriptor (BD) is required. MAP-Elite is an EA, where a solution
competes with other solutions with a similar BD. MAP-Elites algorithm discretises
a behavioural space into a grid to define the similarity and acceptable tolerance of
difference in two descriptors. Each cell in the grid corresponds with a BD type, and
only the best solution with that particular BD is kept in the cell.

For KP, we formulate the behavioural spaces based on the two ways in which
the classic dynamic programming approach is implemented [111], i.e. profit-based and

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 108

1

! "
+
1

%
&
∈
[)

−
1
",
)."
)

1 . + 1

!

/

0 & < / − 1
0 & < .

(a) Weight-based

1 . + 1/

0 & < / − 1
0 & < .

1

2 "
+
1

3
&
∈
[)

−
1
",
)."
)

!

(b) Profit-based

Figure 7.1. The representation of the empty maps in the behavioural
spaces.

weight-based sub-problem divisions. Let v(x) be the function returning the index of
the last item in solution x: v(x) = maxi{i | xi = 1}.

7.2.1 Weight-based space

For the weight-based approach, w(x) and v(x) serve as the BD, where w(x) = wTx.
Figure 7.1a outlines an empty map in the weight-based behavioural space. To exclude
infeasible solutions, the weight dimension is restricted to {0, 1, · · ·W}. As depicted,
the behavioural space consists of (⌊W/γ⌋+ 1) × (n+ 1) cells, in which cell (i, j) in-
cludes the best solution x (i.e. maximizing p(x) = pTx) with v(x) = j − 1 and
w(x) ∈ [(i − 1)γ, iγ). Here, γ is a factor to determine the size of each cell. The
algorithm is initiated with a zero string 0n. Having a parent is selected uniformly at
random from the population, we generate a single offspring by standard flip mutation.
If w(x) ≤W , we find the cell corresponding with the solution BD. We check the cells
one by one. If the cells are empty, x is stored in the cell; otherwise, the solution with
the highest profit remains in the corresponding cell. These steps are continued until
a termination criterion is met.

7.2.2 Profit-based space

For the profit-based approach, p(x) and v(x) serve as the BD. Figure 7.1b depicts the
profit-based behavioural space with (⌊Q/γ⌋+ 1) × (n+ 1) cells where Q =

∑
i∈I pi.

Here, the selection in each cell minimizes the weight, and cell (i, j) includes a solution
x with v(x) = j − 1 and p(x) ∈ [(i− 1)γ, iγ). Otherwise, the parent selection and the
operator are the same as in weight-based MAP-Elite. After generating the offspring,
we determine the cell associating with the BD ((v(x), p(x))). If the cell is empty, the
solution is stored in the cells; otherwise, the solution with the lower weight w(x) is
kept in the cell. The steps are continued until a termination criterion is met.

7.2.3 DP-based filtering scheme

In classical MAP-Elites, the competition between solutions is confined within each
cell. However, in this context, the mapping from solution space to behaviour space

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 109

Algorithm 21 weight-based MAP-Elites
Require: weights {wi}ni=1, W , profits {pi}ni=1, γ
1: P ← {0n} // P is indexed from 1, 0n is an all-zero string
2: A← 0n+1×⌊W/γ⌋+1 // 0n+1×⌊W/γ⌋+1 is an all-zero matrix
3: B ← 0,
4: while Termination criteria are not met do
5: i← Uniform({1, . . . , |P |})
6: Get x from flipping each bit in P (i) independently with probability 1/n
7: if w(x) ≤W then
8: W ′ ← ⌊w(x)/γ⌋+ 1
9: if Av(x)+1,W ′ = 0 then

10: P ← P ∪ {x} // x is indexed last in P
11: Av(x)+1,W ′ ← |P |
12: else if p(x) > p(P (Av(x)+1,W ′)) then
13: P (Av(x)+1,W ′)← x
14: for j from v(x) + 2 to n+ 1 do {DP-based filtering scheme}
15: if Aj,W ′ = 0 Or p(x) > p(P (Aj,W ′)) then
16: Aj,W ′ ← Av(x)+1,W ′

17: if p(x) > B then
18: B ← p(x)
19: return B

is transparent enough in both cases that a dominant relation between solutions in
different cells can be determined; a property exploited by the DP approach. Therefore,
in order to reduce the population size and speed up the search for the optimum,
we incorporate a filtering scheme that forms the core of the DP approach. Given
solutions x1 and x2 with v(x1) ≥ v(x2) and w(x1) = w(x2); then, x1 dominates x2

in the weight-based space if p(x1) > p(x2). To filter out the dominated solutions, we
relax the restriction that each BD corresponds to only one cell and redefine acceptable
solutions for Cell (i, j) in the weight-based space: v(x) ≤ j−1 and w(x) ∈ [(i−1)γ, iγ).
This means a particular BD is acceptable for multiple cells, and MAP-Elite algorithms
must check all the cells accepting the offspring. Algorithm 21 outlines the MAP-Elite
algorithm exploring this space; this is referred to as weight-based MAP-Elites.

The same scheme can be applied to the profit-based space, where cell (i, j)

accepts solution x with v(x) ≤ j − 1 and p(x) ∈ [(i − 1)γ, iγ). In this case, the
dominance relation is formulated to minimise weight. Algorithm 22 sketches the
profit-based MAP-Elites.

7.3 Theoretical analysis

In this section, we give some runtime results for Algorithm 21 and 22 based on expected
time, as typically done in runtime analyses. Here, we use “time” as a shorthand for
“number of fitness evaluations”, which in this case equals the number of generated
solutions during a run of the algorithm. We define a ∧ b and a ∨ b to be the bit-wise
AND and bit-wise OR, respectively, between two equal-length bit-strings a and b.

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 110

Algorithm 22 profit-based MAP-Elites
Require: Weights {wi}ni=1, W , profits {pi}ni=1, γ
1: P ← {0n} // P is indexed from 1, 0n is an all-zero string
2: A← 0n+1×

∑n
i=1 pi+1 // 0n+1×⌊C/γ⌋+1 is an all-zero matrix

3: B ← 0,
4: while Termination criteria are not met do
5: i← Uniform({1, . . . , |P |})
6: Get x from flipping each bit in P (i) independently with probability 1/n
7: G← ⌊p(x)/γ⌋+ 1
8: if Av(x)+1,G = 0 then
9: P ← P ∪ {x} // x is indexed last in P

10: Av(x)+1,G ← |P |
11: else if w(x) < w(P (Av(x)+1,G)) then
12: P (Av(x)+1,G)← x
13: for j from v(x) + 2 to n+ 1 do {DP-based filtering scheme}
14: if Aj,G = 0 Or w(x) < w(P (Aj,G)) then
15: Aj,G ← Av(x)+1,G

16: if w(x) ≤ C then
17: if p(x) > B then
18: B ← p(x)
19: return B

Also, we denote k-length all-zero and all-one bit-strings by 0k and 1k, respectively.
For convenience, we denote the k-size prefix of a ∈ {0, 1}n with a(k) = a ∧ 1k0n−k,
and the k-size suffix with a(k) = a ∧ 0n−k1k .

It is important to note that in all our proofs, we consider solution y replacing
solution x during a run to imply v(y) ≤ v(x). Since this holds regardless of whether
the filtering scheme outlined in Section 7.2.3 is used, our results should apply to both
cases, as we use the largest possible upper bound of population size. Note that this
filtering scheme may not reduce the population size in some cases.

We first show that with γ = 1 (no scaling), Algorithm 21 ensures that prefixes of
optimal solutions remain in the population throughout the run and that these increase
in sizes within a pseudo-polynomial expected time. For this result, we assume all
weights are integers.

Theorem 2. Given γ = 1 and k ∈ [0, n], within expected time at most e(W + 1)n2k,
Algorithm 21 achieves a population P such that for any j ∈ [0, k], there is an optimal
solution x∗ where x∗(j) ∈ P .

Proof. Let Pt be the population at iteration t ≥ 0, S be the set of optimal solutions,
Sj = {s(j) | s ∈ S}, Xt = max{h | ∀j ∈ [0, h], Sj ∩ Pt ̸= ∅}, and H(x, y) be the
Hamming distance between x and y, we have Sn = S. We see that for any j ∈ [0, Xt],
any x ∈ Sj ∩ Pt must be in P>t, since otherwise, let y be the solution replacing it,
and y∗ = y ∨ x∗(n−j) for any x∗ ∈ S where x = x∗(j), we would have p(y∗) − p(x∗) =

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 111

p(y)− p(x) > 0 and w(y∗) = w(x∗) ≤ B, a contradiction. Additionally, if x ∈ Si ∩ Sj

for any 0 ≤ i < j ≤ n, then x ∈
⋂j

h=i Sh. Thus, if Xt < n, then SXt ∩ S ∩ Pt = ∅,
so for all x ∈ SXt ∩ Pt, there is y ∈ S>Xt such that H(x, y) = 1. We can then imply
from the algorithm’s behaviour that for any j ∈ [0, n− 1], Pr[Xt+1 < j | Xt = j] = 0

and

Pr[Xt+1 > j | Xt = j] ≥ 1

n

(
1− 1

n

)n−1 |SXt ∩ Pt|
|Pt|

≥ 1

enmaxh |Ph|
.

Let T be the minimum integer such that Xt+T > Xt, then the expected waiting
time in a binomial process gives E[T | Xt < j] ≤ enmaxh |Ph| for any j ∈ [1, n].
Let Tk be the minimum integer such that XTk

≥ k, we have for any k ∈ [0, n],
E[Tk] ≤

∑k
i=1E[T | Xt < i] ≤ enmaxh |Ph|k, given that 0n ∈ S0 ∩ P0. Applying the

bound maxh |Ph| ≤ (W + 1)n yields the claim.

We remark that with γ > 1, Algorithm 21 may fail to maintain prefixes of
optimal solutions during a run due to rounding error. That is, assuming there is
x = x∗(j) ∈ Pt at step t and for some j ∈ [0, n] and optimal solution x∗, a solution y

may replace x if p(y) > p(x) and w(y) < w(x) + γ. It is possible that y∗ = y ∨ x∗(n−j)

is infeasible (i.e. when W < w(x∗) + γ), in which case the algorithm may need to
“fix” y with multiple bit-flips in one step. The expected runtime till optimality can be
derived directly from Theorem 2 by setting k = n.

Corollary 1. Algorithm 21, run with γ = 1, finds an optimum within expected time
at most e(W + 1)n3.

Using the notation Q =
∑n

i=1 pi, we have the following result for Algorithm 22,
which is analogous to Theorem 2 for Algorithm 21.

Theorem 3. Given k ∈ [0, n], and let z be an optimal solution, within expected time
at most e (⌊Q/γ⌋+ 1)n2k, Algorithm 22 achieves a population P such that, if γ > 0

is such that pi/γ is integer for every item i in z, then for any j ∈ [0, k], there is a
feasible solution x where

• there is an integer m such that p(x(j)), p(z(j)) ∈ [mγ, (m+ 1)γ),

• x(n−j) = z(n−j),

• x(j) ∈ P .

Moreover, for other γ values, the first property becomes p(x(j)), p(z(j)) ∈ [mγ, (m +

j + 1)γ).

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 112

Proof. The proof proceeds similarly as that of Theorem 2. We have the claim holds
for k = 0 since the empty set satisfies the properties for j = 0 (i.e. x and z would
be the same). For other k values, it suffices to show that if there is such a solution
x for some j ∈ [0, k]: 1) any solution y replacing x(j) in a future step must be the
j-size prefix of another solution with the same properties, and 2) at most one bit-flip
is necessary to have it also holds for j + 1.

1) Let y be the solution replacing x(j), we have p(y), p(x(j)) ∈ [mγ, (m + 1)γ) for
some integer m, and w(y) < w(x(j)). Let y∗ = y ∨ z(n−j), we have p(y), p(z(j)) ∈
[mγ, (m + 1)γ), and w(y∗) − w(x) = w(y) − w(x(j)) < 0, implying y∗ is feasible.
Therefore, y∗ possesses the same properties as x. Note that this also holds for the
case where p(x(j)), p(z(j)) ∈ [mγ, (m+j+1)γ). In this case, p(y) ∈ [mγ, (m+j+1)γ).

2) If this also holds for j + 1, no further step is necessary. Assuming otherwise, then
z contains item j + 1, the algorithm only needs to flip the position j + 1 in x(j),
since x and z shares (n − j − 1)-size suffix, and the pj+1 is a multiple of γ. Since
this occurs with probability at least 1/enmaxh |Ph|, the rest follows identically, save
for maxh |Ph| ≤ (⌊Q/γ⌋+ 1)n. If pj+1 is a not multiple of γ, then p(x(j+1)) may
be mapped to a different profit range from p(z(j+1)). The difference is increased
by at most 1 since p(x(j+1)) − p(x(j)) = p(z(j+1)) − p(z(j)), i.e. if p(x(j)), p(z(j)) ∈
[mγ, (m+ j+1)γ) for some integer m, then p(x(j+1)), p(z(j+1)) ∈ [m′γ, (m′+ j+2)γ)

for some integer m′ ≥ m. Since x can be replaced in a future step by another solution
with a smaller profit due to rounding error, the difference can still increase, so the
claim holds non-trivially.

Theorem 3 gives us the following profit guarantees of Algorithm 22 when k = n.
Here OPT denotes the optimal profit.

Corollary 2. Algorithm 22, run with γ > 0, within expected time at most e (⌊Q/γ⌋+ 1)n3

obtains a feasible solution x where p(x) = OPT if pi/γ is integer for all i = 1, . . . , n,
and p(x) > OPT − γn otherwise.

Proof. If pi/γ is integer for all i = 1, . . . , n, then |p(a) − p(b)| is a multiple of γ for
any solutions a and b. Since by Theorem 2, x is feasible and p(x) > OPT − γ, it
must be that p(x) = OPT . For the other case, Theorem 2 implies that p(x), OPT ∈
[mγ, (m+ n+ 1)γ) for some integer m. This means p(x) > OPT − γn.

Using this property, we can set up a FPRAS with an appropriate choice of γ,
which is reminiscent of the classic FPTAS for KP based on DP. As a reminder, x

is a (1 − ϵ)-approximation for some ϵ ∈ (0, 1) if p(x) ≥ (1 − ϵ)OPT . The following
corollary is obtained from the fact that Q ≤ nmaxi{pi}, and maxi{pi} ≤ OPT .

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 113

Figure 7.2. The distribution of high-performing solutions in the
weight-based behavioural space. The title of sub-figures shows (Ints.

No, γ). Colors are scaled to OPT.

Corollary 3. For some ϵ ∈ (0, 1), Algorithm 22, run with γ = ϵmaxi{pi}/n, obtains
a (1− ϵ)-approximation within expected time at most e

(⌊
n2/ϵ

⌋
+ 1
)
n3.

For comparison, the asymptotic runtime of the classic FPTAS achieving the same
approximation guarantee is O(n2⌊n/ϵ⌋) [114].

7.4 Experimental investigations

In this section, we experimentally examine the two MAP-Elite-based algorithms. The
experiments can be categorised into three sections. First, we illustrate the distribution
of high-performing solutions in the two behavioural spaces. Second, we compare
Algorithm 21 and 22 in terms of population size and ratio in achieving the optimums
over 30 independent runs. Finally, we compare between the best MAP-Elite algorithm
and two baseline EAs, namely (1+ 1)EA and (µ+1)EA. These baselines are selected
due the the same size of offspring in each iteration. For the first round of experiments,
three instances from [93] are considered. There is a strong correlation between the
weight and profit of each item in the first instance. The second and third instances
are not correlated, while the items have similar weights in the third instance. The
termination criterion is set to the maximum fitness evaluations of Wn2. We also set
γ ∈ {1, 5, 25}. For the second and third rounds of experiments, we run algorithms on
18 test instances from [93], and change the termination criterion to either achieve the
optimal value or the maximum CPU-time of 7200 seconds.

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 114

Figure 7.3. The distribution of high-performing solutions in the
profit-based behavioural space. Analogous to Figure 7.2.

Figure 7.2 illustrates the high-performing solutions obtained by Algorithm 21 in
the weight-based space. As shown in the figure, the best solutions can be found at
the right top of the space. One can expect it since in that area of the space, solutions
get to involve most items and most of the knapsack’s capacity, whereby on the left
bottom of the space, a few items and a small proportion of C can be used. Algorithm
21 can successfully populate most of the space in instance 1, 2, while we can see
most of the space is empty in instance 3. This is because the weights are uniformly
distributed within [1000, 1010], while C is set to 4567. As shown in the figure, the
feasible solutions can only pick 4 items. Figure 7.2 also shows that the DP-based
filtering removes many dominated solutions that contribute to the convergence rate
and pace of the algorithm.

Figure 7.3 shows the best-performing solutions obtained by Algorithm 22 in the
profit-based space. It can be observed that we can only populate half of the space by
Algorithm 22 or any other algorithm. To have a solution with a profit of Q, the solution
should include all items. This means that it is impossible to populate any other cells
except cell (n+ 1), (Q+ 1). On the contrary of the weight-based space, we can have
both feasible and infeasible solutions in the profit-based space. For example, the map
is well populated in instance 3, but mostly contains infeasible solutions. Figure 7.4
depicts the trajectories of population size of Algorithm 21 and 22. The figure shows
Algorithm 21 results in significantly smaller |P | than Algorithm 22. For example, the
final population size of Algorithm 21 is equal to 37 in instance 3, where γ = 25, while
it is around 9000 for Algorithm 22. This is because we can limit the first space to

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 115

0 5 10

105

0

5

10

104 (In. 1, 1)

0 5 10

105

0

1

2

3

4

104 (In. 1, 2)

0 5 10

105

0

2

4

6

8

|P
|

104 (In. 2, 1)

0 5 10

105

0

1

2

3
104 (In. 2, 2)

0 5 10

105

0

5000

10000
(In. 2, 3)

0 5 10

105

0

2

4

6

104 (In. 3, 1)

0 5 10
No. Evaluations 105

0

1

2

3
104 (In. 3, 2)

0 5 10

105

0

5000

10000
(In. 3, 3)

0 5 10

105

0

5000

10000

15000
(In. 1, 3)

weight-based
deviation
profit-based
deviation

|P| = 37.7|P| = 104.8|P| = 416

Figure 7.4. Means and standard deviations of population sizes over
fitness evaluations (the filtering scheme is used).

the promising part of it (w(x) ≤ W), but we do not have a similar advantage for
the profit-based space; the space accepts the full range of possible profits (p(x) ≤ Q).
We believe this issue can cause an adverse effect on the efficiency of MAP-Elites in
reaching optimality based on theoretical observations. This is explored further in our
second experiment, where we look at the actual run-time to achieve the optimum.

Table 7.1 and 7.2 show the ratio of Algorithm 21 and Algorithm 22 in achieving
the optimum for each instance in 30 independent runs, respectively. The tables also
present the mean of fitness evaluations for the algorithms to hit the optimal value
or reach the limitation of CPU time. Table 7.1 shows that the ratio is 100% for
Algorithm 21 on all instances and all γ ∈ {1, 5, 25}. On the other hand, Algorithm
22 cannot achieve the optimums in all 30 runs, especially in large instances when
γ = 1. However, increasing γ to 25 enables the algorithm to obtain the optimum
in most instances, with the exception of instance 9. Moreover, the number of fitness
evaluations required for Algorithm 22 is considerably higher than that of Algorithm
21. We can conclude that Algorithm 21 is more time-efficient than Algorithm 22,
confirming our theoretical findings. This also suggests that the rounding errors are
not detrimental to these algorithms’ performances.

For the last round of the experiments, we compare Algorithm 21 to two well-
known EAs in the literature, (1 + 1)EA and (µ + 1)EA. Table 7.3 presents the ratio
of the three algorithms in achieving the optimum and the mean of fitness evaluations
required for them to reach the optimum. As shown in the table, the performances of
(1+1)EA and (µ+1)EA deteriorate on the strongly correlated instances. It seems that
(1+1)EA and (µ+1)EA are prone to get stuck in local optima, especially in instances
with a strong weights-profits correlation. On the other hand, the MAP-Elite algorithm

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 116

Table 7.1. Number of fitness evaluations needed by Algorithm 21 to
obtain the optimal solutions.

In. n C U
γ = 1 γ = 5 γ = 25

mean time mean time mean time

1 50 4029 1.37e+09 1.53e+06 2.74e+01 3.76e+05 4.35e+00 1.61e+05 1.96e+00
2 50 2226 7.57e+08 5.32e+05 8.14e+00 1.74e+05 2.32e+00 5.86e+04 9.75e-01
3 50 4567 1.55e+09 2.43e+04 3.48e-01 1.12e+04 1.81e-01 5.82e+03 1.08e-01
4 75 5780 6.63e+09 5.30e+06 8.28e+01 1.45e+06 2.07e+01 4.12e+05 5.60e+00
5 75 3520 4.04e+09 3.63e+06 7.11e+01 1.15e+06 2.44e+01 3.49e+05 5.96e+00
6 75 6850 7.86e+09 1.17e+05 2.21e+00 4.09e+04 5.91e-01 1.44e+04 2.32e-01
7 100 8375 2.28e+10 2.42e+07 4.75e+02 6.57e+06 1.33e+02 6.60e+07 1.34e+03
8 100 4815 1.31e+10 9.56e+06 2.02e+02 2.73e+06 5.07e+01 8.66e+05 1.30e+01
9 100 9133 2.48e+10 6.18e+05 1.06e+01 1.78e+05 3.26e+00 5.79e+04 1.34e+00
10 123 10074 5.10e+10 3.56e+07 6.65e+02 9.90e+06 1.77e+02 2.55e+07 4.71e+02
11 123 5737 2.90e+10 2.05e+07 5.40e+02 5.12e+06 9.38e+01 1.47e+06 3.54e+01
12 123 11235 5.68e+10 1.45e+06 3.74e+01 3.38e+05 5.27e+00 1.21e+05 1.90e+00
13 151 12422 1.16e+11 5.04e+07 9.15e+02 1.48e+07 2.73e+02 7.51e+06 1.86e+02
14 151 6924 6.48e+10 4.27e+07 9.75e+02 1.24e+07 2.73e+02 3.35e+06 5.71e+01
15 151 13790 1.29e+11 3.18e+06 9.87e+01 6.73e+05 1.70e+01 2.35e+05 3.94e+00

Table 7.2. Number of fitness evaluations needed by Algorithm 22 to
obtain the optimal solutions

In. n Q
γ = 1 γ = 5 γ = 25

mean ratio U mean ratio U mean ratio U

1 50 53928 1.15e+07 100 1.83e+10 3.68e+06 100 e.66e+09 1.21e+06 100 7.33e+08
2 50 23825 5.36e+06 100 8.10e+09 1.34e+06 100 1.62e+09 4.00e+05 100 3.24e+08
3 50 24491 3.86e+06 100 8.32e+09 1.27e+06 100 1.66e+09 1.27e+06 100 3.33e+08
4 75 78483 5.07e+07 100 9.00e+10 1.50e+07 100 1.8e+10 4.03e+06 100 3.6e+09
5 75 37237 2.74e+07 100 4.27e+10 7.36e+06 100 8.54e+09 2.32e+06 100 1.71e+09
6 75 38724 1.93e+07 100 4.44e+10 5.63e+06 100 8.88e+09 2.95e+06 100 1.78e+09
7 100 112635 2.24e+08 97 3.06e+11 6.67e+07 100 6.12e+10 1.72e+07 100 1.22e+10
8 100 48042 6.76e+07 100 1.31e+11 1.82e+07 100 2.61e+10 5.03e+06 100 5.22e+09
9 100 52967 7.99e+07 100 1.44e+11 2.86e+07 100 2.88e+10 1.18e+08 87 5.76e+09
10 123 135522 3.35e+08 87 6.86e+11 1.05e+08 100 1.37e+11 7.34e+07 100 2.74e+10
11 123 57554 1.47e+08 100 2.91e+11 3.58e+07 100 5.82e+10 8.87e+06 100 1.16e+10
12 123 63116 1.71e+08 97 3.19e+11 8.45e+07 100 5.38e+10 2.66e+07 100 1.28e+10
13 151 166842 3.81e+08 13 1.56e+12 1.39e+08 100 3.12e+11 5.69e+07 100 6.25e+10
14 151 70276 3.15e+08 77 6.58e+11 8.86e+07 100 1.32e+11 1.96e+07 100 2.63e+10
15 151 76171 2.64e+08 90 7.13e+11 9.58e+07 100 1.42e+11 3.16e+07 100 2.85e+10
16 194 227046 2.94e+08 0 4.51e+12 3.33e+08 23 9.01e+11 1.30e+08 100 1.8e+11
17 194 92610 3.43e+08 0 1.84e+12 2.22e+08 97 3.68e+11 5.80e+07 100 7.35e+10
18 194 97037 3.55e+08 0 1.93e+12 2.13e+08 87 3.85e+11 9.98e+07 100 7.7e+10

performs equally well in all instances through the diversity of solutions. Moreover,
the mean of its runtime is significantly less in the half of instances, although the
population size of Algorithm 21 can be significantly higher than the other two EAs.

Chapter 7. Analysis of Quality Diversity in the Knapsack Problem 117

Table 7.3. Comparison in ratio, number of required fitness eval-
uations and required CPU time for hitting the optimal value in 30

independent runs.

In. n
QD (1 + 1)EA (µ+ 1)EA

ratio mean time Stat ratio mean time Stat ratio mean time Stat

1 50 100 1.53e+062.74e+012−3− 40 1.32e+094.49e+03 1+3∗ 40 4.59e+084.92e+03 1+2∗
2 50 100 5.32e+058.14e+00 2∗3∗ 100 5.30e+052.02e+00 1∗3∗ 100 6.10e+056.21e+00 1∗2∗

3 50 100 2.43e+04 3.48e-01 2+3+ 100 1.01e+04 4.38e-02 1−3∗ 100 1.21e+04 1.50e-01 1−2∗

4 75 100 5.30e+068.28e+01 2∗3∗ 97 1.20e+085.70e+02 1∗3∗ 100 3.46e+076.90e+02 1∗2∗

5 75 100 3.63e+067.11e+01 2∗3∗ 100 6.34e+073.44e+02 1∗3∗ 100 3.16e+074.44e+02 1∗2∗

6 75 100 1.17e+052.21e+002+3+ 100 1.30e+04 8.98e-02 1−3− 100 2.14e+04 3.20e-01 1−2+

7 100 100 2.42e+074.75e+022−3− 63 5.72e+083.26e+03 1+3∗ 43 2.51e+084.92e+03 1+2∗
8 100 100 9.56e+062.02e+022+3+ 100 2.33e+061.46e+01 1−3∗ 100 3.56e+065.81e+01 1−2∗
9 100 100 6.18e+051.06e+012+3+ 100 3.72e+04 2.24e-01 1−3∗ 100 5.03e+04 8.84e-01 1−2∗

10 123 100 3.56e+076.65e+022−3− 77 3.90e+082.44e+03 1+3∗ 47 2.34e+084.70e+03 1+2∗
11 123 100 2.05e+075.40e+02 2∗3+ 97 1.38e+081.13e+03 1∗3∗ 87 6.10e+071.41e+03 1−2∗
12 123 100 1.45e+063.74e+012+3+ 100 6.55e+04 5.24e-01 1−3∗ 100 6.71e+041.34e+00 1−2∗
13 151 100 5.04e+079.15e+02 2∗3∗ 97 1.25e+081.07e+03 1∗3∗ 87 8.65e+072.14e+03 1∗2∗

14 151 100 4.27e+079.75e+022+3+ 100 1.20e+071.06e+02 1−3∗ 100 1.10e+073.33e+02 1−2∗
15 151 100 3.18e+069.87e+012+3+ 100 1.17e+051.09e+00 1−3∗ 100 1.09e+052.59e+00 1−2∗
16 194 100 1.58e+084.22e+032−3− 57 4.99e+084.21e+03 1+3∗ 47 2.34e+085.47e+03 1+2∗
17 194 100 1.18e+082.25e+03 2−3∗ 57 4.29e+083.91e+03 1+3∗ 40 2.07e+084.87e+03 1∗2∗

18 194 100 7.76e+061.50e+022+3+ 100 1.17e+051.42e+00 1−3∗ 100 1.37e+054.71e+00 1−2∗

7.5 Conclusions

In this chapter, we examined the capability of QD approaches and, in particular,
MAP-Elite in solving KP. We defined two behavioural spaces inspired by the classic
DP approaches and two corresponding MAP-Elite-based algorithms operating on these
spaces. We established that they imitate the exact DP approach, and one of them
behaves similarly to the classic FPTAS for KP under a specific parameter setting,
making it a FPRAS. We then compared the runtime of the algorithms empirically on
instances of various properties related to their hardness and found that the MAP-Elite
selection mechanism significantly boosts the efficiency of EAs in solving KP in terms
of convergence ratio, especially in hard instances. Inspecting the behavioural spaces
and population sizes reveals that smaller populations correlate to faster optimisation,
demonstrating a well-known trade-off between optimisation and exploring behavioural
spaces.

It is an open question to which extent MAP-Elites can simulate DP-like be-
haviours in other problems with recursive subproblem structures. Moreover, it might
be possible to make such approaches outperform DP via better controls of behavioural
space exploration, combined with more powerful variation operators.

118

Chapter 8

Constructing Diverse Satisfying
Assignments

8.1 Introduction

In previous chapters, we introduced EDO-based approaches to construct diverse sets of
solutions for the TSP and the TTP. We employed variation operators in these EAs to
generate offspring. Nevertheless, conventional variation operators have little chance to
generate feasible offspring in heavily constrained optimisation problems. This chapter
focuses on the diversification of assignments (solutions) for the Boolean satisfiability
problem (SAT). Several characteristics distinguish SAT from other problems studied
in the EDO literature and previous chapters. For instance, the other problems contain
either no or few constraints, such as the KP and the TSP. SAT, however, is a highly
constrained problem, making it extremely difficult to generate a feasible solution with
conventional operators and algorithms in the literature of EDO. In other fields, such
as constrained programming, researchers often forbid some variables or elements of
a given problem to construct a diverse set of solutions. This paper makes a bridge
between this approach and EDO.

Instead of using conventional operators, which are inefficient in SAT, we intro-
duce evolutionary algorithms (EAs) and operators that iteratively modify the original
SAT problem by adding clauses. We use a time-efficient solver, minisat [32], to con-
struct new solutions and utilise EDO approaches to maximise the diversity of the
solutions. It should be noted that standard minisat is a 20-year-old algorithm, but
some variants of it are still competitive. Having said that, we believe the standard
minisat is a beneficial starting point for this study.

We define two entropy-based diversity measures to quantify the diversity of SAT
assignments. The first measure treats all variables equally, while the other takes the
frequency of variables in clauses into account. We also conduct a comprehensive exper-
imental investigation, the goal of which is twofold: First, to evaluate the algorithms’

Chapter 8. Constructing Diverse Satisfying Assignments 119

performance in constructing diverse assignments. And second, to study the correla-
tion among diversity, solution space, and the number of clauses. For this purpose, we
use an SAT generator to construct instances with particular characteristics. Then,
we observe how the changes in these characteristics affect the diversity of solutions
and algorithms’ performances. For example, The introduced mutation outperforms
the crossover in the power law SAT instances, while it is the opposite in the uniform
instances.

The work of this chapter is based on a conference paper [89] presented at The
genetic and evolutionary computation conference (GECCO 2023). The remainder of
the chapter is structured as follows: We first define SAT and diversity in Section 8.2.
The diversity algorithms are introduced in Section 8.3. The Comprehensive experi-
mental investigation is presented in Section 8.4. Finally, we finish with concluding
remarks.

8.2 SAT and Diversity

This chapter aims to compute a diverse set of assignments for a given formula. The
SAT problem was defined in Section 2.4.4. For this purpose, we require a measure to
quantify the diversity of assignments.

8.2.1 Diversity

We utilise an entropy-based measure of diversity. First, we define some notations. Let
X denote the set of Boolean variables, x = (x1, · · · , xn) the assignment, and P a set
of assignments, where |X| = n, |P | = µ, m is number of the clauses. Also, let f(xi)

be the number of assignments in P , where xi = True. Then, we can calculate the
contribution of each variable to diversity as

h(xi) =

{
0 if f(xi) = 0 and

−
(
f(xi)
µ

)
· ln
(
f(xi)
µ

)
if f(xi) > 0.

In line with EDO literature [83, 85], the entropy of P can be calculated by
summation of the variables’ contributions:

H1(P) =
∑
xi∈X

h(xi)

Nevertheless, some variables appear in clauses more frequently than others. It would
be intriguing to give such variables more weight in the entropy calculation, Therefore,
we define the second measure as follows:

H2(P) =
∑
xi∈X

r(xi) · h(xi),

Chapter 8. Constructing Diverse Satisfying Assignments 120

where r(xi) is the number of occurrences of xi in the formula. It is beneficial to know
the maximum diversity for the measures. It can be used as an upper bound to evaluate
the diversity of a set of solutions. We can calculate the optimal f(x) from dh(x)

df(x) = 0;
Thus, the contribution of a variable is at maximum when:

f(x) = µ · e−1

Let denote the optimal f(x) by f∗. Since there are no limitations on the number
of true variables in P , H1 and H2 are maximum when {f(x) = f∗|∀x ∈ X}. Then,
we can calculate Hmax

1 and Hmax
2 form :

Hmax
1 = n · f∗&Hmax

2 = C · f∗

where C is the number of the literals in Φ.

8.3 Diversity Algorithms

In this chapter, we compute a diverse set of assignments for a given SAT problem
using the well-known SAT solver minisat. A basic approach to compute P for an SAT
problem is to forbid the current assignment by adding a clause to the formula and
using the solver to generate another one. For constructing the clause, we can easily
make a disjunction of the literals where each literal is the flipped associated variable
in the assignment. This method only sometimes leads to a diverse set of assignments.
Algorithm 23 outlines the steps required for this approach.

Algorithm 23 The basic algorithm
1: while |P | < µ do
2: Solve the SAT problem by the solver.
3: if A satisfying assignment x was found then
4: Add x to P .
5: Add a clause forbidding x to Φ.
6: else
7: Break.

EDO is another method to compute a diverse set of assignments. We can fix some
variables to true or false and then use the solver (minisat) to determine a satisfying
assignment with those fixed variables. Afterwards, we can employ EDO approaches
to maximise diversity. Here, the question is how to choose the fixed variables. In line
with most EDO algorithms in the literature, we can randomly select one of the current
solutions and, by standard bit flip mutation, flip some of the variable assignments and
fix them. In contrast to the standard bit-flip mutation, where the rest of the variables
remain unchanged, the solver determines the value for the other variables. Algorithm
24 describes this approach. First, we find the first satisfying assignment for Φ by

Chapter 8. Constructing Diverse Satisfying Assignments 121

Algorithm 24 The bit-flip evolutionary algorithm
1: Solve the SAT problem by the solver and add x to P .
2: while A termination criterion is met do
3: Select an assignment x from P uniformly at random.
4: Select and flip each variable independently with probability 1

n .
5: Add clauses fixing the selected variables to Φ
6: Solve Φ and determine unfixed variables by the solver.
7: if A satisfying assignment x was found then
8: if |P | > µ then
9: Add x to P .

10: Remove one individual x from P , where x = argmaxx∈P H(P \ {x}).
11: Remove the clauses that fix the variables from Φ.

minisat and add it to P . Then, we select a solution in P uniformly at random and
choose and flip some variables by the bit-flip mutation. After adding clauses to Φ

that fix the selected variables, we solve Φ by minisat. If a satisfying assignment is
found, we add it to P ; Then, if |P | > µ, we remove an assignment x with the least
contribution to the diversity of P . Finally, we remove the clauses fixing the variables
from Φ. We repeat these steps until a termination criterion is met.

Algorithm 25 The EDO algorithm
1: while |P | < µ do
2: Randomly fix l variables (determine y).
3: Add the clauses that fix the variables in y to Φ and solve it by the solver.
4: if A satisfying assignment x was found then
5: Add x to P and y to Y .
6: Remove the clauses fixing the variables from Φ.
7: while A termination criterion is met do
8: Randomly select one (two) parent(s) yi (yj) from Y .
9: Generate a new solution yo by mutation or crossover + mutation.

10: Add clauses that fix the variables in yo to Φ and solve the SAT problem.
11: if A satisfying assignment x is found then
12: Add x to P and yo to Y .
13: Remove one individual x from P , where x = argmaxx∈P H(P \{x}), and the

corresponding solution y from Y .
14: Remove the clauses fixing the variables from Φ.

Since minisat is an exact algorithm, we can map from the fixed variables to the
actual assignments. Thus, we can save the fixed variables and operate (crossover,
mutation) on them. So, we have a solution y consisting of a string y′ = (y′1, · · · , y′l)
showing the index of fixed variables and a Boolean string y′′ showing their values. Let
Y be a set of solutions y, where |Y | = µ. Note that from each yi ∈ Y we can map to
xi ∈ P , by fixing variables in yi and solving the problem by the solver.

Algorithm 25 sketches the steps required in this approach. The algorithm con-
sists of two stages, the initialisation and the evolutionary stage. In initialisation, we
randomly generate a variable y, where |y| = l. We solve ϕ after adding clauses to it.

Chapter 8. Constructing Diverse Satisfying Assignments 122

6 2 9

T F T

6 2 9 5

T F T F

6 9

T T

8 2 9

F F T

6 2 9

T F T

6 2 9

T F T

Adding a new Variable

Remove a variable

Changing a variable

(a) Mutation

6 2 9 5

T F T F

7 3

T F

7 2 5

T F F

7 2 5

T F F

Independently select each
variable and its values from the

parents.

Remove the empty cells. Add empty cells to the parent
with less variables to have an

equal size.

(b) Crossover
Figure 8.1. The representation of solution y, the mutation, and the

crossover in the EDO algorithm 25.

If a satisfying assignment x is found, we add x to P , and y to Y . Afterwards, we
remove the clauses fixing the variables from Φ. we continue these steps until |P | = µ.

C
hapter

8.
C

onstructing
D

iverse
Satisfying

A
ssignm

ents
123

Table 8.1. The diversity obtained from the algorithms using H1 as the fitness function in 30 independent runs. Stat shows the results of
the Kruskal-Wallis statistical test at a 5% significance level with Bonferroni correction. In row Stat, the notation X+ means the median

of the measure (H1) is better than the one for variant X, X− means it is worse, and X∗ indicates no significant difference.

Basic 23 Bit-flip 24 EDO 25 Mutation EDO 25 Crossover+Mutation

m H1 H2 Stat (1) H1 H2 Stat (2) H1 H2 Stat (3) H1 H2 Stat (4)

210 0.055 0.016 2−3−4− 0.753 0.839 1+3−4− 0.962 0.959 1+2+4∗ 0.953 0.955 1+2+3∗

220 0.052 0.011 2−3−4− 0.721 0.818 1+3−4− 0.945 0.938 1+2+4∗ 0.932 0.933 1+2+3∗

230 0.055 0.019 2−3−4− 0.738 0.823 1+3−4− 0.937 0.932 1+2+4∗ 0.925 0.925 1+2+3∗

240 0.046 0.007 2−3−4− 0.731 0.808 1+3−4− 0.933 0.927 1+2+4∗ 0.921 0.924 1+2+3∗

250 0.171 0.135 2−3−4− 0.774 0.851 1+3−4− 0.928 0.918 1+2+4∗ 0.911 0.915 1+2+3∗

260 0.114 0.075 2−3−4− 0.765 0.832 1+3−4− 0.925 0.909 1+2+4∗ 0.914 0.904 1+2+3∗

270 0.089 0.061 2−3−4− 0.757 0.823 1+3−4− 0.911 0.893 1+2+4∗ 0.896 0.886 1+2+3∗

280 0.172 0.143 2−3−4− 0.76 0.828 1+3−4− 0.907 0.897 1+2+4∗ 0.886 0.885 1+2+3∗

290 0.14 0.083 2−3−4− 0.826 0.842 1+3−4− 0.912 0.878 1+2+4+ 0.9 0.874 1+2+3−

300 0.272 0.235 2−3−4− 0.825 0.825 1+3−4− 0.902 0.856 1+2+4∗ 0.895 0.857 1+2+3∗

310 0.191 0.156 2−3−4− 0.776 0.777 1+3−4∗ 0.862 0.814 1+2+4∗ 0.844 0.806 1+2∗3∗

320 0.099 0.051 2−3−4− 0.478 0.424 1+3−4∗ 0.611 0.489 1+2+4∗ 0.591 0.478 1+2∗3∗

330 0.169 0.135 2−3−4− 0.544 0.503 1+3−4∗ 0.666 0.56 1+2+4∗ 0.643 0.547 1+2∗3∗

340 0.182 0.129 2−3−4− 0.627 0.562 1+3−4− 0.73 0.611 1+2+4∗ 0.717 0.603 1+2+3∗

350 0.157 0.113 2−3−4− 0.534 0.496 1+3−4∗ 0.61 0.532 1+2+4∗ 0.605 0.531 1+2∗3∗

360 0.089 0.047 2−3−4− 0.531 0.501 1+3−4∗ 0.606 0.537 1+2+4∗ 0.6 0.535 1+2∗3∗

370 0.156 0.11 2−3−4− 0.425 0.339 1+3−4− 0.535 0.394 1+2+4∗ 0.529 0.392 1+2+3∗

380 0.161 0.121 2−3−4− 0.437 0.344 1+3−4∗ 0.498 0.375 1+2+4∗ 0.491 0.372 1+2∗3∗

C
hapter

8.
C

onstructing
D

iverse
Satisfying

A
ssignm

ents
124

Table 8.2. The diversity obtained from the algorithms using H1 as the fitness function. The variables appear in clauses based on a
uniform distribution with n = 100 and k = 3. The notations are in line with Table 8.1

Basic 23 Bit-flip 24 EDO 25 Mutation EDO 25 Crossover+Mutation

m H1 H2 Stat (1) H1 H2 Stat (2) H1 H2 Stat (3) H1 H2 Stat (4)

270 0.295 0.28 2−3−4− 0.859 0.889 1+3−4− 0.942 0.947 1+2+4∗ 0.94 0.948 1+2+3∗

280 0.241 0.217 2−3−4− 0.867 0.879 1+3−4− 0.944 0.943 1+2+4∗ 0.944 0.946 1+2+3∗

290 0.202 0.186 2−3−4− 0.834 0.848 1+3−4− 0.937 0.938 1+2+4∗ 0.939 0.941 1+2+3∗

300 0.183 0.175 2−3−4− 0.877 0.888 1+3−4− 0.943 0.943 1+2+4∗ 0.946 0.946 1+2+3∗

310 0.09 0.078 2−3−4− 0.875 0.893 1+3−4− 0.943 0.946 1+2+4∗ 0.945 0.948 1+2+3∗

320 0.062 0.051 2−3−4− 0.884 0.894 1+3−4− 0.936 0.939 1+2+4∗ 0.937 0.94 1+2+3∗

330 0.157 0.137 2−3−4− 0.885 0.895 1+3−4− 0.927 0.927 1+2+4∗ 0.932 0.934 1+2+3∗

340 0.135 0.117 2−3−4− 0.898 0.905 1+3−4− 0.928 0.927 1+2+4∗ 0.933 0.933 1+2+3∗

350 0.073 0.062 2−3−4− 0.895 0.903 1+3−4− 0.916 0.918 1+2+4∗ 0.918 0.92 1+2+3∗

360 0.08 0.067 2−3−4− 0.866 0.875 1+3−4− 0.893 0.896 1+2+4∗ 0.898 0.903 1+2+3∗

370 0.084 0.07 2−3−4− 0.851 0.862 1+3−4− 0.884 0.886 1+2+4∗ 0.891 0.895 1+2+3∗

380 0.058 0.042 2−3−4− 0.846 0.855 1+3−4− 0.876 0.879 1+2+4∗ 0.877 0.88 1+2+3∗

390 0.178 0.178 2−3−4− 0.822 0.822 1+3∗4− 0.832 0.829 1+2∗4∗ 0.835 0.832 1+2+3∗

400 0.226 0.215 2−3−4− 0.637 0.622 1+3−4− 0.648 0.63 1+2+4∗ 0.647 0.629 1+2+3∗

410 0.105 0.098 2−3−4− 0.674 0.669 1+3−4− 0.693 0.685 1+2+4∗ 0.693 0.684 1+2+3∗

420 0.125 0.118 2−3−4− 0.603 0.592 1+3∗4− 0.612 0.599 1+2∗4∗ 0.613 0.6 1+2+3∗

430 0.153 0.146 2−3−4− 0.311 0.299 1+3∗4− 0.326 0.309 1+2∗4∗ 0.326 0.309 1+2+3∗

440 0.059 0.047 2−3−4− 0.352 0.335 1+3−4− 0.366 0.346 1+2+4∗ 0.366 0.347 1+2+3∗

Chapter 8. Constructing Diverse Satisfying Assignments 125

Having constructed an initial population, we move to the evolutionary stage. We
first select a solution y (or two solutions in case of crossover) from Y and generate an
offspring yo by mutation (or first crossover, then mutation). After adding clauses fixing
variables in yo to Φ, we solve it by the solver. If a satisfying assignment x is found,
we add x to P and y to Y ; then remove a x from P and the corresponding y from Y

that has the least contribution to the diversity of P . In the last step, we remove the
clauses fixing the variables from Φ. We repeat these steps in the evolutionary stage
until a termination criterion is met.

We now describe the operators, the mutation and the crossover. For the muta-
tion, we take one of the following three actions uniformly at random: 1) Fix another
variable (add a new variable to y), 2) unfix a variable (remove a variable from y),
or 3) switch a fixed variable with an unfixed variable, all uniformly at random. The
steps are depicted in Figure8.1a. Turning to the crossover, we add empty cells to
the parent with fewer fixed variables to make the sizes equal. Then, we select each
variable randomly from the parents with probability 1/2. Figure8.1b illustrates the
steps required by the crossover.

8.4 Experimental Investigation

This section empirically studies and compares the introduced algorithms. We examine
two variations of Algorithm 25: One solely employs mutation as the operator, while
the other first generates an offspring by crossover and then uses mutation on the
offspring. To examine the algorithms, we use the SAT generator [5] to generate two
sets of CNF formulas. The SAT generator is also used for experimental investigations
in [38, 39]. In the first set, the variables appear in clauses based on a power law
distribution. The following parameters were used in generating the first set: n = 100,
k = 3, β = 2.75, and m = {210, 220, · · · , 380}, where k and β are the number of
literals in a clause and the power law exponent, respectively. In the second set, the
variables appear in the clauses based on the uniform distribution. The parameters
for the set are: n = 100, k = 3, and m = {270, 280, · · · , 440}. We set µ = 20

and consider 2000 iterations as the termination criterion for the EAs. Instead of 30
independent runs on one formula, we generate 30 formulas for each configuration and
run the algorithms once on each formula. This helps us to comprehend more about
SAT instances having the same characteristics. Note that we made sure all formulas
were satisfiable (Φ = true).

8.4.1 Comparison of algorithms employing H1 as the fitness

In this section, we compare the diversity of SAT assignments obtained by the presented
algorithms using H1 as the fitness function. Table 8.1 summarises the algorithms’
results in the first set of instances (formulas). As expected, the basic algorithm results
in assignments with poor diversity; the H1 values range between 1.71 and 10.01. If we

Chapter 8. Constructing Diverse Satisfying Assignments 126

normalise these values, the range is from 5% to 27%. The interesting information is
that the increase in the clause-variable ratio m

n has no meaningful impact on the basic
algorithm’s result. The expectation is that an increase in

(
m
n

)
reduces the feasible

region, which leads to a decrease in the diversity of assignments; we can observe the
trend in the results of the other algorithms.

As Table 8.1 shows, the bit-flip brings about considerably more diverse assign-
ments than the basic algorithm. The observation can be confirmed by the Kruskal-
Wallis statistical test at a 5% significance level and with Bonferroni correction. The
mean of diversity ranges from 44% to 82%. Although there are also fluctuations in
the bit-flip algorithm’s results, we can observe a general decrease in diversity by an
increase in

(
m
n

)
, especially when m is larger than 290. However, if we only consider

the first half of the table, it is exactly the other way around; there is a slight increase
in diversity obtained. One plausible reason is that the minisat solver is an exact algo-
rithm, and bit-flip mutation does not impose as significant changes as required. On
the other hand, an increase in

(
m
n

)
makes even minor changes significantly impact

the assignments. In fact, the feasible regain, and the maximum achievable diversity
decrease in instances with medium values of

(
m
n

)
compared to small ones, but the

bit-flip algorithm performs better in these instances.

Table 8.1 indicates the superiority of EDO algorithms in constructing diverse
sets of SAT assignments. Both algorithm variants yield decent results and statistically
outperform the basic and the bit-flip algorithms in all instances. Here, we can observe
a more static downward trend in diversity with increasing m

n . It results in sets with
more than 90% diversity (normalised H1) for instances with m

n ≤ 3. For example,
the mean of diversity is 96% in cases where m = 210. Interestingly, the variant using
only mutation results in slightly higher diversity. Although, it is not statistically
significant.

Table 8.2 draws a similar comparison between the algorithms on the set of uni-
form formulas. Almost all our observations in Table 8.1 are still valid. Table 8.2 shows
that: 1) Algorithm 23 results in solutions with poor diversity ranging from 6% to 29%.
Nevertheless, the diversity obtained in the uniform instances is higher compared to
the power law formulas. 2) Bit-flip performs better than the basic algorithm but worse
than the EDO variants. The average H1 obtained by the bit-flip algorithms ranges
from 0.31 to 0.86. 3) We can observe a descending trend in diversity for increasing
m
n , especially in the EDO algorithms’ results.

The most interesting part of the table is comparing the two EDO variants. In
contrast to the power law instances, the variant using both crossover and mutation
slightly outperforms the other one in terms of H1. We can get diverse sets of SAT
assignments with more than 90% diversity in terms of H1 with the EDO algorithm in
cases m ≤ 360.

C
hapter

8.
C

onstructing
D

iverse
Satisfying

A
ssignm

ents
127

Table 8.3. The diversity obtained from the algorithms using H2 as the fitness function on the same instances in Table 8.1. The
Kruskal-Wallis statistical test is conducted on H2. The notations are in line with Table 8.1

Basic 23 Bit-flip 24 EDO 25 Mutation EDO 25 Crossover+Mutation

m H2 H1 Stat (1) H2 H1 Stat (2) H2 H1 Stat (3) H2 H1 Stat (4)

210 0.016 0.055 2−3−4− 0.849 0.732 1+3−4− 0.965 0.944 1+2+4∗ 0.957 0.912 1+2+3∗

220 0.011 0.052 2−3−4− 0.83 0.709 1+3−4− 0.95 0.928 1+2+4∗ 0.939 0.892 1+2+3∗

230 0.019 0.055 2−3−4− 0.836 0.719 1+3−4− 0.941 0.911 1+2+4+ 0.932 0.882 1+2+3−

240 0.007 0.046 2−3−4− 0.825 0.706 1+3−4− 0.936 0.896 1+2+4∗ 0.929 0.874 1+2+3∗

250 0.135 0.171 2−3−4− 0.859 0.757 1+3−4− 0.927 0.909 1+2+4∗ 0.918 0.874 1+2+3∗

260 0.075 0.114 2−3−4− 0.845 0.751 1+3−4− 0.919 0.906 1+2+4∗ 0.911 0.872 1+2+3∗

270 0.061 0.089 2−3−4− 0.838 0.737 1+3−4− 0.907 0.89 1+2+4+ 0.895 0.844 1+2+3−

280 0.143 0.172 2−3−4− 0.842 0.74 1+3−4− 0.906 0.877 1+2+4∗ 0.895 0.84 1+2+3∗

290 0.083 0.14 2−3−4− 0.861 0.807 1+3−4− 0.895 0.887 1+2+4+ 0.887 0.864 1+2+3−

300 0.235 0.272 2−3−4− 0.835 0.813 1+3−4− 0.865 0.884 1+2+4∗ 0.865 0.867 1+2+3∗

310 0.156 0.191 2−3−4− 0.786 0.762 1+3−4∗ 0.824 0.845 1+2+4∗ 0.816 0.815 1+2∗3∗

320 0.051 0.099 2−3−4− 0.434 0.468 1+3−4∗ 0.494 0.599 1+2+4∗ 0.481 0.558 1+2∗3∗

330 0.135 0.169 2−3−4− 0.513 0.534 1+3−4∗ 0.562 0.647 1+2+4∗ 0.551 0.61 1+2∗3∗

340 0.129 0.182 2−3−4− 0.57 0.617 1+3−4∗ 0.616 0.718 1+2+4∗ 0.606 0.69 1+2∗3∗

350 0.113 0.157 2−3−4− 0.505 0.524 1+3−4∗ 0.537 0.598 1+2+4∗ 0.534 0.587 1+2∗3∗

360 0.047 0.089 2−3−4− 0.504 0.524 1+3−4∗ 0.541 0.602 1+2+4∗ 0.536 0.589 1+2∗3∗

370 0.11 0.156 2−3−4− 0.342 0.42 1+3−4− 0.396 0.53 1+2+4∗ 0.392 0.521 1+2+3∗

380 0.121 0.161 2−3−4− 0.347 0.432 1+3−4∗ 0.377 0.494 1+2+4∗ 0.374 0.484 1+2∗3∗

C
hapter

8.
C

onstructing
D

iverse
Satisfying

A
ssignm

ents
128

Table 8.4. The diversity obtained from the algorithms using H2 the fitness on the same instances in Table 8.2. The notations are in
line with Table 8.3.

Basic 23 Bit-flip 24 EDO 25 Mutation EDO 25 Crossover+Mutation

m H2 H1 Stat (1) H2 H1 Stat (2) H2 H1 Stat (3) H2 H1 Stat (4)

270 0.28 0.295 2−3−4− 0.891 0.849 1+3−4− 0.95 0.933 1+2+4∗ 0.946 0.923 1+2+3∗

280 0.217 0.241 2−3−4− 0.881 0.863 1+3−4− 0.946 0.937 1+2+4∗ 0.947 0.934 1+2+3∗

290 0.186 0.202 2−3−4− 0.849 0.83 1+3−4− 0.939 0.931 1+2+4∗ 0.942 0.93 1+2+3∗

300 0.175 0.183 2−3−4− 0.891 0.871 1+3−4− 0.945 0.939 1+2+4∗ 0.947 0.936 1+2+3∗

310 0.078 0.09 2−3−4− 0.897 0.874 1+3−4− 0.945 0.933 1+2+4∗ 0.95 0.937 1+2+3∗

320 0.051 0.062 2−3−4− 0.895 0.881 1+3−4− 0.938 0.929 1+2+4∗ 0.94 0.928 1+2+3∗

330 0.136 0.157 2−3−4− 0.897 0.882 1+3−4− 0.93 0.923 1+2+4∗ 0.934 0.923 1+2+3∗

340 0.117 0.135 2−3−4− 0.907 0.895 1+3−4− 0.932 0.927 1+2+4∗ 0.934 0.925 1+2+3∗

350 0.062 0.073 2−3−4− 0.904 0.892 1+3−4− 0.919 0.911 1+2+4∗ 0.922 0.913 1+2+3∗

360 0.067 0.08 2−3−4− 0.879 0.865 1+3−4− 0.897 0.889 1+2+4∗ 0.904 0.894 1+2+3∗

370 0.07 0.084 2−3−4− 0.866 0.851 1+3−4− 0.892 0.882 1+2+4∗ 0.896 0.884 1+2+3∗

380 0.042 0.058 2−3−4− 0.858 0.843 1+3−4− 0.878 0.867 1+2+4∗ 0.881 0.869 1+2+3∗

390 0.178 0.178 2−3−4− 0.824 0.818 1+3∗4− 0.832 0.829 1+2∗4∗ 0.834 0.83 1+2+3∗

400 0.214 0.226 2−3−4− 0.623 0.636 1+3−4− 0.631 0.646 1+2+4∗ 0.631 0.645 1+2+3∗

410 0.098 0.105 2−3−4− 0.672 0.673 1+3−4− 0.684 0.688 1+2+4∗ 0.684 0.686 1+2+3∗

420 0.118 0.125 2−3−4− 0.593 0.601 1+3−4∗ 0.602 0.611 1+2+4∗ 0.601 0.61 1+2∗3∗

430 0.146 0.153 2−3−4− 0.3 0.311 1+3∗4− 0.309 0.325 1+2∗4∗ 0.309 0.326 1+2+3∗

440 0.047 0.059 2−3−4− 0.336 0.352 1+3−4− 0.347 0.366 1+2+4∗ 0.347 0.366 1+2+3∗

Chapter 8. Constructing Diverse Satisfying Assignments 129

8.4.2 Comparison of algorithms employing H2 as the fitness

We examine the algorithms’ performance when H2 is incorporated as the fitness func-
tion. The H2 differs from H1 in focusing on the variables with more appearances in
Φ. Table 8.3 and 8.4 summarise the algorithms’ results in the power law and uniform
instances, respectively. Since Algorithm 24 does not use any diversity measures inside
of the algorithm, the results are the same as those of Table 8.1 and 8.2. Nevertheless,
the other algorithms’ results in Table 8.3 and 8.4 are different to those in Table 8.1 and
8.2. As expected, the diversity of assignments slightly increases in terms of H2, while
there is a minor drop in H1 values. The change is plausible since we incorporated H2

into the algorithms as the fitness function instead of H1.

One may observe that increasing m
n affects the capability of the introduced algo-

rithms in terms of H2 more than it does in terms of H1. This is because, in a limited
feasible region, the more frequent variables are more likely to be fixed at true or false.
Since those variables have a higher weight in the diversity calculation, increases in
m
n make it challenging to diversify solutions in terms of H2. For instance, Table 8.3
indicates that the H2 values drop from 0.96 to 0.38 for the EDO algorithm using
mutation, while the same sets of solutions result in less severe decreases in H1 values
(from 0.94 to 0.5).

Table 8.3 also indicates that the gap between the results of the EDO algorithms’
variants is more profound when H2 is used as the fitness function. The statistical
tests also confirm the difference in favour of the variant employing the mutation
in instances where m = {230, 270, 290}. However, it is the other way around in
the uniform instances; the variant that benefits from the crossover performs slightly
better, although the difference is statically insignificant. The same observation we
had when H1 was incorporated into the algorithm as the fitness function. The results
show the algorithms perform similarly in cases of using H1 or H2 measures. However,
H1 and H2 are different since H2 is biased toward the more frequent literals. Since the
algorithms perform similarly, decision-makers can take into account their preferences
and needs and choose one of the measures.

8.4.3 Investigation on Unsatisfiablity

This subsection studies the correlation between the obtained diversity and the number
of unsatisfiable formulas generated during the search. The introduced algorithms, as
mentioned, modify the formula Φ to generate a new assignment in each iteration.
Although Φ is a true formula, it is likely to make it false via modifications during the
search. We consider Algorithm 24 for this purpose since the algorithm does not have
any hyper-parameters affecting the results.

Figure 8.2 depicts the trajectories of diversity and the false Φ generated by
Algorithm 24. Note that we normalise the values to plot them in a figure. As expected,

Chapter 8. Constructing Diverse Satisfying Assignments 130

250 300 350
m

0

0.2

0.4

0.6

0.8

1
N

or
m

al
is

ed
 v

al
ue

The power law SAT instances

H
1

False

300 350 400
m

0

0.2

0.4

0.6

0.8

N
or

m
al

is
ed

 v
al

ue

The uniform SAT instances

250 300 350
m

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 v
al

ue

H
2

False

300 350 400
m

0

0.2

0.4

0.6

0.8

N
or

m
al

is
ed

 v
al

ue

Figure 8.2. The representative trajectories of the bit-flip algorithm’s
diversity and the number of false Φ. In the first row, H1 serves as the

fitness function, while it is H2 in the second row.

the algorithm generates the minimum number of false formulas (false Φ) when m
n is

low. Low values of m
n often lead to large feasible regions and, consequently, a larger

room to diversify the solutions. In such cases, the modifications of Algorithm 24
are not large enough to cause unsatisfiability for Φ. If m

n gets sufficiently large, so
does the feasible region get more limited, affecting both the diversity and satisfiability
rate. Although a disproportional relationship between diversity and unsatisfiability is
expected, the figure interestingly depicts a symmetric behaviour. The trajectories are
pretty similar for H1 and H2. The sole difference is the range of H1 and H2 in the
power law instances, where H2 starts and finishes at slightly higher values.

8.5 Conclusion

This study presented evolutionary approaches to construct a diverse set of solutions
in SAT using the well-known SAT solver, minisat. We first defined two measures to
quantify the diversity of solutions. One, which considers and one, which dismisses the
frequency of variable appearances in clauses. Then, we introduced two EAs, employing
the EDO principle to construct a diverse set of SAT assignments. The EAs iteratively
make modifications on a given SAT instance, then solve it with a well-known solver,
minisat. Finally, we conducted a comprehensive experimental investigation to assess

Chapter 8. Constructing Diverse Satisfying Assignments 131

the algorithms’ performance and study the solution space and unsatisfiability rate.
The results indicate the capability of the introduced algorithm to compute highly
diverse sets of SAT solutions.

For future studies, it is intriguing to study more complicated EAs, like (µ+ λ)-
EAs. Although it is challenging in diversity problems to select the next generation
when λ is larger than one, an increase in λ can potentially improve the algorithms’
performance. Another possible extension is to study other related problems, such as
MaxSAT.

132

Chapter 9

Conclusion

This thesis focuses on diversity optimisation in combinatorial problems. Firstly, we
introduced an entropy-based diversity measure in the context of EDO. The maximum
achievable entropy in the TSP was theoretically investigated. Then, MIP formulation
was provided to compute a diverse set of TSP tours to support the theoretical proof
for the maximum achievable entropy. Additionally, we proposed an (µ+1)EA for the
diversity problem in the TSP and defined a biased version of the 2-OPT operator.
In the biased 2-OPT, the frequency of segments of the solution in the population
plays a crucial role in the edge selection for mutation. Methods for selecting the next
generation in (µ + λ)EA, where λ ≥ 2, were also introduced. Then, we conducted
comprehensive experimental investigations to examine the performance of the pro-
posed methods. The results indicate that biased 2-OPT results in faster algorithm
convergence, and the EA-based selection method outperforms the vanilla (µ + 1)EA
in the literature.

In Chapter 4, we extended our approach in Chapter 3 by introducing EAX-EDO,
which is a modified version of the EAX crossover to consider the quality and diversity
of solutions simultaneously. This modification makes a bias toward maximising the
diversity of TSP tours, while the vanilla EAX only focuses on the quality of solutions.
Moreover, we investigated scenarios where the optimal solution may be unknown.
Then, we compared our approaches with vanilla GA based on the EAX. The results
demonstrate our method’s ability to diversify TSP solutions.

After studying TSP within the context of EDO, we shifted our focus to another
well-known combinatorial problem, the TTP in n Chapter 5. We first introduced
a bi-level QD-based algorithm to address the TTP. For this purpose, we defined a
2D behavioural space based on the sub-problems of the TTP, meaning the TSP and
the KP. Next, we incorporated a selection procedure based on MAP-Elite into the
EA so as to explore niches in the TSP/KP behavioural space. We also empirically
investigated the performance of the proposed algorithm. The results showed the
strength of the algorithm in finding and diversifying the TTP solutions with decent
objective values. Furthermore, in Chapter 6, we investigated the interdependency

Chapter 9. Conclusion 133

of TTP’s sub-problems in terms of diversity using EDO. We also proposed a Co-
EA to simultaneously compute diverse sets of solutions in both the behavioural and
structural spaces.

In addition to our empirical study of QD, we also examined the concept from
a theoretical perspective. This study presents the first runtime analysis of QD. We
focused on the KP for the case study. We defined two behavioural spaces for the KP, a
weight-based space and a profit-based space. Furthermore, we conducted comprehen-
sive experimental analyses, indicating that the weight-based algorithm outperforms
the profit-based one. The results also showed the weight-based algorithm is more
likely to escape local optima than the proposed similar approaches, the (1+1)EA and
(µ+ 1)EA.

In the final technical chapter, we investigated a heavily constrained problem,
the SAT. A large number of constraints in a problem make conventional variation
operators less successful in generating feasible assignments. To address this, we ex-
ploit a well-known SAT solver by incorporating it into two different EAs. The EAs
iteratively modify the problem itself by adding new constraints. These modifications
enforce the SAT solver to construct distinct solutions. Similar to the other chapters,
we examined the performance of the introduced EA through a series of experimen-
tal investigations, which shows that the EDO-based algorithm can construct highly
diverse sets of assignments.

9.1 Future Studies

We have already provided future study suggestions related to each chapter at the end
of each chapter, offering directions for further research. This section aims to introduce
additional ways to extend this study more fundamentally. Diversity optimisation in
bio-inspired computation is a rapidly evolving field of research, and this thesis primar-
ily focuses on evolutionary-based algorithms. There are several other bio-inspired and
metaheuristic algorithms that remain to be studied in this field, such as ACO and
PSO. Conducting a comparison between these algorithms and the introduced EAs
in this study would provide a comprehensive understanding of their performance in
diversity optimisation.

Furthermore, our concentration was primarily on a selection of combinatorial
optimisation problems, including TSP, TTP, and KP. However, there are numerous
benchmark optimization problems of significant importance in both continuous and
discrete domains. For instance, the vehicle routing problem (VRP) is another vital
multi-component combinatorial optimization problem with diverse real-world applica-
tions. In recent years, sustainability has been incorporated into VRP, giving rise to the
concept of green VRP. Most solution approaches in green VRP involve multi-objective

Chapter 9. Conclusion 134

frameworks such as multi-objective EAs. It would be intriguing to study such prob-
lems in the context of QD by defining a behavioural space considering sustainable
features.

In diversity optimisation, EDO and QD aim to find a diverse set of solutions for
a given optimisation problem. Therefore, we can treat the population as a singular
solution to the diversity problem such that we can investigate variation operators, such
as mutation and crossover, on multiple populations. This unique approach allows us
to simultaneously benefit from QD, EDO, and even niching and optimise diversity
and quality. Finally, this thesis studied a number of well-known single objective
optimisation problems, while there are many real-world problems, including several
objective functions. It would be intriguing to study such problems in the context of
EDO and QD.

135

Bibliography

[1] Emile HL Aarts and Jan Karel Lenstra. Local search in combinatorial opti-
mization. Princeton University Press, 2003.

[2] Bradley Alexander, James Kortman, and Aneta Neumann. “Evolution of artis-
tic image variants through feature based diversity optimisation”. In: GECCO.
ACM, 2017, pp. 171–178.

[3] Maxime Allard, Simón C. Smith, Konstantinos I. Chatzilygeroudis, and An-
toine Cully. “Hierarchical quality-diversity for online damage recovery”. In:
GECCO. ACM, 2022, pp. 58–67.

[4] RD Angel, WL Caudle, R Noonan, and ANDA Whinston. “Computer-assisted
school bus scheduling”. In: Management Science 18.6 (1972), B–279.

[5] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. “Towards Industrial-
Like Random SAT Instances”. In: IJCAI. 2009, pp. 387–392.

[6] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook.
“Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling
salesman problems”. In: Math. Program. 97.1-2 (2003), pp. 91–153.

[7] Gerardo Beni and Jing Wang. “Swarm intelligence in cellular robotic sys-
tems”. In: Robots and biological systems: towards a new bionics? Springer. 1993,
pp. 703–712.

[8] Mohammad Reza Bonyadi and Zbigniew Michalewicz. “Particle Swarm Opti-
mization for Single Objective Continuous Space Problems: A Review”. In: Evol.
Comput. 25.1 (2017), pp. 1–54.

[9] Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. “The
travelling thief problem: The first step in the transition from theoretical prob-
lems to realistic problems”. In: IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 1037–1044.

[10] Mohammad Reza Bonyadi, Zbigniew Michalewicz, Michal Roman Przybylek,
and Adam Wierzbicki. “Socially inspired algorithms for the travelling thief
problem”. In: GECCO. ACM, 2014, pp. 421–428.

[11] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-
mann, and Heike Trautmann. “Evolving diverse TSP instances by means of
novel and creative mutation operators”. In: FOGA. ACM, 2019, pp. 58–71.

[12] Jakob Bossek and Frank Neumann. “Evolutionary diversity optimization and
the minimum spanning tree problem”. In: GECCO. ACM, 2021, pp. 198–206.

Bibliography 136

[13] Jakob Bossek and Frank Neumann. “Exploring the feature space of TSP in-
stances using quality diversity”. In: GECCO. ACM, 2022, pp. 186–194.

[14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2014.

[15] Jonatas B. C. Chagas and Markus Wagner. “A weighted-sum method for solv-
ing the bi-objective traveling thief problem”. In: Comput. Oper. Res. 138 (2022),
p. 105560.

[16] Konstantinos I. Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-
Baptiste Mouret. “Quality-Diversity Optimization: a novel branch of stochastic
optimization”. In: CoRR abs/2012.04322 (2020).

[17] Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. “Summary of "the evolu-
tionary origins of modularity"”. In: GECCO (Companion). ACM, 2013, pp. 23–
24.

[18] G. V. Conroy. “Handbook of genetic algorithms by Lawrence Davis (Ed.), Chap-
man & Hall, London, 1991, pp 385, £32.50”. In: Knowl. Eng. Rev. 6.4 (1991),
pp. 363–365.

[19] IBM ILOG Cplex. “V12. 1: User’s Manual for CPLEX”. In: International Busi-
ness Machines Corporation 46.53 (2009), p. 157.

[20] Georges A Croes. “A method for solving traveling-salesman problems”. In: Op-
erations research 6.6 (1958), pp. 791–812.

[21] Antoine Cully and Jean-Baptiste Mouret. “Behavioral repertoire learning in
robotics”. In: GECCO. ACM, 2013, pp. 175–182.

[22] George Dantzig. “Discrete-variable extremum problems”. In: Operations re-
search 5.2 (1957), pp. 266–288.

[23] George Dantzig. Linear programming and extensions. Princeton University
Press, 2016.

[24] Anh Viet Do, Jakob Bossek, Aneta Neumann, and Frank Neumann. “Evolving
diverse sets of tours for the travelling salesperson problem”. In: GECCO. ACM,
2020, pp. 681–689.

[25] Anh Viet Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. “Analysis
of Evolutionary Diversity Optimization for Permutation Problems”. In: ACM
Trans. Evol. Learn. Optim. 2.3 (2022), 11:1–11:27.

[26] Benjamin Doerr and Carola Doerr. “Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings”. In: GECCO Com-
panion. 2015, pp. 1335–1342.

[27] Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neumann, and Andrew
M. Sutton. “Optimization of Chance-Constrained Submodular Functions”. In:
AAAI. AAAI Press, 2020, pp. 1460–1467.

[28] Benjamin Doerr, Anton V. Eremeev, Frank Neumann, Madeleine Theile, and
Christian Thyssen. “Evolutionary algorithms and dynamic programming”. In:
Theor. Comput. Sci. 412.43 (2011), pp. 6020–6035.

Bibliography 137

[29] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. “Fast
genetic algorithms”. In: GECCO. ACM, 2017, pp. 777–784.

[30] Benjamin Doerr and Frank Neumann, eds. Theory of Evolutionary Compu-
tation - Recent Developments in Discrete Optimization. Natural Computing
Series. Springer, 2020.

[31] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT Press, 2004.
[32] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: SAT. Vol. 2919.

Lecture Notes in Computer Science. Springer, 2003, pp. 502–518.
[33] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing,

Second Edition. Natural Computing Series. Springer, 2015.
[34] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing,

Second Edition. Natural Computing Series. Springer, 2015.
[35] Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian To-

gelius, Amy K. Hoover, and Stefanos Nikolaidis. “Illuminating Mario Scenes
in the Latent Space of a Generative Adversarial Network”. In: AAAI. AAAI
Press, 2021, pp. 5922–5930.

[36] Matthew C. Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K. Hoover.
“Covariance matrix adaptation for the rapid illumination of behavior space”.
In: GECCO. ACM, 2020, pp. 94–102.

[37] Tobias Friedrich, Timo Kötzing, J. A. Gregor Lagodzinski, Frank Neumann,
and Martin Schirneck. “Analysis of the (1 + 1) EA on subclasses of linear
functions under uniform and linear constraints”. In: Theor. Comput. Sci. 832
(2020), pp. 3–19.

[38] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald, and
Andrew M. Sutton. “Bounds on the Satisfiability Threshold for Power Law Dis-
tributed Random SAT”. In: ESA. Vol. 87. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017, 37:1–37:15.

[39] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, and Andrew M. Sutton.
“Phase Transitions for Scale-Free SAT Formulas”. In: AAAI. AAAI Press, 2017,
pp. 3893–3899.

[40] Theodoros Galanos, Antonios Liapis, Georgios N. Yannakakis, and Reinhard
Koenig. “ARCH-Elites: quality-diversity for urban design”. In: GECCO Com-
panion. ACM, 2021, pp. 313–314.

[41] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. “Feature-Based Di-
versity Optimization for Problem Instance Classification”. In: Evol. Comput.
29.1 (2021), pp. 107–128.

[42] Fred W. Glover and Manuel Laguna. Tabu Search. Kluwer, 1997.
[43] Teofilo F. Gonzalez, ed. Handbook of Approximation Algorithms and Meta-

heuristics, Second Edition, Volume 1: Methologies and Traditional Applica-
tions. Chapman and Hall/CRC, 2018.

Bibliography 138

[44] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. “Optimal control of
plotting and drilling machines: A case study”. In: ZOR Methods Model. Oper.
Res. 35.1 (1991), pp. 61–84.

[45] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2021. url:
https://www.gurobi.com.

[46] Georges R. Harik. “Finding Multimodal Solutions Using Restricted Tourna-
ment Selection”. In: ICGA. Morgan Kaufmann, 1995, pp. 24–31.

[47] Jun He and Xin Yao. “Drift analysis and average time complexity of evolution-
ary algorithms”. In: Artif. Intell. 127.1 (2001), pp. 57–85.

[48] Keld Helsgaun. “An effective implementation of the Lin-Kernighan traveling
salesman heuristic”. In: Eur. J. Oper. Res. 126.1 (2000), pp. 106–130.

[49] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press, 1992.

[50] Christian Horoba. “Analysis of a simple evolutionary algorithm for the multi-
objective shortest path problem”. In: FOGA. ACM, 2009, pp. 113–120.

[51] Ellis Horowitz and Sartaj Sahni. “Computing Partitions with Applications to
the Knapsack Problem”. In: J. ACM 21.2 (1974), pp. 277–292.

[52] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive
systems. University of Michigan, 1975.

[53] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: ICNN.
IEEE, 1995, pp. 1942–1948.

[54] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Optimization by
simulated annealing”. In: science 220.4598 (1983), pp. 671–680.

[55] C Koulamas, SR Antony, and R Jaen. “A survey of simulated annealing ap-
plications to operations research problems”. In: Omega 22.1 (1994), pp. 41–
56.

[56] Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives: Evolution
Through the Search for Novelty Alone”. In: Evol. Comput. 19.2 (2011), pp. 189–
223.

[57] Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, and Andries P. Engel-
brecht. “Seeking Multiple Solutions: An Updated Survey on Niching Methods
and Their Applications”. In: IEEE Trans. Evol. Comput. 21.4 (2017), pp. 518–
538.

[58] Shen Lin and Brian W. Kernighan. “An Effective Heuristic Algorithm for the
Traveling-Salesman Problem”. In: Oper. Res. 21.2 (1973), pp. 498–516.

[59] Manuel López-Ibáñez, Thomas Stützle, and Marco Dorigo. “Ant Colony Opti-
mization: A Component-Wise Overview”. In: Handbook of Heuristics. Springer,
2018, pp. 371–407.

https://www.gurobi.com

Bibliography 139

[60] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. “Iterated Local
Search”. In: Handbook of Metaheuristics. Vol. 57. International Series in Op-
erations Research & Management Science. Kluwer / Springer, 2003, pp. 320–
353.

[61] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. “The irace package: Iterated racing for auto-
matic algorithm configuration”. In: Operations Research Perspectives 3 (2016),
pp. 43–58.

[62] Alenrex Maity and Swagatam Das. “Efficient hybrid local search heuristics
for solving the travelling thief problem”. In: Appl. Soft Comput. 93 (2020),
p. 106284.

[63] Kim-Fung Man, Wallace Kit-Sang Tang, and Sam Kwong. “Genetic algorithms:
concepts and applications [in engineering design]”. In: IEEE Trans. Ind. Elec-
tron. 43.5 (1996), pp. 519–534.

[64] Zbigniew Michalewicz, Robert Hinterding, and Maciej Michalewicz. “Evolu-
tionary algorithms”. In: Fuzzy evolutionary computation (1997), pp. 3–31.

[65] C. E. Miller, A. W. Tucker, and R. A. Zemlin. “Integer Programming Formu-
lation of Traveling Salesman Problems”. In: J. ACM 7.4 (1960), pp. 326–329.

[66] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. “Chaff: Engineering an Efficient SAT Solver”. In: Proceedings of
the 38th Design Automation Conference DAC. ACM, 2001, pp. 530–535.

[67] Heinz Mühlenbein. “How Genetic Algorithms Really Work: Mutation and Hill-
climbing”. In: PPSN. Elsevier, 1992, pp. 15–26.

[68] Alexander Nadel. “Generating Diverse Solutions in SAT”. In: SAT. Vol. 6695.
Lecture Notes in Computer Science. Springer, 2011, pp. 287–301.

[69] Yuichi Nagata. “Edge assembly crossover: A high-power genetic algorithm for
the traveling salesman problem”. In: Proceeding of 7th International Conference
on Genetic Algorithms, 1997. 1997.

[70] Yuichi Nagata. “High-Order Entropy-Based Population Diversity Measures in
the Traveling Salesman Problem”. In: Evol. Comput. 28.4 (2020), pp. 595–619.

[71] Yuichi Nagata. “New EAX Crossover for Large TSP Instances”. In: PPSN.
Vol. 4193. Lecture Notes in Computer Science. Springer, 2006, pp. 372–381.

[72] Yuichi Nagata and Shigenobu Kobayashi. “A Powerful Genetic Algorithm Using
Edge Assembly Crossover for the Traveling Salesman Problem”. In: INFORMS
J. Comput. 25.2 (2013), pp. 346–363.

[73] Majid Namazi, M. A. Hakim Newton, Abdul Sattar, and Conrad Sanderson.
“A Profit Guided Coordination Heuristic for Travelling Thief Problems”. In:
SOCS. AAAI Press, 2019, pp. 140–144.

[74] Majid Namazi, Conrad Sanderson, M. A. Hakim Newton, and Abdul Sattar.
“Surrogate Assisted Optimisation for Travelling Thief Problems”. In: SOCS.
AAAI Press, 2020, pp. 111–115.

Bibliography 140

[75] Slawomir J. Nasuto and J. Mark Bishop. “Stabilizing Swarm Intelligence Search
via Positive Feedback Resource Allocation”. In: NICSO. Vol. 129. Studies in
Computational Intelligence. Springer, 2007, pp. 115–123.

[76] Aneta Neumann, Jakob Bossek, and Frank Neumann. “Diversifying greedy
sampling and evolutionary diversity optimisation for constrained monotone
submodular functions”. In: GECCO. ACM, 2021, pp. 261–269.

[77] Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, and Markus
Wagner. “Discrepancy-based evolutionary diversity optimization”. In: GECCO.
ACM, 2018, pp. 991–998.

[78] Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. “Evolu-
tionary diversity optimization using multi-objective indicators”. In: GECCO.
ACM, 2019, pp. 837–845.

[79] Aneta Neumann, Sharlotte Gounder, Xiankun Yan, Gregory Sherman, Ben-
jamin Campbell, Mingyu Guo, and Frank Neumann. “Evolutionary Diversity
Optimization for the Detection and Concealment of Spatially Defined Commu-
nication Networks”. In: GECCO. ACM, 2023.

[80] Aneta Neumann, Zygmunt L Szpak, Wojciech Chojnacki, and Frank Neu-
mann. “Evolutionary image composition using feature covariance matrices”.
In: GECCO. 2017, pp. 817–824.

[81] Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, and Jun-
hua Wu. “A Fully Polynomial Time Approximation Scheme for Packing While
Traveling”. In: ALGOCLOUD. Vol. 11409. Lecture Notes in Computer Science.
Springer, 2018, pp. 59–72.

[82] Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. “Com-
puting diverse sets of high quality TSP tours by EAX-based evolutionary di-
versity optimisation”. In: FOGA. ACM, 2021, 9:1–9:11.

[83] Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. “Entropy-
based evolutionary diversity optimisation for the traveling salesperson prob-
lem”. In: GECCO. ACM, 2021, pp. 600–608.

[84] Adel Nikfarjam, Anh Viet Do, and Frank Neumann. “Analysis of Quality Diver-
sity Algorithms for the Knapsack Problem”. In: PPSN (2). Vol. 13399. Lecture
Notes in Computer Science. Springer, 2022, pp. 413–427.

[85] Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, and Frank Neumann.
“Computing High-Quality Solutions for the Patient Admission Scheduling Prob-
lem Using Evolutionary Diversity Optimisation”. In: PPSN (1). Vol. 13398.
Lecture Notes in Computer Science. Springer, 2022, pp. 250–264.

[86] Adel Nikfarjam, Aneta Neumann, Jakob Bossek, and Frank Neumann. “Co-
evolutionary Diversity Optimisation for the Traveling Thief Problem”. In: PPSN
(1). Vol. 13398. Lecture Notes in Computer Science. Springer, 2022, pp. 237–
249.

Bibliography 141

[87] Adel Nikfarjam, Aneta Neumann, and Frank Neumann. “Evolutionary diversity
optimisation for the traveling thief problem”. In: GECCO. ACM, 2022, pp. 749–
756.

[88] Adel Nikfarjam, Aneta Neumann, and Frank Neumann. “On the use of quality
diversity algorithms for the traveling thief problem”. In: GECCO. ACM, 2022,
pp. 260–268.

[89] Adel Nikfarjam, Ralf Rothenberger, Frank Neumann, and Tobias Friedrich.
“Evolutionary Diversity Optimisation in Constructing Satisfying Assignments”.
In: GECCO. ACM, 2023.

[90] I. M. Oliver, D. J. Smith, and J. R. C. Holland. “A Study of Permutation
Crossover Operators on the Traveling Salesman Problem”. In: ICGA. Lawrence
Erlbaum Associates, 1987, pp. 224–230.

[91] Ibrahim H. Osman and Gilbert Laporte. “Metaheuristics: A bibliography”. In:
Ann. Oper. Res. 63.5 (1996), pp. 511–623.

[92] Károly F. Pál. “Selection Schemes with Spatial Isolation for Genetic Optimiza-
tion”. In: PPSN. Vol. 866. Lecture Notes in Computer Science. Springer, 1994,
pp. 170–179.

[93] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew
Michalewicz, and Frank Neumann. “A comprehensive benchmark set and heuris-
tics for the traveling thief problem”. In: GECCO. ACM, 2014, pp. 477–484.

[94] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. “Quality Diversity:
A New Frontier for Evolutionary Computation”. In: Frontiers Robotics AI 3
(2016), p. 40.

[95] Justin K. Pugh, Lisa B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. “Con-
fronting the Challenge of Quality Diversity”. In: GECCO. ACM, 2015, pp. 967–
974.

[96] Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. “Policy manifold
search: exploring the manifold hypothesis for diversity-based neuroevolution”.
In: GECCO. ACM, 2021, pp. 901–909.

[97] Gerhard Reinelt. “TSPLIB–A Traveling Salesman Problem Library”. In: ORSA
Journal on Computing 3.4 (1991), pp. 376–384.

[98] Alice Richardson. Nonparametric statistics for non-statisticians: A step-by-step
approach by Gregory W. Corder, dale I. foreman. 2010.

[99] Louis B. Rosenberg. “Human Swarms, a real-time method for collective intel-
ligence”. In: ECAL. MIT Press, 2015, pp. 658–659.

[100] Keith W. Ross and Danny H. K. Tsang. “The stochastic knapsack problem”.
In: IEEE Trans. Commun. 37.7 (1989), pp. 740–747.

[101] Franz Rothlauf. Representations for genetic and evolutionary algorithms. Vol. 104.
Studies in Fuzziness and Soft Computing. Springer, 2002.

[102] Hussain Aziz Saleh and Rachid Chelouah. “The design of the global navigation
satellite system surveying networks using genetic algorithms”. In: Eng. Appl.
Artif. Intell. 17.1 (2004), pp. 111–122.

Bibliography 142

[103] Bruno Sareni and Laurent Krähenbühl. “Fitness sharing and niching methods
revisited”. In: IEEE Trans. Evol. Comput. 2.3 (1998), pp. 97–106.

[104] Ruhul Sarker, Masoud Mohammadian, Xin Yao, and Ingo Wegener. Meth-
ods for the analysis of evolutionary algorithms on pseudo-Boolean functions.
Springer, 2002.

[105] J. David Schaffer. “Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms”. In: ICGA. Lawrence Erlbaum Associates, 1985, pp. 93–
100.

[106] João P. Marques Silva and Karem A. Sakallah. “GRASP: A Search Algo-
rithm for Propositional Satisfiability”. In: IEEE Trans. Computers 48.5 (1999),
pp. 506–521.

[107] Gulshan Singh and Kalyanmoy Deb. “Comparison of multi-modal optimiza-
tion algorithms based on evolutionary algorithms”. In: GECCO. ACM, 2006,
pp. 1305–1312.

[108] Kirby Steckel and Jacob Schrum. “Illuminating the space of beatable lode
runner levels produced by various generative adversarial networks”. In: GECCO
Companion. ACM, 2021, pp. 111–112.

[109] Gilbert Syswerda. “Uniform Crossover in Genetic Algorithms”. In: ICGA. Mor-
gan Kaufmann, 1989, pp. 2–9.

[110] Madeleine Theile. “Exact Solutions to the Traveling Salesperson Problem by
a Population-Based Evolutionary Algorithm”. In: EvoCOP. Vol. 5482. Lecture
Notes in Computer Science. Springer, 2009, pp. 145–155.

[111] Paolo Toth. “Dynamic programming algorithms for the Zero-One Knapsack
Problem”. In: Computing 25.1 (1980), pp. 29–45.

[112] Tamara Ulrich and Lothar Thiele. “Maximizing population diversity in single-
objective optimization”. In: GECCO. ACM, 2011, pp. 641–648.

[113] Vassilis Vassiliades, Konstantinos I. Chatzilygeroudis, and Jean-Baptiste Mouret.
“Using Centroidal Voronoi Tessellations to Scale Up the Multidimensional
Archive of Phenotypic Elites Algorithm”. In: IEEE Trans. Evol. Comput. 22.4
(2018), pp. 623–630.

[114] Vijay V. Vazirani. Approximation algorithms. Springer, 2001. isbn: 978-3-540-
65367-7.

[115] Markus Wagner. “Stealing Items More Efficiently with Ants: A Swarm In-
telligence Approach to the Travelling Thief Problem”. In: ANTS Conference.
Vol. 9882. Lecture Notes in Computer Science. Springer, 2016, pp. 273–281.

[116] Markus Wagner, Marius Lindauer, Mustafa Misir, Samadhi Nallaperuma, and
Frank Hutter. “A case study of algorithm selection for the traveling thief prob-
lem”. In: J. Heuristics 24.3 (2018), pp. 295–320.

[117] Handing Wang, Yaochu Jin, and Xin Yao. “Diversity Assessment in Many-
Objective Optimization”. In: IEEE Trans. Cybern. 47.6 (2017), pp. 1510–1522.

Bibliography 143

[118] L. Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay. “Scheduling
Problems and Traveling Salesmen: The Genetic Edge Recombination Opera-
tor”. In: ICGA. Morgan Kaufmann, 1989, pp. 133–140.

[119] Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann. “Ex-
act Approaches for the Travelling Thief Problem”. In: SEAL. Vol. 10593. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 110–121.

[120] Rogier Hans Wuijts and Dirk Thierens. “Investigation of the traveling thief
problem”. In: GECCO. ACM, 2019, pp. 329–337.

[121] Xiao-Feng Xie and Jiming Liu. “Multiagent Optimization System for Solving
the Traveling Salesman Problem (TSP)”. In: IEEE Trans. Syst. Man Cybern.
Part B 39.2 (2009), pp. 489–502.

[122] Yue Xie, Aneta Neumann, Frank Neumann, and Andrew M. Sutton. “Runtime
analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem
with correlated uniform weights”. In: GECCO. ACM, 2021, pp. 1187–1194.

[123] Mohamed El Yafrani and Belaïd Ahiod. “Cosolver2B: An efficient local search
heuristic for the Travelling Thief Problem”. In: AICCSA. IEEE Computer So-
ciety, 2015, pp. 1–5.

[124] Mohamed El Yafrani and Belaïd Ahiod. “Efficiently solving the Traveling Thief
Problem using hill climbing and simulated annealing”. In: Inf. Sci. 432 (2018),
pp. 231–244.

[125] Daniela Zaharie. “Density Based Clustering with Crowding Differential Evolu-
tion”. In: SYNASC. IEEE Computer Society, 2005, pp. 343–350.

[126] Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, and Dario
Floreano. “Seeking quality diversity in evolutionary co-design of morphology
and control of soft tensegrity modular robots”. In: GECCO. ACM, 2021, pp. 189–
197.

[127] Kenny Qili Zhu and Ziwei Liu. “Population Diversity in Permutation-Based
Genetic Algorithm”. In: ECML. Vol. 3201. Springer, 2004, pp. 537–547.

[128] Wiem Zouari, Inès Alaya, and Moncef Tagina. “A new hybrid ant colony algo-
rithms for the traveling thief problem”. In: GECCO (Companion). ACM, 2019,
pp. 95–96.

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Our Contribution
	Underlying Publications

	Basics
	Optimisation and Heuristics
	Local Search
	Swarm Intelligence Algorithms

	Evolutionary Algorithms
	Components of Evolutionary Algorithms
	Representation
	Variation Operators
	Selection Methods

	Diversity in Evolutionary Computation
	Quality Diversity
	Evolutionary Diversity Optimisation

	Combinatorial Problems
	Knapsack Problem
	Dynamic Programming

	Traveling Salesperson Problem
	EAX
	2-OPT

	Traveling Thief Problem
	Dynamic Programming

	Boolean Satisfiability Problem

	Methodology
	Conclusions

	Entropy-based diversity in the Traveling Salesperson Problem
	Introduction
	Maximising Diversity in TSP
	High-Order Entropy Measure
	Maximum High-Order Entropy

	Mixed-Integer Programming Formulation
	Linearisation

	Entropy-based Evolutionary Diversity Optimisation
	Biased 2-OPT

	Experimental Investigation
	Validation of the Proposed EA
	Survival Selection Procedure
	Comparison between the exact solver and the proposed EA

	Unconstrained Diversity Optimisation
	Constrained Diversity Optimisation

	Evolutionary Diversity Optimisation with a (+) EA
	Experimental Investigation
	Unconstrained Diversity Optimisation
	Constrained Diversity Optimisation

	Conclusion

	EAX-based Crossover in the Traveling Salesperson Problem
	EAX-EDO Crossover
	EAX-EDO for Known Optimal Solution
	EAX-EDO for Unknown Optimal Solution
	Experimental Investigation
	Known Optimal Solution
	Unknown Optimal Solution
	Algorithm Configuration
	Experiments
	Robustness of the populations

	Conclusion

	Quality Diversity Algorithms for the Traveling Thief Problem
	Introduction
	The Traveling Thief Problem
	Bi-level Map-Elites-based Evolutionary Algorithm
	Search Operators for TSP
	Search Operators for KP
	(1+1) Evolutionary Algorithm

	Initialisation
	A More Relaxed Map
	(+1) EA
	Entropy-based Evolutionary Algorithm

	Experimental Investigation
	Analysis of the maps
	MAP-Elitism vs. (+1)EA
	Maps With The Relaxed Approach

	Best found TTP Solutions
	Operators
	(+1)EA vs. BMBEA vs. EnBEA
	Relaxed Method

	Conclusion

	Analysis of inter-dependency of the Traveling Thief Problem
	Introduction
	Diversity in TTP
	Bi-level Evolutionary Algorithm
	Initial Population

	Experimental Investigation
	Comparison in KP search operators operators
	Comparison in fitness functions
	Comparison of EDO and QD

	Co-Evolutionary Algorithm
	Parent Selection and Operators
	Survival Selection Procedures
	Self Adaptation

	Experimental Investigation of Co-EA
	Analysis of Self-Adaptation
	Analysis of Co-EA

	Conclusion

	Analysis of Quality Diversity in the Knapsack Problem
	Introduction
	Quality-Diversity for the knapsack problem
	Weight-based space
	Profit-based space
	DP-based filtering scheme

	Theoretical analysis
	Experimental investigations
	Conclusions

	Constructing Diverse Satisfying Assignments
	Introduction
	SAT and Diversity
	Diversity

	Diversity Algorithms
	Experimental Investigation
	Comparison of algorithms employing H1 as the fitness
	Comparison of algorithms employing H2 as the fitness
	Investigation on Unsatisfiablity

	Conclusion

	Conclusion
	Future Studies

	Bibliography

