
Cache Attacks and Defenses

by

William Kosasih

This thesis is submitted for the degree of

Master of Philosophy

School of Computer Science

University of Adelaide

© William Kosasih, 2023

Abstract

In the digital age, as our daily lives depend heavily on interconnected com-

puting devices, information security has become a crucial concern. The con-

tinuous exchange of data between devices over the Internet exposes our in-

formation vulnerable to potential security breaches. Yet, even with measures

in place to protect devices, computing equipment inadvertently leaks infor-

mation through side-channels, which emerge as byproducts of computational

activities. One particular source of such side channels is the cache, a vital

component of modern processors that enhances computational speed by stor-

ing frequently accessed data from random access memory (RAM). Due to their

limited capacity, caches often need to be shared among concurrently running

applications, resulting in vulnerabilities. Cache side-channel attacks, which

exploit such vulnerabilities, have received significant attention due to their

ability to stealthily compromise information confidentiality and the challenge

in detecting and countering them. Consequently, numerous defense strategies

have been proposed to mitigate these attacks. This thesis explores these de-

fense strategies against cache side-channels, assesses their effectiveness, and

identifies any potential vulnerabilities that could be used to undermine the

effectiveness of these defense strategies.

The first contribution of this thesis is a software framework to assess the

security of secure cache designs. We show that while most secure caches are

protected from eviction-set-based attacks, they are vulnerable to occupancy-

based attacks, which works just as well as eviction-set-based attacks, and

ii

therefore should be taken into account when designing and evaluating secure

caches.

Our second contribution presents a method that utilizes speculative exe-

cution to enable high-resolution attacks on low-resolution timers, a common

cache attack countermeasure adopted by web browsers. We demonstrate that

our technique not only allows for high-resolution attacks to be performed on

low-resolution timers, but is also Turing-complete and is capable of perform-

ing robust calculations on cache states. Through this research, we uncover a

new attack vector on low-resolution timers. By exposing this vulnerability, we

hope to prompt the necessary measures to address the issue and enhance the

security of systems in the future.

Our third contribution is a survey, paired with experimental assessment

of cache side-channel attack detection techniques using hardware performance

counters. We show that, despite numerous claims regarding their efficacy,

most detection techniques fail to perform proper evaluation of their perfor-

mance, leaving them vulnerable to more advanced attacks. We identify and

outline these shortcomings, and furnish experimental evidence to corroborate

our findings. Furthermore, we demonstrate a new attack that is capable of

compromising these detection methods. Our aim is to bring attention to these

shortcomings and provide insights that can aid in the development of more

robust cache side-channel attack detection techniques.

This thesis contributes to a deeper comprehension of cache side-channel at-

tacks and their potential effects on information security. Furthermore, it offers

valuable insights into the efficacy of existing mitigation approaches and detec-

tion methods, while identifying areas for future research and development to

better safeguard our computing devices and data from these insidious attacks.

iii

Declaration of Authorship

I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name in any university or other

tertiary institution and, to the best of my knowledge and belief, contains no

material previously published or written by another person, except where due

reference has been made in the text. In addition, I certify that no part of this

work will, in the future, be used in a submission in my name for any other

degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner

institution responsible for the joint award of this degree.

The author acknowledges that copyright of published works contained

within this thesis resides with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available

on the web, via the University’s digital research repository, the Library Search

and also through web search engines, unless permission has been granted by

the University to restrict access for a period of time.

iv

Acknowledgements

This research endeavor has been an enlightening experience for me, made pos-

sible by the collaboration, support, and warm encouragement from numerous

individuals during my time at the University of Adelaide. I could not have

embarked on this journey without the guidance of my supervisors, Professor

Yuval Yarom and Dr. Chitchanok Chuengsatiansup. Without their assistance,

this thesis would not have been achievable.

I owe immense gratitude to Dr. Cheryl Pope and Dr. Muhammad Uzair for

their invaluable help and insights during some of the most difficult times in

my academic journey. Their assistance allowed me to persist in my candidacy

and ultimately complete this thesis.

I wish to extend my heartfelt thanks to Professor Olaf Maennel, Dr. Atanas

Parashkevov, Dr. Cheryl Pope, and Dr. Muhammad Uzair for dedicating their

time to review my thesis and offering valuable feedback.

Furthermore, I would like to express my appreciation to Emeritus Profes-

sor Michael Liebelt, Dr. Atanas Parashkevov, Ms. Diana Reed, and Professor

Nelson Tansu for their irreplaceable counsel, support, and direction during

the intricate process of my research. They have offered motivation in difficult

moments and have been there to help when I faced challenges.

I am thankful for the University of Adelaide scholarship, which covered all

my living expenses and allowed me to concentrate on my studies.

Lastly, I extend my heartfelt gratitude to my parents, partner, and close

friends in Adelaide for their unwavering support, love, and care throughout

my educational journey.

v

Contents

1 Introduction 1
1.1 Thesis Organization and Contributions 4

2 Background 9
2.1 Caches . 9
2.2 Cache Side-Channel Attacks 13
2.3 The Processor Microarchitecture 14

2.3.1 Front End . 15
2.3.2 Execution Engine . 15
2.3.3 Memory Subsystem . 15

2.4 Branch Prediction . 16
2.5 Transient-Execution Attacks 16

2.5.1 Spectre . 17

3 A Framework to Evaluate Cache Security 19
3.1 Background . 20
3.2 Problem Description . 21
3.3 CacheFX Design . 22

3.3.1 Cache Model . 22
3.3.2 Attack Model . 24
3.3.3 Victim Model . 25
3.3.4 The Attack Controller Function 25

3.4 Evaluation . 26
3.4.1 Relative Eviction Entropy 26
3.4.2 Eviction-Set Creation 30
3.4.3 Eviction-Set Attack . 34
3.4.4 Cache-Occupancy Attack 37
3.4.5 Optimal Eviction-Set Size 38

3.5 Threats to Validity and Limitations 39
3.6 Related Works . 40
3.7 Conclusion . 41

4 Speculative Execution Against Low-Resolution Timers 43
4.1 Gates . 44

4.1.1 Computational Model 44
4.1.2 NOT Gate . 45
4.1.3 More Complex Gates 46
4.1.4 Multiple Inputs and Outputs 47
4.1.5 Error Correction Gate 47
4.1.6 Gates With a Fixed Branch Delay 48
4.1.7 Gates Without Branch Training 50
4.1.8 Gates Evaluation . 50

4.2 Circuits . 51

vi

4.2.1 ALU . 51
4.2.2 SHA-1 . 53
4.2.3 Game of Life . 54

4.3 Probe Amplification . 55
4.3.1 Single-Gate Amplification 56
4.3.2 Probe Time Amplification Tree 57
4.3.3 Amplification Hyper-tree 57
4.3.4 Experimental Verification 58
4.3.5 Eviction Set Creation 60

4.4 Prime+Store: Fast Attacks with Slow Clocks 60
4.4.1 Prime+Store . 61
4.4.2 Attacking ElGamal . 61
4.4.3 Trace Acquisition . 62
4.4.4 Trace Processing . 63
4.4.5 Key Recovery . 64
4.4.6 Evaluation . 65

4.5 Related Work . 65
4.6 Conclusions . 67

5 Hardware Performance Counters in Cache Attack Detection 69
5.1 Background . 70

5.1.1 Hardware Performance Counters. 70
5.1.2 HPC-Based Cache-Side Channel Attack Detection Meth-

ods . 71
5.2 Survey of HPC-Based Cache Side-Channel Attack Detection

Method Evaluation . 73
5.2.1 Accuracy . 76
5.2.2 Overhead . 76
5.2.3 Detection Speed . 77
5.2.4 Threat Model . 78

5.3 Assessing the Quality of Attack Detection Methods 78
5.3.1 Experiment Environment 78
5.3.2 Our Method . 78
5.3.3 Accuracy . 80
5.3.4 Overhead . 81
5.3.5 Detection Speed . 83
5.3.6 Threat Model . 83

5.4 Conclusions . 88

6 Future Directions 90

7 Conclusion 92

References 94

Appendix A Chapter 4 107
A.1 Hyper-tree Amplification Implementation 107
A.2 Gates With and Without Branch Training 108
A.3 Gate Accuracy . 110
A.4 Gates on Other Processors . 112
A.5 Number of Cases in Gates Without Branch Training 114

vii

List of Tables

4.1 Game of Life glider accuracy. 55

5.1 Survey result. 75
5.2 PAPI events used in our detection method. 79
5.3 Accuracy of three detection methods. 80
5.4 Accuracy of HPCache with various sampling interval. 80
5.5 Overhead of detection methods. 82
5.6 True positive rate of proof-of-concept and camouflaged attacks. 85
5.7 False positive rate of proof-of-concept and camouflaged attacks. 85
5.8 Accuracy of HPCache trained on camouflaged attacks. 86
5.9 Attack times for different Flush+Reload camouflaging aggres-

siveness. 88

A.1 Accuracy of gates on Intel Core(TM) i5-8250U 111
A.2 Accuracy of gates on AMD Ryzen 5 3500U 113
A.3 Accuracy of gates on Apple M1 and Samsung Exynos 2100 . . 114
A.4 Accuracy and run time for nbtNAND12

1 and nbtNOT 1
2 gates

with different number of cases on Intel Core(TM) i5-8250U . . 115

viii

List of Figures

2.1 Relationship between memory address and cache lines 9
2.2 Mapping from memory to cache entries in direct-mapped caches 10
2.3 Mapping from memory to cache lines in fully-associative caches. 11
2.4 Mapping from memory to cache lines in set-associative caches. 12
2.5 Simplified diagram of the Intel Skylake microarchitecture. . . . 18

3.1 CacheFX design overview. 22
3.2 CacheFX overall architecture. 23
3.3 REE across cache designs with random replacement. 28
3.4 REE for CEASER-S with 2048 lines depending on ways and

partitions. 29
3.5 Number of memory accesses required by eviction-set building

techniques for different 2048-line caches. 31
3.6 Number of memory accesses required by eviction-set building

techniques for CEASER-S depending on cache size. 32
3.7 Percentage of addresses in the constructed eviction sets that

conflict with the victim’s address, using different eviction-set
construction techniques and 2048-line caches. 32

3.8 Eviction set sizes found by eviction-set building techniques for
different 2048-line caches. 33

3.9 Eviction success rate for the eviction sets found for different
2048-line caches. 34

3.10 Eviction set size for 2048-line caches and 90% eviction probability. 34
3.11 Eviction-set attack: Number of encryptions required to break

AES and modular exponentiation with random replacement. . 36
3.12 Occupancy attack: Number of encryptions required to break

AES and modular exponentiation with random replacement. . 37
3.13 Median number of encryptions required to break AES with dif-

ferent cache designs and replacement algorithms. 38
3.14 Optimal eviction set sizes for 1024-lines caches 39

4.1 NOT Gate. 45
4.2 A Buffer Gate with a fixed branch delay. 49
4.3 ALU accuracy. 52
4.4 SHA-1 accuracy. 54
4.5 T-tetromino heatmap. 54
4.6 One generation Game of Life accuracy. 56
4.7 Amplification tree based on NOT 1

Y Gates. 57
4.8 Amplification Hyper-Tree in native. 59
4.9 Amplification Hyper-Tree in WebAssembly. 59
4.10 Time to find an eviction set in Chrome using 0.1 millisecond

low-resolution timer . 60
4.11 A segment of samples of the square operation in modular expo-

nentiation. 63

ix

4.12 Distribution of stitched key in relation to ground truth location. 65

x

Chapter 1

Introduction

Information security in computing is a very critical issue, especially in this day
and age that almost all aspects of our lives are in one way or another reliant
on computers as well as the network that connect them, the Internet. Used
for trivial activities such as a simple web browse, to tasks that are sensitive
in nature, such as banking, our computing devices are constantly interacting
with all kinds of other computers all around the globe. While this digital inter-
connection has gifted us with communication ease and agility [Adams, 2017;
Elijah et al., 2018; Levy and Strombeck, 2002], much to our unknowing (or
perhaps ignorance), it has simultaneously created a risk of exposing our data
essentially to anyone, or anything that we interact with on the web [Adams,
2017; Karunakaran et al., 2018; Wheatley et al., 2016].

Given the situation, it is only natural to expect people and organizations to
pay utmost attention towards the security of their computing devices. Yet, day
after day we continue to hear headlines about major data breaches each affect-
ing thousands, and even millions of unfortunate users [Adams, 2017; Biddle et
al., 2022; Booth, 2022; Cadwalladr and Graham-Harrison, 2018; Karunakaran
et al., 2018; Pilla et al., 2023; Wheatley et al., 2016]. With these evidences in
hand, it is clear that people, and especially major corporations need to allocate
even more efforts towards protecting information security [Fedele and Roner,
2022; IBM, 2022].

Nevertheless, regardless of how much effort we allocate into safeguarding
our devices, we cannot escape the reality that computing equipment innately
leaks information as it operates [Briongos et al., 2016; Martin et al., 2012].
Computers leave traces of their computing activities as they function, in the
same manner that biological organisms leave footprints of their metabolism
activities as they go about living. These traces are basically side-effects of
computation, called side-channels. These side-effects include acoustic [Genkin
et al., 2014; O’Malley and Choo, 2014], electromagnetic [Elibol et al., 2012;
Hongxin et al., 2009], power [Kocher et al., 1999; Mangard, 2003], cache [Liu
et al., 2015; Osvik et al., 2006], and timing [Dhem et al., 2000; Kocher, 1996].

In this thesis, we direct our attention towards the cache side-channel. The

1

cache is a piece of temporary memory intended to speed up computation.
Advances in technology have brought about performance enhancements to
all aspects of computing. Most notably of all is the processor, which has
sped up dramatically over the decades. Working in close conjunction to the
processor is the random access memory (RAM). The RAM is used as a storage
to provide input and store output of intermediate data to/from the processor
before they are permanently recorded on disks. While the RAM has also
gained significant performance improvement over the years, since the late 1990s
their increase in speed has lagged considerably behind that of the processor,
and the gap continues to widen as time goes by. This situation prompted
the introduction of caches to processors. They are a form of smaller but
much faster memory that stores copies of frequently used data from the RAM,
enabling the processor to work at a much higher rate as it can now avoid the
delays caused by the slow RAM.

Due its finite size, the cache often has to be shared between different appli-
cations that are simultaneously running in a computer. As mentioned above,
all computing operations leave traces on the hardware they operate on, in-
cluding the cache. The execution of programs alter the state of the cache.
When a program performs a large number of data accesses, the cache eventu-
ally has to remove older data to make room for new ones. The cache decides
what data need to be evicted typically based on their age, and is completely
agnostic to whether the eviction of data is caused by the application who
owns the data. Removal of other applications’ data may appear harmless,
after all, the processor seamlessly orders reinsertion of needed data back into
the cache on an ad-hoc basis, and execution continues as usual. However,
this slightly affects the data access speed of those applications whose data are
temporarily removed from the cache. By closely monitoring this access time
difference caused by data eviction, any application suddenly gains a potential-
ity to infer the execution of other programs running on the system. In other
words, gaining an access to a side-channel. The act of a malicious application,
seeking to gain illicit information about the system through measurements of
cache-related phenomena is called cache side-channel attack.

Cache side-channel attacks have received attention both in academia and
the industry in recent years given their ability to stealthily compromise infor-
mation confidentiality through the exploitation of the cache hardware [Aciiçmez
and Seifert, 2007; Aldaya et al., 2019a; Aldaya et al., 2019b; Genkin et al.,
2020; Gullasch et al., 2011; Gülmezoglu et al., 2019b; Liu et al., 2015; Oren
et al., 2015; Osvik et al., 2006; Percival, 2005; Ristenpart et al., 2009; Ro-
nen et al., 2019; Shusterman et al., 2019; Yarom and Falkner, 2014; Yarom
et al., 2017; Zhang et al., 2012]. Unlike traditional malware that leaves ob-
vious traces of their activities, cache side-channel attacks leave only microar-
chitectural traces and are more difficult to detect and mitigate [Alam et al.,
2021; He and Lee, 2017].1 Yet, they are sometimes seen as an improbable

1Microarchitecture refers to the internal implementation of the processor.

2

threat, and a very specialized domain of computer systems security. This view
may be held as a result of the high complexity involved with implementing
such attacks [Apple, 2018; Easdon et al., 2022; Yarom, 2016], the “black-box”
nature of microarchitectural components due to the lack of official documen-
tations [Easdon et al., 2022], possibly leading to an incorrect viewpoint that
cache attacks are more of an academic proof of concept rather than a practical
attack.

In actuality, history has shown the potential for disastrous outcomes of
such attacks, particularly when combined with other microarchitectural at-
tacks such as transient-execution attacks, forming a highly effective pairing.
This was evident in the 2018 discovery of Spectre [Kocher et al., 2019] and
Meltdown [Lipp et al., 2018], which showcased the potential of these attacks
to compromise crucial operating system information and sensitive user data.
In this context, it is important to uncover and tackle potential hardware vul-
nerabilities and create countermeasures for existing devices.

While completely eradicating cache attacks is challenging, there are ap-
proaches designed to reduce or obscure cache side-channels, making it dif-
ficult for attackers to extract valuable information. Hardware-level mitiga-
tion such as secure caches are available [Domnitser et al., 2012; Liu et al.,
2016b; Qureshi, 2018; Qureshi, 2019; Tan et al., 2020; Wang and Lee, 2007;
Werner et al., 2019], along with software-level mitigation such as low-resolution
timers [Chromium, n.d.; Hazen, 2018; Wagner, 2018], attack detection sys-
tems [Akram et al., 2020; Depoix and Altmeyer, 2018; Mushtaq et al., 2018a;
Mushtaq et al., 2018b; Payer, 2016], and constant-time programming [Bern-
stein et al., 2012; Liu et al., 2015]. Despite the protection that these counter-
measures presently offer, we must consistently search for new security vulner-
abilities proactively, rather than reactively responding only after attacks have
occurred.

The same principle applies to cache side-channel attack defense techniques;
we must continuously evaluate, scrutinize, and explore ways in which they can
be compromised. Therefore, this thesis aims to 1) evaluate the effectiveness of
defense techniques against cache side-channel attacks, 2) identify their short-
comings and reveal new attack scenarios that may lead to their compromise,
and 3) evaluate the practicality of these techniques for broad adoption.

We begin our investigation by focusing on the hardware-level, specifically
on secure caches. Numerous secure cache designs have been proposed that
aim to protect against data leakage. However, the diverse range of these
proposals and their unique evaluation metrics make it difficult to empirically
analyze their security features. While several metrics have been suggested for
performing such evaluations, these tend to be limited both in terms of the
potential adversaries they consider and in the applicability of the metric to
real-world attacks, as opposed to attack techniques. Moreover, all existing
metrics implicitly assume that a single metric can encompass the nuances of
side-channel security. To fill this gap, this thesis presents CacheFX, a software-

3

based cache simulation framework as a way for assessing the security of secure
caches, specifically by determining their effectiveness against side-channel at-
tacks. CacheFX allows the evaluator to implement various cache designs, vic-
tims, and attackers, as well as to exercise them for assessing the leakage of
information via the cache.

We then continue our investigation by focusing on software-level cache
defense, specifically low-resolution timers. As cache attacks often require a
high-resolution timing source to successfully distinguish between cache hits
and misses, low-resolution timers limit the resolution of available timers, thus
making attacks more difficult. As mentioned, proactive investigation of com-
puting devices is crucial for detecting and eliminating vulnerabilities. As part
of our proactive research effort, we examine the potential vulnerability of low-
resolution timers as a countermeasure to attacks, specifically how this de-
fense mechanism can be compromised by attacks capable of bypassing its safe-
guards. While numerous studies have looked into cache states as a “receiver”
of microarchitectural outcomes from transient execution attacks [Kocher et
al., 2019; Lipp et al., 2018], none have investigated the reverse perspective:
the possibility of leveraging transient execution to facilitate cache attacks on
systems using mitigation measures such as low-resolution timers. This thesis
delves into this alternative viewpoint and evaluates the security implications
of such a method against low-resolution timers as a cache attack defense tech-
nique.

We conclude our investigation with an examination of an emerging defense
technique known as attack detection systems. Previously mentioned hardware-
based defenses, such as secure caches, cannot be implemented on current hard-
ware, while software-based countermeasures such as low-resolution timers may
significantly disrupt functionality and degrade performance. Instead of incur-
ring the cost of continuous protection, even during periods without attacks,
an alternative approach aims to identify ongoing attacks and only activate
countermeasures when an attack is detected. A widely used approach in this
domain involves the utilization of hardware performance counters (HPCs).
These counters monitor microarchitectural events and analyze statistical devi-
ations to differentiate between malicious and benign software. With numerous
proposals and promising reported results, we seek to investigate whether pub-
lished HPC-based detection methods are evaluated in a proper setting and
under the right assumptions, such that their quality can be ensured for real-
word deployment against cache side-channel attacks. To achieve this goal, this
thesis presents a comprehensive evaluation and scrutiny of existing literature
on the subject matter in a form of a survey, accompanied by experimental
evidences to support our evaluation.

1.1 Thesis Organization and Contributions

Background (Chapter 2)

4

This chapter provides the background for the rest of this thesis. Initially,
we provide an overview of the cache and its application in computers, as well as
its operational principles and the potential security risks associated with it. We
then delve into the topic of cache side-channel attacks, exploring their various
types. We continue by introducing the concept of the processor microarchi-
tecture, and branch prediction which are integral parts of modern processors.
We conclude with the discussion on branch prediction, and transient execution
attack.
A Framework to Evaluate Cache Security (Chapter 3)

This chapter presents CacheFX, a software-based cache simulation frame-
work as a way for assessing the security of secure caches, specifically in the
context of mitigating contention-based attacks. CacheFX allows for the emula-
tion of various cache designs, victims, and attackers, and measures the result-
ing leakage. Within this framework, we implement and evaluate nine cache
designs: fully-associative and set-associative caches, PLCache [Wang and Lee,
2007], Newcache [Liu et al., 2016b], PhantomCache [Tan et al., 2020], Scatter-
Cache [Werner et al., 2019], way-partitioned caches [Domnitser et al., 2012],
and the two variants of CEASER [Qureshi, 2018; Qureshi, 2019]. Furthermore,
we modeled five replacement algorithms: random replacement, least recently
used (LRU) [Denning, 1968], two variants of pseudo-LRU, and SRRIP [Jaleel
et al., 2010].

We further contribute three evaluation metrics. These not only add to
the existing portfolio of metrics proposed in prior works, allowing cache de-
signers more options for cache evaluation, but also demonstrate the flexibility
of CacheFX and its ability to measure a variety of metrics. The first metric
we contribute is the Relative Eviction Entropy (REE), which we propose to
measure the information leakage from a single victim access via the cache side
channel. The second evaluation metric we contribute measures the difficulty of
eviction-set creation. We implement and evaluate three eviction-set building
strategies: Single Holdout Method (SHM) [Liu et al., 2015], Group Elimination
Method (GEM) [Vila et al., 2019] and Prime+Prune+Probe (PPP) [Purnal
et al., 2021b]. The final metric we contribute evaluates the protection that the
cache provides for cryptographic code. We evaluate both traditional attacks
that aim to exploit eviction sets, and occupancy-based attacks [Shusterman
et al., 2019; Shusterman et al., 2021a].

Through this chapter, we gain three key insights. First, we establish that
different metrics highlight different aspects of the caches. In particular, we find
that building eviction sets is faster in skewed caches such as ScatterCache and
CEASER-S, than other randomized caches, such as fully associative caches or
PhantomCache. Faster eviction-set construction reduces the effort required
for mounting attacks. At the same time, our experiments show that, with
the right parameters, skewed caches are not less secure when it comes to
cryptographic attacks. Second, we find that the security against cryptographic
attackers depends not only on the design, but also on other parameters, such

5

as the replacement policy and the cache associativity. We also show that
all non-partitioned caches are vulnerable to both eviction-set and occupancy
attacks. Third, we find that most non-partitioned secure cache designs offer
protection against eviction-set attacks. However, cache-occupancy attacks are
left unconsidered and for highly secure designs occupancy attacks are no less
effective than eviction-set attacks. Our evaluation thus demonstrates that
partitioning is preferable from a side-channel perspective and the resistance
to eviction-set attacks of non-partitioned solutions may be tuned to match
the respective complexity of cache-occupancy attacks to balance overall cache
side-channel resistance and cost.
Personal Contribution

In this research, my personal contributions include various aspects. I was
involved in the development of the simulator, taking on tasks such as refac-
toring and reorganizing its structure, as well as extending it by incorporating
experiments to establish the ideal eviction set size for different cache designs.
Additionally, I implemented a new replacement policy in the simulator, specifi-
cally SRRIP, and carried out the experiment to determine the optimal eviction
set size, collecting the relevant data. Lastly, I wrote the sections detailing the
design of the simulator and the experiments I performed.

Publication

Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou, Thomas
Unterluggauer, and Yuval Yarom. “CacheFX: A Framework for Evaluating
Cache Security”. In: The 18th ACM ASIA Conference on Computer and
Communications Security, ACM ASIACCS 2023.

Speculative Execution Against Low-Resolution Timers (Chapter 4)
In this chapter, we present a novel transient-execution method aimed at

circumventing low-resolution timers, a common defense against cache side-
channel attacks used in web-browsers. We investigate, for the first time, how
transient execution can be used for improving cache attacks, specifically on
systems with low-resolution timers. This chapter contributes novel logical
gates whose underlying operating concept lies on speculative execution. These
gates are capable of manipulating the state of the cache based on whether data
is cached or not, and are both generic and versatile. They work on multiple
architectures including Intel and AMD, Samsung Exynos, and Apple M1, and
can even be implemented in WebAssembly.

The next contribution of this chapter is a novel cache state amplification
technique using our gates. We show that our gates can be used to amplify a
small timing difference and distinguish whether a memory address is cached
with a low-resolution timer, and use this amplification to build eviction sets
in WebAssembly, using only a low-resolution timer. In addition, this chapter
contributes a novel attack, called Prime+Store that allows for high-resolution
cache attacks with a low-resolution timer.

6

In addition to facilitating cache attacks on low-resolution timers, we show
that these gates can also be leveraged to perform logical manipulation of cache
states. Intrigued by this discovery, we investigate the possibility of leveraging
these gates to carry out meaningful computations within the cache, without
elevating the state to the architectural level. We use these gates to construct
an arithmetic logic unit (ALU), the Secuire Hash Algorithm 1 (SHA-1), and
the Game of Life. We demonstrate that our gates are sufficiently robust to
perform arbitrary calculations in the cache.
Personal Contribution

In this research, I designed the experiments for, collected data on, and an-
alyze the results of the arithmetic logic unit (ALU), Secure Hash Algorithm 1
(SHA-1), and Game of Life implementations. Furthermore, I conducted sta-
tistical tests on all samples and adapted gates for AMD, Samsung Exynos,
and Apple M1 platforms while evaluating their performance. I also devised
the key-stitching technique, improved the method for converting Prime+Store
traces into square and multiply sequences, and extracted the complete ElGa-
mal key from the traces. In addition, I created an error-correction mechanism
for microarchitectural computation and authored sections related to my work.

Publication

Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ro-
nen, and Yuval Yarom. “The Gates of Time: Improving Cache Attacks with
Transient Execution”. In: The 32nd USENIX Security Symposium, USENIX
Security 2023.

Hardware Performance Counters in Cache Attack Detection (Chap-
ter 5)

This chapter presents a comprehensive survey on existing hardware per-
formance counter (HPC)-based cache side-channel detection methods. We
evaluate the settings and assumptions under which these detection methods
are evaluated, and discover that the promising results reported in most of
them may not be applicable in realistic scenarios. We subsequently identify
four main shortcomings in many proposals: improper evaluation settings and
assumptions of accuracy, overhead, and detection speed, and a weak threat
model used to evaluate detection methods. Notably, we find that the threat
model employed assumes that attackers use variants of published proof-of-
concept attacks. To underscore the limitations of this assumption, we present
a new variant of the Flush+Reload attack on GnuPG that camouflages its
malicious execution behind that of a benign application, demonstrating how
real-world attacks may differ significantly in terms of implementation and be-
havior from proof-of-concept attacks. We demonstrate the feasibility of such
attacks in evading detection, while at the same time, capable of effectively
stealing private encryption keys. We conclude that addressing the evaluation
shortcomings we have highlighted is essential to determine the true effective-

7

ness of these detection methods for real-world deployment.
Personal Contribution

In this study, I established the paper’s foundation, developed its contents,
conducted experiments, and completed the writing process. I performed an
extensive literature review on cache side-channel attack detection and criti-
cally analyzed the subject. I identified weaknesses and drawbacks in the 48
papers examined and organized my analysis accordingly. I developed the cache
side-channel attack detection method used in this chapter and evaluated its
detection accuracy alongside two other publicly available detection methods.
I also devised a new type of camouflaged Spectre and Flush+Reload attacks
that interleave malicious activities within benign program execution. Addi-
tionally, I assessed the detection rate of these camouflaged attacks by various
detection methods. I demonstrated that our camouflaged attacks successfully
perform Flush+Reload attacks by stealing the ElGamal key and evaluated the
duration of these attacks in relation to their camouflaging aggressiveness.
Conclusion (Chapter 7)

This chapter provides a summary of the key findings and results presented
in this thesis.
Future Directions (Chapter 6)

This chapter outlines potential directions for future research that can be
pursued based on the findings and results presented in this thesis.

8

Chapter 2

Background

2.1 Caches

Modern processors takes advantage of caches to exploit spatial and temporal
locality and speed up accesses to memory data, address translation, and branch
prediction information. These caches are commonly organized in hierarchies,
e.g., modern Intel CPUs have dedicated L1 data and instruction caches, a
unified L2 cache for each core, and a last-level cache (LLC) shared by all
cores. The L1 has the lowest latency, yet is smallest in size. Conversely, the
LLC is the slowest but has the largest capacity.

Cache Hits and Misses. When the processor requires memory data, it
first checks in the relevant L1 cache. In a cache hit, when the data is found, it
is served from the cache. Otherwise, in a cache miss, the processor retrieves
the data from a lower cache level or from memory if the requested data is
not present on any level in the cache hierarchy. Once the data is fetched, it
is stored in the cache for future use. A similar process is used for retrieving
address translation and branch prediction results.

Cache Structure. Cache memory stores data in fixed-size blocks referred
to as lines, which serve as the smallest unit for loading and storing cached data
to and from memory, for example, 64 bytes. These lines are situated in one
of the available spaces, or entries, within the cache hardware. Consequently,
in this thesis, the term line refers to the actual data block housed in the
cache, while the word entry denotes the hardware slot within the cache that
accommodates the lines.

05Bit 5 + n

IndexTag Offset

Figure 2.1: Relationship between memory address and cache lines

Figure 2.1 illustrates the relationship between memory addresses and lines

9

IndexTag Offset

0 0 0 0 0 0 0

IndexTag Offset

0 0 0 0 0 0 1

IndexTag Offset

0 0 0 1 1 1 1

IndexTag Offset

0 0 1 0 0 0 0

Addresses Cache

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 2.2: Mapping from memory to cache entries in direct-mapped caches

for a cache with 64 byte-wide line. The offset bits represents the position of
a specific byte or word within a cache line, and is derived from the lower-six
bits of the memory address. This means that access to any 64 byte within
addresses with matching tag and index bits falls within a same cache line.
The index bits determine which entry in the cache an address maps into. And
finally, the tag is used to differentiate between addresses of different memory
locations that share the same index bits, and are mapped to the same entry
in the cache.

Direct-Mapped Cache A direct-mapped cache associates addresses with
entries based on their index bits. This creates a one-to-one mapping between
the index and the cache entry, which wraps-around when the index bits over-
flow. As a result, addresses sharing identical index bits are mapped to the
same cache entry. To differentiate between different lines, the tag bits are
used. They indicate that although different addresses are directed to the same
cache entry, they are distinct cache lines if they have distinct values in their
more significant bits.

Figure 2.2 illustrates the association between memory addresses and their
corresponding entries in a direct-mapped cache with a 16-line capacity. Ob-
serve that the first and last address mappings align with the cache’s first entry,
as their index bits are identical. However, the cache can differentiate the two
due to their distinct tags.

The issue with this cache design is the potential for thrashing, which can
occur when multiple memory locations with matching indexes but distinct tags

10

Offset

Address

Cache

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 2.3: Mapping from memory to cache lines in fully-associative caches.
Any address may occupy any entry in the cache.

are accessed frequently. In this situation, each access will continuously replace
the others’ line, irrespective of the cache’s actual usage.

Fully-Associative Cache In a fully-associative cache, any memory loca-
tion can be placed in any cache entry. As a result, the tag and index bits
serve the sole purpose of distinguishing between cache lines and hold no sig-
nificance in determining the entry where the line is to be stored. Figure 2.3
demonstrates how memory addresses map to cache entries in a fully associative
cache, noting that data can reside in any of the 16 available entries. When
searching for a line, fully-associative caches simultaneously searches all the
cache entries for data corresponding to that line.

Set-associative Caches In this model, the cache is arranged into sets
and ways. Identical to direct-mapped caches, index bits are used to determine
the entry of an address in the cache. However, each entry is capable of holding
more than a single line at a time. A set-associative cache capable of holding k
lines in each entry is called a k-way set-associative cache. Entry in the cache
as determined by the index bits is called a set, and each of the k entries within
a set is called a way. Note that data can be placed in any of the k ways within
a set, meaning that access within a set is associative. When searching for a
line in a set-associative cache, the processor first finds the set it maps to and
then uses an associative lookup in the set. Figure 2.4 illustrates the mapping
of addresses in a three-way set-associative cache.

Small caches are often fuly-associative, as they offer optimal hit-rate and
cache utilization. However, fully-associative caches do not scale well in terms

11

IndexTag Offset

0 0 0 0 0 0 0

IndexTag Offset

0 0 0 1 0 0 1

IndexTag Offset

0 0 0 1 1 1 1

IndexTag Offset

0 0 1 0 0 0 0

Addresses Cache

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sets Ways

0
1
2

0
1
2

0
1
2

Figure 2.4: Mapping from memory to cache lines in set-associative caches.
Addresses are map to the set based on their index bits. Within a set, that
address may occupy any way.

of power and performance. Thus, larger caches are often set-associative, which
gives a better trade-off between capacity, hit-rate, and implementation com-
plexity.

Cache Replacement Policies. As caches eventually run out of space due
to their limited size, when new data needs to be stored, the cache evicts older
data to make room for new ones. The choice of which data to evict is dictated
by replacement policies. One such policy is the random policy, which randomly
chooses any cache line to evict. Another policy is the LRU (Least Recently
Used) policy, which keeps track of the access time of data in the cache. It
selects the candidate that has not been used for the longest duration. To
approximate the LRU algorithm without maintaining the full access order,
methods such as: Bit-PLRU and Tree-PLRU are used. Bit-PLRU utilizes a
single bit for each candidate line. Initially, these bits are set to zero and are
changed to one upon access. If setting a bit to one would result in all candidate
bits being set, all the candidate bits are cleared before setting the bit. The
replacement algorithm selects an arbitrary candidate whose bit is clear. Tree-
PLRU constructs a binary tree with candidates located at the leaves. Each
internal node of the tree has a direction bit that indicates the side of the most
recent access. The replacement candidate is chosen by traversing the tree and
selecting the half whose direction bit indicates least recently accessed data.

12

2.2 Cache Side-Channel Attacks

While data eviction caused due to program activity is non-malicious in the
context of a single process, cross-eviction between different application con-
texts could potentially be exploited to break information isolation guarantees
between applications. By observing timing differences of access to data, an at-
tacker can infer whether or not the data is present in the cache, and therefore
learn about the execution of a victim program.

The pioneering work of Tsunoo et al. (2002) demonstrated the ability to
exploit this information for the recovery of secret cryptographic keys. Initial
attacks primarily focused on the L1 data cache [Osvik et al., 2006; Percival,
2005; Tsunoo et al., 2003], but soon expanded to include other caches as
well [Acıiçmez, 2007; Acıiçmez et al., 2007; Gras et al., 2018; Gullasch et al.,
2011; Irazoqui Apecechea et al., 2015; Liu et al., 2015; Yan et al., 2019a; Yarom
and Falkner, 2014]. Cache attacks have also been successfully deployed against
various cryptographic systems, including symmetric cryptography [Genkin et
al., 2020; Gullasch et al., 2011; Irazoqui Apecechea et al., 2015; Moghimi et al.,
2017; Osvik et al., 2006; Tsunoo et al., 2002; Tsunoo et al., 2003], public-key
schemes [Acıiçmez et al., 2007; Dall et al., 2018; Gras et al., 2018; Liu et al.,
2015; Percival, 2005; Pereida Garćıa and Brumley, 2017; Ronen et al., 2019;
Yarom and Falkner, 2014], post-quantum cryptography [Groot Bruinderink
et al., 2016; Pessl et al., 2017], and even non-cryptographic software [Brasser
et al., 2017; Evtyushkin et al., 2016; Gras et al., 2017; Gruss et al., 2015; Hund
et al., 2013; Oren et al., 2015; Shusterman et al., 2019; Yan et al., 2020].

Reload-Based Attacks Reload-based attacks involve monitoring shared
memory access [Gruss et al., 2015; Gullasch et al., 2011; Yarom and Falkner,
2014]. To prepare for an attack, an adversary evicts data from the cache either
by issuing a special command [Gullasch et al., 2011; Yarom and Falkner, 2014]
or by creating contention within the cache sets that contain the data [Gruss
et al., 2015]. After waiting for a certain amount of time, the attacker then
measures how fast its access is to the previously removed data. If the data is
accessed by the victim while the attacker is waiting, the data will be brought
back into the cache, allowing the attacker to also quickly fetch the data, thus
learning about the cache state of said data.

Contention-Based Attacks, Contention-based attacks are attacks that
exploit the limited storage capacity within the cache, particularly within in-
dividual cache sets [Acıiçmez, 2007; Acıiçmez et al., 2007; Gras et al., 2018;
Irazoqui Apecechea et al., 2015; Liu et al., 2015; Osvik et al., 2006; Percival,
2005; Yan et al., 2019a]. The most commonly used technique in contention-
based attacks is Prime+Probe. In this technique, the attacker accesses its own
data, to fill some or all of the cache sets, i.e., priming the cache. After allowing
the victim to execute for a certain period of time, the attacker measures the
access time to the cached data. If the access is slow, it suggests that the data
has been removed from the cache set as a result of victim activities.

13

Variations of this attack refrain from using timing information by utilizing
performance counters [Bhattacharya and Mukhopadhyay, 2015; Brasser et al.,
2017; Uhsadel et al., 2008] or transaction aborts [Disselkoen et al., 2017] for
contention detection, instead of relying on timing measurements.

Another contention-based attack technique is Evict+Time [Gras et al.,
2018; Jain et al., 2019; Osvik et al., 2006; van Schaik et al., 2017]. In this
approach, the attacker first evicts data from the cache prior to measuring the
execution time of the victim. If the evicted data is accessed by the victim,
it leads to a longer execution time, thereby revealing information about the
cache sets accessed by the victim.

Other Types of Cache Attacks. There are certain cache attacks that
do not fall under the previously mentioned categories. These attacks aim to
take advantage of specific implementation characteristics of the cache itself.
Examples of such attacks include leveraging port contention [Yarom et al.,
2017], cache flushing time [Gruss et al., 2016], replacement policies [Purnal
et al., 2021a; Vila et al., 2020; Xiong and Szefer, 2020], cache inspection
operations [Brumley, 2015], or variations in power consumption [Page, 2002].

Eviction-Set Construction. In many of the aforementioned attacks, the
attacker requires the ability to regularly remove certain data from the cache.
This is often achieved by creating an eviction set, which comprises memory
locations, all of which are mapped to the same set in the cache as the targeted
data that needs to be evicted. Constructing an eviction set is usually straight-
forward when the attacker is able to gain access to the mapping information
for the cache. However, in cases where the mapping function is undisclosed or
the cache indexing information is not accessible to the attacker, more advanced
techniques can be used to recover the absent mapping details. Previous re-
search has demonstrated methods to reverse-engineer undocumented mapping
functions [Gras et al., 2018; Inci et al., 2016; Maurice et al., 2015b; McCalpin,
2021; Yarom et al., 2015] and create eviction sets without relying on physical
address information [Liu et al., 2015; Purnal et al., 2021b; Vila et al., 2019].

2.3 The Processor Microarchitecture

Contemporary processors are composed of an extensive array of components
and algorithms that together execute the instruction set architecture (ISA),
which is collectively referred to as the microarchitecture. The microarchitec-
ture defines how program executions are carried out internally within modern
processors. Program execution in these processors entails numerous stages
and elements that work in tight conjunction to one another to achieve optimal
performance and efficiency. A simplified representation of the Intel Skylake
microarchitecture can be seen in Figure 2.5, which illustrates that three main
components are responsible for this process: the front end, the execution en-
gine, and the memory subsystem. For the purposes of this thesis, our primary
focus is on gaining a deeper understanding of the Intel microarchitecture.

14

2.3.1 Front End

The front end is responsible for fetching instructions from memory, decod-
ing them, and transferring them to the execution engine for execution. This
involves several sub-stages, including instruction prefetching, branch predic-
tion, and instruction decoding. Prefetching anticipates the instructions that
will be needed in the near future. Branch prediction, on the other hand, at-
tempts to predict the outcome of conditional branches, allowing the processor
to speculatively execute instructions and thereby reduce the impact of control
dependencies on performance. Instruction decoding is the process of translat-
ing instructions into simpler, fixed-length micro-operations (µops), which can
be more efficiently processed by the execution engine.

2.3.2 Execution Engine

The execution engine is responsible for executing the µops provided by the
front end. It comprises several sub-components, including the reorder buffer,
reservation stations, and execution units. To maximize instruction-level par-
allelism, the execution engine does not strictly follow the program’s specified
order of instructions. Instead, it executes instructions immediately after their
dependencies are resolved and suitable execution units are available. This is
called out-of-order execution. To support out-of-order execution, the front end
and execution engine utilize a shared data structure called the reorder buffer
(ROB). The front end adds instructions to the tail of the ROB, and the exe-
cution engine employs a variation of the Tomasulo algorithm [Tomasulo, 1967]
to execute instructions in a more optimal order. The ROB keeps track of the
instructions in flight and records when execution is completed. Once the in-
struction at the head of the ROB finishes execution, it is removed from the
ROB and retired by the front end, marking the end of its life cycle within the
processor. This ensures that the retirement of instructions follows the original
program order, regardless of the order in which they were executed. Reserva-
tion stations hold instructions and their operands until all dependencies are
resolved, and the necessary execution units become available. The execution
units consist of arithmetic logic units (ALUs), floating-point units (FPUs),
and other specialized units that perform the actual computations required by
the instructions.

2.3.3 Memory Subsystem

The memory subsystem is responsible for handling load and store instructions,
and the ordering of memory accesses [Lipp, 2021; Schor, n.d.].

Memory instruction execution consists of three steps. The first step is
the memory address generation, where addresses are computed either with
absolute or segment-offset addressing mode. The second step is address trans-
lation, which does a virtual-to-physical translation of addresses computed in

15

the first step, if virtual memory is used. Page tables are used to facilitate this
translation. To speed-up future accesses to previously translated addresses, a
translation-look aside buffer (TLB) is used to cache translation information.
The final step is the actual memory access. In this step, data is first retrieved
from the data cache and stored in a renamed register or the reorder buffer. A
cache miss occurs if the data can not be located in the data cache, in which
case, the data is requested from the main memory [Lipp, 2021].

The load buffer queues load instructions that can not complete when they
are dispatched by the reservation station. It is also used to listen for stores
performed in other cores against completed loads to ensure memory order-
ing. Meanwhile, the store buffer queues all store instructions before they are
dispatched to the memory in order, that is, when they have retired [Lipp,
2021].

2.4 Branch Prediction

When a branch instruction is decoded by the front end of a processor, it often
encounters a situation where it cannot determine the next instruction due
to pending computation of the branch condition or target address. Instead
of stalling the pipeline, the front end employs a technique known as branch
prediction. It predicts the branch outcome according to the history of recently
executed branches and proceeds to issue instructions accordingly.

By making correct predictions, this approach optimizes the execution flow
by allowing younger instructions to proceed before the branch is resolved.
However, in cases where the prediction is incorrect, the execution engine inval-
idates all younger instructions and requests the front end to resume execution
from the correct branch outcome. These squashed instructions are ignored by
the front end and are never committed, meaning their results are not stored
to the architectural state. The same mechanism is applied when older instruc-
tions cause exceptions, such as division by zero or memory access violations,
leading to the squashing of younger instructions.

Executed instructions that are eventually squashed are called transient
instructions. While their results are not committed to the architectural state,
any effects they have on the microarchitectural state of the processor are not
reversed, which can potentially introduce vulnerabilities [Canella et al., 2019a;
Kocher et al., 2019; Lipp et al., 2018].

2.5 Transient-Execution Attacks

While the results of such transient instructions are dropped, the microarchi-
tectural components that were affected by the computation’s side effects are
not reversed. Attackers can exploit this by triggering the transient execu-
tion of instructions that access confidential data and transmitting it through

16

microarchitectural components such as caches. These attacks are known as
transient-execution attacks and have been studied extensively [Canella et al.,
2019a; Kocher et al., 2019; Lipp et al., 2018; Xiong and Szefer, 2021].

Spectre [Kocher et al., 2019] is one of the most prevalent transient-execution
attacks and will be discussed further below, as it is pertinent to the subject
matter of this thesis.

2.5.1 Spectre

Spectre-type attacks are a type of transient-execution attack that takes ad-
vantage of the way processors execute instructions after a control or data-flow
misprediction. The attacker manipulates the branch-prediction unit, causing
the processor to speculatively execute instructions that do not appear in the
actual instruction stream. This is made possible by multiple prediction units
that work together to determine the outcome and target of a branch. By
poisoning one or more of these prediction units, Spectre-type attacks direct
the processor’s execution to “gadgets” which are code sequences that allow
the attacker to uncover sensitive data by exploiting microarchitectural state
changes.

In this thesis, we are specifically looking at the Spectre-PHT, which takes
advantage of a component in modern processors called the Pattern History
Table (PHT), which is a component of the branch predictor that predicts the
outcome of conditional branches [Canella et al., 2019a]. The PHT consists
of saturating counter that records recent branch history [Evtyushkin et al.,
2018]. The attacker repeatedly trains the PHT with valid inputs to take a
certain branch direction, such that targeted instructions are executed. After
training, the attacker then executes the branch with an invalid input (e.g.,
out-of-bounds or restricted values) that would not cause the targeted instruc-
tions to execute according to the architectural specification. However, because
the PHT is trained with valid inputs prior to this execution, it mispredicts the
branch direction, causing processor speculatively executes the targeted instruc-
tions with the invalid input. The attacker can use this technique to perform
architecturally-invalid reads, and forward the illicit data into a temporary
buffer such as the cache for the purpose of retrieval into the architectural state
later.

17

L1 Instruction
Cache

Front End
Branch

Predictor

µOP
Cache

Instruction Fetch &
PreDecode

Instruction Queue

4-Way DecodeMS
ROM

MUX

Allocation Queue

Execution Engine

Reorder Buffer (ROB)

Reservation Station

Execution Units

EU EU EU EU EU

M
em

ory Subsystem

L1 Data Cache

Store
Buffer

Load
Buffer

L2 C
ache

Figure 2.5: Simplified diagram of the Intel Skylake microarchitecture [Schor,
n.d.].

18

Chapter 3

A Framework to Evaluate Cache
Security

As we commence this thesis endeavor, in this chapter, our attention is directed
towards the first cache side-channel attack defense approach, particularly safe-
guarding against contention-based attacks through secure cache designs. Vari-
ous designs have been proposed to address contention-based cache attacks. For
example, partitioned caches aim to prevent contention [Domnitser et al., 2012;
Wang and Lee, 2007], while randomized caches create noise in the signal, ob-
structing attackers from analyzing the side-channel [Liu et al., 2016b; Qureshi,
2018; Qureshi, 2019; Tan et al., 2020; Werner et al., 2019]. Randomized caches
generally prevent attackers from linking addresses to predicted cache line in-
dexes, an essential element for the attack. Additionally, some suggestions aim
to counter cross-core attacks by modifying the inclusion properties of shared
cache levels in modern processors [Green et al., 2017; Kayaalp et al., 2017;
Yan et al., 2017; Yan et al., 2019b].

As various proposals exist for defending against cache side-channel attacks,
a technique to assess their security is essential. Several methods for evaluating
secure caches have been proposed [Cock et al., 2014; Demme et al., 2012;
Demme et al., 2013; Deng et al., 2019; Deng et al., 2020; Doychev et al.,
2013; Ge et al., 2018; Ge et al., 2019; Ghasempouri et al., 2020; He and
Lee, 2017; Köpf et al., 2012; Wang et al., 2019; Zhang and Lee, 2014; Zhang
et al., 2013]. Nonetheless, these approaches have certain drawbacks as they
either work only with basic cache models, focus on theoretical analysis, lack
automation, or do not address the entire spectrum of cache attacks. Moreover,
evaluating multiple metrics is crucial to bolster confidence in cache design
security. Consequently, we explore the following question in this chapter:

How can we evaluate the security that cache designs offer against
contention-based cache attacks?

To address this question, we introduce in this chapter a software framework,
called CacheFX, to assess cache security. CacheFX allows for the emulation

19

of various cache designs, victims, and attackers, and measures the resulting
leakage using various metrics.

3.1 Background

In this section we present specific background on secure caches. Several pro-
posed cache designs aim to mitigate contention-based attacks. Their mitiga-
tion strategies are either based on partitioning [Domnitser et al., 2012; Wang
and Lee, 2007] or randomization [Liu et al., 2016b; Qureshi, 2018; Qureshi,
2019; Werner et al., 2019].

Partitioned Caches Way-partitioned caches [Domnitser et al., 2012] en-
force a strong partitioning between security domains1 by letting each security
domain use a different subset of the cache ways. Hence, domains not shar-
ing cache ways will not see any interference. Alternatively, Partition-Locked
(PL) [Wang and Lee, 2007] caches share the whole cache among all security
domains, but offer to pin cache lines in the cache. These pinned lines cannot
be evicted by other security domains, preventing contention-based attacks.
However, aggressive pinning can starve other domains and severely degrade
their performance.

CEASER. The CEASER cache [Qureshi, 2018] is based on an ordinary
set-associative cache but uses encryption to randomize the mapping of ad-
dresses to cache sets. As a result, attackers need to first profile the victim’s
accesses of interest to find a suitable eviction set before they can perform
contention-based attacks. To limit the attacker’s time for finding such evic-
tion set, CEASER regularly changes the encryption key. However, in this
chapter we only measure information leakage in each key epoch (i.e., during
the time period the cache uses the same key) and do not model re-keying. This
allows assessing the security of pure cache-set randomization as it is needed
to appropriately tune the re-keying interval for long-term security.

CEASER-S and ScatterCache. With improving eviction set building
techniques [Qureshi, 2019; Vila et al., 2019], CEASER required higher key
refresh rates to maintain security, resulting in increased overheads. CEASER-
S [Qureshi, 2019] and ScatterCache [Werner et al., 2019] thus use a skewed
cache [Seznec, 1993] to improve cache randomization. These skewed caches
split the cache into partitions along its ways and use a different key to encrypt
the address to index into each partition. The partition count can vary between
1 (CEASER) and the number of ways (ScatterCache) and allows to control the
degree of randomization. As before, we omit re-keying to assess the security
of pure cache randomization with skewing.

PhantomCache. PhantomCache [Tan et al., 2020] builds upon set-associative
caches and maps each address to multiple sets via multiple hash functions, i.e.,

1Security domain refers to code and data regions in memory that have the same level of
security. (e.g., sensitive vs. normal).

20

it looks in multiple sets for a cache hit. On a cache miss, PhatomCache ran-
domly selects one of the sets the address maps to and inserts the cache line
into the chosen set. The number of cache sets looked up in parallel determines
the degree of randomization and the cost of lookup. As before, we evaluate
PhantomCache without re-keying.

NewCache. Rather than randomizing the cache mapping, NewCache [Liu
et al., 2016b] is a more efficient implementation of a fully-associative cache.
NewCache allows every cache line to be stored in any of the entries of the cache.
Compared to a standard associative design, it optimizes power using a two-
step look-up procedure: For a cache that can hold 2n entries, NewCache first
looks up n + k index bits of the cache line address in a 2n-element Content-
Addressable Memory (CAM), which has a 1:1 mapping to the actual cache
lines. Only if these n + k bits match, this index hit is secondly followed by
checking the tag for the respective entry. If the tag hits, the cache line is
found and returned. If there is a tag miss for the same security domain in the
second step, the tag and cache line are simply replaced. If there is an index
miss, any of the 2n cache lines in the cache is randomly replaced. While for
large k NewCache resembles a traditional fully associative cache, a smaller k
significantly reduces power and implementation cost.

3.2 Problem Description

With the abundance of secure cache designs, there is a clear need for sys-
tematically evaluating the security of caches to ensure that emerging cache
architectures deliver the promised protection. Tackling this task, previous
works [Cock et al., 2014; Demme and Sethumadhavan, 2014; Demme et al.,
2012; Demme et al., 2013; Deng et al., 2019; Deng et al., 2020; Domnitser
et al., 2010; He and Lee, 2017; Wang et al., 2019; Zhang and Lee, 2014; Zhang
et al., 2013] have suggested several metrics. However, all of these tend to
suffer from some limitations to their practicality. For example, measuring the
amount of information that can be transferred via a cache side channel [Cock
et al., 2014] or the correlation between a specific victim’s activity and attacker
observation [Demme et al., 2012] may not translate easily to cryptographic
attack scenarios. Possibly the most common limitation of these approaches is
the attempt to provide a single metric that somehow represents the security
of the cache.

A General Cache Evaluation Framework. Instead of focusing on
a single metric, this chapter proposes CacheFX, a framework for evaluating
the security of cache designs. The main design aim of CacheFX is flexibility:
CacheFX is extensible and allows evaluating various combinations of victims,
cache designs, and attack strategies. As a proof of CacheFX’s generality, this
chapter implements and evaluates three security metrics on nine different cache
designs.

21

A Leakage Upper Bound. While we try to evaluate in realistic scenar-
ios, CacheFX aims to provide an upper bound on the amount of leakage an
attacker can obtain from a cache design. We thus assume an attacker who has
significant control over the victim and is tightly synchronized with the victim’s
execution. We further assume that the attacker has access to victim’s memory
layout and code and thus knows the position of “interesting” data in the cache
(e.g., cache lines containing secrets). This allows the attacker to craft inputs
to the victim that may cause specific cache footprints. Unless required by the
cache design, we assume a noise-free environment without any system activity
besides the attacker and victim.

Using such strong assumptions allows CacheFX to properly evaluate the
security offered by the cache design, as opposed to being misled by security
guarantees stemming from other components’ noise. We note that previous
works have demonstrated that attackers can find interesting cache lines [Liu
et al., 2015] and overcome noise [Cock et al., 2014].

Attack Model Memory Handle Cache Model
rd offset rd offset

hit/miss hit/miss

Figure 3.1: CacheFX design overview.

3.3 CacheFX Design

As mentioned above, CacheFX is designed to provide an easily extendable
framework for evaluating 1) the security of emerging cache designs and 2) the
applicability and complexity of new attack strategies to both deployed and
emerging caches. To facilitate these goals, CacheFX is split into three major
components as depicted in Figure 3.1. First, the attack model provides a set
of interfaces and their implementations to model different attack and security
evaluation strategies. Attack models use a memory handle to request reads,
writes, and cache line invalidations to the memory system by specifying a
certain offset into a memory region that is associated with the memory handle.
The memory handle translates the requests to cache line addresses and queries
the cache model correspondingly. The cache model returns whether the request
hit or missed in the cache via the memory handle to the attack model, which
then proceeds with the attack accordingly. Finally, the cache model provides a
generic cache interface allowing for multiple different cache implementations.
In the following, we give additional details about each of these components.

3.3.1 Cache Model

CacheFX’s cache model offers a generic cache interface that the memory handle
and the attacker model can use to issue read, write, and invalidation requests

22

MemHandle

mmu : MMU

read()
write()
exec()
flush()

MMU

cache : Cache*

getCache()

read()
mmu.getCache()
->read()

Cache

hits : long
misses: long

virtual read()
virtual write()
virtual exec()
virtual flush()

AssocCache

rp : ReplPlcy

NewCache

ScatterCache
SetAssocCache

virtual getSet()

CEASERCache PhantomCache WPCache PLCache

Figure 3.2: CacheFX overall architecture.

to the cache under test. For each of these requests, the cache responds with
whether the request hit or missed. This indication removes the need to distin-
guish between hits and misses using (potentially noisy) timing measurements,
providing an upper bound on the amount of leakage available to the attacker
and consequently lower bounding the attack’s complexity.

Supported Cache Designs.The cache model currently provides multi-
ple implementations of security-oriented cache designs: fully associative cache,
set-associative cache, way-partitioned cache, partition-locked cache, CEASER
and CEASER-S [Qureshi, 2019], ScatterCache [Werner et al., 2019], New-
Cache [Liu et al., 2016b], and PhantomCache [Tan et al., 2020]. These cache
implementations are parameterized by the number of sets, ways, replacement
policy, and cache-specific parameters. Unless a cache design mandates a spe-
cific replacement policy, all the implementations support LRU, Bit-PLRU,
Tree-PLRU, and random replacement.

The Cache Interface. The internal interface of the cache model is de-
fined by the Cache virtual class which acts as an interface with mainly four
functions, namely: read, write, exec, and flush all of which embody actual re-
quests that are sent to the cache hardware. Being an interface, these functions’
specific implementations are delegated to the derived classes of the Cache vir-
tual class, such as, NewCache, ScatterCache, SetAssocCache, as shown in Fig-
ure 3.2. Each inherited class devises distinct mechanisms for dealing with the
four requests which are carefully modeled based on the actual cache hardware
functionality. This design promotes effective encapsulation and abstraction
along with ease of implementation when adding new models as CacheFX’s sim-
ulation logic interfaces only with these top level functions. To support generic
set-associative classes, CacheFX supports the SetAssocCache class, where each
set is implemented as an AssocCaches. This allows for easy creation of the
different set-based caches and reuses the code of the associative cache class,

23

e.g., to support multiple replacement algorithms.
The mechanism for selecting a set is implemented by the function getSet().

For the SetAssocCache, this is a simple modulus operation of the cache line
and the number of cache sets. For CEASERCache and PhantomCache the set
selection mechanism is based on a hashing algorithm. For both of these cases,
the getSet() function is simply overloaded while the underlying implementa-
tion of SetAssocCache remains unchanged. Similarly, WPCache separates its
context into two partitions, one for sensitive, and another for general data.
This model simply consists of two SetAssocCache instances that are chosen
based on the security context of a data access. Finally, PLCache’s design
is based on the SetAssocCache, but with a minor change to the replacement
algorithm to facilitate pinning of specific lines.

Statistics Generation. The abstract cache model automatically tracks
the number of cache hits and misses for each security domain. In addition,
the cache model can return the evicted address, if a cache access causes an
eviction. While attackers usually do not have direct access to such information,
providing the address allows us to apply novel and efficient techniques, such
as the Relative Eviction Entropy (REE) in Section 3.4.1, for analyzing cache
security.

3.3.2 Attack Model

CacheFX’s attack model implements the actual adversarial strategy and eval-
uates the cache design under test. Currently, CacheFX supports three security
evaluation strategies:

The Attacker. CacheFX allows to model synchronized pairs of victims
and attackers, aiming to evaluate the security of cache designs with respect
to realistic attacks, such as cache attacks against cryptographic block ciphers.
CacheFX supports two types of attackers, EvictionAttacker, and OccupancyAt-
tacker, both are subclasses of a generic Attacker class that manages the attack
and collects the success statistics.

Information Leakage Assessment. CacheFX supports entropy-based
security metrics that quantify information leakage during cache attacks (e.g.,
mutual information analysis). Most noteworthy, CacheFX implements a novel
technique for evaluating information leakage in cache designs via the REE, by
efficiently analyzing the statistical properties of a cache’s cross-domain eviction
behavior.

Eviction-Set Profiling. CacheFX provides an environment that allows
for the evaluation of strategies to construct eviction sets for different cache
designs.

Experiment Randomization and Automation. CacheFX allows to
conduct each of these experiments multiple times with randomized address
ranges to automatically obtain statistical data like maximum, minimum, etc.
CacheFX hereby collects data such as cache statistics and attack success rates.

24

3.3.3 Victim Model

The purpose of this model is to simulate the behavior of victim applications
within CacheFX’s simulation. CacheFX implements a number of victim models
including:
• SingleAccessVictim is the simplest victim model that repeatedly accesses
a single address in the memory.

• AESVictim simulates the behavior of AES encryption.
• SquareMultVictim imitates the square-and-multiply routine used in pop-
ular algorithms such as RSA.
All models are carefully crafted to resemble their actual attack character-

istics. Take for example the AESVictim model whose code is taken directly
from the original AES implementation, but is adapted to call into CacheFX’s
API on each T-table access. In other words, all memory operations of the
victim are redirected to CacheFX for further simulation. A similar approach
is taken for SquareMultVictim where the cache line containing the multipli-
cation code is executed conditionally based on the exponent. In this context,
a call to CacheFX’s cache line read function is invoked at the beginning of
the multiplication basic block to notify the simulator of the instruction cache
read. With this methodology, we ensure high precision of CacheFX’s simulated
model characteristic in comparison to the actual implementation.

Note that CacheFX victims currently focus on cryptographic code as its
properties are well understood and are well suited to analyze the properties
of the underlying cache design. However, CacheFX is generic enough to sim-
ilarly model other leaking code, e.g., (de-)compression algorithms, data en-
/decoders [Sieck et al., 2021] or neural networks [Yan et al., 2020].

3.3.4 The Attack Controller Function

As its name suggests, the purpose of this function is to moderate interactions
between Attack Model and Victim Model (both of which subsequently interact
with Cache Model).

Listing 3.1: Attack Controller main loop.

// Eviction or Occupacy Attacker

Attacker* a = createAttacker(attackerModel);

// Single , AES , or SquareMult Victim

Victim* v = createVictim(victimModel);

while (controller_run) {

a->prime ();

v->cipher ();

a->probe ();

}

Listing 3.1 outlines the main workings of the attack controller function. At
the outset, pointers to both the Attacker and Victim classes are instantiated

25

to their desired model. At the heart of this function is a loop that interleaves
the execution of the attacker and the victim, i.e., the prime, cipher, and probe
methods. Note that the controller is agnostic of the specific implementations
of these victim and attack functions and that the choice is left up to polymor-
phism.

The controller consolidates all major simulation components and can be
thought of as the main driver of CacheFX.

3.4 Evaluation

Recognizing that no single metric is sufficient for measuring the resilience of
caches to side-channel attacks, we evaluate emerging cache designs with respect
to multiple metrics using our framework. First, the Relative Eviction Entropy
(REE) metric measures the amount of information (in bits) that an attacker
can deduce following a single memory access performed by the victim. Our
second metric measures the complexity of creating eviction sets in randomized
caches. Our third metric measures the complexity of performing cache attacks
on cryptographic implementations. It evaluates both traditional attacks that
seek to exploit eviction sets and cache-occupancy attacks [Cock et al., 2014;
Shusterman et al., 2019], which do not require eviction sets.

We now discuss each metric in detail and compare different designs accord-
ing to each of the measurement metrics.

3.4.1 Relative Eviction Entropy

In this section we introduce our Relative Eviction Entropy (REE) technique
for effectively measuring the amount of information available to an attacker
following a single memory access performed by the victim. We begin by ob-
serving that traditional mutual information analysis [Cock et al., 2014; Zhang
and Lee, 2014] achieves such estimation for general side channels by computing
a 2-dimensional joint probability distribution, which describes the likelihood
of each victim activity (side channel input) to be mapped to an effect observ-
able by an attacker (side channel output). For the case of caches, this means
that for any address i accessed by the victim, and for all cached addresses a,
we need to compute pe(a, i) which is the probability that a is evicted from
the cache assuming that the victim accesses address i. We note that mutual
information techniques typically measure average leakage across accesses, and
thus do not capture the worst-case leakage.

Avoiding Quadratic Overheads. To avoid the quadratic overhead of
computing the 2-dimensional joint probability distribution, we start by observ-
ing that natural cache designs typically do not have different eviction behavior
between cache line addresses, and instead use the same replacement policy
constantly across all cache lines. In addition to simplifying cache designs, this

26

property implies that all cache line addresses exhibit the same leakage behav-
ior. Leveraging this fact, we can thus fix an arbitrary address i to be accessed
by the victim, and simply sample pe(a, i) for all other addresses a. This avoids
iterating over all possible values of i and thus makes the evaluation time of
our metric linear in the size of the victim and attacker address spaces. When
the value of i is fixed and clear from the context, we will simply omit i from
the notation.

Quantifying Information Leakage. To capture the amount of leakage
available to the attacker (in bits), we start from the intuition that fully as-
sociative caches with a random replacement policy leak the least amount of
information among all cache designs that share cache lines between security
domains, i.e., without consideration of partitioned caches. We argue that this
assumption is reasonable, since fully associative caches with uniformly-random
replacement only leak whether an address a was evicted or not, and do not
reveal any information about which address i accessed by the victim caused
the eviction of a. To evaluate leakage of new cache designs, we thus measure
the REE as the statistical distance (in bits) of the eviction behavior of the
tested cache design from the eviction behavior of ideal fully associative caches
with random replacement.

Computing Relative Eviction Entropy. Our strategy for computing
a cache design’s REE is as follows. First, we allocate a chunk of memory
in the adversary’s address space, typically a small multiple of the cache size.
We denote the set of cache line addresses within that adversary’s memory as
a ∈ [0, ..., N − 1]. Second, for a single victim access to some fixed address i,
we estimate the eviction probability pe(a) for each cache line a ∈ [0, ..., N − 1]
in the adversary’s memory, using our implementation of the cache design un-
der test. The distribution pe(a) will reflect the cache’s placement policy: e.g.,
if the single victim access can evict every adversary address a, as in a fully
associative cache with random replacement, pe(a) will be uniform among all
adversary addresses a. If the single victim access can only evict adversary ad-
dresses a mapping to the same cache set in a set-associative cache, pe(a) will
be uniform among those addresses a mapping to the same set as the victim
address i and zero otherwise. The reference eviction distribution of a fully
associative cache with random replacement is set to pu(a) = 1/N for all ad-
dresses a, reflecting that every adversary address is equally likely to get evicted.
Finally, we compute the REE as the statistical distance in bits between the
eviction probability distributions pe(a) and pu(a) using the Kullback-Leibler
(KL) divergence to measure,

DKL(pe||pu) =
∑

a∈[0,...,N−1]

pe(a) log2
pe(a)

pu(a)
. (3.1)

Note that the KL divergence does not fulfill the requirements of a metric and is
asymmetric. Nevertheless, DKL(pe||pu) describes the relative entropy of pe(a)
with respect to pu(a) and is a measure of the information lost if pu(a) was used

27

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

PLcache

associative
ceaser

ceaser-s

newcache
phantom

scatter-cache

set-associative

way-partiti
on

In
fo

rm
a
ti

o
n
 F

lo
w

 [
b
it

s]

256

0.
00

0

0.
03

0

4.
00

2

3.
16

2

0.
05

8

0.
12

4 0.
85

0

4.
00

2

0.
00

0

512

0.
00

0

0.
02

9

5.
00

1

4.
25

2

0.
04

4

0.
54

1 1.
45

1

5.
00

1

0.
00

0

1024

0.
00

0

0.
02

9

6.
00

0

5.
18

8

0.
03

6 0.
78

2

2.
24

8

6.
00

1

0.
00

0

2048

0.
00

0

0.
03

0

7.
00

0

6.
17

5

0.
03

3

1.
42

0

3.
12

7

7.
00

0

0.
00

0

4096

0.
00

0

0.
03

0

8.
00

0

7.
10

9

0.
03

1

2.
20

9

4.
06

8

8.
00

0

0.
00

0

Figure 3.3: REE across cache designs with random replacement. All but
NewCache and the fully associative cache use 16 ways.

to approximate pe(a). Mapped to cache side channels, the KL divergence thus
nicely characterizes the leakage of a cache design with an eviction probability
distribution pe(a) relative to the distribution pu(a) in a fully associative cache
design.

Sampling pe(a). As pe(a) is generally unknown, we sample pe(a) and use
the plug-in estimator [Zhang and Grabchak, 2014] for the KL divergence to
estimate the REE: we simply count the number of evictions for the attacker’s
cache lines when the victim repeatedly accesses a fixed, randomly chosen ad-
dress. More specifically, we first fill the cache by randomly accessing cache line
addresses from the memory chunk corresponding to the attacker’s security do-
main. To keep track of self-evictions and hence the attacker’s lines that are
actually cached, we utilize our cache model’s capability to return which cache
line is evicted with each access, as described in Section 3.3.1. We note that
this is an over-approximation of the attacker’s capabilities, as on real systems
this translates to an attacker who can perfectly monitor cache evictions and
accurately determine address collisions in the cache. Once the cache is entirely
filled with the attacker’s data, we access a fixed secret address from the vic-
tim’s security domain, forcing an eviction of one of the attacker’s addresses.
We then increment the eviction counter for the attacker address that is being
reported as evicted from the cache. We repeat this sampling step multiple
times and finally divide the per-address eviction counts by the total number of
observed evictions, thereby obtaining pe(a). The repeated sampling procedure
reduces the error of the sampled eviction probabilities proportional to

√
(r),

where r is the number of samples collected.
Definition Relative Eviction Entropy is evaluated as follows:

1. Select a victim address v and initialize a pool of memory P .
2. Sample pe(a)∀a ∈ P , which is the probability that v evicts address a from

the cache.
3. Compute the REE via Equation 3.1, where pu(a) denotes a uniform distri-

bution over all addresses a ∈ P .
Evaluation Results. Figure 3.3 depicts the information leakage in the

28

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16

In
fo

rm
a
ti

o
n
 F

lo
w

 [
b
it

s]

Partition Count

1 Way

11
.0

00

2 Ways

10
.5

74

9.
28

2 4 Ways

9.
72

1

8.
36

3

7.
11

4

8 Ways

8.
50

2

7.
17

9

6.
07

8

5.
06

0

16 Ways

7.
29

7

6.
17

5

5.
09

9

4.
09

8

3.
14

1

Figure 3.4: REE for CEASER-S with 2048 lines depending on ways and par-
titions.

analyzed cache designs for various cache sizes and using random replacement.
While the partitioned cache designs exhibit zero leakage, the leakages for
CEASER and set-associative caches is the number of sets, i.e., log2(#sets)
bits, thereby confirming the validity of our results. Next, we attribute the
slightly above-zero leakages in NewCache and the fully associative cache to
statistical noise. Note that CEASER-S and ScatterCache (with 2 and 16
partitions, respectively) show considerably lower leakage than standard set-
associative caches. Moreover, as PhantomCache is looking up 8 sets, i.e., 128
lines, in parallel, PhantomCache stands out with significantly lower leakage per
access than other designs, but also hurts chip area and power consumption.

Figure 3.4 analyzes the leakage in skewed caches like CEASER-S depending
on way and partition count. Figure 3.4 clearly shows that increasing the
number of ways and partitions effectively reduces leakage, with the difference
between the best and worst configuration being 8 bits per access.

Supporting More General Cache Designs. We note that our Rela-
tive Eviction Entropy method can be computed in linear time, allowing us to
evaluate different cache designs within minutes. However, we do assume some
properties of the replacement policy of the cache being tested, namely that
every line in the considered cache design exhibits the same leakage behavior,
which in turn is independent from the specific address accessed by the victim.
We rely on this assumption in our procedure for sampling pe(a), evaluating the
eviction distribution using only a single fixed address accessed by the victim.
We argue that this assumption is natural and holds for most cache designs,
including all the caches considered in this chapter, as typical replacement poli-
cies do not differentiate between cache line addresses. While a single access
does not reflect practical attack scenarios, it gives strong insight into the theo-
retical leakage caused by the caches’s structural mapping of addresses to cache
lines. However, while the REE is a highly efficient tool to approximate leak-
age, we recognize that its underlying assumptions may be limiting its use in
various corner cases, e.g., when replacement decisions are based on the actual

29

address.
To better understand the practical exploitability of leakage determined

via the REE, we conduct application-specific tests using cryptographic rou-
tines later in Section 3.4.3. However, note that the REE metric can be easily
adapted to other cases as well, by simply testing multiple victim addresses and
reporting the range of the occurring leakage as a function of victim’s address.

3.4.2 Eviction-Set Creation

To perform contention-based cache attacks, attackers first construct suitable
eviction sets, i.e., minimal sets of addresses in their own address space that
collide with the victim’s accesses of interest. Due to its perceived impor-
tance, multiple cache designs aim at randomizing the cache to prevent efficient
eviction-set creation and thus contention-based attacks.

Definition Eviction-set creation is evaluated as follows:
1. Select an eviction-set construction algorithm A, an address a, a target

eviction set size T , and number of repetitions R
2. Select a pool P of candidate addresses.
3. Run A on pool P to find an eviction set E ⊂ P for address a until the

target size |E| = T is reached and repeat R times.
4. Evaluate minimum/maximum/median/average for R samples of key met-

rics, e.g., number of attacker accesses and final set size.
Constructing Eviction Sets on Randomized Caches. Previous works

proposed a range of methods for finding eviction sets in randomized caches.
Taking a top-down approach, the Single Holdout Method (SHM) and the
Group Elimination Method (GEM) [Qureshi, 2019; Vila et al., 2019] both
start from a large set of attacker addresses that evicts a certain victim ad-
dress and then shrink this conflict set to a minimal eviction set by trying
to remove (groups of) addresses while continuously verifying that the cache
conflict remains. Taking a bottom-up approach, the Prime+Prune+Probe
(PPP) method [Purnal et al., 2021b] pre-fills the cache with a set of candi-
date addresses, and subsequently triggers the victim access of interest. PPP
then tests for cache misses in its candidate set, thereby locating conflicting
addresses. Note that all of these approaches allow for optimizations specific
to the cache replacement strategy in use.

Evaluating Difficulty of Eviction Set Construction. As protecting
against eviction set construction is a major design goal for randomized caches,
CacheFX allows to evaluate the effectiveness of SHM, GEM, and PPP on a can-
didate cache design. In particular, CacheFX quantifies the number of memory
accesses required by an attacker, the number of conflicting addresses found,
and the success rate of using the found addresses for evicting the victim ad-
dress. These figures eventually allow to configure cache re-keying intervals,
e.g., for CEASER and CEASER-S. To set a level playing field and support
an equal comparison across cache designs, we use the same implementations

30

of eviction-set construction techniques for all evaluated cache designs. We in-
tentionally avoided cache-specific optimizations, opting for comparable results
rather than for optimal strategies. Specifically, all of our implementations
iterate until they find (or shrink a conflict set to) the minimum number of ad-
dresses required for an eviction set, or until a predefined maximum iteration
count is reached. The latter is a necessity to perform bulk testing as some
algorithms do not terminate for every cache design. We leave the question of
identifying optimal strategies and evaluating them to future work.

Measurement Setup. To measure the success rate, we set up a clean
cache environment 1000 times and count the number of successful evictions
of the cached victim address given the found eviction set. We extracted the
cache hit/miss statistics to evaluate the number of attacker accesses needed for
eviction-set creation. We determine the number of true conflicts in the eviction
set by testing every found address for a collision with the victim address in the
cache. While this is not directly possible on real systems, CacheFX provides
this feature to assess how well each algorithm works for every cache design.

In our experiments, we used random replacement, 2048 lines and 16 ways
where applicable, i.e., except for NewCache and the fully associative cache,
which only have one set. We operated CEASER-S with 2 partitions, New-
Cache with k = 2, and PhantomCache with 8 parallel set lookups. We set
up the algorithms to look for as many addresses as there are cache ways. For
PhantomCache, however, we require 8x the number of ways, because it can
place lines in 8 different sets.

Evaluating the Number of Memory Accesses for Eviction Set
Construction. Figure 3.5 shows the number of memory operations done by
SHM, GEM, and PPP for different cache designs. As L1 cache accesses take
about five CPU cycles, these results give an indication about the execution
time of each technique when used against a specific cache design.

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

associative
ceaser

ceaser-s

newcache
phantom

scatter-cache

set-associative

A
cc

e
ss

e
s

PPP

7e
+0

8

2e
+0

6

6e
+0

5

7e
+0

7

1e
+0

7

5e
+0

5 1e
+0

6

GEM

1e
+0

7

6e
+0

6

2e
+0

6

1e
+0

6

4e
+0

7

2e
+0

6 6e
+0

6

SHM

2e
+0

8

2e
+0

8

1e
+0

8

1e
+0

8

2e
+0

8

1e
+0

8

2e
+0

8

Figure 3.5: Number of memory accesses required by eviction-set building tech-
niques for different 2048-line caches.

As the figure shows, the number of memory accesses for SHM is the highest,
and in the same order of magnitude for all designs. In contrast, the complexity
of PPP scales with the eviction set size, e.g., PPP is two orders of magnitude

31

faster for ScatterCache than for NewCache. PPP also tends to be more effi-
cient for skewed caches, as it is 3x faster for CEASER-S than for CEASER.
The performance of GEM is mostly in between PPP and SHM, but tends to
be faster than PPP in the case of large eviction sets (e.g., for NewCache). Fig-
ure 3.6 gives further performance figures for CEASER-S and shows the linear
increase in complexity with the number of cache lines.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

256 512 1024 2048 4096

A
cc

e
ss

e
s

Number of Cache Lines

PPP
7e

+0
4

1e
+0

5

2e
+0

5

6e
+0

5

9e
+0

5

GEM
7e

+0
4 2e
+0

5 7e
+0

5

2e
+0

6 6e
+0

6

SHM
2e

+0
6 9e

+0
6 4e

+0
7 1e

+0
8 6e

+0
8

Figure 3.6: Number of memory accesses required by eviction-set building tech-
niques for CEASER-S depending on cache size.

Evaluating Eviction Coverage. Different eviction set construction tech-
niques can also produce eviction sets of different quality. Figure 3.7 thus shows
the percentage of addresses in the found eviction sets that truly conflict with
the victim address: PPP works best for all of the tested cache designs, pro-
ducing eviction sets where all of its addresses truly conflict with the victim
address. In contrast, SHM and GEM are less reliable, producing eviction sets
where many of the addresses do not conflict with the victim address. The
main reason for this is that SHM and GEM are highly susceptible to noise,
which stems from both random replacement and cache skewing.

 0

 20

 40

 60

 80

 100

 120

 140

associative
ceaser

ceaser-s

newcache
phantom

scatter-cache

set-associative

Pe
rc

e
n
ta

g
e

PPP

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

GEM

10
0%

38
%

1%

10
0%

39
%

12
%

41
%

SHM

10
0%

29
%

2%

10
0%

41
%

6%

32
%

Figure 3.7: Percentage of addresses in the constructed eviction sets that con-
flict with the victim’s address, using different eviction-set construction tech-
niques and 2048-line caches.

32

To verify this, Figure 3.8 shows the constructed eviction sets’ sizes for SHM,
GEM and PPP. Except for NewCache and fully associative caches, both SHM
and GEM stop shrinking the conflict set before it becomes minimal, which
results in eviction sets where many addresses do not conflict with the vic-
tim address. This effect is particularly strong for the skewed cache designs
CEASER-S and ScatterCache. Moreover, SHM and GEM also fail on Phan-
tomCache, where both algorithms terminate with 10x as many addresses as
needed. Finally, for NewCache and fully associative caches every address is
equally suitable for an eviction set, which automatically results in 100% of the
addresses conflicting with the victim address.

 0

 500

 1000

 1500

 2000

 2500

associative
ceaser

ceaser-s

newcache
phantom

scatter-cache

set-associative

A
d
d
re

ss
e
s

fo
u
n
d

PPP

20
48

16 16

20
48

12
8

16 16

GEM20
48

42 79

16
64

11
59

72 39

SHM

20
48

55 43

20
48

11
38

79 50

Figure 3.8: Eviction set sizes found by eviction-set building techniques for
different 2048-line caches.

Evaluating Eviction Success Rate. We also evaluate the constructed
eviction sets for their ability to effectively evict the victim address of interest.
As Figure 3.9 shows, the eviction sets found by all three eviction set con-
struction techniques perform equally well for CEASER, NewCache, set- and
fully associative caches. For CEASER-S and ScatterCache, PPP yields better
eviction success rates than SHM and GEM, because PPP is generally more ac-
curate (cf. Figure 3.7). For PhantomCache, however, GEM and SHM yielded
better eviction rates as the found eviction set makes up roughly 50% of the
cache. As skewed caches exhibit a significantly smaller probability of success-
ful eviction (e.g., 2-4% for ScatterCache), eviction sets might be chosen larger
to obtain high eviction probabilities and and Prime+Probe observability.

Obtaining a Specific Eviction Probability. To learn how many ad-
dresses would be needed to yield a certain eviction probability α, we start
with an empty eviction set and successively add conflicting addresses until the
eviction probability reaches α. Figure 3.10 presents the results of this routine
for α = 90%, across different caches and replacement policies. It shows that
LRU and Tree-PLRU allow for smaller eviction sets than Bit-PLRU and ran-
dom replacement. In addition, skewing significantly increases the number of
conflicting addresses needed, e.g., ScatterCache requires 10x more addresses
than CEASER with equal sets and ways.

33

 0

 10

 20

 30

 40

 50

 60

 70

 80

associative
ceaser

ceaser-s

newcache
phantom

scatter-cache

set-associative

E
v
ic

ti
o
n
 S

R

PPP

56
% 60

%

30
%

48
%

11
%

4%

59
%

GEM

56
% 59

%

2%

42
%

32
%

2%

60
%

SHM

55
% 57

%

2%

50
%

33
%

1%

57
%

Figure 3.9: Eviction success rate for the eviction sets found for different 2048-
line caches.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

associative
ceaser

phantom

set-associative

newcache
ceaser-s

scatter-cache

E
v
ic

ti
o
n
 S

e
t

S
iz

e
 [

A
d
d
re

ss
e
s]

LRU

20
48

16

11
00

16

Bit-PLRU

40
88

29

16
40

29

Tree-PLRU

20
48

16

10
76

16

Random

67
40

50

23
60

49

51
08

71

49
1

Figure 3.10: Eviction set size for 2048-line caches and 90% eviction probability.

3.4.3 Eviction-Set Attack

This section focuses on measuring the security offered by cache designs when
performing attacks on cryptographic implementations. To that aim, we sim-
ulate victims that use a cryptographic algorithm while the attacker tries to
learn enough information to distinguish between two keys used by the victim.
We use two cryptographic algorithms, each representing a different type of
cache attack.

The AES Victim. Our AES victim is based on code from OpenSSL,
which uses a set of tables, called T-tables, implemented as arrays. The attack
focuses on the first four accesses made to the first T-table during the encryp-
tion. The two keys are selected such that, when encrypting some vulnerable
plaintexts with the first key, all of these accesses fall in the first cache line
of the T-table. Conversely, when encrypting vulnerable plaintexts with the
second key, each of the four accesses falls in a different cache line. Finally, to
further facilitate the attack, we allow the attacker to choose as many random
vulnerable plaintexts as required for the attack.

In a more realistic scenario, the attacker can guess the characteristics of
the vulnerable plaintexts. Specifically, the attacker can fix the first byte of the

34

plaintext, and test every combination of plaintext values for the other three
bytes that affect access to the first T-table. For each such combination, the
attacker then performs the attack. If any of the combinations show statistical
difference between the keys, the attack succeeds. With T-tables that span
16 cache lines, there are 16 possible values for each of these bytes. Thus,
allowing to select vulnerable plaintexts represents a constant factor of 163 =
4096 improvement in attack complexity.

Modular Exponentiation Victim Our second victim implements modu-
lar exponentiation, a core operation in multiple public-key schemes, e.g., RSA.
Our modular exponentiation victim gets a 2048-bit base b, a 2048-bit modulus
m, and a 32-bit exponent e. The victim then uses the square-and-multiply
algorithm [Gordon, 1998] to calculate be mod m. The square-and-multiply al-
gorithm maintains an accumulator a that is initialized to 1. For each bit of
the exponent e, the algorithm squares a, and if the bit is set the algorithm also
multiplies a by b, reducing a modulo m as necessary. Thus, the multiplication
code is only executed when the exponent bit is 1, and the effect on the cache
is that when the bit is 1, more cache lines are accessed.

The keys are selected so that the value of a bit at a specific index (7 in
our tests) of the exponent is 0 in the first key and 1 in the second. The
other bits of each exponent are randomly chosen. We simulate an attacker
that runs concurrently with the victim. The attacker can manipulate the
cache whenever the victim finishes processing an exponent bit to distinguish
between the number of cache lines accessed depending on the exponent bit.

Attacker Setup In the attack setup phase, the attacker is provided with
an eviction set that evicts a monitored victim cache line with a probability
90%. We construct this eviction set by successively adding conflicting ad-
dresses to an initially empty set as outlined in Section 3.4.2. See there for an
analysis of eviction-set construction.

Attacker Procedure. The attack proceeds as a sequence of rounds. In
each round, the attacker asks the victim to encrypt a plaintext with the two
selected keys, randomizing the order of using the keys in each round to avoid
cache effects that depend on the order of the use of keys. Before each en-
cryption, the attacker accesses the eviction set three times to prime the cache.
After each encryption, the attacker accesses the eviction set, counting the
number of cache misses during these accesses. Finally, the attacker calculates
the average number of cache misses for each key, and stops when achieving a
95% confidence that the averages differ, or when hitting a predefined number
of rounds. (103 for the modular exponentiation and 105 for AES.) To overcome
the case where the eviction set and the victim all fit in the cache, the attacker
accesses some arbitrary memory when no cache evictions are observed during
a round.

Selecting Cache Designs for Evaluation. We perform the attack on
a sample of the cache designs considered in this chapter. First, we do not
test partitioned caches, because these do not leak information as there is no

35

resource contention between the attacker and the victim. Secondly, to ensure
that results are comparable, we limit our experiments to a cache size of 256
lines. Where applicable, we vary the associativity, testing all powers of two
between 1 and 16. For each configuration, we run the attack 1,000 times and
report the median of the number of encryptions required for distinguishing
the keys. We use the median rather than the mean because in some cases the
distribution has a long tail, skewing the mean towards a small number of cases
where many encryptions are required.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

As
so

ci
at

iv
e

Se
t A

ss
oc

. (
1)

Se
t A

ss
oc

. (
2)

Se
t A

ss
oc

. (
4)

Se
t A

ss
oc

. (
8)

Se
t A

ss
oc

. (
16

)

CE
AS

ER
-s

-8
 (8

)

CE
AS

ER
-s

-8
 (1

6)
New

Ca
ch

e-
2

New
Ca

ch
e-

4

New
Ca

ch
e-

8

Ph
an

to
m

-1
6

(1
)

Ph
an

to
m

-1
6

(2
)

Ph
an

to
m

-1
6

(4
)

Ph
an

to
m

-1
6

(8
)

Ph
an

to
m

-1
6

(1
6)

Sc
at

te
r (

1)

Sc
at

te
r (

2)

Sc
at

te
r (

4)

Sc
at

te
r (

8)

Sc
at

te
r (

16
)N
u
m

b
e
r

o
f

e
n
cr

y
p

ti
o
n
s

(n
o
rm

a
liz

e
d

) AES
Mod. Exp.

Figure 3.11: Eviction-set attack: Number of encryptions required to break
AES and modular exponentiation with random replacement. CEASER,
CEASER-s-1, and Phantom-1, which show behavior similar to set associa-
tive caches, have been omitted from the figure. (Normalized to a random-
replacement associative cache.)

Observing Key Leakage. Figure 3.11 shows the median number of en-
cryptions required for the attacks when using random replacement. We nor-
malize the results to the number of encryptions required for the fully associa-
tive cache. (10,590 and 94 for AES and modular exponentiation, respectively.)
For brevity, we omit the results of CEASER, CEASER-S with one partition,
and PhantomCache with one set lookup, all of which do not seem to offer any
advantage over a set-associative cache with the same associativity.

The figure shows that all NewCache variants and PhantomCache with 16
set lookups are mostly equivalent to the fully associative cache. CEASER-
S with 8 partitions provides a stronger protection: the majority of the AES
attacks on CEASER-S with 8 ways and of the modular exponentiation attacks
with 16 ways were not successful.

The results with ScatterCache are a mixed bag. When the associativity is
four or eight, the design provides a good protection, equivalent or surpassing
the fully associative cache. (In particular, the AES attack fails in most cases
on an 8-way cache.) However, the protection is lower for the other cases.

36

3.4.4 Cache-Occupancy Attack

We now turn our attention to an emerging cache attack strategy that ignores
spatial information and instead only utilizes the victim’s overall cache us-
age [Maurice et al., 2015a; Shusterman et al., 2019; Shusterman et al., 2021a].
To measure resistance against so called cache-occupancy attacks, we use the
same cryptographic victims as in Section 3.4.3. The attacker is still tasked
with distinguishing between two keys, but instead of using an eviction set tar-
geting a specific cache line, the attacker uses a cache-size buffer and counts
the number of cache misses when scanning the buffer. (A different sized buffer
may also work [Shusterman et al., 2021b], but requires further investigation.)
Most other aspects of the attack are the same as in our eviction-set attack.
We do not, however, handle failed eviction because using a cache-size buffer
ensures contention on the cache.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

As
so

ci
at

iv
e

Se
t A

ss
oc

. (
1)

Se
t A

ss
oc

. (
2)

Se
t A

ss
oc

. (
4)

Se
t A

ss
oc

. (
8)

Se
t A

ss
oc

. (
16

)
CE

AS
ER

 (1
)

CE
AS

ER
 (2

)

CE
AS

ER
 (4

)

CE
AS

ER
 (8

)

CE
AS

ER
 (1

6)

CE
AS

ER
-s

-1
 (1

)

CE
AS

ER
-s

-1
 (2

)

CE
AS

ER
-s

-1
 (4

)

CE
AS

ER
-s

-1
 (8

)

CE
AS

ER
-s

-1
 (1

6)

Ph
an

to
m

-1
 (1

)

Ph
an

to
m

-1
 (2

)

Ph
an

to
m

-1
 (4

)

Ph
an

to
m

-1
 (8

)

Ph
an

to
m

-1
 (1

6)
Sc

at
te

r (
1)

Sc
at

te
r (

2)

Sc
at

te
r (

4)

Sc
at

te
r (

8)

Sc
at

te
r (

16
)N
u
m

b
e
r

o
f

e
n
cr

y
p

ti
o
n
s

(n
o
rm

a
liz

e
d

) AES Mod. Exp.

Figure 3.12: Occupancy attack: Number of encryptions required to break
AES and modular exponentiation with random replacement. CEASER-S-8,
NewCache, and Phantom-16, which show behavior similar to fully associa-
tive caches, have been omitted from the figure. (Normalized to a random-
replacement associative cache.)

Observing Key Leakage. Figure 3.12 shows the median number of en-
cryptions required for the cache occupancy attacks when using a random re-
placement strategy. As in Figure 3.11, we normalize the results to the number
of encryptions required for the fully associative cache. Similar to the eviction-
set attack, NewCache, CEASER-S with 8 partitions, and PhantomCache with
16 set lookup achieve a protection similar to that of fully associative cache.
(We omitted these three from the figure for brevity.) Most other configura-
tions achieve a protection level which is significantly better than set-associative
caches, in particular for the attack on AES.

Due to normalization, Figures 3.11 and 3.12 do not show that occupancy
attacks on the fully associative cache require significantly less encryptions than
eviction-set attacks. (5664 and 68 for AES and modular exponentiation, com-
pared to 10590 and 94.) The cause is that the eviction set algorithm targets
90% eviction rate, which for fully associative caches leads to eviction sets that

37

are larger than the cache-sized buffer used in the occupancy attack and thus
more self evictions.

0K

2K

4K

6K

8K

10K

Ways: 256
Associative

1 2 4
Set Associative

8 16 1 2 4
CEASER

8 16 1 2 4
PhantomCache-8

8 16

N
u
m

b
e
r

o
f

e
n
cr

y
p

ti
o
n
s

(m
e
d
ia

n
)

LRU
Bit-PLRU

 Tree-PLRU
Random

SRRIP

Figure 3.13: Median number of encryptions required to break AES with differ-
ent cache designs and replacement algorithms. Fully associative and 16-way
set associative caches are not fully represented, requiring 16,984 and 22,116
encryptions for Bit-PLRU, respectively.

Comparing Different Replacement Algorithms. Figure 3.13 shows
the effect of changing the replacement policy on the attack complexity. As the
figure demonstrates, in most cases, caches with a random replacement policy
offer significantly better protection than those with deterministic replacement.

For deterministic replacement policies, we observe that CEASER only pro-
vides marginal benefit over set-associative caches, whereas PhantomCache pro-
vides a significantly better protection than other cache designs. We believe
that the reason is that PhantomCache is inherently non-deterministic, hence,
even with deterministic replacement algorithms, PhantomCache can reduce
the correlation between the victim’s access and the attacker’s observation.

Attacks on deterministic cache designs that use bit-based pseudo-LRU re-
placement exhibit an anomaly that increases the number of encryptions re-
quired for statistical confidence. The cause is that the algorithm experiences
some rare cases where a single cache miss causes cascading evictions of the
eviction set. These rare cases increase the variance of the number of evictions
observed, and with it the number of samples required. Modifying the attack
to ignore outliers will eliminate these rare cases and significantly improve the
attack. Hence, the results do not indicate that bit-based pseudo-LRU is more
secure than random replacement.

3.4.5 Optimal Eviction-Set Size

In Section 3.4.2 we evaluate eviction sets based on the probability of evicting
a victim cache line from the cache. However, as discussed in Section 3.4.4,
larger eviction sets can result in lower attack efficiency, apparently due to
self evictions. Specifically, increasing the size of the eviction set increases
the probability of cache conflicts between elements of the eviction set. These
self evictions introduce measurement noise that increases the variance in the

38

 0
 200
 400
 600
 800

 1000
 1200
 1400

As
so

ci
at

iv
e

CE
AS

ER
-s

-2

CE
AS

ER
-s

-4

CE
AS

ER
-s

-8

Ph
an

to
m

-2

Ph
an

to
m

-4

Ph
an

to
m

-1
6

Sc
at

te
r

Se
t A

ss
oc

E
v
ic

ti
o
n
 S

e
t

S
iz

e 4 Ways
8 Ways

16 Ways

Figure 3.14: Optimal eviction set sizes for 1024-lines caches

measurements and consequently the number of samples the attacker needs to
observe to distinguish the keys. As a secondary effect, larger eviction sets
require more memory accesses for both the prime and the probe steps of the
attack, reducing attack efficiency.

As a final example of the flexibility of CacheFX, we now use it to find
the eviction-set size that allows for the most efficient attack. Specifically, we
experiment with various cache designs, all with size 1024, our AES victim, and
our eviction-set attacker. We vary the eviction-set size between 1 and 2048,
and measure the median number of encryptions required for distinguishing
the keys. Figure 3.14 reports the eviction-set size that allows the attack with
the minimal median. As we can see, a lower associativity allows for smaller
eviction-set sizes. However, when the associativity grows to 16, in most cache
designs the best eviction-set size is similar to that of a fully associative cache,
indicating that occupancy-based attacks are as effective as eviction-set attacks.

3.5 Threats to Validity and Limitations

At the moment, CacheFX does not support the evaluation of cache hierarchies.
Consequently, designs that rely on the hierarchy for defense are outside the
scope for this chapter. Moreover, evaluations using CacheFX currently assume
a noise-free scenario, which provides a conservative security estimate as the
absence of noise is the best case for attackers. However, practical cache attacks
also face systematic and random noise stemming from other system activity.

For our cryptographic attack evaluations, CacheFX models a strong, syn-
chronized attacker and an artificial victim that computes (and leaks) upon the
attacker’s request. As for noise, this is a very strong attack model that allows
to obtain a lower bound for security. However, real-world attacks involve var-
ious kinds of complexities that cannot be assessed with a simple model like
CacheFX.

Another aspect of secure caches is their performance. CacheFX currently
does not support the evaluation of cache performance.

CacheFX simplifies cache models to efficiently analyze the security of caches

39

against contention-based attacks. As a result, CacheFX does not lend itself to
model cache-based attacks that relate to speculative execution [Katzman et
al., 2023] or other microarchitectural structures, e.g., cache ports [Yarom et
al., 2017] and fill buffers [Van Schaik et al., 2021]. Note that CacheFX allows
to model Flush+Reload attacks, but as Flush+Reload is well understood we do
not expect new insights from doing so.

3.6 Related Works

Past work on evaluating the security of caches against side channel attacks
mainly focused on three aspects: 1) formal model of cache and theoretical
analysis of information leakage, 2) metrics for empirical quantification of in-
formation leakage, 3) modeling of cache side-channel attacks.

Formal Cache Model and Theoretical Analysis. This line of research
[Doychev et al., 2013; Köpf et al., 2012] tries to formally model the state change
of the cache and extend the program execution semantics to include cache
state changes by leveraging prior work on formal analysis of cache miss rates.
Eventually they can estimate the number of reachable cache states and give an
upper bound on the leakage in terms of channel capacity, for a given program
under analysis. Similarly, Ghasempouri et al. (2020) models caches and cache
attacks as automata to verify cache security using model checking. Due to
the restrictions of formal methods, these works are limited to simple cache
models (e.g., set-associative cache with LRU replacement) and can only give a
very loose upper bound of leakage. Hence, they are not suitable for comparing
the security of various complex secure cache designs. In contrast, CacheFX
empirically evaluates a number of metrics to quantify side-channel leakage
in software cache models and evaluates the exploitabiliy of cache leakage for
programs such as cryptographic algorithms.

Metrics for Empirical Quantification of Information Leakage. An-
other line of research introduces metrics to empirically evaluate the security
of cache designs and implementations, such as by using mutual information
and min-leakage [Cock et al., 2014], by using a linear correlation coefficient
between oracle traces and the attacker’s observations [Demme and Sethumad-
havan, 2014; Demme et al., 2012; Demme et al., 2013; Zhang et al., 2013],
by measuring the accuracy of deep learning models trained to learn the rela-
tionship between victim accesses and the attacker’s cache observations [Zhang
et al., 2018], or by modeling and statistically analyzing cache side channels
using communication theory [Bourgeat et al., 2020]. CacheFX as well tries to
empirically characterize the leakage of cache designs. However, as we point
out, a single metric is insufficient to entirely capture cache security. More-
over, none of these works looks at cache occupancy channels or tries to assess
security by using well-studied cryptographic targets.

Modeling of Cache Side-Channel Attacks. Some works tried to model
caches and cache attacks such as to detect and quantify cache leakage. For

40

instance, Zhang and Lee (2014) model the cache as a finite state machine to
identify interference and determine the mutual information. He and Lee (2017)
model cache attacks as a Probabilistic Information Flow Graph (PIFG) to de-
rive for each cache and attack an overall probability of success. Wang et al.
(2019) derive a risk score from modeling attacks using Petri nets and calcu-
lating the success probabilities of concrete attacks. Deng et al. [Deng et al.,
2019; Deng et al., 2020; Deng et al., 2021] model cache attacks as a series of
three consecutive read/invalidation steps, identify vulnerable three-step pat-
terns using a simulator, and use the model for evaluating the security of the
caches in multiple ARM devices. In addition, their work introduces a Cache
Timing Vulnerability Score (CTVS) from running vulnerable patterns on real
machines. While these prior works greatly improve the understanding of cache
attacks, many are based on simple cache models. CacheFX thus takes another
step forward and automatically evaluates arbitrary software models of cache
designs w.r.t. to a number of different metrics and attack complexity to provide
a comprehensive security report.

3.7 Conclusion

As the threat of cache side-channel attacks continues to grow, numerous mea-
sures have been implemented to protect systems from such attacks. One such
measure is the development of secure caches, which aim to prevent contention-
based cache attacks at their source—the cache itself. Given the various exist-
ing proposals for defending against cache side-channel attacks, it is crucial to
have a technique for assessing their security. This chapter introduces a flexible
framework called CacheFX, which addresses the need to evaluate cache designs
for security using multiple metrics.

Using CacheFX, we conducted experiments with three related metrics to
assess and compare multiple secure cache designs. Our observations revealed
that all non-partitioned caches leak information, with the leakage being sig-
nificant enough to enable cryptographic attacks. However, partitioned caches
are likely not practical for many use cases. We also demonstrated that a sin-
gle metric may not fully capture all complexities. For instance, the REE of
CEASER-S indicates reduced leakage as the number of ways or partitions in-
creases (see Figure 3.4). This is consistent with the intuition that leakage in
set associative caches correlates with the number of cache sets, which decreases
as associativity increases, given a constant cache size. However, caches with
4 or 8 partitions provide better resistance to eviction-set attacks than those
with 1 or 16 partitions. Thus, the main conclusion of this chapter is that there
is no “best” cache design. Instead, we believe that caches need to be designed
for the anticipated use cases.

The flexibility of CacheFX also enables the comparison of attack strategies
against existing caches. Specifically, we demonstrate that the Prime+Prune+Probe
method for eviction set construction yields more accurate results than the Sin-

41

gle Holdout and Group Elimination Methods. Additionally, we found that for
caches with low randomization, constructing an eviction set is an effective
strategy for cryptographic attacks. However, in highly randomized designs,
the cache-occupancy attack emerges as a more efficient approach. As a result,
we recommend that secure cache designers take this attack into consideration.

42

Chapter 4

Speculative Execution Against
Low-Resolution Timers

In this chapter, we shift our focus to the second countermeasure against cache
side-channel attacks, which primarily aims to reduce the accuracy of available
timers. Cache attacks depend on distinguishing cache hits from misses by cal-
culating the time required to access the cache, with the time difference between
these events being incredibly small (less than a hundred nanoseconds). As a
result, high-resolution timers are beneficial for carrying out cache attacks and
are often crucial for successful attacks. To counter this, browsers decreased the
resolution of timers they offer and eliminate certain methods for generating ar-
tificial timers as a defense against cache side-channel attacks [Chromium, n.d.;
Hazen, 2018; Schwarz et al., 2017; Wagner, 2018]. Besides impeding attackers’
ability to differentiate between cache hits and misses, lowering timer resolu-
tion also restricts the attacker’s capability to construct eviction sets—groups of
congruent addresses in the cache that correspond to the same cache set. Iden-
tifying eviction sets is a crucial step in enabling attacks such as Prime+Probe
and Evict+Time [Osvik et al., 2006]. Since techniques for discovering eviction
sets also require the ability to discern cache hits from misses, low-resolution
timers obstruct this critical step in executing cache attacks.

While some cache attacks have been designed to use only low-resolution
timers [Cronin et al., 2021; Hadad and Afek, 2018; McIlroy et al., 2019; Röttger
and Janc, 2021; Schwarzl et al., 2021; Shusterman et al., 2019; Shusterman
et al., 2021a], to the best of our knowledge, none have been specifically aimed
at finding eviction sets, and the issue of discovering eviction sets with low-
resolution timers remains open. Furthermore, in all reported attacks, the
timer resolution constrains the sampling rate. In particular, no high-resolution
tracing attacks, for example, against modular exponentiation [Bernstein et al.,
2017; Liu et al., 2015; Yarom and Falkner, 2014; Zhang et al., 2012], have been
demonstrated using only such timers.

Additionally, there are numerous studies that investigate the utilization of
cache states to implement transient-execution attacks [Agarwal et al., 2022;

43

Behnia et al., 2021; Canella et al., 2019b; Chen et al., 2019; Hadad and
Afek, 2018; Kirzner and Morrison, 2021; Koschel et al., 2020; Lipp et al.,
2018; Maisuradze and Rossow, 2018; Ragab et al., 2021a; Ragab et al., 2021b;
Röttger and Janc, 2021; Van Schaik et al., 2019; Van Schaik et al., 2020;
Van Schaik et al., 2021; Schwarz et al., 2019; Stecklina and Prescher, 2018;
Van Bulck et al., 2018; Van Bulck et al., 2020], yet the inverse question has
not been explored thus far. This realization, coupled with the interest in
uncovering potential vulnerabilities of low-resolution timers as a cache side-
channel attack defense mechanism, lead us to pose the following question in
this chapter:

Can transient execution improve cache attacks in a low-resolution timer
environment?

In this chapter, we affirmatively answer the question. We show that the ef-
fects of transient execution can significantly improve cache attacks on systems
with low-resolution timers. The central concept is that cache states can influ-
ence the duration of speculative execution and how it modifies future states.
We devise logical gates that enable us to manipulate cache states, amplify
them, store information in them, and even compute on them. We then use
these gates to demonstrate how we can conduct high-resolution cache attacks
using only a low-resolution timer.

4.1 Gates

This section describes the main ideas behind our implementations of logical
gates based on cache states and speculative execution. We explain the com-
putational model, assumptions, and design rationale.

4.1.1 Computational Model

We use logical gates to implement computation on the microarchitectural cache
states of memory addresses. We define the logical value of “uncached” ad-
dresses as ′0′, and of “cached” addresses (either in L1, L2, or LLC) as ′1′.
Changing the logical state from ′0′ to ′1′ is straightforward: we simply need
to read the data stored in an address, and it will be fetched into the cache.
However, we do not assume access to low-level instructions (e.g., clflush) that
can set the cache state to ′0′ directly. Instead, we assume that the initial value
for hitherto unused addresses is ′0′. Our gates compute a logical function of
their inputs and store the result in the output. Because testing an input is
done by accessing it, our gate evaluation is destructive. That is, computing
over the state of an address brings it to the cache, setting its logical value to
′1′. The main implication of destructive gates is that we cannot reuse the same
address as an input to multiple gates.

44

if (*in == 0)
 return;
out = mul(out, x)
out = mul(out, x)

1. After branch training,
we mispredict the
condition and continue
execution

...
out = mul(out, x)
read(*out)

...
out = mul(out, x)
...
out = mul(out, x)

2. Rollback of
speculative
window if '*in' is
in L1

3. Rollback of speculative
window if '*in' is in L2

4. Rollback of
speculative
window if '*in' is
in L3

5. If '*in' is uncached we
reach the code that
access '*out' before
speculative window is
squashed

Note: x is set to
1 during run time

Figure 4.1: NOT Gate. read(*out) is transiently executed only when *in is
not cached.

4.1.2 NOT Gate

The main insight that motivates our design is that the length of the speculation
window of a mispredicted branch is not fixed. Instead, it depends on the time it
takes the processor to evaluate the condition of the mispredicted branch. The
length of the speculative window determines the number of instructions that
are speculatively executed after the branch. Hence, the number of instructions
that are executed speculatively varies with the time it takes to resolve the
branch condition.

Figure 4.1 shows how we use these variable-length speculative windows to
create a NOT gate. We use a branch conditioned on *in. Architecturally, we
have *in=0. Hence the code should return without executing any of the sub-
sequent instructions. However, the value of *in is not immediately available
to the CPU as the pointer needs to be dereferenced

Before using the gate, we train the branch predictor to assume *in is not
zero. Consequently, while waiting for the branch condition to be evaluated, the
processor continues to speculatively execute instructions from the predicted
branch. The length of this speculative window depends on the time it takes
the processor to evaluate the branch condition, which is dominated by the
time it takes to retrieve the value of *in.

In turn, the time to retrieve the value of *in depends on where that value
is stored. If the variable *in is cached in the L1 data cache, accessing it will
be quick (≈4 cycles). The time will be longer if *in is retrieved from the L2
cache, and even longer if it needs to be retrieved from the LLC. Finally, if the
value of *in is not cached, it will need to be retrieved from memory, which
would take a few hundreds of cycles.

The mispredicted branch contains a sequence of dummy operations (we
use imul instructions to repeatedly multiply the pointer out by 1) followed by
a memory access to the output variable *out. Tying the value of out to the

45

multiplication ensures that the processor does not execute the memory access
before all of the dummy instructions complete execution.

The number of dummy operations is carefully chosen such that if *in is
cached in any of the cache levels, the speculative window will terminate before
the memory access to *out is issued and *out will not be accessed. However,
if the value of *in is not cached, the speculative window is long enough and
the access to *out executes speculatively. Eventually, the processor retrieves
the value of *in and squashes all instructions on the mispredicted branch.
However, because memory accesses execute asynchronously, the memory access
to *out will complete even if the instruction is squashed.

If *in is cached (′1′) then *out is not accessed and maintains its original
logical value. Conversely, if *in is not cached, the memory access to *out

executes transiently, bringing the value of *out to the cache, which sets the
logical value to ′1′. As we assume the initial state of *out is uncached (′0′),
the end result is that, after executing the gate, the logical value of *out is
the inverse of the original logical value of *in. Hence, the gate computes the
logical NOT function.

4.1.3 More Complex Gates

The technique used for implementing the NOT in Section 4.1.2 can be ex-
tended to implement more complex logical gates. We now demonstrate how
we can combine inputs to create a NAND gate and add branches to create a
NOR .

NAND Gate

To create a NAND gate, we take our NOT gate and replace the if statement
if (*in == 0) with:

if (*in1 + *in2 == 0)

Similar to the NOT gate, after we train the branch predictor, a speculative
execution window is opened. It continues to run until the values of both *in1

and *in2 are made available to the CPU. The CPU processes the two read re-
quests in parallel. Thus, the length of the speculative window is approximately
the longer of the two access times.

If either of the input addresses is uncached, the processor needs to wait until
the contents is retrieved from memory, resulting in a long speculation window.
Consequently, in such a case, speculative execution reaches the read(*out)

instruction, setting the value of the output to ′1′. On the other hand, if
both addresses are cached, the length of the speculative window is shorter.
Consequently, the misspeculation is squashed before it reaches the read code,
and the state of the output address remains ′0′. To summarize, if the state
of both input addresses is ′1′, the output value remains ′0′. Otherwise, the
output is set to ′1′. Hence, the code computes the logical NAND function.

46

NOR Gate

For aNOR gate, we replace the single if statement of theNOT , i.e., if (*in == 0),
with two consecutive if statements:

if (*in1 == 0) {return;}

if (*in2 == 0) {return;}

If either input addresses is cached, the speculative window of the corresponding
if statement is short and speculation is squashed before the processor executes
the read. This leaves the state of the output address at ′0′. However, if
both input addresses are not in the cache, the processor needs to retrieve
both values from memory before it can squash the speculation of any of the
branches. This allows a long speculation window, which would execute the
read command, setting the state of the output to ′1′. To summarize, only if
the state of both inputs values is ′0′, we get an output value of ′1′. Otherwise,
the output value is ′0′. This is exactly the logical value of a NOR function.

4.1.4 Multiple Inputs and Outputs

By repeating the patterns in Section 4.1.3, we can increase the number of
inputs in the NAND and NOR . For example, for a four input NAND we use
the following if statement:

if (*in1 + *in2 + *in3 + *in4 == 0)

Similarly, we can replicate the output of the gates into multiple output vari-
ables by adding read statements to the misspeculated branch. We use the
notation GATE in

out for gate GATE with in inputs and out outputs.
The processor uses a structure called line fill buffer (LFB) to track memory

loads that miss on the L1 cache. Consequently, the number of LFBs limits
the number of reads that can be processed concurrently, and the fan-in and
fan-out of our gates. Specifically, when the total of the fan-in and fan-out
exceeds the number of LFB entries (12 in the processors we use), the gates
may fail.

4.1.5 Error Correction Gate

We further expand the usefulness of our gates, particularly in performing error
correction of cache states. Given that cache states are volatile, it is important
to have a technique for error correction to ensure robust calculations. With
our gates having the capability to operate on multiple inputs and outputs, we
can store the outputs of each gate to multiple locations, creating copies of their
results. This allows the output states of each gate to tolerate errors of up to
half of their copies. However, before further computation can be performed on
the copied states, an additional gate is needed to compute the majority value
of the copies, i.e., the most commonly occurring cache states of the copies. We
design a gate that takes these copies as its inputs, computes their majority
state, and outputs the majority state of these copies (′0′ or ′1′).

47

To create a majority (out of five) gate, we take a five input NAND , and
replace the if statement with the following:

if (*in1 + *in2 + *in3 == 0) return;

if (*in1 + *in2 + *in4 == 0) return;

if (*in1 + *in2 + *in5 == 0) return;

if (*in1 + *in3 + *in4 == 0) return;

if (*in1 + *in3 + *in5 == 0) return;

if (*in1 + *in4 + *in5 == 0) return;

if (*in2 + *in3 + *in4 == 0) return;

if (*in2 + *in3 + *in5 == 0) return;

if (*in2 + *in4 + *in5 == 0) return;

if (*in3 + *in4 + *in5 == 0) return;

If either three of the five addresses are cached, the speculative window of
the if statements above is short, and the speculation is terminated before the
processor executes the read statement. This means that the state of the output
address is ′0′ if three or more of the input addresses are cached (the majority
is ′1′). On the other hand, if less than three of the input addresses are cached,
the processor needs to retrieve at least three of the addresses from memory
before it can squash the speculation of any of the if statements above. This
causes a long speculation window, which would allow for the read statement
to be executed by the processor. This means that if less than three addresses
are cached (the majority is ′0′), the state of the output address is ′1′.

The behavior described above behaves the opposite of the majority func-
tionality we are aiming to implement. In fact, the gate outputs the “minority”
states of the five addresses. Because we are working with binary states, to get
the majority, we can simply negate the output using a NOT gate. Therefore,
we define the sequence of the gate desvribed followed by a NOT gate as a
MAJORITY gate.

4.1.6 Gates With a Fixed Branch Delay

All of the gates we use operate by creating a race between the time a branch is
resolved and the time the outputs are accessed speculatively. In all of the gates
we have seen so far, the timing of resolving the branch varies depending on the
logical state of the inputs, whereas the timing of the memory access is fixed by
the computation of the imul instructions. In this section we create additional
gate types by swapping the fixed and the variable paths of execution.

Figure 4.2 shows an example of a BUFFER gate, which copies the logical
state of the input to the output. The gate operates by first calculating a
sequence of sqrt operations, which are set to return the (architectural) value
0. It then branches on the result, returning if the value is indeed 0.

During the computation of the sqrt operations, the processor cannot pred-
icate the final result. Consequently, the processor predicts the outcome of
the branch, which we exploit by setting the branch predictor to mispredict

48

f=sqrt(f)
...
f=sqrt(f)
if (f == 0)
 return;

x = read(*in)

1. After branch training, we
mispredict the condition and
continue execution

read(*(out + x))

2. Rollback of speculative
window if '*in' is uncached

3. Only if '*in' is cached we reach
the code that access '*out' and only
then rollback the speculative
window

Figure 4.2: A Buffer Gate with a fixed branch delay.

the branch outcome. During the ensuing speculation window, the processor
proceeds to execute the remaining code of the function.

The misspeculated code first reads the input *in. It then adds this value
to the pointer out, and reads from the resulting address. Before using the
gate, we ensure that the memory that in points to contains the value 0. Thus,
the second read operation accesses the location pointed by out. However,
the processor has to read *in before it can read *(out+x). Consequently, the
timing of the read from out depends on whether *in is in the cache or not, i.e.,
whether its state is ′0′ or ′1′. If *in is in the cache (state ′1′), the read from
out will be executed before the speculative window is squashed and its state
will be set to ′1′. However, if *in is not the cache (state ′0′), the speculative
window will be squashed before its value will be made available to the CPU. In
that case the second read instruction will not be executed speculatively, and
the state of out will remain ′0′. This is exactly the truth table for a BUFFER
gate.

As before, by reading more output addresses (e.g., read(*(out2 + x)),
read(*(out3 + x)), etc.) we can increase the fan-out of the gate and extend it
to BUFFER1

Y .
Similar to the extension ofNOT 1

Y toNANDX
Y gate, we can extend BUFFER1

Y

to ANDX
Y gate. This is done by making the reading of *out dependent on the

sum of multiple input addresses instead of a single input address (e.g., x =
read(*in1) + read(*in2), x = read(*in1) + read(*in2) + read(*in3), etc.). Only
if all input addresses are cached, their sum is available to the CPU, and the
read instructions are executed before the speculative window is squashed.

49

4.1.7 Gates Without Branch Training

In order to open the speculative window, we need to train the branch predictor
to mispredict the initial branch we are speculating on. We use the training
method introduced in [Google, 2021]. It starts with two “dry runs” of the gate
that train the branch predictor, followed by the actual “wet run”. Moreover,
each run of the gate (either “dry” or “wet”) starts with an empty for loop
that creates a consistent branch history. As a consequence, the training of the
gates is relatively long, increasing the overall run time of our gates.

To reduce training time and allow faster gates, we use a novel approach to
cause the branch predictor to reliably mispredict a branch without the need
to “retrain” it. The main idea is to replace the single if condition with a large
switch statement. The correct case is determined by combining the value of
the input address with a counter that is incremented after each evaluation of
the gate. As the value of the input address is not available to the CPU, the
branch predictor mispredicts by jumping to the previously chosen case based
on the counter’s previous value. Listing A.1 and Listing A.2 in Appendix A.2
show the code for both types of gates. According to our experimental evalua-
tion of the gates (see Appendix A.3), switching from the branch training-based
approach (“bt”) to our non-branch training-based approach (“nbt”) can sig-
nificantly reduce the gates’ run time at the cost of a slight reduction in the
gates’ accuracy. Thus, the “nbt” gates present a tradeoff between performance
and accuracy.

Compilers offer multiple implementations for switch statements. For our
technique to work, we need the compiler to use an indirect branch with a jump
table. The choice of implementation method depends on the number of cases
and their values. In our experiments we find that in both the native and the
WebAssembly compiler we use, the compiler chooses a jump-table-based im-
plementation when there are at least eight cases. Once the implementation is
chosen, the number of cases has little impact on the gates’ accuracy or perfor-
mance. Hence we use the required minimum of eight cases for implementing
our gates.

4.1.8 Gates Evaluation

In this chapter, we focused our experiments on Intel’s range of processors where
we optimized the implementation of our gates to work on those processors.
See Appendix A.3 for complete experimental results with different gate types
including a discussion on the various values for fan-in and fan-out.

Note that many of the gates require tailoring parameters where we per-
form the tuning on a case-by-case basis (e.g., number of dummy instructions).
We can fully optimize many of the gates achieving an accuracy of approxi-
mately 99.9% or above. All branch training-based gates achieve an accuracy of
over ≈ 99.5%, while the slightly less accurate non-branch training-based gates
still achieve an accuracy of over ≈ 95.8%. We can also see that our non-branch

50

training-based gates are indeed significantly faster than our branch training-
based variants. The non-branch training-based gates are approximately 300
cycles faster. Specifically, they are around twice as fast when the output is ′1′

and three times faster when the output is ′0′.
We could also reproduce similar results on an AMD Ryzen 5 3500U (see

Appendix A.4). We further implemented some of the gate types on ARM
processors. Appendix A.4 also presents experimental results on a Macbook
Air laptop with Apple M1 processor and a Galaxy S21 phone with a Samsung
Exynos 2100 SoC. We leave the optimization of gates for these platforms to
future work.

4.2 Circuits

To demonstrate the versatility of our gates, we now show how they can be
used to build complex logical circuits. We investigate three circuits: the arith-
metic logic unit (ALU) from Nisan and Schocken (2021), the SHA-1 hash
function [National Institute of Standards and Technology, 2015], and finally
Conway’s Game of Life [Gardner, 1970].

Experimental Setup. We carry out the experiments in this section on an
Intel NUC 9 Extreme Kit equipped with an Intel Core i7-9750H CPU running
Xubuntu 21.10. Due to the load-sensitive nature of the speculative gates and
the cache states, we isolate the core used to run the experiment using the
isolcpus kernel parameter and enable huge pages.

Our experiments explore the effects of the prefetcher (enable vs. disable)
on the accuracy of our circuits [Viswanathan, 2014]. We have also tested the
effects of CPU frequency scaling (fixed vs. variable). We find that gates need
to be tuned for the processor frequency. However, once tuned, the accuracy of
the gates is similar. Moreover, we find that when setting a variable frequency,
the processor mostly executes at the highest frequency. Therefore, we only
report the results of variable frequency to reflect a more realistic scenario.

4.2.1 ALU

We first demonstrate the viability of our speculative gates through a construc-
tion of a four-bit ALU adapted from Nisan and Schocken (2021).

The ALU takes two four-bit numbers, x and y, along with six control val-
ues, as input. Then it produces a four-bit value output. The control values
are used to direct the ALU to which operations to perform on each operand.
Specifically, by using different combinations of the control values, the ALU per-
forms different operations such as increment, decrement, addition, subtraction,
negation, binary AND and binary OR.

To initialize the state of x, y, and the control values, we either read the
corresponding address to signify ′1′ or flush the address to signify ′0′. We

51

Figure 4.3: ALU accuracy. PD denotes accuracy with prefetcher disabled,
MPD denotes accuracy with error correction (majority gate) with prefetcher
disabled. PE signifies accuracy with prefetcher enabled, while MPE signifies
accuracy with majority gate and prefetcher enabled. For visibility, the Y axis
is trimmed at a frequency of 0.35.

then let the ALU perform its computation. Finally, we read the results by
measuring the access time of the output addresses.

We utilize error correction techniques to improve the accuracy of our ALU.
Specifically, we run the ALU five times with five copies of the same initial
values. We then use the majority-out-of-5 gate (described in Section 4.1.5) to
compute the final value. Performing such redundant calculation and following
a majority vote is a classic error correction approach as used in, for example,
redundant coding to detect and correct errors from bit flips [Kim et al., 2009;
Stroud and Barbour, 1989; Von Neumann, 2016]. Our ALU is built from 250
logic gates without majority (1 258 logic gates with majority). It consists of
336 intermediate states (1 688 with majority), of which only the four output
bits, or 1.19% (0.24% with majority) are exposed architecturally.

We perform 10 000 sets of experiments to measure the performance of our
ALU where we focus on the correctness of the four-bit output. Each set of
experiments contains 100 runs of the ALU, where the inputs are selected at
random. For each run, the accuracy is one if all the four bits are correct. If
any of the four bits are incorrect, the accuracy is zero. The average of the
accuracy of 100 runs represents the accuracy of that set of experiments. Fig-
ure 4.3 illustrates the result of our experiments in histogram. Specifically, it
shows the accuracy of the ALU calculation with/without error correction and
with/without prefetcher enabled. The histogram clearly highlights a signif-
icant increase in the accuracy when using the majority gates, namely, from
a median of 89.0% to 100% (82.0% to 95.4% average) when disabling the
prefetcher and from a median of 37.0% to 91.0% (43.7% to 84.1% average)
when enabling the prefetcher. On average, performing an ALU instruction
takes 106 microseconds without error correction and 529 microseconds with
error correction.

52

4.2.2 SHA-1

Our second example of a circuit is an implementation of a cryptographic hash
function SHA-1 [National Institute of Standards and Technology, 2015]. Note
that in contrast to Evtyushkin et al. (2021) our entire round of SHA-1 cal-
culations are performed in microarchitectural states where we interact with
them only for the initial state setting and the final output reading. Generally,
SHA-1 consists of a loop with 80 iterations to produce a 160-bit message digest
output. In our experiment, we perform one round of SHA-1; Listing 4.1 shows
the pseudocode.

Listing 4.1: Pseudocode for the first round of SHA-1

void sha1_round(A, B, C, D, E, W) {

temp = circular_shift (5, A) + ((B & C) |

((~B) & D)) + E + W + 0x5A827999;

E = D; D = C;

C = circular_shift (30, B);

B = A; A = temp;

}

As the listing shows, one round of SHA-1 consists of two circular left shifts,
four additions, two binary AND, one binary OR, and one binary NOT, each operat-
ing on 32-bit words. The calculation of a round of SHA-1 requires 32-bit adder,
AND, OR, and NOR. In total, the circuit consists of 2 208 logic gate primitives
and exposes 1.07% of its 2,976 total microarchitectural intermediate logical
states to the architectural state.

We evaluate our implementation by running the SHA-1 and testing the
rate of which the full 160-bit result is correctly computed. Specifically, we
take measurements of 10 000 experiments, with each experiment performing
100 runs of SHA-1 with random inputs.

Figure 4.4 shows the distribution of the accuracy for a single round of
SHA-1. With prefetcher disabled, we obtain an average and median of 94.95%
and 99.00% respectively. When the prefetcher is enabled, we obtain an average
and median of 66.55% and 58% respectively. Each round of SHA-1 takes only
969 microseconds to run.

We further evaluate the robustness of our circuit by instrumenting it to
compute two blocks of SHA-1, each consisting of 80 rounds. For a complete
implementation, we also use four round functions, as specified in the SHA-1
standard [National Institute of Standards and Technology, 2015]. To perform
the calculation, we chain consecutive invocation of SHA-1 round circuits. That
is, after performing one round, we sample the result and copy it to the archi-
tectural state of the processor. We then use the sampled data to set up the
cache state for the following round. We further increase the accuracy by com-
puting each round ten times, and using the per-bit majority to determine the
output of each round.

Repeating the full computation 1 000 times, we observe a 95.1% probabil-
ity that the output from our two-block SHA-1 is correct. Each run involves

53

Figure 4.4: SHA-1 accuracy.

Figure 4.5: T-tetromino heatmap. (calculated from 300 repetitions, the
brighter the cell the higher accuracy.)

3 737 600 logic gates and 5 068 800 intermediate values, 1.01% of which is ex-
posed architecturally.

Evtyushkin et al. (2021) implement SHA-1 using their “weird gates”.
Their implementation relies on Intel Transactional Synchronization Extensions
(TSX) [Intel, 2021a], a feature of Intel processor but has been mostly disabled
due to security issues [Intel, 2021b]. Also, their implementation exposes a sig-
nificant part (41.9%) of the logical state of SHA-1 to the architectural state of
the program. In contrast, our implementation uses generic processor features,
which are available across multiple architectures, and exposes only 1.01% of
the logical states.

4.2.3 Game of Life

As a third example for complex logical circuits based on our gates, we imple-
ment Conway’s game of life [Gardner, 1970] for a universe up to size 12× 12.
Recall that the game is a cellular automaton, consisting of a grid of cells. Each
cell has a state which can be either ‘live’ or ‘dead’. Each generation, the state
of a cell is updated based on the values of the cell and of its eight neighbors,
using the following rules: 1) a live cell that has two or three live neighbors
remains live; 2) a dead cell with exactly three live neighbors becomes live;
3) other live cells become dead, and other dead cells remain dead. In our
implementation, we denote a live cell by ′1′ and a dead cell by ′0′.

According to the rules, calculating the next state of a cell requires evalu-

54

Prefetcher Disabled Prefetcher Enabled

Generation Average Median Average Median
(percent) (percent) (percent) (percent)

1 59.10 69.00 62.76 73.00
10 48.74 48.00 46.99 48.00
20 22.76 22.00 25.58 25.00
30 15.28 13.00 15.53 11.00
40 17.09 16.00 11.10 9.00
50 10.99 9.00 4.70 3.00

Table 4.1: Game of Life glider accuracy.

ating the state of that particular cell and its eight neighbors. Since evaluating
a cell changes its value, it becomes crucial to not destroy the state of the
cells that are still needed for future evaluations. To tackle this challenge, we
microarchitecturally copy the value of a cell into two locations. The first is
used to perform an actual calculation while the second is used to restore the
original state of the cell.

We implement games over multiple generations with initial states such as T-
tetromino [Game of Life Wiki n.d.] and glider. Figure 4.5 shows 16 generations
of the game, starting from a T-tetromino pattern, in a 12× 12 universe. The
brightness of a cell shows the probability that our circuits calculates it as live.
Table 4.1 summarizes the accuracy of a glider across 50 generations for an
12×12 universe. We achieve a high accuracy for the first generation; however,
due to error propagations onto future generations, the accuracy drops as the
game progresses.

Each generation requires 7 808 logic gates to perform its calculation with
the total of 11 456 intermediate microarchitectural states. This means that
running 10 generations computes 114 560 intermediate microarchitectural states.
As we expose only the final output of the circuit to the microarchitectural
states, the number of states exposed constantly remains 64 regardless of the
number of generations. Specifically, for one generation we expose 0.56% (64/11 456),
whereas for 10 generations we expose 0.06% (64/114 560). One generation of the
game takes 3.19 millisecond to run.

4.3 Probe Amplification

This section demonstrates how we use our gates for side-channel probe am-
plification. A fundamental ability that most microarchitectural side-channel
and speculative execution based attacks require is to determine or “probe” if a
specific cache line is in the cache or not. Because the difference in access time
is only in the order of approximately 100 clock cycles, this requires access to

55

Figure 4.6: One generation Game of Life accuracy.

high-resolution timers. In many settings, e.g., WebAssembly and JavaScript
code in modern browsers, access to such timers is actively blocked to prevent
this type of attacks. We propose an amplification approach, using our gates,
that can amplify the minute timing difference between cache hit and cache
miss, allowing the use of timers with arbitrarily low resolution to distinguish
the two.

The scheme consists of three amplification steps. In the first step, we
use a single gate to achieve a small amplification. In the second step, we
create a tree-like structure achieving a theoretical timing difference of up to 4
milliseconds. Finally, in the third step, we combine multiple trees to achieve
an arbitrarily long timing difference.

4.3.1 Single-Gate Amplification

The first step in our proposed scheme is using NOT 1
Y , a NOT gate with a fan-

out of Y (e.g., Y = 4), to gain a small amplification.1 We denote the access
time to an address cached in the LLC by tin , the access time to an uncached ad-
dress in the main memory by tRAM , and their difference by ∆cache = tRAM−tin .
Assume we want to test if addrin is cached or not. Instead of directly measur-
ing the access time to addrin, we use addrin as an input for the NOT 1

Y gate.
Then we measure the total time it takes to sequentially access all Y output
addresses. If addrin was uncached, the Y output addresses will be cached and
the total access time will be Y · tin . Otherwise, the Y output addresses will be
uncached and the total access time will be Y · tRAM . This amplifies the timing
difference by a factor of Y , from ∆cache to ∆gate = Y ·∆cache .

1We use the NOT 1
Y and not the BUFFER1

Y because it is easier to implement for multiple
environments (e.g., native and WebAssembly).

56

in

out 1 out Y out Yl -Y out Yl

Figure 4.7: Amplification tree based on NOT 1
Y Gates.

4.3.2 Probe Time Amplification Tree

As mentioned in Section 4.1.4, the fan-out is limited by the size of the LFB,
allowing only a small constant amplification. To support a larger amplification
factor, our next step is to use a tree structure with tree depth l as shown in
Figure 4.7. Again, we use addrin as an input to a NOT 1

Y gate. However,
instead of simply accessing the Y output addresses, we now use each of them
as inputs to NOT 1

Y gates. This gives us a total of Y 2 output addresses. We
then continue in the same manner for the full l layers, resulting in a total of
Y l output addresses. If the number of layers l is even, we expect all output
addresses to be cached if addrin was cached, and uncached otherwise. If l
is odd, the cache state of the output addresses is negated. In either case,
measuring the total time of sequentially accessing all of the Y l output addresses
allows us to amplify the timing difference to Y l ·∆cache . Note that the tree is
generated in a breadth-first order, i.e., generating each layer before continuing
to the next one.

We note that the amplification factor of this tree structure is limited by
the cache size as the number of possible output addresses is limited by the
number of cache lines. For example, if we assume an LLC of size 8 MB (217

cache lines) and ∆cache = 100 clock cycles (0.033 microseconds on a 3 GHz
CPU) then ∆tree ≤ Y l · ∆cache ≈ 4 milliseconds. Moreover, due to practical
considerations (e.g., memory prefetcher, risk of self eviction between layers of
the tree, etc.), the maximal number of output addresses we can reliably use is
much lower.

4.3.3 Amplification Hyper-tree

To overcome the limitations of tree amplification method, we use a hyper-tree
structure. We start our hyper-tree amplification by using an l-layer amplifica-
tion tree to copy (or negate if l is odd) the cache state of addrin to a bank of Y l

57

output addresses. We then continue to iterate over all addresses in the bank.
In each iteration, we use the address from the bank as an input to a new tree,
then sequentially access all the Y l output addresses of the resulting tree. We
measure the time it takes to generate the Y l sub-trees and sequentially access
all the leaves of each sub-tree. Such a two-level hypertree produces a total
of Y 2·l output addresses. However, it only has at most 2 · Y l “live” memory
addresses at each time, a significant improvement over the single tree case. If
needed, we can extend this hyper-tree structure to d levels of sub-trees and a
total of Y d·l output addresses at a space cost of d · Y l.

Note that in contrast to the simple tree amplification, we cannot store all
of the Y d·l output addresses in the cache at the same time because the cache
might not be large enough. This means that we cannot merely measure the
access time to the output addresses but need to measure the entire process
of the amplification. This also means that regardless of the cache state of
addrin, we measure the time it takes to access all of the addresses in all the
nodes and leaves of the hyper-tree. However, if the addresses in the layer
before the last are uncached, the output addresses are accessed from inside
the speculative window in parallel. In such a case, it takes tRAM time to
access all Y addresses inside the speculative window and then Y · tin time to
access them sequentially. However, if the addresses in the layer before the
last are cached, they are only accessed sequentially at the end, with a total
time of Y · tRAM . Hence, theoretically we obtain an overall amplified timing
difference of approximately

∆hypertree ≈ Y 2·l−1 · ((Y − 1) · tRAM − Y · tin)) ≈ Y 2·l ·∆cache .

Note that the actual difference is lower due to the access time in the inter-
mediate layers. Appendix A.1 provides details on the hyper-tree amplification
implementation.

4.3.4 Experimental Verification

To demonstrate our amplification hyper-tree scheme, we implement and test
it both in native code and in WebAssembly code. We run the experiments
on a Dynabook TECRA A50-EC, with an Intel Core i5-8250U CPU running
Ubuntu 20.04.3 LTS. In our experiments, we set the frequency governance to
performance. The WebAssembly code was tested under Chromium 99.0.4843.0
(Developer Build). Figure 4.8 shows the results of running an amplification
hyper-tree in native. The hyper-tree is composed of three tree layers. The
topmost layer is an amplification tree from 1 to 16. The bottom two layers
are amplification trees from 1 to 512. In total the tree amplifies the access
time of a single address to 16 · 512 · 512 = 4 194 304 memory accesses. For each
run, we measure the total time it takes to generate the whole tree and access
all the leaves. We run the amplification for a total of 1 000 times—500 runs
with the root address we amplify cached, and 500 runs with it uncached. The

58

Figure 4.8: Amplification Hyper-Tree in native.

Figure 4.9: Amplification Hyper-Tree in WebAssembly.

difference between the median values of the two distributions is more than
100 milliseconds. Our statistical t-test analysis of the two distributions (root
cached vs. uncached) yield the p-value (two-tailed) of 0.036, which strongly
confirms that we can, indeed, distinguish between the two scenarios.

Figure 4.9 shows the results of running an amplification hyper-tree im-
plemented in WebAssembly, after discarding measurements that takes longer
than 20 milliseconds as they are too noisy to use (≈ 3% of the measure-
ments).The hyper-tree is composed of two tree layers. The topmost layer is
an amplification tree from 1 to 192. The second layer is an amplification tree
from 1 to 512. In total the tree amplifies the access time of a single address
to 192 · 512 = 98 304 memory accesses. For each run, we measure the total
time it takes to generate the whole tree and access all the leaves. Similar to
the case of native code, we run 1 000 experiments—500 with a cached root
and 500 with an uncached root. The difference between the median values of
the two distributions is more than 2 milliseconds, which is the current timer
resolution provided in the Firefox browser. Similarly, we perform a statisti-
cal t-test analysis of the two distributions (root cached vs. uncached) yield
the p-value (two-tailed) of 0.010, which, again, strongly confirms that we can,
indeed, distinguish between the two scenarios.

59

Figure 4.10: Time to find an eviction set in Chrome using 0.1 millisecond
low-resolution timer

4.3.5 Eviction Set Creation

We now show how we use the probe time hyper-tree amplification scheme from
Section 4.3 to create eviction sets using only low-resolution timers available to
JavaScript and WebAssembly code running inside a browser. We implement
the eviction set creation algorithm from Vila et al. (2019), while using our
probe time amplification to support the low-resolution timers provided by
Google Chrome.

We run our experiment on an unmodified Chrome 102.0.5005.61 (Official
Build; 64-bit) on the same setup as before. Our WebAssembly code chooses
a memory address and tries to find its congruent eviction set that includes
12 addresses. We start with a set of 3 000 addresses that, with a very high
probability, contain all 128 possible eviction sets with the same page offset as
the target address. In 83 out of 100 runs, we are able to find the correct eviction
set. Another 8 runs are “close”, meaning that only one address returned is
not in the real eviction set. We are not able to find an eviction set for the
remaining 9 runs. Failed runs are due to excessive noise. The algorithm detects
such failures, and re-running typically finds an eviction set.

Figure 4.10 shows the measured running time of the algorithm. To summa-
rize, our algorithm is able to find the correct eviction set in 78% of the runs.
We only use the 0.1 millisecond resolution timer provide by Chrome, and the
median run time of algorithm is approximately 11 seconds.

4.4 Prime+Store: Fast Attacks with Slow Clocks

Slow clocks introduce two problems for microarchitectural side-channel at-
tacks. The first issue is that it is hard to distinguish microarchitectural events
with a slow clock; we address this problem in Section 4.3. The second issue
is that the clock limits the rate at which we can measure events; each mea-
surement takes at least one clock tick. This section presents the Prime+Store

60

attack, which overcomes this limitation. We first describe the attack and then
demonstrate how we use it against a vulnerable version of ElGamal.

4.4.1 Prime+Store

Our Prime+Store attack is a variant of Prime+Probe. Recall that a Prime+
Probe attack consists of two main actions. In the prime step, the attacker
accesses all of the members of an eviction set, bringing them to the cache. In
the probe step, the attacker accesses the members of the eviction set again
to measure the access time and detect if any of the members of the eviction
set has been evicted from the cache. Specifically, the probe step is a function
that takes the cache state of the eviction set members and returns false if all
of them are in the cache and true if some of them are not in the cache. We
note that under our computational model, if eviction set members are in the
cache, they represent the logical value ′1′. Hence, the probe function effectively
calculates the NAND of the logical values of the addresses in the eviction set.

Based on this observation, we design our Prime+Store attack using a
NANDx

1 gate, where x is the associativity of the cache. For the attack, we
use an eviction set as the input to the NANDx

1 gate. This stores the probe
result as the cache state of the output of the gate. To perform multiple probes
of the same cache set, we repeatedly invoke the NANDx

1 gate with the eviction
set as input, but each invocation we set the output to a different memory ad-
dress. After we finish sampling, we can then test each of the memory addresses
to determine the outputs of the gates. Thus, using this technique, we decouple
the cache measurements from the sampling, allowing us to perform repeated
samples at a high rate.

Recall that the total fan-in and fan-out of our gates is limited by the size of
the LFB, but the fan in of the NAND gate used for the probe operation is the
associativity of the LLC. Hence, if the associativity of the LLC is larger than
the size of the LFB, the NAND gate may fail to work. We note, however, that
in most cases, the victim only evicts one entry from the cache. Consequently,
most of the eviction set remains cached. Accesses to cached memory free
the LFB fast, allowing the attack to operate even though the fan-in is larger
than the size of the LFB. The attack may still fail when several entries of the
eviction set are evicted from the cache. We ignore this case, considering the
failure as noise. If such noise is not acceptable, the attacker can use a more
complex circuit to compute the NAND function using multiple gates.

4.4.2 Attacking ElGamal

To demonstrate the effectiveness of Prime+Store, we use it to recover the pri-
vate key from a vulnerable implementation of the ElGamal public-key encryp-
tion scheme [El Gamal, 1984]. Specifically, we target the modular exponenti-
ation operation, which raises a base b to the power e modulo some modulus

61

m, i.e., calculating be mod m. During ElGamal decryption, the private key is
used as the exponent e. Hence, our attack aims to recover the exponent.

The attack itself consists of three steps. We first collect traces of memory
activity that correspond to segments of the modular exponentiation operation.
We then process these traces to recover the operations performed during the
observed segments. Finally, we “stitch” the segments to recover the private
key. In this section we describe the attack setup and the victim we target.
Following subsections describe the steps of the attack.

Attack Setup. We run the experiment on Dynabook TECRA A50-EC,
with an Intel Core i5-8250U CPU running Ubuntu 20.04.3 LTS with LFB size
12. The frequency governance is set to performance. We run two processes, a
victim and a spy. The victim uses GnuPG 1.4.13 to repeatedly perform ElGa-
mal decryption with a 4 096-bit modulus. With this parameter, the GnuPG
private key is of length 457 bits. The spy performs the attack, collecting traces
as described below in Section 4.4.3.

Victim Implementation. To calculate the modular exponentiation, GnuPG
1.4.13 uses the square-and-multiply algorithm. The algorithm consists of three
main operations, square, multiply, and modular reduction. It scans the bits
of the exponents from the most to the least significant. For a bit value zero,
it performs square followed by a modular reduction. For a bit value one, it
performs a sequence of square, modular reduction, multiply, and modular re-
duction. The algorithm is known to be vulnerable to side-channel attacks and
has been attacked multiple times [Liu et al., 2015; Yarom and Falkner, 2014;
Zhang et al., 2012]. Specifically, by recovering the sequence of square and
multiply operations that the algorithm performs, the attacker can recover the
exponent.

4.4.3 Trace Acquisition

In our attack, we find an eviction set for the code of the square operation and
use Prime+Store to repeatedly sample cache usage in the cache set. Once
we have collected several samples, we use our amplification technique from
Section 4.3 to amplify each sample to allow recovery with our clock.

Because measurement takes a long time, data we collect may decay, e.g.,
due to spurious cache evictions. To overcome the decay, we use two techniques.
First, we observe that decays tend to change values only in one direction (′1′

to ′0′). We therefore oversample and then coalesce three consecutive samples
using a NOR gate before measuring the result. Hence, unless all three samples
decay, we do not miss a ′1′ sample.

However, when measurement time is long, oversampling is not sufficient
to avoid decay. Consequently, as a second measure, we limit the number of
samples we collect in each trace, so that the trace only correspond to a small
segment of the exponentiation operation.

For the attack on ElGamal, we collect a total of 100 000 traces, each con-

62

Figure 4.11: A segment of samples of the square operation in modular expo-
nentiation. The bottom shows samples in which we detect eviction. The top
shows the sample density. Peaks with density above 15 correspond to a square
operation.

sisting of 2 793 samples, at a rate of 0.33 microsecond per sample. We then
coalesce groups of three consecutive samples, and amplify for measurement
with a 0.1 millisecond clock. Measurement of a trace takes approximately
0.34 seconds, resulting in a trace of 931 coalesced samples, which we further
process. Overall, collecting 100 000 traces takes 9 hours and 40 minutes.

The limited number of samples means that we can only observe a single
segment of the exponent at a time. As in past works [Van Schaik et al., 2019;
Schwarz et al., 2019; Zhang et al., 2012], our aim is to collect a large number
of segments and then stitch them together.

4.4.4 Trace Processing

After collecting the traces, we process them to recover the sequence of square
(S) and multiply (M) operations in the segments of the modular exponentiation
that they cover. The bottom part of Figure 4.11 shows an example of a trace.
(Trimmed to 400 samples for clarity.) Shaded areas indicate that our Prime+
Store attack detected activity in the set in the corresponding coalesced sample.
We clearly observe blocks of cache activity that indicate a square operation.
However, the samples are noisy, with both gaps during square operations and
spurious activity between squares.

To detect the blocks, we measure the density of evictions in an area. For
each sample, we count the number of evictions in the subsequent 9 and 15
samples, and multiply the counts to obtain a measure of the density. The top
part of Figure 4.11 shows the density measure for the displayed trace. We then
perform peak detection to identify the samples at which a square operation
starts. Specifically, we define a peak as a sample that has a higher density
than any of the preceding and subsequent eight samples. Peaks with density
above a threshold of 12 indicates a start of a square operation.

63

After recovering the positions of the square operations we use the distance
between consecutive square operations. Specifically, we find that when the
exponent bit is 0, the distance between consecutive squares is about 30 sam-
ples, and when the bit is 1, the distance is around 60 samples. As such, we
assume that peaks at a distance of 15–45 samples are consecutive square op-
erations, whereas peaks at a distance of 46–75 samples are a square followed
by a multiply. Thus, the sequence of operations in the segment covered in
Figure 4.11 is SSSMSSSMSSSSM. We ignore peaks that are closer than 15
samples to the previous peak, and treat peak distances of over 75 samples as
unknown operations.

4.4.5 Key Recovery

The next step is to “stitch” the segments and recover the key. For that we draw
on an algorithm from DNA sequencing [Wilkinson et al., 2017], adapted to the
binary case. Our stitching algorithm relies on the observation that long enough
sequences of square and multiply operations are unlikely to appear more than
once within the exponent. Thus, the algorithm iteratively extends a guess of
the sequence of square and multiply operations used during exponentiation
with the key. For the sake of exposition we first explain a naive algorithm that
assumes no errors in the traces.

Naive Algorithm. Our naive algorithm starts from the longest segment,
which it uses as the current guess, and iteratively extends it to recover the full
key. If there are multiple longest segments, it just picks one arbitrarily. To
extend the guess, the algorithm searches all captured segment, looking for the
matching segment with the largest overlap with the current guess. That is, it
looks for a segment that when aligned at some position, has matches on all the
positions that overlap with the guess, and out of those it picks the one with
the longest overlap. It then merges the segment into the guess, extending the
guess in the case that the segment extends beyond the guess. The algorithm
stops when running out of segments or when the complete key is recovered.

Handling Trace Errors. The main problem with the naive algorithm
is that traces do contain errors. To handle errors we modify the algorithm
slightly. In the modified algorithm, instead of just associating an operation
with a position, we track the likelihood for both operations, guessing the more
likely for each position. To generate the initial guess we search for a segment
that repeats the largest number of times in the collected traces, and use it for
initial guess.

Instead of keeping a single guess for each position, we track the support for
a square and a multiply operation. If support for square is larger than support
for multiply, we predict that the operation is square. Otherwise, we predict
that the operation is multiply.

To extend the guess, the algorithm searches the collected segments for
the segment that has the largest match with the prediction in the guess. It

64

Figure 4.12: Distribution of stitched key in relation to ground truth location.

then calculates the weight of the segment, which is the number of positions in
which the operation in the segment agrees with the operation predicted for the
matching location in the guess. Finally, the algorithm updates the prediction
by adding the weight of the segment to the guess support in each position.

4.4.6 Evaluation

As discussed in Section 4.4.3, we collect 100 000 traces over a period of almost
10 hours. Among those, 613 attempts fail, leaving us with 99 387 traces.

We first filter collected segments to remove apparent trace errors. Specif-
ically, we ignore segments that contain 11 or more consecutive square opera-
tions. We find that such sequences often appear due to capture errors, and
their inclusion confuses our stitching algorithm. We note that with a 457-
bit ElGamal private key, we expect about one in five keys to include such a
sequence. Omitting these sequences means that for such keys we will need
an extra step of adding the missing segments. Overall, there are 12 568 such
segments.

To test the coverage of the trace collection, we compare each collected
segment with the ground truth. Figure 4.12 shows the distribution of the
positions at which the segments best match the ground truth. Focusing on
segments with length of 20 or more operations, we find that 3 572 segments
out of the remaining 86 819, completely match the private key. Furthermore,
9 467 long segments match the ground truth with one operation error, and
14 007 match with two errors. Running the stitching algorithm, we find that
after merging 22 863 we recover the full key. The process takes 14 minutes and
31 seconds.

4.5 Related Work

Early Attacks from the Browser. Genkin et al. (2018) demonstrate an
LLC attack in WebAssembly, recovering the keys of multiple cryptographic

65

schemes. Oren et al. (2015) implement a cache attack in JavaScript, per-
forming website fingerprinting. Gras et al. (2017) use a cache attack to break
address space layout randomization. All use high-resolution timers that were
available to JavaScript and WebAssembly at the time.

Alternative Timers. Several works investigate alternative timers for
use in web browsers [Kohlbrenner and Shacham, 2016; Rokicki et al., 2021;
Schwarz et al., 2017]. Following Wray (1991), Schwarz et al. (2017) propose a
timer based on a shared counter, which has been used for Spook.js [Agarwal
et al., 2022]. Mainstream browsers have eliminated the SharedArrayBuffer

feature which is used for implementing the shared counter [Chromium, n.d.;
Hazen, 2018; Wagner, 2018]. While some browsers have since partially re-
enabled the feature, it is not fully enabled [MDN Web Docs, 2022].

Cache Occupancy Attacks. The cache occupancy attack [Shusterman
et al., 2019; Shusterman et al., 2021a] measures the access time to a cache-
size buffer. The timing differences between many and few cache misses can be
detected with a low-resolution clock. Moreover, the papers show that by count-
ing the number of times the buffer can be accessed between clock ticks reveals
information even when the timer resolution is as low as 100milliseconds. The
downside of the attack is that it has a low spatial resolution, i.e., it provides
a proxy of the amount of memory activity, but does not reveal information
on which memory addresses are accessed. Under ideal conditions, the attack
can be used for cryptography [Genkin et al., 2022], but it is not clear how this
translates to real environments. Moreover, due to the time it takes to access
the whole buffer, the temporal resolution of the attack is low.

Amplifying through Repetition. When the event that sets the cache
state can be repeated, repeating it multiple times can amplify the difference
between hits and misses. Such amplification has been used for a Spectre attack,
where the attacker can repeat the attack as long as the leaked contents do not
change [Hadad and Afek, 2018; McIlroy et al., 2019; Schwarz et al., 2019].
Theoretically, this approach could also be used to find eviction sets, but we
are not familiar with any implementation of such approach and it would seem
that a naive implementation will be too noisy to be effective.

PLRU Attack. Röttger and Janc (2021) propose an L1 cache attack
that exploits the Pseudo-LRU replacement algorithm used in the Intel L1
caches. L1 attacks do not apply across cores, but it may be possible, in
combination with the Prime+Scope attack [Purnal et al., 2021a], to apply
cross-core attacks. However, it is not clear if and how the technique can be
used for finding eviction sets with low-resolution timers.

Weird Gates. Evtyushkin et al. (2021) describe “weird” gates that use
transient execution to compute over microarchitectural state. They propose
two types of gates. BP gates compute a logical function of the state of the
branch predictor and the memory location that contains the code for the gate.
They store the result as a state of a location in the data cache. Due to the
differences between the types of states used for input and output, BP gates

66

are not composable and it is not clear how to create gates from them.
The second type of gates, TSX gates, use Intel’s Transactional Synchro-

nization Extensions (TSX) [Intel, 2021a] to implement the gates. The feature
is Intel-specific and is not supported by other processors. Due to security is-
sues [Van Schaik et al., 2019; Van Schaik et al., 2021; Schwarz et al., 2019],
Intel disabled the feature by default. Thus, TSX gates cannot work on newer
and patched processors. Moreover, JavaScript and WebAssembly do not sup-
port TSX, hence TSX gates cannot be implemented in these languages.

While TSX gates are composable like ours, their accuracy (about 99%) is
significantly lower than some of our gates’ (over 99.9%). Consequently, Ev-
tyushkin et al. (2021) frequently transfer gates’ output to the architectural
state. For example, their SHA-1 implementation exposes 41% of the interme-
diate values to the architectural state. In contrast, our SHA-1 implementation
performs a full round without exposing any intermediate values. Moreover,
to increase robustness, the software needs to execute each gate multiple times
and perform statistical analysis to decide the likely correct outcome. While
our circuits also use redundant computation to increase robustness, we use our
majority gates to select the output without exposing the intermediate values
to the software.

Evtyushkin et al. (2021) propose to use their gates to implement stealthy
computation that is harder to detect and analyze (e.g., a form of program
obfuscation to prevent reverse engineering). Similarly, our gates evaluation is
also dependent on the microarchitectural layer, which also stores their state.
Thus, the same analysis on stealthiness and program obfuscation apply to our
gates.

Concurrent Work. In a concurrent and independent work, Kaplan
(2023) also shows how to use speculative execution to create logical gates.
The work mentions the possibility of using branch prediction (which we ex-
ploit), but also shows gates based on return address prediction, which require
no branch training. It also demonstrates how to combine gates to create logi-
cal circuits, to speed up cache attacks, and to amplify cache measurement up
to 600 millisecond.

4.6 Conclusions

Conducting proactive research on potential attack vectors of computing devices
is a crucial practice in ensuring their security. In this chapter, our focus is on
exploring vulnerabilities of low-resolution timers as a countermeasure against
cache side-channel attacks. Specifically, we investigate how transient execution
can be used to enhance cache attacks on systems that utilize low-resolution
timers.

We present three types of logical gates that operate on the state of the
cache. Our gates are sufficiently robust to perform Turing complete calcula-
tions, and are versatile enough to work on a range of environments, including

67

in browsers and across multiple processor architectures. We demonstrate that
using our gates we can amplify the timing signal of cache miss vs. hit by six
orders of magnitude, achieving a timing difference of 100milliseconds. Our
amplification strategy works well within a browser, and we demonstrate its
use for building eviction sets in Chrome, using no timing source other than
the JavaScript timer, whose resolution is 0.1milliseconds.

We further present the Prime+Store attack, a variant of Prime+Probe
that decouples cache sampling from the timing measurement. We demonstrate
the power of Prime+Store by using it to attack the modular exponentiation
implementation in a version of GnuPG. We show that we can sample at a rate
that is more than 100 times faster than our clock rate, allowing us to obtain
(secret) exponent bits from GnuPG.

We believe that our gates pave the way for implementing other primitives
that manipulate microarchitectural state. Furthermore, by exposing the se-
curity ramifications that our gates pose, we hope to prompt the necessary
measures to address these issues and enhance the security of systems in the
future.

68

Chapter 5

Hardware Performance
Counters in Cache Attack
Detection

In this chapter, we focus on the final countermeasure against cache side-
channel attacks discussed in this thesis, specifically software-oriented cache
side-channel attack detection techniques that rely on hardware performance
counters (HPC) for data. Owing to the serious implications of cache attacks,
numerous defenses in software [Barthe et al., 2014; Carruth, 2018; Liu et al.,
2016a; Shi et al., 2011; Zhang et al., 2023] and hardware [Feng et al., 2021;
Khasawneh et al., 2019; Liu et al., 2016b; Loughlin et al., 2021; Qureshi,
2018; Wang and Lee, 2007; Werner et al., 2019; Yan et al., 2019b] have been
suggested to safeguard against such threats. However, implementing these de-
fense strategies can be complicated. Hardware-based defenses, such as secure
caches discussed in Chapter 3, cannot be applied to existing hardware, and
software countermeasures, such as low-resolution timer in browsers discussed in
Chapter 4, might cause significant disruption to functionality and performance
degradation. Instead of perpetually incurring the cost of protection, even when
no attacks are happening, an alternate strategy seeks to identify ongoing at-
tacks and only use countermeasures when attacks are detected [Akram et al.,
2020]. A prevalent method in this area involves the use of HPCs, a collection
of machine-specific registers that observe microarchitectural events, search-
ing for statistical deviations that differentiate malicious from benign software.
The statistical tests employed range from basic threshold techniques [Carnà
et al., 2022; Payer, 2016] to sophisticated machine learning [Depoix and Alt-
meyer, 2018; Mushtaq et al., 2018b]. Given the large number of proposals, and
the high quality of the reported results, in this chapter we ask the following
question:

Are published HPC-based detection methods properly evaluated, such that
their quality can be ensured for real-word deployment against cache

side-channel attacks?

69

In this chapter, we find that the answer is an unfortunate negative.
We evaluate the correctness of performance evaluation of 48 relevant side

channel detection literature, and find four commonly occurring problems in
their settings and assumptions, particularly in the case of accuracy, overhead,
detection speed and threat model. We subsequently present our findings in
a form of a survey. We further demonstrate how these improper evaluation
settings, and especially weak threat models assumed by publicly available de-
tection methods leave them vulnerable to sophisticated attacks that do not
make such weak assumptions. To illustrate this weakness, we develop new
camouflaged attacks that mask their malicious execution patterns behind be-
nign program execution, allowing them to evade detection effectively. We
demonstrate the success of these attacks in stealing sensitive data, while simul-
taneously remaining undetected by two publicly available detection methods,
that otherwise detect proof-of-concept attacks with reasonable accuracy. To
further support our case, we construct our own implementation of a detection
method, named HPCache, that can detect proof-of-concept cache attacks with
perfect accuracy, and yet we show that it is still fallible to our camouflaged at-
tacks. This emphasizes the importance of assessing detection methods against
more advanced attack models. We show that merely claiming defense against
a specific attack type, particularly when based on proof-of-concept implemen-
tations, without providing comprehensive insight into its implementation and
threat model, falls short of ensuring reliable protection.

By conducting a survey and our own experimentation on the vulnerability
of HPC-based cache side-channel attack detection methods, we have found that
issues persist in the performance evaluation of current detection approaches,
as mentioned earlier, which hamper their practical implementation on a wider
scale. We conclude that without addressing the aforementioned evaluation
shortcomings, it is uncertain whether real-time cache side-channel attack de-
tection systems can truly be deemed effective for practical use in real-world
scenarios.

5.1 Background

5.1.1 Hardware Performance Counters.

Modern CPUs include hardware performance counters (HPCs), initially intro-
duced for the purpose of debugging [Das et al., 2019]. This is done through
recording CPU events such as number of cycles, and branch misses. In In-
tel processors, this functionality is implemented under the name Performance
Monitoring Units (PMUs). They consist of individual counters called Perfor-
mance Monitoring Counters (PMCs). HPCs can be programmed by setting
specific Machine Specific Registers (MSRs) in the processor.

70

5.1.2 HPC-Based Cache-Side Channel Attack Detec-
tion Methods

HPCs have been used to facilitate debugging and dynamic profiling [Das et
al., 2019]. However, recent research has uncovered another area where these
counters may be advantageous, namely in the realm of cache side-channel
attack detection [Akram et al., 2020; Mushtaq et al., 2018a]. In this section,
we examine the challenges of using HPCs for security-related purposes. We
then explore the classification of HPC-based detection methods for cache side-
channel attacks.

Challenges of Using Performance Counter for Security Practices

Das et al. (2019) have brought to light issues of non-determinism and contam-
ination when utilizing hardware performance counters for security purposes.
This is due to the fact that the usage of non-architectural events, which are
specific to the microarchitecture of a processor (e.g., cache accesses, branch
prediction, and TLB accesses) for security applications of hardware perfor-
mance counters can be problematic. These events differ across processor ar-
chitectures and may also change with processor enhancements. The second
issue, contamination, arises because performance monitoring units operate at
the hardware level and are application agnostic. Therefore, when an interrupt
is configured to notify of performance monitoring events, the PMU generate
interrupts for all processes running on a given processor core. To obtain an ac-
curate profile of an application, it is essential to filter the performance counter
data relevant only to the process of interest, as performance data can be con-
taminated by the events of other processes. The authors note that while these
issues may not have significant consequences for certain applications, they can
have a significant impact on approaches whose security depends on having
accurate and consistent hardware performance counter measurements. For
instance, malware exploit defenses are vulnerable to non-deterministic effects
and contamination of events, as security applications rely on small variations
in performance counter data to distinguish between suspicious and benign be-
haviors. Even minor variations of 1–5% in counter values can cause these
models to perform poorly. Therefore, it is especially important to address
these challenges in security-related applications.

In line with what was suggested by Das et al. (2019), Zhou et al. (2018) con-
ducted an experimental study on traditional malware that demonstrate how
the use of microarchitectural level information obtained from hardware perfor-
mance counters (HPCs) cannot differentiate between benignware and malware.
Previous HPC-based malware detectors rely on the assumption that malicious
behavior affects measured HPC values differently than benign behavior. How-
ever, it is debatable and counter-intuitive as to why the semantically high-level
distinction between benign and malicious behavior would manifest itself in the
microarchitectural events that are measured by HPCs. The authors do not be-

71

lieve that there is a causal relationship between low-level microarchitectural
events and high-level software behavior. They argue that the positive results in
previous research are due to a series of optimistic assumptions and unrealistic
experimental setups.

Furthermore, Jiang et al. (2022) evaluate existing detection tools for cache
attacks on Secure Guard Extension (SGX), Intel’s implementation of a trusted
execution environment in x86 64 processors. They identify how these tools fail
to accommodate various subtleties in the use of HPCs in the case of exploit
prevention and malware detection. They also demonstrate how an adversary
can manipulate HPCs to bypass certain security defenses, making detection
tools less effective in detecting side-channel attacks on SGX enclaves. Existing
detection mechanisms are geared towards an adversary that interferes with the
victim’s execution to extract the most secret bits, causing significant perfor-
mance degradation that can signal an attack. However, they show that an
adversary leaking smaller portions of secret, as small as a single bit at each
execution of the victim, can remain undetected. They specifically demonstrate
that an adversary can profile a victim enclave to identify the precise moment
during execution when a specific part of the secret can be leaked via a side-
channel attack. By running the victim multiple times and leaking a different
part of the secret each time, their technique can recover the whole secret while
remaining undetected. They adapt known attacks that leverage page tables,
L3 cache, or a combination of the two and evaluate their performance on rou-
tines on libgcrypt, used by cryptographic algorithms like ElGamal, RSA, and
EdDSA. They show that an adversary using their attack technique cannot be
detected by existing detection tools unless they tolerate a large number of false
positives. They also provide evidence that any detection tool that monitors
the performance of the victim is equally likely to fail.

Classification of Cache Attack Detection Methods Using HPCs

Despite the difficulties and literature advising against the use of HPCs in
a security context, a considerable number of papers support the application
of HPCs to detect cache attacks. We gathered 48 papers related to cache
side-channel attack detection methods that use HPCs. To gain a better un-
derstanding of these detection techniques, we first present the categories into
which they can be grouped. For this purpose, we refer to the study by Akram
et al. (2020), which classifies academic papers on cache attack detection meth-
ods promoting HPC use into two primary groups based on their detection
pattern: signature-based and anomaly-based. Moreover, these detection ap-
proaches can be sorted by their classifier type, either as machine learning-based
or threshold-based.

Signature-based detection methods analyze the status of microarchitec-
tural components to identify any patterns that may be indicative of an attack.
This technique looks for similarities to known attack patterns. If the HPC

72

readings of an application reach a certain similarity threshold with a known
attack pattern, the detection mechanism is triggered.

Anomaly-based detection methods continuously scan microarchitectural
patterns to search for similarities with a benign application. These methods
identify potential attacks by comparing the behavior of monitored applications
by reading their HPC values and comparing them with the expected values
of a benign application. When an application’s readings deviate from what is
expected of a harmless application, the detection method flags the application
as a possible threat. This is based on the premise that benign applications
usually generate a modest number of microarchitectural HPC readings, and
any number that exceed a certain threshold are considered anomalous and may
indicate the presence of cache attacks.

Signature-based detection is more accurate in detecting known attacks,
but is more prone to false negatives when faced with new attacks, whereas
anomaly-based can possibly detect new attacks but at the same time may
experience false positives when execution of benign program unexpectedly
changes [Alam et al., 2017].

The detection techniques for cache side-channel attacks can be further clas-
sified based on their classifiers, which are the methods used to determine the
likelihood of an attack based on the collected data. There are two main meth-
ods of classification:

Threshold-based detection methods use a simple limit-based classifica-
tion method, this is done in such a way that when HPC values are above
certain threshold, the detection method associates that trace with an attack.

Machine learning-based detection methods use a more advanced way
of classifying data, i.e., with the help of machine learning classifiers. The idea
behind this approach is to let machine learning algorithms learn features in
the collected data. This is done with hopes that the classifier can generalize
better over the data, to improve detection accuracy and detect new attacks
better.

Mushtaq et al. (2022) note that in controlled settings with minimal back-
ground noise, threshold-based techniques may be adequate for identifying at-
tacks. However, in more realistic and noisy environments, these methods have
difficulty distinguishing between benign features and attacks. Therefore, they
suggest that machine learning-based approaches are better suited for use in
these types of settings.

5.2 Survey of HPC-Based Cache Side-Channel

Attack Detection Method Evaluation

In Section 5.1.2, we briefly discuss a previous survey by Akram et al. (2020)
that classified various works on cache side-channel attack detection methods,
revealing that 20 of them rely on hardware performance counters (out of 23 in

73

total). Given the growing popularity of this approach, we set out to investigate
whether the use of performance counters is a viable option for detecting cache
attacks and whether it is an appropriate and effective approach.

As part of our research, we searched scholarly works related to cache side
channel detection using HPCs and identified 48 articles on the subject. Af-
ter conducting a survey, we identified several recurring issues across these
works that we consolidated into four categories of methodological shortcom-
ings. These categories consist of improper measurement of accuracy, overhead,
and detection speed, as well as a weak threat model used for assessing the ef-
fectiveness of detection methods.

Our findings are summarized in Table 5.1, where each circle represents the
conformance of the proposed method to the criteria described above.

74

R
ef

A
C
C

O
V

D
S

T
M

[A
h
m
ad

,
20
19
]

[A
h
m
ad

,
20
20
]

[A
la
m

et
al
.,
20
17
]

[A
la
m

et
al
.,
20
21
]

[A
lb
al
aw

i
et

al
.,
20
22
]

[A
ll
af

et
al
.,
20
19
]

[B
az
m

et
al
.,
20
18
]

[B
ri
on

go
s
et

al
.,
20
18
]

[C
ar
n
à
et

al
.,
20
22
]

[C
h
ia
p
p
et
ta

et
al
.,
20
16
]

[C
h
o
et

al
.,
20
20
]

[C
h
ou

d
h
ar
i
et

al
.,
20
22
]

[C
h
ou

h
an

an
d
H
al
ab

i,
20
16
]

[D
ep

oi
x
an

d
A
lt
m
ey
er
,
20
18
]

[D
u
tt
a
an

d
S
in
h
a,

20
19
]

[F
er
ra
cc
i,
20
19
]

[G
re
go
ry

an
d
H
ar
in
i,
20
21
]

[G
ü
lm

ez
og
lu

et
al
.,
20
19
a]

[H
am

za
et

al
.,
20
21
]

[K
im

et
al
.,
20
21
]

[K
u
la
h
et

al
.,
20
19
]

[L
an

tz
,
20
21
]

[L
i
an

d
G
au

d
io
t,
20
18
]

[L
i
an

d
G
au

d
io
t,
20
19
]

R
ef

A
C
C

O
V

D
S

T
M

[M
u
sh
ta
q
et

al
.,
20
18
b
]

[M
u
sh
ta
q
et

al
.,
20
18
c]

[M
u
sh
ta
q
et

al
.,
20
18
d
]

[M
u
sh
ta
q
et

al
.,
20
20
]

[M
u
sh
ta
q
et

al
.,
20
21
]

[M
u
sh
ta
q
et

al
.,
20
22
]

[P
ay
er
,
20
16
]

[P
ol
y
ch
ro
n
ou

et
al
.,
20
21
]

[P
ra
d
a
et

al
.,
20
19
]

[S
ab

b
ag
h
et

al
.,
20
18
]

[S
in
gh

an
d
R
eb

ei
ro
,
20
21
]

[T
ao

et
al
.,
20
21
]

[T
on

g
et

al
.,
20
20
]

[T
on

g
et

al
.,
20
22
]

[V
an

at
h
i
an

d
C
h
ok

ka
li
n
ga
m
,
20
18
]

[W
an

g
et

al
.,
20
20
a]

[W
an

g
et

al
.,
20
20
b
]

[W
an

g
et

al
.,
20
21
a]

[W
an

g
et

al
.,
20
21
b
]

[W
an

g
et

al
.,
20
22
]

[W
u
et

al
.,
20
22
]

[Y
an

an
d
C
u
i,
20
22
]

[Z
h
an

g
et

al
.,
20
16
]

[Z
h
en
g
et

al
.,
20
22
]

T
ab

le
5.
1:

S
u
rv
ey

re
su
lt
.
A
C
C

re
p
re
se
n
ts

ac
cu
ra
cy
,
O
V

re
p
re
se
n
ts

ov
er
h
ea
d
,
D
S
re
p
re
se
n
ts

d
et
ec
ti
on

sp
ee
d
,
T
M

re
p
re
se
n
ts

ev
al
u
at
io
n
ag
ai
n
st

st
ro
n
ge
r
th
re
at

m
o
d
el
s.

A
n
em

p
ty

ci
rc
le

si
gn

ifi
es

th
at

th
e
cr
it
er
io
n
h
as

n
ot

b
ee
n
as
se
ss
ed
,
n
or

m
en
ti
on

ed
,

w
h
il
e
a
se
m
i-
fi
ll
ed

ci
rc
le

im
p
li
es

th
at

th
e
li
te
ra
tu
re

m
en
ti
on

s
th
e
sp
ec
ifi
c
cr
it
er
io
n
b
u
t
la
ck
s
ce
rt
ai
n
at
tr
ib
u
te
s
re
q
u
ir
ed

fo
r

ac
cu
ra
te

as
se
ss
m
en
t.

A
fu
ll
y
-fi
ll
ed

ci
rc
le

d
em

on
st
ra
te
s
th
at

th
e
m
et
h
o
d
co
n
d
u
ct
s
it
s
as
se
ss
m
en
t
of

th
e
cr
it
er
io
n
ap

p
ro
p
ri
at
el
y.

75

5.2.1 Accuracy

Assessing the accuracy of cache attack detection methods entails examining
both false positive and false negative rates. Keeping a low false negative rate
is essential, as detection techniques strive to detect potential attacks on the
systems they safeguard, thus reducing the likelihood of overlooking malicious
efforts. While having a false negative rate of 0% is the ideal situation, it
may be challenging due to the continuous emergence of new threats and the
intrinsic disadvantage defenders experience in a “cat and mouse” context with
malicious actors perpetually avoiding detection. As such, we do not mandate
a specific false negative rate for detection methods to reach. Nevertheless, we
expect that research papers evaluate the accuracy of their detection method.

Out of all the papers we examined, the majority (39 out of 48) evaluate
the detection accuracy of their methods. Nine exceptions do not perform this
assessment. We denote these nine papers with empty circles in Table 5.1 1.

False positive rate is another important aspect to consider. A detection
method with a high false positive rate can be detrimental to the protected
system, as legitimate programs may be incorrectly flagged and terminated.

Because of this, we expect detection systems to have an absolute minimum
false positive rate, considering that they may be run on a system for a long
period of time and the potentially large number of applications running on
the protected system. False positive rate, even very small, will result in a
cumulatively large number of wrongly flagged applications.

We found that the majority of evaluated papers (32 out of the 39 that
evaluate their accuracy) report false positives at a rate higher than zero, for
which we assign a semi-filled circle in Table 5.1. The remaining six meets our
criteria of absolute zero false positive rate, to which we assign a fully-filled
circle.

5.2.2 Overhead

The term “overhead” refers to the decrease in system performance that occurs
when attack detection methods are executed.

In order to ensure a fair assessment of the overhead, we recommend that
benchmark applications be either pinned to the same core as the detection
method or run on all cores. This guarantees that the detection method in-
fluences the benchmark by ensuring that the benchmark is scheduled on the
same core as the detection method. This approach prevents the misconception
of the detection method being “overhead-free” due to them being scheduled
on different cores. Only three papers, specifically [Carnà et al., 2022; Kulah

1It is important to note that there are situations where assessing accuracy may not be
necessary, such as in the case of [Singh and Rebeiro, 2021]. Their work focuses on developing
a mitigation that minimizes performance penalty in the case of false positive. We only take
note of whether accuracy assessment is present. An absence of such evaluation does not
necessarily imply any incompleteness in the research.

76

et al., 2019; Singh and Rebeiro, 2021] appropriately examine this criterion.
Their detection techniques operate during every context switch (which occurs
on each core of the system), signifying that their benchmark application and
the detection method run on the same core, thus allowing for a fair overhead
assessment.

Out of the 48 papers reviewed, 31 assess their detection overhead, while
17 do not perform any overhead evaluation. For papers that do not perform
any overhead evaluation, we assign an empty circle in Table 5.1. For papers
that evaluate their detection method’s overhead but do not meet the afore-
mentioned criterion, we assign a semi-filled circle. For the three papers that
meet the criterion, we assign a fully-filled circle.

Out of the 17 papers that do not evaluate overhead, five [Chouhan and
Halabi, 2016; Gregory and Harini, 2021; Li and Gaudiot, 2018; Li and Gaudiot,
2019; Tong et al., 2020] claim that the detection overhead associated with
collecting HPC data is low, without evaluating their overhead. We believe
that this claim is inadequate to demonstrate the low overhead of their detection
system. This is because evaluation of system overhead should include not only
the cost of reading HPC data but also the overhead associated with performing
attack classification, and potentially scanning the processes running on the
system.

Despite measuring their overhead with the benchmark application and data
collection process pinned to the same core, we consider the overhead evaluation
of Chiappetta et al. (2016) to partially cover the true overhead of their detec-
tion method. This is because their evaluation only encompasses the overhead
of their HPC collection module and disregards the classification step, which is
typically more resource-intensive of the two. Therefore, we assign a semi-filled
circle.

5.2.3 Detection Speed

We assess research papers based on whether they examine the detection speed
of their detection techniques. A thorough evaluation of detection speed in-
volves conducting such an assessment and presenting the results in terms of
either the time required to identify attacks or the percentage of attack com-
pletion when the attack is detected. We assign fully-filled circles to papers
that meet these criteria. Out of 48 papers analyzed, six [Cho et al., 2020;
Choudhari et al., 2022; Chouhan and Halabi, 2016; Gülmezoglu et al., 2019a;
Hamza et al., 2021; Zhang et al., 2016] present their detection speed using the
former metric, while ten [Briongos et al., 2018; Carnà et al., 2022; Lantz, 2021;
Mushtaq et al., 2018c; Mushtaq et al., 2018d; Mushtaq et al., 2020; Mushtaq
et al., 2021; Mushtaq et al., 2022; Wu et al., 2022; Zheng et al., 2022] use
the latter. We consider the latter metric to be more informative because it
signifies the maximum amount of key leakage from a cryptographic algorithm.
Nevertheless, both approaches are arguably valid, and therefore we assign a

77

fully-filled circle in Table 5.1 for these 16 papers.
Among the remaining 32 papers, 15 provide the detection method’s HPC

sampling interval but do not evaluate the system’s detection speed in detecting
attacks, for which we assign a semi-filled circle, while 17 do not mention this
criterion at all, to which we assign an empty circle.

5.2.4 Threat Model

HPC-based detection methods face a significant problem in that many of them
are developed with the assumption that attackers will only use naive, proof-of-
concept implementations of attacks. However, this assumption is inaccurate
because in reality, attackers are likely to use advanced techniques to evade
detection. Therefore, it is critical to determine whether current detection
systems can effectively detect these evasive attacks.

Overall, 22 out of 48 papers acknowledge the possibility of evasive attacks
However, out of these 22, only eight evaluate their detection method against
any sort of attack modification efforts. For these eight papers, we assign a
fully-filled circle, whereas for the remaining 14 papers, we assign a semi-filled
circle. For the 26 papers that do not acknowledge this issue, we assign an
empty circle.

5.3 Assessing the Quality of Attack Detection

Methods

In Section 5.2, we highlight several performance assessment issues with re-
cent proposals for HPC-based cache side-channel attack detection methods.
In this section, we apply the evaluation criteria proposed in Section 5.2 to
publicly accessible detection methods, as well as our own method, to assess
their performance.

5.3.1 Experiment Environment

The experiments in this section are conducted on an Intel NUC 9 Extreme Kit
that comes with an Intel Core i7-9750H CPU. The system runs on Ubuntu
22.04.

5.3.2 Our Method

We made efforts to acquire the implementation code from the authors, but we
were only able to obtain a limited number of solutions. Out of the total number
of papers (48), we found two available online and contacted the authors of the
remaining 46 papers via email. We received responses from 21 of them, out of

78

which 13 provided us with the code. However, only two were functional, which
means that they were able to compile and perform the detection as intended.

Due to the unavailability of reliable implementations and our inability to
verify the quality of the detection methods we find, we supplement our ex-
periments with our own cache attack detection solution that uses comparable
technique to other proposed methods. This detection method is called HP-
Cache.

It is important to note that our detection method does not aim to offer
flawless detection accuracy, minimum performance overhead, nor the ability
to detect advanced threat models. Instead, it serves as an illustration of how
to apply the evaluation criteria outlined in Section 5.2.

It consists of three modules: the Process Checker, the Data Collector, and
the Classifier. The Process Checker module scans the system for running pro-
cesses, tracks started and killed processes, and sends process information to
the Data Collector module. The Data Collector module uses the process in-
formation from the Process Checker to collect HPC data from each running
process in the system every 100 milliseconds. The collected data is associated
with the process from which it was sampled and then passed on to the Classi-
fier module. The Classifier module processes the HPC data using a classifier
algorithm chosen by the user (in the experiments in this paper, a neural net-
work classifier is used) to determine whether the HPC data is indicative of
cache attacks.

PAPI Event Name Intel Mnemonic

PAPI L1 DCM L1D.REPLACEMENT
PAPI L1 ICM L2 RQSTS.ALL CODE RD
PAPI L1 TCM L1D.REPLACEMENT,

L2 RQSTS.ALL CODE RD
PAPI L2 ICM L2 RQSTS.CODE RD MISS
PAPI L2 TCA L2 RQSTS.ALL CODE RD,

L2 RQSTS.ALL DEMAND REFERENCES

Table 5.2: PAPI events used in our detection method, their description and
native performance counter events in x86 64.

To gather performance counter data for our detection, we utilize the PAPI
library [Terpstra et al., 2009], which offers a consistent interface and approach
for accessing the performance counter hardware present in most major micro-
processors. The HPC events we use as a data source for our detection method
are listed in Table 5.2. This table includes the names of PAPI events, and their
corresponding Intel performance counter mnemonics. These specific events are
chosen because they encompass a wide range of cache-related events in the L1
and L2 caches, considering the limitations of the available performance coun-
ters. Since we are dealing with non-inclusive caches, it is important to note

79

that LLC misses also result in misses in the L1 and L2 caches. Consequently,
these counters take into consideration such misses.

5.3.3 Accuracy

First, to assess the accuracy criterion, we test the accuracy of these detec-
tion methods in detecting standard proof-of-concept attacks. To this end,
we have selected an implementation of Spectre-PHT [Crozone, 2023], and an
implementation of the Flush+Reload attack on GnuPG from the Mastik li-
brary [Yarom, 2016]. These attacks are chosen due to their significant security
implications [Kocher et al., 2019; Yarom and Falkner, 2014]. In particular, the
risk posed by Flush+Reload is noteworthy as it is capable of facilitating the
theft of cryptographic keys [Yarom and Falkner, 2014].

[Payer, 2016] [Depoix and Altmeyer, 2018] HPCache
Criteria

Number of Datapoints 2000 2000 2000
Number of true positive 861 843 1000
Number of false positive 0 500 0
Number of true negative 1000 500 1000
Number of false negative 139 157 0

False negative rate 13.9% 15.7% 0%
False positive rate 0% 50% 0%

Table 5.3: Accuracy of three detection methods.

HPCache HPCache HPCache
Criteria 100ms 10ms 1ms

Number of Datapoints 2000 2000 2000
Number of true positive 1000 570 577
Number of false positive 0 0 28
Number of true negative 1000 1000 972
Number of false negative 0 430 423

False negative rate 0% 43% 42.3%
False positive rate 0% 0% 2.8%

Table 5.4: Accuracy of HPCache with 100, 10, and 1 millisecond sampling
interval.

We assess the accuracy of our detection technique, along with two other
detection methods [Depoix and Altmeyer, 2018; Payer, 2016] across an 8-hour
time frame, during which we execute multiple benign programs, encompassing

80

the CPU stress-testing application stress-ng, the gcc compiler for compilation,
GnuPG for decryption, and the SPEC CPU 2017 gcc r benchmark. Addition-
ally, we run malicious applications such as Spectre and Flush+Reload. Our
detection method is put to the test against 1,000 benign and 1,000 malicious
applications.

Table 5.3 presents our detection method’s accuracy compared to that of
Payer (2016) and Depoix and Altmeyer (2018). To make a fair comparison,
we test all detection methods against the same collection of benign and mali-
cious samples. We find that Depoix and Altmeyer (2018) only scans for pro-
cesses running before starting their detection method, therefore we conduct
our evaluation by initiating the malicious attack, then launching their detec-
tion method, and repeating this sequence for each subsequent experiment. As
for Payer (2016), we encounter some memory errors after a few minutes of
running their detection method and had to modify our testing approach to
start a new instance of the detection method for each sample being tested.

Furthermore, we conduct experiments to evaluate the effect of different
sampling intervals on the accuracy of our detection method. Table 5.4 shows
that using a sampling interval of 1 or 10 milliseconds leads to a decline in
accuracy compared to using a 100 millisecond sampling interval. Under a 1
millisecond sampling interval, both the false negative and false positive rates
increase. Similarly, under a 10 millisecond sampling interval, the false negative
rate increases, while the false positive rate remains at zero. We conclude that
this outcome results from inadequate amount of data being collected within
both 1 and 10 millisecond intervals, as both benign and malicious applications
have execution periods where the cache miss rate is exceptionally high or low.
Collecting HPC data within these intervals fails to capture a comprehensive
view of program execution. Therefore, we determine that the sampling interval
of 100 milliseconds is optimal for our detection method.

Our tool’s detection capabilities and functionality are comparable to others
in the field [Choudhari et al., 2022; Mushtaq et al., 2018a; Mushtaq et al.,
2018b; Mushtaq et al., 2018c; Mushtaq et al., 2018d; Mushtaq et al., 2020;
Mushtaq et al., 2021; Mushtaq et al., 2022; Tong et al., 2020; Tong et al.,
2022; Wu et al., 2022; Yan and Cui, 2022], as demonstrated by the low false
positive and false negative rate of 0%. In conclusion, it is important to conduct
accurate evaluations of detection methods’ accuracy. A low false negative rate
ensures effective protection, and a low false negative rate prevents excessive
false positive rate that could render them impractical.

5.3.4 Overhead

Second, we evaluate the overhead of these detection methods using the tech-
nique we recommend for overhead evaluation in Section 5.2.2.

To evaluate overhead, we use the 7zip benchmark to measure CPU perfor-
mance during file compression and decompression. This benchmark is chosen

81

Detection Method
[Payer, 2016] [Depoix and Altmeyer, 2018] HPCache

ST AT PT ST AT PT ST AT PT

Not Running 3075 24162 3096 3075 24162 3096 3075 24162 3096
Running 3091 24051 3062 2978 22827 1804 2970 20013 1494

Overhead (%) -0.5 0.5 1.1 3.2 5.5 41.7 3.4 17.2 51.7

Table 5.5: Overhead of detection methods. ST signifies single-threaded 7zip
benchmark. AT signifies 12-threaded of the benchmark, while PT signifies the
a single-threaded benchmark, pinned on the same core along with the detection
method tested.

because of its high CPU usage, which makes it an ideal test to determine the
influence of the detection methods on CPU performance.

We perform three experiments to evaluate overhead. Initially, we execute
a single-thread benchmark followed by a 12-thread benchmark, which aligns
with the number of cores in our CPU. The third experiment is to run the
benchmark (single-thread) on the same core as the detection method using the
taskset command. We repeat 80 compression and decompression tasks in each
scenario, with and without the detector running. The rationale behind running
the 12-thread benchmark is to ensure the detection method has an effect on
the benchmark, by ensuring that at least one of the benchmark threads is
scheduled on the same core as the detection method. Note that the benchmark
program monitors the performance of all the threads simultaneously. This
approach prevents an illusion of the detection method being “overhead-free”
due to them being scheduled on different cores. Similarly, allocating both the
benchmark and detection methods to the same core also avoid underestimating
the detection method’s overhead.

The results of our experiment are shown in Table 5.5, with scores expressed
in million instructions per second (MIPS). As mentioned, running a single-
thread benchmark and detection method without ensuring they are scheduled
on the same core results in a low overhead reading. Interestingly, Payer (2016)
showed 0.5% higher performance when running their detection method than
when it was not running. Depoix and Altmeyer (2018) and HPCache showed
around 3% overhead.

Running the benchmark on all cores results in higher detection overhead
in all three detection methods. Pinning a single-thread instance of the bench-
mark with the detection method results in an even higher overhead evaluation
for all detection methods. We note that Depoix and Altmeyer (2018) and
HPCache show significantly higher overhead in this configuration as they are
both multi-threaded, causing a sharp decrease of the benchmark’s performance
when pinned to a single core with the detection method. The results highlight
the importance of correctly configuring the benchmark to avoid unfairly low
overhead results, as demonstrated in the single-threaded benchmark experi-
ment of the detection methods.

82

In conclusion, it is crucial to use a proper overhead benchmark setting to
ensure fair evaluation. Precise reporting of overhead is important as unex-
pectedly high overhead can hinder the adoption and practicality of detection
methods.

5.3.5 Detection Speed

Third, we assess the detection speed of detection methods by measuring the
time it takes for them to identify ongoing attacks.

With a sampling interval of 100 milliseconds, HPCache can identify attacks
within 300 milliseconds of the execution of a malicious program. By increasing
the sampling interval to 10 milliseconds, the tool can detect attacks in just
100 milliseconds. However, we have found that using a sampling interval of
1 millisecond leads to a longer detection time. This is because the amount
of information collected during this period is insufficient, as discussed in Sec-
tion 5.3.3. Consequently, the detection method can only recognize an attack
trace as malicious after it has been running for a longer period, resulting in
longer detection times.

For comparison, Payer (2016) uses a sampling interval of 1000 milliseconds,
and detects attacks within 1100 milliseconds. Regarding Depoix and Altmeyer
(2018), we were unable to test their detection speed because their method only
detects attacks that were executed prior to its start-up, meaning that it cannot
detect new attacks.

These findings highlight the discrepancy between the sampling interval of
HPC and the detection speed of a detection method. They emphasize the im-
portance of accurately evaluating the detection speed rather than solely stating
sampling interval used (as seen in numerous papers in Section 5.2.3). For ex-
ample, collecting HPC-data every 100 milliseconds does not guarantee that
attacks are detected within such time-frame. Such precise reporting of detec-
tion speed enables users to make informed decisions regarding the suitability
of detection methods in safeguarding their systems against specific threats.

5.3.6 Threat Model

Last, we assess the accuracy of the detection method against a stronger attack
model. We are interested in determining how effective these detection meth-
ods are in identifying camouflaged attacks, which hide their malicious activities
within benign code. We also compare the accuracy of these detection meth-
ods when detecting proof-of-concept attacks to understand any discrepancies
between these two setups, and to understand whether a weak threat model as-
sumption leads to overestimation of detection methods’ capability. To achieve
this, we select the SPEC CPU 2017 gcc r benchmark program [SPEC, 2020]
as our benign program target and inject Flush+Reload and Spectre attacks
within the program’s normal execution. The Flush+Reload attack specifically

83

aims to recover the private key from a vulnerable implementation of the ElGa-
mal encryption algorithm [El Gamal, 1984] used in the cryptographic software
GnuPG version 1.4.13. The core of the attack lies on the modular exponenti-
ation operation, which involves raising a base b to the power e modulo some
modulus m, i.e., calculating be mod m. In the context of ElGamal decryption,
the private key serves as the exponent e. Consequently, the attack aims to
retrieve the exponent.

To create our camouflaged attacks, we inject the Flush+Reload attack and
the Spectre attack into the SPEC CPU 2017 gcc r benchmark. The gcc r
benchmark is a C compiler that tests the optimization and code generation
capabilities of the CPU. Attack injection is done by inserting an injection
code that triggers those attacks to the method which is called most often in
the benchmark application. The attacks are executed with a small probability,
making their executions infrequently interleaved between benign, benchmark
code.

Listing 5.1: Injection Code

void inject_attack () {

if (rand() < PROB)

do_fr_or_spectre ();

}

static inline bitmap_element *

bitmap_find_bit (bitmap head , unsigned int bit)

{

// Inject attack at the beginning of this function.

inject_attack ();

bitmap_element *element;

...

We choose the bitmap find bit function which is called the most number of
times during the benchmark execution, as reported by the profiling tool GProf.
In Listing 5.1 we show the insertion of inject attack function at the very be-
ginning of the bitmap find bit function. Inside inject attack, we set with a low
probability (as listed in Table 5.9) that an actual Flush+Reload and Spectre
attacks are executed. With these, we essentially interleave the execution of
Flush+Reload and Spectre alongside the actual benchmark. Note that the
probability of running the attack code is set to be very small, and therefore,
for the majority of the injected program, its execution largely resembles that
of the actual benchmark.

In order to minimize the impact on the benchmark execution and reduce the
differences in HPC readings (plain benchmark vs. attack-injected benchmark)
caused by the attack activities, we schedule the attack infrequently between
actual benchmark procedures and ensure that the execution of the attack
at each iteration is brief. For Flush+Reload, this results in shorter traces
that do not capture the complete key. Furthermore, since we do not assume

84

Name Classifier Spectre Flush+Reload

POC CMF POC CMF

[Payer, 2016] Threshold 73% 0% 100% 0%
[Depoix and Altmeyer, 2018] NN1 100% 100%* 62% 100%*

HPCache NN1 100% 0% 100% 0%

* Depoix and Altmeyer (2018) detected camouflaged attacks with 100% due
to false positive in the original SPEC CPU 2017 gcc r benchmark
1 Neural-Network

Table 5.6: True positive rate of proof-of-concept (POC) and camouflaged at-
tacks (CMF).

Name Classifier Spectre Flush+Reload

POC CMF POC CMF

[Payer, 2016] Threshold 0% 0% 0% 0%
[Depoix and Altmeyer, 2018] NN 100% 100% 100% 100%
HPCache NN 0% 0% 0% 0%

Table 5.7: False positive rate of proof-of-concept (POC) and camouflaged
attacks (CMF).

any synchronization between our attack and the victim’s ElGamal encryption
algorithm, the traces may begin at any stage of the encryption algorithm. To
address these issues, we use the approach described in Section 4.4.5 to recover
the complete key from partial traces.

Detection Discrepancies Between POC and Camouflaged Attacks

We conduct experiments to gauge the effectiveness of Payer (2016), Depoix
and Altmeyer (2018), and HPCache in detecting attacks, in particular, we test
these detection methods capability in detecting both regular and camouflaged
attacks. We run both Spectre and Flush+Reload attack applications 1000
times and allow the methods a maximum of ten seconds to identify each sce-
nario. If the detection method is able to detect an attack within ten seconds,
we consider it a true positive. Otherwise, we consider it a false negative. We
also test the detection method against benign SPEC CPU 2017 gcc r bench-
mark for 1000 times. If the benchmark is detected as malicious, we consider
this a false positive, otherwise we consider it a true negative.

We summarize the results of our experiments in Table 5.6 and Table 5.7,
which present the true positive rate and false positive of each detection method
in identifying both proof-of-concept and camouflaged Spectre and Flush+

85

Reload attacks.
HPCache achieves perfect accuracy in detecting proof-of-concept Spectre

and Flush+Reload attacks on GnuPG, however it fails to detect any of the
camouflaged Spectre and Flush+Reload attacks.

Depoix and Altmeyer (2018) detect proof-of-concept Spectre and Flush+
Reload attacks with 100% and 62% accuracy respectively, they also detect
100% of the camouflaged as malicious. At the same time, they falsely de-
tect the benchmark without any attack with 100% false positive rate, while
HPCache and Payer (2016) do not falsely detect the benchmark application.

Payer (2016) detect proof-of-concept Spectre and Flush+Reload attacks
with 73% and 100% accuracy respectively, however they fail to detect any of
the camouflaged Spectre and Flush+Reload attacks.

The findings show the discrepancy in accuracy when detecting proof-of-
concept attacks compared to camouflaged attacks, emphasizing the need for
evaluating detection methods against a stronger threat model. It is evident
that simply stating defense against a particular attack without offering details
of its implementation and threat model can lead to an overestimation of the
effectiveness of detection methods.

Re-training Model with Camouflaged Attacks

At first glance, the failure of the detection methods may appear to be caused
by the training data not being well-suited to such camouflaged attacks, and a
simple re-training of the classifier or adjusting threshold values could solve the
problem. As suggested by [Depoix and Altmeyer, 2018], retraining of classifiers
is needed when deploying a detector in a new environment or when supporting
detection of new attacks.

Total number of datapoints 2000

Number of true positives (TP) 1000
Number of false positives (FP) 1000
number of true negatives (TN) 0
number of false negatives (FN) 0

False negative rate 0%
False positive rate 100%

Table 5.8: Accuracy of HPCache when trained with camouflaged attacks la-
beled as malicious.

Our analysis indicates that the root cause of the problem goes beyond
inadequate training data. Retraining HPCache to include camouflaged attacks
proved ineffective, as it resulted in a sharp increase in false positives, resulting
in 100% false positive rate. Table 5.8 shows the result of the detection method
trained with camouflaged attack labeled as malicious.

86

This shows that the detection method in discerning between genuinely
benign program execution and the execution of a benign program injected
with malicious attacks. Since the detection method is unable to distinguish
between the two, it labels genuinely benign applications as malicious. This
is because during the training of the detection method, the training data for
the execution of injected attacks is marked as malicious. Consequently, the
detection method becomes confused and starts classifying benign applications
as malicious.

Cost of Evading Detection

Despite the fact that camouflaging attack behind the execution of a benign
application can be an effective means of sidestepping detection, adversaries
do not employ this strategy without incurring costs. Attackers must expend
valuable CPU time executing decoy code, which, in the case of Flush+Reload,
ultimately does not contribute to their primary goal of attacking cryptographic
keys. The more aggressively an attacker tries to camouflage its attack by
mimicking benign behavior, the less time is available to execute its malicious
payload. Hence, we are interested to determine the extent of the trade-off in
terms of attack time that attackers must accept when executing camouflaged
attacks.

In Table 5.9, we present the results of our experiment on the camouflaged
Flush+Reload attack, including the frequency of attack injection, the time
required for data collection to allow complete key recovery, and detection rate.
The frequency column represents the probability of executing the malicious
attack injection within the bitmap find bit function listed in Listing 5.1.

As the table shows, when the camouflaged attack is executed with an in-
jection probability of one in ten million, the time needed to recover the full
ElGamal key is approximately 18 hours. However, when the attack is run
more aggressively, with an injection probability of one in ten thousand, the
time required to recover the key drops to around six minutes. It is worth not-
ing that even at the highest level of attack injection aggressiveness, none of the
attacks are detected by HPCache (trained with normal benign and malicious
applications, i.e., not trained with injected attacks), which is in contrast to
the detection rate of the Flush+Reload attack without camouflaging, which
is detected 100% of the time. Consequently, attacks with less injection ag-
gressiveness also remains undetected. We correctly recover 436 out of 459 bits
private ElGamal decryption key.

These findings reveal that our camouflaged attack can stealthily extract
secret keys and evade detection methods, even when executed under the most
aggressive settings. This highlights the practicality and feasibility of the attack
for adversaries, underscoring the importance for detection methods to be eval-
uated under a stronger threat model to avoid overestimating their detection
capabilities. In cases where a detection method fails to identify attacks under

87

Frequency Time needed Detected
1/10,000,000 18:13:15 0%
1/1,000,000 1:50:34 0%
1/100,000 00:15:08 0%
1/10,000 00:05:41 0%

Table 5.9: Attack times for different Flush+Reload camouflaging aggressive-
ness.

such a threat model, it is crucial for authors to acknowledge this limitation.
Transparency in acknowledging such limitations is preferable, as it provides
users with valuable information and helps them understand any potential un-
expected compromises they may encounter in their system’s protection.

5.4 Conclusions

Prevention and mitigation techniques against cache side-channel attacks have
been proposed to counter the ever-increasing threat of these attacks. How-
ever, the high cost of hardware solutions has prompted researchers to ex-
plore cheaper software-based alternatives, such as HPC-based attack detection
methods. In this chapter, we reveal that the performance evaluation of current
proposed methods are insufficiently conducted to ensure effective protection
in practical real-world scenarios. We analyzed 48 papers and found that none
of them performed proper evaluation of all the necessary criteria of accuracy,
overhead, detection speed, and threat model evaluation.

We highlight how the inadequate evaluation of these criteria compromises
the protection provided by detection methods. Initially, we show the impor-
tance of conducting accurate evaluation of detection accuracy to ensure effec-
tive protection. Additionally, attention should be given to prevent excessive
false positives, which can render detection methods impractical and diminish
their adoption.

Furthermore, we demonstrate the importance of appropriately evaluating
the overhead. We demonstrate how an improper setup of benchmark appli-
cations can result in unfairly low overhead evaluations. Precise reporting of
overhead is crucial since unexpectedly high overhead can impede the adoption
and practicality of detection methods.

Additionally, we underscore the importance of properly evaluating detec-
tion speed and highlight the discrepancy between the sampling interval of HPC
data collection and the detection speed of a detection method. Providing ac-
curate information about detection speed enables users to make informed deci-
sions about the suitability of detection methods in safeguarding their systems
against specific threats.

Finally, we illustrate how a weak threat model can lead to an overestima-

88

tion of the effectiveness of detection methods. To illustrate this, we performed
an assessment of three cache side-channel attack detection methods. During
our evaluation, we tested their ability to detect proof-of-concept Spectre and
Flush+Reload attacks and found that they successfully identified these attacks
with high accuracy. However, when we subjected the detection methods to our
camouflaged attacks, their effectiveness was significantly compromised. Specif-
ically, our camouflaged Flush+Reload attack successfully extracted keys from
GnuPG, while remaining undetected. Based on these findings, we propose that
authors should acknowledge the limitations of their detection methods when
they fail to identify attacks under a stronger threat model. Transparent disclo-
sure of such limitations is crucial for users to avoid unexpected compromises
in their protection due to a lack of information.

In conclusion, we find that HPC-based cache side-channel attack detection
methods still have a long way to go before they can be considered practical
and widely applicable. We conclude that without addressing the aforemen-
tioned evaluation shortcomings, it remains uncertain whether these detection
methods can truly be deemed effective for deployment in real-world scenarios.

89

Chapter 6

Future Directions

The findings of this thesis provide valuable insights into cache side-channel at-
tacks, their mitigation techniques, and detection methods. However, there are
several avenues for further research and development to enhance the security
of computing devices against such attacks. In this section, we outline potential
future works that could be explored to address the remaining challenges and
limitations identified in our study.

In order to build upon the work presented in Chapter 3, various enhance-
ments can be explored. In that chapter, we show the efficacy of CacheFX for
evaluating cache designs’ security and shared the insightful discoveries made
using CacheFX. Nonetheless, we recognize that the simulation model used in
this chapter is relatively simplistic and could be refined in several ways. First,
integrating cache hierarchies into the analysis would allow for a more thorough
examination of diverse cache designs. Second, the study could benefit from
the inclusion of noise models that account for both systematic and random
noise generated by system activity, resulting in a more realistic assessment
since real cache attacks often involve such noises. Furthermore, considering
the complexity of real-world attacks, it would be advantageous to model more
intricate scenarios in future research. Finally, expanding the scope of the in-
vestigation to encompass cache performance evaluation, in addition to cache
security evaluation, would be a valuable supplement to the existing framework.

The work in Chapter 4 can be enhanced in several ways. In that chapter, we
demonstrate the feasibility of constructing intricate circuits using our specula-
tive gates mainly on Intel architecture. While theoretically possible to create
these circuits on other architectures, such as ARM, this issue remains open
for future research. However, we can highlight some challenges we encoun-
tered when attempting to implement these circuits on the ARM architecture.
The first challenge was the lack of user-accessible high-resolution timers on
the Macbook Air system we performed our experimentation on. A potential
solution could involve using alternative techniques to obtain more accurate
timing measurements, such as setting specific MSRs to enable more precise
timing. Although ARM devices possess these MSRs, we could not use them

90

due to limitations imposed by the operating system (MacOS). An alternative
OS might permit access to this feature. The second issue was the absence of a
precise cache flushing mechanism that operates at cache-line granularity, cru-
cial for achieving high circuit execution rates. In the absence of this feature,
the entire cache must be cleared before each circuit execution. Another op-
tion is to locate an eviction set that maps to the desired cache line. However,
this method lacks precision and may result in the eviction of other critical
cache states. We note that both approaches are relatively time consuming,
and therefore constrain the circuit’s execution rate. A potential solution could
involve modifying the operating system to enable such functionality, but this
remains a topic for future exploration.

In order to enhance the work presented in Chapter 5, several refinements
can be considered. In that chapter, we identify the shortcomings of cache
side-channel attack detection methods and provided experimental evidence
to support our observations. Through experimentation, we demonstrate that
these detection methods cannot effectively differentiate between camouflaged
attacks and benign application execution when malicious behavior is embed-
ded. This conclusion was reached by examining three detection methods and
their inability to accurately identify the attacks. However, this argument
could be further supported with statistical evidence, such as gathering HPC
data and applying equivalence tests such as the two one-sided t-test (TOST)
to compare benign traces and attack-injected benign traces, proving their sim-
ilarity. Additionally, the detection method developed in this chapter could be
improved by incorporating time-series classifiers such as Pearson correlation
and dynamic time warping (DTW).

By addressing these future research directions, the security community can
continue to advance the understanding of cache side-channel attacks and de-
velop more effective mitigation and detection techniques. These efforts will
ultimately contribute to the creation of more secure computing environments,
protecting sensitive data and ensuring the integrity of our digital infrastruc-
ture.

91

Chapter 7

Conclusion

Throughout this thesis, we explore the critical topic of cache side-channel at-
tacks, which pose a significant threat to the confidentiality and integrity of
information in modern computing devices. Our primary focus is on inves-
tigating and evaluating the effectiveness of secure cache designs, mitigation
techniques, and detection methods for these attacks. We demonstrate that
while some progress has been made in securing computing devices against
cache side-channel attacks, there are still numerous challenges and limitations
that need to be addressed.

Our first contribution is a software framework to evaluate the security
of secure cache designs. We show that secure caches can effectively mitigate
eviction-set based attacks but are vulnerable to occupancy-based attacks. This
finding highlights the need for further research into novel cache designs that
provide better resistance to both types of attacks.

Our second contribution is a technique that leverages speculative execu-
tion to bypass low-resolution timers, a common mitigation method in browsers.
Our technique demonstrates that speculative execution not only can be used
for enabling high-resolution cache side-channel attacks on low-resolution timers,
but also possesses Turing-complete capabilities for performing robust calcula-
tions on cache states. By revealing this new attack vector on low-resolution
timers, we aim to raise awareness of this vulnerability and prompt the im-
plementation of appropriate measures to address the issue and enhance the
security of systems in the future.

Our final contribution is a survey of existing hardware performance counter-
based cache side-channel attack detection methods. We highlight limitations
in their evaluation of accuracy, overhead, detection speed, and threat model,
and provided experimental results to support our verdict. Furthermore, we
demonstrate a new camouflaged Flush+Reload that is able to bypass these
detection methods and leak GnuPG’s ElGamal private key within a reason-
able timeframe without triggering any detection. Based on our findings, we
conclude that HPC-based cache side-channel attack detection methods are
still far from being practical and widely applicable. We suggest that unless

92

the evaluation shortcomings we highlighted are addressed, it remains uncer-
tain whether these detection methods can genuinely be considered effective for
real-world deployment.

In conclusion, this thesis provides valuable insights into the current state of
cache side-channel attack research and identifies key areas for future work to
enhance the security of computing devices against these stealthy and hard-to-
detect attacks. By further exploring novel cache designs, improving existing
mitigation techniques, and developing advanced detection methods, the secu-
rity research community can continue to make strides in safeguarding our digi-
tal infrastructure and protecting sensitive information from cache side-channel
attacks.

93

References

Onur Acıiçmez (2007). “Yet Another Microarchitectural Attack: Exploiting
I-Cache.” In: CSAW, pp. 11–18.

Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert (2007). “Predicting
Secret Keys Via Branch Prediction.” In: CT-RSA, pp. 225–242.

Onur Aciiçmez and Jean-Pierre Seifert (2007). “Cheap Hardware Parallelism
Implies Cheap Security.” In: FDTC, pp. 80–91.

Mackenzie Adams (2017). “Big Data and Individual Privacy in the Age of The
Internet of Things.” In: Technology Innovation Management Review 7.4.

Ayush Agarwal et al. (2022). “Spook.js: Attacking Chrome Strict Site Isolation
via Speculative Execution.” In: IEEE SP.

Bilal A. Ahmad (2019). “Detecting Spectre and Meltdown Attacks Using Hard-
ware Performance Counters and Machine Learning.” PhD thesis. University
of the Punjab.

— (2020). “Real Time Detection of Spectre and Meltdown Attacks Using Ma-
chine Learning.” In: arXiv preprint arXiv:2006.01442.

Ayaz Akram et al. (2020). “Meet the Sherlock Holmes’ of Side Channel Leak-
age: A Survey of Cache SCA Detection Techniques.” In: IEEE Access 8,
pp. 70836–70860.

Manaar Alam, Sarani Bhattacharya, and Debdeep Mukhopadhyay (2021).
“Victims Can Be Saviors: A Machine Learning-Based Detection for Micro-
Architectural Side-Channel Attacks.” In: ACM J. Emerg. Technol. Com-
put. Syst. 17.2, 14:1–14:31.

Manaar Alam et al. (2017). “Performance Counters to Rescue: A Machine
Learning Based Safeguard Against Micro-Architectural Side-Channel-Attacks.”
In: IACR Cryptol. ePrint Arch., p. 564.

Abdullah Albalawi, Vassilios G. Vassilakis, and Radu Calinescu (2022). “Pro-
tecting Shared Virtualized Environments Against Cache Side-channel At-
tacks.” In: ICISSP, pp. 507–514.

Alejandro Cabrera Aldaya et al. (2019a). “Cache-Timing Attacks on RSA Key
Generation.” In: CHES 2019.4, pp. 213–242.

Alejandro Cabrera Aldaya et al. (2019b). “Port Contention for Fun and Profit.”
In: IEEE SP, pp. 870–887.

Zirak Allaf, Mo Adda, and Alexander E. Gegov (2019). “Malicious Loop De-
tection Using Support Vector Machine.” In: INISTA, pp. 1–6.

94

Apple (2018). About Speculative Execution Vulnerabilities in Arm-Based and
Intel CPUs. url: https://support.apple.com/en-us/HT208394.

Gilles Barthe et al. (2014). “System-Level non-Interference for Constant-Time
Cryptography.” In: CCS, pp. 1267–1279.

Mohammad-Mahdi Bazm et al. (2018). “Cache-based Side-Channel Attacks
Detection through Intel Cache Monitoring Technology and Hardware Per-
formance Counters.” In: FMEC, pp. 7–12.

Mohammad Behnia et al. (2021). “Speculative Interference Attacks: Breaking
Invisible Speculation Schemes.” In: ASPLOS, pp. 1046–1060. doi: 10 .
1145/3445814.3446708.

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe (2012). “The Security
Impact of a New Cryptographic Library.” In: LATINCRYPT. Vol. 7533.
Springer, pp. 159–176. doi: 10.1007/978-3-642-33481-8_9.

Daniel J. Bernstein et al. (2017). “Sliding Right into Disaster: Left-to-Right
Sliding Windows Leak.” In: CHES, pp. 555–576.

Sarani Bhattacharya and Debdeep Mukhopadhyay (2015). “Who Watches the
Watchmen?: Utilizing Performance Monitors for Compromising Keys of
RSA on Intel Platforms.” In: CHES, pp. 248–266.

Nicholas Biddle, Matthew Gray, and Steven McEachern (2022). “Public Ex-
posure and Responses to Data Breaches in Australia: October 2022.” In.

Emily Booth (2022). “What Comes First, a Breach of The Law or a Data
Breach? In the Wake of Optus, Medibank and Other Recent High-Profile
Data Breaches, What do In-House Lawyers Need to Know About How
to Comply With Privacy Obligations?” In: PRIVACY LAW BULLETIN
19.8, pp. 160–162.

Thomas Bourgeat et al. (2020). “CaSA: End-to-end Quantitative Security
Analysis of Randomly Mapped Caches.” In: MICRO 2020, pp. 1110–1123.

Ferdinand Brasser et al. (2017). “Software Grand Exposure: SGX Cache At-
tacks Are Practical.” In: WOOT.

Samira Briongos et al. (2016). “Modeling Side-Channel Cache Attacks on
AES.” In: Proceedings of the Summer Computer Simulation Conference,
pp. 1–8.

Samira Briongos et al. (2018). “CacheShield: Detecting Cache Attacks through
Self-Observation.” In: CODASPY, pp. 224–235.

Billy Bob Brumley (2015). “Cache Storage Attacks.” In: CT-RSA, pp. 22–34.
Carole Cadwalladr and Emma Graham-Harrison (2018). “Revealed: 50 Mil-

lion Facebook Profiles Harvested for Cambridge Analytica in Major Data
Breach.” In: The guardian 17.1, p. 22.

Claudio Canella et al. (2019a). “A Systematic Evaluation of Transient Execu-
tion Attacks and Defenses.” In: USENIX Security, pp. 249–266.

Claudio Canella et al. (2019b). “Fallout: Leaking Data on Meltdown-resistant
CPUs.” In: CCS, pp. 769–784.

Stefano Carnà et al. (2022). “Fight Hardware with Hardware: System-Wide
Detection and Mitigation of Side-Channel Attacks Using Performance Coun-
ters.” In: Digital Threats: Research and Practice.

95

https://support.apple.com/en-us/HT208394
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1007/978-3-642-33481-8_9

Chandler Carruth (2018). Speculative Load Hardening. https://llvm.org/
docs/SpeculativeLoadHardening.html.

Guoxing Chen et al. (2019). “SgxPectre: Stealing Intel Secrets from SGX En-
claves Via Speculative Execution.” In: IEEE EuroS&P, pp. 142–157.

Marco Chiappetta, Erkay Savas, and Cemal Yilmaz (2016). “Real Time De-
tection of Cache-Based Side-Channel Attacks Using Hardware Performance
Counters.” In: Appl. Soft Comput. 49, pp. 1162–1174.

Jonghyeon Cho et al. (2020). “Real-Time Detection for Cache Side Channel
Attack Using Performance Counter Monitor.” In: Applied Sciences 10.3,
p. 984.

Amit Choudhari, Sylvain Guilley, and Khaled Karray (2022). “SpecDefender:
Transient Execution Attack Defender using Performance Counters.” In:
ASHES, pp. 15–24. doi: 10.1145/3560834.3563830. url: https://doi.
org/10.1145/3560834.3563830.

Munish Chouhan and Hasbullah Halabi (2016). “Adaptive Detection Tech-
nique for Cache-Based Side Channel Attack using Bloom Filter for Secure
Cloud.” In: ICCOINS, pp. 293–297.

Chromium (n.d.). Mitigating Side-Channel Attacks. https://www.chromium.
org/Home/chromium-security/ssca/. Accessed: 2022-01-25.

David Cock et al. (2014). “The Last Mile: An Empirical Study of Timing
Channels on seL4.” In: CCS, pp. 570–581.

Patrick Cronin et al. (2021). “An Exploration of ARM System-Level Cache
and GPU Side Channels.” In: ACSAC, pp. 784–795.

Crozone (2023). Proof of Concept Code for The Spectre CPU Exploit. url:
https://github.com/crozone/SpectrePoC.

Fergus Dall et al. (2018). “CacheQuote: Efficiently Recovering Long-Term Se-
crets of SGX EPID via Cache Attacks.” In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018.2, pp. 171–191.

Sanjeev Das et al. (2019). “SoK: The Challenges, Pitfalls, and Perils of Using
Hardware Performance Counters for Security.” In: IEEE (SP), pp. 20–38.

John Demme and Simha Sethumadhavan (2014). “Side-Channel Vulnerability
Metrics: SVF vs. CSV.” In: Workshop on Duplicating, Deconstructing and
Debunking.

John Demme et al. (2012). “Side-Channel Vulnerability Factor: A Metric for
Measuring Information Leakage.” In: ISCA, pp. 106–117.

— (2013). “A Quantitative, Experimental Approach to Measuring Processor
Side-Channel Security.” In: IEEE Micro 33.3, pp. 68–77.

Shuwen Deng, Wenjie Xiong, and Jakub Szefer (2019). “Analysis of Secure
Caches Using a Three-Step Model for Timing-Based Attacks.” In: J. Hard-
ware and Systems Security 3.4, pp. 397–425.

— (2020). “A Benchmark Suite for Evaluating Caches’ Vulnerability to Tim-
ing Attacks.” In: ASPLOS. ACM, pp. 683–697.

Shuwen Deng et al. (2021). Evaluation of Cache Attacks on ARM Processors
and Secure Caches. arXiv 2106.14054.

96

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3560834.3563830
https://doi.org/10.1145/3560834.3563830
https://doi.org/10.1145/3560834.3563830
https://www.chromium.org/Home/chromium-security/ssca/
https://www.chromium.org/Home/chromium-security/ssca/
https://github.com/crozone/SpectrePoC

Peter J. Denning (May 1968). “The working set model for program behavior.”
In: Communications of the ACM 11.5, pp. 323–333.

Jonas Depoix and Philipp Altmeyer (2018). “Detecting Spectre Attacks by
Identifying Cache Side-Channel Attacks Using Machine Learning.” In: Ad-
vanced Microkernel Operating Systems 75.

Jean-Francois Dhem et al. (2000). “A Practical Implementation of the Timing
Attack.” In: Smart Card Research and Applications: Third International
Conference. Springer, pp. 167–182.

Craig Disselkoen et al. (2017). “Prime+Abort: A Timer-Free High-Precision
L3 Cache Attack using Intel TSX.” In: USENIX Security, pp. 51–67.

Leonid Domnitser, Nael B. Abu-Ghazaleh, and Dmitry Ponomarev (2010). “A
Predictive Model for Cache-Based Side Channels in Multicore and Multi-
threaded Microprocessors.” In: MMM-ACNS, pp. 70–85.

Leonid Domnitser et al. (2012). “Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks.” In: TACO 8.4, 35:1–35:21.

Goran Doychev et al. (2013). “CacheAudit: A Tool for the Static Analysis of
Cache Side Channels.” In: USENIX Security, pp. 431–446.

Swastika Dutta and Sayan Sinha (2019). “Performance Statistics and Learning
Based Detection of Exploitative Speculative Attacks.” In: CF, pp. 206–210.

Catherine Easdon et al. (2022). “Rapid Prototyping for Microarchitectural
Attacks.” In: USENIX Security, pp. 3861–3877.

Taher El Gamal (1984). “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms.” In: CRYPTO, pp. 10–18.

Fürkan Elibol, Uğur Sarac, and Işin Erer (2012). “Realistic Eavesdropping At-
tacks on Computer Displays with Low-Cost and Mobile Receiver System.”
In: European Signal Processing Conference (EUSIPCO). IEEE, pp. 1767–
1771.

Olakunle Elijah et al. (2018). “An Overview of Internet of Things (IoT) and
Data Analytics in Agriculture: Benefits and Challenges.” In: IEEE Internet
of things Journal 5.5, pp. 3758–3773.

Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh (2016).
“Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR.” In:
MICRO, 40:1–40:13.

Dmitry Evtyushkin et al. (2018). “BranchScope: A New Side-Channel Attack
on Directional Branch Predictor.” In: ASPLOS, pp. 693–707.

Dmitry Evtyushkin et al. (2021). “Computing with Time: Microarchitectural
Weird Machines.” In: ASPLOS, pp. 758–772.

Alessandro Fedele and Cristian Roner (2022). “Dangerous Games: A Literature
Review on Cybersecurity Investments.” In: Journal of Economic Surveys
36.1, pp. 157–187.

Yusi Feng et al. (2021). “Constant-Time Loading: Modifying CPU Pipeline to
Defeat Cache Side-Channel Attacks.” In: TrustCom, pp. 1132–1140.

Serena Ferracci (2019). “Detecting Cache-based Side Channel Attacks us-
ing Hardware Performance Counters.” PhD thesis. Sapienza, University
of Rome.

97

Game of Life Wiki (n.d.). url: https://conwaylife.com/wiki/T-tetromino.
Martin Gardner (1970). “Mathematical Games: the Fantastic Combinations of

John Conway’s New Solitaire Game “life”.” In: Sci. Am. 223, pp. 120–123.
Qian Ge, Yuval Yarom, and Gernot Heiser (2018). “No Security Without Time

Protection: We Need a New Hardware-Software Contract.” In: APSys, 1:1–
1:9.

Qian Ge et al. (2019). “Time Protection: The Missing OS Abstraction.” In:
EuroSys, 1:1–1:17.

Daniel Genkin, Adi Shamir, and Eran Tromer (2014). “RSA Key Extrac-
tion via Low-Bandwidth Acoustic Cryptanalysis.” In: CRYPTO. Springer,
pp. 444–461.

Daniel Genkin et al. (2018). “Drive-By Key-Extraction Cache Attacks from
Portable Code.” In: ACNS, pp. 83–102.

Daniel Genkin et al. (2020). “Cache vs. Key-Dependency: Side Channeling
an Implementation of Pilsung.” In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020.1, pp. 231–255.

Daniel Genkin et al. (2022). CacheFX: A Framework for Evaluating Cache
Security. arXiv/2201.11377.

Tara Ghasempouri et al. (2020). “A Security Verification Template to Assess
Cache Architecture Vulnerabilities.” In: DDECS, pp. 1–6.

Google (2021). Spectre. https://leaky.page.
Daniel M. Gordon (1998). “A Survey of Fast Exponentiation Methods.” In:

Journal of Algorithms 27.1, pp. 129 –146.
Ben Gras et al. (2017). “ASLR on the Line: Practical Cache Attacks on the

MMU.” In: NDSS.
Ben Gras et al. (2018). “Translation Leak-Aside Buffer: Defeating Cache Side-

Channel Protections with TLB Attacks.” In: USENIX Security, pp. 955–
972.

Marc Green et al. (2017). “AutoLock: Why Cache Attacks on ARM Are Harder
Than You Think.” In: USENIX Security, pp. 1075–1091.

Nick Gregory and Kannan Harini (2021). “Using Undocumented Hardware
Performance Counters to Detect Spectre-Style Attacks.” In.

Leon Groot Bruinderink et al. (2016). “Flush, Gauss, and Reload - A Cache
Attack on the BLISS Lattice-Based Signature Scheme.” In: CHES, pp. 323–
345.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard (2015). “Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.” In:
USENIX Security, pp. 897–912.

Daniel Gruss et al. (2016). “Flush+Flush: A Fast and Stealthy Cache Attack.”
In: DIMVA, pp. 279–299.

David Gullasch, Endre Bangerter, and Stephan Krenn (2011). “Cache Games
- Bringing Access-Based Cache Attacks on AES to Practice.” In: IEEE SP,
pp. 490–505.

Berk Gülmezoglu et al. (2019a). “FortuneTeller: Predicting Microarchitectural
Attacks via Unsupervised Deep Learning.” In: CoRR abs/1907.03651.

98

https://conwaylife.com/wiki/T-tetromino
https://leaky.page

Berk Gülmezoglu et al. (2019b). “Undermining User Privacy on Mobile Devices
Using AI.” In: AsiaCCS, pp. 214–227.

Noam Hadad and Jonathan Afek (2018). Overcoming (some) Spectre Browser
Mitigations. https : / / alephsecurity . com / 2018 / 06 / 26 / spectre -

browser-query-cache/. Accessed: 2022-01-25.
Ameer Hamza et al. (2021). “Diminisher: A Linux Kernel Based Countermea-

sure for TAA Vulnerability.” In: ESORICS, pp. 477–495.
John Hazen (2018). Mitigating Speculative Execution Side-Channel Attacks

in Microsoft Edge and Internet Explorer. https : / / blogs . windows .

com/msedgedev/2018/01/03/speculative-execution-mitigations-

microsoft-edge-internet-explorer/. Accessed: 2022-01-25.
Zecheng He and Ruby B. Lee (2017). “How Secure is Your Cache Against

Side-Channel Attacks?” In: MICRO, pp. 341–353.
Zhang Hongxin et al. (2009). “Recognition of Electro-Magnetic Leakage Infor-

mation from Computer Radiation with SVM.” In: Computers & Security
28.1-2, pp. 72–76.

Ralf Hund, Carsten Willems, and Thorsten Holz (2013). “Practical Timing
Side Channel Attacks Against Kernel Space ASLR.” In: NDSS.

IBM (2022). Cost of a Data Breach Report 2022. url: https://www.ibm.
com/downloads/cas/3R8N1DZJ.

Mehmet Sinan Inci et al. (2016). “Cache Attacks Enable Bulk Key Recovery
on the Cloud.” In: CHES, pp. 368–388.

Intel (Dec. 2021a). Intel 64 and IA-32 Architectures Software Developer’s Man-
ual Volume 1: Basic Architecture. https://cdrdv2.intel.com/v1/dl/
getContent/671436.

— (2021b). Performance Monitoring Impact of Intel Transactional Synchro-
nization Extension Memory Ordering Issue. https://www.intel.com/
content/dam/support/us/en/documents/processors/Performance-

Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf.
Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar (2015). “S$A:

A Shared Cache Attack That Works across Cores and Defies VM Sandbox-
ing - and Its Application to AES.” In: IEEE SP, pp. 591–604.

Himanshi Jain, D. Anthony Balaraju, and Chester Rebeiro (2019). “Spy Car-
tel: Parallelizing Evict+Time-Based Cache Attacks on Last-Level Caches.”
In: J. Hardw. Syst. Secur. 3.2, pp. 147–163.

Aamer Jaleel et al. (2010). “High Performance Cache Replacement Using Re-
Reference Interval Prediction (RRIP).” In: ISCA. ACM, pp. 60–71. doi:
10.1145/1815961.1815971.

Jianyu Jiang, Claudio Soriente, and Ghassan Karame (2022). “On the Chal-
lenges of Detecting Side-Channel Attacks in SGX.” In: RAID, pp. 86–98.

David A. Kaplan (2023). Optimization and Amplification of Cache Side Chan-
nel Signals. arXiv/2303.00122. AMD. doi: 10.48550/arXiv.2303.00122.

Sowmya Karunakaran et al. (2018). “Data Breaches: User Comprehension,
Expectations, and Concerns with Handling Exposed Data.” In: SOUPS,
pp. 217–234.

99

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.48550/arXiv.2303.00122

Daniel Katzman et al. (2023). “The Gates of Time: Improving Cache Attacks
with Transient Execution.” In: USENIX Security.

Mehmet Kayaalp et al. (2017). “RIC: Relaxed Inclusion Caches for Mitigating
LLC Side-Channel Attacks.” In: DAC, 7:1–7:6.

Khaled N. Khasawneh et al. (2019). “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation.” In: DAC, p. 60.

Hodong Kim, Changhee Hahn, and Junbeom Hur (2021). “Real-Time Detec-
tion of Cache Side-channel Attack Using Non-cache Hardware Events.” In:
ICOIN, pp. 28–31.

Man Ho Kim, Suk Lee, and Kyung Chang Lee (2009). “Kalman Predictive
Redundancy System for Fault Tolerance of Safety-Critical Systems.” In:
IEEE Transactions on Industrial Informatics 6.1, pp. 46–53.

Ofek Kirzner and Adam Morrison (2021). “An Analysis of Speculative Type
Confusion Vulnerabilities in the Wild.” In: USENIX Security, pp. 2399–
2416.

Paul Kocher, Joshua Jaffe, and Benjamin Jun (1999). “Differential Power Anal-
ysis.” In: CRYPTO. Springer, pp. 388–397.

Paul Kocher et al. (2019). “Spectre Attacks: Exploiting Speculative Execu-
tion.” In: IEEE SP, pp. 1–19.

Paul C Kocher (1996). “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and other systems.” In: CRYPTO. Springer, pp. 104–113.

David Kohlbrenner and Hovav Shacham (2016). “Trusted Browsers for Uncer-
tain Times.” In: USENIX Security, pp. 463–480.

Boris Köpf, Laurent Mauborgne, and Mart́ın” Ochoa (2012). “Automatic Quan-
tification of Cache Side-Channels.” In: Computer Aided Verification.

Jakob Koschel et al. (2020). “TagBleed: Breaking KASLR on the Isolated
Kernel Address Space using Tagged TLBs.” In: EuroS&P, pp. 309–321.

Yusuf Kulah et al. (2019). “SpyDetector: An Approach for Detecting Side-
Channel Attacks at Runtime.” In: Int. J. Inf. Sec., pp. 393–422.

David Lantz (2021). Detection of Side-Channel Attacks Targeting Intel SGX.
Judith A Levy and Rita Strombeck (2002). “Health Benefits and Risks of the

Internet.” In: Journal of medical systems 26, pp. 495–510.
Congmiao Li and Jean-Luc Gaudiot (2018). “Online Detection of Spectre At-

tacks Using Microarchitectural Traces from Performance Counters.” In:
SBAC-PAD, pp. 25–28.

— (2019). “Detecting Malicious Attacks Exploiting Hardware Vulnerabilities
Using Performance Counters.” In: COMPSAC, pp. 588–597.

Moritz Lipp (2021). “Exploiting Microarchitectural Optimizations from Soft-
ware.” In: Diss., Graz University of Technology.

Moritz Lipp et al. (2018). “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security, pp. 973–990.

Fangfei Liu et al. (2015). “Last-Level Cache Side-Channel Attacks are Practi-
cal.” In: IEEE SP, pp. 605–622.

Fangfei Liu et al. (2016a). “CATalyst: Defeating Last-Level Cache Side Chan-
nel Attacks in Cloud computing.” In: HPCA, pp. 406–418.

100

Fangfei Liu et al. (2016b). “Newcache: Secure Cache Architecture Thwarting
Cache Side-Channel Attacks.” In: IEEE Micro 36.5, pp. 8–16.

Kevin Loughlin et al. (2021). “Dolma: Securing Speculation with the Principle
of Transient Non-Observability.” In: USENIX Security, pp. 1397–1414.

Giorgi Maisuradze and Christian Rossow (2018). “ret2spec: Speculative Exe-
cution Using Return Stack Buffers.” In: CCS, pp. 2109–2122.

Stefan Mangard (2003). “A Simple Power-Analysis (SPA) Attack on Imple-
mentations of the AES Key Expansion.” In: Information Security and
Cryptology—ICISC 2002: 5th International Conference Seoul, Korea, Novem-
ber 28–29, 2002 Revised Papers 5. Springer, pp. 343–358.

Robert Martin, John Demme, and Simha Sethumadhavan (2012). “Timewarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Mit-
igate Side-Channel Attacks.” In: ISCA, pp. 118–129.

Clémentine Maurice et al. (2015a). “C5: Cross-Cores Cache Covert Channel.”
In: DIMVA, pp. 46–64.

Clémentine Maurice et al. (2015b). “Reverse Engineering Intel Last-Level
Cache Complex Addressing Using Performance Counters.” In: RAID, pp. 48–
65.

John D. McCalpin (2021). Mapping Addresses to L3/CHA Slices in Intel
Processors. Tech. rep. TR-2021-03. ACELab, The University of Texas at
Austin.

Ross McIlroy et al. (2019). Spectre is Here to Stay: An Analysis of Side-
Channels and Speculative Execution. arXiv/1902.05178.

MDN Web Docs (2022). Planned Changes to Shared Memory. https : / /

developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/SharedArrayBuffer/Planned_changes. Accessed: 2022-
01-30.

AhmadMoghimi, Gorka Irazoqui, and Thomas Eisenbarth (2017). “CacheZoom:
How SGX Amplifies the Power of Cache Attacks.” In: CHES, pp. 69–90.

Maria Mushtaq et al. (2018a). “Cache-Based Side-Channel Intrusion Detection
using Hardware Performance Counters.” In: CryptArchi.

Maria Mushtaq et al. (2018b). “Machine Learning for Security: The Case of
Side-Channel Attack Detection at Run-Time.” In: ICECS, pp. 485–488.

Maria Mushtaq et al. (2018c). “NIGHTs-WATCH: A Cache-based Side-Channel
Intrusion Detector Using Hardware Performance Counters.” In: HASP, 1:1–
1:8.

Maria Mushtaq et al. (2018d). “Run-Time Detection of Prime+Probe Side-
Channel Attack on AES Encryption Algorithm.” In: GIIS, pp. 1–5.

Maria Mushtaq et al. (2020). “WHISPER: A Tool for Run-Time Detection of
Side-Channel Attacks.” In: IEEE Access 8, pp. 83871–83900.

Maria Mushtaq et al. (2021). “Transit-Guard: An OS-Based Defense Mecha-
nism Against Transient Execution Attacks.” In: ETS, pp. 1–2.

Maria Mushtaq et al. (2022). “The Kingsguard OS-Level Mitigation Against
Cache Side-Channel Attacks Using Runtime Detection.” In:Ann. des Télécommunications,
pp. 731–747.

101

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes

National Institute of Standards and Technology (2015). FIPS 180-4: Secure
Hash Standard (SHS). https://nvlpubs.nist.gov/nistpubs/fips/
nist.fips.180-4.pdf.

Donald J. Newman (1960). “The Double Dixie Cup Problem.” In: The Amer-
ican Mathematical Monthly 67.1, pp. 58–61.

Noam Nisan and Shimon Schocken (2021). The Elements of Computing Sys-
tems: Building a Modern Computer from First Principles. MIT press. isbn:
9780262539807.

Yossef Oren et al. (2015). “The Spy in the Sandbox: Practical Cache Attacks
in JavaScript and their Implications.” In: CCS, pp. 1406–1418.

Dag Arne Osvik, Adi Shamir, and Eran Tromer (2006). “Cache Attacks and
Countermeasures: The Case of AES.” In: CT-RSA, pp. 1–20.

Samuel O’Malley and Kim-Kwang Raymond Choo (2014). “Bridging the Air
Gap: Inaudible Data Exfiltration by Insiders.” In: Americas Conference on
Information Systems, pp. 7–10.

Dan Page (2002). Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. Cryptology ePrint Archive 2002/169.

Mathias Payer (2016). “HexPADS: A Platform to Detect “Stealth” Attacks.”
In: ESSoS, pp. 138–154.

Colin Percival (2005). “Cache Missing for Fun and Profit.” In: Proceedings of
BSDCan. url: https://www.daemonology.net/papers/htt.pdf.

Cesar Pereida Garćıa and Billy Bob Brumley (2017). “Constant-Time Callees
with Variable-Time Callers.” In: USENIX Security, pp. 83–98.

Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom (2017). “To BLISS-
B or not to be: Attacking strongSwan’s Implementation of Post-Quantum
Signatures.” In: CCS, pp. 1843–1855.

Ravi Pilla, Taiwo Oseni, and Andrew Stranieri (2023). “A Study Into the
Impact of Data Breaches of Electronic Health Records.” In: Proceedings of
the 2023 Australasian Computer Science Week, pp. 252–254.

Nikolaos Foivos Polychronou et al. (2021). “MaDMAN: Detection of Software
Attacks Targeting Hardware Vulnerabilities.” In: DSD, pp. 355–362.

Iván Prada, Francisco D. Igual, and Katzalin Olcoz (2019). “Detecting Time-
Fragmented Cache Attacks Against AES Using Performance Monitoring
Counters.” In: JCC&BD, pp. 3–15.

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede (2021a). “Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention At-
tacks.” In: CCS, pp. 2906–2920.

Antoon Purnal et al. (2021b). “Systematic Analysis of Randomization-based
Protected Cache Architectures.” In: IEEE SP, pp. 987–1002.

Moinuddin K. Qureshi (2018). “CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping.” In: MICRO, pp. 775–
787.

— (2019). “New Attacks and Defense for Encrypted-Address Cache.” In: ISCA,
pp. 360–371.

102

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
https://www.daemonology.net/papers/htt.pdf

Hany Ragab et al. (2021a). “CrossTalk: Speculative Data Leaks Across Cores
Are Real.” In: IEEE S&P, pp. 1852–1867.

Hany Ragab et al. (2021b). “Rage Against the Machine Clear: A Systematic
Analysis of Machine Clears and Their Implications for Transient Execution
Attacks.” In: USENIX Security, pp. 1451–1468.

Thomas Ristenpart et al. (2009). “Hey, You, Get Off of My Cloud: Explor-
ing Information Leakage in Third-Party compute clouds.” In: ACM CCS,
pp. 199–212.

Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix (2021). “SoK: In
Search of Lost Time: A Review of JavaScript Timers in Browsers.” In:
EuroS&P, pp. 472–486. doi: 10.1109/EuroSP51992.2021.00039.

Eyal Ronen et al. (2019). “The 9 Lives of Bleichenbacher’s CAT: New Cache
ATtacks on TLS Implementations.” In: IEEE SP, pp. 435–452.

Stephen Röttger and Artur Janc (2021). A Spectre Proof-of-Concept for A
Spectre-Proof Web. https://security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html.

Majid Sabbagh et al. (2018). “SCADET: A Side-Channel Attack Detection
Tool for Tracking Prime+Probe.” In: ICCAD, p. 107.

Stephan Van Schaik et al. (2019). “RIDL: Rogue In-Flight Data Load.” In:
IEEE S&P, pp. 88–105.

Stephan Van Schaik et al. (2020). SGAxe: How SGX Fails in Practice. https:
//sgaxeattack.com/.

Stephan Van Schaik et al. (2021). “CacheOut: Leaking Data on Intel CPUs
via Cache Evictions.” In: IEEE S&P, pp. 339–354.

David Schor (n.d.). Skylake (client). url: https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(client).

Michael Schwarz et al. (2017). “Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural Attacks in JavaScript.” In: Financial
Cryptography, pp. 247–267.

Michael Schwarz et al. (2019). “ZombieLoad: Cross-Privilege-Boundary Data
Sampling.” In: CCS, pp. 753–768.

Martin Schwarzl et al. (2021). Dynamic Process Isolation. arXiv/2110.04751.
André Seznec (1993). “A Case for Two-Way Skewed-Associative Caches.” In:

ISCA, pp. 169–178.
Jicheng Shi et al. (2011). “Limiting Cache-Based Side-Channel in Multi-Tenant

Cloud Using Dynamic Page Coloring.” In: DSN Workshops, pp. 194–199.
Anatoly Shusterman et al. (2019). “Robust Website Fingerprinting through

the Cache Occupancy Channel.” In: USENIX Security, pp. 639–656.
Anatoly Shusterman et al. (2021a). “Prime+Probe 1, JavaScript 0: Overcom-

ing Browser-based Side-Channel Defenses.” In: USENIX Security, pp. 2863–
2880.

Anatoly Shusterman et al. (2021b). “Website Fingerprinting through the Cache
Occupancy Channel and its Real World Practicality.” In: IEEE Trans. De-
pendable Secur. Comput. 18.5, pp. 2042–2060.

103

https://doi.org/10.1109/EuroSP51992.2021.00039
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://sgaxeattack.com/
https://sgaxeattack.com/
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Florian Sieck et al. (2021). “Util: : Lookup: Exploiting Key Decoding in Cryp-
tographic Libraries.” In: CCS. ACM, pp. 2456–2473.

Nikhilesh Singh and Chester Rebeiro (2021). “LEASH: Enhancing Micro-
Architectural Attack Detection With A Reactive Process Scheduler.” In:
CoRR abs/2109.03998.

SPEC (2020). gcc r SPEC CPU®2017 Benchmark. url: https://www.spec.
org/cpu2017/Docs/benchmarks/502.gcc_r.html.

Julian Stecklina and Thomas Prescher (2018). LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. arXiv/1806.07480.

Charles E Stroud and Ahmed E Barbour (1989). “Design for Testability and
Test Generation for Static Redundancy System Level Fault-Tolerant Cir-
cuits.” In: Proceedings.’Meeting the Tests of Time’., International Test
Conference. IEEE, pp. 812–818.

Qinhan Tan et al. (2020). “PhantomCache: Obfuscating Cache Conflicts with
Localized Randomization.” In: NDSS.

Xiaojie Tao et al. (2021). “SCAMS: A Novel Side-Channel Attack Mitigation
System in IaaS Cloud.” In: MILCOM, pp. 329–334.

Daniel Terpstra et al. (2009). “Collecting Performance Data with PAPI-C.”
In: International Workshop on Parallel Tools for High Performance Com-
puting. Springer, pp. 157–173. doi: 10.1007/978-3-642-11261-4_11.
url: https://doi.org/10.1007/978-3-642-11261-4_11.

Robert M Tomasulo (1967). “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units.” In: IBM Journal of research and Development 11.1,
pp. 25–33.

Zhongkai Tong et al. (2020). “Cache Side-channel Attacks Detection Based on
Machine Learning.” In: TrustCom, pp. 919–926.

Zhongkai Tong et al. (2022). “Attack Detection Based on Machine Learning
Algorithms for Different Variants of Spectre Attacks and Different Melt-
down Attack Implementations.” In: CoRR abs/2208.14062.

Yukiyasu Tsunoo et al. (2002). “Cryptanalysis of Block Ciphers Implemented
on Computers with Cache.” In: ISITA.

Yukiyasu Tsunoo et al. (2003). “Cryptanalysis of DES Implemented on Com-
puters with Cache.” In: CHES, pp. 62–76.

Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede (2008). “Exploiting
Hardware Performance Counters.” In: FDTC, pp. 59–67.

Jo Van Bulck et al. (2018). “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution.” In: USENIX Security,
pp. 991–1008.

Jo Van Bulck et al. (2020). “LVI: Hijacking Transient Execution through Mi-
croarchitectural Load Value Injection.” In: IEEE S&P, pp. 54–72.

Stephan van Schaik et al. (2017). “RevAnC: A Framework for Reverse Engi-
neering Hardware Page Table Caches.” In: EUROSEC, 3:1–3:6.

R. Vanathi and Sp. Chokkalingam (2018). “Cache-Based Side Channel attack
Discovery using Intelligent-Detection Algorithm for Securing the Cloud
Computing Environment.” In.

104

https://www.spec.org/cpu2017/Docs/benchmarks/502.gcc_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/502.gcc_r.html
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11

Pepe Vila, Boris Köpf, and José F. Morales (2019). “Theory and Practice of
Finding Eviction Sets.” In: IEEE SP, pp. 39–54.

Pepe Vila et al. (2020). Flushgeist: Cache Leaks from Beyond the Flush. arXiv
2005.13853.

Krishnaswamy Viswanathan (2014). Disclosure of Hardware Prefetcher Con-
trol on Some Intel® Processors. https://www.intel.com/content/www/
us/en/develop/articles/disclosure-of-hw-prefetcher-control-

on-some-intel-processors.html.
John Von Neumann (2016). “Probabilistic Logics and the Synthesis of Reliable

Organisms from Unreliable Components.” In: Automata Studies.(AM-34),
Volume 34. Princeton University Press, pp. 43–98.

Luke Wagner (2018). Mitigations Landing for New Class of Timing Attack.
https://blog.mozilla.org/security/2018/01/03/mitigations-

landing-new-class-timing-attack/. Accessed: 2022-01-25.
Han Wang et al. (2020a). “Phased-Guard: Multi-Phase Machine Learning

Framework for Detection and Identification of Zero-Day Microarchitectural
Side-Channel Attacks.” In: ICCD, pp. 648–655.

Han Wang et al. (2020b). “SCARF: Detecting Side-Channel Attacks at Real-
time using Low-level Hardware Features.” In: IOLTS, pp. 1–6.

Han Wang et al. (2021a). “Evaluation of Machine Learning-Based Detection
Against Side-Channel Attacks on Autonomous Vehicle.” In: AICAS. IEEE,
pp. 1–4.

Limin Wang, Lei Bu, and Fu Song (2022). “Locality Based Cache Side-Channel
Attack Detection.” In: International Workshop 87.

Limin Wang et al. (2019). “Colored Petri Net Based Cache Side Channel
Vulnerability Evaluation.” In: IEEE Access 7, pp. 169825–169843.

Wubing Wang et al. (2021b). “Specularizer: Detecting Speculative Execution
Attacks via Performance Tracing.” In: DIMVA, pp. 151–172.

Zhenghong Wang and Ruby B. Lee (2007). “New Cache Designs for Thwarting
Software Cache-Based Side Channel Attacks.” In: ISCA, pp. 494–505.

Mario Werner et al. (2019). “ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization.” In: USENIX Security, pp. 675–692.

Spencer Wheatley, Thomas Maillart, and Didier Sornette (2016). “The Ex-
treme Risk of Personal Data Breaches and The Erosion of Privacy.” In:
The European Physical Journal B 89, pp. 1–12.

Mike J. Wilkinson et al. (2017). “Replacing Sanger with Next Generation
Sequencing to improve coverage and quality of reference DNA barcodes for
plants.” In: Scientific Reports 7.1, p. 46040. doi: 10.1038/srep46040.

John C. Wray (1991). “An Analysis of Covert Timing Channels.” In: IEEE
SP, pp. 2–7. doi: 10.1109/RISP.1991.130767.

Minjun Wu et al. (2022). “PREDATOR: A Cache Side-Channel Attack De-
tector Based on Precise Event Monitoring.” In: IEEE SEED, pp. 25–36.

Wenjie Xiong and Jakub Szefer (2020). “Leaking Information through Cache
LRU States.” In: HPCA, pp. 139–152.

105

https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://doi.org/10.1038/srep46040
https://doi.org/10.1109/RISP.1991.130767

Wenjie Xiong and Jakub Szefer (2021). “Survey of Transient Execution Attacks
and Their Mitigations.” In: ACM Comput. Surv. 54.3, 54:1–54:36.

Hui Yan and Chaoyuan Cui (2022). “CacheHawkeye: Detecting Cache Side
Channel Attacks Based on Memory Events.” In: Future Internet 14.1, p. 24.

Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas (2020). “Cache
Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architec-
tures.” In: USENIX Security, pp. 2003–2020.

Mengjia Yan et al. (2017). “Secure Hierarchy-Aware Cache Replacement Pol-
icy (SHARP): Defending Against Cache-Based Side Channel Atacks.” In:
ISCA, pp. 347–360.

Mengjia Yan et al. (2019a). “Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World.” In: IEEE SP, pp. 888–904.

Mengjia Yan et al. (2019b). “SecDir: A Secure Directory to Defeat Directory
Side-Channel Attacks.” In: ISCA, pp. 332–345.

Yuval Yarom (2016). Mastik: A Micro-Architectural Side-Channel Toolkit.
Yuval Yarom and Katrina Falkner (2014). “Flush+Reload: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack.” In: USENIX Security, pp. 719–
732.

Yuval Yarom, Daniel Genkin, and Nadia Heninger (2017). “CacheBleed: a
Timing Attack on OpenSSL Constant-Time RSA.” In: J. Cryptographic
Engineering 7.2, pp. 99–112.

Yuval Yarom et al. (2015). Mapping the Intel Last-Level Cache. IACR Cryp-
tology ePrint Archive, Report 2015/905.

Tianwei Zhang and Ruby B. Lee (2014). “New Models of Cache Architectures
Characterizing Information Leakage from cache side channels.” In: ACSAC.
Ed. by Charles N. Payne Jr. et al., pp. 96–105.

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee (2016). “CloudRadar: A
Real-Time Side-Channel Attack Detection System in Clouds.” In: RAID,
pp. 118–140.

— (2018). “Analyzing Cache Side Channels Using Deep Neural Networks.”
In: ACSAC, pp. 174–186.

Tianwei Zhang et al. (2013). “Side Channel Vulnerability Metrics: The Promise
and the Pitfalls.” In: HASP@ISCA, p. 2.

Yinqian Zhang et al. (2012). “Cross-VM Side Channels and Their Use to
Extract Private Keys.” In: CCS, pp. 305–316.

Zhiyi Zhang and Michael Grabchak (2014). “Nonparametric Estimation of
Küllback-Leibler Divergence.” In: Neural Comput. 26.11, pp. 2570–2593.

Zhiyuan Zhang et al. (2023). “Ultimate SLH: Taking Speculative Load Hard-
ening to the Next Level.” In: USENIX Security.

Beilei Zheng et al. (2022). “CBA-Detector: A Self-Feedback Detector Against
Cache-Based Attacks.” In: IEEE TDSC 19.5, pp. 3231–3243.

Boyou Zhou et al. (2018). “Hardware Performance Counters can Detect Mal-
ware: Myth or Fact?” In: AsiaCCS, pp. 457–468.

106

Appendix A

Chapter 4

A.1 Hyper-tree Amplification Implementation

Because our hyper-tree amplification scheme is aimed for restricted environ-

ments, we needed to address the following main constraints:

1. We do not assume access to low-level instructions that are able to manip-

ulate and set the cache state to uncached directly (e.g., clflush).

2. We have limited amount of memory that we can allocate for the amplifica-

tion process (e.g., total allocated memory is smaller than Y 2·l cache lines

but is larger than the LLC cache).

3. Our access pattern must handle the CPU’s memory prefetcher mechanism.

4. The amplification process does not assume that we know how to find LLC

eviction sets.

To accommodate these constraints, we develop an algorithm that allocates

the addresses for each node in the hyper-tree from a large buffer. Our alloca-

tion algorithm results in an access pattern that fulfills the following conditions:

1. As we build each layer in the sub-tree in a breadth-first order, we ensure

that the addresses we access in layer i + 1 do not evict any addresses in

layer i from the cache. We achieve this through ensuring that all addresses

in odd layers of a tree are mapped to different cache sets from the addresses

in even layers of the tree.

2. As we generate the sub-trees in a depth-first manner, we ensure that none

of the addresses in any of the lower sub-trees can evict addresses in the

bank generated by the top tree.

107

3. Consecutive generations of a fixed number of sub-trees evict all addresses

used in previous sub-trees from the cache with a very high probability.

This self-eviction property allows us to reuse the same addresses for the

next sub-trees we generate and limit the size of the buffer.

4. Any two consecutive accesses to memory are in different memory pages.

This helps us not to trigger the memory prefetcher.

Although we do not know the mapping of the addresses in the buffer to LLC

eviction sets, we use the fact that two addresses can be in the same eviction

set only if their virtual page offset is the same. We look at each memory page

in the buffer and partition possible offsets into three parts. The first part is

used only for addresses in the bank generated by the top tree. The second

part is used only by even layers in the lower sub-tree, and the third part for

the odd layers.

We further assume we have a LLC cache with associativity X, and a total

of Nsets cache sets or Nsets/64 cache sets for each 64-byte offset in a memory

page. For a single offset, if we access C · X · Nsets/64 cache lines for some

small constant C, with very a high probability, we obtain at least X addresses

in each of the eviction sets [Newman, 1960] and evict all addresses previously

accessed in this offset. We arrange the cache access pattern to ensure that for

both odd and even layers of the tree, after a fixed number of sub-tree generated

we access enough addresses in each offset to create such an offset eviction set.

Now we can switch between two groups of addresses. After finish generating

sub-trees using one group, with a very high probability, we evict all of the

addresses in the second group and can reuse them.

A.2 Gates With and Without Branch Train-

ing

Listing A.1: Code for Not Gate (Need training)

_not_gate(int wet_run , void* addr_in , void* addr_out) {

// "Stabilize" the branch predictor.

for (int i = 0; i < 128; i++) {asm volatile("");}

//Open Speculative window on addr_in

if (wet_run == read_addr(addr_in)) {

108

return 0;

}

// Return if we are in dry run/

if (! wet_run) (*@\label{f:NotGate:wet_run}@*)

return 0;

// Slowdown to run longer than a

// speculative window on an address in cache

for (int i = 0; i < SPEC_SLOW_PARAM; i++) {

nop;}

// Access output address only if

// speculative window is long enough

read_addr(addr_out);

return 0;

}

run_not_gate(void* addr_in , void* addr_out) {

int train_in = 1;

//Run two dry runs to train branch prediction.

_not_gate (0, &train_in , addr_out);

_not_gate (0, &train_in , addr_out);

//Run gate

_not_gate (1, addr_in , addr_out);

}

Listing A.2: Code for Not Gate (No training)

_nbt_not_gate(int counter , void* addr_in , void* addr_out) {

//Open Speculative window on switch case

switch ((counter & 7) + *addr_in) {

case 0x0: if(counter == 0x0) return 0; break;

case 0x1: if(counter == 0x1) return 0; break;

case 0x2: if(counter == 0x2) return 0; break;

case 0x3: if(counter == 0x3) return 0; break;

case 0x4: if(counter == 0x4) return 0; break;

case 0x5: if(counter == 0x5) return 0; break;

case 0x6: if(counter == 0x6) return 0; break;

case 0x7: if(counter == 0x7) return 0; break;

}

volatile dummy = 0;

// Slowdown to run longer than a

// speculative window on an address in cache

for (int i = 0; i < SPEC_SLOW_PARAM; i++)

dummy *= dummy;

// Access output address only if

// speculative window is long enough

read_addr(addr_out);

return 0;

}

run_nbt_not_gate(void* addr_in , void* addr_out) {

static int counter = 0;

//Run gate

_nbt_not_gate(counter , addr_in , addr_out);

counter ++;

109

}

A.3 Gate Accuracy

We ran extensive test to validate the design and accuracy of our proposed

gates. We ran the experiments on a Dynabook TECRA A50-EC, with a Intel

Core i5-8250U CPU running Ubuntu 20.04.3 LTS. This CPU’s LFB size and

LLC associativity is 12. In our experiments we fixed the CPU’s frequency

to 1.6 GHz. Table A.1 shows the results of our experiments. “bt” stands

for branch training, “nbt” for no branch training, and “fbd” for fixed branch

delay. Most gates provide accuracy that is very close to 100%. We consider

the output to be correct if all the state of all output addresses is correct.

For each gate, we ran more than 100 000 tests for each of the two possible

output value ′1′ (cached) and ′0′ (uncached). For the NAND and AND gates,

either all inputs were cached or all but one. For the NOR gate, either all

inputs were uncached, or all but one. For the NOT and BUFFER gates, the

single input was either cached or not.

110

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

(p
er
ce
n
t)

(c
y
cl
es
)

(p
er
ce
n
t)

(c
y
cl
es
)

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

b
tN

A
N
D

2 1
99
.9
96

10
0.
00
0

42
0

26
0

b
tN

A
N
D

8 1
97
.6
65

98
.1
16

45
1

27
8

b
tN

A
N
D

1
1

1
92
.7
40

96
.1
12

46
3

29
1

b
tN

A
N
D

1
2

1
96
.6
87

96
.1
64

46
5

29
2

b
tN

A
N
D

2 2
10
0.
00
0

10
0.
00
0

41
7

26
1

b
tN

A
N
D

8 2
99
.9
88

98
.1
01

43
9

28
1

b
tN

A
N
D

1
1

2
99
.9
84

95
.8
01

46
6

29
1

b
tN

A
N
D

1
2

2
99
.9
98

96
.1
11

44
8

28
9

b
tN

A
N
D

2 1
1

99
.2
09

99
.9
96

41
1

24
9

b
tN

A
N
D

8 1
1

98
.0
34

98
.1
04

44
9

27
9

b
tN

A
N
D

1
1

1
1

94
.9
96

95
.6
97

45
6

29
1

b
tN

A
N
D

1
2

1
1

94
.1
94

95
.8
61

46
0

29
3

b
tN

O
R

2 1
99
.9
98

10
0.
00
0

40
9

32
7

b
tN

O
R

8 1
99
.9
82

10
0.
00
0

42
3

40
3

b
tN

O
R

1
1

1
99
.9
60

10
0.
00
0

42
0

40
7

b
tN

O
R

2 2
99
.9
96

10
0.
00
0

42
2

33
9

b
tN

O
R

8 2
99
.9
94

10
0.
00
0

41
5

39
5

b
tN

O
T

1 1
99
.9
98

10
0.
00
0

40
0

24
2

b
tN

O
T

1 2
99
.9
98

10
0.
00
0

41
7

25
9

b
tN

O
T

1 1
1

99
.2
84

10
0.
00
0

40
7

24
8

n
b
tN

A
N
D

2 1
99
.9
52

10
0.
00
0

22
3

64
n
b
tN

A
N
D

8 1
99
.9
74

98
.2
10

25
1

88
n
b
tN

A
N
D

1
1

1
99
.5
16

95
.6
26

26
8

94
n
b
tN

A
N
D

1
2

1
99
.8
61

96
.1
61

28
4

98
n
b
tN

A
N
D

2 2
99
.9
44

10
0.
00
0

23
1

66
n
b
tN

A
N
D

8 2
99
.9
36

98
.2
66

26
9

88
n
b
tN

A
N
D

1
1

2
99
.7
67

95
.7
84

27
8

95
n
b
tN

A
N
D

1
2

2
99
.8
69

95
.9
12

28
3

99
n
b
tN

O
T

1 1
10
0.
00
0

10
0.
00
0

22
0

58
n
b
tN

O
T

1 2
99
.9
98

10
0.
00
0

22
0

59
fb
d
A
N
D

2 1
10
0.
00
0

10
0.
00
0

58
0

58
0

fb
d
A
N
D

8 1
98
.8
88

99
.2
58

58
0

58
0

fb
d
A
N
D

1
1

1
96
.9
95

99
.2
02

58
3

58
0

fb
d
A
N
D

1
2

1
96
.2
04

10
0.
00
0

57
9

57
9

fb
d
A
N
D

2 2
10
0.
00
0

99
.9
98

58
0

58
0

fb
d
A
N
D

8 2
98
.9
46

99
.2
93

57
9

57
9

fb
d
A
N
D

1
1

2
96
.6
88

99
.1
96

57
9

57
9

fb
d
A
N
D

1
2

2
96
.0
66

99
.9
98

58
0

58
0

fb
d
A
N
D

2 1
1

99
.9
96

10
0.
00
0

58
0

58
0

fb
d
A
N
D

8 1
1

98
.9
66

99
.2
83

58
3

57
9

fb
d
A
N
D

1
1

1
1

96
.8
50

99
.2
58

58
0

58
1

fb
d
A
N
D

1
2

1
1

95
.8
86

10
0.
00
0

57
9

57
9

fb
d
B
U
F
F
E
R

1 1
10
0.
00
0

99
.9
98

57
9

57
9

fb
d
B
U
F
F
E
R

1 2
99
.9
98

10
0.
00
0

58
0

58
0

fb
d
B
U
F
F
E
R

1 1
1

99
.9
96

99
.9
98

58
0

58
0

T
ab

le
A
.1
:
A
cc
u
ra
cy

of
ga
te
s
on

In
te
l
C
or
e(
T
M
)
i5
-8
25
0U

111

A.4 Gates on Other Processors

We measure the accuracy of our gates on various devices including 1) HP

laptop with AMD Ryzen 5 3500U running an up-to-date version of WSL and

Windows 11 as shown in Table A.2. Table A.3 shows the accuracy of our gates

on 2) 2020 Macbook Air with Apple M1 running MacOS Monterey 12.2 and

3) Samsung Galaxy S21 with Samsung Exynos 2100 running Android 11.

Some challenges associated with the ARM processors are 1) the lack of

cacheline flushing mechanism. To overcome this problem, we were able to

reliably flush te whole cache by accessing a large number of memory addresses.

This method was sufficient to test the functionality of our gates. However,

a better cache flushing mechanism is needed to build a running circuit to

avoid corrupting wire states and to reduce runtime. 2) The second problem is

the unavailability of high-resolution timer available in userspace. Our testing

discovered that the timestamp counter accessible on both machines are running

approximately 20-50 times slower than the CPU clock at maximum frequency.

This would still allow for differentiating between cache hits and misses, albeit

in lower resolution.

We perform the accuracy measurement of both the Exynos and M1 proces-

sors over a smaller number of experiments, mainly due to the slow throughput

of the tests as a side effect of flushing the whole cache to reset wire states.

Measurements for both processors are collected from 10 000 runs of each gates.

112

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

(p
er
ce
n
t)

(c
y
cl
es
)

(p
er
ce
n
t)

(c
y
cl
es
)

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

b
tN

A
N
D

2 1
99
.6
10

98
.4
47

81
7

52
2

b
tN

A
N
D

8 1
96
.8
21

98
.3
41

85
3

55
5

b
tN

A
N
D

1
1

1
99
.6
13

98
.2
46

82
4

52
4

b
tN

A
N
D

1
2

1
99
.4
59

10
0.
00
0

87
2

57
2

b
tN

A
N
D

2 2
99
.5
11

98
.4
84

83
2

51
7

b
tN

A
N
D

8 2
99
.5
95

98
.3
22

84
8

53
1

b
tN

A
N
D

1
1

2
99
.4
28

98
.3
24

86
3

54
3

b
tN

A
N
D

1
2

2
99
.4
96

10
0.
00
0

85
2

53
8

b
tN

A
N
D

2 1
1

99
.2
97

98
.4
98

93
1

51
3

b
tN

A
N
D

8 1
1

99
.3
89

98
.1
71

95
7

53
5

b
tN

A
N
D

1
1

1
1

99
.4
41

98
.1
78

96
2

54
2

b
tN

A
N
D

1
2

1
1

99
.3
26

99
.9
79

97
8

54
8

b
tN

O
R

2 1
99
.1
19

98
.8
80

81
3

78
5

b
tN

O
R

8 1
97
.4
76

99
.5
08

89
5

86
2

b
tN

O
R

1
1

1
98
.4
58

99
.6
34

93
1

90
9

b
tN

O
R

2 2
96
.7
82

98
.7
04

83
1

78
6

b
tN

O
R

8 2
98
.7
62

99
.4
78

87
9

84
8

b
tN

O
T

1 1
99
.5
89

99
.3
87

82
0

51
6

b
tN

O
T

1 2
99
.4
82

98
.4
35

83
4

51
3

b
tN

O
T

1 1
1

99
.0
88

98
.1
75

94
8

51
5

n
b
tN

A
N
D

2 1
95
.2
01

98
.4
66

48
6

16
7

n
b
tN

A
N
D

8 1
94
.2
80

98
.4
27

52
1

17
9

n
b
tN

A
N
D

1
1

1
96
.9
65

98
.2
18

52
6

17
6

n
b
tN

A
N
D

1
2

1
95
.2
31

99
.9
93

52
9

17
7

n
b
tN

A
N
D

2 2
93
.2
42

98
.6
08

50
8

16
8

n
b
tN

A
N
D

8 2
93
.9
27

98
.3
04

52
9

17
6

n
b
tN

A
N
D

1
1

2
94
.9
56

98
.3
04

54
0

17
3

n
b
tN

A
N
D

1
2

2
94
.0
09

99
.9
93

55
2

18
3

n
b
tN

O
T

1 1
97
.2
33

99
.4
42

46
9

16
5

n
b
tN

O
T

1 2
92
.5
06

98
.5
18

48
9

17
0

fb
d
A
N
D

2 1
99
.2
29

99
.2
14

88
1

86
6

fb
d
A
N
D

8 1
99
.5
26

98
.6
77

89
4

88
3

fb
d
A
N
D

1
1

1
99
.4
21

98
.7
42

90
4

88
3

fb
d
A
N
D

1
2

1
98
.6
93

99
.9
45

90
9

89
2

fb
d
A
N
D

2 2
99
.4
43

99
.0
26

90
4

87
8

fb
d
A
N
D

8 2
99
.1
73

98
.7
83

91
1

90
3

fb
d
A
N
D

1
1

2
99
.3
11

98
.6
01

92
1

89
2

fb
d
A
N
D

1
2

2
99
.4
34

99
.9
39

91
0

88
3

fb
d
A
N
D

2 1
1

99
.1
92

99
.1
10

10
43

88
0

fb
d
A
N
D

8 1
1

99
.0
86

98
.7
26

10
40

87
6

fb
d
A
N
D

1
1

1
1

99
.3
34

98
.7
19

10
18

87
9

fb
d
A
N
D

1
2

1
1

99
.0
05

99
.9
66

10
12

88
3

fb
d
B
U
F
F
E
R

1 1
99
.4
11

99
.4
85

87
1

87
3

fb
d
B
U
F
F
E
R

1 2
99
.2
89

98
.8
57

89
9

86
8

fb
d
B
U
F
F
E
R

1 1
1

99
.4
75

98
.9
08

10
11

88
2

T
ab

le
A
.2
:
A
cc
u
ra
cy

of
ga
te
s
on

A
M
D

R
y
ze
n
5
35
00
U

113

Apple M1 Exynos 2100

Gate Average Median Average Median
(percent) (percent) (percent) (percent)

btNAND2
1 87.19 91.00 91.70 94.00

btNOR2
1 80.01 83.00 81.10 89.00

btNOT 1
1 85.23 86.00 91.47 96.00

Table A.3: Accuracy of gates on Apple M1 and Samsung Exynos 2100

A.5 Number of Cases in Gates Without Branch

Training

As mentioned in Section 4.1.7, we test the accuracy and run time of gates

without branch training using a different number of gates in each experiment.

Recall that our compiler will not generate the required jump table if we use a

small number of cases. To test gates with a small number of cases we complied

all gates with 16 cases but only used the required number of cases during run

time. For example, to test a gate with 2 cases, we incremented our counter

modulo 2, so only the case 0 and 1 were used.

As expected, gates with only 1 case do not work as this case is always used,

and there is no misprediction that can open a speculative window. However,

the rest of the gates seem to have similar accuracy and run time, so we conclude

that the number of cases does not have a significant effect on the gates.

Table A.4 shows the accuracy and run time for nbtNAND12
1 and nbtNOT 1

2

gates with different number of cases on Intel Core(TM) i5-8250U. Note that

the run time is slightly longer than the results in Table A.1 due to the different

code bases required to support the variable number of cases.

114

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

A
cc
u
ra
cy

A
v
g.

ru
n
ti
m
e

(p
er
ce
n
t)

(c
y
cl
es
)

(p
er
ce
n
t)

(c
y
cl
es
)

C
as
es

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

G
at
e

′ 1
′

′ 0
′

′ 1
′

′ 0
′

1
n
b
tN

A
N
D

1
2

1
0.
0%

10
0.
0%

27
8

95
n
b
tN

O
T

1 2
0.
0%

10
0.
0%

21
6

61
2

n
b
tN

A
N
D

1
2

1
99
.4
%

95
.6
%

30
6

12
2

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
2

72
3

n
b
tN

A
N
D

1
2

1
98
.8
%

96
.7
%

30
2

11
9

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
6

78
4

n
b
tN

A
N
D

1
2

1
99
.6
%

97
.0
%

29
9

12
0

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
8

77
5

n
b
tN

A
N
D

1
2

1
99
.7
%

96
.8
%

29
7

11
7

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
7

79
6

n
b
tN

A
N
D

1
2

1
99
.5
%

96
.7
%

30
0

11
7

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

24
0

82
7

n
b
tN

A
N
D

1
2

1
99
.7
%

96
.9
%

30
8

12
0

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
7

81
8

n
b
tN

A
N
D

1
2

1
99
.9
%

96
.7
%

30
5

12
0

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
8

77
9

n
b
tN

A
N
D

1
2

1
99
.6
%

96
.6
%

30
5

11
6

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

24
1

79
10

n
b
tN

A
N
D

1
2

1
99
.8
%

96
.8
%

30
7

11
7

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

24
0

83
11

n
b
tN

A
N
D

1
2

1
99
.8
%

96
.6
%

30
7

11
9

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
9

80
12

n
b
tN

A
N
D

1
2

1
99
.5
%

95
.9
%

30
8

12
4

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
7

81
13

n
b
tN

A
N
D

1
2

1
99
.8
%

96
.1
%

30
5

11
8

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
6

76
14

n
b
tN

A
N
D

1
2

1
92
.4
%

96
.7
%

30
2

11
5

n
b
tN

O
T

1 2
92
.7
%

10
0.
0%

23
9

82
15

n
b
tN

A
N
D

1
2

1
93
.0
%

97
.1
%

29
9

11
5

n
b
tN

O
T

1 2
93
.3
%

10
0.
0%

24
0

81
16

n
b
tN

A
N
D

1
2

1
99
.9
%

96
.8
%

30
3

11
4

n
b
tN

O
T

1 2
10
0.
0%

10
0.
0%

23
7

78

T
ab

le
A
.4
:
A
cc
u
ra
cy

an
d
ru
n
ti
m
e
fo
r
n
b
tN

A
N
D

1
2

1
an

d
n
b
tN

O
T

1 2
ga
te
s
w
it
h
d
iff
er
en
t
n
u
m
b
er

of
ca
se
s
on

In
te
l
C
or
e(
T
M
)

i5
-8
25
0U

115

	Introduction
	Thesis Organization and Contributions

	Background
	Caches
	Cache Side-Channel Attacks
	The Processor Microarchitecture
	Front End
	Execution Engine
	Memory Subsystem

	Branch Prediction
	Transient-Execution Attacks
	Spectre

	A Framework to Evaluate Cache Security
	Background
	Problem Description
	CacheFX Design
	Cache Model
	Attack Model
	Victim Model
	The Attack Controller Function

	Evaluation
	Relative Eviction Entropy
	Eviction-Set Creation
	Eviction-Set Attack
	Cache-Occupancy Attack
	Optimal Eviction-Set Size

	Threats to Validity and Limitations
	Related Works
	Conclusion

	Speculative Execution Against Low-Resolution Timers
	Gates
	Computational Model
	NOT Gate
	More Complex Gates
	Multiple Inputs and Outputs
	Error Correction Gate
	Gates With a Fixed Branch Delay
	Gates Without Branch Training
	Gates Evaluation

	Circuits
	ALU
	SHA-1
	Game of Life

	Probe Amplification
	Single-Gate Amplification
	Probe Time Amplification Tree
	Amplification Hyper-tree
	Experimental Verification
	Eviction Set Creation

	Prime+Store: Fast Attacks with Slow Clocks
	Prime+Store
	Attacking ElGamal
	Trace Acquisition
	Trace Processing
	Key Recovery
	Evaluation

	Related Work
	Conclusions

	Hardware Performance Counters in Cache Attack Detection
	Background
	Hardware Performance Counters.
	HPC-Based Cache-Side Channel Attack Detection Methods

	Survey of HPC-Based Cache Side-Channel Attack Detection Method Evaluation
	Accuracy
	Overhead
	Detection Speed
	Threat Model

	Assessing the Quality of Attack Detection Methods
	Experiment Environment
	Our Method
	Accuracy
	Overhead
	Detection Speed
	Threat Model

	Conclusions

	Future Directions
	Conclusion
	References
	Appendix s:cacheculator
	Hyper-tree Amplification Implementation
	Gates With and Without Branch Training
	Gate Accuracy
	Gates on Other Processors
	Number of Cases in Gates Without Branch Training

