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Precisionmedicine has emerged as an important paradigm in oncology, driven by the
significant heterogeneity of individual patients’ tumour. A key prerequisite for
effective implementation of precision oncology is the development of
companion biomarkers that can predict response to anti-cancer therapies and
guide patient selection for clinical trials and/or treatment. However, reliable
predictive biomarkers are currently lacking for many anti-cancer therapies,
hampering their clinical application. Here, we developed a novel machine
learning-based framework to derive predictive multi-gene biomarker panels and
associated expression signatures that accurately predict cancer drug sensitivity. We
demonstrated the power of the approach by applying it to identify response
biomarker panels for an Hsp90-based therapy in prostate cancer, using
proteomic data profiled from prostate cancer patient-derived explants. Our
approach employs a rational feature section strategy to maximise model
performance, and innovatively utilizes Boolean algebra methods to derive specific
expression signatures of the marker proteins. Given suitable data for model training,
the approach is also applicable to other cancer drug agents in different tumour
settings.
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Introduction

Precision treatment has become an important treatment modality in oncology, where the
molecular makeup of patients’ tumour dictates therapeutic decisions. Identifying predictive
biomarkers of treatment response that aid stratification of patients is critical for effective
deployment of personalized oncology (Barretina et al., 2012; Geeleher et al., 2014; Nalejska et al.,
2014). However, for most existing cancer drug agents including those that have been clinically
approved (Pernas et al., 2018; Zhong et al., 2021), we currently lack companion predictive
biomarkers that can reliably predict treatment response and inform patient selection. Thus,
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identification of predictive response biomarkers for cancer therapies
represents a broad and unmet clinical need.

A major challenge that complicates the identification of response
biomarkers is the multi-factorial determinant of cellular response to
drug treatment, which is further accentuated by the extensive tumour
heterogeneity between patients (Turajlic et al., 2019; Xi et al., 2019; Lee
et al., 2021). Consequently, except for a few notable cases of clinical
success (Quintás-Cardama and Cortes, 2009; Dieci et al., 2020), single-
gene biomarkers are insufficient for predicting treatment responses
and unlikely to be clinically useful (Nguyen et al., 2016). Instead,
multi-gene biomarker panels are more likely to capture the complexity
underpinning tumour drug response, and deliver better prediction
(Zhu et al., 2011; Lima et al., 2019). Biomarker discovery approaches
therefore should explicitly model combinations of relevant marker
genes/proteins.

Computational methods have been key in the derivation of
response biomarkers for cancer therapeutics (Menden et al., 2013;
Tabl et al., 2019; Fortino et al., 2020). A simple but commonly used
approach is to identify genes (or proteins) that are differentially
expressed between treatment-sensitive and -resistant groups
using–omics data such as transcriptomic or proteomic data (Chen
et al., 2016; Nguyen et al., 2018). However, the degree of differential
expression of a gene (based on fold-change and/or p-value) is not a
good indicator of its predictive power towards treatment
responsiveness. Moreover, the lists of DEGs are typically very long,
and without further analysis to prioritize and narrow them down, the
applicability of DEGs-based approaches remains limited. Recently,
more sophisticated approaches such as machine learning (ML) have
been applied to the biomarker discovery domain (Parca et al., 2019;
Tabl et al., 2019; Fortino et al., 2020; Nguyen et al., 2021).

Yet, the ‘curse of dimensionality’ widespread in
pharmacogenomics data - where the number of molecular features
often far exceeds the number of biological samples - necessitates the
development of feature selection strategies for ML algorithms (Huang
et al., 2018; Nguyen et al., 2021; Ogunleye et al., 2022.). For example,
Ballester and others have developed a scheme termed Optimal Model
Complexity (OMC) aimed at identifying a smaller subset of
informative features from the much larger original feature space,
and integrated OMC with various ML algorithms (Bomane et al.,
2019; Naulaerts et al., 2020; Nguyen et al., 2021). OMC works by
ranking the features using the p-values obtained from univariate
statistical tests to correlate between each feature and the
corresponding labels (e.g., IC50 values of treated drugs), thereby
pinpointing the most relevant features prior to model training
(Nguyen et al., 2021). OMC-based XGBoost was employed to
predict cancer drug response using pharmacogenomic data derived
from either cancer cell lines (Yang et al., 2013; Naulaerts et al., 2020),
or cancer patient-derived xenografts (Gao et al., 2015; Nguyen et al.,
2021). In addition, Bomane et al. has also applied OMC to other ML
algorithms, including Random Forest and LightGBM, to predict
response to paclitaxel treatment in breast cancer (Bomane et al.,
2019). On the other hand, Parca et al. (2019) selected potentially
informative molecular genes for predicting cancer drug response by
analysing the variance in gene expression profiles using cell lines based
pharmacogenomic datasets. To predict cancer patient response to
chemotherapeutic drugs, Huang et al. (2018) employed standard
recursive feature elimination method to select for most relevant
features (gene expression data) and applied it on top of support
vector machine algorithm. Other studies utilise knowledge-based

approaches to select likely relevant subsets of features: for example,
by leveraging the protein-protein interaction network surrounding the
drug targets (Kong et al., 2020), or restricting those to genes in the
cancer gene census set (Futreal et al., 2004). However, due to lack of
relevant patient-derived pharmacogenomic data, most ML studies to
date have been performed using panels of cancer cell lines (Barretina
et al., 2012; Garnett et al., 2012; Seashore-Ludlow et al., 2015; Iorio
et al., 2016), which do not necessarily reflect the heterogeneity and
drug sensitivity in human tumours (Borst and Wessels, 2010; Gillet
et al., 2013).

In this study, we have developed a generally applicable machine
learning framework for identification of multi-gene predictive
biomarker panel and associated expression signatures for anti-
cancer drugs. The approach comprises two phases (Figure 1). The
first is to identify optimal biomarker panels that predict drug
response using ML coupled with a new feature selection
strategy. The second is to derive expression signatures of the
identified biomarkers for different response groups utilizing a
new Boolean function minimization-based pipeline. We applied
the new approach to identify predictive biomarker panels and
expression signatures for 17-AAG, a small-molecule inhibitor
targeting heat shock protein 90 (Hsp90), using
pharmacoproteomic data obtained from prostate cancer patient-
derived explants (PDEs) (Cardillo and Ippoliti, 2006). Blocking
Hsp90 is considered as an attractive therapeutic strategy for
prostate cancer. This is because Hsp90 is commonly
overexpressed in prostate cancer compared to normal prostate
cells (Cardillo and Ippoliti, 2006); prostate cancer cells are
selectively sensitive to Hsp90-directed agents; and Hsp90 clients
include the androgen receptor (Trepel et al., 2010), a major driver
of prostate tumorigenesis. However, despite the anti-tumour
activity of Hsp90 inhibitors (e.g., 17-AAG) in preclinical models
(Solit et al., 2002), the lack of companion predictive biomarkers for
rational patient stratification have in part contributed to the poor
response rates to these agents seen in clinical trials (Heath et al.,
2008).

We derived a 16-protein biomarker panel that achieved 92%
response prediction accuracy to 17-AAG. To facilitate clinical
translation, we further reduced this to a compact 5-protein panel
having 80% prediction accuracy, and identified associated expression
signatures. Interrogation of prostate cancer patient data identified
almost half of the patients with matching expression signatures, who
may benefit from 17-AAG treatment. Overall, this work presents a
novel ML framework that aids the discovery of predictive biomarker
panels for improved patient selection and treatment of cancer.

Materials and methods

Patient data analysis

Patient data from two prostate cancer patient cohorts were used to
interrogate the utility of our derived 5-gene biomarker panel as a potential
patient stratification tool. These include the TCGA (Pancancer Atlas,
(Hoadley et al., 2018)) cohort containing 494 patients; and another
independent prostate cancer patient (PNAS 2019, (Abida et al., 2019))
cohort containing 208 patients. Patient-specific transcriptomic data was
downloaded from the cBioPortal for Cancer Genomics database (Cerami
et al., 2012; Gao et al., 2013)) for analysis (see Figure 5E, left panels).
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Patient-derived explant (PDE)

Fresh prostate cancer specimens were obtained with written
informed consent through the Australian Prostate Cancer
BioResource from men undergoing robotic radical prostatectomy at
the Royal Adelaide Hospital and St Andrew’s Hospital (Adelaide,
South Australia). Tumors from two cohorts of patients were used for
this study: a discovery cohort (n = 40, obtained from (Nguyen et al.,
2018)), and a test cohort (n = 7). A single 6 mm core of tissue was
obtained per patient. A longitudinal section of the entire core was
taken for hematoxylin and eosin (H&E) analysis of tumor content. The
remaining tissue was dissected into 1 mm3 pieces and cultured in
triplicate on a presoaked gelatin sponge (Johnson and Johnson, New
Brunswick, NJ) in 24-well plates containing 500 L RPMI 1640 with
10% FBS, 1 antibiotic/antimycotic solution (Sigma, St Louis, MO),
0.01 mg/ml hydrocortisone, 0.01 mg/ml insulin (Sigma) and cultured
for 48 h with 17-AAG (500 nM) or DMSO vehicle alone as previously
described (Nguyen et al., 2018). Mass spectrometry-based proteomic
profiling were performed on the discovery cohort as described in
(Nguyen et al., 2018), and these data were used as inputs (features) for
our ML models. Treatment response was quantified based on the
relative expression of the proliferative marker Ki67, measured post
drug treatment by immunohistochemical (IHC) assay (Nguyen et al.,
2018).

Immunohistochemical staining

Paraffin-embedded tissues were sectioned (2 mM) on Ultraplus
slides prior to H&E staining and IHC detection of Ki67 (Agilent,

M7240 antibody; 1:200 dilution, Santa Clara, CA). IHC staining was
performed and tissues assessed for tumor content and Ki67 positivity
in a blinded fashion as described in (Armstrong et al., 2016).

qRT-PCR

Real-Time Quantitative Reverse Transcription PCR was used to
measure the baseline expression of the five genes identified in our 5-
gene biomarker panel: AQP1, SEPT8, RBM17, TRIM47, and
VPS25 for the testing PDE cohort (Supplementary Table S5). qRT-
PCR was also used to measure the baseline and post-treatment
expression of MKi-67, the gene encoding of the proliferative
marker Ki67. Cultured patient derived explants were placed in a
Precellys Tissue Homogenizer (Bertin instruments) for 2 cycles at
6500rpm. RNA was extracted from tissue homogenate using
miRNeasy mini kit (Qiagen) according to manufactures
instructions. RNA (700 ng) was reversed transcribed to cDNA
using IScript cDNA synthesis kit (Bio-Rad). QRT-PCR was
performed with a 1:10 dilution of cDNA using SYBR green (Bio-
Rad) on a CFX 384 real time system (Bio-Rad). Relative gene
expression was calculated using the comparative ct method and
normalized to internal control genes GAPDH & TUBA1B. Primer
sequences used for PCR are given in Supplementary Table S5.

ML implementation

To classify drug response groups, we developed a multi-class
Support Vector Machine (SVM) and an artificial neural network

FIGURE 1
A general workflow of our two-phase computational framework, which couples supervised machine learning-based biomarker discovery with Boolean
algebra-based signature derivation for the identification of predictive biomarkers.
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(ANN) classifier using the MATLAB function fitcecoc and
patternnet, respectively. For the multi-class SVM model, we set
the “standardized” option to “true,” which normalized the
predictor data and used the option linear as the kernel function
of mSVM. For the ANN model, the predictor data was also
normalized, and the size of the hidden layers was set to 10.
Protein expression data profiled from 40 prostate cancer PDE
samples was used for model training and testing. For training and
testing, the functions’ default settings were used (e.g., scaled
conjugate gradient backpropagation algorithm (Møller, 1993),
implemented using MATLAB function trainscg), with 80%–20%
data split ratio. For the implementation of K-Nearest Neighbor,
Naïve Bayes, Random Forest, and AdaBoost we used Matlab
functions fitcknn (Distance = ‘Euclidean’), fitcnb (Kernel =
‘Normal’), fitrensemble (Method = ‘Bag’), fitcensemble (Method =
‘AdaBoostM2’), respectively. For Deep Forest, we utilized the Matlab
codes developed by (Zhou and Feng, 2017), available at Github at
https://github.com/cnzakimuena/casForest.git.

These data were deposited onto the Mass spectrometry Interactive
Virtual Environment (www.massive.ucsd.edu) with identifier:
MSV000082244 (Nguyen et al., 2018). Model validation was
performed using the function predict for mSVM and sim for ANN,
respectively. ROC curves and confusion table were generated using
functions roc and confusionchart in MATLAB. All the relevant codes
were deposited on Github at https://github.com/
NguyenLabNetworkModeling/GFFS-Biomarker.

Importance score calculation

The importance score (IS) associated with a feature was
calculated through performing a systematic ‘feature drop-out’
analysis. For this, each feature (e.g., DEP) was removed from
the feature list, one at a time, and the effect on model
prediction performance was assessed. IS measures the difference
in prediction accuracy between the ‘drop-out’ and the original
mSVM model, computed as follows:

IS i( ) � −PAi − PAO

PAO
(1)

where PAO and PAi represent the prediction accuracy of the original
mSVM and the “drop-out” model where input feature i is removed
from the feature list. Thus, IS > 0, <0, = 0 indicate the dropped-out
feature has a positive, negative, or no impact on the model predictive
performance, respectively.

Feature selection

Our feature selection strategy GFFS was implemented based on the
IS values, as described in the text. To compare different feature
selection algorithms, we implemented ReliefF using the function
relief and MRMR using the function fscmrmr in MATLAB. For
LASSO regression, we used the function fitcecoc and lasso as a
regularization method. To calculate the importance score of the
Boosting and Bagging ensemble models, we used the functions
predictorImportance and oobPermutedPredictorImportance in
MATLAB. We also implemented RFE and FFE strategies on top of
the SVM.

Explainable ML analyses

SHAP and LIME analyses were implemented using the shapley
and lime functions in MATLAB, and AdaBoostM2 as a ‘black-box
ensemble model’.

Boolean functions and minimization

A Boolean function is an algebraic expression consisting of
n-binary variables, f (x1, x2, . . . , xn). Boolean functions can be
formulated through Sum of Product (SOP) or Product of Sum
(POS). In SOP, different product terms of inputs are summed
together, where the products are logical AND the sum are OR
operators. For example: x′+xy + yz’ where x, y and z are binary
variables and prime (‘) represent complement of a variable, that is if
x = 0 then x′ = 1. On the other hand, in POS products of different
summation terms of inputs are taken, e.g. (x′)·(x + y)·(y + z′). Boolean
functions can be simplified using Boolean laws and theorems (Hanf,
1975; Whitesitt, 2012). The process of simplifying the algebraic
expression of a Boolean function is called ‘minimization’. To
minimize the Boolean function, we employed the Quinine-
MacCluskey algorithm (Jain et al., 2008) implemented in MATLAB
(http://www.tu-harburg.de/~rtsap/#Programs).

Statistical and bioinformatic analysis

Statistical t-tests were performed using GraphPad Prism 9 and
Matlab R2022b. For the KEGG pathway and the GO function analysis
we utilized Enrichr web application (Kuleshov et al., 2016), which can
be accessed at https://maayanlab.cloud/Enrichr/.

Pharmacoproteomic data from prostate
cancer PDEs for machine learning

To recapitulate the in vivo response of prostate cancer to therapies,
we have previously developed an ex vivo culturing model of prostate
cancer tissue that retains the structure and stromal-epithelial
interactions of the tumor microenvironment and provides the level
of disease heterogeneity seen in patients (Centenera et al., 2012). Using
this system, we established in a previous study 40 prostate cancer
patient-derived explants (PDEs) and subjected them to either vehicle
(DMSO) or 17-AAG (500 nM) treatment for 48 h (Figure 2A, see also
Materials and Methods) (Nguyen et al., 2018). Treatment response
was quantified based on the relative expression of the proliferative
marker Ki67, measured post drug treatment by immunohistochemical
assay (Nguyen et al., 2018). In addition, we performed mass
spectrometry-based proteomic profiling and HRM-DIA data
analysis on the corresponding 40 PDEs, which identified the
expression of 3,766 quantifiable proteins prior to 17-AAG
treatment (Nguyen et al., 2018). These datasets will be used in this
study to develop companion biomarkers that accurately predict
response to 17-AAG treatment.

To label the data, the PDE samples were classified into three
distinct response groups based on changes in Ki67 positivity upon
treatment with 17-AAG (Nguyen et al., 2018). These are depicted in
Figure 2B: (i) RD (responders) group containing PDEs having > two-
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fold decrease in Ki67 positivity; (ii) PR (poor responders) group
containing PDEs with < two-fold increase in Ki67 positivity; and
(iii) NR (non-responders) group with Ki67 positivity in between. As a
result, 14 PDEs were classified as RD, 17 as NR and 9 as PR (Figure 2B;
Supplementary Table S2). Of note, the PDE proteomic data has 0.16%
missing (undetectable) values and they were imputed with random
values generated from a uniform distribution between 0 and 1 (1 is the
minimal machine-detectable protein amount) (Wei et al., 2018).
Together, the PDE data consists of protein expression levels of
3,766 proteins serving as ‘input features’ and Ki67-based response
classification serving as ‘labelled outputs’ for development of ML
models.

Results

Supervised ML using differentially expressed
proteins (DEPs) sub-optimally predicts 17-
AAG response

Using expression levels of all the 3,766 proteins as inputs, we first
tested whether unsupervised hierarchical clustering could predict the
PDE response to 17-AAG treatment. While this identified three
distinct clusters, they poorly reflected the labelled response groups
(Figure 2C). Each of the three clusters comprises a good mixture of
RD, NR and PR samples, suggesting that unsupervised clustering
could not reasonably predict response to 17-AAG.

Next, to examine if supervised ML methods would improve the
response prediction, we developed a multi-class support vector
machine (mSVM) model using the protein expression as inputs
and the labelled drug responses (RD, PR, NR) as outputs
(Figure 3A). The dataset was randomly divided into a training

(80%, 32 PDEs) and a test set (20%, 8 PDEs). To avoid biases in
data splitting and mitigate model overfitting, we held out the test set
and trained the model with the training set. This training and test
process were repeated 50 times to obtain reliable and robust
performance evaluation (). We found that the model displayed an
average prediction accuracy of ~39% (Supplementary Figure S1). This
poor performance is somewhat expected because the number of input
variables/features (3,766) greatly exceeds the number of samples (40),
a phenomenon known as ‘curse of dimensionality’ in ML (Hughes,
1968). By this principle, the prediction power of a ML classifier
typically improves as the number of the features gradually
increases, but after an threshold (i.e., optimal) number of features,
adding more starts to diminish the model performance (Hughes,
1968). This is because the high dimensionality of the input data
causes every observation to appear equidistant from the others,
preventing meaningful clustering (Hughes, 1968). Moreover,
irrelevant or partially relevant features can negatively impact model
performance (John et al., 1994).

In order to circumvent the curse of dimensionality, we carried out
a feature selection strategy with the goal to rationally reduce the
number of non-relevant features (Cai et al., 2018; Gopika and Meena
Kowshalya, 2018). As differentially expressed proteins (DEPs) often
provide a good starting point for identifying potential biomarkers
(Chen et al., 2016; Nguyen et al., 2018), we first performed differential
expression analysis between the three response groups using analysis
of variance (ANOVA) tests, and obtained a total of 157 DEPs
(p-value <0.05, Supplementary Table S2). Unsupervised hierarchical
clustering using these DEPs still failed to appropriately cluster the PDE
samples (Supplementary Table S2), confirming the suboptimal
performance of this approach. Next, we retrained the mSVM
model using the 157 DEPs as input features and found that it
displayed an average prediction accuracy of 77% (Figure 3B).

FIGURE 2
Unsupervised clustering of the PDEs’ response to 17-AAG treatment. (A) Pharmacoproteomic data obtained from40 prostate cancer PDEs (Nguyen et al.,
2018). (B) Classification of the PDEs into three response groups based on Ki67 positivity post 17-AAG treatment: RD, PR, and NR with indicated fold-change in
Ki67 positivity (in log2 scale). (C) Unsupervised hierarchical clustering of the PDEs using the proteomic data, which failed to reasonably predict response to
17-AAG.
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Examining the confusion matrix results further showed that while the
precision and sensitivity for the RD and NR groups are around and
above 80%, they are below 55% for the PR group (Figure 3C),
demonstrating the mSVM model did not perform well against the
PR group. Consistently, analysis of the receiver operating
characteristic (ROC) curves confirms that model performance
against the PR group was inferior compared to the other groups
(Figure 3D).

In addition to mSVM, for comparison purposes we also performed
similar analyses using an array of common ML methods, including
artificial neural network (ANN), K-Nearest Neighbor (KNN) (Min-
Ling and Zhi-Hua, 2005; Zhang, 2016), Naive Bayes (Yousef et al.,
2007), Decision Tree (Navada et al., 2011), AdaBoost (Feng et al.,
2020), Random Forest and Deep Forest (Liu et al., 2012; Zhou and
Feng, 2018; Su et al., 2019). The results show that mSVMwas the best-
performing algorithm, followed by ANN and KNN (Supplementary
Figure S3). Like mSVM, the ANN model performed relatively poorly
in predicting the PR group (Supplementary Figure S4). Together, these
results suggest that although supervised ML approaches perform
better than unsupervised hierarchical clustering, using all the DEPs
as features may be inadequate for optimizing predictive power. This
may be due to the noise exhibited by certain DEPs that bear no
relevance in predicting response to 17-AAG, which interferes with the
predictive signals from the relevant features, thereby lowering the
model’s overall predictive performance (Blum and Langley, 1997).

To interrogate how modulation of the input feature space may
influence performance of the mSVM, we systematically increased the

number of features by adding the DEPs one by one to the training set
and re-evaluated the model prediction accuracy. Figure 3E shows an
overall upward trajectory of prediction accuracy as the number of
feature increases. However, there were specific DEPs whose addition
to the feature space actually worsened the model’s predictive power,
evidenced by drops in the trajectory (indicated by red arrows,
Figure 3E). Specifically, 66 of the 157 DEPs contributed positively
to the model performance while 63 contributed negatively, and some
had negligible effects on performance (Figure 3F). These results
support the idea that irrelevant features can negatively impact the
model’s ability to predict drug response, and thus rational selection of
informative features is key in improving predictive performance.

A novel ML framework maximises prediction
accuracy through rational feature selection

To select the most relevant features from the DEPs, we first
performed a systematic feature drop-out analysis. One at a time,
each DEP was removed from the feature space and the effect on
performance of the mSVM was assessed, as compared to the original
model using all the 157 DEPs as features (workflow in Figure 4A). If
removal of a protein attenuates/improves the model prediction
accuracy, then the protein is deemed to have a positive/negative
impact on drug response prediction. We quantified these effects by
defining an ‘importance score’ (IS) as in Eq. 1 that computes the
difference in prediction accuracy between the drop-out and original

FIGURE 3
Machine learning-based prediction of response to 17-AAG. (A) Amachine learning pipeline utilizing the repeated holdoutmethod for training and testing
with anmSVMmodel (seeMaterials andMethods). (B)Distribution of prediction accuracy performance across 50model replicate runs. (C) Performance of the
mSVM classifier using all 157 DEPs as input features, summarized in a confusion matrix. (D) Receiver operating characteristic (ROC) curves of the mSVM
classifier for the RD, NR and PR response groups. (E) Impact of input feature space modulation on model prediction accuracy. Adding specific input
features may worsen model performance, indicated by the red arrows. (F) Difference in the prediction accuracy when a new input feature is added to the
training data.
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mSVM models. Thus, IS > 0, <0, and = 0 indicates proteins having
positive-impact, negative-impact and no-impact on drug response
prediction, respectively (Materials and Methods). Figure 4B displays a
sorted list of the 157 DEPs according to the respective IS values.
Interestingly, a large fraction (48%) of the DEPs had a negative impact
on drug response prediction (Figure 4B), suggesting inclusion of these
in the feature space may diminish the model performance. In contrast,
more than half of the DEPs had a positive impact on the drug response
prediction (Figure 4B), with the top 20 proteins shown in Figure 4C.

We reasoned that the positive-impact DEPs would represent good
candidate features for maximizing model prediction. We next
introduced a new algorithm, termed greedy forward feature
selection (GFFS), which aimed to select the optimal combination of
features from the pool of positive-impact DEPs. A schematic of the
algorithm is given in Figure 4D. First, we trained the mSVM using the
positive-impact DEP having the highest IS (i.e., SEPT8; Figure 4E) as
the single input variable, employing a similar training/validation data
splitting scheme as in Section 3.2. Unsurprisingly, this single-feature

FIGURE 4
Rationalized feature selection optimizes ML model’s prediction accuracy. (A) A schematic of the drop-out analysis that enables calculation of the
importance score (IS) for each feature. (B) Importance score values of all the DEPs, sorted in a descending order. IS > 0, <0, and = 0 indicates proteins having
negative-impact, positive-impact and no-impact on drug response prediction, respectively. (C) Top 20 of 157 DEPs having the highest importance score
values. (D) A schematic workflow of our IS-based feature selection strategy. (E) Gradual incorporation of 16 proteins that ultimately leads to optimal
prediction accuracy of drug response. (F) Heatmap displaying the expression data of the identified 16 marker proteins across the discovery PDE cohort. (G)
Distribution of prediction accuracy performance across 50 model replicate runs. (H) Performance of the optimal mSVM classifier using the 16 DEPs as input
features, summarized in a confusion matrix. (I) ROC curves of the mSVM classifier for the RD, NR and PR response groups. (J) Comparison of performance
between the optimal mSVM model and models using 16 randomly selected features (from 157 DEPs); **** p-value <0.0001 (unpaired t-test, n = 1,000). (K)
Tally of possible combinations of proteins with increasing size ranging from 1 to 16. (L) Prediction accuracy significantly varies depending on the combination
specification of input features. (M) Performance comparison between the optimal model and those with randomly selected features (shuffled from the
16 identified biomarkers), displayed for increasing panel size.
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model achieved ~50% accuracy (Figure 4E), much worse compared to
the model using all 157 DEPs. Next, we retrained the model by adding
the secondmost influential DEP (i.e. FDFT1 having the second highest
IS) to the feature space and re-evaluated the model performance.
Because the new model had a better overall prediction accuracy,
FDFT1 was kept as an input feature (Figure 4E). This process was
repeated by gradually adding the next most important DEP to the
feature space: if the new DEP improves prediction accuracy then it is
kept; however, if it attenuates (or does not affect) accuracy, the protein
is skipped and we move to the next positive-impact DEP. This was
done until all the positive-impact DEPs were considered and the
model performance did not further increase (Figure 4D). As a result,
we determined an optimal feature space containing 16 DEPs, depicted
in Figure 4E. The corresponding mSVM model achieved an overall
prediction accuracy of 92% (Figures 4E–G), which was significantly
superior to the initial model using all the 157 DEPs (77%, Figure 3B).
This was further confirmed by examining the confusion matrix
(Figure 4H) and the ROC curves (Figure 4I), indicating
significantly improved prediction of 17-AGG response within each
of the response groups.

A key attribute of our ML-based algorithm is the rationalized
selection of features guided by prior IS-based ranking. To determine if
this was critical in enhancing prediction accuracy, we assessed the
performance of mSVM models using randomly selected features
instead, and replicated this 1,000 times. The result shows that the
model with feature selection consistently and significantly
outperformed the random-feature models (Figure 4J), suggesting
our IS-based feature selection strategy was key in boosting
predictive power.

Next, we comparatively evaluated the performance of our IS-based
GFFS approach with a range of available feature selection algorithms,
including filter (ReliefF; minimum redundancy maximum relevance
(MRMR)) (Ding and Peng, 2005; Stief et al., 2018), wrapper [recursive
feature elimination (RFE); forward feature selection (FFS)] (Aha and
Bankert, 1996; Tang et al., 2007; Marcano-Cedeño et al., 2010; Zhang
et al., 2013) and embedded (boosting; bagging; least absolute shrinkage
and selection operator (LASSO)) methods (Vasquez et al., 2016;
Alsahaf et al., 2022) (Supplementary Figure S5A). GFFS showed
significantly better predictive accuracy than all of the tested
methods except for RFE, with which GFFS had comparable
performance (Supplementary Figure S5A). Interestingly, the top
three performers were GFFS, RFE, and FFS, highlighting the
importance of rational feature selection in this context. We note
that the maximal performance of FFS and RFE was achieved with
41 and 28 features, respectively (Supplementary Figures S5C, D),
which were higher than GFFS, but at the cost of much larger
number of features. Importantly, among of the top three methods,
GFFS’s running time scales linearly and was significantly better than
RFE and FFS (Supplementary Figure S5B). Thus overall, GFFS-based
feature selection achieved a strong and balanced performance in terms
of predictive accuracy and computational cost.

Identification of a compact biomarker panel
for 17-AAG treatment response

There is a general trade-off between the size of a biomarker panel
and its practical applicability. A panel having more relevant proteins
tends to deliver enhanced prediction, but this comes at a cost of having

to detect more readouts from patients–a non-trivial task for poorly
characterized biomarkers. In order to facilitate translation of the
predictive biomarkers for 17-AAG-based therapy, here we aim to
derive a more compact-size panel from the 16 identified marker
proteins while maintaining high predictive performance. To this
end, we considered all possible ways to combine the marker
proteins into panels with increasing size, ranging from 1 to 16
(Figure 4K). As such, there are 16 possible panels with size 1;
120 panels with size 2; 4368 panels with size 5; and so on. We
then evaluated the predictive performance of the mSVM model
using each panel as input features. The results, displayed in
Figure 4L, show that for each panel size the prediction accuracy
varied significantly depending on the specific composition of the
feature proteins (Supplementary Table S3). For instance, among
4368 5-protein panels, the one comprising AQP1, SEPT8, RBM17,
TRIM47, and VPS25 exhibits the highest prediction accuracy of 80%
(Figure 4L–M). Interestingly, this panel significantly outperformed the
5-protein panel derived from ranked IS score (accuracy 60%,
Figure 4M), and panels derived from random shuffling (accuracy
61%, Figure 4M). Moreover, this 5-protein panel also outclassed the
model using all the 157 DEPs (accuracy 77%, Figure 3B). Taken
together, given its small size yet excellent predictive power, we
concluded [AQP1, SEPT8, RBM17, TRIM47, VPS25] as a novel,
practical biomarker panel for predicting response to 17-AAG
treatment in prostate cancer.

Machine learning models have traditionally been treated as “black
boxes”. As ML applications become more widespread, it is important
to better interpret ML-based predictions and decision-making
processes. Largely, the model interpretability (or explainability)
methods can be categorized in two types: (i) global and (ii) local
approaches (Ribeiro et al., 2016; Lundberg and Lee, 2017; Linardatos
et al., 2021). Global explainability approaches explain the model’s
behavior as a whole (across whole samples). For example, which
features in the model contribute to the model’s prediction
performance and how important they are. In Figure 4C, we have
analysed the importance of individual features through performing a
systematic “feature drop-out” analysis, which exactly corresponds to a
global explainability method (Guidotti et al., 2019). On the other
hands, local explainability approaches explain why and how the model
make a particular decision for a particular sample (Guidotti et al.,
2019). Among these, LIME (Local Interpretable Model-agnostic
Explanations; (Ribeiro et al., 2016; Lundberg and Lee, 2017)] and
SHAP (SHapley Additive exPlanations, (Lundberg and Lee, 2017;
Linardatos et al., 2020)] have emerged as state-of-the-art
approaches. For example, Gardiner et al. have recently applied
SHAP to infer important features associated with drug responses
(5-ASA, Prednisolone, BIRB796) for patients having inflammatory
bowel diseases (Gardiner et al., 2022).

Thus, to examine the relative contribution of each feature
(protein) to the prediction of drug response (RD, NR, and PR
classification), we implemented SHAP (Lundberg and Lee, 2017;
Linardatos et al., 2021) and LIME (Ribeiro et al., 2016; Lundberg
and Lee, 2017) analyses. TRIM47, RBM17 and AQP1 were found to
positively contribute to model prediction of the RD class; while the
VPS25 and SEPT8 contribute negatively instead to the model
prediction or not strong enough (Supplementary Figure S7A); The
SHAP results were consistent with the importance score of LIME. On
the other hand, RBM17 and AQP1 both have a positive impact on NR
and PR classes but the contribution of TRIM47 is less significant for

Frontiers in Molecular Biosciences frontiersin.org08

Shin et al. 10.3389/fmolb.2023.1094321

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1094321


NR. The correlation analysis of features (proteins) with the Shapley
values revealed that the AQP1 expression has a negative impact on the
NR prediction but a positive impact on PR (Supplementary Table S4).
VPS25 and SEPT8 showed a strong correlation with RD and NR
although they did not contribute to the model prediction of target
variables. Overall, these analyses helped enhance the interpretability of
our ML model predictions.

A Boolean algebra-based pipeline to derive
biomarker expression signatures

Once the biomarkers have been identified, it is important to define
specific expression signatures of these markers that could then be
utilized for patient stratification. For this, analyses including t-test and
boxplot are often employed to deduce the differential expression

FIGURE 5
A Boolean algebra-based pipeline for derivation of biomarker expression signatures. (A) A heatmap displaying protein expression levels of the fivemarker
proteins in our identified compact panel across the discovery PDE cohort. (B) Traditional statistical analyses using t-test and boxplot to compare expression
levels of individual marker proteins between the response groups (* indicates p-value <0.05, ** <0.01 (unpaired t-test), a red sign indicates outlier data). (C) A
multi-step Boolean algebra-based pipeline designed to identify combinatorial expression signatures of the biomarkers for each response group. Step 1:
Discretization of protein expression levels into binary values. Step 2: Generation of truth table for binarized expression levels that are then transformed into
Boolean expressions. Step 3: Minimization of Boolean functions using Quine-McCluskey algorithm, which converts it into simpler, more compact forms. Step
4: Identification of expression signatures of biomarkers. (D) Left: the original expression levels and corresponding binarized values of the five markers, shown
for the RD group (left panels). Right: List of six identified expression signatures (ID 1–6) of the marker proteins, shown for the RD group. Similar data for the NR
and PR groups is shown in Supplementary Figure S6. (E) Predictive stratification of prostate cancer patients, using two patient cohorts from the cBioPortal
(Materials and Methods). Left: the original gene expression levels and corresponding binarized values of the five markers, shown for all the patients in each
cohort. Right: number of patients identified with matching RD-specific expression signatures shown in Figure 5D.
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patterns of the marker proteins across the response groups. For
example, the 17-AAG responsive PDEs (RD group) displayed
significantly higher VPS25 expression, while those in the PR group
have significantly lower TRIM47 expression compared to the other
groups (Figures 5A, B).While useful, these approaches do not consider
the expression heterogeneity within each response group (evidenced in
Figure 5A) and possible hidden interlinks between the markers. Thus,
derivation of biomarker signatures that encapsulate the response
group-specific heterogeneity and possible functional links between
the markers is important.

Here, we propose a new pipeline to identify combinatorial
expression signatures for biomarkers characterizing individual
response group utilizing methods from Boolean algebra. The
pipeline consists of 4 steps and is illustrated in Figure 5C for
example proteins A, B, and C. Step 1 discretizes the continuous
expression data into binary values where 1 and 0 indicate high and
low expression, respectively. This is done by normalizing the protein
expression data to its median value across the samples: normalized
value >1 or <1 will be converted to 1 or 0, respectively.

In step 2, all combinatorial binary expression patterns of the
proteins are identified and summarized in a ‘truth’ table, which are
then converted into logical expressions of the proteins (Figure 5C).
Then, the logical expression of the individual patterns are summed
together in a Sum-of-Products (SOP) form using the Boolean operator
(+) (Materials and Methods) (Huntington, 1933). In step 3, the
summed logical expression is reduced to a minimal form without
losing information using a Boolean function minimization algorithm,
the Quine-McCluskey algorithm (Jain et al., 2008). Finally, in step
4 the resulting reduced logical expression is converted back into binary
expression patterns of the biomarkers. In the example in Figure 5C, we
started with four expression patterns involving 3 proteins (A′B′C +
A′BC + ABC’ + ABC) that were simplified into two patterns (A′C +
AB) involving only 2 proteins (Hanf, 1975; Whitesitt, 2012) (see
Figure 5C). Here, the prime (‘) sign indicates the respective protein
should be low, and high otherwise.

Next, we applied the new pipeline to our previously identified 5-
protein biomarker panel (Figure 5A). As a result, we identified six, five
and four specific expression signatures of the biomarkers for the RD,NR
and PR response groups, respectively (Figure 5D; Supplementary Figure
S6). As an example, Figure 5D displays the six expression signatures for
the RD group. Among these, signature ID 6, characterized by
concomitant high expression of SEPT8, TRIM47, VPS25 while the
expression of AQP1 and RBM17 could be either high or low, represents
the most common signature among the RD-group PDEs (~49.8%). The
next most common signature, signature ID 4, is however characterized
by high expression of AQP1, SEPT8, TRIM47 coupled with low
expression of RBM17, while VPS25 expression could be high or low
(Figure 5D). The biomarker signatures identified for the NR and PR
groups are given in Supplementary Figure S6. In summary, our new
Boolean logics-based pipeline has allowed us to identify specific
expression signatures of the biomarkers that could be utilized to
stratify patients for 17-AAG response.

Validation of the biomarker signatures using
independent PDE and patient cohorts

To demonstrate the utility of our derived biomarker signatures as a
tool for patient stratification, we interrogated whether there are

patients with matching 17-AAG-responsive signatures using
publicly available prostate cancer patient datasets. To this end, two
prostate cancer patient cohorts were obtained from the cBioPortal for
Cancer Genomics database for analysis (see Materials and Methods).
Patient-specific gene expression data of the 5 proteins in our
biomarker panel were binarized as in step 1 of our pipeline
(Figure 5E, left panels). Comparing the expression patterns of these
proteins in the patients with the six identified signatures for the RD
group showed that in both cohorts, a substantial fraction of the
patients displays matching expression signatures (Figure 5E, right).
Consistent with our PDE-based prediction, signature ID 6, the most
frequent signature of the RD group (Figure 5D), was actually found in
more patients than any other RD-specific signatures. Together, these
findings support the utility of the derived biomarker signatures in
identifying subsets of patients with specific drug response behaviour.

To further validate the predictive power of our identified
biomarker signatures, we generated an independent cohort of
prostate cancer patient derived explants (n = 7). Tissues were
collected, cultured and analysed as previously described for our
discovery cohort (Nguyen et al., 2018). These PDEs were treated
with DMSO and 500 nM 17-AAG for 48 h. Treatment response to 17-
AAG was assessed based on changes in Ki-67 positivity compared to
vehicle treatment, detected using immunohistochemical staining and
using similar cut-offs as done in the discovery cohort (Figure 6A,
Materials and Methods). Baseline expression levels of the five
biomarker genes AQP1, SEPT8, RBM17, TRIM47 and VPS25 were
measured using qRT-PCR for each PDE under DMSO control
(Figure 6B). Then, for each PDE we predicted the drug response
using the expression signatures of the biomarkers identified using the
Boolean optimization-based pipeline for the different response classes
(Figure 5D; Supplementary Figure S6). Following the pipeline, for each
PDE we first binarized the gene expression levels of the biomarkers
into low or high expression, as shown in Figure 6C. The biomarker
expression patterns for each PDE were then mapped to the identified
signatures for the three response groups. For example, the expression
pattern for PDE X34393R matches with Signature ID 5 of the RD
group, which correctly predicted this PDE to be responsive to 17-
AAG. On the other hand, PDE X34380R matches with Signature
ID4 of the NR group, thus correctly predicting this PDE to be non-
responsive to the drug. Overall, cross-validating model predictions
with measured drug response, our identified signatures correctly
predicted response classification for the responsive and non-
responsive PDEs, but did not correctly predict the poor-responders,
achieving an overall >71% accuracy on this independent dataset.
Despite the small size of the validation cohort, this independent
validation analysis has provided a proof-of-concept demonstrating
the potential of our predictive pipeline. We envisage as more similar
data become available in the future, further validation will be done to
strengthen the validity of the identified biomarkers.

Discussion

Precision oncology embraces cancer treatment strategies that are
based on the distinct molecular characteristics of a tumour. However,
lack of predictive companion biomarkers that help forecast patient-
specific treatment response remains a barrier to widespread adoption
of this paradigm (Mateo et al., 2022; Pich et al., 2022). In this study, we
have developed a novel computational framework that couples
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supervised machine learning-based biomarker discovery with Boolean
algebra-based signature derivation, in order to identify predictive
multi-gene biomarker signatures for cancer therapies (Figure 1).
We demonstrated the utility of the approach by applying it to the
HSP90 inhibitor 17-AAG in the context of prostate cancer. The
approach is however broadly applicable, and given suitable data,
can be deployed for different drugs in various tumour types.

The new framework possesses two salient distinguishing properties.
First, it rationalizes the most predictive input features based on an
importance score that measures how each feature influences the model’s
predictive performance. Only features that contribute positively to the
classification accuracy are retained in the feature space. These are then
ranked by their IS values, and increasingly combined one-by-one to
identify the optimal combinatorial panel of features that delivers the
maximal predictive accuracy. Second, once the biomarkers have been
identified, our framework innovatively utilizes Boolean algebra and
function minimization [Quine-McCluskey algorithm (Quine, 1955;
McCluskey, 1956)] techniques to deduce common expression
patterns of the response-specific biomarkers. Because Quine-
McCluskey algorithm enables the minimal form of a Boolean
function to be reached, our framework helps derive the most
compact response group-specific biomarker expression patterns.
These easily-interpretable patterns thus constitute biomarker
signatures that ultimately allows predictive selection of patient
subgroups having a particular drug response, an ability invaluable
for precision clinical trials and treatment.

Boolean function minimization algorithms aim to identify the core
logics of the underlying phenomenon and are routinely used in

engineering fields, such as to design digital logic circuits
(Huntington, 1933; Jain et al., 2008). We have previously applied
Boolean function minimization to identify core combinatorial
feedback loop structures that generate switch-like behavior of
E-cadherin (Shin et al., 2010). To our best knowledge, the current
study represents the first attempt to apply Boolean function
minimization to the problem of biomarker signature derivation.
Nevertheless, Boolean logics-based approaches have been used to
predict drug response. For example, the LOBICO (Logic
Optimization for Binary Input to Continuous Output) modelling
framework was developed to explain drug response in cancer cell
lines based on binary mutation data of 60 selected genes (Knijnenburg
et al., 2016). Using integer linear programming, LOBICO aims to
identify the logic combinations of mutations that best explain the
response of cancer cell lines to cancer drug agents. In a similar vein,
MOCA (Multivariate Organization of Combinatorial Alterations) has
been applied to predict drug response by inferring logic combinations
of genomic input features (Masica and Karchin, 2013). Overall, our
framework represents a novel effort in repurposing Boolean function
minimization techniques for derivation of drug-response biomarker
signatures.

The results in this study emphasize the importance of rational
feature selection in optimizing drug response prediction accuracy by
machine learning classifiers. While our GFFS approach is similar to
FFS in the sense that it starts with no feature, it differs in two key
aspects. Firstly, it pre-determines the relative importance of the input
features by calculating the IS beforehand via comparison of model
performance, and it does this only once (Figures 4A–C). This is

FIGURE 6
Validation of biomarker signatures. (A)Drug responsiveness of the seven PDEs to 17-AAG treatment based on fold change inMKi-67 expression levels by
the drug treatment relative to DMSO, measured by IHC. PDEs having > two-fold decrease in Ki-67 levels in response to the drug treatment compared to
vehicle were defined as RD; having < two-fold increase as PR); otherwise, NR as in Figure 2B. (B) mRNA expression levels of the 5 genes in our identified
compact biomarker panelsmeasured by qRT-PCR for each PDE sample. ThemRNA expression was normalized to GAPDH and TUBA1B. (C) Prediction of
drug response based on the identified biomarker expression signatures, compared against Ki67-based response classification. The expression levels of the
marker genes were binarized based on the median values by applying 30% and 70% quantile cut-offs: 0 indicates low expression (<30% quantile) and
1 indicates high expression (>70% quantile).
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opposed to the classical implementation of FFS, where the relative
importance ranking of the remaining features is repeatedly evaluated
at each iteration. Secondly, GFFS goes through the pre-ranked
features, adds each feature and keeps the feature only if it improves
the model performance; otherwise, the feature is dropped and the
algorithm moves on to the next feature in the ranked list. Again, this
differs from the classical FFS, where addition of a new best feature
(n+1 features) at the current round may reduce the overall model
performance as compared to the optimal model at the previous round
(n features), as shown in Fig. S5C. This difference stems from the fact
that in FFS-based implementation, a specific number of features is
typically specified prior to model running whereas GFFS does not
require such specification. Another consequential difference is that the
model performance increases monotonically as more features are
added with our approach (Figure 4E), while for FFS the model
performance could exhibit a drop as new features are added
(Supplementary Figure S5C). Importantly, because of the pre-
determined feature ranking, GFFS is computationally much more
efficient than FFS and RF. In Big-O notation, our algorithm has O (2n)
complexity compared to O (n (n+1)/2) complexity displayed by RFE/
FFS (see Supplementary Figure S5B). This superiority in
computational cost makes GFFS highly scalable compared to other
feature selection techniques, particularly when the number of input
features to be assessed is in the range of thousands to tens of
thousands.

It is worthy to note that in our two-phase framework, the machine
learning coupled GFFS feature selection (phase 1) is integrated with
but can work independently from the Boolean logics-based biomarker
signature identification (phase 2). As such, in principle the Boolean
logics-based biomarker signature identification part can be plugged
into any other feature section ML approaches (e.g., using FFS or RFE)
and serves as a downstream analysis. This plug-and-play flexibility
provides another strength of the framework.

Due to its ability to stabilize client oncogenic proteins and thereby
maintain the survival of cancer cells, HSP90 presents an attractive
therapeutic target and has been explored in a variety of cancers
including prostate, breast, and colon cancer (Caldas-Lopes et al.,
2009; Wang et al., 2016; Nguyen et al., 2018). Although limited,
several studies have attempted to identify predictive markers for
HSP90-based therapy. For example, Nguyen et al. (Nguyen et al.,
2018) has identified PCBP3, an RNA binding protein important in
post-transcriptional control of gene expression, as a potential
predictive biomarker for 17-AAG response in prostate cancer. In
colorectal cancer, high expression of the UDP glucuronosyltransferase
1A (UGT1A) gene was found to correlate with poor sensitivities to the
HSP90 inhibitor ganetespib, and its related compound NVP-AUY922,
suggesting UGT1A levels in tumour tissues may be a suitable
predictive biomarker for ganetespib treatment (Landmann et al.,
2014). Interestingly, gene expression levels of UGT1A did not show
correlation with 17-AAG response, implying different classes of
HSP90 inhibitors may have different predictive biomarkers
(Landmann et al., 2014). In addition, in acute lymphoblastic
leukemia (ALL), patients with high levels of phosphorylated Src
were more sensitive to the Hsp90 inhibitor NVP-BEP800
compared to those with low phosphorylated Src (Mshaik et al.,
2021), suggesting Src phosphorylation may serve as a predictive
biomarker. Moreover, since Hsp90 inhibition regulates Akt
phosphorylation and Bcl-xL, expression levels of these effector
proteins may be suitable predictive of response to Hsp90 inhibition

in triple negative breast cancer (Caldas-Lopes et al., 2009). Similarly, as
Hsp90 inhibition downregulates c-Myc expression and upregulates
the expression of tumour repressor proteins such as p53 and pRB,
which inhibits the G1/S transition (Yamaki et al., 2011), expression
levels of cell cycle regulatory proteins such as pRB, E2F, cyclin–cyclin-
dependent kinase (CDK) complexes could inform predictive
biomarkers in specific tumour contexts. However, there are several
limitations associated with current studies of predictive biomarkers for
Hsp90 inhibitors, including: (i) their derivation was largely based on
correlation analyses; (ii) the biomarkers are mostly single-gene
markers and so unlikely to be clinically robust; (iii) and lack of
patient-derived data. Together, these factors may explain the fact
that so far, no companion predictive biomarkers of Hsp90-based
therapy are employed for clinical practice.

In this study, we have aimed to alleviate these limitations through
utilization of patient-derived data from unique explant models;
implementation of predictive ML modelling rather than association
analyses; and derivation of multi-gene rather than single-gene
biomarkers. As a result, we have identified a highly-predictive
biomarker panel (92% accuracy) consisting of 16 proteins. Its
superior performance to individual DEPs and to using all the
157 DEPs points to the importance of selectively combining the
relevant input features in optimizing drug-response prediction. The
result also highlights the need to venture beyond the contemporary
single-marker paradigm. Reassuringly, the identified panel contains
proteins that have been implicated in prostate tumorigenesis and drug
resistance, including CDK2, IGFBP7, TRIM47, and RBM17. For
example, CDK2 was identified as a therapeutic target in prostate
cancer (Yin et al., 2018). Its activation is significantly associated with
disease recurrence, and its inhibition reduces invasion of prostate
cancer cell lines (Yin et al., 2018). Moreover, CDK2 mediates
androgen-dependent inhibition of AR+, castration-resistant
prostate cancer cell proliferation (Kokontis et al., 2014). IGFBP7, a
member of the insulin growth factor binding protein family, is
involved in a variety of cancers including prostate cancer (Sullivan
et al., 2012; Jin et al., 2020). Aberrant promoter hypermethylation of
IGFBP7 and consequential gene silencing were found in prostate
cancer cell lines (Sullivan et al., 2012). On the other hand, the
tripartite motif (TRIM) protein TRIM47 is significantly increased
in prostate cancer compared to normal tissues (Fujimura et al., 2016).
In addition, SPF45, a splicing factor, is overexpressed in select tumours
including prostate cancer, and it confers resistance to multiple anti-
cancer drugs (Sampath et al., 2003; Perry et al., 2005). Overall, these
evidences support the validity of our predictive multi-protein
biomarker panel.

Translation of predictive biomarkers into clinical usage depends
strongly on the ability to develop assays for detection of these markers
in patient samples. We therefore reasoned that compact biomarker
panels displaying strong predictive power are optimal for clinical
application. With this in mind, we reduced the panel from 16 to
5 proteins, which achieved excellent prediction accuracy (80%). The 5-
protein panel includes VPS25 (Vacuolar Protein Sorting 25 Homolog),
TRIM47 (Tripartite motif 47), RBM17 (RNA Binding Motif Protein
17), SEPT8 (Septin-8) and AQP1 (Aquaporin 1). In addition to
TRIM47’s involvement in prostate cancer mentioned above,
RBM17 is frequently overexpressed in a variety of carcinomas,
including prostate cancer (Sampath et al., 2003). Importantly,
RBM17 confers resistance to doxorubicin and vincristine, two
chemotherapeutic drugs commonly used in cancer treatment (Perry
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et al., 2005). Septins are GTP-binding proteins that are evolutionarily
and structurally related to the RAS oncogenes (Abbey et al., 2019).
Septin’s expression levels are altered in hormonally regulated cancers
such as prostate, breast, ovarian and endometrial cancers (Dolat et al.,
2014; Angelis and Spiliotis, 2016). AQP1 is known to be upregulated
by hypoxia that leads to increased cell water permeability, motility,
and migration in neuroblastoma, lung and prostate cancer cells
(Mobasheri et al., 2005; Hwang et al., 2012; Wei and Dong, 2015;
Huo et al., 2021). Further, AQP1 is involved in microvascular
alteration during prostate tumour angiogenesis (Mobasheri et al.,
2005); and it promotes sensitivity of anthracycline chemotherapy in
breast cancer (Chong et al., 2021). Taken together, these studies
provide evidence linking the identified marker proteins to prostate
cancer, supporting to the validity of the simplified panel. Further
understanding of the roles of these proteins in prostate cancer
tumorigenesis, and how they mechanistically modulate 17-AAG
sensitivity are important areas of future research.

In addition, we conducted KEGG pathway and GO function analysis
using both the 5-protein and 16-protein biomarker panels. As shown in
the Supplementary Figure S8, the 5-proteins panel is mainly related to the
proximal tubule bicarbonate reclamation (Dubose, 1990) and renin
secretion (Kurtz, 2012) in the KEGG pathway analysis. Proximal
tubule bicarbonate reclamation is a process by which the proximal
tubules in the kidney reclaim bicarbonate ions from the filtrate in the
renal tubules (Rector et al., 1998). This process helps to maintain
electrolyte balance in the body by reabsorbing bicarbonate ions and
preventing their excretion in urine. Renin secretion is important in cancer
development as it regulates the production of angiotensin II, which has
been shown to stimulate cancer cell growth and proliferation (Sobczuk
et al., 2017). The 16-protein panel was found to be mainly related to
steroid biosynthesis, a process by which the body produces steroid
hormones. Abnormal steroid hormone production, which can be
influenced by abnormalities in steroid biosynthesis pathways, has been
linked to prostate cancer (Wilding, 1992; Mostaghel, 2013).

Our GO function analysis identified that both the 5- and 16-
protein biomarker panels are mainly related to polyol transmembrane
transporter activity (GO:0015166) and intracellular cGMP-activated
cation channel activity (GO:0005223). Polyol transmembrane
transporter activity involves the transport of small sugar molecules,
such as glucose, across cell membranes. Dysregulation of this activity
has been implicated in cancer development, as it can contribute to
increased cellular proliferation and survival (Jones and Morris, 2016).
Intracellular cGMP-activated cation channels are proteins activated by
the signaling molecule cGMP, which allow ions to enter cells (Biel and
Michalakis, 2009). Dysregulation of these channels has been linked to
the development of various types of cancer, including breast, prostate,
and ovarian cancer (Di Iorio et al., 2021).

Importantly, in an effort to validate the identified 5-protein
biomarker signatures, we have generated an independent validation
cohort of PDEs, and predicted their responses to 17-AAG treatment
based on the PDE-specific expression levels of the five marker
proteins. Overall, our framework correctly predicted the response
for the responsive and non-responsive PDEs, but did not correctly
predict the poor-responders, achieving >71% accuracy on this
independent dataset. A limitation of the current validation is
pertained to the small size of the validation cohort, due primarily
to the challenge in accessing a large number of suitable patient samples
and establishing the corresponding PDEs. This, however, is a general
issue in biomarker studies utilizing pharmacogenomic data derived

from cancer patients (Huang et al., 2018; Parca et al., 2019; Nguyen
et al., 2021). We envisage as additional PDEs are generated in the
future, the data will provide a more robust validation of our pipeline.

In summary, we have developed a new computational framework
based on machine learning that aids the identification of multi-gene
predictive biomarkers for targeted cancer drugs. While we have
demonstrated its power focusing on prostate cancer as a proof-of-
concept, the framework has broad applicability and can be applied to
other drugs and cancer types in future studies.
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