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Abstract

From the (patho)physiological point of view, diseases can be considered as

emergent properties of living systems stemming from the complexity of these

systems. Complex systems display some typical features, including the pres-

ence of emergent behavior and the organization in successive hierarchic levels.

Drug treatments increase this complexity scenario, and from some years the

use of network models has been introduced to describe drug–disease systems

and to make predictions about them with regard to several aspects related to

drug discovery. Here, we review some recent examples thereof with the aim to

illustrate how network science tools can be very effective in addressing both

tasks. We will examine the use of bipartite networks that lead to the important

concept of “disease module”, as well as the introduction of more articulated

models, like multi-scale and multiplex networks, able to describe disease sys-

tems at increasing levels of organization. Examples of predictive models will

then be discussed, considering both those that exploit approaches purely based

on graph theory and those that integrate machine learning methods. A short

account of both kinds of methodological applications will be provided. Finally,

the point will be made on the present situation of modeling complex drug–
disease systems highlighting some open issues.
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1 | INTRODUCTION

The purpose of this article is to illustrate and discuss some recent developments of drug discovery-related network-
based models in the light of the complexity of drug–disease systems. It stems from the realization that this kind of
implementations are appearing in the literature at an increasing pace, but also from the need of casting some light on
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how the scientific community working on drugs and diseases is confronting with the inherent complexity of the field.
Complexity (Gentili, 2018) is an intrinsic feature of living matter, and it is characterized by several aspects, like, for
example, the spontaneous appearance of emergent phenomena (Artime & De Domenico, 2022). These are events or
behaviors unpredictable on the basis of the knowledge of the system's single elements. Life as we know it, from single
cells to humans, is considered an emergent property (Goldenfeld & Woese, 2011), as are other self-organized events at
both microscopic and macroscopic scales. Among the latter, diseases are typical examples of emergent behaviors. If we
conceptualize a disease as a human (patho)phenotype, then we can consider it as the reflection of interacting
pathobiological processes (both deterministic and stochastic) giving rise to a spontaneous unpredictable process, that is,
an emergent property. This concept is masterfully presented by Loscalzo et al. (2007) and Loscalzo and Barab�asi (2011),
who show how systems biology and network science can provide the basis for a redefinition of human diseases under
this perspective.

Moreover, there is another aspect of complexity that cannot be disregarded in any attempt to describe the living
matter, namely its organization in successive, higher-order, integrated levels (Novikoff, 1945). Moving from atoms to
molecules, macromolecules, subcellular structures, cells, tissues, organs, and so on till to the whole individual, we all
know these levels of organization, and we cannot fail to recognize that living systems along this scale show new and
unique properties emerging through the combination of the lower-level layers. Again, the nature of diseases can be
investigated at any level, but it is the combination and integration of them that should provide us with a comprehensive
description.

If we are to enter the new era of drug discovery, we must consider the complexity of the state of illness and
make it the basis from which to start in order to make the right decisions about effective new treatments. As
regards the theoretical methods to be employed for building a representation of such complex system, since long
time, physics provided us with the framework of network science (Barab�asi, 2016). A network is a list of the com-
ponents of the real system and of the interactions between them, and it can be represented by a graph usually visu-
alized as an ensemble of dots connected by lines. Visually, networks often appear as interwoven diagrams
describing the interactions between the entities that make up a complex system. Since the early 2000s, several
research groups started to explore the application of network-based approaches in drug discovery settings
(Recanatini & Cabrelle, 2020), and here we briefly examine some recent contributions to, (1) the construction of
descriptive conceptual models able to point out and analyze the complexity characteristics of diseases, and (2) the
setting up of computational models allowing to tackle predictive tasks on drug–disease systems, particularly aimed
at the identification of drugs and drug targets. With regard to this last point, a further aspect will be considered,
namely, the methods by which the predictions are obtained.

2 | NETWORK MODELS OF THE DRUG–DISEASE SYSTEM

The theoretical modelization of the drugs' actions on diseases is a long-sought goal that can be traced back to the intro-
duction of the “magic bullet” concept developed by Ehrlich at the dawn of the XXth century (Winau et al., 2004). On
this basis, the “one disease-one target-one drug” paradigm arose that accompanied us in the discovery of most of the
medicines presently used in pharmacological therapies. Despite its extremely reductionist character, the target-centered
approach to drug discovery has had the undisputable merit of forcing the drug discoverers to think in terms of mole-
cules and molecular interactions. With the advent of both systems biology and the “omics” technologies, the drug dis-
covery paradigm evolved toward systems pharmacology (Hopkins, 2008), a strategy that can be comprised within the
framework of network medicine (Loscalzo et al., 2017). The latter is an established discipline largely based on the use
of networks for the analysis and study of diseases, from molecular etiology to clinical treatments (Silverman
et al., 2020). In this context, a key concept is that, to understand the drugs' actions and to design new pharmacological
treatments, one must consider not only one or some protein targets directly related to the disease but take into account
the subnetwork of proteins connected to the specific target(s) involved in the disease: the “disease module” (Figure 1).
At the basis of this hypothesis, there is the observation that quite often the proteins involved in a disease tend to inter-
act with each other in an identifiable local neighborhood of the human protein–protein interaction network (since now
on, interactome; Barab�asi et al., 2011).

Starting from the last decade, mainly inspired by the work of Barab�asi and coworkers, a consistent number of arti-
cles have contributed to pave the way toward this new mode of modeling the complex scenario of drugs and diseases.
One of the first examples of this approach describes the whole landscape of genetic diseases by building and analyzing
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the “diseasome” (Goh et al., 2007), that is, a bipartite network (Pavlopoulos et al., 2018) showing the relations
among diseases and the genes responsible for them. This kind of networks are made by two disjoint sets of nodes
(here, diseases and genes), and the connections occur only between nodes belonging to different sets. The Goh's
diseasome, where nodes can be both genes and diseases connected if the genes are involved in the pathobiology of
the disease, provided a wealth of systematic information contained in the comprehensive map resulting from the
data available in the OMIM database (version 2005). From the bipartite network, two projections were generated,
that is the two monopartite networks containing only one type of nodes: genes (linked if they share at least one dis-
ease) or diseases (linked if they share at least one gene). From the disease network projection, it was possible to
visualize that 867 (out of 1284) genetic diseases shared at least one gene with another disorder, and that 516 out of
the 867 ones belonged to a single connected cluster, an observation that pointed out the interconnectedness of a
relevant number of genetic diseases with regard to their genetic, that is, molecular, bases. On the other hand, the
analysis of the gene network projection brought to the light the fact that genes that contribute to the same disease
have the tendency to group into modules that reflect their common tissue expression patterns, as well as participa-
tion in biological processes and molecular functions, not to mention the tendency of their products to physically
interact through protein–protein interactions (Goh et al., 2007). Notably, these observations contributed to the for-
mulation of the disease module hypothesis mentioned above and to the subsequent refinement of the concept
(Barab�asi et al., 2011; Menche et al., 2015).

Considering the gene products (i.e., proteins) and the activities performed by them inside the cell, it is easy to under-
stand how soon molecular networks like gene regulatory networks, metabolic networks, and, mostly, protein–protein
interaction networks (interactomes) became the favorite knowledge bases on which to rely to build models representing
diseases even in the drug research context (Vidal et al., 2011). However, this molecular level of description is just the
“basic” one and does not completely meet the need of a comprehensive modelization of diseases, say from genotype to
phenotype. In fact, only the integrated consideration of intermediate levels of organization of the living matter could
place us in a genuine complex system perspective. From here, the idea, that has already led to some interesting applica-
tions, of including multiple sources of information within the network models, mainly through the construction of mul-
tiplex networks (De Domenico et al., 2013). Multiplex networks, that belong to the more general class of multilayer
network (Hammoud & Kramer, 2020), are made by one set of nodes connected by more than one type of relations rep-
resented in the respective layers, such that each layer contains one different type of link between the same set of nodes
(Figure 2).

De Domenico's group is among the most active ones in proposing the use of multiplex networks to study diseases,
and a first representative example was presented in a 2019 article (Halu et al., 2019). In this work, the authors reported
the construction and analysis of a multiplex network of human diseases, containing both a genotype-based and a
phenotype-based layer. The two layers represent the same set of diseases (nodes), but account for different kinds of

(a) (b)

FIGURE 1 (a) A disease module (red nodes) is constituted by a set of connected nodes within the whole human protein–protein
interactome. It represents a subnetwork including the proteins involved in the disease, that is, those proteins whose modifications are at the

basis of the pathogenetic process (Barab�asi et al., 2011). (b) However, due to the incomplete knowledge of both the interactome and the

disease associated genes, the observable disease module shows missing nodes and missing links that can leave some disease proteins

disconnected from the subnetwork (Menche et al., 2015).

RECANATINI and MENESTRINA 3 of 13

 26929368, 2023, 4, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
sbm

.1607 by C
ochraneItalia, W

iley O
nline L

ibrary on [13/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



relations among them (links): in the genotype-based layer, two disorders are linked if they share at least one common
gene, whereas in the phenotype-based layer, two diseases are connected if they share a common symptom. The
resulting multiplex network consists of 779 diseases connected by 1115 genotypic and 5005 phenotypic relations. One of
the important results claimed by the authors in terms of disease classification was the identification of disease commu-
nities on the basis of the simultaneous consideration of both genotypic (molecular) and phenotypic (symptoms) features
made possible by the multilayer structure of the network. It is interesting to note that, in this case, a second level of
description was added to the disease projection of the diseasome of Goh et al. (2007) mentioned above taking a top (the
diseases) down perspective. The multilayer approach was further developed in an article published by Menche's group
(Buphamalai et al., 2021) that, in the context of rare diseases, built a multiplex network accounting for six levels of bio-
logical organization and consisting of 46 layers describing the relations (over 20 million links) among 20,354 genes.
Here, the nodes are genes (bottom-up perspective), and the first layer accounted for genetic interactions derived from
analysis of many cell lines. Then, in a sequence of increasing organizational levels, layers were added to include co-
expression data, as well as interactions between gene products, pathway co-membership, co-annotations in biological
processes and molecular functions (derived from GO [The Gene Ontology Consortium, 2021]), and in phenotypes
(derived from Mammalian phenotype ontology (MP) [Smith & Eppig, 2012] and Human phenotype ontology (HPO)
[Köhler et al., 2021]). The resulting overall picture is impressive and contains a lot of information useful for carrying
out the systematic investigation of rare disease in a real holistic perspective. But what is important from the standpoint
of the present discussion is that the possibility of building disease descriptions taking into consideration several levels
of complexity seems definitely acquired. The road opened by the Goh's diseasome model can now be traveled (either
bottom-up or top-down) toward an ever deeper knowledge and description of diseases.

FIGURE 2 Multiplex network. Nodes represent the same entity (e.g., diseases), intra-layer links represent different relations among

nodes (e.g., common gene[s], common phenotype[s], and common drug[s]), inter-layer links outline the connectivity across layers.
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3 | PREDICTIVE NETWORK MODELS

The above-mentioned articles show the power of network tools in allowing the construction of comprehensive
models capable of including and highlighting the features of the human diseasome (here understood as all the
human diseases as a whole). The next step is to use this kind of models in a predictive setting within the drug
discovery scenario, that is, to advance hypotheses regarding such typical issues of the field, as, for example,
the identification of drug candidates, the elucidation of mechanisms of action, the prediction of adverse
effects.

One of the first attempts to quantitatively relate drugs and diseases purely on the basis of network tools is presented
in a landmark article of Guney et al. (2016). These authors developed a procedure to account for the relationships
among drugs and disease-related proteins in the context of the human interactome, previously defined as “a compre-
hensive map of all biologically relevant molecular interactions” (Menche et al., 2015). In this work, the authors, based
on the disease module hypothesis, postulated that for a drug to treat effectively a disease, its targets should be within or
in the close vicinity of the disease module, and proposed to use the distance of drug targets to proteins of the disease
module (the “drug–disease proximity”) as a metrics to assess the effect of a drug on that disease, in essence, to predict
the association between the drug and the disease. As shown in Figure 3, for a given drug, the distance d on the protein–
protein interactome between all drug's targets and the nearest disease protein is calculated as the average shortest path
length between them, where the shortest path between two nodes is the path with the minimum number of edges.
Then, d is normalized into a proximity value (z-score) by comparing the measured distance to that of a dummy refer-
ence distribution.

Using this computational framework able to quantify the relationship between disease modules and drug tar-
gets, Guney et al. (2016) showed the reliability of the drug–disease proximity concept to analyze several features of
the therapeutic action of 238 drugs on 78 diseases. In fact, even though the main focus was on predicting drug–
disease associations in view of both pinpointing the treatments prescribed for a disease and identifying rep-
urposable drug candidates, the analysis of the relationships between drug targets and disease modules made it pos-
sible to help the understanding of drugs' mechanism of action and to evaluate drug–drug similarity. This approach
was further extended and experimentally validated by Cheng et al. (2018) in the field of cardiovascular
(CV) diseases. Using a human interactome consisting of 16,677 proteins connected by 243,603 interactions, these
authors identified 431 non-CV FDA-approved drugs (out of 807) as significantly associated to 22 CV diseases on
the basis of the proximity (z-score) of drug targets to disease modules. To validate the results, analyses of patient-
level data as well as in vitro experiments in human aortic endothelial cells were carried out for some of the
predicted treatments.

Following the approach proposed and validated in the two just mentioned articles, the concept of drug–disease
proximity has been widely applied to prioritize potentially repurposable drugs in several therapeutic areas, like, for
example, cancers (Cheng et al., 2019), COVID-19 (Gysi et al., 2021; Patten et al., 2022; Zhou, Hou, Shen, Huang,
et al., 2020; Zhou, Hou, Shen, Mehra, et al., 2020), and neurological diseases (Fang et al., 2021; Menestrina &
Recanatini, 2022; Peng et al., 2020), as it allows to quantitatively rank drugs on the basis of the distance of their known
targets from the disease module on the human protein–protein interactome.

In the attempt to overcome the limitations of methods based on a description of the drug–disease system that takes
into consideration “only” proteins, several authors have started to add further levels of knowledge to the network
models in a multi-scalar perspective. For example, a recent article by Ruiz et al. (2021) extends the protein–protein
interactome-centered view and describes the construction of a more articulated network-based model of how drugs act
on diseases. The article illustrates a multiscale approach to the modelization of disease treatments, where the molecular
level of proteins (both drug- and disease-related) and drugs is combined with a superior biological level of description,
namely, GO (The Gene Ontology Consortium, 2021) biological processes, to allow for the analysis of nearly 6000
approved drug treatments. To give an idea of the knowledge base used in the construction of the model, it is worth not-
ing the list of nodes and links considered:

1661 drugs connect to the proteins they target (8568 edges);
840 diseases connect to the proteins they disrupt (25,212 edges);
17,660 proteins connect to other proteins through physical interactions (387,626 edges);
proteins connect to the 9798 biological functions they affect (34,777 edges);
biological functions connect to each other in a hierarchy (22,545 edges).
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This integrated model appears to give better results in the prediction of drug treatments for diseases than the
approach based only on protein–protein interactions. Moreover, it allows one to tackle such important pharmacological
issues as, (i) the identification of proteins and biological functions relevant to treatments, and (ii) the identification of
genes possibly interfering in the action of drugs. The method adopted by the authors to predict drug treatments is based
on the calculation of the network diffusion profiles of both drugs and diseases, that are then compared to infer the
drugs most suitable to treat a given disease. The diffusion profiles are vectors that encode the propagation of drugs and
diseases effects across the multiscale network: they are calculated based on the probability that a “random walker”
visits the network nodes (proteins and biological functions) starting from each drug and disease node.

The article by Ruiz et al. (2021) is just one example of how network science-based mathematical tools can be applied
to network models to draw predictions about drug treatments considering the multi-level global landscape of human
diseases. The important contribution provided by this work is that it integrates the molecular interactome with a fur-
ther level of description of the drug–disease system, still maintaining the structure of a heterogeneous graph with four
types of nodes and undirected edges of only one type. Following a similar approach, in recent times, other groups inves-
tigated the treatments-disease scenario of different pathologies with the aim of repurposing known drugs to tackle them
(see, e.g., Fiscon et al., 2021; Paci et al., 2022).

As a further example of the predictive capability of network-based models accounting for the complexity of the
drug–disease systems, we can consider the work by Zeng et al. (2020), who proposed a method to infer drug–target
interactions (DTIs) allowing for the prediction of both targets and repurposable drugs. These authors aimed at incorpo-
rating several types of data into a heterogeneous drug–target–disease network by taking advantage of a deep neural net-
work algorithm to embed all information on each node into low-dimensional feature vectors. The prediction of DTIs is
then obtained on the basis of a score that estimates the likelihood of the pairwise interaction between each drug–target
pair. The data used in this work, that resulted in the proposal of a new pharmacological treatment for multiple sclerosis
validated by in vivo experiments, are the following:

5680 drug–target interactions connecting 732 FDA-approved drugs and 1178 unique human targets;
16,133 protein–protein interactions connecting 1915 unique drug targets;
132,768 clinically reported drug–drug interactions connecting 732 unique FDA-approved drugs;
1208 drug–disease pairs connecting 732 drugs and 440 diseases;
263,805 drug–adverse drug effects (ADEs) associations connecting 732 approved drugs and 12,904 ADEs;

(a) (b)

FIGURE 3 (a) The drug–disease proximity for two drugs (blue and green) on the human interactome. The shortest paths on the

interactome between the drugs' targets (blue and green nodes) and the respective nearest disease proteins (red nodes) are highlighted by blue

and green colored edges. (b) The calculation of d for the two exemplary drugs and the generalized formulas for the calculation of d and its

normalization into a z-score. Mean (μ) and standard deviation (σ) refer to the distribution of distances calculated for a reference set of nodes

that has the same number and degree values as the real one (drug targets plus disease module). G is the set of disease-related genes, T is the

set of drug targets, and d g, tð Þ is the shortest path length between nodes g (g�G) and t (t �T); d G,Tð Þ is the distance between the drug and

the disease. μ and σ are the mean and standard deviation, respectively, of the distance distributions calculated for the reference sets of nodes

used to calculate the z-score.
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23,080 disease–gene pairs connecting 440 diseases and 1915 drug target-coding genes.

Based on the cases presented above, it can be observed that the complexity of the drug–disease system is increas-
ingly considered as a central issue in the drug–disease modelization studies, not only in view of the rationalization of
acquired knowledge, but also in the perspective of prediction. This is clear evidence of the new paradigm of drug discov-
ery, that increasingly takes advantage of the new opportunities provided by theoretical modeling, better algorithms,
and data accumulation and availability.

3.1 | Computational approaches for predictions

As seen above, when it comes to making predictions in network models applied to drug discovery (actually, in any kind
of drug discovery-related models since the early times of QSAR (Hansch & Silipo, 1974)), the goal is to associate one or
more compound(s) to one or more target(s)—the latter being protein(s) or disease(s)—producing a ranked list of
molecule-target pairs. The computational methods used in this context cover an extremely wide range, but those
applied to network models can be roughly divided into purely network-based techniques and applications of machine
learning (ML). The above discussed work of Guney et al. (2016) is a typical example of the former approach, where the
algorithm to compute the drug–disease proximity is based on calculation and averaging of the shortest path lengths
between nodes on the human protein–protein interactome. However, initially, and still nowadays, the most popular
class of network-based methods applied to the prediction of DTIs is that of similarity-based algorithms, built on the
guilt-by-association principle. These are link prediction methods on which we briefly accounted for previously
(Recanatini & Cabrelle, 2020), that include both recommendation techniques, like the network-based inference (NBI)
method developed by Cheng et al. (2012) and enhanced by Alaimo et al. (2013), and network propagation methods
(Cowen et al., 2017). As regards the latter, random walk with restart (RWR) in various versions has been frequently
employed in the field of drug discovery (see below for references). A detailed illustration of the algorithm is out of the
scope of this article, but a short description of the approach with regard to DTI prediction is due. RWR is a stochastic
method that usually runs on a heterogeneous network composed of drugs and targets and aims to calculate the proba-
bilities associated to each compound-protein pair. The drug–target integrated network is constructed as a combination
of the drug–drug and target–target similarity networks with the known drug–target associations network. The algo-
rithm simulates a walker that randomly moves from source (seed) nodes (e.g., drugs, if one is interested in predicting
their targets) to neighbors. Eventually, with a probability r, the walker restarts from the source node, and, after several
iterations, the diffusion process reaches a steady state where the probabilities of all the drug–target associations are
defined and finally ranked. In Figure 4, a simplified schematic illustration of RWR is provided.

RWR appears to be an efficient method to rank associations like, drug–target, drug–disease, gene–disease, and in
the last decade it has been applied to heterogeneous networks for both target prediction and drug repurposing (see,
e.g., Cheng et al., 2012; Liu et al., 2016; Luo et al., 2017; Seal et al., 2015). Actually, the above discussed article by Ruiz
et al. (2021) takes advantage of a biased RWR algorithm to calculate the diffusion profiles of drugs and diseases on a
multiscale model in order to compare them and to predict drug–disease associations, that is, pharmacological treat-
ments. Recently, Valdeolivas et al. (2019) extended the RWR algorithm to multiplex and multiplex-heterogeneous net-
works, in this way broadening the field of applicability of the method to models capable of taking into consideration
multiple levels of information. This approach was employed by Yao et al. (2021) to successfully predict associations
between diseases and long noncoding RNAs.

ML-based methods have become very popular in drug discovery nowadays, and their use in pursuing predictive
goals in network models is also increasing. Under the broad definition of ML a plethora of algorithms are comprised,
basically aimed at learning from a set of known input and output data (features, X, and labels or targets, Y, respectively)
a function able to mapping X to Y, such that unknown Y labels or targets are correctly predicted from new X features.
Deep learning (DL) techniques are a group of ML algorithms based on the architecture of artificial neural networks
(ANN) made up of a pool of interconnected artificial neurons organized in layers. Model training consists of fitting the
weights of a (nonlinear) function so that the input data is correctly mapped to the output. DL algorithms are character-
ized by the presence of multiple hidden layers. Quite a few reviews can lead the interested reader into the field of
ML. For general applications in drug discovery and more focused ones on DTIs prediction, see Vamathevan et al.
(2019) and Bagherian et al. (2021), respectively. A thorough review of the current literature of ML applications to drug–
disease network models is out of scope here, but it is worth mentioning a couple of examples where this kind of
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FIGURE 4 Legend on next page.
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methods have shown their usefulness. The first is reported in an article of Yamanishi et al. (2008), who as early as in
2008 published one of the first network-based models for DTI prediction. The same way as in the examples above, a het-
erogeneous drug–target network was built (here called “pharmacological space”) by integrating drug–drug and target–
target similarity data with known drug–target association information. This network is represented by a matrix whose
row vectors are the feature vectors of known drugs and targets. Based on a “gold standard” set of known DTIs, two ML
models (kernel regression) were trained, one for the correlation between drug feature space and pharmacological fea-
ture space and one for the correlation between the target feature space and the pharmacological feature space. In this
way, the authors could then map new drugs and new targets to the heterogeneous network and obtain the feature vec-
tors of new drugs and targets. Finally, by combining the feature vectors, it was possible to obtain feature-based similar-
ity scores for the drug–target pairs used as a measure of the association of drugs and targets. Twelve years after the
pioneering work of Yamanishi et al. (2008), the power of DL algorithms applied to heterogeneous networks to analyze
the drug–disease system was displayed in the article by Zeng et al. (2020) illustrated above. Note that, also in this case,
the key result of the procedure was the achievement of vectors encoding the features of nodes that could then be com-
pared to infer the predictions on drug–target associations.

Finally, it is worth noting that network-based approaches like RWR and ML-based methods can be combined. For
example, Liu et al. (2019) predicted effective drug combinations using a heterogeneous drug–target network and run-
ning an adapted version of RWR using two or more drug nodes as source nodes. The probability distributions of the
drug combinations at the steady state encoded in the p∞ vectors were then used as feature vectors to train a classifier
(gradient tree boosting) able to predict effective drug combinations.

4 | DISCUSSION

Fifty years ago, P. W. Anderson in his article entitled “More is different” (Anderson, 1972) strongly criticized the reduc-
tionist view of science and proposed a hierarchic organization of the knowledge, whereby each level, besides being con-
nected with the upper and lower ones, displays his own unique properties requiring research to be carried out and
eventually new concepts or laws to be formulated. These ideas set a landmark in the development of complexity sci-
ence, and nowadays they are being applied to as different fields as societal organization, economics and life sciences,
particularly with regard to the study of emergent phenomena (Strogatz et al., 2022). Since several years, these complex-
ity concepts broke into the field of medicine giving rise to the now established discipline of network medicine (Loscalzo
et al., 2017) that combines systems biology and network science to provide a theoretical and methodological framework,
on which to rely to achieve understanding of the ultimate nature of human illnesses and to provide effective treatments.
The cases illustrated above are examples of how these concepts are put into practice. Network models of different archi-
tecture describe the disease systems either at a single level, for example, genes or proteins, or at multiple levels, for
example, multiplex or multi-scalar cases, allowing us to investigate on the nature of the illnesses, ideally, from genotype
to phenotype (see the above presented articles [Buphamalai et al., 2021; Goh et al., 2007; Halu et al., 2019]). Further-
more, if the network models are coupled with suitable computational algorithms, they become the basis of powerful
predictive tools, useful among others to identify treatment candidates, like, for example, repurposable drugs, as shown
in the articles (Guney et al., 2016; Ruiz et al., 2021; Zeng et al., 2020), as well as in the early work by Yamanishi et al.

FIGURE 4 The RWR algorithm illustrated for a drug–target system. RWR runs on the heterogeneous network that integrates similarity

drug–drug and target–target connections, as well as known relationships between drugs and targets (upper panel). The algorithm simulates a

walker that, starting from a seed node (here a blue circled green node) randomly moves to neighbor nodes. Occasionally, it can return back

to the initial node and then start walking again (middle panel). This procedure is carried out for all source nodes, and the main equation

implemented in the algorithm allows to calculate for each of them the probability matrix p, whose elements contain the probabilities of

finding the walker at different target nodes at subsequent steps starting from the initial probability matrix p0:

ptþ1 ¼ 1� rð ÞWTptþ rp0

where WT is the transition matrix of the integrated network. After several iterations, a steady probability p∞ is obtained (when the change

between pt and ptþ1 is less than a threshold value), and for each drug source node, the target nodes with the highest probability values are

considered as the predicted targets of that drug (lower panel).
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(2008). In all cases, network models provided the essential opportunity to take into consideration the complexity of the
biological system, and when they were combined with predictive algorithms, either purely network-based or ML,
proved to be fully suitable for drug discovery tasks.

Now, being ascertained that networks represent an effective operational trade-off between the old reductionist
vision and the impossible fully detailed description of drug–disease systems (Csermely et al., 2013), the question is:
what's next? That is, what are the still open issues requiring further research efforts in order to strengthen the theoreti-
cal basis of the approach and improve both descriptions and predictions?

The first one has to do with data. The quality of data on which models aimed at modeling complexity are built is
vital. This must be interpreted not only and simply in terms of “technical” accuracy, but it represents an issue that is
pervading the network-based modelization of complex biological systems. Indeed, the problem of literature bias in the
construction of the protein–protein interactome is well known (Rolland et al., 2014), and the inherent incompleteness
of the network (Menche et al., 2015) is just another face of the same problem. Indeed, DTI prediction models based on
the guilt-by-association principle particularly suffer from it and even though methods to tackle this problem begin to
appear (Zietz et al., 2023), the challenge is still wide open. In addition, when it comes to modeling drug–disease sys-
tems, deeper and more insidious questions might arise, like, for example, the physiological relevance of experimental
data toward the illness. In an illuminating article (Gintant & George, 2018), Gintant and George have clearly pointed
out how experiment outputs should ideally reflect the physiological complexity of the system (e.g., with regard to the
dynamic nature of pathological processes) and comply with the operable range of parameters related to biological pro-
cesses (temperature, pH, ion concentration, etc.). In the absence of these conditions, the risk exists of getting results
that “may not be all that believable or physiologically relevant” (Gintant & George, 2018). A similar concern was
already raised by Ideker and Krogan (2012), who argued that network models might be poorly able to faithfully capture
the physical reality of protein interactions in a living system. This is because proteins are modified, transported, and
have different concentrations in the cell (or in a tissue), thus being exposed to a plethora of possible interactions that
vary in many aspects, including time, affinity, specificity, and stoichiometry. The very concept of simple binary connec-
tion between two protein nodes might be questioned if one considers post-translational modifications (Aebersold
et al., 2018), and eventually the possibility of nonindependent binding due to allosteric modifications.

A further issue partly related to the previous one arises from the fact that for the system that we aim to model by
building the network we neglect such quantitative parameters as intracellular protein concentrations, and equilibrium
and kinetic constants, which determine the dynamic response to perturbations. In other words, it must be remarked
that the network models discussed in this article do not take into consideration the intrinsic dynamic character of bio-
logical systems. Actually, they provide a static framework within which the determinants of diseases can be identified
by analyzing the network topology (Loscalzo, 2019). Notably, besides taking a deterministic approach based on the
knowledge of kinetic parameters and on the solution of systems of ordinary differential equations, the construction and
analysis of Boolean network models might offer a valuable alternative when the time evolution of the network must be
considered (Hemedan et al., 2022).

Finally, a more basic question to be investigated regards, in our opinion, the assessment of the complexity of the
drug–disease system. An attempt in this sense has been done by L�opez-Rodríguez et al. (2021), who explored a compre-
hensive drug–disease network by means of two measures of complexity, that is, Shannon entropy and algorithmic com-
plexity. This work provides an initial look at the complex drug–disease system, even though it has some limitations,
particularly regarding the completeness of the database on which the analysis is based. However, this kind of studies
are needed to investigate in depth the nature and the origin of the behaviors that render a drug–disease system com-
plex, and they are practically useful to set the most proper modeling environment to allow one to make the right deci-
sions. Complexity science provides theory and methods to do that (Siegenfeld & Bar-Yam, 2020), and further
applications are certainly desirable.

5 | CONCLUSION

In conclusion, graph theory and network science provide us with powerful methods to tackle the description of complex
drug–disease systems. Moreover, when coupled with such effective computational tools as ML or its fast-growing
branch DL, drug–disease network models can make available predictive tools able to guide us to the right selection of
target entities (e.g., drugs, molecular drug targets, diseases) to be prioritized from vast collections of data. Challenging
issues remain to be solved, but time is set for a full integration of complexity science into drug discovery.
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