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Abstract

We present and apply a theory of one parameter Cy-semigroups of linear operators in
locally convex spaces. Replacing the notion of equicontinuity considered by the literature
with the weaker notion of sequential equicontinuity, we prove the basic results of the classical
theory of Cy-equicontinuous semigroups: we show that the semigroup is uniquely identified
by its generator and we provide a generation theorem in the spirit of the celebrated Hille-
Yosida theorem. Then, we particularize the theory in some functional spaces and identify two
locally convex topologies that allow to gather under a unified framework various notions Cyp-
semigroup introduced by some authors to deal with Markov transition semigroups. Finally,
we apply the results to transition semigroups associated to stochastic differential equations.
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1 Introduction

The aim of this paper is to present and apply a notion of one parameter strongly continuous
(Cp) semigroups of linear operators in locally convex spaces based on the notion of sequential
equicontinuity and following the spirit and the methods of the classical theory in Banach spaces.

The theory of Cy-semigroups was first stated in Banach spaces (a widespread presentation
can be found in several monographs, e.g. [11, 19, 30]). The theory was extendedto locally con-
vex spaces by introducing the notions of Cy-equicontinuous semigroup ([35, Ch. IX]), Cy-quasi-
equicontinuous semigroup ([6]), Cy-locally equicontinuous semigroup ([9, 23]), weakly integrable
semigroup ([21, 22]). A mixed approach is the one followed by [25], which introduces the no-
tion of bi-continuous semigroup: in a framework of Banach spaces, semigroups that are strongly
continuous with respect to a weaker locally convex topology are considered.

In this paper we deal with semigroups of linear operators in locally convex spaces that are
only sequentially continuous. The idea is due to the following key observation: the theory of
Co-(locally) equicontinuous semigroups can be developed, with appropriate adjustments, to semi-
groups of operators which are only Cy-(locally) sequentially equicontinuous (in the sense specified
by Definition 3.1). On the other hand, as we will show by examples, the passage from equicontinu-
ity to sequential equicontinuity is motivated and fruitful: as discussed in Remark 3.4 and shown
by Example 6.4, in concrete applications, replacing equicontinuity with sequential equicontinuity
might turn out to be much more convenient.

The main motivation that led us to consider sequential continuity is that it allows a conve-
nient treatment of Markov transition semigroups. The employment of Markov transition semi-
groups to the study of partial differential equations through the use of stochastic representation
formulas is the subject of a wide mathematical literature (here we only refer to [5] in finite and
infinite dimension and to [8] in infinite dimension). Also, the regularizing properties of such semi-
groups is the core of a regularity theory for second order PDEs (see, e.g., [27]). Unfortunately, the
framework of Cy-semigroup in Banach spaces is not always appropriate to treat such semigroups.
Indeed, on Banach spaces of functions not vanishing at infinity, the Cy-property fails already in
basic cases, such as the one-dimensional Ornstein-Uhlenbeck semigroup, when considering it in
the space of bounded uniformly continuous real-valued functions (UC(R),|-|s) (see, e.g., [4, Ex.
6.1] for a counterexample, or [7, Lemma 3.2], which implies this semigroup is strongly continuous
in (UCy(R),|-|s) if and only if the drift of the associated stochastic differential equation vanishes).
On the other hand, finding a locally convex topology on these spaces to frame Markov transition
semigroups within the theory of C( equicontinuous semigroups is not a simple task (see also the
considerations of Remark 3.4). In the case of the Ornstein-Uhlenbeck semigroup, such approach
is adopted by [17], dealing with the so called mixed topology in the space of continuous functions.
Other authors have bypassed these difficulties by introducing some ad hoc notions of continu-
ous semigropus in the space of uniformly continuous and bounded functions (weakly continuous
semigroups [4], n-continuous semigroups [31]). A more general approach fitting Markov transi-
tions semigroups is represented by the theory of bi-continuous semigroups, dealing in abstract
(not limited to functional) spaces endowed both with a Banach norm and with a coarser locally



convex topology; the requirements of strongly continuity and of equicontinuity in the definition
plays with both such topologies. Such theory is nowadays well-developed and basically restates
the classical theory of strongly continuous semigroups in Banach spaces in all aspects, including
generation, perturbation, and approximation (see [1, 2, 12, 13, 14, 15, 20, 25]). As we will show
in Sections 4 and 5, the notion we propose contains all the aforementinend ones and therefore
allows to develop a common theory containing the previous notions under a unified framework.
We point out that our notion has been already employed in a recent paper [24] developing the
issue of subordination in this context.

We end the introduction by describing in detail the contents of the paper. Section 2 contains
notations that will hold throughout the paper.

In Section 3 we first provide and study the notions of sequential continuity of linear operators
and sequential equicontinuity of families of linear operators on locally convex spaces. Then, we
give the definition of Cy-sequentially (locally) equicontinuous semigroup in locally convex spaces.
Next, we define the generator of the semigroup and the resolvent of the generator. In order to
guarantee the existence of the resolvent, the theory is developed under Assumption 3.7, requiring
the existence of the Laplace transform (3.4) as Riemann integral (see Remark 3.8). This assump-
tion is immediately verified if the underlying space X is sequentially complete. Otherwise, the
Laplace transform always exists in the (sequential) completion of X and then one should check
that it lies in X, as we do in Proposition 5.9. The properties of generator and resolvent are
stated through a series of results: their synthesis is represented by Theorem 3.12, stating that
the semigroup is uniquely identified by its generator, and by Theorem 3.14, stating that the re-
solvent coincides with the Laplace transform. Then we provide a generation theorem (Theorem
3.18), characterizing, in the same spirit of the Hille-Yosida theorem, the linear operators gen-
erating Cy-sequentially equicontinuous semigroups. Finally, we provide some examples which
illustrate our notion in relation to other notions of semigroup on locally convex spaces.

In Section 4, we show that the notion of bi-continuous semigroups can be seen as a specifica-
tion of ours (Proposition 4.3).

Section 5 implements the theory of Section 3 in spaces of bounded Borel functions, continu-
ous and bounded functions, or uniformly continuous and bounded functions defined on a metric
space. The main aim of this section is to find and study appropriate locally convex topologies in
these functional spaces allowing a comparison between our notion with the aforementioned other
ones. We identify them in two topologies belonging to a class of locally convex topologies defined
through the family of seminorms (5.5). We study these topological spaces through a series of
results ending with Proposition 5.6. Then, we proceed with the desired comparison: in Subsec-
tions 5.2, 5.3, and 5.4, we show that the notions developed in [4], [31], and [17] to treat Markov
transition semigroups can be reintepreted in our framework.

Section 6 applies the results of to Markov transition semigroups. This is done, in Subsection
6.1, in the space of bounded continuous functions endowed with the topology 7 7 defined in Sec-
tion 5. Finally, in Subsection 6.2, we treat the case of Markov transition semigroups associated
to stochastic differential equations in Hilbert spaces.

2 Notation

(N1) Troughout the paper, X,Y will denote Hausdorff locally convex topological vector spaces.
(N2) The topological dual of a topological vector space X is denoted by X *.

(N3) If X is a vector space and I’ is a vector space of linear functionals on X separating points in
X, we denote by o(X,I') the weakest locally convex topology on X making continuous the
elements of T



(N4) The weak topology on the topological vector space X is denoted by 7., i.e., T, = 0 (X, X ™).

(N5) If X and Y are topological vector spaces, the space of continuous operators from X into Y
is denoted by L(X,Y), and the space of sequentially continuous operators from X into Y
(see Definition 3.1) is denoted by £y(X,Y). We also denote L(X) := L(X,X) and %(X) =
Ly(X,X).

(N6) Given a locally convex topological vector space X, the symbol &x denotes a family of semi-
norm on X inducing the locally convex topology.

(N7) E denotes a metric space; & := %(F) denotes the Borel o-algebra of subsets of E .

(N8) Given the metric space E, ba(E) denotes the space of finitely additive signed measures with
bounded total variation on &, ca(E) denotes the subspace of ba(E) of countably additive
finite measure, and ca*(E) denotes the subspace of ca(E) of positive countably additive
finite measures.

(N9) Given the metric space E, we denote by B(x,r) the open ball centered at x € E and with
radius r and by B(x,r] the closed ball centered at x and with radius r.

(N10) The common symbol #(E) denotes indifferently one of the spaces By(E), Cp(E), UCy(E),
i.e., respectively, the space of real-valued bounded Borel / continuous and bounded / uni-
formly continuous and bounded functions defined on E.

(N11) On #(E), we consider the sup-norm |f | := sup,cg |f(x)|, which makes it a Banach space.
The topology on .#(E) induced by such norm is denoted by 7.

(N12) On #(E), the symbol 7 denotes the topology of the uniform convergence on compact sets.

(N13) By S(E), we denote the topological dual of (#(E),|-|w) and by |-|»&): the operator norm
in L(E)5,.

We make use of the conventions inf@ = +o00, sup® = —oo, 1/oo =0.

3 C(y-sequentially equicontinuous semigroups

In this section, we introduce and investigate the notion of Cy-sequentially equicontinuous semi-
groups on locally convex topological vector spaces. Hereafter, X and Y denote Hausdorff locally
convex topological vector spaces and £y, Py denote families of seminorms inducing the topology
on X, Y, respectively.

3.1 Definition and preliminaries

We first recall the notion of sequential continuity for functions and define the notion of sequential
equicontinuity for families of functions on topological spaces.

Definition 3.1. Let A, B be Hausdor{f topological spaces.

(i) A function f: A — B is said to be sequentially continuous if, for every sequence {x,},en con-
verging to x in A, we have f(x,)— f(x) in B.

(ii) If B is a vector space, a family of functions & = {f,: A — B},c.s is said to be sequentially
equicontinuous if for every x € A, for every sequence {x,}neNn converging to x in A and for
every neighborhood U of 0 in B, there exists n € N such that f,(x,) € fi(x)+ U for every 1€ .¥
and n=n.

If B is a locally convex topological vector space, then Definition 3.1(ii) is equivalent to

{xptrencB, x, —xin B = lim supq(fi(x,)—f(x))=0, VqeP;g, 3.1)
n—+oo =R

4



where &g is a set of seminorms inducing the topology on B. The characterization of sequential
continuity (3.1) will be very often used throughout the paper.
We define the vector space

Zo(X,Y)={F: X —Y s.t. F is linear and sequentially continuous}.
We will use Zp(X) to denote the space £y (X,X). Clearly, we have the inclusion
L(X,Y)c %(X,Y). (3.2)
The proof of the following proposition can be found in [16, Prop. 3.5].
Proposition 3.2. Let F € 4y(X,Y). Then
(i) F is a bounded operator;
(it) F maps Cauchy sequences into Cauchy sequences.
We now introduce the notion of Cy-sequentially (locally) equicontinuous semigroups.

Definition 3.3 (Cy-sequentially (locally) equicontinuous semigroup). A family of linear operators
(not necessarily continuous)
T:={T;: X - X}

is called a Cy-sequentially equicontinuous semigroup on X if the following properties hold.

teR*

(i) (Semigroup property) To =1 and Ty+s =TT for all t,s = 0.
(it) (Co- or strong continuity property) lim;_o+ Tyx = x, for every x € X.
(iii) (Sequential equicontinuity) T is a sequentially equicontinuous family.
The family T is said to be a Cy-sequentially locally equicontinuous semigroup if (iii) is replaced by

(ii1)" (Sequential local equicontinuity) {Tt}ieo,.r] is sequentially locally equicontinuous for every
R>0.

Remark 3.4. The notion of Cy-sequentially (locally) equicontinuous semigroup that we introduced
is clearly a generalization of the notion of Cy-(locally) equicontinuous semigroup considered, e.g.,
in [35, Ch. IX], [23]. By Proposition A.2 the two notions coincide if X is metrizable. In order to
motivate the introduction of Cy-sequentially equicontinuous semigroups, we stress two facts.

(1) Even if a semigroup on a sequentially complete space is Co-(locally) equicontinuous, proving
this property might be harder than proving that it is only Cy-sequentially equicontinuous. For
instance, in locally convex functional spaces with topologies defined by seminorms involving
integrals, one can use integral convergence theorems for sequences of functions which do not
hold for nets of functions.

(2) The notion of Cg-sequentially equicontinuous semigroup is a genuine generalization of the
notion of Co-equicontinuous semigroup of [35], as shown by Example 3.26.

As for Cy-semigroups in Banach spaces, given a Cy-sequentially locally equicontinuous semi-
group T', we define

T _
@(A):z{xeX:El lim % xeX}.
h—0* h

Clearly, 2(A) is a linear subspace of X. Then, we define the linear operator A: 2(A) — X as
Thx—x

Ax:= lim

m ——, x€D(A),

and call it the infinitesimal generator of T'.



Proposition 3.5. Let T := {T;: X — X};er+ be a Co-sequentially locally equicontinuous semigroup.
(i) For every x € X, the function Tx:R" — X, t — T;x, is continuous.

(it) If T is sequentially equicontinuous, then, for every x € X, the function Tx :R* — X, t — Tyx,
is bounded.

Proof. (i) Let {t,}nen € RT be a sequence converging from the right (resp., from the left) to ¢ € R.
By Definition 3.3(i), we have, for every p € #x and x € X,

p(Ty x—Tix) = p(T{(Ty,—tx—x)) (resp., p(Ty, x —Tix) = p(Ts, (T—t,x —x))).

By Definition 3.3(ii), {Tt,—¢x — x}nen (resp. {Ts—¢,x — x}nen) converges to 0. Now conclude by using
local sequential equicontinuity and (3.1).
(ii) This is provided by Proposition A.1(ii7). |

As well known, unlike the Banach space case, in locally convex spaces the passage from Cp-
locally equicontinuous semigroups to Cg-equicontinuous semigroups through a renormalization
with an exponential function cannot be obtained in general (see Examples 3.23 and 3.24 in Sub-
section 3.4). Nevertheless, we have the following partial result.

Proposition 3.6. Let 1 denote the locally convex topology on X and let |-|x be a norm on X.
Assume that a set is T-bounded if and only if it is |- |x-bounded. Let T be a Cy-sequentially locally
equicontinuous semigroup on (X, 7).

(i) If there exist « € R and M =1 such that
ITelLx 1100 < Me®™,  VteRT, (3.3)

then, for every A > a, the family {e MT: (X,7) — (X, T)}er+ is @ Co-sequentially equicontinu-
ous semigroup.

(ii) If (X,|-|x) is Banach, then there exist a € R and M =1 such that (3.3) holds.

Proof. (i) Let A > a and let {x,},en be a sequence converging to 0 in (X,7). Then {x,},en iS
bounded in (X, ), thus, by assumption, also in (X, |-|x). Set N :=sup,n|x,|x and let p € Zx ;).
Then

supp(e_“Ttxn) < sup p(e_’“Ttxn) + supp(e_’uTtxn)

teR* 0<t<s t>s
< -t (a—A)s
< sup p(e " Tx,)+Lye MN,
0<t<s

where L, = sup,cx\ (o P(x)/|x|x is finite, because |- |x-bounded sets are 7-bounded. Now we can
conclude by applying to the right hand side of the inequality above first the limsup,,_, ,, and con-
sidering that T is a Cy-sequentially locally equicontinuous semigroup on (X, 1), then the limg_, ;o
and taking into account that 1 > a.

(i1) By assumption, the bounded sets of (X,|-|x) coincide with the bounded sets of (X, 7).
By Proposition 3.2(1), we then have %,((X,7)) c L((X,]|-|x)). In particular T; € L((X,]-|x)), for all
t € R*. Now, by Proposition 3.5(i), the set {Tsx}c[0 ,1 is compact in (X, 7) for every x € X and ¢( > 0,
hence bounded. We can then apply the Banach-Steinhaus Theorem in (X, |-|x) and conclude that
there exists M = 0 such that |T;|r(x,..x)) <M for all ¢ € [0,#9]. The conclusion now follows in a
standard way from the semigroup property. |



From here on in this subsection and in Subsections 3.2-3.3, unless differently specified, we
will deal with Cy-sequentially equicontinuous semigroups and, to simplify the exposition, we will
adopt a standing notation for them and their generator, i.e.,

o T ={T;};cr+ denotes a Cy-sequentially equicontinuous semigroup;

¢ A denotes the infinitesimal generator of T'.

Also, unless differently specified, from here on in this subsection and in Subsections 3.2-3.3,
we will assume the following

Assumption 3.7. For every x € X and A > 0, there exists the generalized Riemann integral in X (")

R(A)x = f
0

Remark 3.8. By Proposition 3.5, the generalized Riemann integral (3.4) always exists in the
sequential completion of X. In particular, Assumption 3.7 is satisfied if X is sequentially complete.

+

(o.0)
e MT,xdt. (3.4)

For every p € Px, and every A, 1 € (0, +00), we have the following inequalities, whose proof
is straightforward, by triangular inequality and definition of Riemann integral, and by recalling
Proposition 3.5:

+00
pRN)x—y) Sfo e_’”p(Ttx—/ly)dt, Vax,ye X (3.5)

+00 N
p(RA)x—R(A)x) < f le ™ — M| p(T,x) dt, VxeX. (3.6)
0

Proposition 3.9. (i) For every A >0, the operator R(1): X — X is linear and sequentially con-
tinuous.

(ii) For every x € X, the function (0,+00) — X, A — R(A)x, is continuous.

Proof. (i) The linearity of R(A) is clear. It remains to show its sequential continuity. Let {x,},en <
X be a sequence convergent to 0. Then, for all p € Py,

+o0o
lim p(RA)x,)< lim f e_’“p(Ttxn)alt=/l_1 lim supp(T;x,)=0
n—+oo n—+oo 0

n—+oo teR*

where the last limit is obtained by sequential equicontinuity and by recalling (3.1).
(ii) For p € %, x € X, 1,1 € (0, +00), by (3.6),

+00 N +00 ~
p(RWx—R()x) < f le = — e~ M| p(T,x)dt < sup p(T,x) f le =M —e Mgt
0 reR* 0

The last integral converges to 0 as A — A, and we conclude as sup,ep+ p(Trx) < +00 by Proposition
3.5(i1). |

IThat is, for every a = 0, the Riemann integral f(‘f e MTyxdt exists in X, and the limit f0+°°e_’”Ttxdt =
limg— 400 J§ e M Tyxdt exists in X.



3.2 Generators of Cy-sequentially equicontinuous semigroups

In this subsection we study the generator A of the Cy-sequentially equicontinuous semigroup 7'.

Recall that a subset U of a topological space Z is said to be sequentially dense in Z if, for
every z € Z, there exists a sequence {u,},eny € U converging to z in Z. In such a case, it is clear
that U is also dense in Z.

Proposition 3.10. 2(A) is sequentially dense in X.
Proof. Let A >0 and set v) :=AR(1)e X. By (A.1),

+00
ThR(/l)x=f e MTy xdt € X, VxeX.
0

Then, following the proof of [35, p. 237, Theorem 1](*), we have

Thyrx—ypx _ eM -1

h A h
- - (W;Lx—/lf e_/”Ttxdt)—zf e MTxdt € X, vxeX.
0 0

Passing to the limit for A~ — 0%, we obtain

T —
lim YA TVAY_jx-x) € X, VxeX.
h—0* h
Then w)x € 2(A) and
Avx=My—-Dx € X, VxeX. 3.7

For future reference, we notice that this shows, in particular, that
Im(R(A) c2(A). (3.8)
Now we prove that

lim yj x=x« VxeX, (3.9)

A—+00

which concludes the proof. By (3.5), we have
+o0o
pyrx—x)=ApRN)x - A1) < f /le_Atp(Ttx —x)dt VxeX, VpePx.
0

By Proposition 3.5(ii), we can apply the dominated convergence theorem to the last integral above
when A — +o0o. Then we have

pyrx—x)—0, VxeX, VpePyx,
and we obtain (3.9) by arbitrariness of p € &2x. |

Proposition 3.11. Let x € 2(A). Then

(1) Tix€D(A) for all teR*;

(it) the map Tx: Rt — X, t— Tx is differentiable;
(iit) the following identity holds

d
aTtx = ATtx = TtAx, VteR™. (3.10)

21n the cited result, X is assumed sequentially complete. However, the completeness of X is used in the proof only
to define the integrals. In our case, existence for the integrals involved in the proof holds by assumption.




Proof. Let x € 2(A). Consider the function A : Rt — X defined by

T, -1 ,
72 £h#0

A(h)::{ pow R
A(0) = Ax.

This function is continuous by definition of A. Then we have

T Ax =T, ’}ir61+ A(h) = hlin& T:A(h) = }llirg+ M’ VteR",
which shows that (i) holds and that
T, Ax=AT;x, VteR*.
The rest of the proof follows exactly as in [35, p. 239, Theorem 2]. |

We are going to show that the infinitesimal generator identifies uniquely the semigroup T'.

Theorem 3.12. Let S be a Cy-sequentially equicontinuous semigroup on X with infinitesimal
generator Ag. If Ag =A then S=T.

Proof. For t >0 and x € 2(A), consider the function f:[0,t] - X, s — T;_sSsx. By Proposition
3.11 and Lemma A.4, f'(s) = 0 for all s € [0,¢], and then T;x = f£(0) = f(¢) = S;x. Since 2(A) is
sequentially dense in X and the operators T, S; are sequentially continuous, we have T;x = S;x
for all x € X, and we conclude by arbitrariness of ¢ > 0. |

Definition 3.13. Let 2(C) c X be a linear subspace. For a linear operator C: 2(C) — X, we define
the spectrum oo(C) as the set of A € R such that one of the following holds:

(i) A—C is not one-to-one;
(i) Im(A-C)#X;
(iii) there exists (A—C)~L, but it is not sequentially continuous.

We denote po(C) =R\ 0o(C), and call it resolvent set of C. If A € po(C), we denote by R(A,C) the
sequentially continuous inverse (A—C) L of A-C.

Theorem 3.14. If A >0, then A€ po(A) and R(1,A) = R(A).

Proof. Step 1. Here we show that 1 — A is one-to-one for every A > 0. Let x € 2(A). By Propo-
sition 3.11, for any f € X*, the function F: R* - R, ¢ — f(e"”Ttx) is differentiable, and F'(¢) =
fe™MTy(A - )x). If (A — )x = 0, then F is constant. By Proposition 3.5(ii), F(t) — 0 as t — +oo,
hence it must be F' = 0. Then f(x) = F(0) = 0. As f is arbitrary, we conclude that x = 0 and,
therefore, that A — A is one-to-one.
Step 2. Here we show that 1 — A is invertible and R(1,A) = R(A), for every 1 > 0. By (3.8) and
3.7,
A-ARN)=1I (3.11)

which shows that A— A is onto, and then invertible (by recalling also Step 1), and that (1—A)™! =
R(Q).
Step 3. The fact (A — A)~! € ZLy(X) follows from Step 2 and Proposition 3.9(). |

Corollary 3.15. The operator A is sequentially closed, i.e., its graph Gr(A) is sequentially closed
in X xX.



Proof. Observe that (x,y) € Gr(A) if and only if (x,x — y) € Gr(I — A), and hence if and only if
(x—y,x) € Gr(R(1,A)). As R(1,A) € %)(X), then its graph is sequentially closed in X x X, and we
conclude. |

Corollary 3.16.
(i) AR(A,A)x=AR(1,A)x —x, for all A >0 and x € X.
(i) R(A,A)Ax=AR(A,A)x, for all A>0 and x € 2(A).
(iit) (Resolvent equation) For every A >0 and u>0,

R(A,A)—R(u,A) = (u— DR\, A)R(i, A). (3.12)

(iv) Forevery x€ X, limy_ o AR(A,A)x = x.

Proof. (i) It follows from (3.11).
(i) By (i) and considering that x € 2(A), we can write

AR, A)x =AR(A1,A)x —x=AR(1,A)x —R(1,A) (A -A)x =R(A,A)Ax.

(ii1) It follows from (i) by standard algebraic computations.
(iv) This follows from (3.9) and from Theorem 3.14. [ |

Remark 3.17. The computations involved in the proof of Corollary 3.16(iii) require only that
A:2(A)c X — X is a linear operator and A, € po(A).

3.3 Generation of Cy-sequentially equicontinuous semigroups

The aim of this subsection is to prove the following generation theorem for Cgy-sequentially
equicontinuous semigroups, in the spirit of the Hille-Yosida theorem stated for Cy-semigroups
in Banach spaces. In order to implement the classical arguments (with slight variations due to
our “sequential continuity” setting), and, more precisely, in order to define the Yosida approxima-
tion, we need the sequential completeness of the space X.

Theorem 3.18. Let A: 2(A) c X — X be a linear operator. Consider the following two statements.
(i) A is the infinitesimal generator of a Cy-sequentially equicontinuous semigroup T on X.
(i) Aisa sequentially closed linear operator, 2(4) is sequentially dense in X, and there exists

a sequence Aplnen € po(A), with A, — +oo, such that the family {(AnR(ﬂn,A))m} N is
n,me

sequentially equicontinuous.
Then (i)=(i1). If X is sequentially complete, then (ii)=(i).

In order to prove Theorem 3.18, we first need to introduce a locally convex topology on the
space Zp(X), as follows. Let B be the set of all bounded subsets of X. By Proposition 3.2(i), the
quantity

pq,p(F):=supq (Fx) (3.13)
xeD

is finite for all F' € £y(X), D € B, and q € Zx. Given D € B and q € &y, (3.13) defines a seminorm
in the space Zy(X). We denote by £ ;(X) the space Z£y(X) endowed with the locally convex
vector topology 7, induced by the family of seminorms {p4 p}gezy, DeB:

Lop(X) = (Lo(X),Tp).
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It is clear that 7, does not depend on the choice of the family £22x inducing the topology of X.
Since B contains all singletons {x},cx and X is Hausdorff, also £ ;(X) is Hausdorff. The proof of
the following proposition can be found in [16, Prop. 3.9].

Proposition 3.19. (i) If X is complete, then £, (X)) is complete.
(it) If X is sequentially complete, then £ (X) is sequentially complete.
Lemma 3.20. Let A1,...,A; be strictly positive real numbers. Then
p((ﬁAiR(Ai,A))x)sts%pp(Ttx), VpePx, VxeX.
i=1 eRr*

Proof. We can assume j = 1, since the general case follows immediately by recursion and by
Proposition A.3. For A >0 and x € X, by Theorem 3.14 we have

+00
pRA,A)x) < (f e_’”dt) sup p(Tyx) = A L sup p (Tix).
0 teR* teR*

Let f: R — R be an analytic function of the form f(¢) = Z;Z% a,t", with ¢ € R. We consider the
formal series

+00
fB@®) =) ant"B"
n=0

to define analytic functions fp with values in %,(X), associated with the real valued analytic
function f and the operator B € %y(X). The study of this object is deferred to the Appendix.

Notation 3.21. We denote !B := f5(t) when f(t) = e.

Proof of Theorem 3.18. (i)=(ii). The fact that A is a sequentially closed linear operator was
proved in Corollary 3.15. The fact that 2(A) is sequentially dense in X was proved in Proposition
3.10. The remaining facts follow by Lemma 3.20 and Theorem 3.14.

(i1)=(1). We split this part of the proof in several steps.

Step 1. Let {A,}en © po(A) be a sequence as in (ii)). For n € N, define J, = )LnR(/ln,A).
Observe that, for all x € @(A), itis (Jy, —Dx = R(/ln,A)Ax. By assumption, the family {J} },en is
sequentially equicontinuous, and then, for every x € 2(A) and p € Py,

lim p(Jy,x—x)= nlir&()p (R(/ln,A)Ax) < nlirglw At (supp (JkAx)) =0. (3.14)

n—+oo keN

Now let x € X. By assumption, there exists a sequence {x3}zen In 2(A) converging to x in X. We
have

p(Jgnx—x) Sp(x—xk)+p(JAnxk—xk)+p(J,1n(x—xk)), VEeN, VneN, Vp e Px.

By taking first the limsup in n and then the limit as 2 — +00 in the inequality above, and recalling
(3.14) and the sequential equicontinuity of {J} },en, We conclude

lim J) x=x, VxeX. (3.15)

n—+oo

Step 2. Here we show that, for te Rt and n e N, Ti”) = etAJAn is well-defined as a convergent

series in £ 4(X), and that {Tgn)} ter* nen 18 sequentially equicontinuous. Taking into account that
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AJM = An(J3, —I), we have (as formal sums) Tgn) = A% = otJ1n =D Since {J/”le }ren 18 assumed

to be sequentially equicontinuous, by Proposition A.9(7), T;" )

in Zp(X), and

is well-defined as a convergent series

Tin) — o thnl pthnda, (3.16)

Hence, using Proposition A.9(ii), the family {T;n)}tew is a Cy-sequentially locally equicontinuous
semigroup for each fixed n € N. On the other hand, by (3.16) and by Lemma A.6, we have

supp (T;")x) =sup (e_m"p (em"‘hnx)) < sup p(J/Ile x), VpePx, VxeX.
neN neN n,keN "

As, by assumption, {Jie }nken is sequentially equicontinuous, this shows that {Tf‘n)}
sequentially equicontinuous.
Step 3. Here we show that the sequence {T;")x}neN is Cauchy for every t € R™ and x € 2(A).

teR* ,neN 18

First note that, since the family {R()Ln,A)}nEN is a commutative set (see (3.12) and Remark
3.17), also the family {J) },en is @ commutative set. Then A, (J,, —I) commutes with every
J),. Since the sum defining Tgm) is convergent in %, ,(X), we have Tim)J 2, = AnTgm) and
T§’"’T§”’ = Tgn)Tgm) for every m,n €N, t,s € R*. By Lemma A.4 and by the commutativity just
noticed, if x € X and ¢ € R*, the map F: [0,t] — X, s — Tg’f)s Ty, is differentiable and

t—-s— s

t t
T - Ty = f Fl(s)ds = f TV TMA (), - Jy, ) xds,
0 0

where the integral is well-defined by sequential completeness of X. We notice that J AHA =AdJ A
on 2(A). Then, from the equality above we deduce

t ~ ~
p(Tmx-T{Vx) < f p(TT (I, —In,) Ax)ds,  VxeD(h), Vpex,
0

t—s— s
and then
sup p (T;m)x— Tgn)x) <f sup p (Tin)Tg’”) (1, — J;Ln)Ax), Vi>0, Vxe D(A), Vp € Px.
t€l0,8] t,s€l0,2]
3.17)
Now observe that, by Proposition A.1(1) and Step 2, the family {T;m)Tgn)}tysew is sequentially

m,neN
equicontinuous, and then the term on the right-hand side of (3.17) goes to 0 as n,m — +oo,

because of (3.15). Hence, the sequence {Tg")x}neN is Cauchy for every t e R and x € 2(A).
Step 4. By Step 3 and by sequential completeness of X, we conclude that there exists in X

Tx:= lim TWx,  VteR", Vxe2(A). (3.18)
n—+oo

Moreover, by (3.17), the limit (3.18) is uniform in ¢ € [0, ], for every ¢ > 0.
Step 5. We extend the result of Step 4, stated for x € 2(A), to all x € X. Let £ >0 and let

{xr}ren © D(A) be a sequence converging to x in X. We can write
Ty =T = (T - T) o - )+ (T = T )y, Ve €108, Ym,n k€N,
Then, using Step 4, we have, uniformly for ¢ € [0, 7],

limsup sup p (Ti'")x - T;n)x) < limsup sup p ((T;m) - Tin)) (x — xp, ))

n,m—+o0o tE[O,f] n,m—>+oot€[0’f]
< sup p((Tim)—Tgn))(x—xk)), VkeN, Vp e Px.

n,meN
tel0,£]
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The last term goes to 0 as £ — +o00, because of sequential equicontinuity of the family {T;" )}n eNLteR*
(Step 2).
Hence, recalling that 2(A) is sequentially dense in X, we have proved that that there exists
in X, uniformly for ¢ € [0, 7],
Tx:= lim T"x, VxeX. (3.19)
n—+oo

Step 6. We show that the family 7' = {T';};cg+ is a Co-sequentially equicontinuous semigroup
on X. First we notice that, as by Step 5 the limit in (3.19) defining T'x is uniform for ¢ € [0, 7],
for every £ > 0, then the function R* — X, ¢ — T,x, is continuous. In particular, Tyx — Tox as
t — 0* for every x € X. Moreover, To=1I as T(()”) =1 for each n € N. The linearity of T, and the
semigroup property come from the same properties holding for every Tgn). It remains to show
that the family 7' is sequentially equicontinuous. This comes from sequential equicontinuity of
the family {Tg”)} r+ (Step 2), and from the estimate

neN,te

p(Tix)<p (’f’tx - Tin)x) +p (Tg”)x) <p (Ttx - Tgn)x) + tselal;)p (Tg”)x) VteR", VneN,

by taking first the limit as n — +o0 and then the supremum over ¢.
Step 7. To conclude the proof, we only need to show that the infinitesimal generator of 7" is A.

Let p € Px and x € 2(A). By applying Proposition 3.11 to 7", we can write

¢
Tx—x= lim (T"x-x)= lim f TMAJ), xds,
n—-+oo n—+oo 0
where the integral on the right-hand side exists because of sequential completeness of X and
of continuity of the integrand function, and where the latter equality is obtained, as usual, by
pairing the two members of the equality with funtionals A € X* and by using (A.1).
Now we wish to exchange the limit with the integral. This is possible, as, by Step 2, Step 5,
and and (3.15), we have

lir}ra Tg" )J AnAx =T,Ax uniformly for ¢ over compact sets.
n—+oo

Then
t t
Tix—x= f lim Tg”)AJ,lnxds = f T:Ax.
0 0

n—+oo
Dividing by ¢ and letting ¢t — 0%, we conclude that x € 2(A), where A is the infinitesimal generator
of T', and that A = A on 2(A). But, by assumption, for some 1, > 0, the operator A, — A is one-
to-one and full-range. By Theorem 3.14, the same thing holds true for 1,, — A. Then we conclude
P(A)=P(A)and A=A. u

Remark 3.22. Let X be a Banach space with norm |-|x and let T be a sequentially complete locally
convex topology on X such that the t-bounded sets are the |-|x-bounded sets. Then, by Proposition
3.2(1), we have Ly((X,1)) < L(X,|-1x)). Let T be a Co-sequentially equicontinuous semigroup on
(X, 1) with infinitesimal generator A. By referring to the notation of the proof of Theorem 3.18, we
make the following observations.

(1) Since R(A,,,A) € Lo((X,1)) < LUX,|-|x)), then the Yosida approximations {T™},en, approxi-
mating T according to (3.19), are equicontinuous semigroups on the Banach space (X,]|-|x).
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(2) The fact that {(AnR(An,A))m}n,meN is sequentially equicontinuous implies that such a family
is uniformly bounded in L((X,|-|x)). Indeed, as the unit ball B in (X,|-|x) is bounded in
(X, 1), by Proposition A.1(iii) the set {(AnR(An,A))mx}n’meN,xeB is bounded in (X, 7). Hence, it
is also bounded in (X,|-|x), as we are assuming that the bounded sets are the same in both
the topologies. As a consequence, by recalling the Hille-Yosida theorem for Cy-semigroups in
Banach spaces, we have that T' is also a Co-semigroup in the Banach space (X,|-|x) if and
only if D(A) is norm dense in X.

3.4 Examples and counterexamples

In this subsection we provide examples to clarify some features of the notion of Cy-sequentially
(locally) equicontinuous semigroup.

First, with respect to the case of Cy-semigroups on Banach spaces, we notice two relevant ba-
sic implications that we loose when dealing with strong continuity and (sequential) local equicon-
tinuity in locally convex spaces. The first one is related to the growth rate of the orbits of the
semigroup, and consequently to the possibility to define the Laplace transform. The fact that T
is a Co-locally (sequentially) equicontinuous semigroup does not imply, in general, the existence
of a@ > 0 such that {e” % T;};cp+ is a Co-(sequentially) locally equicontinuous semigroup. We give
two examples.

Example 3.23. Consider the vector space X = C(R), endowed with the topology of the uniform
convergence on compact sets, which makes X a Fréchet space. Define T;: X — X by

Tip(s):=e’'p(s)  VseR, VteR', VpeX.

One verifies that T = {T;};cr+ is a Cy-sequentially locally equicontinuous semigroup on X (actu-
ally, locally equicontinuous, by Proposition A.2). On the other hand, for whatever a > 0, the family
{e” % T}ier+ is not sequentially equicontinuous. Indeed, one has that {e”* T f};er+ is unbounded
in X for every f not identically zero on (a, +00).

Example 3.24. Another classical example is given in [23]. Let X be as in Example 3.23, with the
same topology. For t € R", we define T := {T;};cr+ by

T;: X—-X, p— ot +-).

Then T is a Cy-sequentially locally equicontinuous semigroup on X (equivalently, T" is a Cyp-
locally equicontinuous semigroup, by Proposition A.2), but there does not exist any a > 0 such
that {e”* T} };ep+ is equicontinuous.

The second relevant difference with respect to Cy-semigroups in Banach spaces is that the
strong continuity does not imply, in general, the sequential local equicontinuity. The following
example shows that Definition 3.3(iii’) in general cannot be derived by Definition 3.3(i)-(ii), even
if Definition 3.3(ii) is strengthened by requiring the continuity of R* — X, ¢ — Tyx, x € X.

Example 3.25. Let X := C(R) be endowed with the topology of the pointwise convergence. Define
the semigroup T := {Tt};er+ by
T, X—-X, p— @ +-).

Then T; € £y(X) for all t € R™. It is clear that, for every ¢ € C(R), the map R* — X, t — Ty,
is continuous. Nevertheless, for each 7 > 0 we can find a sequence {@,},en © C(R) of functions
converging pointwise to 0 and such that

liminf sup [(T;¢,)(0)| =liminf sup |, ()| > 0.

i
=400 4e10,7] =400 4e10,7]
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Hence, T is not a Cy-sequentially locally equicontinuous semigroup. We observe that the same
conclusion holds true if we restrict the action of T' to the space Cp(R).

Referring to Remark 3.4(2), we provide the following example (°).

Example 3.26. Consider the Banach space ¢!, with its usual norm |x|; = ZZZ‘(’) |xz|, where x :=
{xp}ren € 1, and denote by 71 and 714, the |-|1-topology and the weak topology respectively. Define
Z :=¢' x ¢! and endow it with the product topology 7, ® 71. Let

B:Z— Z, (x1,x2) — (x1,%1).

We recall that ¢! enjoys Schur’s property (weak convergent sequences are strong convergent;
see [10, p. 85]). As a consequence, we have that Z is sequentially complete and B € Z,(Z). On
the other hand, as 7, is strictly weaker than 71, we have B ¢ L(Z). By induction, we see that
(I -B)* =(I — B) for each n = 1, and then {(I — B)"},,en is a family of sequentially equicontinuous
operators. By Proposition A.9, if we define T} := e!B-D for t € R*, then T := {T;}er+ is a Co-
sequentially equicontinuous semigroup on Z. Actually, we have e/~ = ¢~*(] — B) + B. However,
if t > 0, the operators e/ = ¢~ + (1 —e~*)B are not continuous on Z.

4 Relationship with bi-continuous semigroups

In this subsection we establish a comparison of our notion of Cy-sequentially equicontinuous
semigroup with the notion of bi-continuous semigroup developed in [25, 26]. The latter requires
to deal with Banach spaces as underlying spaces.

Definition 4.1. Let (X,|:|x) be a Banach space and let X* be its topological dual. A linear
subspace T €« X* is called norming for (X,|-|x) if |x|x = SUDyer, [ylx <1 [y(x)l, for every x € X.

We recall the definition of bi-continuous semigroup as given in [26, Def. 3] and [25, Def. 1.3].

Definition 4.2. Let (X,|-|x) be a Banach space with topological dual X*. Let T be a Hausdorff
locally convex topology on X with the following properties.

(i) The space (X,7) is sequentially complete on |-|x-bounded sets.
(ii) T is weaker than the topology induced by the norm |- |x.
(iit) The topological dual of (X,T) is norming for (X,|-|x).

A family of linear operators T ={T;: X — X}er+ < L((X,]|-|x)) is called a bi-continuous semigroup
with respect to 7 and of type a € R if the following conditions hold:

(iv) To=1I and T;Ts =Ty for every t,s € R*;
(v) for some M =0, |Ty|r(x,.)) < Me®, for every t e R*;
(vi) T is strongly T-continuous, i.e., the map R* — (X ,1), t — T:x is continuous for every x € X ;

(vii) T is locally bi-continuous, i.e., for every |-|x-bounded sequence {x,},en € X T-convergent to
x € X and every t >0, we have

lim Tix, =Tix in (X, 1), uniformly in t €[0,7].
n—+oo

3Example 3.26 could seem a bit artificious and ad hoc. In the next section we will provide another more meaningful
example by a very simple Markov transition semigroup (Example 6.4).
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The following proposition shows that the notion of bi-continuous semigroup is a specifica-
tion of our notion of Cy-sequentially locally equicontinuous semigroup in sequentially complete
spaces. Indeed, given a bi-continuous semigroup on a Banach space (X,|-|x) with respect to
a topology 7, one can define a locally convex sequentially complete topology 7’ > 7 and see the
bi-continuous semigroup as a Cy-sequentially locally equicontinuous semigroup on (X, 1’).

Proposition 4.3. Let {T}ep+ be a bi-continuous semigroup on X with respect to T and of type a.
Then there exists a locally convex topology T' with the following properties:

(i) T <1’ and 1’ is weaker than the |-|x-topology;
(ii) a sequence converges in T’ if and only if it is |- |x-bounded and convergent in 1;
(iii) (X,1') is sequentially complete;

(iv) T is a Co-sequentially locally equicontinuous semigroup in (X,1'); moreover, for every A > a,
{eMT Mer+ is a Co-sequentially equicontinuous semigroup on (X,t') satisfying Assump-
tion 3.7.

To prove Proposition 4.3 we need the following

Lemma 4.4. Let (X,|-|x) be a Banach space and let I' € X* be norming for (X,|-|x) and closed with
respect to the operator norm |-|x+. Then B c X is 0(X,I')-bounded if and only if it is |- |x-bounded.

Proof. As o(X,I') is weaker than the |- |x-topology, clearly |-|x-bounded sets are also o(X,I’)-
bounded. Conversely, let B ¢ X be 0(X,I')-bounded and consider the family of continuous func-
tionals

{Ap: T =R, y—y(b)ye,

By assumption, sup,cp 17(b)| < +oo for every y € I'. The Banach-Steinhaus theorem applied in the
Banach space (I', | - |x+) yields

M:=sup sup [y(b)|<+oo.
beB yel, |ylx+<1

Then, since I' is norming for (X, |-|x), we have

blx= sup |y(b)I<M<+00 VbEeB,
Yer, lylxx<1

and then B is | - |x-bounded. [ |

Proof of Proposition 4.3. Denote by X* the topological dual of (X, | |x), and let £2x be a set of
seminorms on X inducing 7. Denote by I" the dual of (X, 7). On X, define the seminorms

Ipy(®) =p@+Iy@), pePx, yel,

where T is the closure of I with respect to the norm |-|x-. Let 7’ be the locally convex topology
induced by the family of seminorms {g P,Y}p ey yeT
(1) Clearly T < v’ and 7’ is weaker than the | -|x-topology.
(i) As T < 7', the 7'-convergent sequences are 7-convergent. Moreover, as I is norming, T is
norming too. Then, by Lemma 4.4, every o(X,T)-bounded set is |-|x-bounded. In particular, every
convergent sequence in 7’ is | - |x-bounded.

Conversely, consider a sequence {x,},eny € X which is 7-convergent to 0 in X and |-|x-bounded

by a constant M > 0. To show that x, LR 0, we only need to show that y(x,) — 0 for every y € T.
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For that, notice first that the convergence to 0 with respect to 7 implies the convergence y(x,) — 0
for every y € . Take now y € ' and a sequence {yz}zen € I' converging to y with respect to |-|x-.
Then the estimate

ly(xn =) < My —yrlx+ +ye(xp)l  Vn,kEN,

yields
limsup |y(x,)| < M|y —yrlx+ Yk eN.

n—+oo
Since y; — v with respect to |-|x+ when 2 — +o00, we now conclude that sequence {x,},en converges
to 0 also with respect to 7’.

(ii7) A Cauchy sequence {x,},en in (X,7') is 7'-bounded. By Lemma 4.4, it is |- |x-bounded.
Clearly, {x,},en 1s also 7-Cauchy. Then, by Definition 4.2(1), {x,},en converges to some x in (X, 7).
Since the sequence is |-|x-bounded, by (ii) the convergence takes place also in 7’. This proves that
(X,7') is sequentially complete.

(iv) We start by proving that {T;};cr+ is a sequentially locally equicontinuous family of op-
erators in the space (X,7'). Let {x,},en be a sequence 7'-convergent to 0. By (i), {xnlnen is
| -|x-bounded and 7-convergent to 0. By Definition 4.2(vii)

lim sup p(Tix,) =0, VpePx, Vi>0. 4.1)

n=H04e10,4]
Assume now, by contradiction, that there exist R >0, pe Py, y € T, and ¢ > 0, such that

limsup sup qp(Tsx,) > €.

n—+o0o te[0,R]
Then, due to (4.1), there exist a sequence {f,},en < [0,R] convergent to some ¢ € [0,R] and a
subsequence of {x,},en, still denoted by {x,},en, such that

[y (T, xp)l = € VneN. 4.2)

By Definition 4.2(v), the family {T';};e[0 g is uniformly bounded in the operator norm. Then, by
recalling that {x,},en is |- |x-bounded, we have

M = sup T, xnlx < +o0.
neN

Let 7 € T be such that |§ —y|x- < e/(2M). Then

limsup [1(T¢, x)| < < + limsup (T, 1) = =, 4.3)
n—+00 " 2 n—+to0 " 2
where the last equality is due to (4.1) and to the fact that y € I' = (X,7)*. But (4.3) contradicts
(4.2). The fact that T is strongly continuous with respect to 7’ follows from (ii) and from Definition
4.2(v)-(vi).

Finally, by Definition 4.2(v) we can apply Proposition 3.6(i) and conclude that {e *T};cg+ is
a Cy-sequentially equicontinuous semigroup on (X,1’) for every A > a. Due to part (iii), such a
semigroup satisfies Assumption 3.7 (recall Remark 3.8). |

5 Relationship with semigroups on functional spaces

The aim of this section is to develop the theory of the previous section in some specific functional
spaces. Throughout the rest of the paper, E will denote a metric space, & will denote the associ-
ated Borel o-algebra, and .#(E) will denote one of the spaces UC(E), Cy(E), Bp(E). We recall
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that (P(E), | |), where |- | is the usual sup-norm, is a Banach space. For simplicity of notation,
we denote by #(E)%, the dual of (#(E),||) and by |- | SEY, the operator norm in #(E),.

We are going to define on .#(F) two particular locally convex topologies. The motivation for
introducing such topologies is that they allow to frame under a general unified viewpoint some of
the approaches used in the literature of Markov transition semigroups. In particular, we are able
to cover the following types of semigroups.

1. Weakly continuous semigroups, introduced in [4] for the space UCy(E) with E separable
Hilbert space (an overview can also be found in [5, Appendix B], with E separable Banach
space).

2. m-semigroups, introduced in [31] for the space UCy(E), with E separable metric space.

3. Cy-locally equicontinuous semigroups with respect to the so called mixed topology in the
space Cy(E), considered by [17], with E separable Hilbert space.

5.1 A family of locally convex topologies on .#(FE)

In the following, by ba(E) we denote the space of finitely additive signed measures on (E,&) with
bounded total variation. The space ba(E) is Banach when endowed with the norm |-|; given by
the total variation and is canonically identified with (By(E)5, |- |B,&):,) (see [3, Theorem 14.4])
through the isometry

@: (ba(E),|-11) — (Bs(E), |- IBy@))s 1= P, (5.1

where

@u(f) ::fEfdy Vf eBy(E), (5.2)

with [ #d p interpreted in the Darboux sense (see [3, Sec. 11.2]).

We denote by ca(E) the space of elements of ba(E) that are countably additive. The space
(ca(E),|-|1) is Banach as well. If u € ca(E), then the Darboux integral in (5.2) coincides with the
Lebesgue integral.

For future reference, we recall the following result (see [29, Th. 5.9, p. 39]).

Lemma 5.1. Let v € ca(E) be such that [5 fdv =0 for all f e UCH(E). Then v=0.
Proposition 5.2. The space (ca(E),|-|1) is isometrically embedded into (¥ (E)5,|- | y(E);o) by
®: ca(E) - FS(E)S, p— Dy, 5.3)

where

O () = fE fdu,  VfeSE). (5.4)

Proof. It is clear that ® is linear.

Let peca(E). As |[Du(f)| < |fleolply for every f € S(E), then @, € F(E)* and |yl &) < |pl1.
To show that ® is an isometry it remains to show that [®,| &) = |ul1. Let p= ut —pu be the
Jordan decomposition of y, and let C* := supp(u™), C™ := supp(u~). Let € > 0. Then we can find a
closed set C < C* such that u*(C*\C}) <¢, and d(C},C7) > 0. Let f be defined by

d(x,C7)-d(x,C;)

VxeE.
dx,C)rdx, )  OF

fx):=
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Then f e UCH(E), f=1onC/, f=-10onC™, and |f|e = 1. Therefore,
f fd,uzf fdu* +f fdu* —f fdu =pf(CH—e+u (C7)=|uly —2e.
E ct CcH\C; C-
Then |®,| FE)y, =l —2e. We conclude by arbitrariness of ¢. [ |

Let P be a set of non-empty parts of E such that E = |UpcpP. For every P € P and every
peca(k), let us introduce the seminorm

ppu(f)=I[flp+

ffdu‘, VfeLE), (5.5)
E

where

[f1p :=sup|f(x)l.

xeP
Denote by 7p the locally convex topology on .#(E) induced by the family of seminorms

{ppu: PeP, pecalE)}.

Since E = Upep P, Tp is Hausdorff.

Let us denote by 7, the topology induced by the norm |- |, on #(E). Since the functional ®,
defined in (5.4) is Tp-continuous for every u € ca(E), and since pp  is To-continuous for every
P €P and every p € ca(E), we have the inclusions

o(F(E),ca(E))CTp C Teo. (5.6)

Observe that, when P contains only finite parts of E, then 7p = 0(#(E),ca(E)), because ca(E)
contains all Dirac measures. The opposite case is when E € P, and then 7p = 7.

Proposition 5.3. Let B c #(E). The following are equivalent.
(i) Bis o(F(E),ca(E))-bounded.
(it) B is tp-bounded.

(i) B is Too-bounded.

Proof. By (5.6), it is sufficient to prove that (i)=(iii). Let B be o(¥(E),ca(E))-bounded. By
Proposition 5.2, ca(E) is closed in #(E)},. Moreover, since ca(E) contains the Dirac measures, it
is norming. Then we conclude by applying Lemma 4.4. |

We now focus on the following two cases:
(a) P is the set of all finite subsets of E, and then 7p = 0(F(E), ca(E));
(b) P is the set of all non-empty compact subsets of E; in this case, we denote 7p by 7., i.e.,

7% = l.c. topology on #(E) generated by {px ,: K < E compact, u € ca(E)}. (5.7

The relationship between 7, T 7, and 7, where T denotes the topology on .#(E) defined by
the uniform convergence on compact sets of E, induced by the family of seminorms

{px =[-lx: K non-empty compact subset of E},

is investigated in [16, Sec.4.1]. In particular it is shown ([16, Prop. 4.6, Prop.4.12]) that the
(obvious) inclusions T¢ € Tz C T4 are equalities if and only if £ is compact. Also the proofs of
the following results, which will be used afterwards, can be found in [16, Sec. 4.1].
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Proposition 5.4. The following statements hold.
(i) If a net {f,},c.s is bounded and convergent to f in (F£(E),T ), then

sup|fileo < +00 and li{nfl =fin(FLE),T¢).
182

If either % =N or E is homeomorphic to a Borel subset of a Polish space, then also the converse
holds true.

(ii) If a net {f},c.s is bounded and Cauchy in (¥(E),t ), then

sup|fileo < +oo and {f}, is Cauchy in (¥£(E),T¢).
ey

If either ¥ =N or E is homeomorphic to a Borel subset of a Polish space, then also the converse
holds true.

Proposition 5.5. The following statements hold.

(i) If a net {f,},c.s is bounded and convergent to f in (¥ (E),0(F(E),ca(E))), then

sup|fileo <+o00 and limf, = f pointwise.
g L

If ¢ =N then also the converse holds true.
(it) If a net {f,},c.# is bounded and Cauchy in (¥ (E),0(F(E),ca(E))), then

suplfileo < +oo and {f(x)}, is Cauchy for every x € E.
184

If ¢ =N then also the converse holds true.
Proposition 5.6. The following statements hold.
(i) (Bp(E),0(By(E),ca(E))) and (By(E),T ) are sequentially complete.
(ii) Cp(E)is 1 g -closed in By(E) (hence, by (i), (Cp(E), T 7 ) is sequentially complete).

(iit) If E is homeomorphic to a Borel subset of a Polish space, then UCy(E) is dense in (Cp(E), T z).

5.2 Relationship with weakly continuous semigroups

In this subsection we first recall the notions of £ -convergence and of weakly continuous semi-
group in the space UCy(E), introduced and studied first in [4, 5] in the case of E separable Banach
space (%). So, throughout this subsection E is assumed to be a separable Banach space. We will
show that every weakly continuous semigroup is a Cy-sequentially locally equicontinuous semi-
group and, up to a renormalization, a Cy-sequentially equicontinuous semigroup on (UCy(E), T )
(Proposition 5.9).

The notion of % -convergence was introduced in [4, 5] for sequences. We recall it in its natural
extension to nets. A net of functions {f}},c. s c UCy(E) is said & -convergent to f € UC(E) if it is
|- loo-bounded and if {f}},c.# converges to f uniformly on compact sets of E, i.e.,

sup|fileo < +o0
€S (58)
li}n[ fi—flk =0 for every non-empty compact K c E.

4In order to avoid misunderstanding, we stress that [5] uses the notation C »(E) to denote the space of uniformly
continuous bounded functions on E, i.e. our space UCy(E). Also we notice that the separability of E is not needed
here for our discussion.
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In such a case, we write f, 2z, f. If E is separable, in view of Proposition 5.4(i), the convergence
(5.8) is equivalent to the convergence with respect to the locally convex topology 7 . In this
sense, Tz is a natural vector topology to treat weakly continuous semigroups (whose definition
is recalled below) within the framework of Cy-sequentially locally equicontinuous semigroups.

Definition 5.7. A weakly continuous semigroup on UCy(E) is a family T = {T;}ier+ of bounded
linear operators on (UCy(E),|- ) satisfying the following conditions.

(P1) To=1Iand T:Ts=T;,s for t,s € R*.
(P2) There exist M =1 and a € R such that |T;f oo < Me%|f|s for every t e RT, f e UC(E).

(P3) For every f € UCy(E) and every t > 0, the family of functions {T;f: E — R}ero.7 s equi-
uniformly continuous, i.e., there exists a modulus of continuity w (depending on t) such that

sup |T:f )= Tef N sw(§-¢'|p), V¢, & €E. (5.9)
tel0,1]

(P4) For every f e UCy(E), we have T;f Z, f as t — 0%; in view of (P2) the latter convergence is
equivalent to
tlir(r)th[th — {1k =0 for every non-empty compact K c E. (5.10)

(P5) If [ -z, f, then T:f, Z, T:f uniformly in t € [0,t] for every t > 0; in view of (P2), the latter
convergence is equivalent to

lim sup [T:f, —T:f1k =0 for every non-empty compact K cE, Vi e R*. (5.11)

n=404e10,4]

Lemma 5.8. Let C c X be sequentially closed, convex, and containing the origin, let t >0, and let
x€X. If Tyx € C for all t €10,£], then

t 1
fe_MTtxthZC, VYA >0. (5.12)
0

If Tix € C for all t e R* then,
1
RA)x e XC’ YA>0. (5.13)

Proof. We prove the first claim, as the second one is a straightforward consequence of it because
of the sequential completeness of C. Let £ > 0. The Riemann integral in (5.12) is the limit of a
sequence of Riemann sums {0(77%)};en of the form

By & Atk Lk
o(n") = Z e ity —t;_)Tax,
i=1 !
with 7% = {0= t’é < t’f <...< t},"/nk =} and |7%| — 0 as k — +o0, where |n*| := sup{|t; —t;_1]: i =

1,...,mp}. Then, by sequential closedness of C, we are reduced to show that o(n*) e %C for every
k €N. Denote

mp i
ay, = Z e Mi (tf’ - t’i"'_l), VEk eN.
i=1

Then
+00
0< ay <f e Mde=2"1, VkeN.
0

As o(*)/ay, is a convex combination of the elements {T,nx} L which belong to C by assump-

i=1,...m
tion, recalling that C is convex and contains the origin, we conclude o(7*) € a;,C %C, for every
k €N, and the proof is complete. |
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Proposition 5.9. Let T :={T;};er+ be a weakly continuous semigroup on UCy(E). Then T is a Co-
sequentially locally equicontinuous semigroup on (UCy(E),T ) and, for every A > a (where «a is
as in (P2)), {e MT}er+ is a Co-sequentially equicontinuous semigroup on (UCy(E), T z) satisfying
Assumption 3.7.

Conversely, if T is a Co-sequentially locally equicontinuous semigroup on (UCy(E),T %) satis-
fving (P3), then T is a weakly continuous semigroup on UCy(E).

Proof. Let f e UC(E). By (P4) and by Proposition 5.4(i), T:f — f in (UCy(E),T %) when t — 07,
This shows the strong continuity of T in (UCy(E),T 7).

Now let {f,,}nen be a sequence converging to 0 in (UCy(E), T ) and let ¢ € R*. By Proposition
5.4(1), it follows that f, Z,0. By (P5) we then have T:f, Z0 uniformly in ¢ € [0,£]. Using again
Proposition 5.4(i), we conclude that T is locally sequentially equicontinuous in (UCy(E),T 7).

By (P2) and by Proposition 5.3, we can apply Proposition 3.6(i) to T and conclude that {e T} ,p+
is a Cy-sequentially equicontinuous semigroup on (UCy(E),T 7).

We finally show that, for A > a, {e MT};er+ satisfies Assumption 3.7. Let a <A’ < A and
f € UCy(E). By Proposition 5.6, (Cp(E), 7% ) is sequentially complete. By Proposition 3.5, the
map

R* — (UCH(E), 1), t— e "' Tyf,

is continuous and bounded. It then follows that the Riemann integral R(A)f exists in Cy(E). We
show that R(1)f € UC(E). Since the Dirac measures are contained in (Cy(E),T %)*, by Proposi-

tion A.3 we have
+

RMF () = fo e MT,f(&)dt  VEEE.

On the other hand, by (P2), for every & > 0 there exists € R* such that

+00
supﬁ e MT,F(&)dt<e.
(eE Jit

Hence, to prove that R(1)f € UCy(E), it suffices to show that, for every { € R™,

i
f e MT,fdt e UC,(E). (5.14)
0

Let us define the set

C:= {g € Cyp(E): grSéllllj)g|g§.f(<f)—e§’(5')| < W(|5—5,|E)}’

)

where w is as in (5.9). Clearly C is a subset of UC}(E), it is convex, it contains the origin, and is
closed in (Cy(E), T ). By (5.9), {e"l/tth}te[o,f] c C. Hence, we conclude by Lemma 5.8 that

C vA>A,

to
-t
T:fdte
foe of P

which shows (5.14), concluding the proof of the first part of the proposition.

Now let T be a Cy-sequentially locally equicontinuous on (UCy(E), T ) satisfying (P3). We
only need to show that T verifies (P2), (P4), and (P5). Now, (P2) follows from Proposition 5.3
and Proposition 3.6, whereas (P4) comes once again by Proposition 5.4(i). Finally, (P5) is due to
Proposition 5.4(1) and to sequential local equicontinuity of 7. |
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5.3 Relationship with n-semigroups

In this subsection we provide a connection between the notion of 7-semigroups in UCp(E) intro-
duced in [31] and bounded Cy-sequentially continuous semigroups (see Definition 5.11) in the
space (UCH(E),c(UCy(E),ca(E))) (°). We recall that the assumption E Banach space was stand-
ing only in the latter subsection, and that in the present subsection we restore the assumption
that E is a generic metric space. We start by recalling the definition of 7-semigroup in UCy(E).

Definition 5.10. A n-semigroup on UCy(E) is a family T = {T+}ter+ of bounded linear operators
on (UCyH(E),| - |so) satisfying the following conditions.

(P1) To=1Iand TyTg =T, for t,s €eR".
(P2) There exist M =1, a € R such that |T:f oo < Me®|f | for every t e RY, f e UC(E).
(P3) Foreach (€ E and f € UCy(E), the map R — R, t — T;f(&) is continuous.

(P4) If a sequence {fn}nen € UCH(E) is such that

sup|fnloo < +00 and lim f,=Ff pointwise,
neN n—+oo

then, for every t € R,
lim T:f,=T:f pointwise.
n—+oo

Definition 5.11. Let X be a Hausdorff locally convex space. Let T := {T';};er+ < Lo(X) be a family
of sequentially continuous linear operators. We say that T is a bounded Cy-sequentially continu-
ous semigroup if

(i) To=Iand Ty, =T:Ts for all t,seR";
(ii) for each x € X, the map Rt — X, t — Tyx, is continuous and bounded.

By recalling Proposition 3.5, we see that Definition 3.3 is stronger than Definition 5.11. Let
T be a bounded Cy-sequentially continuous semigroup on X and let us assume that, for every

x € X, the Riemann integral
+oo

R)x = f e MT,xdt, (5.15)
0

(which exists in the completion of X, by Definition 5.11(i7)) belongs to X (this happens, for exam-
ple, if X is sequentially complete). Then, by an inspection of the proofs one easily sees that the
following results still hold: Proposition 3.6(ii); Proposition A.3; Proposition 3.9(ii); Proposition
3.10; Proposition 3.11; Theorem 3.14, except for the conclusion (1 —A)~1 € £y(X); Corollary 3.16.

To summarize, if the Laplace transform (5.15) of a bounded Cy-sequentially continuous semi-
group is well-defined, then the domain 2(A) of the generator A is sequentially dense in X and
A —A is one-one and onto for every A > 0.

We outline, however, that without the sequential local equicontinuity of 7' the proof of Lemma
A.4 does not work and consequently the proof of Theorem 3.12 does not work.

Proposition 5.12. T is a n-semigroup in UCy(E) if and only if {e”“Ty}icr+ is a bounded Cp-
sequentially continuous semigroup in (UCy(E),o0(UCy(E),ca(E))).

5Also in this case, in order to avoid misunderstanding, we stress that [31] uses the notation Cp(E) to denote the
space of uniformly continuous bounded functions on E, i.e., our space UCy(E). We also notice that in [31] the metric
space E is assumed to be separable, but, for our discussion, this is not needed.
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Proof. Let us denote o := oc(UCy(E),ca(E)). Let T be a n-semigroup in UC,(E). By Defini-
tion 5.10(P2),(P4) and Proposition 5.5(i), we have {e"* T;};ep+ € Lo((UCH(E),0)). By Definition
5.10(P2),(P3) and by Proposition 5.5(i), the map R* — (UCy(E),0), t — e *T;f is continuous for
every f € UCy(E). Moreover, by Definition 5.10(P2) and by Proposition 5.3, it is also bounded.
This shows that {e”* T} };ep+ is a bounded Cy-sequentially continuous semigroup in (UCy(E), o).

Conversely, let {e~* T };cp+ be a bounded Cy-sequentially continuous semigroup in (UCy(E), o).
By Proposition 5.3, for every f € UCy(E) the family {e”*T;f};cr+ is bounded in (UC(E),| - |so)-
By the Banach-Steinhaus theorem we conclude that there exists M > 0 such that

le™TylLwe, @,y <M  VteR",

which provides T' < L(UCy(E),| - |)) and (P2). Then, (P3) is implied by the fact that the map
Rt - (UC(E),0), t — e *'T;f, is continuous and that Dirac measures are contained in o. Finally,
(P4) is due to the assumption {e”*T;};er+ € Lo(UCy(E),0)) and to Proposition 5.5(). |

Remark 5.13. As observed, if the Laplace transform (5.15) of a bounded Cy-sequentially con-
tinuous semigroup in (UCy(E),0(UCy(E),ca(E))) is well-defined, several results stated for Cy-
sequentially equicontinuous semigroups still hold. Nevertheless, some other important results, as
the generation theorem, or the fact that two semigroups with the same generator are equal, cannot
be proved for bounded Cy-sequentially continuous semigroups within the approach of the previous
sections. Due to Proposition 5.12, this is reflected in the fact that, as far as we know, such results
are not available in the literature for n-semigroups.

5.4 Relationship with locally equicontinuous semigroups with respect to the
mixed topology

When E is a separable Hilbert space, in [17] the so called mixed topology (introduced in [34]) is
employed in the space Cp(E) to frame a class of Markov transition semigroups within the theory
of Cy-locally equicontinuous semigroups. The same topology, but in the more general case of E
separable Banach space, is used in [18] to deal with Markov transition semigroups associated
with the Ornstein-Uhlenbeck process in Banach spaces.

In this subsection, we assume that E is a separable Banach space and we briefly precise
what is the relation between the mixed topology and 7 5 in the space Cy(E), and between Cy-
locally equicontinuous semigroups with respect to the mixed topology and Cy-sequentially locally
equicontinuous semigroups with respect to 7_z .

The mixed topology on Cy(E), denoted by 7_4, can be defined by seminorms as follows. Let
K :={K,},en be a sequence of compact subsets of E, and let a :={a,},en be a sequence of strictly
positive real numbers such that a,, — 0. Define

PK.a(f) = suIN){an[f]Kn} Vf € Cy(E). (5.16)

Then pk 4 is a seminorm and 7_4 is defined as the locally convex topology induced by the family
of seminorms pk a, when K ranges on the set of sequences of compact subsets of E and a ranges
on the set of sequences of strictly positive real numbers converging to 0.

It can be proved (see [33, Theorem 2.4]), that 7_ is the finest locally convex topology on Cp(E)
such that a net {f},c.# is bounded in the uniform norm and converges to f in 7_4 if and only if it
is A -convergent, i.e., if and only if (5.8) is verified.

By Proposition 5.4(i), every sequence convergent in T_z is bounded and convergent uniformly
on compact sets, and then it is convergent in 7_». In [16, Prop. 4,23] it is also shown that 7 <7 _y.
So, we immediately obtain the following
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Proposition 5.14. A semigroup T is Cg-sequentially (locally) equicontinuous in (Cyp(E),T_4) if
and only if it is Cy-sequentially (locally) equicontinuous in (Cp(E), T z).

6 Application to Markov transition semigroups

In this section we apply our results to Markov transition semigroups in spaces of bounded and
continuous functions.
6.1 Transition semigroups in (Cy(E),T %)

Let g == {us(&,)};cp+ be a subset of ca*(E) and consider the following assumptions.
(eE

Assumption 6.1. The family p:={u;(&,)};cp+ < ca*(E) has the following properties.
(eE

(i) The family u is bounded in ca*(E) and po(&,T) = 1p(¢) for every ¢ € E and every T € 8.

(it) For every f € Cy(E) and t € RT, the map

E—R ¢ fE FEpelE, de) 6.1)

S continuous.

(iii) For every f € Cp(E), every t,s € R, and every ( € E,
f f@Eprss(E,dE) =f (f fE &, dE™) | us(E,de)).
E E\JE

(iv) For every t > 0 and every compact K c E, the family {u;(&,-): t €[0,£], & € K} is tight, i.e., for
every € >0, there exists a compact set Ko < E such that

ue(&,Ko) > (& ,E)— € Vte[0,7], VéeK.

(v) For every r > 0 and every non-empty compact K c E,

lim sup |y (¢,B(&,r))—1| =0, (6.2)
t—0* &eK

where B(¢,r) denotes the open ball B(&,r):={¢' e E: d(¢,&) <}

We observe that in Assumption 6.1 it is not required that p;(¢,E) =1 for every t e R*, € E,
i.e., the family g is not necessarily a probability kernel in (E,&). Assumptions 6.1(ii),(ii) can be
rephrased by saying that

Ti: CoB) — ColE), £~ [ FOpiC,d9)
is well defined for all £ € R* and T := {T};cg+ is a transition semigroup in Cy(E). If u is a proba-
bility kernel, then T is a Markov transition semigroup.

Proposition 6.2. Let Assumption 6.1 holds and let T :={T;}ser+ be defined as in (6.1). Then T is
a Cg-sequentially locally equicontinuous semigroup on (Cy(E),T 5 ). Moreover, for every a >0, the
normalized semigroup {e”“ T;};er+ is a Co-sequentially equicontinuous semigroup on (Cp(E),T %)
satisfying Assumption 3.7.
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Proof. Assumptions 6.1(7),(i1),(iiz) imply that T maps Cp(E) into itself and that it is a semigroup.
We show that the Cy-property holds, i.e., lim;_.o+ T;f = f in (Cy(E), T %) for every f € Cy(E). Let
M = sup;cp+ |1 (&, E)|. By Assumption 6.1(i), M < +oo and
¢eE
IT:floo = M|floo VfeCy(E), VteR". (6.3)

Let f € Cp(E). By (6.3) and by Proposition 5.4(i), in order to show that lim;_o+ T:f = f in
(Cp(E), T 5), it is sufficient to show that lim;_¢+[T:f — f1x = 0, for every K c E non-empty com-
pact. Let K c E be such a set. We claim that

lim sup|y:(¢,E)—1|=0. (6.4)
t—=0" geK
Indeed, let ¢ and Ko as in Assumption 6.1(iv), when ¢ = 1, and let r := sup¢ e <k, 4(¢,¢) + 1.

Then Ko < B(&,r) for every { € K. For t €[0,1] and ¢ € K, we have

|t (&, E) = 1] < |ue(§,E\NB(&, )| + |u(E,B(,r)) — 1]
< (&, EN\NKo)l + (&, B, r) - 1]
Se+|ul&,BE,r) - 1].

By taking the supremum over x € K, by passing to the limit as ¢ — 0%, by using (6.2), and by
arbitrariness of €, we obtain (6.4). In particular, (6.4) implies

lim sup | (&) — us(&, E)F ()] =0, (6.5)
i—0" cek

and then T;f — f in 7% as t — 0" if and only if

lim sup|T:f($) — (&, E)f ()] = 0. (6.6)
t—=0" geK

Again, let £ > 0 and K be as in Assumption 6.1(iv), when £ = 1. Let w be a modulus of continuity
for fik,. For 6 >0, ¢ €[0,1], and ¢ € K, we write

T F(©) - (&, E)F(O)] < fE FE) = FOllE, de) = f

KonB(¢

; f FE) = FOluE, de) + f ()= F(O)IuelE, dE)
KynB(&,0)° K(c)

<w(8)+2If loo (1e(§, B, 6)) + ).

5 IF &= FOluE,dS)

We then obtain
§u§|th(€)—ut(f,E)f(f)l < w(6)+2|f o (§u£ut(€,3(f,5)c)+8) V6 >0, Vte[0,1], Ve K.

By passing to the limit as ¢ — 0", by (6.2), by (6.4), and by arbitrariness of § and &, we obtain
(6.6).

We now show that {T'},c[g ;) is sequentially equicontinuous for every t>0. Let {fu}lnen be a
sequence converging to 0 in (C(E),T.7) and let £ > 0. By Proposition 5.4(1), {|fnlootnen is bounded
by some b > 0. Then, by (6.3), {T+f,}ter+ nen is bounded. To show that T:f, — 0 in (Cp(E), 7 %),
uniformly for ¢ € [0,£], it is then sufficient to show that

lim sup[T:fn,lg =0 VK c E non-empty compact.

n—=+04er0,4]
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Let € > 0 and K be as in Assumption 6.1(iv), when = 1. Then, for ¢ € [0,7], { € K, n €N, we have
I T fn ()] SfK |fn(f/)|,ut(f,df/)+ch |fn (&N (€,dE") < Mk, + be.
0 0

Since [f,]g, — 0 as n — +oo, by arbitrariness of ¢ we conclude sup;cjo 1[T:fnlxk — 0 as n —
+00. This concludes the proof that T' is a Cy-sequentially locally equicontinuous semigroup on
(Cp(E), T 5). Next, by Proposition 5.3 and by (6.3), we can apply Proposition 3.6 and obtain that,
for every a > 0, {e"*T}iep+ is Co-sequentially locally equicontinuous semigroup on (Cp(E), .z ).
Finally, by Remark 3.8 and Proposition 5.6(ii), we conclude that Assumption 3.7 holds true for
{e” " Ti}ieme. u

6.2 Markov transition semigroups associated to stochastic differential equa-
tions

Propositions 6.2 has a straightforward application to transition functions associated to mild so-
lutions of stochastic differential equations in Hilbert spaces. Let (U, |- |y7), (H,|-|x) be separable
Hilbert spaces, let (Q, %, {%}er+,P) be a complete filtered probability space, let @ be a positive
self-adjoint operator, and let W® be a U-valued ®@-Wiener process defined on (Q, %, {F}ier+,P)
(see [8, Ch. 4]). Denote by Lo(Ug, H) the space of Hilbert-Schmidt operators from Uy := QV2(U) (%)
into H, let A be the generator of a strongly continuous semigroup {S4(¢)}ser+ in (H, |- |z), and let
F.:H—-H,B: H— Lyo(Uy,H). Then, under suitable assumptions on the coefficients F' and B (e.g.,
[8, p. 187, Hypotehsis 7.1]), for every ¢ € H, the SDE in the space H

{dX(t) =AX(®)+FX®)dt+BX)dWt) te(0,T] ©6.7)

X(0)=¢,
admits a unique (up to undistinguishability) mild solution X(-,¢) with continuous trajectories (see

[8, p. 188, Theorem 7.2]), that is, there exists a unique H-valued process X(:,¢) with continuous
trajectories satisfying the integral equation

t t
X(t,8) = SA(B)E + f St —)F(X(s,8)ds + f SA(t—$)BX(s.0)dWs)  VteR™.  (6.8)
0 0

By standard estimates (see, e.g., [8, p. 188, Theorem 7.21(7)), for every p = 2 we have, for some
K, >0and @, €R,
E[IX( O] sKpe™ A +[EE)  V(t,&eR xH. (6.9)

Moreover, by [8, p. 235, Theorem 9.1],
(¢,8) — X(t,¢) is stochastically continuous. (6.10)
Proposition 6.3. Let [8, Hypothesis 7.1] hold and let X(-,&) be the mild solution to (6.7). Define
T:f (&) =E[f(X(,EN] VfeCy(H)VEeH, VteR?, (6.11)

Then T = {T}er+ is a Cy-sequentially locally equicontinuous semigroup in (Cy(H),T 3 ). Moreover,
{e ¥ T}ier is a Co-sequentially equicontinuous semigroup in (Cp(H),T 3 ) for every a > 0.

8The scalar product on Uy is defined by (u,v)y, = (Q‘l/zu,Q_l/ZwH.
"The constant in that estimate can be taken exponential in time, because the SDE is autonomous.
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Proof. Define
w (&, T)=P(X(¢,Eel) VteR", V¢ée H, VI € B(H). (6.12)

We show that we can apply Proposition 6.2 with the family p := {u:(¢, )}ep+ given by (6.12).
teH

The condition of Assumption 6.1(z) is clearly verified. The condition of Assumptlon 6.1(11) 1s
consequence of (6.10). The condition of Assumption 6.1(iii) is verified by [8, p. 249, Corollaries
9.15 and 9.16].
Now we verify the condition of Assumption 6.1(iv). Let £ > 0 and let K = E compact. By (6.10)
the map
R* x H — (ca(H),o (ca(H),Cy(H))), (t,&)— p(E,)

is continuous. Then the family of probability measures {u:(S, ) e)efo,71xm 18 0 (ca(H),Cy(H))-
compact. Hence, by [3, p. 519, Theorem 15.22], it is tight.

We finally verify the condition of Assumption 6.1(v). Let r > 0, let {¢,,},en € R be a sequence
converging to 0, and let {{,},en be sequence converging to ¢ in H. By (6.10) and recalling that
X(0,8) =¢, we get

nEElwﬂtn (&n,B(Gn,1)) = nl_lgloop('fn =X (tn,$n)lg <r)=0.

By arbitrariness of the sequences {t,},en, {Enlnen and of ¢, this implies the condition of Assump-
tion 6.1(v). |

We provide now a very basic example of a Cy-sequentially equicontinuous semigroup which
is not Cy-equicontinuous.

Example 6.4. Let H be a (non-trivial) separable Hilbert space with inner product (-,-). Let
Q € L(H) be a positive self-adjoint trace-class operator and let W€ be a @-Wiener process in H on
some filtered probability space (Q2, %, {F}ier+,P) (see [8, Ch. 4]). Let T = {T';};cr+ be defined by

Tof (€)= ELF(E + WO)] = fH F@Eu&,de)  Vf e CyH), Ve H, ViR,

where (¢, ) denotes the law of ¢ + WtQ . Then, by Proposition 6.3, T' is a Cy-sequentially locally
equicontinuous semigroup in (Cy(H), 7 ). We claim that T is not locally equicontinuous. Indeed,
if T was locally equicontinuous, for any fixed # > 0, there should exist L > 0, a compact set K < H,
and 11,...,M, € ca(H) such that

sup |T:f(0)|<L
te[0,7]

[f]

’) Vf e CylH). 6.13)

Let v € H\ {0} and let a := maxpcg |{v,h)|. Then, denoting by A; the pushforward measure of
10, -) through the application (v,-) (i.e., the law of the real-valued random variable (v, WtQ ), and
by v;, i =1,...,n, the pushforward measure of ; through the same application, inequality (6.13)

provides, in particular,
+o0o +00
f gdA| <L f gdv;
1 a

>

i=
where Cg ;([a, +00)) is the space of bounded continuous functions f on [a, +00) such that f(a)=0.
Then, by [32, p. 63, Lemma 3.9], every A; restricted to (a,+o0o) must be a linear combination of
the measures vi...,v, restricted to (a,+o00). In particular, choosing an arbitrary sequence 0 <
t1<...<tp <tp+1 =<1, the family {A¢|(g+00)};_1 .1 i linearly dependent. This is not possible,
as they are restrictions of nondegenerate Gaussian measures having all different variances.

sup
tel0,£]

, Vg e Cop(la,+00)), (6.14)
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A Appendix
FAMILIES OF SEQUENTIALLY EQUICONTINUOUS FUNCTIONS.

Proposition A.1. ForneNandi=1,...,n, let FV = {Ffi) X - X}Leyi be a family of sequentially
equicontinuous linear operators. Then the following hold.
(i) The family F ={FVF? ... F": X - X},

€I ine, IS sequentially equicontinuous.

(ii) The family F = {Ffll) +Fl(22) +... +Fl(:‘): X — Y}tlej1 g 1s sequentially equicontinuous.

(iit) The family & is equibounded, i.e., if D is a bounded subset of X, then {Ffii)x} ned, 1S
i_

_1,...,’n
. xeD
bounded in X.

Proof. See[16, Prop. 3.10]. ]

The following proposition clarifies when the notion of sequential equicontinuity for a family
of linear operators is equivalent to the notion of equicontinuity.

Proposition A.2. Let & :={F,: X — X},c.# be a family of linear operators. If % < L(X) is equicon-
tinuous, then &F c £y(X) and & is sequentially equicontinuous.

Conversely, if X is metrizable and & < £Ly(X) is sequentially equicontinuous, then & < L(X)
and & is equicontinuous.

Proof. The first statement being obvious, we will only show the second one.

Assume that & is sequentially equicontinuous and that X is metrizable. Since X is metriz-
able, we have Z)(X) = L(X). Assume, by contradiction, that &% is not equicontinuous. Since
the topology of X is induced by a countable family of seminorms {p,},en (see [28, Th. 3.35, p.
77]), it then follows that there exist a continuous seminorm ¢ on X and sequences {x,},en © X,
{tn}nen © F such that

sup pplx,) < %, qF, xp)>1, Vn eN.

=1,...,n

But then

lim x,=0 and liminf(sup q(len)) = liminfq(F, x,) =1,
n—+oo n—+oo £.9 n—+oo

which implies that & is not sequentially equicontinuous, getting a contradiction and concluding
the proof. |

TWO TECHNICAL RESULTS.

Proposition A.3. Let Assumption 3.7 holds. Let T c £y(X) be a Cy-sequentially equicontinuous
semigroup. If L € £Ly(X,Y), then R — Y ,x — LT;x is continuous and bounded. Moreover, for
every x € X, every a =0, and every A >0,

a a +00 +00
Lf e_MTtxdt=f e MLT,xdt  and Lf e_’”Ttxdt=f e MLT,dt, (A.1)
0 0 0 0

where the Riemann integrals on the right-hand side of the equalities exist in Y.
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Proof. Continuity of the map R — X, ¢t — LT;x, follows from sequential continuity of L and from
Proposition 3.5(1). By Proposition 3.5(ii), we have that {T;x};cr+ is bounded, for all x € X. From
Proposition 3.2(1), it then follows that {LTtac}te[R+ is bounded.

Let {n"*}zen be a sequence of partitions of [0,a] € R* of the form 7% := {0 = tg < t’{ <...< t’flk =
a}, with |7%| — 0 as 2 — 400, where |7%| == sup{lt;+1 —til: i =0,...,n; —1}. Then, by recalling
Assumption 3.7 and by continuity of Rt — X, t— T;x, we havein Y’

nk—l

a
[ e MTyxdt= lim Y e M Tyx(th,, —t5).
0 k—+o0 iz0 i
By sequential continuity of L we then have
a np—1 L
L f e MTyxdt= lim Y e MLTux @k  —t%). (A.2)
0 k—+o00 ;T i t !

Since R* — X, t — LT,x is continuous, equality (A.2) entails that R* — X, ¢ — e MLT,x is Rie-
mann integrable and that the first equality of (A.1) holds true.

The second equality of (A.1) follows from the first one and from sequential continuity of L, by
letting a — +o00 . |

Lemma A4. Let 0<a<b, f,g: (a,b) > LX), toe(a,db), and x € X. Assume that
(i) the family {f (t)}icar b IS Sequentially equicontinuous, for every a <a' <b'<b;
(ii) g()x: (a,b) — X is differentiable at ty;

(iii) f()g(to)x: (a,b) — X is differentiable at ty.

Then there exists the derivative of f(-)g(-)x: (a,b) = X at t =ty and

d d d
a [f@®)g@)x)] le=t, = a [f(®)g(Eo)x]lt=¢, + f(to)a[g(t)xllt:to-

Proof. For h € R\ {0} such that [to— |k|,2¢ + |h|] < (a,b), write

d
fo+h)g(to+h)x—f(to)g(to)x=f(to+h)|g(to+h)—g(to) - ha[g(t)x:”t:to

d
+hf(to+ h)a[g(t)x“t:to +(f(to+h)—f(to)) g(to)x
=:I1(h)+1Io(h)+I3(h).

Letting A — 0, we have h™1I5(h) — f(t0) % [g(t)x]ls=¢,x and A~ I3(h) — L[f(t)g(to)x]ls=s,. More-
over,

8(to+h)—g(to) d

p (h_lll(h)) < sup p (f(S)( A - a[g(t)x]lt:to)x) , VpePx,

selto—I|hl,to+IRl]

and the member at the right-hand side of the inequality above tends to 0 as A — 0, because of
sequential local equicontinuity of the family {f(s)}se(q,5) (part (i) of the assumptions) and because
of differentiability of g(-)x in #. |
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ANALYTIC %)(X)-VALUED FUNCTIONS.

Proposition A.5. Let X be sequentially complete and let B € Ly(X). Assume that the family
{Bn X-X }neN is sequentially equicontinuous. Let f: R — R be an analytic function of the form
f(@) =X R ant", with t € R. Then the following hold.

(i) The series
+00
f8(®):= ) ant"B" (A.3)
converges in £y (X) uniformly for t on compact sets of R.
(ii) The function fp: R— %y (X)), t — fB(t) is continuous.
(iit) The family {fB(t)}tE[—r -1 IS sequentially equicontinuous for every r > 0.
Proof. (i) ForO<n<m,pePx,D cX bounded, r>0,xe D, te[-r,r], we write

m
p ( Z akthkx

k=n

m +0oo . +0o0
< Z Iaklltlkp (ka) < (Z Iaklrk)supp (B‘x) < (Z Iaklrk) sup p(y). (A4)
k=n

k=n ieN k=n y€U;enBiD

Observe that, by Proposition A.1(iii), the supremum appearing in last term of (A.4) is finite. Then

+00
(Z Iaklrk) sup p(y) VneN (A.5)
k_

sup Pp.D Zakthk
y€Ui=0 BID

te[-r,r] k=n
shows that the sequence of the partials sums of (A.3) is Cauchy in % ;(X), uniformly for ¢ €
[—r,r], and then, by Proposition 3.19(iz), the sum is convergent, uniformly for ¢ € [-r,r].
(iz) This follows from convergence of the partial sums in the space C([-r,r], £ (X)) endowed
with the compact-open topology, as shown above.
(ii1) By continuity of p, estimate (A.4) shows that

sup p(fg(t)x)= sup lim p Zakthkx < Zlaklr supp(B’ ) VxeX,
te[-r,r] te[-r,r]tF0 =0 ieN

which provides the sequential equicontinuity of {fg(¢)};c_ - |

Lemma A.6. Let X be sequentially complete. Let B,C € £Lo(X) be such that {B"},en and {C™}en
are sequentially equicontinous. Let f(t) =Y. 1% ant™, g(t) = Y. b,t™ be analytic functions defined
on R. Then

+00

p(fB()gc(s)x) < (Z Ianlltln) (Z 16y, IISI”) sup p (B Clx ) VpePx, VxeX, Vt,seR, (A.6)
n=0 n=0 JEN

and the family {fB(£)gc(8)}s se[-r r] is sequentially equicontinuous for every r > 0.

Proof. By Proposition A.5 and by recalling that every partial sum Z?zoaitiBi is sequentially
continuous, we can write

+oom—+00

p(fB(t)gc(s)x)— lim lim p((ZaitiBi

m . .
(ijsJCJ)x) VpePx, VxeX, Vt,seR.
j=0

Then, we obtain (A.6) by the properties of the seminorms. The sequential equicontinuity of the
family {fB(t)g ()}t se[r -1 comes from (A.6) and Proposition A.1(7). [ |
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Proposition A.7. Let X be sequentially complete. Let B, C, f, g, as in Lemma A.6. We have the
following:

(i) (f+g)p=fp+gpand (fg)s=[BEB;

(ii) if BC = CB, then fp(t)gc(s) = gc(s)fB(t), for every t,s € R, and {fp(t)gc(8)}s se[r ] IS Sequen-
tially equicontinuous for every r > 0.

Proof. The proof follows by algebraic computations on the partial sums and then passing to the
limit. .

Lemma A.8. The map
Lop(X) x Lo p(X) —~ ZLop(X), (F,G)—FG,

is sequentially continuous.

Proof. Let (F,G) € Ly(X) x %p(X), and let D < X be bounded. Let {(F,,,G)},en be a sequence
converging to (F,G) in £ 5(X) x %y »(X) . Consider the set D' := U,nG,D. We have

supsup g(G,x) <supsupq((G, —G)x) +supqg(Gx) VqePx.
neN xeD neN xeD xeD

On the other hand, G, — G yields

supsupq((G, —G)x) =suppy,p(G, —G) < +oo, VqePx.

neN xeD neN

Then, combining with Proposition 3.2(i), we conclude that D’ is bounded.
Now fix g € Zx. For every n € N, we can write

0q.0(FG =F,G) < pg p(F(G =G )+ pg.p(F —Fp)Gp) < pg p(F(G —G )+ pg.p(F —F).

Now lim,—. 400 pg,p'(F — F,) = 0, because D' € B and F,, — F in % ,(X). Hence we conclude if we
show lim,, . ;o P, D(F(G —G,)) = 0. Assume, by contradiction, that there exist € > 0, {xz}zen < D,
and a subsequence {G,}zen, such that

qF(G—-Gp)xp) =€ VEkeN. (A.7)
Since
lim ¢'(G-Gy)xp) < lim pyp(G-Gy,)=0 Vq'e Py,
n—+oo n—-+oo
then {z := (G — Gp,x1)}ren is a sequence converging to 0 in X. By sequential continuity of F', we

have limy,_. .o, q(Fz) =0, contradicting (A.7) and concluding the proof. |

Proposition A.9. Let X be sequentially complete.
(i) Let B,C € %y(X) be such that BC = CB, and assume that the families {B"},en and {C™}hen
are sequentially equicontinous. Then, for every t,s € R,
(@) the sum eB+sC = Y %
) etB+sC — etBesC — esCetB.

converges in £ p(X);

(c) the family {e'B+sC}, se[_r.r] IS sequentially equicontinuous for every r > 0.

(ii) Let B € Ly(X) be such that the family {B™},en is sequentially equicontinous. Then {e'B},cp+
is a Cy-sequentially locally equicontinuous semigroup on X with infinitesimal generator B.
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Proof. (i) Let r >0 and t € [-r,r]. By standard computations, we have

i(BJTC)lti:

i i

n Bt .
2t

1=0

nBi

n Ci~ )
Zﬁtl)_z it

i=0 i=0 k=n—-i+1 k!

n Ck
Y —tk) : (A.8)
Let D c X be a bounded set. For x € D and p € #x, we have

nBii n Ckxk n n 1 il o
p(ZFt( Z Wt ))S: Z mrJ“p(BCx)

=0 k=n—-i+1 1=0k=n—-i+1
SR i vk
< 1A 14 )
s|X X oaar sup p, p (B'C).
1=0k=n—-i+1 i,keN

By Proposition A.1(i), the family {BiCk}i,keN is sequentially equicontinuous. Hence, by Proposi-
tion A.1(i11), we have sup; yen 0p,D (BiC*) < +0o. Moreover, Lebesgue’s dominated convergence
theorem applied in discrete spaces yields

n n 1

li —ritk .
R
So, we conclude
iBi : i ck ,
lim p,p —¢ —t*|]=0. (A.9)
noteo iz0 1 \p=nzis1 #!

On the other hand, by Lemma A.8,

n Bt . n (i n Bt . n (i
lim (Z _—'tl)(z %tl)z lim (Z Ftl) lim (Z %tl)=et3etc, (A.10)

notoo)iSo Ut i=0 i=0 n—too) i

where the limits are taken in the space £ ;(X). By (A.8), (A.9) and (A.10), we obtain

n (B+C)
lim Z( O i Bt (A.11)
n—>+ooi:0 l!

with the limit taken in % ,(X).
Now, let ¢ # 0 and |s| < |t[(®). Then {(£C)"}
by $C in (A.11), we have

.en 18 sequentially equicontinuous. By replacing C

lim i M = otBo(:0) _ etBeSC, (A.12)
n—+oo = 1!

where the limits are in £ ,(X). So we have proved (a). Properties (b) and (c) now follow from

(A.12) and from Proposition A.7(ii).

(ii) First we notice that e = I by definition. The semigroup property for {e’B},cp+ is given
by (i), which also provides the sequential local equicontinuity. Proposition A.5 provides the con-
tinuity of the map R* — X, ¢ — eBx, for every x € X. Hence, we have proved that {e!B};c+ is a
Co-sequentially locally equicontinuous semigroup. It remains to show that the infinitesimal gen-
erator is B. For h >0, define f(¢;h) := "' — 1 — ht. By applying (A.6) to the map R — R, ¢ — f(¢;h),
with B in place of B, and with C =1 and g =1, we obtain

(ehB—I
P\

x —Bx) =hp(f(1;R) < A f(1;h)sup p (B"x)

neN

and the last term converges to 0 as A — 0", because of sequential equicontinuity of {B"},en. This
shows that the domain of the generator is the whole space X and that the generator is B. |

81f |¢] < |s], we can exchange the role of B and C, by simmetry of the sums appearing in (A.12).
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