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ON THE REGULARITY OF THE DISTANCE NEAR
THE BOUNDARY OF AN OBSTACLE

PAOLO ALBANO

Abstract. We study the regularity of the Euclidean distance
function from a given point-wise target of a n-dimensional vector
space in the presence of a compact obstacle bounded by a smooth
hypersurface. It is known that such a function is semiconcave with
fractional modulus one half. We provide a geometrical explanation
of the exponent one half. Furthermore, under a natural (weak) as-
sumption on the position of the point-wise target relatively to the
obstacle, we show that there exists a point in the boundary of the
obstacle so that no better regularity result holds near such a point.
As a consequence of this result, we show that the Euclidean met-
ric cannot be extended to a tubular neighborhood of the obstacle,
as a Riemannian metric, keeping the property that the associated
distances coincide outside the obstacle.

1. Introduction and statement of the results

Let O ⊂ Rn be a closed obstacle bounded by a smooth hypersurface.
We study the distance function, d, from a given point k0 which does
not belong to the interior of O. Observe that d can be seen as a point-
to-point distance for a particular class of manifolds with boundary. We
are interested in the (global) optimal regularity of d near the boundary
of O. For this purpose, let us introduce the class of obstacles we deal
with, O.

We say that a set O ⊂ Rn belongs to the class O if there exists
open, bounded, and connected set Ω ⊂ Rn, with boundary of class C2,
such that O = Ω is the closure of Ω in Rn. For aesthetic reasons, we
also admit the case of Ω = ∅ (i.e. ∅ ∈ O). Let X be the connected
component of Rn \ O that contains k0.

Given a curve γ ∈ C1([0, 1];X), we define its length as

L(γ) =

∫ 1

0

|γ̇(t)| dt.
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(Here | · | stands for the standard Euclidean norm.) For every x, y ∈ X,
the distance between x and y is given by

(1.1) d(x, y) = inf
γ
L(γ),

where the infimum is taken over all the curves γ ∈ C1([0, 1];X) so that
γ(0) = x and γ(1) = y. Furthermore, for x ∈ X, we denote by

d(x) = d(x, k0)

the distance function of x from k0. We observe that

d(x, y) ≥ |x− y| and d(x) ≥ |x− k0|, ∀x, y ∈ X.

Remark 1.1. We notice that the distance function d can be seen as the
value function for a constrained minimum time problem with a point-
wise target k0. In particular, d is the viscosity solution of a suitable
boundary value problem for the eikonal equation (see, e.g., [8, Theorem
X.1])

(1.2) |Dd(x)|2 = 1 in X \ (∂O ∪ {k0}).
We recall that, in order to study the regularity of d, the appropriate

class of functions is the one of semiconcave functions with fractional
modulus.

Definition 1.1. Given a set U ⊂ Rn, we say that u : U −→ R is a
fractionally semiconcave function on U of exponent α ∈]0, 1], if
• u is locally Lipschitz continuous1 on U ,

and
• there exists C ∈ R such that

(1.3) λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ Cλ(1− λ)|x− y|1+α,

for any x, y ∈ U such that the line segment [x, y] is contained in U ,
and for every λ ∈ [0, 1].

In the case α = 1, u is called semiconcave with linear modulus.
We denote by SCα(U) the set of all the fractionally semiconcave func-
tions of exponent α in U .
Such a property can obviously be localized, in which case we refer to

the space SCα
loc(U). We recall that the following (interior) regularity

property which is a consequence of the fact that d is a viscosity solution
of equation (1.2) (see e.g. [9] and [1] for more general results).

Theorem 1.1. Let O ⊂ Rn be a closed set and let d be a (continuous)
viscosity solution of Equation (1.2). Then, d ∈ SC1

loc(X \ (∂O∪{k0})).
1We observe that, due to the fact that no assumption is made on the set U , the

Lipschitz continuity is not a consequence of (1.3).
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We point out that, in the above result, the only assumption on O is
that it is a closed set.

Throughout all this paper we assume

(H) O ∈ O and X is unbounded2.

Remark 1.2. We observe that we defined the distance function only
in the set X: for x ∈ Rn \ X there is no curve γ, joining x with
k0, such that γ(t) /∈ int(O), for every t, i.e. in Rn \ X the distance
function would be identically infinite. Furthermore, our requirement
that k0 belongs to the unbounded connected component of Rn \O forces
the fact that the presence of the obstacle is felt by the distance function.
On the other hand, one can easily construct examples of obstacles in
the class O such that, taking k0 in a bounded connected component of
Rn \Ω, we have that d(x) = |x− k0| on X. For instance, it suffices to

consider k0 = 0 ∈ Rn and O = B2(0) \B1(0).

The first result of the present paper is the following

Theorem 1.2. Under Assumption (H), let O be nonempty. Then,
d /∈ SC1

loc(X \ {k0}).

Remark 1.3. (1) As clarified by the example in Remark 1.2, in The-
orem 1.2, the assumption “ X unbounded” cannot be omitted.
(2) Theorems 1.1 and 1.2 show that the lack of regularity happens in
∂O. The failure of the linear semiconcavity is due to the behavior of
the length minimizing curves, which will be discussed in the sequel (see
Theorem 1.4 below).

We observe that, in the absence of the obstacle, d ∈ C∞(Rn \ {k0}).
Hence, Theorem 1.2 yields the following characterization:

Corollary 1.1. Assume (H). Then, d ∈ SC1
loc(X \ {k0}) if and only

if O = ∅.

We recall the following regularity result:

Theorem 1.3. Let O ∈ O. Then, we have that d ∈ SC
1
2
loc(X \ {k0}).

Remark 1.4. Theorem 1.3 is a special case of [4, Theorem 1.2], see
also [11, Formula (A3)]. We point out that, in the quoted papers, the
more general case of a Riemannian distance function is considered. We

2We recall that O ∈ O means that it is the closure of an open connected set
with boundary of class C2, Ω, the case Ω = ∅ is admitted. Furthermore, X is the
connected component of Rn \ Ω containing k0.
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also remark that in [4], it is assumed that k0 /∈ O and that Rn \O is a
connected set. In fact, the proof of Theorem 1.3 is a verbatim repetition
of the one of [4, Theorem 1.2].

One may wonder if Theorem 1.3 is optimal or if a “better” regularity
result may hold, for instance if d ∈ SCα

loc(X \ {k0}), for some α > 1/2.
Observe that for α, β ∈ [0, 1],

α > β =⇒ SCα
loc(U) ⊂ SCβ

loc(U).

In [4, Proposition 1.1], it is shown that, for O = B1(0) and k0 ∈
Rn \ O, d /∈ SCα

loc(X \ {k0}) for every α ∈]1/2, 1]. We recall that the
proof of this fact was mainly based on two ingredients: the symmetry
of the sphere (which permits a reduction to the dimension n = 2)
and the explicit knowledge of the geodesics in the circle. The idea
behind the proof of [4, Proposition1.1] is the construction of a level
curve intersecting the obstacle at a sort of “cuspidal” point, where a
blow-up of the curvature of the level curve occur. (Such a blow-up is
incompatible with d ∈ SCα

loc(X \ {k0}), for α ∈]1/2, 1].)
One of the motivating question for the present paper is to give a

geometrical meaning to the exponent 1/2 and, as a byproduct, we
obtain that, if X is unbounded, Theorem 1.3 provides the optimal
regularity for O ∈ O nonempty.

We recall that a curve γ : [0, 1] −→ X, with γ(0) = x and γ(1) = k0
is a minimizing curve if d(x) = L(γ). For x ∈ X \ {k0}, we denote by
Γ∗[x] the set of all the minimizing curves γ, parametrized by the arc
length, with γ(0) = x, i.e. d(γ(t)) = d(x)− t, for every t ∈ [0, d(x)].

Furthermore, we say that ∂O satisfies Condition (C) near x0 if there
are r > 0 and c0 > 0 so that, for each i = 1, 2, . . . , n− 1,

(1.4) λi(x) ≥ c0, ∀x ∈ Br(x0) ∩ ∂O.

(Here λi are the principal curvatures of ∂O.)
We observe that Condition (C) is a “nondegenerate” strict convexity

assumption near a given point x0.
Now, we are ready to relate the exponent 1/2 with the behavior of

the minimizing curves.
From a technical point of view, the next result is the core of our

proof of the lack of linear semiconcavity.

Theorem 1.4. Let O ∈ O be nonempty, let x1, x2 ∈ X \ {k0}, with
x1 ̸= x2, and let γi ∈ Γ∗[xi], i = 1, 2. Assume that γ1(t∗) = γ2(t∗), for
a suitable t∗ /∈ {0, d(x1), d(x2)}. Then d /∈ SC1

loc(X\{k0}). Suppose, in
addition, that ∂O satisfies Condition (C) near γ1(t∗) (= γ2(t∗)), then
d /∈ SCα

loc(X \ {k0}), for every α ∈]1/2, 1].



ON THE REGULARITY OF THE DISTANCE 5

In other words, if two minimizing curves intersect each other at a
point of ∂O (and such a point is not an endpoint for the curves), then
the function d fails to be semiconcave with linear modulus. Under a
”nondegenerate” convexity assumption on ∂O, 1/2 is the larger expo-
nent which does not exclude such an intersection of the minimizers.

Remark 1.5. We point out that if γ(t∗) is as in Theorem 1.4, due to
(2.12) below, the function d is differentiable at γ(t∗), i.e. the lack of
semiconcavity of the distance function and the presence of singularities
of d are two unrelated phenomena.

The following is the main result of this paper.

Theorem 1.5. Under Assumption (H), let O be nonempty. Then, for
every α ∈]1/2, 1], d /∈ SCα

loc(X \ {k0}).

Remark 1.6. (i) We point out that, in Theorem 1.5, there is no con-
vexity assumption on the obstacle O.
(ii) We notice that, as a consequence of Theorem 1.5, there is a sort
of (weak) regularizing effect:

d ∈ SCα
loc(X \ {k0}) for some α ∈]1/2, 1] =⇒ d ∈ SC1

loc(X \ {k0}).

(iii) In order to prove Theorems 1.2 and 1.5, in light of Theorem 1.4,
it suffices to find two length minimizing curves merging at a boundary
point of the obstacle. In the Euclidean case, one can find these length
minimizing curves by constructing a convex cone tangent to a strictly
convex part of the boundary of the obstacle and using the fact that,
outside the obstacle, the length minimizers are straight line segments
(see Section 4 below). In the (general) Riemannian setting, this strategy
does not work and a different approach seems to be necessary.

We observe that Theorem 1.5 provides a negative answer to the fol-
lowing (“global”) extension problem. For the sake of simplicity let us
suppose that

• Rn \ Ω is a connected set (X = Rn \ Ω) and let O = Ω̄ ∈ O.

In other words, X is an unbounded manifold (with boundary) of a
special form. Consider X equipped with the distance function asso-
ciated to the Euclidean metric. One can construct examples showing
that, if we extend the metric to a tubular neighborhood of the boundary
of the obstacle (keeping it Euclidean), then the corresponding distance
functions are different in X. It is less clear, if the extension can be done
(keeping the equality of the relative distances where both are defined)
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admitting as an extension a Riemannian (non-constant) metric. More
precisely, consider the following question

(Q) let g(ξ, ξ) = |ξ|2 be the Euclidean metric, let d(·, ·) the corre-
sponding distance in X given by (1.1), and let Ω1 ⊂ Ω be an open set,
with ∂Ω1∩ ∂Ω = ∅. Can we find a Riemannian metric g̃ of class C2, so
that g = g̃ in TX and d = d̃ in X? (Here d̃ is the distance in X ∪ Ω1

corresponding to g̃.)
One may conjecture that suitably penalizing the region Ω1 \X with

an appropriate extension of the metric, one can force that length min-
imizing curves are directed toward the exterior of the obstacle. This is
not the case. Indeed, fix a point k0 ∈ X and consider d(x) := d(x, k0),

x ∈ X. Then, if such a g̃ exists, d̃(x) := d̃(x, k0) would be an extension
of d to X ∪ Ω1. But, for every x ∈ ∂O, there is a neighborhood of Vx

such that d̃ ∈ SC1(Vx) (this is a consequence of the fact that d̃ is a
viscosity solution of the eikonal equation and of the regularity result
given in [1]). Then, we would deduce that d ∈ SC1(Vx ∩X), for every
x ∈ ∂O, in contrast with Theorem 1.5.

We observe that it is not a matter of the regularity of g̃. Indeed,
even if we admit some lower regularity3 of the extended Riemannian
metric, we have that the answer to question (Q) is in a negative sense.

Finally, let us remark a difference between the Dirichlet boundary
condition and the state constrained boundary condition for the eikonal
equation. While, in the case of the homogeneous Dirichlet problem
for the eikonal equation, one can prescribe a geometrical condition on
the boundary of the domain ensuring that the solution of the eikonal
equation can be (globally) extended still remaining a solution of the
equation (see [2]). Instead, as clarified by the above discussion, in
the case of the state constrained boundary condition such a global
extension, to a tubular neighborhood of the boundary of the obstacle,
cannot be obtained.

2. Preliminaries

2.1. Preliminaries on semiconcave functions. We recall a result
about the extension of a semiconcave function with fractional modulus
(see [3] for the proof of a more precise result).

Theorem 2.6. Let A ⊂ Rn be an open set with nonempty boundary,
and let u ∈ SCα

loc(A). Then, for every x ∈ ∂A and there exist δ > 0
and a function E(u) ∈ SCα(Bδ(x)) such that

3What we have in mind here is the regularity needed to ensure local linear
semiconcavity of the solution of the eikonal equation, see [1].
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(1) E(u)(y) = u(y) for every y ∈ Bδ(x) ∩ A;
(2) D∗E(u)(y) = D∗u(y) for every y ∈ Bδ(x) ∩ ∂A.

In particular, for the applications of interest to this paper, one can
take u = d, α = 1/2 and A = Rn \ (O ∪ {k0}). For any function
u ∈ SCα

loc(U) and any fixed x ∈ U , we denote by D∗u(x) the nonempty
compact set of reachable gradients of u at x, i.e.,

(2.5) D∗u(x) = {p ∈ Rn | ∃xh ∈ int(U), xh → x, ∃Du(xh) → p},
where int(U) stands for the interior of U .

We recall that if u ∈ SCα
loc(X \ {k0}) for a suitable α ∈]0, 1], as a

consequence of Rademacher’s Theorem, we have that D∗u(x) ̸= ∅, for
every x ∈ Rn \ (O ∪ {k0}). Furthermore, for every compact set K ⊂
X \ {k0}, every x, y ∈ K such that [x, y] ⊂ K, and every p ∈ D+u(x),
we have that

(2.6) u(y) ≤ u(x) + ⟨p, y − x⟩+ C|y − x|1+α,

for a suitable constant C depending on K. We recall that the superdif-
ferential of u at x is defined as

D+u(x) =

{
p | lim sup

X\{k0}∋y→x

u(y)− u(x)− ⟨p, y − x⟩
|y − x|

≤ 0

}
,

for every x ∈ X \ {k0}. We point out that (2.6) is a consequence of
the assumption that u ∈ SCα

loc(X \ {k0})) for a suitable α ∈]0, 1]. The
following “monotonicity” formula is a direct consequence of (2.6). Let
K ⊂ X \ {k0} be a compact set and let x, y ∈ K such that [x, y] ⊂ K.
Then

(2.7) ⟨p− q, x− y⟩ ≤ 2C|x− y|1+α,

for every p ∈ D+u(x) and for every q ∈ D+u(y), where C is the
constant given in (2.6).

2.2. Preliminaries on minimizing curves. We recall a result on
the existence and regularity of the minimizing curves (see [11, Lemma
A.1], see also [5, 10, 6]).

Theorem 2.7. For any x, y ∈ X there exists a curve γ : [0, 1] →
X of class C1 such that γ(0) = x, γ(1) = y and d(x, y) = L(γ).
Furthermore, for any such curve γ̇ is uniformly Lipschitz continuous
on [0, 1].

In our analysis, the following decomposition of X is important, we
set

(2.8) I(k0) = {x ∈ X | d(x) = |x− k0|} and S(k0) = X \ I(k0).
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In other words S(k0) = {x ∈ X | d(x) > |x − k0|} is a relatively open
set in X.

Remark 2.7. Let us also recall that, in the proof of Theorem 2.7 given
in [11], some additional properties are given. For instance, it is shown
that if γ : [0, 1] → X is as in Theorem 2.7, and γ(t) ∈ ∂O, for some
t ∈]0, 1[, then
(2.9) γ̇(t) is a tangent vector to ∂O at γ(t).

Furthermore, as a consequence of such a proof, if x ∈ Rn \ O belongs
to a minimizing curve, γ, then, near x, γ is a straight line segment.
Instead, if ∂O is strictly convex in a neighborhood of x ∈ ∂O then,
near x, either γ is a minimizing geodesic in ∂O, or γ is a straight line
segment, or γ is a concatenation (in a suitable order) of a straight line
segment with a minimizing geodesic in ∂O.

We now proceed to relate the minimizing curve parametrized by the
arc length with suitable generalized gradients of d.

In the more general Riemannian setting, the next property is a con-
sequence of the inequalities established in [11, Lemma A.4].

Lemma 2.1. Let O ∈ O. Then, for every x ∈ X \ {k0} and γ ∈ Γ∗[x]
we have that

(2.10) γ̇(t) ∈ D+d(γ(t)), ∀t ∈ [0, d(x)[.

We need the following refinement4 of Lemma 2.1 given in [4, Lemma
2.1].

Lemma 2.2. Let O ∈ O. Then, for every x ∈ X \{k0} and γ ∈ Γ∗[x],
we have that

(2.11) −γ̇(t) ∈ D∗d(γ(t)), ∀t ∈ [0, d(x)].

Furthermore5,

(2.12) D∗d(γ(t)) = {Dd(γ(t))}, ∀t ∈]0, d(x)[.
Finally, for every x ∈ X \ {k0} and for every p ∈ D∗d(x) there exists
γ ∈ Γ∗[x], such that −γ̇(0) = p.

(Here and in the sequel we take γ̇(0) = limt→0+ [γ(t) − γ(0)]/t and,
similarly, γ̇(d(x)) = limt→d(x)− [γ(d(x))− γ(t)]/[d(x)− t].)

We point out that (2.11) and (2.12) imply that for every x ∈ X\{k0}
and for every γ ∈ Γ∗[x]

(2.13) γ̇(t) = −Dd(γ(t)), t ∈]0, d(x)[.
4We recall that D+d(x) = coD∗d(x) for every x in the interior of X \ {k0}.
5Hereafter, even at a point y ∈ ∂O, we have kept the notation Dd(y) to denote

the unique element of D∗d(y) whenever the last set reduces to a singleton.
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3. Proof of Theorem 1.4

We begin by showing that if d is locally semiconcave with a linear
modulus, then two minimizing curves parameterized by the arc length
cannot intersect each other in X (possibly except at the endpoints).
The proof is based on the backward uniqueness for the (minus) gradi-
ent flow.

Let x1, x2 ∈ X \ {k0}, with x1 ̸= x2, and let γi ∈ Γ∗[xi]. We want to
show that, if d is locally semiconcave with a linear modulus, then

(3.14) γ1(t) ̸= γ2(t), for every t ∈]0,min{d(x1), d(x2)}[.
Let us suppose, by contradiction, that γ1(t0) = γ2(t0) for a suitable
t0 ∈]0,min{d(x1), d(x2)}[. Without loss of generality, we may suppose
that

t0 = inf{t ≥ 0 | γ1(t) = γ2(t)}.
Then, for ε ∈]0, t0[, γ1(t) ̸= γ2(t), for every t ∈]t0 − ε, t0] and, in
particular,

x̃1 := γ1(t0 − ε) ̸= γ2(t0 − ε) =: x̃2.

As a consequence of the regularity Theorem 1.1 and (2.6), taking K =
Br(γ1(t0)) ∩ X, for a suitable r > 0, one can find a constant C > 0
such that

(3.15) ⟨p− q, x− y⟩ ≤ 2C|x− y|2,
for every x, y ∈ K, with [x, y] ⊂ K, and for every p ∈ D+d(x), q ∈
D+d(y). (We observe that, in order to apply (2.6), we need that the
whole segment [x, y] is contained in K, if γ1(t0) /∈ O it suffices to take
r small enough, if γ1(t0) ∈ ∂O, we may argue on the extension of d
given by Theorem 2.6.)

Since γ1 and γ2 are solutions of Equation (2.13), due to (3.15), we
find that

d

dt
|γ2(t)− γ1(t)|2 ≥ −4C|γ2(t)− γ1(t)|2,

for every t ∈ [t0 − ε, t0[. Hence,

|γ2(t)− γ1(t)| ≥ e−2C(t−t0+ε)|x̃2 − x̃1|, for every t ∈ [t0 − ε, t0[,

and we find the contradiction 0 = |γ2(t0)−γ1(t0)| > 0, so (3.14) follows.
This completes the proof of the first part of Theorem 1.4. We observe
that, due to the (local) linear semiconcavity of d in X \ (∂O ∪{k0}), if
two length minimizing curves intersect each other at a point x∗ (which
is not an endpoint for the curves), then x∗ belongs to ∂O.

Now, we want to show that if there exist x1, x2 ∈ X \{k0}, with x1 ̸=
x2, γi ∈ Γ∗[xi] and t0 ∈]0,min{d(x1), d(x2)}[ so that γ1(t0) = γ2(t0) and
∂O satisfies Condition (C) near such a point, then d /∈ SCα

loc(X \ {k0})
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for every α ∈]1/2, 1]. We argue, once more, by contradiction assuming
that d ∈ SCα

loc(X \{k0}), for some α ∈]1/2, 1[, that there exist x1, x2 ∈
X \ {k0}, with x1 ̸= x2, γi ∈ Γ∗[xi] and t0 ∈]0,min{d(x1), d(x2)}[ such
that γ1(t0) = γ2(t0). We observe that, as already observed, we have
that γ1(t0) = γ2(t0) ∈ ∂O. Without loss of generality, we may assume
once more that

(3.16) t0 = inf{t ≥ 0 | γ1(t) = γ2(t)}.
Then, we can find r > 0 such that k0 /∈ Br(γ1(t0)) and γi(t) ∈
Br(γ1(t0)), for every t ∈ [t0 − ε, t0], i = 1, 2 (for ε > 0 small enough).
Furthermore, we point out that from the structure of the minimizing
curves (see Remark 2.7), we may assume that

γ1(t) = γ1(t0) + γ̇1(t0)(t− t0), t ∈ [t0 − ε, t0]

and γ2(t) is a geodesic on ∂O (for [t0 − ε, t0]). (The other eventualities
are excluded by the local uniqueness for the Cauchy problem for the
geodesics on ∂O.)

Now, (2.6) and (2.13) yield that

d

dt
|γ2(t)− γ1(t)|2 ≥ −4C|γ2(t)− γ1(t)|1+α,

for every t ∈ [t0 − ε, t0[. Then, we find that

|γ2(t)− γ1(t)|1−α ≥ |γ2(t0 − ε)− γ1(t0 − ε)|1−α − 2(1− α)C(t− t0 + ε),

for every t ∈ [t0 − ε, t0[. It follows that if |γ2(t0)− γ1(t0)| = 0 then

(3.17) |γ2(t0 − ε)− γ1(t0 − ε)|1−α ≤ 2(1− α)Cε.

Now, we have that

γ2(t0 − ε) = γ2(t0)− γ̇2(t0)ε+ ε

∫ 1

0

[γ̇2(t0)− γ̇2(t0 − sε)] ds,

and, since γ2 is a geodesic on ∂O, we have that γ2 ∈ C2([t0−ε, t0], ∂O)
and

(3.18) lim
ε→0+

γ2(t0 − ε)− γ2(t0) + γ̇2(t0)ε

ε2
= γ̈2(t0).

(Here and in the sequel γ̈2(t0) stands for the left second derivative.)
We observe that, since γ2(t) ∈ ∂O for t ∈ [t0 − ε, t0], then find that

⟨ν(γ2(t)), γ̇2(t)⟩ = 0, ∀t ∈ [t0 − ε, t0].

Then, taking the derivative with respect to t of both the sides of the
above identity, we deduce that

⟨ν(γ2(t)), γ̈2(t)⟩+ ⟨Dν(γ2(t))γ̇2(t), γ̇2(t)⟩ = 0,

for t ∈ [t0 − ε, t0[.
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We observe that, as usual, the gradient of ν, Dν, should be appro-
priately defined. For instance, taking r suitably small, we have that

O ∩Br(γ1(t0)) = {x ∈ Br(γ1(t0)) | Φ(x) ≤ 0}
where Φ is a function of class C2 simply vanishing on ∂O ∩Br(γ1(t0)).
Then, for x ∈ ∂O ∩Br(γ1(t0)), ν(x) = DΦ(x)/|DΦ(x)| and

Dν(x) =

(
D2Φ(x)− DΦ(x)

|DΦ(x)|
⊗ DΦ(x)

|DΦ(x)|

)
.

Then, (1.4) reads as

(3.19) Dν(x)ξ · ξ ≥ c0|ξ|2, ∀ξ ∈ Tx∂O,

for each x ∈ ∂O ∩Br(γ1(t0)).
Since, γ2 is a geodesic on ∂O, we have that

γ̈2(t) = ⟨γ̈2(t), ν(γ(t))⟩ν(γ(t))
for t ∈ [t0 − ε, t0[ (i.e. the tangential component of the acceleration
vanishes). Due to (3.19), we conclude that

(3.20) |γ̈2(t0)| = ⟨Dν(γ2(t0))γ̇2(t0), γ̇2(t0)⟩ ≥ c0 > 0.

We observe that this point is the only part of the proof where we used
the fact that ∂O satisfies Condition (C) near γ1(t0).

Now, Lemma 2.2 implies that γ̇2(t0) = γ̇1(t0). Hence, due to (3.17),
we find that∣∣∣∣γ2(t0 − ε)− γ2(t0) + γ̇2(t0)ε

ε2

∣∣∣∣1−α

ε2(1−α) ≤ 2(1− α)Cε,

i.e. ∣∣∣∣γ2(t0 − ε)− γ2(t0) + γ̇2(t0)ε

ε2

∣∣∣∣1−α

ε1−2α ≤ 2(1− α)C.

Since ε > 0 can be taken arbitrarily small, in light of (3.18) and (3.20),
we conclude that for 1 − 2α < 0 the inequality above cannot be true.
This completes the proof of Theorem 1.4.

4. Proofs of Theorems 1.2 and 1.5

The proofs of Theorems 1.2 and 1.5 are based on Theorem 1.4.
To proof both the results6, it suffices to find two minimizing curves
(parametrized by the arc length) γ1 and γ2 so that γ1(t0) ̸= γ2(t0) and
γ1(t1) = γ2(t1), for suitable t0 < t1.

6Really, the proof of Theorem 1.5 requires some more care since we need to verify
that ∂O satisfies Condition (C) near γ1(t1).
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For this purpose, we consider the maximum of the function

O ∋ x 7→ |x− k0|.
Since O is compact and the function x 7→ |x − k0| has no critical
points then the maximum is attained at some x0 ∈ ∂O. We claim that
x0 ∈ S(k0). In order to prove such a claim, we argue by contradiction
assuming that x0 ∈ I(k0). In particular, we have that

(4.21) Dd(x0) =
x0 − k0
|x0 − k0|

We observe that, due to the definition of x0,

(4.22) O ⊂ BR(k0), and x0 ∈ ∂O ∩ ∂BR(k0),

where R := |x0 − k0|. Now, in light of the regularity assumptions on
O, we can find δ > 0 such that

(4.23) O ∩Bδ(x0) = {x ∈ Bδ(x0) | Φ(x) ≤ 0},
for a suitable Φ of class C2 without critical points inside Bδ(x0), and

(4.24) ∂O ∩Bδ(x0) = {x ∈ Bδ(x0) | Φ(x) = 0}.
Then, in view of (4.22), x0−k0 is normal to ∂O at x0, and from (4.21),
(4.23) and (4.24) we deduce that

DΦ(x0) = |DΦ(x0)|Dd(x0).

From the fact that x0 ∈ I(k0), we have that

Γ∗[x0] = {γ(t) = x0 − tDd(x0), t ∈ [0, d(x0)]}.
Furthermore, we have that

d

dt
Φ(γ(t)) |t=0 = ⟨DΦ(x0), γ̇(0)⟩ = −|DΦ(x0)| < 0,

i.e. γ(t) ∈ Ω = int(O), for t near 0, in contrast with x0 ∈ I(k0). Then,
our claim holds, i.e. x0 ∈ S(k0).
We point out that, due to (4.22) and the C2 regularity of O, we

have that the obstacle satisfies Condition (C) near x0, i.e. there exists
r > 0 such that ∂O ∩ Br(x0) is a strictly convex hypersurface of class
C2 (with nondegenerate curvatures).

For ε > 0, let Vε be the minimal cone (with respect to the inclusion),
with vertex at x0 + εν(x0), containing O.
We claim that there exists ε > 0 such that

(4.25) ∂Vε ∩ ∂O ⊂ Br(x0).

Indeed, assume by contradiction that there exist a sequence of numbers
εj > 0 which converges to 0 and a sequence yj ∈ ∂Vεj ∩ ∂O \ Br(x0).
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Since ∂Vεj ∩ ∂O is a compact set we may assume that, possibly taking
a subsequence, yj → y ∈ ∂O \Br(x0).

Then there is a unit vector vj such that
r+j (ε) := {x0 + εjν(x0) + tvj | t ≥ 0} ⊂ ∂Vεj ,

yj = x0 + εjν(x0) + tjvj ∈ ∂Vεj ∩ ∂O \Br(x0),

for a suitable tj > 0. Hence, we would find that the straight half line
{x0 + tv | t ≥ 0} is tangent to ∂O at y in contrast with (4.22), and
(4.25) follows.

Let ε > 0 be such that (4.25) holds. We observe that, in view of the
strict convexity of Br(x0) ∩ ∂O and (4.25), Vε is a convex cone. Then,
∂Vε∩∂O is the boundary of a connected subset of ∂O containing x0. Let
γ ∈ Γ∗[x0]. Then, there exists t∗ ∈]0, d(x0)[ such that γ(t∗) ∈ ∂Vε∩∂O.
We observe that, for t ∈ [0, t∗], γ is a length minimizing geodesic in
∂O. In particular, we have that γ(t) /∈ ∂Vε, for every t ∈ [0, t∗[. Take
δ ∈]0, t∗[ small enough so that

γ(t∗)− δγ̇(t∗) ∈ ∂Vε \ ∂O,

and set

x1 = γ(t∗)− δγ̇(t∗), x2 = γ(t∗ − δ) (∈ ∂O).

(We observe that x1 ̸= x2.) Then, taking

γ1(t) =


x1 + t γ(t∗)−x1

|γ(t∗)−x1| , t ∈ [0, δ],

γ(t− δ + t∗), t ∈]δ, d(x0)− t∗ + δ],

and

γ2(t) = γ(t+ t∗ − δ), t ∈ [0, d(x0)− t∗ + δ],

we have two different minimizing curves starting at x1 and x2 and
merging at γ(t∗). This completes the proof of Theorem 1.2.

Finally, as already remarked, we have that ∂O satisfies Condition
(C) near γ(t∗). Then, applying once more Theorem 1.4, Theorem 1.5
follows.
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