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ON THE MICROLOCAL REGULARITY OF THE
ANALYTIC VECTORS FOR “SUMS OF SQUARES” OF

VECTOR FIELDS

GREGORIO CHINNI AND MAKHLOUF DERRIDJ

Abstract. We prove via FBI-transform a result concerning the
microlocal Gevrey regularity of analytic vectors for operators sums
of squares of vector fields with real-valued real analytic coefficients
of Hörmander type, thus providing a microlocal version, in the
analytic category, of a result due to M. Derridj in [14] concerning
the problem of the local regularity for the Gevrey vectors for sums
of squares of vector fields with real-valued real analytic/Gevrey
coefficients.

Nous démontrons, en utilisant la transformation de Fourier-
Bros-Iagolnitzer, un résultat de régularité Gevrey microlocale, op-
timale, des vecteurs analytiques d’opérateurs de Hörmander de
type ”Sommes de carrés de champs de vecteurs” à coefficients an-
alytiques sur un ouvert. Ce résultat est, dans le cadre analytique,
la version microlocale du résultat de M.Derridj [14], obtenu pour
les vecteurs de Gevrey de tels opérateurs à coefficients Gevrey.

1. Introduction

We deal with the microlocal regularity of the analytic vectors for sum
of squares of vector fields. Let X1(x,D), . . . , Xm(x,D) be vector fields
with real-valued real analytic coefficients on U , open neighborhood of
the origin in Rn. Let P (x,D) denote the corresponding sum of squares
operator

P (x,D) =
m∑
j=1

X2
j (x,D).(1.1)

We assume that the operator P satisfies the Hörmander’s condition:
the Lie algebra generated by the vector fields and their commutators
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2 GREGORIO CHINNI AND MAKHLOUF DERRIDJ

has the dimension n, equal to the dimension of the ambient space.
The operator P satisfies the a priori estimate

(1.2) ‖u‖2
1/r +

m∑
j=1

‖Xju‖2
0 ≤ C

(
|〈Pu, u〉|+ ‖u‖2

0

)
,

which we call, for the sake of brevity, the “subelliptic estimate.” Here
u ∈ C∞0 (U), ‖·‖0 denotes the norm in L2(U) and ‖·‖s the Sobolev norm
of order s in U . Here r is the least integer such that the vector fields,
the commutators, the triple commutators etcetera up to the commuta-
tors of length r span at any point of the closure of U all the ambient
space Rn. The sub-elliptic estimate was proved first by Hörmander in
[18] for a Sobolev norm of order r−1 − ε and up to order r−1 subse-
quently by Rothschild and Stein [22] as well as in a pseudodifferential
context by Bolley, Camus and Nourrigat in [8].

Let Xj(x, ξ) be the symbol of the vector field Xj. Write {Xi, Xk} the
Poisson bracket of the symbols of the vector fields Xi, Xk:

{Xi, Xk} (x, ξ) =
n∑
`=1

(
∂Xi

∂ξ`

∂Xk

∂x`
− ∂Xk

∂ξ`

∂Xi

∂x`

)
(x, ξ).

Definition 1.1. Let (x0, ξ0) be a point in the characteristic set of P :

Char(P ) = {(x, ξ) ∈ T ∗U \ {0} : Xj(x, ξ) = 0, j = 1, . . . m}.(1.3)

Consider all the iterated Poisson brackets {Xi, Xk}, {Xp, {Xi, Xk}}
etcetera. We define ν(x0, ξ0) as the length of the shortest iterated Pois-
son bracket of the symbols of the vector fields which is non zero at
(x0, ξ0).

We recall

Definition 1.2. Let P (x,D) be as in (1.1). We denote by Gs(U ;P )
which is the space of the Gevrey vectors of order s with respect to P ,
the set of all distributions u ∈ D ′(U) such that for any compact subset
K of U there exists a positive constant CK such that

‖PNu‖L2(K) ≤ C2N+1
K ((2N)!)s, ∀N ∈ Z+.(1.4)

When s = 1 we set G1(U ;P ) = A (U ;P ) the set of the analytic vectors
with respect to P .

We recall that concerning systems of vector fields with real analytic
coefficients satisfying Hörmander’s condition the problem of the local
regularity of the analytic vectors for such systems was first studied in
[11] followed by a more refined version in [16].
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In a couple of recent works M. Derridj, [13] and [14], studied the
problem of the local regularity for the Gevrey vectors for operators
of Hörmander type of first kind, i.e. sum of squares, and of the second
kind or degenerate elliptic parabolic. We prove the minimal microlocal
version of the result in [13] in the case of analytic vectors:

Theorem 1.1. Let P be as in (1.1). Let u be an analytic vector for
P , u ∈ A (U ;P ). Let (x0, ξ0) be a point in the characteristic set of P
and ν(x0, ξ0) its length. Then (x0, ξ0) /∈ WFν(x0,ξ0)(u).

Where WFs(u), s ≥ 1, denotes the wave front set of the distribution
u; it will be defined in the next section via FBI-transform, Definition
2.1.

Remark 1.2. A few remarks are in order:

i) the method used to gain the above result can be extended to a
class of Hörmander type operators not strictly sums of squares;
we consider operators of the form P (x,D)+

∑m
i=1 bj(x)Xj(x,D)+

c(x) where P is as in (1.1), bj(x) are real-valued real analytic
functions and c(x) is a real analytic complex function;

ii) the strategy to obtain the above result can be carried over to the
case of s-Gevrey vectors with s ∈ Z+;

iii) the result is optimal, see example given in [9].

A few words about the method of proof: it consists in using the
FBI transform and the subelliptic inequality on the FBI side obtained
in [1]. To do that we use a deformation technique of the Lagrangian
associated to the FBI proposed by Grigis and Sjöstrand in [15].

Acknowledgement. The authors would like to thank Antonio Bove
for his comments and suggestions in order to improve the manuscript.

2. Background on FBI and Micro-local sub-elliptic
estimate for Sums of Squares

We are going to use a pseudodifferential and FIO (Fourier Integral
Operators) calculus introduced by Grigis and Sjöstrand in the paper
[15]. We recall below the main definitions and properties to make this
paper self-contained and readable. For further details we refer to the
paper [15] and notes [23].
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FBI Transform. Let u ∈ E ′(Ω), where E ′(Ω) denotes the space of
distributions with compact support in Ω, open subset of Rn, which is
the dual space of the space of smooth functions in Ω equipped with its
natural topology. We define the FBI transform of u as

Tu(z, λ) =

∫
Rn
eiλψ(z,y)u(y)dy,

where z ∈ Cn, λ ≥ 1 is a large parameter, ψ(z, w) in C2n is an holo-
morphic function such that det ∂z∂wψ 6= 0, =∂2

wψ > 0. To the phase ψ
there corresponds a weight function φ(z), defined as

φ(z) = sup
y∈Rn
−=ψ(z, y), z ∈ Cn.

Example 1. A typical phase function may be ψ(z, y) = i
2
(z−y)2. The

corresponding weight function is given by φ(z)
.
= φ0(z) = 1

2
(=z)2.

We recall that T is associated to the following complex canonical
transformation:

HT : C2n
(w,θ) −→ C2n

(z,ζ),

(w,−∂wψ(z, w)) 7→ (z, ∂zψ(z, w)) ,
(2.1)

with ψ as a generating function.
In particular HT (R2n)

.
= Λφ = {(z,−2i∂zφ(z)) ; z ∈ Cn}. In the case

of classical phase function, see Example 1, we have

H0(x, ξ) = (x− iξ, ξ), (x, ξ) ∈ R2n.

We set H0(R2n) = Λφ0 .
We recall the definition of s–Gevrey wave front set of a distribution
via classical FBI transform, i.e. using the phase function and the cor-
responding weight function of the Example 1.

Definition 2.1. Let u be a compactly supported distribution on Rn.
Let (x0, ξ0) ∈ T ∗Rn \ 0. We say that (x0, ξ0) /∈ WFs(u), s ≥ 1, if there
exist a neighborhood Ω of x0 − iξ0 ∈ Cn and positive constants C, ε
such that

|e−λφ0(z)Tu(z, λ)| ≤ Ce−ελ
1/s

,

for every z ∈ Ω and λ > 1.
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Pseudodifferential Operators. Let us consider (z0, ζ0) ∈ C2n and a
real valued real analytic function φ(z) defined near z0, such that φ is
strictly plurisubharmonic and

2

i
∂zφ(z0) = ζ0.

Denote by ϑ(z, w) the holomorphic function defined near (z0, z̄0) by

ϑ(z, z̄) = φ(z).(2.2)

Because of the strict plurisubharmonicity of φ, we have

det ∂z∂wϑ 6= 0(2.3)

and

<ϑ(z, w̄)− 1

2
[φ(z) + φ(w)] ∼ −|z − w|2.(2.4)

Let λ ≥ 1 be a large positive parameter. We write

D̃ =
1

λ
D, D =

1

i
∂.

Denote by q(z, ζ, λ) an analytic classical symbol1 and by Q(z, D̃, λ)
the formal classical pseudodifferential operator associated to q. Using
“Kuranishi’s trick” 2 one may represent Q(z, D̃, λ) as

(2.5) Qu(z, λ) =

(
λ

2iπ

)n ∫
e2λ(ϑ(z,θ)−ϑ(w,θ))q̃(z, θ, λ)u(w)dwdθ.

Here q̃ denotes the symbol of Q in the actual representation.
To realize the above operator we need a prescription for the integra-

tion path3. This is accomplished by transforming the classical integra-
tion path via the Kuranishi change of variables and eventually applying
Stokes theorem:

(2.6) QΩu(z, λ) =

(
λ

π

)n ∫
Ω

e2λϑ(z,w̄)q̃(z, w̄, λ)u(w)e−2λφ(w)L(dw),

where L(dw) = (2i)−ndw ∧ dw̄ is the Lebesgue measure in R2n, the
integration path is θ = w̄ and Ω×Ω is a small neighborhood of (z0, z̄0).
We remark that QΩu(z) is an holomorphic function of z.

1For more details on the subject see [23], Section 1; see also [17].
2For more details on the “Kuranishi’s trick” see [19] Proposition 2.1.3 and [23]

Remarque 4.3.
3For a detailed discussion about the integration paths see [23].
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Definition 2.2. Let Ω be an open subset of Cn. We denote by Hφ(Ω)
the space of all functions u(z, λ) holomorphic with respect to z, such
that for every ε > 0 and for every compact K ⊂⊂ Ω there exists a
constant C > 0 such that

|u(z, λ)| ≤ Ceλ(φ(z)+ε),

for z ∈ K and λ ≥ 1.

A few remarks are in order.

i) If q̃ is a classical symbol of order zero, QΩ(z, D̃, λ) is uniformly
bounded as λ→ +∞, from Hφ(Ω) into itself.

ii) If the principal symbol is real, QΩ(z, D̃, λ) is formally self ad-
joint operator in L2(Ω, e−2λφ(z)L(dz)).

iii) The definition (2.5) of the realization of a pseudodifferential
operator on an open subset Ω of Cn is not the classical one. Via
the Kuranishi trick it can be reduced to the classical definition.
On the other hand using the function ϑ allows us to use a weight
function not explicitly related to an FBI phase. This is useful
since in the proof we deform the I-Lagrangian, R-Symplectic
variety Λφ0 , corresponding e.g. to the classical FBI phase, and
obtain a deformed weight function which is useful in the a priori
estimate.

We also recall that the identity operator can be realized as

IΩu(z, λ) =

(
λ

π

)n ∫
Ω

e2λϑ(z,w̄)i(z, w̄, λ)u(w, λ)e−2λφ(w)L(dw),(2.7)

for a suitable analytic classical symbol i(z, ζ, λ). Moreover we have the
following estimate (see [15] and [23], Section 12)

‖IΩu− u‖φ−d2/C ≤ C ′‖u‖φ+d2/C ,(2.8)

for suitable positive constants C and C ′, for u ∈ L2 (Ω) and holomor-
phic in Ω . Here we denoted by

d(z) = dist(z, {Ω),(2.9)

the distance of z to the boundary of Ω, and by

‖u‖2
f =

∫
Ω

|u(z)|2e−2λf(z)L(dz).(2.10)

We also recall the following important result on the composition of two
pseudodifferential operators.



MICROLOCAL REGULARITY OF THE ANALYTIC VECTORS 7

Proposition 2.1 ([15], Proposition 1.3). Let Q1 and Q2 be of order
zero. Then they can be composed and

QΩ
1 ◦QΩ

2 = (Q1 ◦Q2)Ω +RΩ,

where RΩ is an error term, i.e. an operator whose norm is O(1) as an
operator from Hφ+(1/C)d2 to Hφ−(1/C)d2

The a priori Estimate. Let Xj(z, ζ), j = 1, . . . , m, be classical ana-
lytic symbols of order one defined in Ω open neighborhood of (z0, ζ0) ∈
Λφ in C2n. We assume also that the Xj|Λφ are real valued. Let

P (z, D̃) =
m∑
j=1

X2
j (z, D̃).(2.1)

According to [15] the Ω-realization of P can be written as

PΩ =
m∑
j=1

(XΩ
j )2 + O(λ2),(2.2)

where O(λ2) is continuous from Hφ̃ to Hφ−(1/C)d2 with norm bounded

by C ′λ2, φ̃ given by

φ̃(z) = φ(z) +
1

C
d2(z),

and d has been defined in (2.9).
Following [1] we state the FBI version of the estimate (1.2).

Theorem 2.1. Let (x0, ξ0) be in Char(P ) and ν
.
= ν(x0, ξ0), Definition

1.1. Let HT (x0, ξ0) = (z0, ζ0) ∈ Λφ and PΩ be as in (2.2). Let Ω1 open
neighborhood of (z0, ζ0) such that Ω1 ⊂⊂ Ω. Then

(2.3) λ
2
ν ‖u‖2

φ +
m∑
j=1

‖XΩ
j u‖2

φ ≤ C
(
〈PΩu, u〉φ + λα‖u‖2

φ,Ω\Ω1

)
,

where α is a positive integer and u ∈ L2(Ω, e−2φ(z)L(dz)).

3. Proof of the Theorem 1.1

In order to prove the result we want take advantage of Theorem 2.1.
We consider the sum of squares operator

Q(x,Dt, D) =
m∑
j=0

X2
j = D2

t + P (x,D),(3.1)

in Õ = ]−δ0, δ0[×O, δ0 > 0.
We study the microlocal properties of the solutions of the problem
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Qv = f , f ∈ Cω(Õ). We denote by Σ̃ the characteristic set of Q given
by

Σ̃ = {(t, x, τ, ξ) ∈ T ∗Õ \ {0} : Q(t, x, τ, ξ) = 0}
(3.2)

= {(t, x, τ, ξ) ∈ T ∗Õ \ {0} : τ = 0, Xj(x, ξ) = 0, j = 1, . . . , m}.

We remark that ν(t0,x0,0,ξ0),(t0, x0, 0, ξ0) ∈ Σ̃, is equal to ν(x0,ξ0), (x0, ξ0) ∈
Σ, where Σ denotes the characteristic set of P (x,D).
We construct a deformation of Λφ0 following the ideas in [15], see also

[1]. Let (0, x0, 0, ξ0) ∈ Σ̃ and ν its length.
We perform an FBI-transform of the form

Tu(z, λ) =

∫
Rn+1

eiλψ(z,t,x)u(t, x)dtdx, z = (z0, z1) ∈ C1+n,

where u(t, x) is a compactly supported distribution and ψ(z, t, x) is a
phase function. Even though it does not really matter which phase
function we use, the classical phase function will be employed:

ψ0(z, t, x) =
i

2

[
(z0 − t)2 + (z1 − x)2

]
.(3.3)

Let Ω be an open neighborhood of the point πz ◦ HT (0, x0, 0, ξ0) in
C1+n. Here πz denotes the space projection πz : C1+n

z × C1+n
ζ → C1+n

z ,
ζ = (ζ0, ζ1), and HT is the complex canonical transformation associated
to T , (2.1). We recall that in the case of FBI with classical phase
function, Example 1, we have H0(t, x, τ, ξ) = (t− iτ, x− iξ, τ, ξ).
Denoting by Q̃ our operator after the FBI we have that Q̃|Λφ0

= Q,

Λφ0 = H0(R2(1+n)). We have that πz ◦H0(0, x0, 0, ξ0) = (0, x0− iξ0) =
(0, w0) ∈ C1+n. We perturb canonically φ0. For λ ≥ 1 let us consider a
real analytic function defined near the point H0(0, x0, 0, ξ0) ∈ Λφ0 , say
h(z, ζ, λ). Solve, for small positive s, the Hamilton-Jacobi problem2

∂φ

∂s
(s, z, λ) = h

(
z,

2

i

∂φ

∂z
(s, z, λ), λ

)
φ(0, z, λ) = φ0(z)

.(3.4)

Set

φs(z, λ) = φ(s, z, λ),

we have the canonical map Λφ0 → Λφs where

Λφs = exp (isHh) Λφ0 .
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We choose the function h as

h(z, ζ, λ) = h

(
z,

2

i

∂φ0

∂z
(z), λ

)
+ λ−1h1(z, ζ)

(
ζ − 2

i

∂φ0

∂z
(z)

)
,

where h1(z, ζ) is an holomorphic function and

h

(
z,

2

i

∂φ0

∂z
(z), λ

)
= h(z, ζ, λ)|Λφ0

= (z′′0 )2 + λ−
ν−1
ν

(
(z′0)2 + |z1 − w0|2

)
,

(3.5)

z0 = z′0 + iz′′0 ∈ C.
Since R2(1+n) and Λφ0 are isometric, keep in mind the definition of Λφ0 ,
it is easier to construct the function h in R2(n+1) near the characteristic
point:

h(t, x, τ, ξ, λ) = τ 2 + λ−1+ 1
ν

[
t2 + |x− x0|2 + |ξ − ξ0|2

]
.(3.6)

The function φs can be expanded as a power series in the variable s
using both equation (3.4) and the Faà di Bruno formula to obtain

φs(z, λ) = φ0(z) +
s

2
h(·, ·, λ)∣∣

Λφ0

+ O(λ−1s2),(3.7)

where h on Λφ0 is given by (3.5). Our purpose is to use the estimate
(2.3) where the weight function φ has been replaced by the weight φs.
This is possible using the phase ϑs in (2.5) and realizing the operator as
in (2.6). Here ϑs is defined as the holomorphic extension of ϑs(z, z̄) =
φs(z).

We need to restrict the symbol of Q to Λφs ; we denote by Qs the
symbols of Q restricted to Λφs . Noting that

X2
j (x,

2

i
∂xφs(x, λ), λ) = X2

j (x,
2

i
∂xφ0(x), λ)

+ 2sXj(x,
2

i
∂xφ0(x), λ)〈∂ξXj(x,

2

i
∂xφ0(x), λ),

2

i
∂x∂sφs(x, λ)∣∣

s=0

〉

+ O(s2λ
2
ν ).

We deduce that

Qs = Q+ s

m∑
j=0

Xj{h,Xj}+ s2

m∑
j=0

{h,Xj}2 +O(s2λ
2
ν )(3.8)

= Q(x, ξ) + sR(x, ξ, λ) + O(s2λ
2
ν ).

The analytic extension ofQs is the symbol appearing in the Ω-realization
of Qs, QsΩ. We point out that the principal symbol of Qs satisfies the
assumptions of Theorem 2.1 and, using the a priori inequality (2.3), we
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can deduce an estimate of the form (2.3) for Qs in the Hφs spaces. We
have

λ
2
ν ‖u‖2

φs +
m∑
j=0

‖XΩ
j u‖2

φs

≤ C
(
|〈(QsΩ − sRΩ − O(s2λ

2
ν ))u, u〉φs|+ λα‖u‖2

φs,Ω\Ω1

)
.

The third term in the right hand side of the scalar product above is
easily absorbed on the left provided s is small enough. Let us consider
the second term in the scalar product above. By Proposition 2.1, we
have

RΩ =
m∑
j=0

aΩ
j (x, D̃, λ)XΩ

j (x, D̃, λ) + O(λ),

where aΩ
j (x, D̃, λ), j = 0, . . . ,m, are zero order operators and O(λ)

denotes an operator from Hφs+
1
C
d2 to Hφs− 1

C
d2 whose norm is bounded

by Cλ. Hence

s|〈RΩu, u〉φs| ≤ Cs
(
λ

2
ν ‖u‖2

φs +
m∑
j=0

‖XΩ
j u‖2

φs + λ2‖u‖2
φ̃s

)
,

where φ̃s = φs+ 1
C
d2. Hence we deduce that there exist a neighborhood

Ω0 of (0, w0), a positive number δ and a positive integer α such that,
for every Ω1 ⊂⊂ Ω2 ⊂⊂ Ω ⊂ Ω0, there exists a constant C > 0 such
that, for 0 < s < δ, we have

λ
2
ν ‖u‖φs,Ω1 ≤ C

(
‖QsΩu‖φs,Ω2 + λα‖u‖φs,Ω\Ω1

)
.(3.9)

We now prove that if Qu is analytic at (0, x0, 0, ξ0) then the point
(0, x0, 0, ξ0) does not belong to WFν(u). Since Qu is real analytic the
first term in the right hand side of (3.9) can be estimated by Ce−λ/C

for a positive constant C. We have to estimate the second term on the
right hand side of the above inequality. We have

φs(z, λ) = φ0(z) +
s

2
h(z,

2

i

∂φ

∂z
(0, z), λ) +O(λ−1s2).

Hence

φs(z, λ)− φ0(z) ∼ s

2

[
(z′′0 )2 + λ−

ν−1
ν

(
(z′0)2 + |z1 − w0|2

)]
.

Since z = (z0, z1) ∈ Ω \ Ω1, i.e. far from (0, w0), there exists a positive
constant β such that

h|Λφ0
∩Ω\Ω1 ≥ 2λ−1+1/νβ > 0.
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We have

φs(z, λ)|Ω\Ω1 ≥ φ0(z) + sλ−1+ 1
ν β +O(λ−1s2).

The second term on the right hand side of (3.9) can be estimated by

‖u‖2
φs,Ω\Ω1

≤ C1(s)e−λ
1
ν sβ

2 ,

where C1(s) > 0. From (3.9) and the above argument there is a positive
constant C2 such that

‖u‖2
φs,Ω1

≤ C2e
−λ

1
ν sβ

2 .

Let Ω3 a sufficient small neighborhood of the point (0, w0), Ω3 b Ω1,
such that for a fixed small positive s

φs(z, λ)− φ0(z) ≤ sβ

4
λ−1+ 1

ν + λ−1C3(s),

z ∈ Ω3, λ ≥ 1.

Then there are two positive constants, C̃ and ε, such that

‖u‖2
φ0,Ω3

≤ C̃e−ελ
1
ν .

Now we consider the problem(D2
t + P (x,D))U(t, x) = 0,

U(0, x) = u(x),
(3.10)

in Õ = ]−δ0, δ0[ × O, δ0 > 0, where u(x) is an analytic vector for
P (x,D):

‖P ku‖0 ≤ C2k+1(2k)!.(3.11)

The function

U(t, x) =
∑
k≥0

t2k

2k!
P ku(x)

is a solution of the above problem. We choose δ0 <
√

2C.
In order to complete the proof of the Theorem 1.1 we have to show
that (0, x0, 0, ξ0) /∈ WFs0 (U) if and only if (x0, ξ0) /∈ WFs0(u) for
every s0 ≥ 1.
This result was showed in the case s0 = 1 via Fourier transform in [7],
Proposition 3.3. We give, for any s0 ∈ [1,+∞), a proof via the classical
FBI transform.
Step one: if (x0, ξ0) /∈ WFs0(u) then (0, x0, 0, ξ0) /∈ WFs0(U).
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By hypothesis we have that (x0, ξ0) /∈ WFs0(u) if and only of there
exist Ω open neighborhood of the point x0 − iξ0 in Cn and positive
constants C1 and ε1 such that

|e−λφ0(z)T (χu) (z, λ)| ≤ C1e
−ε1λ1/s0 , ∀z ∈ Ω,(3.12)

where χ is a C∞0 (O) identically one in a neighborhood of x0.
We have to show that there is Ξ open neighborhood of the point (0, x0−
iξ0) in Cn+1 and positive constants C2 and ε2 such that

(3.13) |e−λφ0(w,z)T (χU) (w, z, λ)| ≤ C2e
−ε2λ1/s0 , ∀(w, z) ∈ Ξ,

where χ(t, x) = χ0(t)θ0(x), here χ0(t) is C∞0 (] − δ1, δ1[), 0 < δ1 <
δ0, such that χ0(t) ≡ 1 in ] − δ2, δ2[, 0 < δ2 < δ1/2, and θ0(x) is
C∞0 (Br0(x0)), Br0(x0) = {x ∈ Rn : |x−x0| < r0}, r0 ≤ dist

(
x0, {πz′(Ω)

)
such that θ0(x) ≡ 1 in Br1(x0), 0 < r1 < r0.
We have

T (χU) (w, z, λ) =

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)U(s, y) dsdy

=
∞∑
N=0

1

(2N)!

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)s2NPNu(y) dsdy︸ ︷︷ ︸
.
=PN (w,z)

.

Let r̃0 > 0 such that r̃0 � r1. We take z in the FBI transform such
that z′ = <(z) ∈ Br̃0−ε (x0), where 0 < ε < r̃0.
Case N = 0, since there are two positive constants A and ε̃0 such that∣∣∣∣∫ e−

λ
2

(w−s)2

χ0(s)ds

∣∣∣∣ ≤ e
λ
2

(w′′)2

Ae−λε̃0 ,

taking advantage from (3.12) there is a positive constant C3 such that∣∣∣∣e−λφ0(w,z)

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)u(y) dsdy

∣∣∣∣(3.14)

≤ C3e
−ε1λ1/s0e−ε̃0λ.

In order to make the proof more readable, before looking at the general
case, we analyze the cases N = 1 and N = 2.
Case N = 1; we have

P1 (w, z)
.
=

1

2

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)s2Pu(y) dsdy.(3.15)

We introduce θ1(y) ∈ C∞0 (Br1 (x0)) such that supp (θ1) ⊆ Br1 (x0),
where θ0(y) ≡ 1, and θ1(y) ≡ 1 in Br2 (x0), where r̃0 ≤ r2 < r1 < r0.
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We have

P1 (w, z) =
1

2

∫∫
e−

λ
2

(w−s)2

χ0(s)s2e−
λ
2

(z−y)2

θ0(y)

(3.16)

× P [(θ1 (y) + (1− θ1 (y)))u(y)] dsdy

=
1

2

∫∫
e−

λ
2

(w−s)2

χ0(s)s2
(
P ∗e−

λ
2

(z−y)2
)
θ1 (y)u(y) dsdy

+
1

2

∫∫
e−

λ
2

(w−s)2

χ0(s)s2
[
P ∗
(
e−

λ
2

(z−y)2

θ0(y)
)]

× (1− θ1 (y))u(y) dsdy;

P ∗ denotes the adjoint of P .

Case N = 2; we have

P2 (w, z)
.
=

1

4!

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)s4P 2u(y) dsdy.

(3.17)

We introduce θ1(y) in C∞0 (Br1 (x0)) and θ2(y) in C∞0 (Br2 (x0)) such
that supp (θ1) ⊆ Br1 (x0), where θ0(y) ≡ 1, θ1(y) ≡ 1 in Br2 (x0),
supp (θ2) ⊆ Br2 (x0), where θ1(y) ≡ 1, and θ2(y) ≡ 1 in Br3 (x0),
where r̃0 ≤ r3 < r2 < r1 < r0. We have

P2 (w, z) =
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4e−
λ
2

(z−y)2

θ0(y)

(3.18)

× P [(θ1 (y) + (1− θ1 (y)))Pu(y)] dsdy

=
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
(
P ∗e−

λ
2

(z−y)2
)
θ1 (y)Pu(y) dsdy

+
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
[
P ∗
(
e−

λ
2

(z−y)2

θ0(y)
)]

× (1− θ1 (y))Pu(y) dsdy

=
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
(
P ∗e−

λ
2

(z−y)2
)
θ1 (y)

× P [(θ2 (y) + (1− θ2 (y)))u(y)] dsdy

+
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
[
P ∗
(
e−

λ
2

(z−y)2

θ0(y)
)]

× (1− θ1 (y))Pu(y) dsdy

=
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
[
(P ∗)2 e−

λ
2

(z−y)2
]
θ2 (y)u(y) dsdy
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+
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
[
P ∗
((
P ∗e−

λ
2

(z−y)2
)

×θ1 (y))] (1− θ2 (y))u(y) dsdy

+
1

4!

∫∫
e−

λ
2

(w−s)2

χ0(s)s4
[
P ∗
(
e−

λ
2

(z−y)2

θ0(y)
)]

× (1− θ1 (y))Pu(y) dsdy.

The idea is to introduce a sequence of cut-off functions, the support of
the subsequent nested where the previous is identically equal to one,
in order to move all the powers of P on the exponential function in
a neighborhood of x0 with the purpose of taking advantage of (3.12).
However this will give rise to other terms which still involve powers
of P acting on u, but in a region far from x0. We handle the general
case as above. We introduce a family of smooth functions {θ

j
(y)}1≤j≤N

such that such that supp
(
θ
j

)
⊆ Brj (x0) and θ

j
(y) ≡ 1 in Brj+1

(x0),
r̃0 ≤ rN+1 < rN < . . . < r2 < r1 < r0. So, we see that for every j
less or equal than N + 1, one has that: i less than j implies θ

i
≡ 1

on a neighborhood of θ
j
. In order to construct the functions θj we

follow the same strategy used to construct the Ehrenpreis-Hörmander
cut-off functions. More precisely we choose rj = r0− (r0 − r̃0) j

N+1
, we

have rj − rj+1 = r0−r̃0
N+1

. Let ψ be a function in D(Rn) with support in

B1/4(0)
.
= {y ∈ Rn : |y| ≤ 1/4} such that ψ ≥ 0 and

∫
ψ dy = 1. For

every γ > 0 we write ψγ(y) = γ−nψ
(
x
γ

)
. Let χj be the characteristic

function of the set {y ∈ Rn : dist
(
y; Brj+1

(x0)
)
< r0−r̃0

2(N+1)
}. We set

θj = ψ r0−r̃0
(N+1)

∗ ψ r0−r̃0
(N+1)

∗ χj.

These functions have the desired properties. Moreover we have

‖Dyiθj‖∞ ≤ ‖Dyiψ r0−r̃0
(N+1)
‖L1‖ψ r0−r̃0

(N+1)
‖L1‖χj‖∞ ≤ C0

N + 1

r0 − r̃0

,

‖DyiDykθj‖∞ ≤ ‖Dyiψ r0−r̃0
(N+1)
‖L1‖Dykψ r0−r̃0

(N+1)
‖L1‖χj‖∞ ≤

(
C0

N + 1

r0 − r̃0

)2

,

where C0 = sup1≤i≤n ‖Dyiψ‖L1(B1/4(0)).

Remark 3.2. One may also choose a sequence of θj independent of
N , by repeating the above construction and taking the convolution with
ψ(r0−r̃0)/2j .
Moreover the θ

j
can be constructed by just one convolution, i.e. θ

j
=

ψ r0−r̃0
2j
∗ χ. This will be more evident in the next few steps.
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We set Xj(x,D) =
n∑
`=1

a`,j(x)Di. We have

PN(w, z) =
1

(2N)!

∫∫
e−

λ
2

(w−s)2

e−
λ
2

(z−y)2

χ0(s)θ0(y)s2NPNu(y) dsdy

(3.19)

=
1

(2N)!

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
[
(P ∗)N e−

λ
2

(z−y)2
]
θ
N

(y)u(y) dsdy

+
1

(2N)!

N∑
j=1

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
{
P ∗
[(

(P ∗)j−1 e−
λ
2

(z−y)2
)
θj−1(y)

]}
× (1− θj(y))PN−ju(y) dsdy

=
1

(2N)!

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
[
(P ∗)N e−

λ
2

(z−y)2
]
θ
N

(y)u(y) dsdy

+
1

(2N)!

N∑
j=1

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
(

(P ∗)j e−
λ
2

(z−y)2
)
θj−1(y)

× (1− θj(y))PN−ju(y) dsdy

+
1

(2N)!

N∑
j=1

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
(

(P ∗)j−1 e−
λ
2

(z−y)2
)

(Pθj−1(y))

× (1− θj(y))PN−ju(y) dsdy

+
1

(2N)!

N∑
j=1

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N

[
m∑
k=1

(
Xk (P ∗)j−1 e−

λ
2

(z−y)2
)

× (Xkθj−1(y))

]
(1− θj(y))PN−ju(y) dsdy

+
2

(2N)!

N∑
j=1

∫∫
e−

λ
2

(w−s)2

χ0(s)s2N
[(

(P ∗)j−1 e−
λ
2

(z−y)2
)

×
m∑
k=1

fk (Xkθj−1(y))

]
(1− θj(y))PN−ju(y) dsdy

= I1 + I2 + I3 + I4 + I5,

where fk = 1
i

∑n
`=1 a

(e`)
`,k (y), e`, `,= 1, . . . , n, in the upper index denotes

the derivatives in the direction `.
Before estimating the above terms a few remarks are in order:

i) each step no more than two derivatives act on θ
j
(y);
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ii) let y ∈ supp(θ(α)
j−1

) ∩ supp
(
1− θ

j

)
, 0 ≤ |α| ≤ 2, since Ω is a

complex neighborhood of x0 − iξ0 such that πz′ (Ω) ⊂ Br̃0−ε,
we have that (z′ − y)2 ≥ ε2;

iii) without loss of generality we may write

(P ∗(y,D))N =
∑
|β|≤2N

a
2N,β

(y)Dβ

where a
2N,β

(y) are analytic functions such that for any compact
set K in U we have

∣∣∣a(γ)
2N,β

(y)
∣∣∣ ≤ C

3N−|β|+|γ|
K (2N − |β|+ |γ|)! ∀ y ∈ K and γ ∈ Zn+.

(3.20)

iv) the following identity holds(
d

dyk

)βk
e−

λ
2

(zk−yk)2

= e−
λ
2

(zk−yk)2

bβk
2
c∑

`k=0

βk!(i)
2(βk−`k)

`k! (βk − 2`k)!2`k
λβk−`k (zk − yk)βk−2`k

= e−
λ
2

(zk−yk)2

(i)βk
(
λ

2

)βk/2 bβk2 c∑
`k=0

βk!

`k! (βk − 2`k)!

[
i
√

2λ (zk − yk)
]βk−2`k

.

Estimate of the term I2. Since we are far from x0 we expect expo-
nential decay. We have

I2 =
1

(2N)!

N∑
j=1

∫
e−

λ
2

(w−s)2

χ0(s)s2Nds

∫ ∑
|β|≤2j

1

(i)|β|
a

2j,β
(y)e

λ
2

(z′′)2+iλ(y−z′)z′′

×

 n∏
ν=1

bβν2 c∑
γν=0

βν !i
2(βν−γν)

γν ! (βν − 2γν)!2|γν |

(
λβν−γν (zν − yν)βν−2γν

)
e−

λ
2

(zν−yν)2


× θj−1(y) (1− θj(y))PN−ju(y) dy.

We remark that the integral with respect the variable s is the FBI
transform of χ0(s)s2N . We take <(w) ∈] − δ2 −

√
ε̃0, δ2 +

√
ε̃0[, ε̃0

sufficiently small positive constant. Splitting the domain of integration
in the regions where χ0(s) 6= 1 and χ0(s) = 1 and changing, in the last
one region, the integration path as in the Remark 3.3, so that it is in
the strip σ = s + iσ′′, |σ′′| < δ2/2, where we consider the holomorphic
extension of s2N , we can conclude that there is a positive constants A
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such that ∣∣∣∣∫ e−
λ
2

(w−s)2

χ0(s)s2Nds

∣∣∣∣ ≤ e
λ
2

(w′′)2

Aδ2N
1 e−λε̃0 .

Since y ∈ Brj−1
(x0) \Brj+1

(x0) we have (z′ − y)2 ≥ ε0. We obtain∣∣∣λβν−γν (zν − yν)βν−2γν e−
λ
2

(z′ν−yν)2
∣∣∣

≤ 2 · 2
3
2

(βν−2γν)

(
8

ε0

)βν−γν
(βν !)

1
2 [(βν − 2γν)!]

1
2 e−

ε0
16
λ,

where we can assume that |z′′ν | ≤ 1. Since βν ! ≤ 2βν+2γν [(βν − 2γν)!] (γν !)
2,

we have

bβν
2
c∑

γν=0

βν !

γν ! (βν − 2γν)!2|γν |

∣∣∣(λβν−γν (zν − yν)βν−2γν
)
e−

λ
2

(zν−yν)2
∣∣∣

≤ 4 · (βν !)
(

32

ε0

)βν
e−

nε0
16
λ,

then

n∏
ν=1

bβν2 c∑
γν=0

βν !

γν ! (βν − 2γν)!2|γν |

∣∣∣(λβν−γν (zν − yν)βν−2γν
)
e−

λ
2

(zν−yν)2
∣∣∣


≤ 4n (β!)

(
32

ε0

)|β|
e−

nε0
16
λ.

We obtain

|e−λφ0(w,z)I2| ≤ 4nA
(2π)nrn−1

0

Γ
(
n
2

) e−ε̃0λ e−
nε0
16
λδN1

×
N∑
j=1

1

(2N)!

∑
|β|≤2j

C
3j−|β|+1
1 (2j − |β|)!β!

(
32

ε0

)|β| C̃
2(N−j)+1
2 [2(N − j)]!,

where C1 and C̃2 are the constants in (3.20) and in (3.11), respectively,

with K = Br0(x0). Without loss of generality we may assume that
C1 and C̃2 are greater then 2. Since (2j − |β|)! ≤ (2j)! (|β|!)−1 and
[2(N − j)]! ≤ (2N)! ((2j)!)−1, we have

|e−λφ0(w,z)I2| ≤ 2 · 8n (2π)nrn−1
0

Γ
(
n
2

) AC1C̃2 e
−ε̃0λ e−

nε0
16
λδN1

(
32C

3
2
1 C̃2

ε0

)2N

.



18 GREGORIO CHINNI AND MAKHLOUF DERRIDJ

Taking δ1 small enough we conclude that there are two positive con-
stants C2 and ε2, independent by N , such that

|e−λφ0(w,z)I2| ≤ C2

(
1

2

)N
e−ε2λ.(3.21)

Estimate of the terms I3, I4 and I5. The only difference from I2 is
that either two derivatives or one derivative act on the functions θj(y).
These terms are treated analogously to the term I2. Then there are
positive constants, C3, C4 and C5, independent of N , such that

|e−λφ0(w,z)I3| ≤ C3(N + 1)2

(
1

2

)N
e−ε2λ,(3.22)

and

|e−λφ0(w,z)I4| ≤ C4(N + 1)

(
1

2

)N
e−ε2λ(3.23)

and

|e−λφ0(w,z)I4| ≤ C5(N + 1)

(
1

2

)N
e−ε2λ.(3.24)

Estimate of the term I1. Roughly speaking we are studying the
micro-local regularity of the product of an analytic function with u
at the point (x0, ξ0). In order to estimate this term we take advantage
from the following theorem which characterizes micro-local smoothness
in terms of (s0 − 1)-almost analytic extendability in certain wedges.

Theorem 3.1 (see Theorem 2.3 in [4]). Let u ∈ D ′ (U). Then (x0, ξ0) /∈
WFs0(u) if and only if there exist a neighborhood U0 of x0, open acute
cones Γ1, . . . , Γk in Rn \ {0} and (s0 − 1)-almost analytic functions fj
on U0 + iΓjε1, Γjε1 = Γj ∩ {ξ : |ξ| < ε1}, of temperate growth such that

u =
∑k

j=1 bfj near x0 and ξ0 · Γj < 0 for all j.

Analogous results in the smooth and analytic category can be found
in [3] and [5]. We point out that in the analytic case the fj are holo-
morphic functions. We recall

Definition 3.1. Let f ∈ Gs0 (U), U open subset of Rn, and suppose

Ũ is a open neighborhood of U in Cn. A function f̃(y, η) ∈ C∞(Ũ) is

called an (s0− 1)-almost analytic extension of f if f̃(y, 0) = f(y)∀ y ∈
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U and for every compact K in U there exists positive constants CK and
small ε

K
such that∣∣∣∂z̄j f̃ ∣∣∣ ≤ CKe

−ε
K
|η|
− 1
s0−1

, j = 1, . . . , n,

holds for y ∈ K and η in ball of radius ε
K

.

The (s0 − 1)-almost analytic extension of a Gevrey function f can
be obtained in the following way

f̃(y + iη) =
∑
γ

f (γ)(y)
i|γ|yγ

γ!
Θ
(
c̃|γ|s0−1|η|

)
,

where Θ is in C∞0 (R) such that suppΘ ⊂ [−1, 1] and Θ(y) ≡ 1 on
[−1/2, 1/2]. For other details see [10] or [4]. We point out that, by
hypothesis, we can construct in a suitable region an (s0 − 1)-almost
analytic extension of u. We have to estimate

I1 =
1

(2N)!

∫
e−

λ
2

(w−s)2

χ0(s)s2Nds
∑
|β|≤2N

∑
γ≤bβ

2
c

γ∈Zn+

β! i|β|−2|γ|

γ! (β − 2γ!) 2γ
λ|β|−|γ|

(3.25)

×
∫
a

2N,β
(y)e−

λ
2

(z−y)2
n∏
ν=1

(zν − yν)βν−2γν θ
N

(y)u(y) dy.

In order to handle the integral with respect the variable y we follow
the classical strategy developed by Bros and Iagolnitzer, [21]. We split
the integration domain in two parts: BrN (x0) \Br̃0(x0) and Br̃0(x0).
We have

∫
a

2N,β
(y)e−

λ
2

(z−y)2
n∏
ν=1

(zν − yν)βν−2γν θ
N

(y)u(y) dy

(3.26)

=

∫
BrN

(x0)\Br̃0
(x0)

a
2N,β

(y)e−
λ
2

(z−y)2
n∏
ν=1

(zν − yν)βν−2γν θ
N

(y)u(y) dy

+

∫
Br̃0

(x0)

a
2N,β

(y)e−
λ
2

(z−y)2
n∏
ν=1

(zν − yν)βν−2γν u(y) dy.

In the first region (z′ − y)2 ≥ ε0, this will give the analytic exponential
decay in this region. Our purpose is to verify that the second integral
gives the desired Gevrey exponential decay. Since (x0, ξ0) /∈ WFs0(u)
without loss of generality we may assume that u is a boundary value
of ũ(ζ), (s0−1)-almost analytic function on Br̃0(x0)+ iΓε2 , Γε2 = {η ∈
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Γ : |η| < ε2}, where Γ is an open cone such that η · ξ0 < 0 for all η ∈ Γ.
We point out that, for a fixed a neighborhood of ξ0, we can choose Γ
such that η · ξ < 0 for all η ∈ Γ and ξ in the neighborhood of ξ0. On
the other hand a

2N,β
(y) are analytic functions, we can construct their

holomorphic extension ã
2N,β

(ζ) in Cn
ζ , where ζ = y + iη and |η| ≤ ε3.

We take ε2 such that ε2 ≤ ε3.
Let ϑ(y) ∈ C∞0 (Rn) with support equal to Br̃0 (x0) such that 0 ≤
ϑ(y) ≤ 1 and ϑ(x0) = 1. Let η0 ∈ Γε2 , we define the n-dimensional
manifold, Sη0,ε4 , in Cn

ζ , ζ = y + iη, given by

y 7→ ζ = y + iε4ϑ(y)η0,

where ε4 ∈ R+ and is sufficiently small so that Sη0,ε4 is contained in
Br̃0(x0) + iΓε2 . We remark that the boundary of Sη0,ε4 is equal to
∂Br̃0(x0). By the Stokes theorem we have∫

Br̃0
(x0)

a
2N,β

(y)e−
λ
2

(z−y)2
n∏
ν=1

(zν − yν)βν−2γν u(y) dy

= −
∫
Sη0,ε4

ã
2N,β

(ζ)e−
λ
2

(z−ζ)2
n∏
ν=1

(zν − ζν)βν−2γν ũ(ζ) dζ

+

∫
Dη0

d

(
ã

2N,β
(ζ)e−

λ
2

(z−ζ)2
n∏
ν=1

(zν − ζν)βν−2γν ũ(ζ)

)
∧ dζ,

where Dη0 =
⋃

0<t<ε4

Sη0,t ⊆ Br̃0(x0) + iΓε2 and ∂Dη0 = Br̃0(x0)∪Sη0,ε4 .

Since

dζj =
n∑
k=1
k 6=j

(it ϑ(ek)(y) η0
j )dyk + (1 + it ϑ(ej)(y) η0

j )dyj + (i ϑ(y) η0
j )dt,

dζ̄i =
n∑
k=1
k 6=j

(−it ϑ(ek)(y) η0
j )dyk + (1− it ϑ(ej)(y) η0

j )dyj − (i ϑ(y) η0
j )dt,

where ϑ(ej)(y) =
(
∂yjϑ

)
(y), and ã

2N,β
(ζ) are holomorphic functions,

analytic extensions of a
2N,β

(y), in Dη0 , we have(
d

(
ã

2N,β
(ζ)e−

λ
2

(z−ζ)2
n∏
ν=1

(zν − ζν)βν−2γν ũ(ζ)

)
∧ dζ

)
|S
η0,t

=
n∑
j=1

(
ã

2N,β
(ζ)e−

λ
2

(z−ζ)2
n∏
ν=1

(zν − ζν)βν−2γν ∂ũ

∂ζ̄j
(ζ)dζ̄j ∧ dζ

)
|S
η0,t
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=
n∑
j=1

(̃
a

2N,β
(ζ)e−

λ
2

(z−ζ)2
n∏
ν=1

(zν − ζν)βν−2γν ∂ũ

∂ζ̄i
(ζ)

)
|S
η0,t

det
(
Aj(y, t, η

0)
)
dt dy,

where Aj(y, t, η
0) is the (n+ 1)× (n+ 1)−matrix

−itϑ(e1)(y)η0
j · · · −itϑ(ej−1)(y)η0

j 1− itϑ(ej)(y)η0
j −itϑ

(ej+1)(y)η0
j · · · −iϑ(y)η0

j

1 + it ϑ(e1)(y)η0
1 itϑ(e2)(y)η0

1 · · · · · · · · · · · · iϑ(y)η0
1

itϑ(e1)(y)η0
1 1 + itϑ(e2)(y)η0

2 itϑ(e3)(y)η0
2 · · · · · · · · · iϑ(y)η0

2
...

. . .
. . .

. . .
. . .

. . .
...

itϑ(e1)(y)η0
n · · · · · · · · · itϑ(en−1)(y)η0

n 1 + itϑ(en)(y)η0
n iϑ(y)η0

n


We obtain

e−λφ0(w,z)I1 = e−λφ0(w,z)I1,1 + e−λφ0(w,z)I1,2 + e−λφ0(w,z)I1,3,

where

e−λφ0(w,z)I1,1 =
1

(2N)!
e−

λ
2 [(w′′)2+(z′′)2]

∫
e−

λ
2

(w−s)2

χ0(s)s2Nds

×
∑
|β|≤2N

∑
γ≤bβ

2
c

γ∈Zn+

β! i|β|−2|γ|

γ! (β − 2γ!) 2γ
λ|β|−|γ|

∫
BrN

(x0)\Br̃0
(x0)

e−
λ
2

(z−y)2

a
2N,β

(y)

×
n∏
ν=1

(zν − yν)βν−2γν θ
N

(y)u(y) dy,

e−λφ0(w,z)I1,2 =
1

(2N)!
e−

λ
2 [(w′′)2+(z′′)2]

×
∫
e−

λ
2

(w−s)2

χ0(s)s2Nds
∑
|β|≤2N

∑
γ≤bβ

2
c

γ∈Zn+

β! i|β|−2|γ|

γ! (β − 2γ!) 2γ
λ|β|−|γ|

×
∫

Br̃0
(x0)

[
e−

λ
2

(z−ζ)2

ã
2N,β

(ζ)
n∏
ν=1

(zν − ζν)βν−2γν ũ(ζ)

]
ζ=y+iε4ϑ(y)η0

det
(
B(y, ε4, η

0)
)
dy,

where B(y, ε4, η
0) is the n× n-matrix1 + iε4 ϑ(e1)(y)η0

1 iε4ϑ(e2)(y)η0
1 · · · · · · · · · iε4ϑ(en)(y)η0

1

iε4ϑ(e1)(y)η0
1 1 + iε4ϑ(e2)(y)η0

2 iε4ϑ(e3)(y)η0
2 · · · · · · iε4ϑ(en)(y)η0

2
...

. . .
. . .

. . .
. . .

...

iε4ϑ(e1)(y)η0
n · · · · · · · · · iε4ϑ(en−1)(y)η0

n 1 + iε4ϑ(en)(y)η0
n


and

e−λφ0(w,z)I1,3 =
1

(2N)!
e−

λ
2 [(w′′)2+(z′′)2]

∫
e−

λ
2

(w−s)2

χ0(s)s2Nds
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×
∑
|β|≤2N

∑
γ≤bβ

2
c

γ∈Zn+

β! i|β|−2|γ|

γ! (β − 2γ!) 2γ
λ|β|−|γ|

n∑
`=1

I1,3,β,γ,`,

where

I1,3,β,γ,` =∫ ε4

0

∫
Sη0,t

e−
λ
2

(z−ζ)2

ã
2N,β

(ζ)
n∏
ν=1

(zν − ζν)βν−2γν
(
∂̄ũ
)

(ζ) (iϑ

(
ζ + ζ̄

2

)
η0
` ) dt ∧ dζ

=

∫ ε4

0

∫
Br̃0

(x0)

e−
λ
2

(z−y−itϑ(y)η0)2

ã
2N,β

(
y + itϑ(y)η0

) (
∂̄ũ
)

(y + itϑ(y)η0)

×
n∏
ν=1

(
zν − yν − itϑ(y)η0

ν

)βν−2γν
det
(
A`(y, t, η

0)
)
dt dy.

Since (z′ − y)2 ≥ ε0 in BrN (x0) \Br̃0(x0), using the same strategy as
for the term I2, we obtain∣∣e−λφ0(w,z)I1,1

∣∣ ≤ C5

(
1

2

)N
e−ε2λ,

where C5 is a positive constant independent of N .
A quick inspection of the terms I1,2 and I1,3 highlights that the main
differences with respect to the already treated terms, are the behav-
ior of the phase function on the integration path as well as the pres-
ence of ∂̄u. We point out that setting a`p,q(y, t, η

0) and bk,m(y, ε4, η
0),

p, q ∈ {1, . . . , n+ 1} and k,m ∈ {1, . . . , n}, the entries of the matrixes
A`(y, t, η

0) and B(y, ε4, η
0) respectively, since we can estimate the en-

tries |a`p,q(y, t, η0)| and |bk,m(y, ε4, η
0)| by (1 + supi ‖ϑ(ei)‖∞) we have∣∣det

(
A`(y, t, η

0)
)∣∣ ≤ ∑

σ∈Sn+1

n+1∏
p=1

∣∣a`p,σ(q)(y, t, η
0)
∣∣

≤ (n+ 1)! [(n+ 1)! + 1]

2
(1 + sup

i
‖ϑ(ei)‖∞)n+1,

∣∣det
(
B(y, ε4, η

0)
)∣∣ ≤ ∑

σ∈Sn

n∏
k=1

∣∣bk,σ(k)(y, ε4, η
0)
∣∣

≤ n! (n! + 1)

2
(1 + sup

i
‖ϑ(ei)‖∞)n.

We focus on the exponential function:

e−
λ
2
<(z−y−itϑ(y)η0)2

= e
λ
2

(z′′)2

e−
λ
2

(z′−y)2

e−λtϑ(y)z′′η0+λ
2

(tϑ(y))2|η0|2 .
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Since z′′ is in a neighborhood of −ξ0 then z′′η0 > 0. Hence there is a
positive constant c such that z′′η0 > c|z′′||η0|; moreover since we can
assume that there is a strictly positive constant a such that |z′′| ≥ a
then z′′η0 > c1|η0|, c1 > 0. We can estimate the above quantity with

e
λ
2

(z′′)2

e−
λ
2 [(z′−y)2+tϑ(y)|η0|(2c1−tϑ(y)|η0|)].

Choosing t sufficiently small we have that 2c1 − tϑ(y)|η0| > 0. In the
case t = ε4,we obtain the analytic exponential decay for I1,2; more
precisely the same strategy used to handle the term I2 gives that there
are two positive constants C6 and ε̃2, independent of N , such that∣∣e−λφ0(w,z)I1,2

∣∣ ≤ C6

(
1

2

)N
e−ε̃2λ.

In order to estimate the last term,
∣∣e−λφ0(w,z)I1,3

∣∣, we can apply once
again the strategy used to estimate I2. The only difference is that we
have to take care of the term

∣∣(∂̄ũ) (y + itϑ(y)η0)
∣∣. Keeping in mind

that ũ is an (s0 − 1)-almost analytic extension of u, we have∣∣∣e−λ2 (z−ζ)2
∣∣∣ ∣∣(∂̄ũ) (y + itϑ(y)η0)

∣∣
≤ Ce

λ
2

(z′′)2

e−
λ
2

(z′−y)2

e−λc2tϑ(y)|η0|e−εK (tϑ(y)|η0|)
− 1
s0−1

≤ Ce
λ
2

(z′′)2−λ
2

(z′−y)2

e−ε̃Kλ
1/s0 ,

where ε̃
K

= c2γ
(s0−1)/s0
1 + γ

−1/s0
1 , γ1 = εK/(c2(s0 − 1)), and ε

K
is as in

the Definition 3.1 with K = Br̃0(x0). The estimate in the exponential

is obtained taking inf
b

(
λc1b+ ε

K
b
− 1
s0−1

)
, where b = tϑ(y)|η0|. Using

this estimate we conclude that there are two positive constants C7 and
ε4 such that ∣∣e−λφ0(w,z)I1,3

∣∣ ≤ C7

(
1

2

)N
e−ε4λ

1/s0 .

We deduce that there is a positive constant C8 such that

|e−λφ0(w,z)I1| ≤ C8

(
1

2

)N
e−ε4λ

1/s0 .(3.27)

Remark 3.3. The estimate of the second term on the right hand side
of (3.26), i.e. in the region Br̃0(x0), can be obtained in a similar way
introducing the family of homeomorphisms

Ht : Br̃0(x0) 3 y →
(
y1 + itη0

1, . . . , yn + itη0
n

)
∈ Cn

ζ ,
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where η0 ∈ Γε2. Also in this case Ht (Br̃0(x0)) is a n-dimensional
manifold of Cn

ζ for every t ∈ [0, 1]. Setting

V (y, tη0) = ã
2N,β

(y + itη0)e−
λ
2

(z−y−itη0)2×
n∏
ν=1

(
zν − yν − itη0

ν

)βν−2γν
ũ(y + itη0),

and applying, also in this case, the Stokes’ theorem∫
H1(Br̃0

(x0))
V (ζ) dζ −

∫
H0(Br̃0

(x0))
V (ζ) dζ =

∫
V

d (V (ζ)) ∧ dζ,

where V = [0, 1] ×H0 (Br̃0(x0)), the estimate (3.27) can be obtained
following step by step the strategy employed above.

By (3.21), (3.22), (3.23), (3.24) and (3.27) we have

|e−λφ0(w,z)PN(w, z)| ≤ C8

(
1

2

)N
e−ε4λ

1/s0 + C2

(
1

2

)N
e−ε2λ

+ [C3(N + 1) + C4 + C5] (N + 1)

(
1

2

)N
e−ε2λ.

Summing up we obtain that there are two positive constants C and ε
such that

|e−λφ0(w,z)T (χU) (w, z, λ)| ≤ Ce−ελ
1/s0 ,

for all (w, z) in a neighborhood of (0, x0 − iξ0) ∈ C1+n.

Step two: if (0, x0, 0, ξ0) /∈ WFs0(U) then (x0, ξ0) /∈ WFs0(u). In
the analytic category the result was obtained in [7] via Fourier trans-
form and taking advantage from the Theorem 8.2.4 in [20]. Via FBI
transform it is a consequence of a result in [21] on the restriction of a
distribution to a sub-manifold. More precisely we remark that for every
τ0 6= 0 the points of the form (t0, x0, τ0, ξ0) do not belong to WFs0(U)
for every s0 ≥ 1. This can be obtained ether via FBI transform, per-
forming the classical deformation argument of the integral path with
respect to the t-variable, or noticing that the operator Q is elliptic for
τ 6= 0. Since WFs0 (δ(t)) = {(x, 0, 0, τ) : x ∈ Rn and τ ∈ R \ {0}} we
have that WFs0(U) ∩ WFs0 (δ(t)) = ∅, or equivalently that the nor-
mal to the manifold t = 0 does not intersect the WFs0(U), then the
product of U and δ(t) is well defined. This allow us to consider u(x) as
U(t, x)×δ(t) in the sense of distributions. More in general we can define
the map π : {U ∈ E ′(Rn+1) : WFs0(U)∩WFs0 (δ(t)) = ∅} → E ′(Rn) in
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the following way u(φ0) = π(U)(φ0) = U(φ1δ(t)) for all φ0 ∈ C∞0 (Rn)
where φ1 ∈ C∞0 (Rn+1) and π(φ1) = φ0. Following the same strategy
used in [20] we have that WFs0(u) = WFs0(π(U)) which is contained
in {(x, ξ) ∈ Rn × Rn \ {0} : ∃τ ∈ R with (x, 0, ξ, τ) ∈ WFs0(U)}.

This concludes the proof of Theorem 1.1.
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[12] M. Derridj and C. Zuily, Régularité analytique et Gevrey d’opérateurs
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[14] M. Derridj Local estimates for Hörmander’s operators of first kind with an-
alytic Gevrey coefficients and application to the regularity of their Gevrey vec-
tors, Pacific Journal of Mathematics 302 (2019), No. 2, 511–543.
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