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Abstract

Psychiatric disorders and related traits have a demonstrated genetic component, with

heritability estimated by twin studies generally between 80% and 40%. Their

pathogenesis is complex and multi‐determined: environmental factors interact with a

polygenic architecture, making difficult the development of models able to stratify

patients or predict mental health outcomes. Despite this difficult challenge, relevant

progress has been made in the field of psychiatric genetics in recent years. This review

aims to present the main current methods in psychiatric genetics, their output,

limitations, clinical applications, and possible future developments. Genome‐wide

association studies (GWASs) performed in increasingly large samples have led to the

identification of replicated genetic loci associated with the risk of major psychiatric

disorders, including schizophrenia and mood disorders. Statistical and biological

approaches have been developed to improve our understanding of the etiopathogenetic

mechanisms behind genome‐wide significant associations, as well as for estimating the

cumulative effect of risk variants at the individual level and the genetic overlap between

different disorders, as pleiotropy is the rule rather than the exception. Clinical

applications are available in the pharmacogenetics field. The main issues that remain

to be addressed include improving ethnic diversity in genetic studies and

the optimization of statistical power through methodological improvements, such as

the definition of dimensional phenotypes with specific biological correlates and the

integration of different types of omics data.
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INTRODUCTION

Psychiatric disorders are complex diseases with a genetic–

environmental pathogenesis. Using a simple metaphor, this etio-

pathogenetic model can be described as a jar: individuals are born

with a certain amount of genetic risk factors that fill the jar until a

certain level, as psychiatric disorders are polygenic, that is, many

variants spread across the genome are involved in disease suscepti-

bility. This genetic architecture is due to negative selection that leads

to the purging of large‐effect mutations in critical regions.1 With

time, environmental risk factors may accumulate, and increase the

level the jar is filled to, making the individual more vulnerable, until a

certain threshold value is reached and the individual manifests an

active episode of illness.2 The degree of contribution from genetic
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variants is variable for different psychiatric disorders, as family

studies have shown, for example a relative risk (RR) of 1.5 in first‐

degree relatives of patients with major depressive disorder (MDD)

compared to the general population, while an RR of 7 for

schizophrenia (SCZ) and bipolar disorder (BP), and almost 9 for

autism spectrum disorders (ASDs).3

As family studies have suggested a clear genetic component to

psychiatric illness, specific approaches have been developed to

quantitatively estimate heritability, that is, the proportion of variance

in a disease that is attributable to the effect of genetic variants. Twin

studies estimate heritability by modelling the variance of phenotypic

concordance across monozygotic and dizygotic twin pairs. They have

confirmed that psychiatric disorders are heritable, with heritability of

about 80% for SCZ and BP, while around 40%–50% for MDD.4–6

Twin studies do not identify the specific genomic regions/loci

involved; that is the main aim of genome‐wide association studies

(GWASs).

GWASs analyze the effect of millions of common genetic

variants throughout the genome. Typically, several hundreds of

thousands are genotyped using a high‐throughput technology and

then genotyped variants are imputed to increase their number up

to ~10 million, by exploiting known relationships among variants

(linkage disequilibrium [LD]) and reference panels obtained in

samples of the same ethnic group. As GWASs include only

common genetic variants (usually defined as those with a

frequency ≥1% in the population), mostly single nucleotide

polymorphisms (SNPs), heritability estimated using GWASs is

typically half or less compared to heritability estimated by twin

studies, for example, about 30% for SCZ, and this discrepancy is

referred to as missing heritability.5 Rare variants, such as deletions

and duplications (copy number variants), may explain a relevant

part of the missing heritability.

The role of rare variants in determining the risk of psychiatric

disorders has been studied, particularly for SCZ and other disorders

with a relevant neurodevelopmental component. Whole exome

sequencing (WES) studies demonstrated an enrichment in ultra‐rare

variants in individuals with SCZ compared to controls, and specifically

of loss of function (LoF) variants in LoF intolerant gene‐sets and

highly brain‐expressed and evolutionarily constrained genes.7 How-

ever, studies using WES or whole genome sequencing (WGS) require

large sample sizes to detect significant associations at the variant

level, which are still lacking; therefore, previous studies have focused

on testing the burden of variants in genes or groups of genes, using

methods discussed in the next paragraph.

The importance of quantifying and understanding the genetic

factors involved in the pathogenesis of psychiatric disorders has

led to a substantial investment of resources in the development

of ad hoc methods and in carrying out studies with increasingly

large sample sizes. This has resulted in relevant advances in

the field and the scope of the present review is to provide an

overview and discussion of the methods, applications relevant to

the clinic and possible future developments in psychiatric

genetics.

SELECTION OF RELEVANT STUDIES

This review summarizes the content of studies satisfying the

following criteria: (1) focused on the identification of the genetic

factors influencing the risk of psychiatric disorders or the outcomes

of treatment with psychotropic drugs (efficacy/side‐effects); (2)

based on the analysis or development of analysis methods for

genome‐wide or next‐generation sequence data, or alternatively

providing/discussing results with clinical applications in psychiatry;

and (3) published in English until October 2021. This is a narrative

review; therefore, it did not aim to provide a systematic assessment

of all the studies in the field of interest.

METHODS IN PSYCHIATRIC GENETICS

Identification of variants, genes and gene‐sets
associated with psychiatric disorders

The identification of variants and genomic regions or units that affect

the risk of psychiatric illnesses is certainly one of the fundamental

aims of research in psychiatric genetics. Two main types of studies

can be used for this scope, namely GWASs and sequencing studies

(WES or WGS). The former analyses common genetic variants only,

while the latter includes rare genetic variants (a variant frequency of

1% in the population is often used as a threshold to distinguish

between common and rare variants). Both types of study can test

associations at variant, gene or gene‐set level, though sequencing

studies have typically been underpowered to identify associations at

the variant level, as noted in the Introduction.7

GWASs need large sample sizes to have adequate statistical

power, particularly in the case of highly polygenic disorders, such as

MDD, as they are characterized by the contribution of many variants

with very small effect size.8 Relatively small sample sizes are likely to

be another reason behind the previously mentioned missing

heritability, as the increase in GWAS sample size is expected to

increase the degree of genetic variance explained (the estimation of

variant effects becomes closer and closer to the actual effect size).

The sample size needed to identify SNPs that can explain 80% of

GWAS heritability is between 0.7 and 1.5 million for most psychiatric

diseases, but up to 10 million for MDD.8 However, it should be noted

that the increase in GWAS sample size entails an increase in

heterogeneity, which is a relevant issue for psychiatric disorders, and

this may explain the lack of increase in SNP‐based heritability found

in more recent and larger GWASs compared to older ones.8

Such large samples can only be collected within international

consortia, and the Psychiatric Genomics Consortium (PGC) is one of

the main groups involved in this effort. The approach adopted by the

PGC consists in meta‐analyzing data from case–control GWASs

available through world‐wide collaborations and, for example, it led

to the inclusion of 306,011 individuals in recent SCZ GWASs9 (see

Table 1 for an overview of recent GWASs of psychiatric disorders by

the PGC). The progressive increase in sample size led to an increase
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in the number of genome‐wide significant loci, that is, the number of

variants independently associated with a disease after multiple‐

testing correction (Table 1).

Other than individual loci, GWASs and sequencing studies offer

the opportunity to test the joint effect of variants within a specific

unit with biological relevance, such as a gene or gene‐set. This type of

analysis has a higher power compared to variant‐level association

tests and it also provides the possibility of clarifying the functional

and biological mechanisms responsible for disease pathogenesis. In

GWASs, one of the most used methods for this type of analysis

performs gene analysis by projecting the matrix of variants in a gene

into its principal components (PCs) to remove redundant parameters,

then these PCs are used as predictors of the disease in a regression

model. LD is accounted for and additional covariates can be

included.21 Gene‐set analysis tests the joint effect of a group of

genes that are related to each other, for example, genes coding for

molecules that lead to a certain product or a change in the cell, such

as a metabolic or signal transduction pathway, or are part of the same

cellular structure. For gene‐set analysis, two main types of tests can

be performed: a self‐contained or competitive test. The former tests

the hypothesis that genes in a gene‐set have an effect on the

phenotype significantly different from zero, while the latter tests the

hypothesis that genes in a gene‐set are more strongly associated with

the phenotype of interest than other genes (random pathway of the

same size). Gene size, gene expression levels or other gene

characteristics can be included in the analysis to evaluate if they

affect the phenotype, considering conditional, joint or interaction

effects.21

In WES/WGS studies, many tests have been developed to

estimate the joint effect of variants in order to account for different

hypotheses on the modality by which variants influence the

phenotype. A common approach is represented by burden tests,

which evaluate if a genetic score expressing the burden of variants in

a genetic unit is associated with the phenotype, assuming all variant

alleles have the same direction of effect on the risk of disease. This

may be the case when variants are carefully selected for their

probability of being causal (e.g., very rare variants, variants that

modify the corresponding protein, such as LoF variants). However,

when this assumption does not hold, the association signals of

different variants may cancel out and lead to considerable loss of

power. Alternatively, variance‐component tests consider the variance

of genetic effects, or in other words the differences in the

distribution of rare variants between cases and controls, assuming

each variant may have a risk effect, protective or neutral effect.

There is also the option to combine the two described approaches, as

done in most studies, to account for both possible scenarios.22

In psychiatric genetics, gene and gene‐set analyses have yielded

interesting results that indicate the involvement of processes

regulating synaptic function, neuronal morphogenesis, neurodevelop-

ment, neuronal excitability, and inflammation/immune response

among others (Table 2).

An increased frequency of copy number variants (CNVs),

including rare LoF variants, has been reported in several psychiatric

disorders, such as SCZ and attention‐deficit hyperactivity disorder

(ADHD) and, to a less extent, in BP and MDD.23 For example,

pathogenic deletions on chromosome 2p16.3 were associated with

SCZ and appear to specifically disrupt the gene encoding the synaptic

cell adhesion molecule neurexin‐1 (NRXN1). The effect sizes of CNVs

of known psychiatric relevance far exceed those of common variants

(e.g., odds ratio [OR] of 2–60); however, none is necessary or

sufficient to determine the disease, or it is univocally associated with

only one neuropsychiatric disorder, confirming the common pleio-

tropic effects of these variants.23

Heritability and genetic correlation

An interesting area of research involves the estimation of

heritability of psychiatric disorders and the genetic overlap across

them. As mentioned at the end of the previous paragraph, there is

strong evidence that the same variant can affect the risk of

different psychiatric disorders (pleiotropy), and this has been

explored extensively in GWASs. As discussed, however, GWASs

focus on common variants only, and they estimate the proportion

of heritability explained by SNPs (SNP‐based heritability or

SNP‐based h2).

There are different methods to estimate SNP‐based h2 and

genetic correlation (rg); some require raw genetic data (individual‐

level genotypes), while others work on summary statistics (i.e.,

statistics describing the association of each variant with the

phenotype, which typically include effect size, standard error, and

P‐value). These methods can be also classified based on a model's

assumptions and the method used to estimate SNPs effect sizes,

including linear mixed models (LMM), Bayesian models, and LD‐

adjusted kinships; a detailed review was recently published on the

topic.24

Available software includes GCTA GREML (genome‐wide

complex trait analysis, genome‐based restricted maximum likeli-

hood) and the Bayesian variant GCTB, LDSC (LD score regression)

and GEMMA (genome‐wide efficient mixed model association).

LDSC and GEMMA can work on both quantitative and binary traits

and accept summary statistics as input, while GCTA and GCTB

require individual‐level genotypes.24 There is no optimal method/

software, but each has advantages and limitations. For example,

LMM assumes that all SNPs have nonzero effects with their effect

sizes following a normal distribution, and this approach is more

accurate in estimating SNP‐based h2 when actually a large

proportion of SNPs have nonzero effects on the trait. On the other

hand, when only a relatively small proportion of SNPs have nonzero

effects, Bayesian variable selection regression (BVSR) tends to work

better because it assumes that the genetic effect size of each SNP

follows a point‐normal distribution. As genetic architecture is

usually not known a priori, Bayesian sparse LMM can address this

issue by combining the two distributions modelled in LMM and

BVSR, as done by GEMMA. GCTA GREML is based on the LMM

assumption, while GTCB implements a Bayesian approach to LMM,

4 of 13 | METHODS AND APPLICATIONS IN PSYCHIATRIC GENETICS
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assuming that SNP effects are drawn from a mixture distribution of

zero and nonzero components. Therefore, GCTB can estimate

polygenicity, and another advantage is the estimation of the joint

distribution of effect size and minor allele frequency, a useful

indicator of negative selection.25 However, these methods do not

take into account that variant effect size can be influenced by how

many SNPs are in close LD, as done by others, such as LDSC.

Instead of applying the standard likelihood‐based approach REML

for fitting LMM, LDSC relies on a matching moments‐based method.

GEMMA can also apply a variant of LMM using the method of

moments, with a framework called MQS (MinQue for Summary

statistics), which can effectively use a small random subset of

individuals to produce unbiased and accurate estimates with

calibrated standard errors.24 Even though simulations showed that

LDSC estimates of SNP‐based h2 are generally biased downward,

LDSC is a largely used software, because of a low computational

burden and widespread availability of GWAS summary statistics.3

Overall, variability in SNP‐based h2 for a trait was demonstrated

across different methods, but particularly across different samples,

suggesting that heterogeneity across sampling populations is an

important issue and that it may be partly responsible for missing

heritability.24

TABLE 2 Overview of gene and gene‐set results found in PGC GWASs of psychiatric disorders

Disorder N of associated genes N of associated pathways and function Reference

Major depressive disorder N = 153 (many in the extended

MHC region, others include
CACNA1E, CACNA2D1,
DRD2, GRIK5, GRM5, PCLO)

N = 19; RBFOX1, RBFOX2, RBFOX3, or

CELF4 regulatory networks; genes
whose mRNAs are bound by FMRP;
synaptic genes; genes involved in
neuronal morphogenesis; genes
involved in neuron projection; genes

associated with schizophrenia; genes
involved in CNS neuron differentiation;
genes encoding voltage‐gated calcium
channels; genes involved in cytokine

and immune response; genes known to
bind to the retinoid X receptor

Wray et al.10

Schizophrenia N = 130 (prioritized by fine
mapping, 13 have synaptic
annotations)

N = 27; neuronal excitability, development,
and structure, with prominent
enrichment at the synapse

The Schizophrenia Working Group of
the Psychiatric Genomics
Consortium et al.9

Bipolar disorder N = 161 (15 prioritized by fine
mapping, including HTR6,
MCHR1, DCLK3, FURIN)

N = 4; synaptic signaling Mullins et al.11

Anxiety disorders N = 4 (LOC152225, PREPL,
CAMKMT, SLC3A1)

/ Otowa et al.12

Obsessive–compulsive
disorder

N = 4 (KIT, GRID2, WDR7,
ADCK1)

N = 7; only gene‐sets associated with
psychiatric disorders were examined,
the top result was found for genes
associated with schizophrenia

International Obsessive Compulsive
Disorder Foundation Genetics
Collaborative (IOCDF‐GC) and
OCD Collaborative Genetics

Association Studies (OCGAS)13

Post‐traumatic stress
disorder

N = 12 N = 4; immune system, hypothalamic‐
pituitary‐adrenal stress response,
thioesterase binding

Nievergelt et al.14

Anorexia nervosa N = 79 (including NCAM1 and

CTNNB1)

N = 1; embryonic development Watson et al.15

Alcohol dependence N = 0 / Walters et al.16

Cannabis use disorder N = 3 (FOXP2, PDE4B, ENO4) N = 0 Johnson et al.17

Opioid dependence N = 3 (BEND4, C18orf32,
SDCCAG8)

N = 2; small RNA binding and genes
downregulated 6 h after induction of

HoxA5 expression

Polimanti et al.18

Attention‐deficit
hyperactivity disorder

N = 20 N = 0 Demontis et al.19

Autism spectrum disorders N = 15 (including KCNN2 and

CRHRl)

N = 0 Grove et al.20

Note: See Table 1 for information on sample size.
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GREML and LDSC methods both have bivariate extensions for

the estimation of rg; notably, rg is more robust to the assumptions

made in different methods compared with SNP‐based h2 estimates,

and rg estimations show good concordance between family studies

and GWASs for psychiatric disorders, suggesting that rg estimated

from common SNPs is the same as rg estimated across the full allele

frequency spectrum.3

Large GWASs of psychiatric traits estimated SNP‐based h2 of

psychiatric disorders (Table 1) and demonstrated relevant genetic

overlap across them (Table 3). For example, SCZ shows rg of 0.72

with BP, 0.39 with MDD, 0.25 with anorexia nervosa, and 0.21 with

ASD; among other disorders, MDD shows genetic overlap with BP

(rg = 0.38), ADHD (rg = 0.42), and anxiety disorders (rg = 0.80)

(Table 3). Nonspecific psychiatric disorders heritability was demon-

strated to show enrichment at regulatory chromatin active during

fetal neurodevelopment; specifically, disruptions to synapse and

calcium channel biology during neuronal proliferation, migration and

establishment of circuits may play an important role.27 Polygenic risk

scores (PRSs) are another approach to exploring the genetic overlap

among different traits, as discussed in the section on PRSs below.

Identifying causal variants: Fine mapping

GWASs have identified hundreds of loci associated with psychiatric

disorders over the past 15 years; however, these results per se do not

indicate the true causal variants/genes implicated because they

cannot distinguish a causal variant from other variants that are in LD

with it. This is the aim of fine mapping methods, which include many

biological and statistical approaches to discovering the underlying

etiopathogenetic mechanisms of a disease.

Biological approaches to fine mapping consist of checking which

variants in a locus have a functional role, for example, promoters and

enhancers, using resources such as the database by the NIH

Roadmap Epigenomics Mapping Consortium, which determined

histone marks to locate functional elements in 127 different cell

and tissue types.28 Regulatory regions can also be detected based on

DNA accessibility, with methods such as DNase‐seq, or by identifying

the inherent transcriptional activity of enhancers and promoters, with

techniques such as GRO‐seq. The mentioned approaches have

different sensitivities and accuracies in the mapping of active

regulatory regions.29 Furthermore, the fact that a variant lies in a

functional element does not necessarily imply that it results in a

disruption of a biological process relevant to the disease of interest.

Other methods detect other types of variant effects, for example

variants that modify chromatin accessibility, cause alternative splicing

that affects gene expression, disrupt transcription factor binding

sites, or change the physical interactions of a regulatory region with

its target genes (long‐range interaction).29 Integration of genetic data

with gene expression data generates eQTL (expression quantitative

trait locus) information, which provides likely associations between

variants and gene expression level, usually considering cis‐eQTL

effects. Examples of eQTL databases are the Genotype‐Tissue

Expression project (GTEx), including 54 tissues, 13 of which are in

the brain, and PsychENCODE, based on post‐mortem prefrontal

cortex tissue.30

An important observation is that most databases of functional

annotations and eQTL do not include extensive information on

spatial and temporal characteristics of the brain, that is, different

regions of the brain and different phases of neurodevelopment that

are relevant to psychiatric disorders, and only approximately 50% of

eQTLs are shared across tissues and cell types.30

TABLE 3 Genetic overlap among
psychiatric disorders estimated using
genetic correlation

MDD 0.39 0.38 0.80 ‐ 0.62 0.28 0.56 0.32 0.42 0.44

SCZ 0.72 0.35 ‐ 0.34 0.25 0.36 0.31 0.12 0.21

BP 0.26 ‐ 0.18 0.20 0.19 0.17 0.21 0.21

ANX ‐ ‐ 0.25 ‐ ‐ 0.34 ‐

OCD ‐ 0.45 −0.31 ‐ ‐ ‐

PTSD ‐ ‐ 0.42 0.60 0.04

AN 0.03 0.006 −0.24 0.06

ALCDEP 0.55 0.44 −0.08

CUD 0.53 ‐

ADHD 0.38

ASD

Note: References.3,10,11,14–17,19,20,26: Significant genetic correlations are in bold. For some disease

pairs, no data were available.

ADHD, attention‐deficit hyperactivity disorder; ALCDEP, alcohol dependence; AN, anorexia nervosa;

ANX, anxiety disorders; ASD, autism spectrum disorders; BP, bipolar disorder; CUD, cannabis use
disorder; MDD, major depressive disorder; OCD, obsessive–compulsive disorder; PTSD,
post‐traumatic stress disorder; SCZ, schizophrenia.

6 of 13 | METHODS AND APPLICATIONS IN PSYCHIATRIC GENETICS

 27692558, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pcn5.6 by C

hiara Fabbri - A
rea Sistem

i D
ipart &

 D
ocum

ent , W
iley O

nline L
ibrary on [26/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Other than gene‐expression‐based eQTL, other QTL types can

provide insights into the functional role of GWAS loci, such as DNA

methylation and other epigenetic mechanisms of regulation. A

fascinating but challenging aspect of epigenetics is its role in the

cross talk between the genome and the environment, as genetic

variants can predispose to disease through the modulation of

sensitivity to environmental risk, which modifies gene expression

through epigenetic regulation. There are also genetically dependent

DNA methylation domains with strong developmental stability and

evidence of involvement in the risk of psychiatric disorders. For

example, in patients with SCZ, DNA methylation variation was

associated with polygenic burden for SCZ.31

Statistical methods to fine mapping include earlier approaches

that assume at most one variant per locus has a causal role, which set

the framework for later methodological developments. These

approaches use Bayesian statistics to compare the marginal likelihood

of the data at each SNP in a locus under different prior distributions

for its effect on the phenotype. However, there is evidence that risk

loci for a disorder can include more than one causal variant, which

lead to the development of Bayesian fine‐mapping methods that

jointly model multiple causal variants in each locus.32 The available

software uses different search strategies for causal variants; some

can incorporate functional data through principled prior specification

(e.g., PAINTOR and DAP) and some can be applied to summary

statistics (e.g., FINEMAP and SuSiE).32

Approaches to fine mapping were applied in recent large GWASs

of psychiatric traits. For example, the last GWAS of SCZ identified

270 risk loci and applied several techniques to prioritize these results

through fine mapping, resulting in 130 genes, of which 114 are

protein coding. In particular, the study prioritized genes containing at

least one nonsynonymous (NS) or untranslated region (UTR) variant

with a posterior probability of causality ≥0.1 (FINEMAP) or genes the

entire credible set was annotated to. This led to the prioritization of

19 genes based on NS or UTR variants, such as SLC39A8, which

mediates zinc and manganese uptake, the voltage gated calcium

channel subunit CACNA1I, interferon regulatory factor 3 (IRF3), and

GRIN2A, encoding a glutamatergic NMDA receptor subunit. Other

genes were prioritized based on effects on gene expression (eQTLs),

such as the neurodevelopmental disorder gene RERE, ACE encoding

angiotensin converting enzyme, and DCLK3 encoding a neuropro-

tective kinase (Table 2). Prioritized genes were enriched for genes

expressed in the brain and that are relatively intolerant to LoF

mutations.9 Despite the usefulness of the described methods to

restrict the list of potential causal variants, causality has to be

confirmed using wet‐lab protocols, such as multiple parallel reporter

assays or CRISPR screens, which can evaluate the functional effects

of multiple variants simultaneously.32

Involvement of specific cell types

The connection of genetic results to cellular experiments has become

an important area of research to understand the etiopathogenesis of

psychiatric disorders. As previously mentioned, it is important to have

cell‐specific information when evaluating variant functionality and

their impact on gene expression. Enrichment of GWAS significant loci

for expression in specific cell types (obtained by single‐cell RNA‐

sequencing [scRNA‐seq]) can also provide information on potential

therapeutic strategies, as antipsychotic medication targets were

associated with the same cell types as for the SCZ GWAS results.33

GWAS SCZ‐associated loci were enriched in human cortical

inhibitory interneurons and excitatory neurons from cerebral cortex

and hippocampus (pyramidal and granule cells), suggesting a primary

involvement of neural cells, without restriction to a circumscribed

brain region, in line with the widespread range of symptoms observed

in this disease.9 These results are consistent with scRNA‐seq

performed in post‐mortem prefrontal cortex tissue of patients with

SCZ.34 Of note, they are also in line with the glutamatergic

hypothesis of SCZ, postulating that dysfunctional NMDA glutamate

receptors on gamma aminobutyric acid (GABA) cortical interneurons

lead to excessive mesolimbic dopaminergic activity (positive symp-

toms) and to a deficit at the level of the mesocortical pathway

(negative symptoms).35 Experiments on single cells, including scRNA‐

seq, can also be used to understand the downstream effects of one or

more genetic variant(s), looking at gene expression networks, for

inferring causality in specific cell types and under certain condi-

tions.36 For example, a recent study applied CRISPR editing to

achieve allelic conversion for prioritized SCZ risk variants when only

one putative causal SNP was predicted (FURIN rs4702), or CRISPR

activation/inhibition (CRISPRa/i) to manipulate endogenous gene

expression at loci containing several causal SNPs (SNAP91, TSNARE1,

CLCN3). CRISPR editing of FURIN showed large cell‐specific effects:

ASCL1/DLX2‐GABAergic neurons and NFIB‐astrocytes showed

similar changes in FURIN expression, which was decreased compared

to the control condition. However, the same variant allele induced

increased gene expression in neural progenitor cells, with effects on

neural migration. These cell differences were not detected in post‐

mortem studies, suggesting that they may have been diluted in

studies of brain homogenate. The results of CRISPRa/i experiments

confirmed the impact of SCZ‐eQTL genes on neuronal branching,

synaptic puncta density, and synaptic activity. The perturbation of

the four genes in the direction associated with SCZ risk led to

differential expression of 1261 genes, which impacted co‐regulated

downstream genes/proteins and showed enrichment in gene‐sets

associated with psychiatric disorders, but also SCZ‐relevant drug

classes, including antipsychotics. Considering genes more down-

regulated than expected, the study reported enrichment for pre‐ and

postsynaptic gene‐sets, particularly those regulating the secretion of

glutamate and other neurotransmitters, synaptic vesicle trafficking

and postsynaptic glutamate receptor signaling. Genes more upregu-

lated were correlated with disorder signatures, and included genes

with known rare CNVs or nonsynonymous de novo mutations

associated with SCZ, but also SCZ GWAS genes, therefore linking

rare and common risk variants.37

CRISPR and scRNA‐seq studies that focus on psychiatric

disorders are still scarce, particularly for disorders other than SCZ.
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However, as previously noted, there are interesting applications to

drug discovery and identification of markers of drug response. For

example, cell abnormalities reversed by a specific medication may

indicate clinical efficacy, as suggested by previous studies on lithium

response in BP.38

Polygenic risk scores

PRSs are used to study the genetic overlap between psychiatric

disorders or with nonpsychiatric traits, but also between specific

symptom dimensions and other traits, to understand the possible

mechanisms behind the heterogeneity of psychiatric illnesses. PRSs

estimate the cumulative effect of common variants associated with a

trait at the individual level; different methods can be used to calculate

the contribution of each SNP, from the simple use of GWAS effect

sizes to Bayesian approaches, and all methods take into account the

relationship between variants (i.e., LD).39

PRSs were studied as predictors of psychiatric disorders by

estimating SNP effect sizes in a GWAS and then calculating the PRS

for the disorder in an independent case–control sample. Common

parameters to evaluate the predictive performance include the area

under the receiver operating characteristics curve (AUC), which

expresses the probability of distinguishing a case from a control. The

AUCs of PRS of psychiatric disorders were reported to be 82% for

SCZ, 67% for BP, while only ~58% for MDD, and 54% for anxiety.40

However, a more recent work showed an AUC of ~73% for SCZ,

while a very similar AUC (~59%) for MDD.41 These results indicate

that PRSs are currently not suitable for guiding the diagnosis of

psychiatric disorders. However, PRS may have clinical utility in high‐

risk individuals, such as those at high risk of psychosis, or to estimate

the risk of developing SCZ in patients with first‐episode psychosis.

For example, in first‐episode psychosis, individuals in the top quintile

of SCZ PRS have an approximately twofold increased risk of being

subsequently diagnosed with SCZ,42 and this information may guide

the planning of follow‐up and preventive interventions (e.g.,

screening and control of modifiable environmental risk factors). In

high‐risk individuals, the AUC of SCZ PRS in predicting the 2‐year

psychosis conversion was 65%, with an explained variance of

9.2%–12.3%. The same study showed that SCZ PRS added to a

psychosis risk calculator (based on clinical variables) may slightly

increase the predictive performance.43 It was also suggested that PRS

may add predictive value to stratifying patients when clinical risk

factors are not prominent.44

PRS may also be useful to stratify patients in terms of prognosis

and response to treatments. For example, higher PRS for SCZ was

associated with a more chronic illness course, with negative and

disorganized symptom dimensions, but not with positive symptoms.7

Another recent study found that SCZ PRS is associated with inpatient

psychiatric treatment and risk of aggressive behavior, but SCZ PRS

did not improve prediction compared to clinical variables only.45

Higher SCZ PRS was also reported to increase the risk of poor

treatment response in MDD, BP, and SCZ.46–48

Another interesting application of PRS consists in studying the

genetic overlap of psychiatric disorders with nonpsychiatric traits, an

approach that can provide key information on the mechanisms linking

psychiatric illness with medical comorbidities. The high comorbidity

of cardio‐metabolic and inflammatory diseases with psychiatric

disorders is a major issue, as it is an important contributor to

disability and increased mortality.49 The clinical use of PRS of cardio‐

metabolic diseases is particularly promising because these are

demonstrated to add value to clinical variables for disease prediction,

especially for early‐onset coronary heart disease.50 PRS demon-

strated that there is a genetic overlap between some psychiatric

disorders (MDD and ADHD) and cardio‐metabolic traits, such as BMI,

type II diabetes, and coronary heart disease.51,52 On the other hand,

there is an inverse association between the PRS of SCZ and

obesity,53 similarly to what has been found for anorexia nervosa

and obsessive–compulsive disorder.54 In contrast to the latter

disorders, polygenic associations of SCZ with abnormal glucose

metabolism, increased waist‐to‐hip ratio and visceral adiposity were

reported, suggesting that patients with SCZ may be genetically

predisposed to metabolic disorders,55 but not to high BMI, as

previously noted.

The relationship between cardio‐metabolic traits and MDD has

been the focus of extensive research. Higher BMI was found to have

a causal role in MDD, with a genetically determined 1 standard

deviation higher BMI associated with higher odds of MDD

(OR = 1.18–1.26).56 Another recent study demonstrated that the

effect is specifically mediated by body fat mass.57 PRSs of BMI, leptin

and C‐reactive protein were associated with an increased risk of

MDD with atypical neurovegetative symptoms (increased weight and

hypersomnia), but not typical symptoms.58 MDD with atypical

symptoms is considered as an immune‐metabolic subtype of

depression because of its genetic and biomarker profile, including

neuroendocrine alterations and dysfunctions of brain circuitries

integrating homeostatic and mood regulatory responses.59 These

findings exemplify how genetic research can provide precious

information to clarify the biological underpinnings of psychiatric

disorders, linking specific clinical manifestations with etiopathoge-

netic mechanisms, and providing implications for treatment choice.

APPLICATIONS TO THE CLINIC

The complex (gene–environment interactions) and polygenic archi-

tecture of psychiatric traits represents an important challenge to the

identification of genetic profiles that show predictive performance

suitable for clinical use. As a consequence, genetic testing is currently

not recommended for aiding the diagnosis of psychiatric disorders,

but it is recommended for neurodegenerative and neurodevelop-

mental disorders that also have common psychiatric manifestations,

such as Huntington disease, Fragile X syndrome, early‐onset

Alzheimer's disease, and frontotemporal dementia.60 Genetic testing

may be useful in other diseases to inform life planning and to

estimate risk in relatives, for example, global developmental delay,
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intellectual disability, and ASD, for which a molecular diagnosis can

be obtained in at least a quarter of cases.60

Most current clinical applications of genetics in psychiatry

concern the prescription of treatment (pharmacogenetics). These

applications are based on the results of candidate gene studies that

investigated variants in genes coding for cytochrome P450 (CYP450)

enzymes. CYP450 enzymes are responsible for the metabolism of the

greatest part of psychotropic drugs, particularly antidepressants and

antipsychotics, and variations in their level/functionality were

associated with significant changes in drug metabolism.44 Corre-

sponding dose adjustments were calculated, as well as recommenda-

tions for choosing or avoiding some medications, and they are

described in prescribing guidelines, such as those curated by the

Clinical Pharmacogenetics Implementation Consortium (CPIC) and

the Dutch Pharmacogenetics Working Group (DPWG), as illustrated

in a recent review.61 Even though there is no clear demonstration of

when and to whom pharmacogenetic testing of CYP450 variants

should be offered, the available evidence suggests that those who did

not respond or tolerate at least one previous antidepressant or

antipsychotic are more likely to benefit from testing.61 In addition to

the mentioned clinical applications of pharmacogenetics, HLA‐A and

HLA‐B testing prior to use of carbamazepine and oxcarbazepine are

recommended, as carriers of HLA‐B*15:02 or HLA‐A*31:01 alleles

should avoid these drugs for the risk of severe cutaneous adverse

reactions.62 Clinical recommendations based on pharmacogenetic

testing should be ideally provided through decision support systems

to guarantee a standardized interpretation of results and application

of the corresponding therapeutic indications.

The translation of GWAS results to the clinic remains an area of

high interest, as the potential impact of genetic information that is

not confined to a few pharmacokinetic genes but captures key

regions throughout the genome. Even though there is currently no

recommendation for clinical use, there are direct‐to‐consumer

genotyping services as well as companies offering interpretation of

results of genome‐wide genotyping, including calculation of PRS for

psychiatric and other disorders. To facilitate a scientifically sound and

up‐to‐date interpretation of genetic data, we mention impute.me, an

opensource, nonprofit web tool that allows the uploading of genome‐

wide individual‐level data, to run genotype imputation, to calculate

and interpret PRS of many traits, but also to have information on

variants modulating medication response, appearance and physical

fitness, and rare variants.63

The use of artificial intelligence is a possible approach to

disentangling the complexity of psychiatric disorders pathogenesis

by identifying patterns from genome‐wide or other multidimensional

biomarker data, or combinations of biomarkers with clinical variables.

However, predictive models of complex phenotypes (e.g., treatment‐

resistant depression) created using machine learning showed insuffi-

cient performance in independent samples.64 This is likely a

consequence of the high heterogeneity observed among individuals

with the same psychiatric disorder/trait; the first step to overcome

this issue could be the identification of more homogeneous

groups, defined using, for example, a specific biomarker, possibly in

conjunction with a measurable clinical dimension. A successful

implementation of this approach led to the identification of the

MDD subgroup with atypical neurovegetative features, as previously

discussed.

DISCUSSION

Psychiatric disorders and response to psychotropic drugs have a

genetic component, as discussed in this review. However, the multi‐

determined and polygenic nature of these traits represent relevant

obstacles to the identification of valid and reproducible genetic and

genetic–clinical profiles with diagnostic or prognostic value. Strate-

gies that can be pursued to overcome these obstacles include the

analysis of samples providing adequate statistical power, the

improvement of phenotypic classifications, and the combination of

complementary biomarkers.

The recruitment of large samples represents a relevant issue,

because of the resources and time needed. However, the creation of

international consortia and the availability of alternative data‐

collection procedures have led to a consistent increase in the size

of samples included in genetic studies. Alternative data collection

consists of, for example, electronic health records (EHR) and digital

phenotyping, that is, information that can be linked to genetic data

generated from samples available in nation‐wide biobanks, such as

the UK Biobank and Estonian Biobank. These collect biological

samples from volunteers from the general population to study the

role of individual genetic susceptibility and exposure to external

factors in the development of specific diseases.65 Other than through

online questionnaires, phenotyping can be based on EHR linked to

individual genetic data, including hospital and primary care records.

EHR can be seen as a compromise between minimal phenotyping

based on self‐reported information and detailed phenotyping based

on specialists‐rated scales, as EHR are recorded by physicians who

are often not specialists and without the use of structured and

standardized interviews/scales. EHR can include only standard codes,

for example, for diagnoses, procedures and prescriptions, such as

those linked to the UK Biobank, or also unstructured text notes, such

as for the US biobank “All of Us.”66 In the latter case, natural language

processing for automated feature extraction was demonstrated to

have a high accuracy for determining psychiatric phenotypes, which

was better compared to the use of billing codes only.67 However, the

availability of some information may be limited or incomplete in EHR,

for example, family history, lifestyle, environmental exposures, and

treatment compliance. These data may be at least partly collected

using online surveys/questionnaires.

The identification of patient subgroups that are homogeneous

for certain measurable clinical and biological features represents

another approach to improving power in genetic studies. The study of

specific symptom dimensions that have known physiopathological

mechanisms led to interesting results, for example, in the discussed

case of atypical neurovegetative symptoms of MDD. Other examples

are psychotic symptoms in BP that are predicted by higher SCZ PRS
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and manic symptoms in SCZ that are associated with higher BP

PRS,68 demonstrating that the same clinical domain has a shared

genetic basis independent of categorical diagnosis, and can be used

to obtain a dimensional classification useful for research and

potentially lead to clinical applications. This type of approach can

be very useful also for developing new treatments, as some

symptoms of psychiatric illnesses are still difficult to target using

the available pharmacological options, and treatment choice would

benefit from a higher level of personalization based on the individual

symptom profile. A recent study investigated drug repurposing for

MDD subtypes that are associated with treatment‐resistant depres-

sion, namely MDD with the atypical symptom weight gain and MDD

with anxious features.69 The study used genome‐wide genotypes to

impute gene expression levels and identify case–control differences;

then, gene expression profiles of MDD subtypes were compared to in

vitro drug‐induced gene expression changes, based on the hypothesis

that drugs inducing opposite expression patterns may have a

therapeutic potential. The results suggested that compounds

modulating heat shock proteins and compounds acting on metabo-

lism may be promising for MDD with anxious features and MDD with

weight gain, respectively.

Other important and difficult challenges for future studies

include the analysis of data of increasingly high complexity and

dimensionality and the extension of genetic studies to more

ethnically diverse populations. Complexity will increase not only

because of the increasing availability of DNA sequence data, but

also because of the generation of other biomarkers at the omics

level (e.g., transcriptomics, proteomics) and the need to integrate

these with genomic data. Integration of different layers of omics

has been done scarcely so far because of the difficulty in obtaining

these data in well‐powered samples and the largely unknown

modes of interaction across them. Most studies integrated

transcriptomics with genomic data to identify eQTL, for

example.70 Of note, the influence of environmental factors during

the life span is another factor that modifies these interactions.

Gene expression risk scores and proteomic risk scores can

be calculated to estimate the individual differences at the gene

expression and protein level, respectively, using the same

principle for calculating PRS (i.e., a weighted sum of biomarkers

associated with a condition of interest); this could account for the

effects of environmental exposures, but, differently to PRS, would

not have a lifetime value.

Finally, it should be noted that most previous genetic studies

were performed in samples of European ancestry and the increase in

ethnical diversity is one of the main priorities of future studies.71

Limited ethnical diversity is an obstacle to the identification of

genetic variants that are present only in some populations and to the

proper estimation of variant effect sizes across different populations,

with the risk of disparities in access to the benefits of knowledge

generated by genetic studies.
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