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GAMMA-CONVERGENT PROJECTION-FREE FINITE ELEMENT1

METHODS FOR NEMATIC LIQUID CRYSTALS:2

THE ERICKSEN MODEL∗3

RICARDO H. NOCHETTO† , MICHELE RUGGERI‡ , AND SHUO YANG§4

Abstract. The Ericksen model for nematic liquid crystals couples a director field with a scalar5
degree of orientation variable, and allows the formation of various defects with finite energy. We6
propose a simple but novel finite element approximation of the problem that can be implemented7
easily within standard finite element packages. Our scheme is projection-free and thus circumvents8
the use of weakly acute meshes, which are quite restrictive in 3D but are required by recent algorithms9
for convergence. We prove stability and Γ-convergence properties of the new method in the presence10
of defects. We also design an effective nested gradient flow algorithm for computing minimizers that11
controls the violation of the unit-length constraint of the director. We present several simulations in12
2D and 3D that document the performance of the proposed scheme and its ability to capture quite13
intriguing defects.14

Key words. liquid crystals, finite element method, Γ-convergence, gradient flow, defect, energy15
minimization16

AMS subject classifications. 65N30, 35J70, 65Z0517

1. Introduction.18

1.1. Liquid crystals with variable degree of orientation. Liquid crystals19

(LCs) are a mesophase between crystalline solid and isotropic liquid. They are a20

host of numerous potential applications in engineering and science, in particular in21

materials science [1, 5, 10]. Nematic LCs are made of rod-like molecules with no22

positional order that tend to point in a preferred direction. LC materials are thus23

anisotropic.24

We consider the one-constant Ericksen model for nematic LCs with variable de-25

gree of orientation [17], which lies between the Oseen–Frank director model and the26

Landau–de Gennes Q-tensor model [16, 29]. The state of the LC is described in terms27

of a vector field n and a scalar function s, which satisfy the constraints |n| = 1 and28

−1/(d − 1) < s < 1 for the space dimension d = 2, 3. The director n indicates the29

preferred orientations of the LC molecules, while s represents the degree of alignment30

that the molecules have with respect to n, both in the sense of local probabilistic av-31

erage. A schematic illustration of their meaning is given in Figure 1. The equilibrium32
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2 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

state is given by an admissible pair (s,n) that minimizes the Ericksen energy33

(1.1) E[s,n] =
1

2

ˆ
Ω

(
κ|∇s|2 + s2|∇n|2

)
+

ˆ
Ω

ψ(s),34

where κ > 0 is constant; the constraint on s is enforced by the double well potential35

ψ. We refer to [4, 21] for early analysis of the Ericksen model.36

n

s = 1 s = 0 s = −1/(d− 1)

n n n

Fig. 1. Schematic illustration of n(x) and s(x), in microscopic scale near a fixed x ∈ Ω ⊂ Rd.
Note that s = 1 represents the state of perfect alignment in which all molecules in the local ensemble
are parallel to n. Likewise, s = −1/(d − 1) represents the state of perpendicular alignment. The
case s = 0 corresponds to a defect in the LC material, an isotropic distribution of molecules in the
local ensemble that do not lie along any preferred direction.

If s can be approximated by a nonvanishing constant, then the energy (1.1) re-37

duces to the Oseen–Frank energy E[n] ∝
´
Ω
|∇n|2, whose minimizers are harmonic38

maps and have been extensively studied, e.g., in [27, 14]. However, the simpler Oseen–39

Frank model has severe limitations in capturing defects: It only admits point de-40

fects with finite energy for d = 3. In contrast, the Ericksen model (1.1) allows for41

n /∈H1(Ω) and compensates blow-up of ∇n by letting s vanish, which is the mech-42

anism for the formation of a variety of line and plane defects; see, e.g., [21] for a43

proof of the fact that the singular set of a minimizer of (1.1) can have positive Haus-44

dorff dimension. This physical process leads to a degenerate Euler–Lagrange equation45

for n that poses serious difficulties to formulate mathematically sound algorithms to46

approximate (1.1) and study their convergence.47

1.2. Numerical analysis of the Ericksen model. Several numerical methods48

for the Oseen–Frank model have been proposed [22, 3, 7, 9]. Finite element methods49

(FEMs) for the Ericksen model are designed in [6, 23, 24, 30, 15]; see also the recent50

review [12]. In contrast to [6], a fundamental structure of (1.1) is exploited in [23, 24]51

to design and analyze FEMs that handle the inherent degeneracy of (1.1) without52

regularization and enforce the constraint |n| = 1 robustly. Stability and convergence53

properties via Γ-convergence are proved in [23, 24], pioneering results in this setting.54

They hinge on a clever discrete energy that mimics the structure of (1.1) discretely55

but, unfortunately, is cumbersome to implement in standard software packages and56

requires weakly acute meshes. The latter ensures that the projection of discrete57

director fields onto the unit sphere is energy decreasing, and thus compatible with the58

quasi-gradient flow, but is quite restrictive and difficult to implement for d = 3 and59

domains with nontrivial topology.60

1.3. Contributions. In this work, we propose a projection-free FEM that avoids61

dealing with weakly acute meshes. Without the projection step, the unit-length con-62

straint |n| = 1 is no longer satisfied exactly but instead is relaxed at each step of our63

iterative solver, a nested gradient flow. The latter guarantees control of the violation64
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PROJECTION-FREE FEM FOR LIQUID CRYSTALS 3

of |n| = 1 and asymptotic enforcement of it. We summarize the chief novelties and65

advantages of our approach as follows.66

• Shape-regular meshes. Partitions of Ω are assumed to be only shape-regular,67

which allows for the use of software with general mesh generators such as Netgen [26].68

Avoiding weakly acute meshes is important in 3D to deal with interesting but nontriv-69

ial geometries as documented in section 5. An earlier work achieving this goal is [30],70

which presents a mass-lumped FEM with a consistent stabilization term involving71

s2∇n⊤n for the generalized Ericksen energy.72

• Standard algorithm. Our novel discretization of (1.1) is straightforward, requires73

no stabilization, and is easy to implement in standard software packages such as74

NGSolve [26]. In contrast to [23, 24], our FEM does no longer exploit the structure75

of (1.1), but its analysis does.76

• Γ-convergence. The analysis of our FEM hinges heavily on the underlying77

structure of (1.1), which is fully discussed in section 2 and relies on the notion of78

L2-gradient on n [18, Theorem 6.2]; see Proposition 2.1 below. Such a notion was79

already used in [11] in the context of the uniaxial Q-tensor LC model. We prove80

stability and Γ-convergence. Our results are similar to those in [23, 24, 30], but the81

use of the discrete structure is new.82

• Linear solver. We propose a nested gradient flow that, despite the nonlinear na-83

ture of the problem, is fully linear to compute minimizers. The inner loop to advance84

the director n for fixed degree of orientation s is allowed to subiterate. This turns85

out to induce an acceleration mechanism for the computation and motion of defects.86

For a recent acceleration technique based on a domain decomposition approach, we87

refer to [15]. Our nested gradient flow iterations fall within the Γ-convergence frame-88

work provided a CFL-type condition is imposed on the discretization parameters (see89

Proposition 4.3). However, well-posedness and stability of the algorithm are guaran-90

teed without any such CFL restriction.91

• Numerical experiments. We present several simulations in section 5. Some aim92

to compare the new algorithm with the existing literature in terms of performance93

and ability to capture defects. Other experiments explore 3D intriguing configurations94

such as the propeller defect and challenging variations of the Saturn ring defect.95

• Boundary conditions. Since we do not impose the unit-length constraint |n| = 1,96

the treatment of boundary data could be simplified and their properties weakened.97

This potentially affects the regularization procedure for the lim-sup property and the98

possible presence of defects at the boundary of Ω. We do not explore these issues in99

this paper but rather in future extension to the Q-tensor model.100

1.4. Outline. The remainder of this work is organized as follows. In the next101

subsection, we collect some general notation used throughout the paper. In section 2,102

we describe the Ericksen model for LCs with variable degree of orientation and discuss103

its key structure. In section 3, we introduce our discretization of the model and104

state our Γ-convergence result. In section 4, we present our iterative scheme for the105

computation of discrete local minimizers. In section 5, we show numerical experiments106

illustrating effectiveness and efficiency of our method, as well as its flexibility to deal107

with complex defects in 3D. We postpone the proofs of most results to section 6.108

1.5. General notation. We denote by N = {1, 2, . . . } the set of natural num-109

bers and set N0 := N ∪ {0}. For d = 2, 3, we denote the unit sphere in Rd by110

Sd−1 = {x ∈ Rd : |x| = 1}. We denote by Br(x) the ball of radius r > 0 centered at111

x ∈ Rd. For (spaces of) vector- or matrix-valued functions, we use bold letters, e.g.,112

for a generic domain Ω ⊂ Rd, we denote both L2(Ω;Rd) and L2(Ω;Rd×d) by L2(Ω).113

This manuscript is for review purposes only.



4 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

We denote by ⟨·, ·⟩ both the scalar product of L2(Ω) and the duality pairing between114

H1(Ω) and its dual, with the ambiguity being resolved by the arguments. We use115

the notation ≲ to denote smaller than or equal to up to a multiplicative constant, i.e.,116

we write A ≲ B if there exists a constant c > 0, which is clear from the context and117

always independent of the discretization parameters, such that A ≤ cB.118

2. Problem formulation. Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz do-119

main. In the Ericksen model, the state of the LC is described in terms of a unit-length120

vector field n : Ω → Sd−1 and a scalar function s : Ω → (−1/(d− 1), 1). Equilibrium121

configurations are minimizers of the energy E[s,n] = E1[s,n] +E2[s] in (1.1), where122

(2.1) E1[s,n] :=
1

2

ˆ
Ω

(
κ|∇s|2 + s2|∇n|2

)
, E2[s] :=

ˆ
Ω

ψ(s).123

The double well potential ψ : (−1/(d − 1), 1) → R≥0 satisfies the following proper-124

ties [17]:125

• ψ ∈ C2(−1/(d− 1), 1),126

• lims→1− ψ(s) = +∞ = lims→−1/(d−1)+ ψ(s),127

• ψ(0) > ψ(s∗) = mins∈(−1/(d−1),1) ψ(s) = 0 for some s∗ ∈ (0, 1),128

• ψ′(0) = 0.129

In (2.1), E1[s,n] is the one-constant approximation of the elastic energy proposed130

in [17], while E2[s] is a potential energy which confines the variable s within the131

physically admissible interval (−1/(d − 1), 1). The presence of the weight s2 in the132

second term of E1[s,n] allows for blow-up of ∇n, namely n /∈H1(Ω), in the singular133

set Σ, where defects may occur:134

(2.2) Σ := {x ∈ Ω : s(x) = 0}.135

To complete the setting, we define the set of admissible functions where we seek136

minimizers of (2.1). Note that, allowing for a director n /∈H1(Ω), one encounters at137

least two difficulties: On the one hand, it is not clear how to interpret the gradient of138

n appearing in E1[s,n]. On the other hand, the trace of n on the boundary of Ω is139

not well-defined, so that one cannot impose Dirichlet conditions on n in the standard140

way. To cope with these problems, following [4, 21], we introduce the auxiliary variable141

u = sn. Then, the product rule formally yields that142

(2.3) ∇u = n⊗∇s+ s∇n.143

Since |n| = 1, the identities ∇n⊤n = 0 and |n⊗∇s| = |∇s| are valid. It follows that144

the above decomposition of ∇u is orthogonal, i.e.,145

(2.4) |∇u|2 = |n⊗∇s|2 + s2|∇n|2 = |∇s|2 + s2|∇n|2.146

In particular, E1[s,n] can be rewritten in terms of s and u = sn as147

(2.5) E1[s,n] = Ẽ1[s,u] =
1

2

ˆ
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
.148

In the latter, the degree of orientation and the auxiliary field are decoupled. In149

particular, this reveals that, for (s,n) such that E1[s,n] <∞, u = sn ∈H1(Ω) even150

though n /∈H1(Ω).151

We say that a triple (s,n,u) satisfies the structural condition if152

(2.6) − 1

d− 1
< s < 1, |n| = 1, and u = sn a.e. in Ω.153

This manuscript is for review purposes only.



PROJECTION-FREE FEM FOR LIQUID CRYSTALS 5

In view of the above discussion, we are led to consider the following admissible class:154

(2.7) A :=
{
(s,n,u) ∈ H1(Ω)×L∞(Ω)×H1(Ω) : (s,n,u) satisfies (2.6)

}
.155

For triples (s,n,u) ∈ A, it is possible to characterize the gradient of n occurring in156

E1[s,n] using a weaker notion of differentiability. To this end, we recall the following157

definition [18, Theorem 6.2]: We say that n is L2-differentiable at x ∈ Ω, and we158

denote its L2-gradient at x by ∇n(x), if159

 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy = o(r2) as r → 0.160

It is well known that the notion of L2-differentiability is weaker than the existence of161

an L2-integrable weak gradient, in the sense that everyH1-function is L2-differentiable162

almost everywhere and its L2-gradient coincides with the weak gradient; see, e.g., [18,163

Theorem 6.2].164

In the following proposition, we establish that if (s,n,u) ∈ A, then n is L2-165

differentiable and the decomposition (2.4) holds almost everywhere outside of the166

singular set Σ in (2.2). Its proof will be presented in subsection 6.1.167

Proposition 2.1 (orthogonal decomposition). Let (s,n,u) ∈ A. Then, n is168

L2-differentiable a.e. in Ω \ Σ. In particular, its L2-gradient is given by169

(2.8) ∇n = s−1(∇u− n⊗∇s) a.e. in Ω \ Σ.170

Moreover, the following identity holds171

(2.9) |∇u|2 = |∇s|2 + s2|∇n|2 a.e. in Ω \ Σ.172

This allows us to give a precise meaning to E1[s,n] in (2.1). Depending on the173

context, we interpret ∇n in the sense of L2-gradient in Ω \ Σ and
´
Σ
s2|∇n|2 = 0,174

or we alternatively replace Ω by Ω \ Σ as domain of integration or even use the175

representation Ẽ1[s,u] of (2.5).176

Turning to boundary conditions, let ΓD ⊆ ∂Ω be a relatively open subset of the177

boundary such that |ΓD| > 0, where we aim to impose Dirichlet boundary conditions.178

These, in the context of LCs, are usually referred to as strong anchoring conditions.179

To this end, given a triple (g, q, r) ∈W 1,∞(Rd)×L∞(Rd)×W 1,∞(Rd) satisfying the180

structural condition (2.6), we consider the following restricted admissible class that181

incorporates boundary conditions:182

(2.10) A(g, r) :=
{
(s,n,u) ∈ A : s|ΓD

= g|ΓD
and u|ΓD

= r|ΓD

}
.183

Overall, we are interested in the following constrained minimization problem: Find184

(s∗,n∗,u∗) ∈ A(g, r) such that185

(2.11) (s∗,n∗,u∗) = argmin
(s,n,u)∈A(g,r)

E[s,n].186

To conclude this section, let δ0 > 0 be sufficiently small. Some of our results187

below will require the following technical assumptions on the Dirichlet data, namely188

− 1

d− 1
+ δ0 ≤ g(x) ≤ 1− δ0 for all x ∈ Rd,(2.12)189

g ≥ δ0 on ΓD,(2.13)190191
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6 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

and on the double well potential, namely192

(2.14)

ψ(s) ≥ ψ(1− δ0) for all s ≥ 1− δ0,

ψ(s) ≥ ψ

(
− 1

d− 1
+ δ0

)
for all s ≤ − 1

d− 1
+ δ0,

193

and ψ is monotone in (−1/(d−1),−1/(d−1)+δ0) and in (1−δ0, 1). Note that (2.13)194

implies that q = g−1r is W 1,∞ on ΓD so that imposing the Dirichlet condition195

n|ΓD
= q|ΓD

on the physical variable n is equivalent to imposing u|ΓD
= r|ΓD

on196

the auxiliary variable u. Finally, the property (2.14) is consistent with the fact that197

ψ(s) → +∞ as s→ −1/(d− 1) and s→ 1.198

3. Γ-convergent finite element discretization. We assume Ω to be a poly-199

topal domain and consider a shape-regular family {Th} of simplicial meshes of Ω (in the200

sense of, e.g., [8, Definitions 3.3–3.4]) parametrized by the mesh size h = maxK∈Th
hK ,201

where hK = diam(K). We stress that we do not require any mesh to be weakly acute202

(we refer to [8, Remark 3.12] for a discussion of this assumption for d = 2, 3). We203

denote by Nh the set of vertices of Th. For any K ∈ Th, we denote by P1(K) the204

space of first-order polynomials on K. We consider the space of Th-piecewise affine205

and globally continuous functions206

Vh :=
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th

}
.207

Let Vh := (Vh)
d be the corresponding space of vector-valued polynomials. We denote208

by Ih both the nodal interpolant Ih : C0(Ω) → Vh and its vector-valued counterpart209

Ih : C0(Ω) → Vh.210

For sh ∈ Vh and nh ∈ Vh, let the discrete energy be Eh[sh,nh] = Eh
1 [sh,nh] +211

Eh
2 [sh] with212

(3.1) Eh
1 [sh,nh] :=

1

2

ˆ
Ω

(
κ|nh ⊗∇sh|2 + s2h|∇nh|2

)
, Eh

2 [sh] :=

ˆ
Ω

ψ(sh).213

Note that Eh is consistent, in the sense that Eh[s,n] = E[s,n] if (s,n,u) ∈ A(g, r).214

We say that a triple (sh,nh,uh) ∈ Vh ×Vh ×Vh satisfies the discrete structural215

condition if216

(3.2)

− 1

d− 1
< sh(z) < 1, |nh(z)| ≥ 1, and uh(z) = sh(z)nh(z) for all z ∈ Nh.217

In (3.2), the requirements prescribed by the continuous structural condition (2.6) are218

imposed only at the vertices of the mesh, which is practical. Moreover, the unit-length219

constraint for the director is relaxed, since nh may attain also values outside of the220

unit sphere.221

Let ε > 0, gh = Ih[g], and rh = Ih[r]. We consider the following discrete222

minimization problem: Find (s∗h,n
∗
h,u

∗
h) ∈ Ah,ε(gh, rh) such that223

(3.3) (s∗h,n
∗
h,u

∗
h) = argmin

(sh,nh,uh)∈Ah,ε(gh,rh)

Eh[sh,nh],224

where the discrete restricted admissible class is defined as225
226

(3.4) Ah,ε(gh, rh) :=
{
(sh,nh,uh) ∈ Vh ×Vh ×Vh :227

(sh,nh,uh) satisfies (3.2), ∥Ih
[
|nh|2

]
− 1∥L1(Ω) ≤ ε,228

sh(z) = gh(z), and uh(z) = rh(z) for all z ∈ Nh ∩ ΓD

}
.229230
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PROJECTION-FREE FEM FOR LIQUID CRYSTALS 7

In the following theorem, we show that the discrete energy (3.1) converges towards231

the continuous one (2.1) in the sense of Γ-convergence.232

Theorem 3.1 (Γ-convergence). Suppose that ε → 0 as h → 0. Then, the233

following two properties are satisfied:234

(i) Lim-sup inequality (consistency): Let ΓD = ∂Ω. Let the assumptions (2.12)–(2.14)235

hold. If (s,n,u) ∈ A(g, r), then there exists a sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh)236

such that ∥nh∥L∞(Ω) = 1, sh → s in H1(Ω), nh → n in L2(Ω \ Σ), uh → u in237

H1(Ω), as h→ 0, and238

(3.5) E[s,n] ≥ lim sup
h→0

Eh[sh,nh].239

(ii) Lim-inf inequality (stability): Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a sequence such240

that Eh[sh,nh] ≤ C and ∥nh∥L∞(Ω) ≤ C, where C ≥ 1 is a constant independent241

of h. Then, there exist (s,n,u) ∈ A(g, r) and a subsequence of {(sh,nh,uh)} (not242

relabeled) such that sh ⇀ s in H1(Ω), nh → n in L2(Ω \ Σ), uh ⇀ u in H1(Ω) as243

h→ 0, and244

(3.6) E[s,n] ≤ lim inf
h→0

Eh[sh,nh].245

The proof of Theorem 3.1 is deferred to subsections 6.2 and 6.3. The assump-246

tion ΓD = ∂Ω in part (i) is needed to apply a regularization result from [23] (see247

Lemma 6.2 below). The properties established in Theorem 3.1 are slight variations248

of the properties required by the standard definition of Γ-convergence; see, e.g., [13,249

Definition 1.5]. However, they still allow to prove the convergence of discrete global250

minimizers.251

Corollary 3.2 (convergence of discrete global minimizers). Let ΓD = ∂Ω and252

suppose that the assumptions (2.12)–(2.14) hold. Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be253

a sequence of global minimizers of the discrete energy (3.1) such that ∥nh∥L∞(Ω) ≤ C,254

where C ≥ 1 is a constant independent of h. Then, every cluster point (s,n,u) belongs255

to A(g, r) and is a global minimizer of the continuous energy (2.1).256

4. Computation of discrete local minimizers. In this section, we propose257

an effective algorithm to compute discrete local minimizers of (3.1). The method is258

based on a discretization of the (nonphysical) energy-decreasing dynamics driven by259

the system of gradient flows260

∂tn+ δnE
h[s,n] = 0,261

∂ts+ δsE
h[s,n] = 0,262263

where δnE
h[s,n] and δsE

h[s,n] denote the Gâteaux derivatives of the energy with264

respect to the order parameters, i.e.,265 〈
δnE

h[s,n],ϕ
〉
=
〈
δnE

h
1 [s,n],ϕ

〉
= κ⟨n⊗∇s,ϕ⊗∇s⟩ + ⟨s∇n, s∇ϕ⟩,266 〈

δsE
h[s,n], w

〉
=
〈
δsE

h
1 [s,n], w

〉
+
〈
δsE

h
2 [s,n], w

〉
267

= κ⟨n⊗∇s,n⊗∇w⟩ + ⟨s∇n, w∇n⟩ + ⟨ψ′(s), w⟩.268269

Let us introduce the ingredients of the scheme. First, let270

Vh,D := {vh ∈ Vh : vh(z) = 0 for all z ∈ Nh ∩ ΓD} and Vh,D := (Vh,D)d271
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8 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

be the spaces of discrete functions satisfying homogeneous Dirichlet conditions on ΓD.272

Given nh ∈ Vh, we consider the subspace of Vh,D consisting of all discrete functions273

with nodal values orthogonal to those of nh at all vertices:274

Kh[nh] := {ϕh ∈ Vh,D : nh(z) · ϕh(z) = 0 for all z ∈ Nh} .275

The space Kh[nh] can be interpreted as a discretization of the space of tangential vari-276

ations K[n] :=
{
ϕ ∈H1(Ω) : n · ϕ = 0 a.e. in Ω

}
, which naturally occurs in the vari-277

ational formulation of problems with a unit-length constraint; see, e.g., [8, Lemma 7.1]278

for the harmonic map equation.279

For the treatment of the double well potential, we follow a convex splitting ap-280

proach (see, e.g., [31]): We assume the splitting ψ = ψc − ψe, where ψc and ψe are281

both convex and ψc is quadratic.282

The time discretization of the gradient flow for the director and the degree of283

orientation are based on the constant time-step sizes τn > 0 and τs > 0, respectively.284

Moreover, we consider the difference quotient dts
i+1
h := (si+1

h − sih)/τs.285

In the following algorithm, we state the proposed numerical scheme for the com-286

putation of discrete local minimizers of (3.1). We assume that (2.13) is satisfied so287

that imposing Dirichlet boundary conditions directly for the director is allowed. Let288

tol > 0 denote a tolerance.289

Algorithm 4.1 alternating direction discrete gradient flow

Input: s0h ∈ Vh, n
0
h ∈ Vh such that |n0

h(z)| = 1 for all z ∈ Nh, n
0
h(z) = rh(z)/gh(z)

and s0h(z) = gh(z) for all z ∈ Nh ∩ ΓD.
Outer loop: For all i ∈ N0, iterate (i)–(ii):

(i) Inner loop: Given (ni
h, s

i
h), let n

i,0
h = ni

h. For all ℓ ∈ N0, iterate (i-a)–(i-b):

(i-a) Compute ti,ℓh ∈ Kh

[
ni,ℓ

h

]
such that

(4.1)
⟨ti,ℓh ,ϕh⟩∗ + τn κ⟨ti,ℓh ⊗∇sih,ϕh ⊗∇sih⟩ + τn⟨sih∇t

i,ℓ
h , sih∇ϕh⟩

= −κ⟨ni,ℓ
h ⊗∇sih,ϕh ⊗∇sih⟩ − ⟨sih∇n

i,ℓ
h , sih∇ϕh⟩

for all ϕh ∈ Kh

[
ni,ℓ

h

]
;

(i-b) Update ni,ℓ+1
h := ni,ℓ

h + τn t
i,ℓ
h ;

until

(4.2)
∣∣Eh

1 [s
i
h,n

i,ℓ+1
h ]− Eh

1 [s
i
h,n

i,ℓ
h ]
∣∣ < tol.

If ℓi ∈ N0 denotes the smallest integer for which the stopping criterion (4.2)

is satisfied, define ni+1
h := ni,ℓi+1

h .
(ii) Compute si+1

h ∈ Vh such that si+1
h (z) = gh(z) for all z ∈ Nh ∩ ΓD and

(4.3)
⟨dtsi+1

h , wh⟩ + κ⟨ni+1
h ⊗∇si+1

h ,ni+1
h ⊗∇wh⟩

+ ⟨si+1
h ∇ni+1

h , wh∇ni+1
h ⟩ + ⟨ψ′

c(s
i+1
h ), wh⟩ = ⟨ψ′

e(s
i
h), wh⟩

for all wh ∈ Vh,D.
Output: Sequence of approximations

{
(sih,n

i
h)
}
i∈N0

.

In Algorithm 4.1, ⟨·, ·⟩∗ denotes the scalar product of the metric used in the290

discrete gradient flow (4.1) for the director. In this work, we consider the following291
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two choices for ⟨·, ·⟩∗, dictated by numerical convenience:292

⟨ϕ,ψ⟩∗ = ⟨ϕ,ψ⟩ (L2-metric),(4.4)293

⟨ϕ,ψ⟩∗ = ⟨hα∇ϕ,∇ψ⟩ with 0 < α ≤ 2 (weighted H1-metric).(4.5)294295

In (4.5), the H1-metric is weakened by a positive power of the mesh size h. Note that296

the choice α = 0 corresponds to a full H1-gradient flow, which is not appropriate since297

the director does not belong to H1(Ω) in general (e.g., in the presence of defects).298

On the other hand, if α = 2, a standard scaling argument shows that the resulting299

metric is equivalent to the L2-metric in (4.4).300

In the convex splitting of ψ, we adopt a semi-implicit approach: The convex301

and quadratic part ψc is treated implicitly, while the concave one ψe is treated ex-302

plicitly. This leads to a linear and positive definite contribution to the left-hand side303

of (4.3). Moreover, the resulting discretization is unconditionally stable (see, e.g., [23,304

Lemma 4.1]). Altogether, both (4.1) and (4.3) are linear symmetric positive definite305

systems in the unknowns ti,ℓh and si+1
h . The orthogonality constraint in (4.1) can be306

imposed at the linear algebraic level by introducing a Lagrange multiplier associated307

with it (see, e.g., the discussion in [8, Section 7.2.5]) or via a null-space method as308

done, e.g., in [25, 23, 20]. In this work, we implement it using a Lagrange multiplier.309

Although in most of our numerical experiments we will set τn = τs, we observed310

that in some situations the flexibility of choosing different time-step sizes in (4.1)311

and (4.3) is decisive in order to move defects in numerical simulations (see, e.g., the312

experiment in subsection 5.3 below).313

In the following proposition, we prove well-posedness and an energy-decreasing314

property of Algorithm 4.1.315

Proposition 4.1 (properties of Algorithm 4.1). Algorithm 4.1 is well-posed and316

energy decreasing. Specifically, for all i ∈ N0, the following assertions hold:317

(i) For all ℓ ∈ N0, (4.1) admits a unique solution ti,ℓh ∈ Kh

[
ni,ℓ

h

]
;318

(ii) The inner loop terminates in a finite number of iterations, i.e., there exists ℓ ∈ N0319

such that the stopping criterion (4.2) is met;320

(iii) (4.3) admits a unique solution si+1
h ∈ Vh such that si+1

h (z) = gh(z) for all z ∈321

Nh ∩ ΓD.322

(iv) There holds323

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h] ≤ −

(
τs∥dtsi+1

h ∥2L2(Ω) + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗

)

−

(
τ2s E

h
1 [dts

i+1
h ,ni+1

h ] + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

)
.

(4.6)324

In particular, there holds Eh[si+1
h ,ni+1

h ] ≤ Eh[sih,n
i
h] and equality holds if and only325

if (si+1
h ,ni+1

h ) = (sih,n
i
h) (equilibrium state).326

Remark 4.2 (energy decrease). The right-hand side of (4.6) characterizes the en-327

ergy decrease guaranteed by each step of Algorithm 4.1 and comprises two contribu-328

tions: The term329

−

(
τs∥dtsi+1

h ∥2L2(Ω) + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗

)
330
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10 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

is the energy decrease due to the gradient-flow nature of Algorithm 4.1. The term331

−

(
τ2s E

h
1 [dts

i+1
h ,ni+1

h ] + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

)
332

is the numerical dissipation due to the backward Euler methods used for the time333

discretization.334

In practical implementations of Algorithm 4.1, the outer loop is terminated when335

(4.7)
∣∣Eh[si+1

h ,ni+1
h ]− Eh[sih,n

i
h]
∣∣ < tol.336

Since the algorithm fulfills a monotone energy-decreasing property, the stopping cri-337

terion is met in a finite number of iterations.338

The approximations ni+1
h of the director generated by Algorithm 4.1 do not sat-339

isfy the unit-length constraint at the vertices of the mesh, as in [23, 24]. However,340

the following proposition, proved in subsection 6.4, shows that violation of this con-341

straint can be controlled by the time-step size τn, independently of the number of342

iterations. Moreover, the uniform boundedness in L∞(Ω) of the sequence required343

by the Γ-convergence result (cf. Theorem 3.1(ii)) can be guaranteed if the discretiza-344

tion parameters satisfy a suitable CFL-type condition. However, we stress that such345

condition is not necessary for the well-posedness and the stability of the algorithm.346

Proposition 4.3 (properties of discrete director field). Let j ≥ 1. The following347

holds.348

(i) Suppose that the norm induced by the metric ⟨·, ·⟩∗ used in (4.1) is an upper bound349

for the L2-norm, i.e., there exists C∗ > 0 such that350

(4.8) ∥ϕh∥L2(Ω) ≤ C∗∥ϕh∥∗ for all ϕh ∈ Vh,D.351

Then, the approximations generated by Algorithm 4.1 satisfy352

(4.9) ∥Ih
[
|nj

h|
2 − 1

]
∥L1(Ω) ≤ C1τnE

h[s0h,n
0
h],353

where C1 > 0 depends only on C∗ and the shape-regularity of {Th}.354

(ii) Suppose τn fulfills the following CFL-type condition355

(4.10)
τnh

−d
min ≤ C∗ if ⟨·, ·⟩∗ is chosen as (4.4),

τnh
2−d−α
min | log hmin|2 ≤ C∗ if ⟨·, ·⟩∗ is chosen as (4.5),

356

where hmin := minK∈Th
hK and C∗ > 0 is arbitrary. Then, the approximations357

generated by Algorithm 4.1 satisfy358

(4.11) ∥nj
h∥L∞(Ω) ≤ 1 + C2E

h[s0h,n
0
h],359

where C2 > 0 is proportional to C∗ > 0 in (4.10) with proportionality constant de-360

pending on the shape-regularity of {Th}.361

To conclude this section, we discuss the design of Algorithm 4.1 with special em-362

phasis on its nested structure and distinct roles of τn and τs. Obviously, τn controls363

the violation of the unit-length constraint according to (4.9), but the roles of subit-364

erations in (4.1) and τs in (4.3) is more subtle and deserves further elaboration. The365

presence of defects is associated with values sih(xj) close to zero at nodes xj , which366
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in turn act as weights in the equation (4.1) for the tangential updates ti,ℓh of the di-367

rector field ni,ℓ
h . The fast decrease to zero of sih(xj), relative to the growth of ∇ni

h368

in its vicinity, impedes further changes of ni
h(xj) because they are not energetically369

favorable: The defect is thus pinned at the same location xj for many iterations.370

Experiments with Algorithm 4.1 reveal defect pinning if τn = τs and one step of (4.1)371

per step of (4.3) is utilized. The subiterations within the inner loop (4.1) allow ni,ℓ
h372

to adjust to the current value of sih. This mimics an approximate optimization step373

but with unit length and max norm control dictated by Proposition 4.3. In contrast,374

full optimization has been proposed in [23, 24, 30] instead of (4.1), followed by nodal375

projection onto the unit sphere, whereas one step of a weighted gradient flow (4.1) has376

been advocated in [11] for the Q-tensor model. On the other hand, since τs penalizes377

changes of sih, smaller values of τs relative to τn delay changes of sih in favor of changes378

of ni
h. This does not fix the stiff character of (4.1), studied in [15], but does remove379

defect pinning. Several numerical experiments in section 5 document this finding.380

5. Numerical experiments. In this section, we present a series of numerical381

experiments that explore the accuracy of Algorithm 4.1 and its ability to approximate382

rather complex defects of nematic LCs in 2D and 3D. In both cases, these results383

complement the theory of sections 3 and 4 and extend it.384

We have implemented Algorithm 4.1 within the high performance multiphysics385

finite element software Netgen/NGSolve [26]. To solve the constrained variational386

problem (4.1), we adopt a saddle point approach. The ensuing linear systems are387

solved using the built-in conjugate gradient solver of Netgen/NGSolve, while the388

visualization relies on ParaView [2].389

All pictures below obey the following rules. The vector field depicts the director390

n, whereas the color scale refers to the degree of orientation s. Blue regions indicate391

areas with values of s close to zero, which signify the occurrence of defects, while392

the red ones indicate regions with largest values of s (s ≈ 0.75 in our simulations),393

where the director encodes the local orientation of the LC molecules. We generate394

unstructured, generally non-weakly acute, meshes within Netgen with desirable mesh395

size h0 but the effective maximum size h of tetrahedra in 3D may only satisfy h ≈ h0.396

For the sake of reproducibility, we will specify h0 when dealing with unstructured 3D397

meshes.398

We stress that, unlike FEMs proposed in previous works [24, 23], the energy-399

decreasing property of Algorithm 4.1 (cf. Proposition 4.1) does not rely on meshes400

being weakly acute. Except for simple 3D geometries, such meshes are hard, to401

impossible, to construct. This is the case of the cylinder domain in subsection 5.3402

and the Saturn ring configurations in subsection 5.5, for which mesh flexibility is of403

fundamental importance to capture topologically complicated defects.404

Throughout this section, we consider the double well potential ψ(s) = cdw(ψc(s)−405

ψe(s)) with406

(5.1) ψc(s) := 63s2, ψe(s) := −16s4 +
64

3
s3 + 57s2 − 0.5625,407

where cdw ≥ 0. Note that, for cdw > 0, ψ has a local minimum at s = 0 and a408

global minimum at s = ŝ := 0.750025 such that ψ(ŝ) = 0. Moreover, in view of409

Proposition 4.3, we measure the violation of the unit-length constraint in terms of the410

quantity411

(5.2) errn := ∥Ih
[
|nN

h |2 − 1
]
∥L1(Ω),412
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12 R. H. NOCHETTO, M. RUGGERI, AND S. YANG

where nN
h denotes the final approximation of the director generated by Algorithm 4.1.413

Furthermore, unless otherwise specified, we choose the L2-metric (4.4) in (4.1), and414

we set the tolerance tol = 10−6 in both (4.2) and (4.7).415

5.1. Point defect in 2D. In striking contrast with the Oseen–Frank model, the416

Ericksen model allows point defects to have finite energy in 2D: The blow-up of |∇n|417

near a defect is compensated by infinitesimal values of s for the energy E[s,n] in (1.1)418

to stay bounded. We examine this basic mechanism with simulations of a point defect419

in 2D and study the influence of the discretization parameters on the performance of420

Algorithm 4.1.421

We consider the unit square Ω = (0, 1)2, and set κ = 2 in (1.1) as well as cdw =422

0.1(0.3)−2 in (5.1). We impose Dirichlet boundary conditions for s and n on ∂Ω,423

namely424

(5.3) g = ŝ and q = r/g =
(x− 0.5, y − 0.5)

|(x− 0.5, y − 0.5)|
on ∂Ω.425

To initialize Algorithm 4.1, we consider a constant degree of orientation s0h = ŝ in Ω426

and a director n0
h exhibiting an off-center point defect located at (0.24, 0.24). Due427

to the imposed boundary conditions and for symmetry reasons, we expect that an428

energy-decreasing dynamics moves the defect to the center of the square; see Figure 2.429

Fig. 2. Point defect experiment of subsection 5.1: Plot of the approximation (s1h,n
1
h) after the

first iteration (left) and of the final approximation (sNh ,nN
h ) (right). The gradient flow algorithm

moves the defect to the center of the domain.

In our first experiment, we consider a uniform mesh Th of the unit square con-430

sisting of 2048 right triangles. The resulting mesh size is h =
√
2 2−5. Moreover, we431

set τn = τs = 0.1 and compare the results obtained for different choices of the metric432

⟨·, ·⟩∗ in (4.1); cf. (4.4)–(4.5). Table 1 displays the outputs for each run. On the one433

hand, we observe that using the L2-metric leads to the fastest dynamics in terms of434

both number of iterations and CPU time. On the other hand, the violation of the435

unit-length constraint is smaller for the weighted H1-metrics. For smaller values of α436

in the weighted H1-metric, Algorithm 4.1 terminates with a configuration exhibiting437

defect pinning at an off-center location. The expected equilibrium state, depicted in438

Figure 2 (right), can be restored when reducing the time-step size τs.439

In our second experiment, we investigate the effect of mesh refinement and changes440

of the time-step size on the results. To this end, we first repeat the simulation using441

three uniform meshes with h =
√
2 2−5−ℓ (ℓ = 0, 1, 2); we set τn = 0.1 2−2ℓ, in442

agreement with the CFL condition in (4.10) for the L2-metric and d = 2. We collect443

the results of computations in Table 2 (top), and observe that both min(sNh ) and errn444
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metric N Eh[sNh ,n
N
h ] min(sNh ) errn CPU time

L2 60 2.984 0.0757 0.0404 64.83
weighted H1, α = 2.0 67 2.944 0.0750 0.0370 98.65
weighted H1, α = 1.9 65 2.938 0.0754 0.0362 111.69
weighted H1, α = 1.8 67 2.932 0.0755 0.0353 130.17
weighted H1, α = 1.7 80 2.926 0.0760 0.0342 154.92

Table 1
Point defect experiment of subsection 5.1: Final outputs of Algorithm 4.1 for different choices

of metric ⟨·, ·⟩∗, namely total number of iterations N , value of the energy Eh[sNh ,nN
h ] for the equi-

librium state, smallest value of the final sNh , error in the unit-length constraint in (5.2), and the
CPU time.

decrease about linearly with h, whereas the energy Eh[sNh ,n
N
h ] slightly decreases. The445

linear decay of errn with respect to τn established in (4.9) is not observed. This can446

be explained by the increase of Eh[s0h,n
0
h] upon refinement, attributable to the fact447

that n0
h has a point defect while s0h is constant and does not compensate the blow-up448

of ∇n0.449

In our third experiment, we aim to empirically confirm the first-order convergence450

of the error errn in (5.2) with respect to τn established in Proposition 4.3; see (4.9).451

To this end, we consider a fixed mesh with h =
√
2 2−5, we set τn = (0.1)2−5−ℓ452

(ℓ = 0, 1, 2) as well as tol = 10−5τn in both (4.2) and (4.7). The computational453

results, collected in Table 2 (bottom), confirm the expected linear decay of the error.454

h N Eh[sNh ,n
N
h ] min(sNh ) errn CPU time√

2 2−5 60 2.984 0.0757 0.0404 64.83√
2 2−6 61 2.940 0.0422 0.0232 592.23√
2 2−7 133 2.939 0.0289 0.0100 7919.25

τn errn
(0.1)2−5 0.00610
(0.1)2−6 0.00346
(0.1)2−7 0.001927

Table 2
Point defect experiment of subsection 5.1: Final outputs of Algorithm 4.1 for different uniform

meshes with mesh size h and time steps τn = Ch2 (top) and different time step sizes τn with fixed
mesh size h =

√
2 2−5 (bottom).

5.2. Plane defect in 3D. We simulate a plane defect in the unit cube Ω =455

(0, 1)3 located at {z = 0.5}, according to [29, Section 6.4]. We set κ = 0.2 in (1.1)456

and cdw = 0 in (5.1). We impose Dirichlet boundary conditions on the top and bottom457

faces ΓD of the cube458

g = ŝ, q = r/g = (1, 0, 0) on ∂Ω ∩ {z = 0},459

g = ŝ, q = r/g = (0, 1, 0) on ∂Ω ∩ {z = 1}.460461

The exact solution is n(z) = (1, 0, 0) for z < 0.5 and n(z) = (0, 1, 0) for z > 0.5, while462

s(z) = 0 on z = 0.5 and linear on (0, 0.5) ∪ (0.5, 1) [29, Section 6.4]. Our numerical463

results are consistent with those in [23, Section 5.3]. To initialize Algorithm 4.1, we464
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set s0h = ŝ and n0
h to be a regularized point defect away from the center of the cube.465

Figure 3 displays the three components of nk
h and skh evaluated along the vertical line466

(0.5, 0.5, z) for iterations k = 1, 31, 79 computed on a uniform mesh with h =
√
3 0.05467

and τn = τs = 0.01.468

0 0.2 0.4 0.6 0.8 1

0

0.5

1

z

d
ir
ec
to
r
co
m
p
o
n
en
ts

k = 1

n1
n2
n3

0 0.2 0.4 0.6 0.8 1

0

0.5

1

z

k = 31

n1
n2
n3

0 0.2 0.4 0.6 0.8 1

0

0.5

1

z

k = 79

n1
n2
n3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

z

d
eg
re
e
of

o
ri
en
ta
ti
o
n

s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

z

s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

z

s

Fig. 3. Plane defect of subsection 5.2: Plots of the three components of nk
h (first row) and plots

of skh (second row) for iterations k = 1, 31, 79. In the final configuration (k = N = 79), the energy

is Eh[sNh ,nN
h ] = 0.247, min(sNh ) = 0.0101, and errn = 0.0556. Moreover, there is a transition layer

between about z = 0.4 and z = 0.6, and sh is almost linear in (0, 0.4) and (0.6, 1).

5.3. Effect of κ on equilibria. The value of the constant κ > 0 in (1.1) plays469

a crucial role in the formation of defects. For large values of κ, the dominant term470

in E1[s,n] is
´
Ω
κ|∇s|2 that prevents variations of s. Typically s tends to be close471

to a (usually positive) constant and the model behaves much like the simpler Oseen–472

Frank model, where defects are less likely to occur (and no defects with finite energy473

beyond point defects are allowed in 3D). On the other hand, for small values of κ,474

the energy is dominated by
´
Ω
s2|∇n|2, which allows s to become zero to compensate475

large gradients of n, and defects are then more likely to occur. In this section, we476

investigate this dichotomy numerically.477

We consider a cylindrical domain Ω in 3D with lateral boundary ΓD478

Ω = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 < 0.52, 0 < z < 1},479

ΓD = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 = 0.52, 0 < z < 1},480481

and impose the Dirichlet conditions on ΓD482

(5.4) g = ŝ and q = r/g =
(x− 0.5, y − 0.5, 0)

|(x− 0.5, y − 0.5, 0)|
,483

The top and bottom faces of Ω are treated as free boundaries and the double well484

potential ψ is neglected, i.e., cdw = 0 in (5.1). The analysis in [29, Section 6.5]485
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predicts that minimizers of the energy exhibit a line defect along the central axis of486

the cylinder if κ is sufficiently small, whereas they are smooth (no defects) if κ is487

sufficiently large.488

Figure 4 displays the final configurations obtained for κ = 0.2 and κ = 2. To489

discretize Ω, we consider an unstructured mesh generated by Netgen with h0 = 0.05.490

For both values of κ, we set ŝ as initial condition for the degree of orientation. For491

κ = 0.2, we set τn = 0.1 and τs = 10−3 and take as initial condition for the director492

field an off-center point defect located at the slice z = 0.5. For κ = 2, we set493

τn = τs = 0.01 and initialize n0
h as an off-center point defect located at the slice494

z = 0.25. These computational results are consistent with those in [23] and confirm495

the predicted effect of κ [29, Section 6.5].496

Fig. 4. Effect of κ in subsection 5.3: Equilibria for κ = 0.2 (left) and κ = 2 (right). Both
pictures show sNh and nN

h on the slices z = 0.2, 0.5, 0.8. If κ = 0.2, the final configuration exhibits a

line defect along the central axis of the cylinder; the final energy is Eh[sNh ,nN
h ] = 0.806, min(sNh ) =

−7.33 × 10−4, errn = 0.0778, and N = 226. If κ = 2, the z-component of the director is not
zero. This behavior is usually referred to as fluting effect or escape to the third dimension [29,
Section 6.5.1]. Moreover, the degree of orientation is bounded well away from zero; the final energy
is Eh[sNh ,nN

h ] = 2.635, min(sNh ) = 0.224, errn = 0.044, and N = 17.

5.4. Propeller defect. In this section, we investigate a new defect discovered497

in [23, Section 5.4]. We consider a setup similar to the one discussed in subsection 5.3,498

except that the domain is the unit cube Ω = (0, 1)3, and we again set cdw = 0 in (5.1).499

The top and bottom faces of the cube are treated as free boundary, while the same500

strong anchoring conditions as in (5.4) are imposed on the vertical faces ΓD of the501

cube (lateral boundary). The initial conditions are s0h = ŝ for the degree of orientation502

and an off-center point defect located on the slice z = 0.5 for the director. The domain503

is discretized using an unstructured mesh generated by Netgen with h0 = 0.025, and504

we set τn = 0.02. We consider the values κ = 2 and κ = 0.1. For κ = 2 and τs = 0.2,505

the computational results agree with those of subsection 5.3: The equilibrium state506

is smooth and is characterized by a nonzero z-component (fluting effect).507

For κ = 0.1, the final configuration reported in [23, Section 5.4, Figure 5] con-508

sists of two plane defects intersecting at the vertical symmetry axis of the cube, the509

so-called propeller defect. Whether this was a numerical artifact due to the inherent510

symmetries of the structured uniform weakly acute meshes used in [23] for simulation511

was an intriguing open question that we now answer. Owing to the flexibility of our512

approach regarding meshes, we repeated the experiment using an unstructured non-513

symmetric mesh with τs = 10−4. Our computational results confirm the emergence514

of the propeller defect in Figure 5, which in turn displays the director field nk
h at515

iterations k = 0, 1, 2766 with colors indicating the size of skh.516
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Fig. 5. Propeller defect of subsection 5.4: Evolution of the order parameters on the top face of
the cube (z = 1). Plots of the initial state (s0h,n

0
h) (left), of the intermediate approximation (s1h,n

1
h)

obtained after the first iteration (middle), and of the equilibrium state (sNh ,nN
h ) after 2766 iterations

(right). In the initial state, due to the off-center point defect at z = 0.5, there is a corresponding
region on the slice for z = 1 where n is aligned with z-direction. After the first iteration, in
which n is minimized for fixed s = ŝ, by symmetry the defect has moved to the center on z = 0.5.
Correspondingly, on the top surface of the cube, the region where n is aligned with the z-axis has
moved to the center. The final state is a propeller defect consisting of a planar X-like configuration
extruded in the z-direction. The final energy is Eh[sNh ,nN

h ] = 0.592, min(sNh ) = −1.575 × 10−4,
errn = 0.0265, and N = 2766.

5.5. Colloidal effects in nematic LCs. Colloidal particles suspended in a517

nematic LC can induce interesting topological defects and distortions [19, 28]. One518

prominent example is the so-called Saturn ring defect, a director configuration char-519

acterized by a circular ring singularity surrounding a spherical particle and located520

around its equator. Such defects are typically nonorientable and captured within the521

Landau–de Gennes Q-tensor model [11, 12], but the Ericksen model yields similar522

orientable defects under suitable boundary conditions [24]. We confirm the ability of523

Algorithm 4.1 to produce similar configurations.524

In this section, we exploit the flexibility of Algorithm 4.1 regarding meshes,525

together with the built-in Constructive Solid Geometry (CSG) approach of Net-526

gen/NGSolve, to explore numerically the formation of Saturn-ring-like defects induced527

by nonspherical or multiple particles.528

5.5.1. One ellipsoidal particle. Let Ωc = (0, 1)3 be the unit cube and let529

Ωs ⊂ Ωc be an ellipsoid centered at (0.5, 0.5, 0.5) with axes parallel to the coordinate530

axes and semiaxis lengths equal to 0.3 (x-direction), 0.075 (y-direction), and 0.075531

(z-direction); Ωs has an aspect ratio 1 : 4. The computational domain is then Ω :=532

Ωc \ Ωs. We set κ = 1 in (1.1) as well as cdw = 0.2 in (5.1). On ∂Ω = ∂Ωc ∪ ∂Ωs, we533

impose strong anchoring conditions534

(5.5) g = ŝ on ∂Ω, q = r/g = ν on ∂Ωs, and q = r/g = nsr on ∂Ωc,535

where ν : ∂Ωs → S2 denotes the outward-pointing unit normal vector of Ωs and536

nsr : ∂Ωs → S2 smoothly interpolates between the constant values (0, 0,−1) on the537

bottom face and (0, 0, 1) on the top face of the cube (see [24, Figure 11]). These538

boundary conditions are essential in order to induce the defect. The initial conditions539

for Algorithm 4.1 are given by540

(5.6) s0h = ŝ in Ω and n0
h(z) =


(0, 0, 1) z ∈ Ω and z3 ≥ 0.5,

(0, 0,−1) z ∈ Ω and z3 < 0.5,

q(z) z ∈ ∂Ω,

541
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for z = (z1, z2, z3) ∈ Nh. Figure 6 displays cuts of the final configuration obtained542

using Algorithm 4.1 with an unstructured mesh with h0 = 0.05 and time-step sizes543

τn = τs = 0.01.544

Fig. 6. Saturn ring experiment of subsection 5.5.1. Three different perspectives of the Saturn
ring defect around an ellipsoidal particle: slice z = 0.5 (left), a 3D view clipped at y = 0.5 (middle),
and a 3D view clipped at x = 0.5 (right). The blue ring surrounding the particle, the iso-surface
for s = 0.15, provides a good approximation of the defect. We stress that neither the distance
between the defect and the particle nor the defect diameter are constant, which is a consequence of
the anisotropic shape of the particle. The final energy is Eh[sNh ,nN

h ] = 7.263, min(sNh ) = 0.0128,
errn = 0.145, and N = 33.

5.5.2. Multiple spherical particles. We conclude this section with two novel545

and challenging simulations involving multiple spherical colloidal particles. In both546

cases, the domain has the form Ω := Ωc \ Ωs, where Ωc ⊂ R3 denotes a simply547

connected domain (representing the LC container), whereas Ωs ⊂ Ωc denotes the548

region occupied by spherical colloidal particles. We set κ = 1 in (1.1) and cdw = 0.2549

in (5.1). Moreover, boundary and initial conditions are suitable extensions to the550

multiple particle case of (5.5) and (5.6) considered in subsection 5.5.1.551

Figure 7 shows the equilibrium state corresponding to Ωc = (0, 1)3 and a pair552

of disjoint spherical colloids Ωs with radii 0.1 and centered at (0.3, 0.5, 0.5) and553

(0.7, 0.5, 0.5). Algorithm 4.1 employs an unstructured mesh with h0 = 0.025 and554

time-step sizes τn = τs = 0.0025. A novel fat figure “8” defect forms.555

Figure 8 depicts the equilibrium state corresponding to Ωc = (−0.1, 1.1)3 and556

a colloidal region consisting of six spheres. The latter have radii 0.1 and centers557

located at (0.2, 0.5, 0.5), (0.8, 0.5, 0.5), (0.5, 0.2, 0.5), (0.5, 0.8, 0.5), (0.5, 0.5, 0.2), and558

(0.5, 0.5, 0.8) distributed symmetrically with respect to the cube center. Algorithm 4.1559

utilizes an unstructured mesh with h0 = 0.05 and time-step sizes τn = τs = 0.005.560

6. Proofs. In this section, we present the proofs of the results discussed in561

sections 2 to 4.562

6.1. L2-differentiability of admissible directors. We now prove that any563

admissible director field, despite not being inH1(Ω), is L2-differentiable in Ω\Σ. We564

refer to [11] for a similar argument for a line field.565

Proof of Proposition 2.1. Since (s,n,u) ∈ A, we have that s ∈ H1(Ω) and u =566

sn ∈ H1(Ω). Then, for almost all x ∈ Ω (specifically, for all Lebesgue points of567

(s,u,∇s,∇u)), s and u are L2-differentiable and their L2-gradients coincide with568
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Fig. 7. Two-particle experiment of subsection 5.5.2. Fat figure “8” defect around two spherical
colloids viewed from different perspectives: slice y = 0.5 (left), slice z = 0.5 (middle), and a 3D
view clipped at y = 0.5 (right). The blue ring surrounding the particle is the iso-surface for s =
0.12, which provides a good approximation of the defect. The final energy is Eh[sNh ,nN

h ] = 7.656,

min(sNh ) = 0.0146, errn = 0.0972, and N = 57.

Fig. 8. Six-particle experiment of subsection 5.5.2. Defect around six spherical colloids viewed
from different perspectives: slice y = 0.5 (left), slice z = 0.5 (middle), and a 3D view clipped at
y = 0.5 (right); the slice x = 0.5 is similar to y = 0.5. The blue ring surrounding the particles is
the iso-surface for s = 0.22, which provides a good approximation of the defect. Therefore the defect
appears to be a combination of a large Saturn ring defect around particles with center in the plane
z = 0.5 and a planar X-like configuration with axis x = 0.5, y = 0.5,−0.1 < z < 1. The final energy
is Eh[sNh ,nN

h ] = 12.562, min(sNh ) = −0.0079, errn = 0.163, and N = 61.

their respective weak gradients for a.e. x ∈ Ω, i.e., as r → 0, it holds that569

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2 dy = o(r2),570

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2 dy = o(r2);571

572

see [18, Theorem 6.2]. For almost all x ∈ Ω \ Σ (specifically, for all Lebesgue points573

of (s,n,u,∇s,∇u) in x ∈ Ω\Σ), in view of the identity (2.3), we define the quantity574

(6.1) ∇n(x) := ∇u(x)− n(x)⊗∇s(x)
s(x)

.575
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Let r > 0. It holds that576

 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy

≲
1

s(x)2

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2dy

+
1

s(x)2

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2|n(y)|2dy

+
|∇s(x)|2

s(x)2

 
Br(x)

|n(y)− n(x)|2|y − x|2dy = o(r2)

577

as r → 0. This shows that ∇n(x) is the L2-gradient of n at x. Moreover, (2.9) follows578

from a direct computation. In fact, in view of (6.1), there holds that579

s(x)2|∇n(x)|2 = |∇u(x)− n(x)⊗∇s(x)|2

= |∇u(x)|2 + |n(x)⊗∇s(x)|2 − 2∇u(x) : [n(x)⊗∇s(x)]

= |∇u(x)|2 − |∇s(x)|2,

580

where the last equality follows from the identities581

|n(x)⊗∇s(x)|2 =

d∑
i,j=1

ni(x)
2
(
∂js(x)

)2
=

d∑
j=1

(
∂js(x)

)2
= |∇s(x)|2582

and for a.e x ∈ Ω \ Σ583

∇u(x) : [n(x)⊗∇s(x)] =
d∑

i,j=1

∂jui(x)ni(x) ∂js(x) =
1

s(x)

d∑
i,j=1

∂jui(x)ui(x) ∂js(x)

=
1

2s(x)

d∑
i,j=1

∂j |ui(x)|2 ∂js(x) =
1

2s(x)

d∑
j=1

∂j |u(x)|2 ∂js(x)

=
1

2s(x)

d∑
j=1

∂j
(
s(x)2

)
∂js(x) =

d∑
j=1

(
∂js(x)

)2
= |∇s(x)|2.

584

This concludes the proof.585

6.2. Lim-sup inequality (consistency). We start with two results from [23]586

that we state without proofs. The first one shows that the degree of orientation s587

can be truncated near the end points of the domain of definition (−1/(d− 1), 1) of ψ588

without increasing the energy E[s,n]. We refer to [23, Lemma 3.1] for a proof.589

Lemma 6.1 (truncation of s). Let the assumptions (2.12) and (2.14) hold. Let590

(s,n,u) ∈ A(g, r). For all 0 < ρ ≤ δ0, define591

sρ(x) := min

{
1− ρ,max

{
− 1

d− 1
+ ρ, s(x)

}}
and uρ(x) := sρ(x)n(x)592

for a.e. x ∈ Ω. Then, (sρ,n,uρ) ∈ A(g, r) and E1[sρ,n] ≤ E1[s,n], E2[sρ] ≤ E2[s].593
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A simple consequence of Lemma 6.1, based on the convergence of the charac-594

teristic function χ{sρ=s} → χΩ as ρ → 0, is that ∥(s,u) − (sρ,uρ)∥H1(Ω)1+d → 0 as595

ρ → 0. The second result is about regularization of admissible functions but pre-596

serving the structural condition (2.6) and boundary values. This is a rather tricky597

two-scale process fully discussed in [23, Proposition 3.2].598

Lemma 6.2 (regularization of functions in A(g, r)). Let the assumptions (2.12)599

and (2.13) hold, and suppose that ΓD = ∂Ω. Let (s,n,u) ∈ A(g, r) and ρ ≤ δ0 such600

that −1/(d − 1) + ρ ≤ s(x) ≤ 1 − ρ for a.e. x ∈ Ω. Then, for all σ > 0, there601

exists a triple (sσ,nσ,uσ) ∈ A(g, r) such that sσ ∈ W 1,∞(Ω) and uσ ∈ W 1,∞(Ω).602

Moreover, there holds ∥(s,u) − (sσ,uσ)∥H1(Ω)1+d ≤ σ, ∥n − nσ∥L2(Ω\Σ) ≤ σ, and603

−1/(d− 1) + ρ ≤ sσ(x) ≤ 1− ρ for all x ∈ Ω.604

We recall the following classical local inverse estimates (see, e.g., [8, Lemma 3.5]),605

which will be used in several points of the upcoming analysis: For all vh ∈ Vh,606

1 ≤ p, r ≤ ∞, and K ∈ Th, there holds607

∥∇vh∥Lp(K) ≤ Ch−1
K ∥vh∥Lp(K) and ∥vh∥Lp(K) ≤ Ch

d(r−p)/(pr)
K ∥vh∥Lr(K),608

where C > 0 is a constant depending only on the shape-regularity of {Th}.609

It is well known that the Lagrange interpolation operator Ih : C(Ω) → Vh is not610

stable in H1(Ω) unless d = 1. We exploit stability in L∞(Ω) to derive stability in611

W 1,p(Ω) for p > d.612

Lemma 6.3 (W 1,p-stability of Lagrange interpolant). Let v ∈ W 1,p(Ω) for d <613

p ≤ ∞. Then614

(6.2) ∥∇Ih[v]∥Lp(K) ≤ C∥∇v∥Lp(K) for all K ∈ Th,615

where C > 0 depends only on the shape-regularity of {Th}.616

Proof. Let K ∈ Th be an arbitrary element and let vK =
ffl
K
v. An inverse617

estimate gives618

∥∇Ih[v]∥pLp(K) ≤ |K|∥∇Ih[v − vK ]∥pL∞(K) ≲ hd−p
K ∥v − vK∥pL∞(K).619

The Bramble–Hilbert estimate yields ∥v − vK∥L∞(K) ≲ h
1−d/p
K ∥∇v∥Lp(K) and ends620

the proof.621

Applying a standard density argument in W 1,p(Ω), for d < p <∞, we deduce622

(6.3) lim
h→0

∥v − Ih[v]∥W 1,p(Ω) = 0 for all v ∈W 1,p(Ω).623

We have collected all the ingredients to show the existence of a recovery sequence624

(lim-sup inequality).625

Proof of Theorem 3.1(i). For the sake of clarity, we decompose the proof into626

seven steps.627

Step 1: Regularization.628

Let (s,n,u) ∈ A(g, r). For all k ∈ N such that 1/k ≤ δ0, let 0 < σk ≤ 1/k be629

sufficiently small. Applying successively Lemma 6.1 (with ρ = 1/k) and Lemma 6.2630

(with σ = σk), we obtain (sk,nk,uk) ∈ A(g, r) satisfying (sk,uk) ∈ [W 1,∞(Ω)]1+d631

and −1/(d− 1) + 1/k ≤ sk ≤ 1− 1/k in Ω for all k. Moreover, we have that632

∥(s,u)− (sk,uk)∥H1(Ω)1+d ≤ σk and ∥n− nk∥L2(Ω\Σ) ≤ σk.633
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Since (s,n,u) ∈ A(g, r), Proposition 2.1 guarantees that n is L2-differentiable a.e. in634

Ω \Σ, with its L2-gradient given by (2.8) and that the identity (2.9) holds. The same635

result is valid for nk a.e. in Ω \ Σk, where Σk := {x ∈ Ω : sk(x) = 0}.636

We have convergence of the energy: E[sk,nk] → E[s,n] as k → ∞. To see this,637

we first observe that, thanks to (2.5), we have that638
639

E1[sk,nk] = Ẽ1[sk,uk] =
1

2

ˆ
Ω

(κ− 1)|∇sk|2 + |∇uk|2640

→ 1

2

ˆ
Ω

(κ− 1)|∇s|2 + |∇u|2 = Ẽ1[s,u] = E1[s,n] as k → ∞.641
642

Moreover, the monotonicity of ψ in (−1/(d − 1),−1/(d − 1) + δ0) and in (1 − δ0, 1)643

translates into ψ(sk) ≥ 0 increasing and converging pointwise to ψ(s), whence the644

monotone convergence theorem gives645

E2[sk] =

ˆ
Ω

ψ(sk) →
ˆ
Ω

ψ(s) = E2[s] as k → ∞.646

Let ϵ > 0 be arbitrary. The above convergences guarantee the existence of k ∈ N647

such that σk < ϵ, |E[sk,nk] − E[s,n]| < ϵ and |(Σk \ Σ) ∪ (Σ \ Σk)| < ϵ. Let such a648

k ∈ N be fixed for the rest of the proof.649

Step 2: Discretization.650

Let sk,h := Ih[sk] and uk,h := Ih[uk]. Let nk,h ∈ Vh be defined as651

nk,h(z) :=

{
uk,h(z)/sk,h(z) = uk(z)/sk(z) if z ∈ Nh ∩ (Ω \ Σk),

an arbitrary unit vector if z ∈ Nh ∩ Σk.
652

Note that, by construction, (sk,h,nk,h,uk,h) satisfies the discrete structural condi-653

tion (3.2) and ∥nk,h∥L∞(Ω) = 1. Moreover, since 0 = ∥Ih
[
|nk,h|2

]
− 1∥L1(Ω) ≤ ε as654

well as sk,h(z) = gh(z) and uk,h(z) = rh(z) for all z ∈ Nh ∩ ΓD, we deduce that655

(sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh).656

Σk

Σk,δ

Σk,2δ

Ωh
k,δ

Fig. 9. A schematic illustration of the mutual relations of the sets defined in Steps 1–2 of
the proof of Theorem 3.1(i) (lim-sup inequality). Note that the set Σk ⊂ Ω is closed, as it is the
preimage of a closed set with respect to the continuous function sk, but it might be more topologically
complicated than in the picture.

Given δ > 0, we consider the sets657

Σk,δ := {x ∈ Ω : |sk(x)| ≤ δ} and Ωh
k,δ :=

⋃
{K ∈ Th : K ∩ Σk,δ = ∅}.658
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Note that, by construction, there holds Ωh
k,δ ⊂ Ω \ Σk,δ; see Figure 9.659

Let K ∈ Th such that K ∩ Σk,δ ̸= ∅. In particular, there exists x0 ∈ K ∩ Σk,δ.660

For x1 ∈ K arbitrary, the Lipschitz continuity of sk yields661

|sk(x1)| ≤ |sk(x0)|+ |sk(x1)− sk(x0)| ≤ δ + ∥∇sk∥L∞(Ω)h.662

Hence, Ω\Ωh
k,δ ⊂ Σk,2δ provided h and δ are such that h∥∇sk∥L∞(Ω) ≤ δ; see Figure 9.663

Now, for any x ∈ Ωh
k,δ, we infer that664

|sk(x)− sk,h(x)| ≤ ∥sk − sk,h∥L∞(Ωh
k,δ)

= ∥sk − Ih[sk]∥L∞(Ωh
k,δ)

≲ h∥∇sk∥L∞(Ωh
k,δ)

,665

whence666

|sk,h(x)| ≥ |sk(x)| − |sk(x)− sk,h(x)| > δ − Ch∥∇sk∥L∞(Ωh
k,δ)

> δ/2667

provided h and δ are such that Ch∥∇sk∥L∞(Ω) < δ/2. Hence, for this range of668

parameters, we can define ñk := uk,h/sk,h in Ωh
k,δ. Note that, by definition, the669

relation nk,h = Ih[ñk] in Ωh
k,δ holds.670

To conclude this step, we observe that the L2-gradient ∇nk of nk exists a.e. in671

Ω \ Σk and672

(6.4)

ˆ
Ωh

k,δ

|∇nk −∇nk,h|2 ≲
ˆ
Ωh

k,δ

|∇nk −∇ñk|2 +
ˆ
Ωh

k,δ

|∇ñk −∇nk,h|2,673

where ∇ñk and ∇nk,h denote the weak gradients of ñk and nk,h, respectively, which674

coincide elementwise with their classical gradients in Ωh
k,δ. In the following two steps,675

we will show that, for fixed k ∈ N (cf. Step 1), both two terms on the right-hand side676

of (6.4) converge to 0 if h, δ → 0 in an appropriate way (note that we are completely677

free to choose the speed of convergence of the parameters).678

Step 3: Proof of lim
h,δ→0

ˆ
Ωh

k,δ

|ñk − nk,h|2 + |∇ñk −∇nk,h|2 = 0.679

Since nk,h = Ih[ñk] in Ωh
k,δ, a classical local interpolation estimate yields that680

ˆ
Ωh

k,δ

|∇ñk −∇nk,h|2 =
∑

K∈Th

K∩Σk,δ=∅

ˆ
K

∣∣∇(ñk − Ih[ñk])
∣∣2 ≲

∑
K∈Th

K∩Σk,δ=∅

h2K
∥∥D2ñk

∥∥2
L2(K)

.681

Similarly, there holds682

ˆ
Ωh

k,δ

|ñk − nk,h|2 ≲
∑

K∈Th

K∩Σk,δ=∅

h4K
∥∥D2ñk

∥∥2
L2(K)

.683

Moreover, in view of ñk = uk,h/sk,h in Ωh
k,δ, explicit computations reveal that684

∂iñk = s−1
k,h ∂iuk,h − s−2

k,h ∂isk,h uk,h = s−1
k,h

(
∂iuk,h − ∂isk,h ñk

)
,685

∂j∂iñk = s−1
k,h

(
s−1
k,h ∂jsk,h ∂isk,h ñk − ∂ish ∂jñk − s−1

k,h ∂jsk,h ∂iuk,h

)
,686

687

for all 1 ≤ i, j ≤ d (note that the second derivatives of the piecewise affine functions688

sk,h and uk,h vanish). Several applications of the generalized Hölder inequality, sta-689

bility (6.2) in W 1,p of the Lagrange interpolation operator Ih when d < p ≤ ∞, in690
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conjunction with the lower bound |sk,h| > δ/2 in Ωh
k,δ and the uniform boundedness691

of uk,h in L∞(Ω), thus yield692 ∥∥D2ñk

∥∥
L2(K)

≲ δ−3∥∇sk,h∥2L8(K)∥uk,h∥L4(K)

+ δ−1∥∇sk,h∥L4(K)

(
δ−1∥∇uk,h∥L4(K) + δ−2∥uk,h∥L8(K)∥∇sk,h∥L8(K)

)
+ δ−2∥∇sk,h∥L4(K)∥∇uk,h∥L4(K)

≲ |K|1/2
(
δ−3∥∇sk∥2L∞(K) + δ−2∥∇sk∥L∞(K)∥∇uk∥L∞(K)

)
.

693

Altogether, we thus obtain the estimate694

695 ˆ
Ωh

k,δ

|∇ñk −∇nk,h|2 +
∑

K∈Th

K∩Σk,δ=∅

h−2
K

ˆ
K

|ñk − nk,h|2 ≲
∑

K∈Th

K∩Σk,δ=∅

h2K
∥∥D2ñk

∥∥2
L2(K)

696

≲ h2
(
δ−3∥∇sk∥2L∞(Ω) + δ−2∥∇sk∥L∞(Ω)∥∇uk∥L∞(Ω)

)2
,697

698

which yields the desired convergence, if hδ−3 goes to 0 as h, δ → 0.699

Step 4: Proof of lim
h,δ→0

ˆ
Ωh

k,δ

|nk − ñk|2 + |∇nk −∇ñk|2 = 0.700

We first observe that701

∥ñk − nk∥Lp(Ωh
k,δ)

= ∥s−1
k,huk,h − s−1

k uk∥Lp(Ωh
k,δ)

≲ δ−2∥sk − sk,h∥Lp(Ωh
k,δ)

∥uk,h∥L∞(Ωh
k,δ)

+ δ−1∥uk,h − uk∥Lp(Ωh
k,δ)

≲ δ−2h∥∇sk∥L∞(Ω) + δ−1h∥∇uk∥L∞(Ω),

702

for all 1 ≤ p < ∞. This shows that ∥ñk − nk∥Lp(Ωh
k,δ)

→ 0 if δ−2h → 0 as h, δ → 0.703

To deal with the gradient part, we resort to available expressions of ∇nk and ∇ñk704

to write705

ˆ
Ωh

k,δ

|∇nk −∇ñk|2 =

ˆ
Ωh

k,δ

|s−1
k (∇uk − nk ⊗∇sk)− s−1

k,h(∇uk,h − ñk ⊗∇sk,h)|2

≤ T1 + T2 + T3,

706

where707

T1 :=

ˆ
Ωh

k,δ

|s−1
k,h(∇uk −∇uk,h)|2, T2 :=

ˆ
Ωh

k,δ

|s−1
k,h(ñk ⊗∇sk,h − nk ⊗∇sk)|2,708

T3 :=

ˆ
Ωh

k,δ

|(s−1
k − s−1

k,h)(∇uk − nk ⊗∇sk)|2.709

710

Recalling again |sk|, |sk,h| > δ/2 in Ωh
k,δ, as well as (6.2)–(6.3), the asserted conver-711

gence follows from712

T1 ≲ δ−2∥∇(uk − Ih[uk])∥2L2(Ω),713

T2 ≲ δ−2
(
∥∇sk,h∥2L4(Ωh

k,δ)
∥ñk − nk∥2L4(Ωh

k,δ)
+ ∥nk∥2L4(Ωh

k,δ)
∥∇(sk − Ih[sk])∥2L4(Ωh

k,δ)

)
,714

T3 ≲ δ−4∥sk − Ih[sk]∥2L4(Ω)∥∇uk − nk ⊗∇sk∥2L4(Ω)715
716
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and the fact that the right-hand sides of these estimates converge to 0 for a suitably717

faster convergence of h to 0 relative to that of δ.718

Step 5: Proof of lim
h,δ→0

ˆ
Ω

s2k,h|∇nk,h|2 =

ˆ
Ω\Σk

s2k|∇nk|2.719

Let us assume that h, δ → 0 in such a way (h sufficiently faster than δ) that the720

definitions and the convergence results established in Steps 2–4 are valid. Combining721

Steps 3–4 gives722

(6.5) lim
h,δ→0

ˆ
Ωh

k,δ

|∇nk −∇nk,h|2 = 0.723

In order to exploit this property, we split the integral under consideration as724

(6.6)

ˆ
Ω

s2k,h|∇nk,h|2 =

ˆ
Ωh

k,δ

s2k,h|∇nk,h|2 +
ˆ
Ω\Ωh

k,δ

s2k,h|∇nk,h|2.725

The fact that sk,h → sk strongly in Lp(Ω) as h → 0 for d < p < ∞, according to726

(6.3), together with sk,h ∈ L∞(Ω) uniformly in h, ∇nk ∈ L∞(Ω \ Σk,δ) and (6.5),727

yields728

lim
h,δ→0

∣∣∣∣ˆ
Ωh

k,δ

s2k,h|∇nk,h|2 −
ˆ
Ωh

k,δ

s2k|∇nk|2
∣∣∣∣ = 0.729

Since Ω \ Σk,2δ ⊂ Ωh
k,δ ⊂ Ω \ Σk,δ (recall Figure 9), we deduce730

lim
h,δ→0

ˆ
Ωh

k,δ

s2k,h|∇nk,h|2 =

ˆ
Ω\Σk

s2k|∇nk|2.731

Now, we consider the second term on the right-hand side of (6.6). Since Ω \ Ωh
k,δ ⊂732

Σk,2δ and sk,h∇nk,h = ∇(sk,hnk,h)−nk,h⊗∇sk,h, using uk,h = Ih[sk,hnk,h], we see733

that734

ˆ
Ω\Ωh

k,δ

s2k,h|∇nk,h|2

≲
ˆ
Σk,2δ

|∇(sk,hnk,h)|2 +
ˆ
Σk,2δ

|nk,h ⊗∇sk,h|2

≲
ˆ
Σk,2δ

|∇(sk,hnk,h)−∇Ih[sk,hnk,h]|2 +
ˆ
Σk,2δ

|∇uk,h|2 +
ˆ
Σk,2δ

|∇sk,h|2.

735

Combining an interpolation estimate with the fact that sk,h and nk,h are piece-736

wise affine, and exploiting an inverse estimate to bound ∥∇nk,h∥L∞(K) in terms737

of ∥nk,h∥L∞(K) = 1, yields738

ˆ
Σk,2δ

|∇(sk,hnk,h)−∇Ih[sk,hnk,h]|2 ≲
∑

K∈Th

K∩Σk,2δ ̸=∅

h2K∥D2(sk,hnk,h)∥2L2(K)739

≲
∑

K∈Th

K∩Σk,2δ ̸=∅

h2K∥∇sk,h∥2L2(K)∥∇nk,h∥2L∞(K) ≲
∑

K∈Th

K∩Σk,2δ ̸=∅

∥∇sk,h∥2L2(K).740

741

This manuscript is for review purposes only.



PROJECTION-FREE FEM FOR LIQUID CRYSTALS 25

Using the W 1,p-stability (6.2) of the nodal interpolant with p > d for all elements742

K ∈ Th with K ∩ Σk,2δ ̸= ∅, we end up with the following as h, δ → 0743

744 ˆ
Ω\Ωh

k,δ

s2k,h|∇nk,h|2 ≲ ∥∇uk∥2Lp(Σk,3δ)
+ ∥∇sk∥2Lp(Σk,3δ)

745

→ ∥∇uk∥2Lp(Σk)
+ ∥∇sk∥2Lp(Σk)

= 0746
747

(cf. [18, Theorem 4.4](iv)), because the Lipschitz continuity of sk implies that all748

elementsK ∈ Th withK∩Σk,2δ ̸= ∅ are contained in Σk,3δ provided hδ
−1 is sufficiently749

small (cf. Step 2).750

Step 6: Proof of lim
h,δ→0

ˆ
Ω

|nk,h ⊗∇sk,h|2 =

ˆ
Ω

|∇sk|2.751

We split the integral as752

ˆ
Ω

|nk,h ⊗∇sk,h|2 =

ˆ
Ωh

k,δ

|nk,h ⊗∇sk,h|2 +
ˆ
Ω\Ωh

k,δ

|nk,h ⊗∇sk,h|2.753

Exploiting the identity nk,h⊗∇sk,h−nk⊗∇sk = (nk,h−nk)⊗∇sk+nk,h⊗(∇sk,h−754

∇sk), and using the convergence results for sk,h and nk,h in Ωh
k,δ from Steps 2–4, we755

readily see that756

lim
h,δ→0

ˆ
Ωh

k,δ

|nk,h ⊗∇sk,h|2 =

ˆ
Ω\Σk

|nk ⊗∇sk|2 =

ˆ
Ω

|∇sk|2.757

Moreover, employing Ω \ Ωk,δ ⊂ Σk,2δ together with (6.2) implies758

ˆ
Ω\Ωh

k,δ

|nk,h ⊗∇sk,h|2 ≲ ∥∇sk,h∥2L2(Σk,2δ)
≲ ∥∇sk,h∥2Lp(Σk,2δ)

≲ ∥∇sk∥2Lp(Σk,3δ)
.759

Finally, taking h, δ → 0 yields ∥∇sk∥Lp(Σk,3δ) → ∥∇sk∥Lp(Σk) = 0, which leads to the760

desired limit.761

Step 7: End of the proof.762

Let ϵ > 0 be the arbitrary value fixed in Step 1. The triangle inequality yields that763

∥nk,h − nk∥L2(Ω\Σ) ≲ ∥nk,h − nk∥L2(Ωh
k,δ)

+ ∥nk,h − nk∥L2(Σk,2δ\Σ).764

For the first term, the convergences in Steps 3–4 guarantee that ∥nk,h−nk∥L2(Ωh
k,δ)

< ϵ765

if h, δ are chosen properly and sufficiently small. For the second term, we have766

∥nk,h − nk∥L2(Σk,2δ\Σ) ≤ 2|Σk,2δ \ Σ|1/2 → 2|Σk \ Σ|1/2 as δ → 0.767

Since |Σk \ Σ|1/2 < ϵ1/2, we deduce that ∥nk,h − nk∥L2(Ω\Σ) ≲ ϵ+ ϵ1/2 provided h, δ768

are sufficiently small.769

Next, recall that (sk,h,uk,h) → (sk,uk) in H
1(Ω)1+d as h → 0 (thanks to (6.3))770

as well as Eh
1 [sk,h,nk,h] → E1[sk,nk] as h, δ → 0 (thanks to Steps 5–6). Furthermore,771

since −1/(d − 1) + 1/k ≤ sk ≤ 1 − 1/k in Ω, assumption (2.14) guarantees that 0 ≤772

ψ(sk,h) ≤ max{ψ(−1/(d− 1)+ 1/k), ψ(1− 1/k)}. Hence, the dominated convergence773

theorem implies that774

lim
h→0

Eh
2 [sk,h] = lim

h→0

ˆ
Ω

ψ(Ih[sk]) =

ˆ
Ω

lim
h→0

ψ(Ih[sk]) =

ˆ
Ω

ψ(sk) = E2[sk].775
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Altogether, we can therefore find sufficiently small δ > 0 and h > 0 such that776

∥sk,h − sk∥H1(Ω) < ϵ, ∥uk,h − uk∥H1(Ω) < ϵ, ∥nk,h − nk∥L2(Ω\Σ) ≲ ϵ + ϵ1/2, and777

|Eh[sk,h,nk,h] − E[sk,nk]| < ϵ. Combining these inequalities with those estab-778

lished in Step 1, we conclude that ∥sk,h − s∥H1(Ω) < 2ϵ, ∥uk,h − u∥H1(Ω) < 2ϵ,779

∥nk,h−n∥L2(Ω\Σ) ≲ ϵ+ϵ1/2, and |Eh[sk,h,nk,h]−E[s,n]| < 2ϵ. Since ϵ was arbitrary,780

this shows that the sequence (sh,nh,uh) := (sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh) satisfies781

the desired convergence towards (s,n,u) ∈ A(g, r) as well as limh→0E
h[sh,nh] =782

E[s,n]. This implies the lim-sup inequality (3.5) and concludes the proof.783

6.3. Lim-inf inequality: Stability. To show the lim-inf inequality, we first784

prove that admissible discrete pairs (sh,nh) with uniformly bounded energy are uni-785

formly bounded in H1. In constrast to [23], we do not need to assume that Th is786

weakly acute.787

Lemma 6.4 (coercivity). Let {(sh,nh,uh)} ⊂ Vh × Vh × Vh satisfy uh =788

Ih[shnh] and |nh(z)| ≥ 1 for all z ∈ Nh. Then, there exists a constant C > 0789

depending only on the shape-regularity of {Th} and κ such that790

Cmax
{
∥∇uh∥2L2(Ω), ∥∇(shnh)∥2L2(Ω), ∥∇sh∥

2
L2(Ω)

}
≤ Eh

1 [sh,nh].791

Proof. Since ∥nh∥L∞(K) ≥ 1 for all K ∈ Th and ∇sh is piecewise constant, it792

holds that793

∥∇sh∥2L2(Ω) ≤
∑

K∈Th

∥nh∥2L∞(K)∥∇sh∥
2
L2(K) =

∑
K∈Th

|K| ∥nh∥2L∞(K)|∇sh|K |2

≲
∑

K∈Th

|∇sh|K |2∥nh∥2L2(K) = ∥nh ⊗∇sh∥2L2(Ω) ≤
2

κ
Eh

1 [sh,nh],
794

where the hidden multiplicative constant depends only on the shape-regularity of795

{Th}. Let ũh = shnh and use the Hölder inequality in conjunction with (6.2) for796

p > d and an inverse estimate to obtain797

∥∇Ih[ũh]∥L2(K) ≲ |K|
p−2
2p ∥∇Ih[ũh]∥Lp(K) ≲ |K|

p−2
2p ∥∇ũh∥Lp(K) ≲ ∥∇ũh∥L2(K)798

for all K ∈ Th. Consequently, for uh = Ih[ũh] we deduce799

∥∇uh∥2L2(Ω) ≲ ∥∇ũh∥2L2(Ω) ≲ ∥nh ⊗∇sh∥2L2(Ω) + ∥sh∇nh∥2L2(Ω) ≲ Eh
1 [sh,nh].800

This completes the proof.801

We are now ready to extract convergent subsequences and characterize their lim-802

its.803

Lemma 6.5 (characterization of limits). Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a804

sequence such that Eh
1 [sh,nh] ≤ C and ∥nh∥L∞(Ω) ≤ C, where C > 0 is a constant805

independent of h. Then, there exist a triple (s,n,u) ∈ A(g, r) and a subsequence (not806

relabeled) of {(sh,nh,uh)} satisfying the following properties:807

• As h → 0, (sh,uh, shnh) converges towards (s,u,u) weakly in H1(Ω) ×808

H1(Ω) × H1(Ω), strongly in L2(Ω) × L2(Ω) × L2(Ω), and pointwise a.e.809

in Ω;810

• nh converges towards n strongly in L2(Ω \Σ) and pointwise a.e. in Ω \Σ as811

h→ 0 and ε→ 0;812
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• n is L2-differentiable a.e. in Ω\Σ and the orthogonal decomposition |∇u|2 =813

|∇s|2 + s2|∇n|2 is valid a.e. in Ω \ Σ,814

where Σ ⊂ Ω is given by (2.2).815

Proof. For the sake of clarity, we divide the proof into three steps.816

Step 1: Convergence of {sh}, {uh}, and {shnh}. Since the energy Eh
1 [sh,nh]817

is uniformly bounded, Lemma 6.4 (coercivity) gives uniform bounds in H1(Ω) ×818

H1(Ω) ×H1(Ω) for the the sequence {(sh,uh, shnh)}. With successive extractions819

of subsequences (not relabeled), one can show that there exists a limit (s,u, ũ) ∈820

H1(Ω) ×H1(Ω) ×H1(Ω) such that (sh,uh, shnh) converges to (s,u, ũ) weakly in821

H1(Ω)×H1(Ω)×H1(Ω), strongly in L2(Ω)×L2(Ω)×L2(Ω), and pointwise a.e. in822

Ω. Moreover, weak H1-convergence guarantees attainment of traces, namely s = g823

and u = ũ = r on ΓD. To see this, note that gh = Ih[g] → g in W 1,p(Ω) for p > d,824

according to (6.3), and so in H1(Ω). Therefore sh − gh ∈ H1
0 (Ω) satisfies825

sh − gh ⇀ s− g ∈ H1
0 (Ω),826

because H1
0 (Ω) is closed under weak convergence. Hence s = g on ΓD in the sense827

of traces, as asserted. Dealing with uh and ũh is identical. Since uh = Ih[shnh],828

interpolation and inverse estimates, yield829

∥uh − shnh∥2L2(Ω) ≲
∑

K∈Th

h4K∥D2(shnh)∥2L2(K)

≲
∑

K∈Th

h2K∥∇(shnh)∥2L2(K) ≲ h2Eh
1 [sh,nh] ≤ Ch2.

830

This shows that shnh and uh converge strongly in L2(Ω) towards the same limit i.e.,831

ũ = u. Moreover, shnh converges to u weakly in H1(Ω) and pointwise a.e. in Ω.832

Step 2: |s| = |u| a.e. in Ω. The triangle inequality yields833

∥|uh|2 − |sh|2∥L1(Ω) ≤ ∥|uh|2 − Ih
[
|uh|2

]
∥L1(Ω)

+ ∥Ih
[
|uh|2 − |sh|2

]
∥L1(Ω) + ∥|sh|2 − Ih

[
|sh|2

]
∥L1(Ω).

834

For the first and third terms on the right-hand side, standard interpolation estimates835

yield836

∥|sh|2 − Ih
[
|sh|2

]
∥L1(Ω) ≲ h2∥∇sh∥2L2(Ω), ∥|uh|2 − Ih

[
|uh|2

]
∥L1(Ω) ≲ h2∥∇uh∥2L2(Ω).837

838

On the other hand, since {sh} is uniformly bounded in L∞(Ω), we infer that839

∥Ih
[
|uh|2 − |sh|2

]
∥L1(Ω) = ∥Ih

[
|sh|2(|nh|2 − 1)

]
∥L1(Ω)

≤ ∥sh∥2L∞(Ω)∥Ih
[
|nh|2 − 1

]
∥L1(Ω) ≤ ε∥sh∥2L∞(Ω) → 0,

840

as ε→ 0. As |sh| → |s| and |uh| → |u| a.e. in Ω, we conclude that |s| = |u| a.e. in Ω.841

Step 3: Convergence of {nh}. We now define n : Ω → R3 as n := s−1u in842

Ω \ Σ and as an arbitrary unit vector in Σ. Step 2 implies, by construction, that843

|n| = 1 a.e. in Ω. This shows that (s,n,u) satisfies the structural condition (2.6),844

i.e., (s,n,u) ∈ A.845

We now observe that s(x) ̸= 0 for a.e. x ∈ Ω \ Σ by definiton of Σ. Since846

sh(x) → s(x) as h → 0, if h is sufficiently small (depending on x), then sh(x) ̸= 0 is847
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valid. Consequently,848

nh(x) =
sh(x)nh(x)

sh(x)
→ u(x)

s(x)
= n(x),849

i.e., nh → n pointwise a.e. in Ω \Σ. Since {nh} is uniformly bounded in L∞(Ω), the850

Lebesgue dominated convergence theorem yields nh → n strongly in L2(Ω \ Σ).851

Finally, the L2-differentiability of n and the orthogonal decomposition of ∇u,852

both valid a.e. in Ω\Σ, follow from Proposition 2.1 (orthogonal decomposition). This853

concludes the proof.854

We are now in the position to prove the lim-inf inequality.855

Proof of Theorem 3.1(ii). The sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) satisfies856

the assumptions of Lemma 6.5 (characterization of limits). Hence, we can apply it857

to obtain subsequences (not relabeled) converging to the respective limits (s,n,u) ∈858

A(g, r). Moreover, since also the sequences {nh ⊗∇sh} and {sh∇nh} are uniformly859

bounded in L2(Ω), there exist subsequences (not relabeled) and functions M ,N in860

L2(Ω) such that nh ⊗∇sh ⇀M and sh∇nh ⇀N weakly in L2(Ω). Combining the861

equality sh∇nh = ∇(shnh)− nh ⊗∇sh, which is valid in every element of Th, with862

shnh ⇀ u weakly in H1(Ω), helps identify the limits N = ∇u−M .863

Let Φ ∈ C∞
c (Ω \ Σ) be an arbitrary d× d tensor field. We can thus write864

⟨nh ⊗∇sh − n⊗∇s,Φ⟩Ω\Σ = ⟨(nh − n)⊗∇sh,Φ⟩Ω\Σ + ⟨n⊗ (∇sh −∇s),Φ⟩Ω\Σ.865

We note that nh → n strongly in L2(Ω \ Σ) implies866

⟨(nh − n)⊗∇sh,Φ⟩Ω\Σ ≤ ∥nh − n∥L2(Ω\Σ)∥∇sh∥L2(Ω)∥Φ∥L∞(Ω\Σ) → 0,867

whereas sh ⇀ s weakly in H1(Ω) yields ⟨n ⊗ (∇sh − ∇s),Φ⟩Ω\Σ → 0. Hence, we868

infer that ⟨nh ⊗ ∇sh − n ⊗ ∇s,Φ⟩Ω\Σ → 0, whence nh ⊗ ∇sh ⇀ n ⊗ ∇s weakly869

in L2(Ω \ Σ). This in turn identifies the limit M = n ⊗ ∇s, and gives thus the870

identity N = ∇u − n ⊗ ∇s a.e. in Ω \ Σ. We deduce that ∇n = N/s, where ∇n871

is understood in the L2-sense according to Proposition 2.1. Exploiting the fact that872

norms are weakly lower semicontinuous, along with |n ⊗∇s|2 = |∇s|2 a.e. in Ω \ Σ,873

and ∇s = 0 a.e. in Σ, it holds that874

lim inf
h→0

Eh
1 [sh,nh] = lim inf

h→0

{κ
2
∥nh ⊗∇sh∥2L2(Ω) +

1

2
∥sh∇nh∥2L2(Ω)

}
≥ lim inf

h→0

{κ
2
∥nh ⊗∇sh∥2L2(Ω\Σ) +

1

2
∥sh∇nh∥2L2(Ω\Σ)

}
≥ κ

2
∥n⊗∇s∥2L2(Ω\Σ) +

1

2
∥s∇n∥2L2(Ω\Σ) = E1[s,n].

875

Since sh → s a.e. in Ω and ψ is continuous, ψ(sh) → ψ(s) a.e. in Ω. The Fatou lemma876

yields877

E2[s] =

ˆ
Ω

ψ(s) =

ˆ
Ω

lim
h→0

ψ(sh) ≤ lim inf
h→0

ˆ
Ω

ψ(sh) = lim inf
h→0

Eh
2 [s].878

Altogether, we thus obtain the lim-inf inequality (3.6). This finishes the proof.879

6.4. Properties of the numerical scheme. To start with, we prove well-880

posedness and stability of Algorithm 4.1.881
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Proof of Proposition 4.1. Let i ∈ N0 and ℓ ∈ N0. For fixed sih ∈ Vh (resp.,882

ni+1
h ∈ Vh), the left-hand side of (4.1) (resp., of (4.3)) is a coercive and continuous883

bilinear form on Vh,D (resp., on Vh,D). Therefore, the variational problem admits a884

unique solution ti,ℓh ∈ Kh[n
i,ℓ
h ] (resp., si+1

h ∈ Vh) by the Lax–Milgram theorem. This885

shows part (i) and (iii) of Proposition 4.1.886

Choosing the test function ϕh = τn t
i,ℓ
h = ni,ℓ+1

h − ni,ℓ
h ∈ Kh[n

i,ℓ
h ] in (4.1) yields887

888

τn∥ti,ℓh ∥2∗ + κ⟨ni,ℓ+1
h ⊗∇sih, (n

i,ℓ+1
h − ni,ℓ

h )⊗∇sih⟩Ω889

+ ⟨sih∇n
i,ℓ+1
h , sih∇(ni,ℓ+1

h − ni,ℓ
h )⟩Ω = 0.890891

Using the identity 2a(a− b) = a2 − b2 + (a− b)2, valid for all a, b ∈ R, we obtain892

(6.7) Eh
1 [s

i
h,n

i,ℓ+1
h ]− Eh

1 [s
i
h,n

i,ℓ
h ] + τn∥ti,ℓh ∥2∗ + τ2nE

h
1 [s

i
h, t

i,ℓ
h ] = 0.893

In particular, Eh
1 [s

i
h,n

i,ℓ+1
h ] ≤ Eh

1 [s
i
h,n

i,ℓ
h ] is valid. Since Eh

1 [s
i
h,n

i,ℓ
h ] ≥ 0 for all894

i ∈ N0, the sequence {Eh
1 [s

i
h,n

i,ℓ
h ]}ℓ∈N0 is convergent (as it is monotonically decreasing895

and bounded from below). In particular, it is a Cauchy sequence, which entails that896

the stopping criterion (4.2) is met in a finite number of iterations. This shows part (ii)897

of the proposition.898

Let ℓi ∈ N0 be the smallest integer for which the stopping criterion (4.2) is899

satisfied. Recall that ni+1
h = ni,ℓi+1

h and ni
h = ni,0

h . Summation of (6.7) over ℓ =900

0, . . . , ℓi yields901

(6.8) Eh
1 [s

i
h,n

i+1
h ]− Eh

1 [s
i
h,n

i
h] + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ] = 0.902

Choosing the test function wh = τsdts
i+1
h = si+1

h − sih ∈ Vh,D in (4.3) and performing903

the same algebraic computation as above, we arrive at904

905

Eh
1 [s

i+1
h ,ni+1

h ]− Eh
1 [s

i
h,n

i+1
h ] + τs∥dtsi+1

h ∥2L2(Ω) + τ2s E
h
1 [dts

i+1
h ,ni+1

h ]906

+ ⟨ψ′
c(s

i+1
h )− ψ′

e(s
i
h), s

i+1
h − sih⟩Ω = 0.907908

Applying [23, Lemma 4.1], which yields the inequality909

Eh
2 [s

i+1
h ]− Eh

2 [s
i
h] ≤ ⟨ψ′

c(s
i+1
h )− ψ′

e(s
i
h), s

i+1
h − sih⟩Ω,910

we obtain911
912

Eh
1 [s

i+1
h ,ni+1

h ]− Eh
1 [s

i
h,n

i+1
h ] + τs ∥dtsi+1

h ∥2L2(Ω) + τ2s E
h
1 [dts

i+1
h ,ni+1

h ]913

+ Eh
2 [s

i+1
h ]− Eh

2 [s
i
h] ≤ 0.914915

Adding the latter with (6.8), and exploiting cancellation of Eh
1 [s

i
h,n

i+1
h ], we deduce916

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h] ≤− τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ − τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

− τs∥dtsi+1
h ∥2L2(Ω) − τ2sE

h
1 [dts

i+1
h ,ni+1

h ] ≤ 0.

(6.9)917

This shows (4.6) and concludes the proof.918
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We recall that Algorithm 4.1 does not enforce the unit-length constraint of the919

director field nj
h. We finish this paper with a proof that violation of such constraint is920

controlled by τn and that ∥nj
h∥L∞(Ω) is uniformly bounded provided the parameters921

h and τn are suitably chosen.922

Proof of Proposition 4.3. Let j ≥ 1. Summation of (6.9) over i = 0, . . . , j − 1923

yields924

(6.10) Eh[sjh,n
j
h] + τn

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ ≤ Eh[s0h,n
0
h].925

Moreover, the tangential update ti,ℓh (z) is perpendicular to ni,ℓ
h (z) for all z ∈ Nh,926

whence ni,ℓ+1
h (z) = ni,ℓ

h (z) + τnt
i,ℓ
h (z) satisfies |ni,ℓ+1

h (z)|2 = |ni,ℓ
h (z)|2 + τ2n|t

i,ℓ
h (z)|2.927

Iterating in ℓ and i gives928

|nj
h(z)|

2 = |n0
h(z)|2 + τ2n

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2 = 1 + τ2n

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2 ≥ 1.929

Then, using the equivalence of the Lp-norm of a discrete function with the weighted930

ℓp-norm of the vector collecting its nodal values (see, e.g., [8, Lemma 3.4]), for hz931

being the diameter of the nodal patch associated with z ∈ Nh, we see that932

∥Ih[|nj
h|

2]− 1∥L1(Ω) ≲
∑
z∈Nh

hdz
(
|nj

h(z)|
2 − 1

)
≤ τ2n

∑
z∈Nh

hdz

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2

≲ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2L2(Ω).

933

Combining (4.8) with (6.10) leads to934

∥Ih[|nj
h|

2]− 1∥L1(Ω) ≲ C∗τ
2
n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ ≤ C∗τnE
h[s0h,n

0
h],935

which turns out to be (4.9).936

It remains to estimate ∥nj
h∥L∞(Ω). Let us consider first the weighted H1-metric937

in (4.5). Using a global inverse estimate (see, e.g., [8, Remark 3.8]) and the Poincaré938

inequality, we obtain939

∥nj
h∥

2
L∞(Ω) − 1 = max

z∈Nh

|nj
h(z)|

2 − 1 ≤ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

max
z∈Nh

|ti,ℓh (z)|2

≲ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2L∞(Ω) ≲ τ2n h
2−d
min | log hmin|2

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2H1(Ω)

≲ τ2n h
2−d−α
min | log hmin|2

j−1∑
i=0

ℓi∑
ℓ=0

∥hα/2∇ti,ℓh ∥2L2(Ω)

≤ τn h
2−d−α
min | log hmin|2Eh[s0h,n

0
h].

940

Therefore, (4.11) is satisfied if τn h
2−d−α
min | log hmin|2 ≤ C∗ with C∗ arbitrary. For the941

L2-metric (4.4), the result follows analogously, provided that τn h
−d
min ≤ C∗.942
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