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Abstract— In recent years, in-ear electroencephalography
(EEG) was demonstrated to record signals of similar quality
compared to standard scalp-based EEG, and clinical appli-
cations of objective hearing threshold estimations have been
reported. Existing devices, however, still lack important fea-
tures. In fact, most of the available solutions are based on
wet electrodes, require to be connected to external acquisition
platforms, or do not offer on-board processing capabilities.
Here we overcome all these limitations, presenting an ear-
EEG system based on dry electrodes that includes all the
acquisition, processing, and connectivity electronics directly in
the ear bud. The earpiece is equipped with an ultra-low power
analog front-end for analog-to-digital conversion, a low-power
MEMS microphone, a low-power inertial measurement unit,
and an ARM Cortex-M4 based microcontroller enabling on-
board processing and Bluetooth Low Energy connectivity. The
system can stream raw EEG data or perform data processing
directly in-ear. We test the device by analysing its capability to
detect brain response to external auditory stimuli, achieving
4 and 1.3 mW power consumption for data streaming or
on board processing, respectively. The latter allows for 600
hours operation on a PR44 zinc-air battery. To the best of our
knowledge, this is the first wireless and fully self-contained ear-
EEG system performing on-board processing, all embedded in
a single earbud.

Clinical relevance— The proposed ear-EEG system can be
employed for diagnostic tasks such as objective hearing thresh-
old estimations, outside of clinical settings, thereby enabling
it as a point-of-care solution. The long battery lifetime is also
suitable for a continuous monitoring scenario.

I. INTRODUCTION

Electroencephalography (EEG) is a commonly used clini-
cal tool to analyze brain activity. Applications of EEG span
from the development of brain-computer interfaces (BCI),
to the monitoring and detection of severe neural diseases,
such as epilepsy or Autism Spectrum Disorders (ASD). The
golden standard is represented by scalp-EEG systems, con-
sisting of caps equipped with multiple electrodes positioned
on the scalp. However, the need for long wires to connect
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electrodes to a recording module enhances interference and
motion artifacts [1]. At the same time, these systems are
cumbersome and make the users uncomfortable because of
perceived stigmatization, motivating major research efforts
towards wearable solutions [2].

Several groups are working on the development of small
EEG systems that can be placed behind-the-ear or even in-
ear (ear-EEG). These approaches have been demonstrated
capable of capturing signals closely related to the scalp-EEG
ones [3], [4], [5]. While a fundamental limitation of ear-EEG
is its spatial resolution, the high correlation of EEG signals
between one location and its surroundings allows ear-EEG
to record information not only from the temporal lobes but
also from the frontal, occipital, parietal and central ones [6].
These results demonstrate that ear-EEG is a viable approach
for future unobtrusive EEG systems.

A major challenge for ear-EEG is the selection of the
electrodes. In general, EEG electrodes can be classified in
two main categories: wet and dry. While wet solutions guar-
antee better electrode-skin impedance, gel tends to dry over
time, thereby progressively reducing signal quality [7], [8].
Consequently, to guarantee stable performance and minimize
human intervention and discomfort, dry electrode solutions
are preferred. Various designs of dry-contact electrodes have
been proposed, including mesh electrodes laminated onto
the skin [9], flexible polymer based electrodes [10], [11],
[12], and spring-loaded electrodes [13], [14]. Among these,
taking into account the noise figure, sintered silver-silver
chloride (Ag/AgCl) and Ag/AgCl plating on silver proved
to offer the best low-noise performance for EEG [15]. Such
dry solutions, however, need to be properly coupled to the
acquisition electronics.

The second challenge for ear-EEG is set by the readout
electronics, which should be concealed (possibly, entirely
in the ear), low power (for sufficient battery duration), and
equipped with on-board computation capabilities (to perform
processing on-the-edge, avoid the need of a companion
device and continuous data transmission to such device).

The first ear-EEG solution was proposed in [16], where
authors developed personalized earpieces and successfully
recorded alpha waves. However, the fabrication process was
complex and costly, and the materials used were hard, which
can bring discomfort for long-term wear. Building up from
these results, a number of other systems have been proposed,
successfully recording alpha waves, acoustic steady state
response (ASSR), and auditory or visual evoked potentials.

Simpler customized earpieces have been proposed in [17],
but they required conductive gels and external amplifiers
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(g.USBamp, by g.tec). Attempts to move towards generic
earpieces include systems like[18][19]; however, they re-
quired conductive gels or had low durability with enhanced
low-frequency noise. A more advanced system has been
presented by[10]: in-ear headphones, with buds based on
carbon nanotubes CNT/PDMS loaded on silicone substrate,
capable of triggering sound stimulations while recording
EEG signals. However, they relied on materials difficult to
produce, and also needed an external acquisition system
(BIOPAC) for signal recording.

A personalized design that perfectly fits the ear also
capable of in-ear signal conditioning in a miniaturized form
factor is presented by [20], with an 8 mm2 chip in 65-
nm CMOS with on-board amplification, an integrated Body
Area Network transceiver, and total power consumption
of 82.9 µW. However, despite the impressively low power
consumption, such solution still does not provide on-board
processing capabilities. In [21], instead, 6 dry electrodes are
included in the ear, and they are connected to a small printed
circuit board (PCB) of 25ˆ25 mm2 that provides neuro-
modulation, data aggregation on a Microsemi SmartFusion2
field-programmable gate array (FPGA), and Bluetooth Low
Energy (BLE) connectivity. However, despite the availability
of computational resources on the FPGA, the processing
done is minimal; furthermore, the PCB and the battery are
not integrated directly in-ear.

In summary, none of the existing solutions can satisfy
all the key design requirements for truly unobtrusive, con-
cealed, low-power, processing-capable, all-in-ear systems.
Nevertheless, despite the current system design limitations,
a number of different applications have been empowered by
ear-EEG, including objective hearing threshold estimations
[22]. A fully in-ear system with processing capabilities
would enable to take such applications to the next level, e.g.
offering hearing threshold estimations as point-of-care (PoC)
solutions and furthermore enabling a host of continuous
monitoring applications..

Within this framework, this paper presents an ear-EEG
system solution based on dry electrodes, equipped with ultra-
low power analog front-end (AFE) acquisition electronics,
ARM Cortex-M4 based computation capabilities, and BLE
connectivity, all embedded in a single earbud (15ˆ16 mm2

PCB). The system is capable of streaming raw EEG data or
performing on-board processing to transmit only the results
of computation at only 1.3 mW, allowing more than 600
hours of operation on a PR44 zinc-air battery. We show
how the system is capable of acquiring the EEG signal to
extract the response from an auditory stimulus and process
it in order to detect the presence or absence of such a
response. This demonstrates the potential of the system to be
used for diagnostic tasks, such as objective hearing threshold
estimation outside of clinical settings.

II. SYSTEM DESCRIPTION
A. In-Ear EEG Acquisition System

The system is depicted in Fig. 1. It supports the acquisition
of up to 3 differential channels (of which 2 simultaneously),

Fig. 1. Top: Scheme of the full system. Bottom: photo of the in-ear
electrode and of the system worn by a subject.

although the interface with the skin is obtained through two
different types of dry electrodes. In the ear canal, we adopted
a custom electrode fabricated by Dätwyler Holding Inc.
[23], derived from their SoftPulse dry electrodes family. The
bulk of the device is composed of a conductive elastomer,
while the area in contact with the skin is covered with
silver/silver-chloride to optimize the electrical interface. In
this prototype, signal amplification stages can be connected
to the electrode through a standard snap connector. With
respect to commercial electrodes of the SoftPulse family, the
ones used in this prototype are characterized by longer posts
and, since contact with the skin is obtained on the walls of
the posts rather than on the tips, the silver/silver chloride
coating extends for approximately 5 mm from the tip.

The reference and bias electrodes are 4 mm diameter
neodymium magnets coated in gold. This allows flexible
placing virtually anywhere in the ear, with very good me-
chanical stability without the need for custom earpieces. In
the framework of this paper, reference and bias electrodes
are placed respectively on the outer and inner sides of the
ear scapha.

The electronics for signal conditioning, processing and
data transmission is hosted on a 15x16 mm2 PCB. The sens-
ing part comprises an AFE for analog-to-digital conversion
(ADS1292, from Texas Instruments), a low power MEMS
microphone (MP34DT05TR-A, from STMicrolectronics), a
low-power Intertial Measurement Unit (IMU, LSM6DSLTR,
from STMicroelectronics) with a 3D accelerometer, 3D
gyroscope and integrated temperature sensor. The AFE is
in the same product family of the ADS1298, which has
been proved to be able to acquire EEG signals without
significantly degrading noise performance with respect to
products specifically targeting EEG signal acquisition, such
as ADS1299 [24].

The system is powered by a low-cost, high energy density
1.4 V PR44 zinc-air disc battery, typically used in hearing
aids. The weight is only 1.9 grams, with a 11.5 mm di-
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ameter and 5 mm height. The rated capacity is 610 mAh.
A high-efficiency boost converter (TPS610981, from Texas
Instruments) steps up the system power supply to 3.3V. This
is used for the analog supply of the AFE and to feed to two
Low DropOut Linear regulators (LDOs) providing the 1.8V
digital supplies of the AFE and microcontroller unit (MCU),
and supply to the remaining sensors.

Data acquisition and processing from the sensors is han-
dled by a nRF52811 System-on-Chip (SoC) from Nordic
Semiconductors, which also provides data communication
capability. The ARM Cortex-M4 MCU running at 64 MHz
allows flexible Bluetooth 5.1 (BLE) communication at a low-
power budget, and Bluetooth direction-finding capabilities.
For a 1 Mbps link, the power consumption of the radio is
13.8 mW when transmitting data at 0 dBm output power,
and 15.6 mW when receiving data. The power consumption
can be reduced down to 3.6 µW with system ON, full
RAM retention, and 1 µW with system OFF. A 14x5.0x0.1
mm3 FXP840 flexible antenna from Taoglas is used for BLE
TX/RX. Its small size and flexibility make it ideal for size-
constrained applications.

The system can operate in four modalities:
‚ Advertising Mode. Ultra low power mode. The acqui-

sition is stopped, and the MCU and the BLE radio are
OFF, but wake up periodically to detect if a device is
ready to connect via BLE.

‚ Connected Mode. Low power mode. The acquisition
is stopped, and the MCU and BLE radio periodically
wake up to keep the connection open.

‚ Streaming Mode. The acquisition is running at 500
SPS, and data is acquired, converted to digital, and
streamed to the host device.

‚ On Board Computing Mode. The acquisition is run-
ning at a programmable data rate, and data is acquired,
converted to digital, and streamed to the host device.
BLE is connected, and the radio is only used for
synchronization data (triggers) from the host to the
device and for sending the results of computation from
the device to the host (i.e., when a response to the
stimulus is detected).

B. Data transmission and trigger management

In streaming mode, data is sent in 242 byte packets
containing a 1 byte header, a 1 byte footer and 30 data
sub-packets. Each of them contains one 24-bit sample
per channel and 2 additional bytes to store additional
information. One of these is generally used to store
synchronization information (triggers). To maximize the
synchronization quality, the trigger signal (represented by 1
byte, allowing 256 different trigger levels), is sent via BLE
from the device presenting the stimulus (e.g., a Personal
Computer) to the ear-EEG device. Received triggers are
appended to the current sub-packet. Once the whole packet
is filled and ready, it is transmitted back to the PC, including
the trigger information, synchronized to the correct samples
from the AFE. In this way, the maximum uncertainty in
the trigger instant is limited to the length of a minimum

connection interval which is below 8 ms.

Due to its very low amplitude, the EEG signal is par-
ticularly prone to suffer a quality degradation from any
type of external noise or interference coupling to the signal
itself. BLE transmission can lead to this kind of issue for
two reasons: electromagnetic interference from the signal
radiating from the antenna and supply noise due to the
significant peak currents in the order of tens of mA that are
drawn by the RF transceiver when transmitting or receiving
data. This is exacerbated by the reduced size of the device,
which puts noisy digital and RF sections in close proximity
to the sensitive electrodes and AFE. While this is hardly a
concern for regular EEG, it can become a problem for ear-
EEG, where signals have very small amplitude, especially
when dealing with evoked potentials. As described above,
a trigger signal needs to be sent to the device every time
a stimulus is presented to the subject. If the trigger is
sent simultaneously to the stimulus presentation, a situation
like the one presented in Fig. 2 can occur. In this case,
500 epochs of in-ear EEG signal are averaged in order to
reduce uncorrelated noise (endogenous background noise and
electrical noise). Since the start of the epoch is marked by
a trigger signal sent to the device, it will always occur at
the same time and averaging will not reduce its amplitude.
Fig. 2 clearly shows not only a peak around 10 ms but also
repetitive peaks every approximately 60 ms (TX interval for
500 SPS streaming).

In order to avoid this effect, each trigger signal is delayed
by a random amount of time (from 0 to 100 ms). The trigger
data sent to the device contains information on the delay,
which is appended to the samples. The exact time at which
the epoch starts can then easily be computed, either on the
device itself for online processing or on the remote PC when
in streaming mode. In this way, interference from the BLE
transceiver becomes uncorrelated noise and gets averaged out
when reconstructing the evoked potential.

Fig. 2. When the trigger is synchronized with the stimulus, noise due to
BLE TX/RX becomes correlated to the stimulus and the evoked potential
response. The noise amplitude can be comparable with that of the evoked
potential and, since correlated, does not get averaged out. When the device
is in streaming mode, noise looks periodic with a period equal to that of
the TX interval (60 ms for 500 SPS data rate).
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C. Stimulus Selection and On-board Signal Processing

In this work we want to demonstrate how the developed
system can reliably detect a brain response evoked by audi-
tory stimuli, performing signal acquisition and processing in
a system completely enclosed in an earbud-like form factor.
For this purpose, we want to adopt an experimental setup
that enables a good trade-off between algorithm complexity
and sensitivity.

Auditory stimulus analysis, as for every potential evoked
by an external stimulus, can be split in two large classes,
depending on whether analysis is performed in the time
domain (proper auditory evoked potentials or AEP) or in
the frequency domain (Auditory Steady State Response,
ASSR). The analysis of the latter obviously requires an
additional step of conversion of the signal from the time
to the frequency domain. For example, systems for hearing
threshold estimation from ASSR commonly involve either a
Fourier Transform or an adaptive filtering algorithm called
the Fourier Linear Combiner, followed by F-test statistical
analysis [25]. While the significant computational burden
introduced by the analysis algorithm is negligible when
analysis is performed off-line or on a personal computer, it
becomes of major importance when the analysis is moved to
a wearable EEG acquisition system with extremely limited
available energy, as in our case.

Fig. 3 presents the average of 500 responses of a test
subject to a White Gaussian Noise stimulus, lasting 50 ms,
as detected by the system. The Inter Stimulus Interval (ISI)
is 500 ms plus a random jitter comprised between 0 and 200
ms. The random jitter is added to increase the amplitude of
the response, as typically done in evoked potential setups
[26]. The low-frequency portion of the signal is generally
characterized by a very low signal to noise ratio (SNR) and
interference from the mains at 50/60 Hz and its harmonics
can easily be orders of magnitude higher than the signal
itself, as typical for dry electrode systems with no skin
preparation and quick setup [27]. For this reason, the signal
is band pass filtered between 8 and 48 Hz. The noise level
is normally in the range of 200 to 400 nV peak-to-peak,
whereas the peak response is between 300 and 500 nV,
depending on subject and contact quality.

Fig. 4 presents the response to a stimulus sequence similar
to the one in Fig. 3, except that, in this case, each stimulus is
comprised of a sequence of three 50 ms white Gaussian noise
pulses, separated by 50 ms of silence. It is quite clear how,
despite the large number of averaged epochs, the response to
the second and third pulses is below noise level, making the
presentation of periodic, closely-spaced sound pulses quite
ineffective in eliciting a proper response. If on one side this
effect has been already observed in literature in standard
EEG setups, one should notice how the very low SNR that
can be obtained from an in-ear setup aggravates the effect.

Given the fact that the system is clearly able to detect an
evoked potential response in the time-domain and the need to
limit the amount of processing to guarantee real-time analysis
and to minimize the system power budget, we chose to adopt

Fig. 3. In-ear EEG response evoked by a 50 ms white Gaussian noise
stimulus. Average of 500 epochs. The origin of the x-axis is centered on
the peak of the response.

Fig. 4. In-ear EEG response evoked by a sequence of 50 ms white Gaussian
pulses, separated by 50 ms of silence. When presented with a sequence of
short separated stimuli with no random jitter in the ISI, the response to
stimuli after the first gets below the noise level even after averaging over
500 epochs. The origin of the x-axis is centered on the peak of the response.

a paradigm based on the repetition of short sound pulses with
an ISI characterized by a random duration, so as to maximize
the response.

The signal is first filtered at run time, with a cascade of a
band-pass filter (BPF) with 8 and 48 Hz cut-off frequencies,
and an additional 50 Hz notch filter to increase rejection to
50 Hz noise from the mains. Normally, evoked responses are
filtered with Finite Impulse Response (FIR) filters in order
to avoid introducing phase non-linearities typical of Infinite
Impulse Response (IIR) filters. Since the price to pay is a
significant increase in the computational complexity of the
filters, we chose to use 8th order Blackmann IIR filters for
both the BPF and notch filters.

The response to the stimulus is then windowed on a
rectangular window centered on the peak response, as shown
in Fig. 3. The epochs in which the signal exceeds the ˘8
µV range are removed to perform a simple artifact rejection.
The windows related to the response to several stimuli are
averaged, and the average is compared to a template response
by computing the time-domain correlation of the two. A
response to the stimulus is detected when the correlation is
above a certain threshold.

In the following section, we analyze the performance of
the system and of the algorithm for variable average ISI,
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correlation window size and threshold. We also show how
replacing FIR filters with IIR filters does not significantly
affect the performance of the algorithm.

III. EXPERIMENTAL RESULTS

A. Electrical Characterization

The system supports data-rates from 125 SPS to 8 kSPS.
In streaming mode, the system sampling frequency is limited
to 500 SPS by the maximum average current that can be
safely drawn from the battery without affecting its duration
(approximately 8 mA). In the following, the sampling fre-
quency will always be set to 500 SPS, which guarantees a -
3dB bandwidth of 131 Hz, way above the standard EEG band
upper frequency. Electrical characterization is also performed
at this sample rate.

The system noise is measured by shorting the inputs of the
AFE and integrating over the standard EEG band (0.5 to 100
Hz). Its value ranges between a maximum of 1.75 µVRMS

with a programmable gain amplifier (PGA) gain equal to
1 and a minimum of 0.47 µVRMS with PGA gain equal
to 12. Since the electrodes are characterized by different
materials and interfaces, a constant DC bias offset appears
at the AFE input. We chose not to remove it with an analog
high pass filter to avoid introducing unnecessary bandwidth
limitations. As a consequence, the maximum PGA gain that
can be used is 8, characterized by a 0.49 µVRMS noise. The
Common Mode Rejection Ratio is measured at 110 dB. Both
these values are in line with IFCN standards for the clinical
recording of EEG signals [28].

B. Experimental Setup

Three healthy subjects with normal hearing took part in
the experiments. The auditory stimuli (50 ms duration, white
Gaussian noise) are presented from the speaker of a laptop
running Psychtoolbox 3.0.18 for Windows in MATLAB
R2020. Most of the following analysis is performed off-line,
with data streamed to the same laptop and processed at a
later stage. We also demonstrate on a few test cases how
online embedded processing yields comparable results. A
two-electrode differential setup is used, with one electrode

Fig. 5. Correlation window size (in number of samples), necessary for
achieving a certain sensitivity (A) and specificity (B) in recognising if the
stimulus is perceived by the subject. Data for average of 100 epochs, 0.6 s
average ISI, variable threshold between 0.2 and 0.4.

Fig. 6. Number of epochs necessary to achieve a certain sensitivity (A)
and specificity (B). Data for 0.6 s average ISI, variable threshold between
0.2 and 0.4.

Fig. 7. Minimum time necessary to achieve a certain specificity and
sensitivity, as a function of the average ISI.

in the ear channel while the reference and bias electrodes
are placed on the scapha of the same ear. The setup is
therefore fully enclosed in the ear of the subject. Triggers
generated by the stimulation program were bound to the
incoming raw data by a custom software, as described in the
previous section. A first training session of 5 minutes is used
to build a template for the response of each subject. This is
obtained from averaging 500 epochs, with stimuli presented
at an average ISI of 600 ms. A 5 minute resting state session
is also acquired with the same setup with speakers turned
off, to be used as control for specificity characterization.
In the following, we analyze the performance of the sys-
tem in recognising whether the subject is hearing or not
the presented stimulus. The performance is presented for
varying parameters of the algorithm (correlation threshold
TH , correlation window size CWS, and number of epochs
Nepochs) and of the stimulus (average ISI).

For each of the 5 tested ISI, we acquire the response to
1000 stimuli (active session), requiring approximately a 30
minute recording session. In order to randomize results fur-
ther without increasing the already significant experimental
time, for each subject we build 1000 random permutations
of the epoch order. The first Nepochs per each permutation
are averaged, and a window of CWS samples around the
peak response is correlated to the template. If the correlation
is above threshold TH , the algorithm output is TRUE,
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Fig. 8. Comparison of sensitivity and specificity achieved with embedded processing vs. MATLAB/EEGLAB offline processing.

predicting the subject is hearing the stimulus. This is done
for both the active and resting state sessions.

Sensitivity and specificity are then computed as:

Sensitivity “ NTRUE,active{1000 (1)

Specificity “ 1 ´ pNTRUE,resting{1000q (2)

where NTRUE,active and NTRUE,resting are the number
of TRUE outputs on the active and resting state sessions
respectively.

Data for the three subjects are then averaged to provide
the final plots.

C. Analysis of Results

Fig. 5 presents the results in terms of correlation window
size (in samples) needed to achieve specific levels of sen-
sitivity and specificity. The correlation threshold is variable
between 0.2 and 0.4, and the average ISI is 600 ms. Due to
random noise and the signal power decreasing at increasing
distance from the peak, a larger window size reduces the
correlation and therefore the likelihood of the algorithm
returning a TRUE. For this reason and from eqs. III-B and
III-B, for sensitivity, it is plotted as a maximum value, for
specificity as a minimum value. Of course, a larger CWS
also increases the computational burden.

Fig.6 shows the minimum number of epochs needed to
achieve a certain value of specificity and sensitivity. The
correlation threshold is variable between 0.2 and 0.4, the
average ISI is 600 ms, and CWS is 60 samples. We can
observe how a relatively small amount of epochs such as 50
is already enough to obtain both specificity and sensitivity
above 80%, with a threshold of 0.2, while 90% can be
achieved with as low as 120 epochs and a threshold of

0.25. A 95% sensitivity can finally be achieved with 170
epochs and a threshold of 0.3. Different values of the three
parameters can be traded off to penalize sensitivity in favour
of specificity and vice versa, depending on the application
target confidence requirements.

The third performance parameter of primary importance
for this type of system is the time required to recognize the
presence or absence of the stimulus (see Fig. 7). This is
essentially a function of the number of the averaged epochs
(and therefore of the stimuli to be presented) and of the
average frequency at which they are presented. In Fig. 7,
we present data for 5 different average stimulus repetition
rates comprised between 1.63 and 13.88 Hz. The threshold
is fixed at 0.275 and CWS to 60 samples. We can observe
how the maximum speed for a given sensitivity is achieved
around 4 stimuli per second, since below that repetition
frequency the accuracy is not significantly influenced by
the ISI. For higher repetition frequencies, the performance
starts to drop until reaching a negligible value of sensitivity
above 10 Hz. As a reference, in a state-of-the-art ear-EEG
system as [21], 100 s trials were needed to elicit an ASSR
response with a relevant SNR and, in [22], a total stimulation
time of 544 seconds was used to estimate the presence
of a response for hearing threshold estimation. Although
these results are not directly comparable, we can observe
how the presented system promisingly compares with the
performance of state-of-the-art systems, with the advantage
of being fully integrated inside the user’s ear.

Finally, Fig. 8 compares the results in terms of sensitivity
and specificity achieved with the algorithm as implemented
for embedded processing (with 8th order IIR filters, floating
point, 32-bit precision) vs. MATLAB/EEGLAB offline pro-
cessing (with 820 coefficient FIR filters). The different filter
characteristics slightly improve sensitivity at the expense
of specificity. Overall, the performance can be considered
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similar. However, the computational burden is reduced by a
factor 60x thanks to the replacement of FIR filters with IIR
filters.

IV. CONCLUSIONS

In this paper, we presented an ear-EEG system based on
dry electrodes, ultra-low power AFE, and ARM Cortex-M4
based MCU enabling on-board computation capabilities and
BLE connectivity. The acquisition electronics is integrated
into a small PCB of 15ˆ16 mm2, embedded into a small
earbud form factor, and powered by a low-cost high-energy-
density zinc-air battery. The system can operate in streaming
mode, to transmit raw EEG data to a host device, or in on-
board computing mode, transmitting to the host device only
the results of on-board processing at only 1.3 mW, thereby
enabling more than 600 hours of operation time. We demon-
strated the performance of the system in detecting responses
to auditory stimuli on three healthy subjects, proving that
sensitivity and specificity levels above 80% can be achieved
with a small number of epochs (50) and acquisition times are
comparable to state-of-the-art. The proposed solution could
be integrated into standard earbuds or hearing aid devices.
To the best of our knowledge, this is the first ear-EEG
system with on-board processing completely embedded in
an earbud-like form factor with almost one month of battery
lifetime, and these results demonstrate the potential of the
system to be used for objective hearing threshold estimation
outside of clinical settings.
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