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Abstract: Long document summarization poses obstacles to current generative transformer-based
models because of the broad context to process and understand. Indeed, detecting long-range
dependencies is still challenging for today’s state-of-the-art solutions, usually requiring model
expansion at the cost of an unsustainable demand for computing and memory capacities. This
paper introduces EMMA, a novel efficient memory-enhanced transformer-based architecture. By
segmenting a lengthy input into multiple text fragments, our model stores and compares the current
chunk with previous ones, gaining the capability to read and comprehend the entire context over the
whole document with a fixed amount of GPU memory. This method enables the model to deal with
theoretically infinitely long documents, using less than 18 and 13 GB of memory for training and
inference, respectively. We conducted extensive performance analyses and demonstrate that EMMA

achieved competitive results on two datasets of different domains while consuming significantly less
GPU memory than competitors do, even in low-resource settings.

Keywords: abstractive summarization; long document summarization; low-resource summarization;
memory-enhanced language models

1. Introduction

In the natural language processing (NLP) field, long document summarization (LDS)
synthesizes a lengthy input text while retaining relevant information, a critical task to
help experts in analyzing massive documents. State-of-the-art (SOTA) solutions are based
on transformers [1] and struggle to deal with prolonged documents because of the self-
attention mechanism that requires high-memory GPUs to address its quadratic memory
growth regarding input size. Most documents, such as contracts and research papers,
breach endurable input size limits. This issue has recently opened new research directions
towards attention approximations with linear complexity [2,3]. Nevertheless, despite their
success, efficient transformers are still GPU-demanding and bound to the input size, e.g.,
48 GB for 16 K source tokens [4].

A promising approach to mitigate this issue is exploiting memory-based strategies [5,6].
Specifically, language models are trained to recurrently process a chunk-divided input,
writing and reading the past latent knowledge at each step; in this way, the GPU is restricted
to working with several length-constrained text fragments instead of elaborating the entire
source document at once. Current memory-enhanced models are found on encoder- or
decoder-only architectures, preventing their application on sequence-to-sequence tasks
such as LDS. Indeed, the most promising research directions for abstractive single- and
multi-document summarization currently follow an encoder–decoder paradigm, with
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lightweight models surpassing or holding up against decoder-only summarizers with
hundreds of billions of parameters [7].

In this work, we present EMMA, an efficient memory-enhanced encoder–decoder
language model for LDS. EMMA reads long inputs chunk by chunk (Figure 1), saving inter-
mediate knowledge and enriching the current context with previous salient information
via cross-memory attention. We modified the vanilla transformer with new custom memory
layers (short- and long-term memory), decoupling the mutual relationship between GPU
need and input size.

We experimented on datasets from different domains, showing EMMA’s generality
and capacity to summarize long inputs with comparable results to strong baselines despite
using significantly less GPU memory at training and inference time.

To sum up, our contributions are the following.

• We introduce EMMA, a novel memory-enhanced encoder–decoder transformer for LDS.
• We perform extensive analyses showing SOTA’s performance at low GPU cost, on full-

resource summarization (i.e., training on all training samples), and few-shot learning.
• The GPU impact of EMMA remained fixed regardless of input length.
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Figure 1. EMMA overview, our proposed memory-enhanced approach.

2. Related Work
2.1. Transformers

Transformer-based models are the de facto standard in many NLP tasks [8,9]. How-
ever, their performance is better as parameters increase, leading to the creation of mas-
sive models [7,10]. Despite their success, current works have had problems in dealing
with prolonged input sequences because their core layer, namely, self-attention, scales
quadratically with input size. For example, the text supplied to BART must not go beyond
1024 subword tokens, and longer documents have to be cut. Further, most models are
pre-trained on sequences of just 512 tokens [10], rendering them unable to handle real-
world inputs in downstream tasks. Consequently, meaningful context and details for the
summarizers are typically lost. To fill this gap, self-attention has been approximated with
linear functions. BIGBIRD [11] and LONGFORMER [4] leverage window-based attention.
NYSTRÖMFORMER [12] uses Nyström-based matrix decomposition. PERFORMER [2] relies
on kernel methods. With these notable contributions, large language models can read texts
up to 16 K tokens with a GPU of 48 GB memory [4]. Regarding architectures, fine-tuned
encoder–decoder models are notoriously dominant compared to zero-shot prompting on
large decoder-only language models [13]. Businesses can achieve high summarization qual-
ity and versatility with lower costs and more flexibility regarding training and deployment,
with networks running locally on private servers and GPUs.

2.2. Memory-Based Transformers

The link between memory and neural networks was initially explored with differen-
tiable reading and writing operations in the neural Turing machine [14,15], Differentiable
computing networks [16], and gated recurrent units [17]. However, using memory in the
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transformer is a less investigated research path. TRASFORMERXL [5] was the first to create
a recurrent short-term layer-level memory. In contrast, COMPRESSIVE TRANSFORMER [6]
adds long-term memory to the recurrent one. ERNIE-DOC [18] improves the memory
flow, letting the model deal with infinitely long sequences. ∞-FORMER [19] leverages a
continuous attention framework [20] to create theoretically infinite memory. Importantly,
these models are decoder-only and mainly applied to long-input open-generation tasks,
thus neglecting LDS. The latest works also focused on top-k text-retrieval operations from
read-only memories with pre-computed embeddings [21,22]; despite the encouraging per-
formance gain, they rarely support representation updates and have not been tested on
document summarization.

2.3. Long Document Summarization

SOTA LDS solutions utilize different methods to read long sequences. Hierarchical
models [23] iteratively merge paragraph-level dependencies. Segmentation-based ap-
proaches [24–26] with fusion-in-decoder [27] and marginalized decoding [28] divide the
input into meaningful units to produce a summary. Extract-then-abstract procedures [29]
pick a subset of relevant sentences from the source to generate the outline, eventually
relying on marginalization [30,31]. Lastly, efficient transformers with sparse attention
layers [3,4,32] read greater input than quadratic ones do while not fully leveraging the
original self-attention mechanism.

3. Background

LDS tasks compress a long input text into a coherent short summary. Given the
extensive and successful use of the transformer architecture, a document is long if its
number of tokens poses processing complications to standard language models. Even if
a formal definition does not exist, texts comprising > 1024 tokens are commonly “long”.
This threshold is also the maximal input size for well-known quadratic models such as
BART [33] and PEGASUS [34].

The problem of LDS can be formalized with an input document X and its target
summary Y . Since a classical transformer needs to rely on input truncation, memory
can help in preserving salient information. Intuitively, we can split a long input into
chunks {c1, c2, . . . , cn} and give them one by one to a model that could (i) read each chunk,
(ii) save the relevant information in the memory and reuse it for subsequent chunks, and
(iii) generate a summary for each chunk. Eventually, the final summary is obtained by
concatenating chunk-level summaries.

Unfortunately, existing memory-based transformers are limited to (X ,Y) tasks with a
target for each input text. This setting is a substantial limitation and the main reason why
memory-based transformers have not yet been applied to LDS where there is a single target
even after segmentation.

4. Method

EMMA is a novel efficient memory-augmented transformer for LDS. Our model relies
on a text segmentation algorithm and memory layers to recurrently read the provided
input, chunk after chunk; at each step, it stores the relevant information and compares
it with previous information. EMMA can handle infinitely long documents with a fixed
amount of GPU memory.

4.1. Text Segmentation

Let X = {x1, . . . , xx} and Y = {y1, . . . , yy} be the long input document and re-
lated target summary, respectively, where each xi ∈ X and yi ∈ Y is a sentence. We
segmented X into non-overlapping chunks C of max Lc tokens with a sentence-level seg-
mentation algorithm (Algorithm 1). We started with an empty chunk c and iteratively
added sentences until Lc. After constructing the chunks, we paired each target summary
sentence with the chunk that maximized the ROUGE-1 precision metric [26], deriving
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small source-target pairs. Consequently, we turn the problem from {(c1, c2, . . . , cn),Y} to
{(c1, t1), (c2, t2), . . . , (cn, tn)}, where c1 ◦ c2 ◦ · · · ◦ cn = X and t1 ◦ t2 ◦ · · · ◦ tn = Y , with ◦
denoting string concatenation.

Algorithm 1 Text Segmentation
Input: X = {x1, . . . , xx} . Input sentences
Parameters: Lc . Number of tokens per chunk
Output: C . Set of chunks

1: C ← ∅
2: c← ∅
3: for xi ∈ X do
4: l ← len(c) + len(xi)
5: if l < Lc then
6: c← c ◦ xi
7: else
8: C ← C + c
9: c← ∅

10: end if
11: end for
12: if len(c) 6= ∅ then
13: C ← C + c
14: end if
15: return C

4.2. Model Architecture

We enhanced the transformer-based model BART [33] with a recurrent layer-level
memory where the model stores past information. Specifically, we allowed for the model
to compare current chunk ci with information related to previous ones {c1, . . . , ci−1}. The
original layers of the BART encoder are composed of self-attention and feed-forward blocks
with residual connections. As shown in Figure 2, we added a layer-level memory and
a second attention block, termed cross-memory attention, to perform reading and writing
operations. The memory is a single matrix M.

4.2.1. Cross-Memory Attention

We added cross-memory attention after a residual connection that follows the self-
attention of the classical BART encoder layer. At the i-th step, this module enables the
model to juxtapose the hidden states hi of chunk ci with (h1, . . . , hi−1) via cross-attention.
Around this layer, we added a residual connection to let the model learn how much to use
the memory. Formally, hidden state hm

i is acquired with the following formula:

hm
i = N (hi + C(hi,Mi−1)), (1)

whereN is a normalization layer, C is the cross-memory attention layer, Mi−1 is the memory,
and hi is the hidden state after the self-attention.

4.2.2. Memory Writing

We equipped each layer with a memory to store helpful information for the next step,
overriding the previous memory. After performing cross-memory attention for the i-th
chunk and generating hm

i , hi is given to the memory module. In detail, hi passes through a
stop gradient function, SG(hi), and becomes the new memory matrix:

Mi = SG(hi). (2)
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By stopping the gradient, the GPU memory used at training does not increase with
the number of chunks, allowing for the model to work with a theoretically infinitely
size document.

Time
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Figure 2. Graphical representation of our proposed memory-enhanced layer. (left to right) Long-
and short-term memories are (i) concatenated, (ii) fused with input hidden representation via cross-
memory attention, and (iii) the input hidden representation becomes the new short-term memory
while the long-term memory is updated with information from the previous short-term one. To
simplify the figure, we do not depict the residual connections.

4.2.3. Long-Term Memory

With the memory overridden at each step, we may lose long-term details. For this
reason, we improved the architecture by adding a long-term memory. In particular, we
moved Mi−1 into a different matrix Ml

i , which we call the long-term memory matrix, before
overriding it with the new hidden state hi. Memory Mi−1 was compressed and combined
with the long-term memory matrix Ml

i−1 as follows:

Ml
i = (1− γ) ·Ml

i−1 + γ ·Mi−1, (3)

where γ is a compress ratio empirically set to 0.7. The final memory Mc
i used for the

cross-memory attention was obtained by concatenating the short- and long-term memories:

Mc
i = C(Mi−1,Ml

i−1), (4)

where C is the concatenation function.

4.3. Training and Inference

EMMA takes as input the chunk–target pairs and was trained to generate the next
output token for each target by minimizing the negative log-likelihood:

L = − 1
|t|

|t|

∑
i=1

log p(yi|y1:i−1, c), (5)

where c is the input chunk, and y1:t are the tokens from position 1 to t of its target t. For the
training process, we took only the chunk–target pairs (ci, ti), such that ti 6= ∅. Instead, at
inference time, we considered all the chunks and concatenated the chunk-level summaries
to establish the final prediction.
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4.4. Space Complexity

Our model, EMMA, has quadratic space complexity regarding the length of the input
chunks. Given a predefined max chunk size Lc, a document with size LD is split at most
into d LD

Lc
e chunks. Thanks to our solution, the chunks are individually processed and

synthesized, and their summaries are concatenated to produce the final output (Figure 1).
Hence, the space complexity to summarize the entire input document is O(L2

c ); since it
relies on the model’s encoder self-attention for a single chunk, it remains fixed regardless
of the document length. As our model was built upon BART, the encoder self-attention had
quadratic complexity in the chunk size.

5. Experiments
5.1. Evaluation Datasets and Training Settings

We tested EMMA under (i) full training and (ii) few-shot learning scenarios by utilizing
datasets containing long documents on different specific domains. In (i), we took GOVRE-
PORT [3] and PUBMED [35] as the evaluation benchmarks. GOVREPORT collects reports
from government research agencies, while PUBMED comprises biomedical research articles.
In (ii), we worked with BILLSUM [36], which consists of U.S. congressional bills. Statistics
of the datasets are reported in Table 1. To reduce the training time and energy consumption,
we used a maximum of 20 K training instances for each dataset. For GOVREPORT, we used
the default training and test splits: the training set comprised 17,517 instances, and the test
set contained 973 examples. For PUBMED, we used the first 20,000 samples of the training
set and the full test set of 6658 instances. For BILLSUM, following prior works [34,37],
we utilized the first 10 and 100 training instances (the same sampling strategy as that
for validation).

We adopted the ROUGE-1/2/L standard [38] as the automatic LDS metric. Inspired
by [39], we also computed R = avg(r1,r2,rL)/1+σ2

r , where σ2
r is the ROUGE F1 score vari-

ance. In this way, we derived an aggregated judgment that, in the case of equal r1/2/L
averages, penalizes generations with heterogeneous results across dimensions. To contain
the variance effect that was only designed to slightly refine average values, we considered
r1/2/L ∈ [0, 1] and R ∈ [0, 1] (the higher, the better). Lastly, we performed qualitative
analysis to complement the notorious lexical superficiality of ROUGE [40].

Table 1. Statistics of the LDS datasets used as evaluation benchmarks. (top) Full training; (bottom)
few-shot learning.

Dataset Samples Source Target
#avg Words #avg Words

GOVREPORT 19,466 9409.4 553.4
PUBMED 133,215 3224.4 214.4
BILLSUM 23,455 1813 207.7

5.2. Baselines

• Full training. To understand the contribution of our new memory, we examined
BART [33], the skeleton model that we had extended. Then, we contemplated SOTA
models on BART that do not perform any further pre-training, like ours. We chose
LED [4] and HEPOS [3], which leverage various efficient attention mechanisms and
are capable of reading the entire long input. In particular, in HEPOS, we considered
locality-sensitive hashing (lsh) and sinkhorn. We lastly evaluated our model against
SUMMN [41], a segmentation-based solution.

• Few-shot learning. We compared it with well-known low-resource abstractive sum-
marizers. PEGASUS [34] is a transformer-based model with a summarization-specific
pre-training objective that allows for fast adaption through a few labeled samples.
MTL-ABS [37] combines transfer learning and meta-learning from multiple corpora by
using adapter modules as bridges. To judge the contribution of document segmenta-
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tion versus memory, we contrasted EMMA with SE3 [26], a semantic self-segmentation
approach for LDS under low-resource regimes with proven strength in data scarcity
conditions. Similarly to our model, SE3 avoids truncation by creating highly correlated
source–target chunk-level pairs with lengths modulated to fit into the GPU memory.
Despite empowering the chunk definition process with deep metric learning follow-
ing information retrieval techniques [42–45], SE3 represents a general pre-processing
technique for any transformer where chunks are individually summarized and then
concatenated (no memory extension or architectural changes). To ensure fairness, we
refer to SE3+BART.

5.3. Experimental Settings

We trained EMMA for 10 epochs in two versions, the base (192 M trainable parameters)
and large (508 M trainable parameters). We report the results of the best-performing
checkpoint on the validation set. We used the AdamW optimizer with β1 = 0.9 and
β2 = 0.99, and set the dropout to 10%. The learning rate was 3× 10−5, the batch size was
1, and the seed was fixed to 42 for reproducibility. At inference time, we set the beam
width to 5 for all experiments and prevented the repetition of n-grams of size 5. We used
a summary length between 400 and 1000 for GOVREPORT, and 100 and 700 for PUBMED

with the repetition penalty set to 1. We conducted the work on a workstation using a single
GPU RTX 3090 with 24 GB dedicated graphics memory, 64 GB RAM, and an AMD EPYC
7443 24-core processor. The operative system was Ubuntu 20.04.3 LTS; the development
environment was a docker container with an official Hugging Face image (huggingface/
transformers-pytorch-latest-gpu, accessed on 13 March 2023). We implemented the code
using Python 3.8, PyTorch to handle gradient optimization, and Hugging Face for the
neural models (https://huggingface.co/models, accessed on 13 March 2023) and datasets
(https://huggingface.co/datasets, accessed on 13 March 2023).

5.4. Performance Evaluation

We extensively measured EMMA’S performance quantitatively and qualitatively. All
ROUGE scores detailed in this section are expressed as percentages.

5.4.1. Full-Training Results

Table 2 reports the LDS results under full-training settings. Compared to traditional
SOTA encoder–decoder summarizers without memory, EMMA achieved competitive or
higher ROUGE F1 scores, with significant improvements in hardware requirements (see
Section 5.5). The outcomes show that EMMA captures salient information if either equally
distributed in the long input (GOVREPORT) or accumulated in the first partitions of docu-
ments (PUBMED).

Table 2. Full-training ROUGE F1 scores on GOVREPORT and PUBMED. Baseline results are from the
original papers. Bold and underline denote the best and second-best scores.

GovReport PubMed Average RModel R1/R2/RL R R1/R2/RL R
Baselines
BART [33] 52.83/20.50/50.14 40.29 45.36/18.74/40.26 34.33 37.31
HEPOS-LSH [3] 55.00/21.13/51.67 41.63 48.12/21.06/42.72 36.80 39.99
HEPOS-SINKHORN [3] 56.86/22.62/53.82 43.39 47.96/20.78/42.53 36.59 39.99
LED [4] 59.42/26.53/56.63 46.50 47.00/20.20/42.90 36.20 41.35
SUMMN [41] 56.77/23.25/53.90 43.64 – – –

Ours
EMMA-BASE 58.78/24.30/55.29 45.04 44.31/17.35/40.91 33.70 39.37
EMMA-LARGE 59.39/25.27/55.90 45.77 46.70/19.51/43.42 36.01 40.89

huggingface/transformers-pytorch-latest-gpu
huggingface/transformers-pytorch-latest-gpu
https://huggingface.co/models
https://huggingface.co/datasets
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5.4.2. Few-Shot Learning

By supervising our model on limited data, we analyze how quickly EMMA leverages
the inner pre-trained model. Results in Table 3 indicate that EMMA outperforms previous
summarizers, revealing its learning skills in low-resource. Higher ROUGE scores over SE3
corroborate the memory value more than segmentation only does.

Table 3. Few-shot learning ROUGE F1 scores on the BILLSUM dataset using 10 and 100 training
instances. Baseline results are from the original papers. Bold and underline denote the best and
second-best scores.

BILLSUM (10) BILLSUM (100) Average RModel R1/R2/RL R R1/R2/RL R
Baselines
PEGASUS [34] 40.48/18.49/27.27 28.52 44.78/26.40/34.40 34.99 31.76
MTL-ABS [37] 41.22/18.61/26.33 28.47 45.29/22.74/29.56 32.24 30.36
SE3 [26] 46.58/22.03/28.23 31.93 49.88/26.84/33.33 36.34 34.14

Ours
EMMA-BASE 46.77/22.95/28.81 32.51 50.78/28.58/34.27 37.55 35.03

5.4.3. Ablation Studies

To assess the importance of our architecture’s main components, we performed a set of
ablation studies (Tables 4 and 5), using the GOVREPORT training settings with 1000 samples
for 3 epochs. In particular, we investigated the following design choices.

• w/ Backprop: We attempted not to stop the backpropagation within the current chunk
but allowed it to go back in time to previous steps. Results show a performance drop,
probably due to the increased learning complexity. This approach is unexplored in
memory-enhanced transformers and deserves greater research attention.

• w/ Long-term memory: we removed the long-term memory module. Results worsened,
ascertaining the contribution of this component to the final summary quality.

• Memory layers: We performed a series of experiments to determine which layers turned
the memory on. The last two were the best ones, aligned with Rae and Razavi [46],
where the authors claimed that TRANSFORMERXL operated better with memory only
on layers in the second half of the encoder.

Table 4. Ablation studies to validate the components of the solution. The best results are in bold.

GOVREPORT
Model R1 R2 RL

Full 59.99 23.96 56.35
w/Backprop 41.44 12.66 39.98
w/o Long-term memory 58.83 22.61 55.03

Table 5. Ablation study to assess which layer turns on the memory. The best results are in bold.

GOVREPORT
Memory-Layer R1 R2 RL

All 58.71 23.18 55.73
Last three 59.22 24.10 55.96
Last two 59.99 23.96 56.35
Last one 58.76 22.91 55.51
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5.5. Analysis of the GPU Impact
5.5.1. GPU Memory Usage

One of the main benefits of adopting memory components into language models is
that the GPU memory consumption rate remains fixed regardless of the input document
length. SOTA solutions with efficient attention mechanisms, such as LED and HEPOS, have
a maximal limit on the number of tokens that they can read simultaneously. Therefore,
applying such models to domains characterized by extremely long sources (e.g., books,
meeting dialogues, trials) is hard if not impossible. Memory can precisely mitigate this
problem: at inference time, theoretical GPU usage depends only on the dimension of the
model. This property held for our solution, even during training, thanks to interrupting the
backpropagation through chunks. Figure 3 qualitatively exhibits the training time of GPU
utilization for 10 artificially crafted documents ordered by length. We compared our model
with the best-performing linear attention transformers, namely, LED-base and LED-large
(retrained by us). EMMA’s GPU need was stable for all documents despite the increase in
source tokens.

1000 3800 6600 9400 12,200
8

10
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16
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20
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24

Input Size

G
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m
em

or
y

(G
B)
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Figure 3. GPU memory occupation at training time by varying input size (batch_size=1).

In linear-attention-based solutions such as LED, memory usage scales linearly regard-
ing input length. However, these models still suffer from serious scalability issues that
preclude their application. For example, according to their original papers [3,4], both
HEPOS (batch size 2) and LED (batch size 1) require 48 GB of GPU memory to fit and train
the models for processing 16 K input tokens. Moreover, their functions for approximating
quadratic self-attention perform slightly worse with short inputs. Similarly, DYLE uses
48 GB with batch size 8. Its memory usage depends on the number of top-K snippets
to select from the input source. In our 24 GB hardware configuration, only K = 10 was
manageable corresponding to F1 ROUGE scores equal to 54.98/24.10/51.25 [30], which
were significantly worse than those of EMMA in the same settings.

Our solution achieves comparable results on GOVREPORT using less than 24 GB of
GPU memory. Similar to DYLE, our GPU memory consumption did not scale with the
document length, but the minimal amount required was significantly lower.

5.5.2. Chunk Size Analysis

We split the input document into chunks; the memory used at inference time only
depended on the one needed to process a single chunk. Table 6 shows how the performance
changed by varying the chunk length. Since we segmented the input document, the
memory used at the inference time only depended on the one needed to process a single
chunk. Table 6 depicts how summarization effectiveness changed by varying the chunk size
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bounds. ROUGE scores slightly worsened by decreasing the number of tokens per chunk,
but our model powerfully maintained a good trade-off between chunk size and summary
quality. Leveraging past information thanks to memory is vital for generating high-quality
summaries, especially when decreasing the chunk size (i.e., increasing the number of
chunks). In a nutshell, EMMA achieves highly competitive summarization performance
even with reduced chunk sizes, which implies downsized GPU memory demand. Figure 4
shows the impact of the chunk size from an efficiency perspective, measuring the GPU
usage and memory occupation. A significant GPU memory drop appeared with a chunk
size between 384 and 512 tokens. Further, the GPU usage scaled linearly with the chunk
size. Chunks between 384 and 512 tokens had the best trade-offs. These outcomes show
that memory can be central in low-resource models, uncoupling the GPU impact and the
input length.

Table 6. Results of over 100 documents of the test set from GOVREPORT while changing chunk size.

Chunk Size R1 R2 RL

256–384 58.43 23.44 54.31
384–512 60.92 25.21 56.93
512–640 61.65 26.50 58.12
640–768 61.46 26.15 58.21
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Figure 4. Graphs on how the chunk size hyperparameter of EMMA impacts the GPU. (A) GPU
memory usage (0–24 GB); (B) GPU computational power usage (0–100%).

5.6. Human Evaluation

We conducted a comprehensive human evaluation study to better gauge the quality
of the summaries produced by EMMA regarding LED (the main full-training competitor
according to Table 2). We randomly selected 50 document–summary pairs from the test sets
of GOVREPORT and PUBMED (25 from each source). We asked three evaluators who were
proficient in English with legal and medical competencies to select their most and least
preferred predictions according to informativeness, fluency, factuality, and succinctness,
i.e., best–worst scaling [47,48]. We randomized the order of summaries within pairs to
guard the rating against being gamed. Our setup with human instructions is illustrated
in Figure A1. The annotation process took approximately 6 h per judge, 18 h in total.
The average Kendall coefficient among all evaluators’ inter-rater agreement was 0.60.
All evaluation files were publicly released for transparency and reproducibility: https:
//github.com/disi-unibo-nlp/emma (accessed on 13 March 2023). Results are outlined
in Table 7, showing the overall percentage of times that a particular system was the most
preferred summary source. Additionally, we plot the distribution of dimension-specific
votes in Figure 5. Across both quality dimensions and datasets, we observed a clear
preference for EMMA. LED tended to be less abstractive and to have more extended
outputs, often cut before reaching the end-of-sentence token, focused on the first part

https://github.com/disi-unibo-nlp/emma
https://github.com/disi-unibo-nlp/emma
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of the document. Instead, EMMA was much more concise, going straight to the point and
covering all the relevant content mentioned in the document with high frequency and
factuality. The overall advantage of our solution is strongly accentuated as the length of the
target summary increased (GOVREPORT summaries were, on average, 2.58× longer than
those of PUBMED).

Table 7. Percentage of times that a summarizer was selected as the best from all evaluators. Annota-
tors preferred EMMA outputs over LED for approximately 70% of the sampled document–summary
pairs. The best results are on a green background.

Model GOVREPORT PUBMED OVERALL

LED 22.67 42.33 32.50
EMMA 77.33 57.67 67.50
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6. Conclusions

Although augmenting transformers with memory is receiving less attention and effort
than efficient transformers, it can play a pivotal role in low-resource settings and domains
with extremely long documents. In this work, we presented EMMA, the first memory-
enhanced encoder–decoder transformer for long-document summarization. The proposed
architecture leverages two fundamental elements: (i) a segmentation algorithm for splitting
the input document into chunks and pairing them with the most related parts of the target
summary, and (ii) a recursive memory module capable of storing information from past
chunks. We tested our solution with multiple datasets of different domains, obtaining
competitive results with state-of-the-art models under full-training conditions and outper-
forming prior works in few-shot learning. Exceptionally, depending only on the chunk size,
the GPU need remained constant regardless of the whole document length. Compared to
segmentation-only techniques, our memory component boosted summarization quality,
avoiding treating each chunk independently, and better exploiting their semantic linkage.
We also verified that the chunk size could be kept low without significant drops in sum-
marization results, enabling SOTA performance on limited hardware. In-depth ablation
studies support our architectural design choices. This study promotes novel research
toward efficient memory-enhanced language models.

7. Limitations and Future Directions

Our document segmentation algorithm requires the length of the golden summary to
not be too short; otherwise, paired targets are composed of a few tokens. According to our
empirical tests in the ablation studies, enabling backpropagation through chunks led to
worse results. Deeper investigations are needed to solve this issue.

Future works should explore memory writing/reading operations with structured in-
formation extracted from text, comparing unsupervised techniques for document metadata
acquisition (e.g., classes [49,50] and entity relationships [51,52]) with advanced seman-
tic parsing solutions such as event extraction [53,54] and abstract meaning representa-
tion, which was recently used for knowledge injection into deep neural networks [55,56].
The community should envisage novel graph representation learning methods [57–60] to
densely represent multi-relational structured data following a Linked Open Data vision
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centered on the integration of several source knowledge graphs or relational databases
via automatic entity matching [61]. Taking inspiration from biology [62,63] and commu-
nication networks [64–67], we underline the importance of managing dynamic scenarios,
tracking knowledge refinements among sentences, and propagating information, which is
pivotal when processing lengthy inputs. Segmentation strategies and memory-enhanced
encoder–decoder transformers could be inspected in other downstream tasks with long
documents and cross-dependencies among chunks, such as claim verification with evidence
retrieval [68,69].
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Appendix A. References to Models and Datasets

Table A1 enumerates all the trained models and datasets used in this study, linking to
specific HuggingFace versions.

Table A1. List of the models and datasets used in this study. All the links have been last accessed on
13 March 2023.

Model URL

LED-BASE https://huggingface.co/allenai/led-base-16384
LED-LARGE https://huggingface.co/allenai/led-large-16384
BART-BASE https://huggingface.co/facebook/bart-base
BART-LARGE https://huggingface.co/facebook/bart-large

Dataset URL

GOVREPORT https://huggingface.co/datasets/ccdv/govreport-summarization
PUBMED https://huggingface.co/datasets/ccdv/pubmed-summarization
BILLSUM https://huggingface.co/datasets/billsum

https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-large-16384
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-large
https://huggingface.co/datasets/ccdv/govreport-summarization
https://huggingface.co/datasets/ccdv/pubmed-summarization
https://huggingface.co/datasets/billsum
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Appendix B. Human Evaluation Insights

The interface with human evaluation instructions is sketched in Figure A1.

 Instructions for Human Evaluators

Read carefully the following two summaries and then
select the radio buttons below about the summary that you prefer

Document
[ ... ]

Summary 1
[ ... ]

Summary 2
[ ... ]

Which is...

1 More informative? 2 3More fluent? More factual?

Two neural models attempt to summarize a document while retaining the salient information. 
Which summary do you think is better in the following four dimensions?

Informativeness: Does the summary provide enough and necessary content coverage
from the input article?
Fluency: Does the text progress naturally? Is it grammatically correct (e.g., no
fragments and missing components) and coherent whole?
Factuality: Is the summary faithful with respect to the original document?
Succinctness: Is the summary compact?

4 More succinct?

Figure A1. Human assessment interface.
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