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Abstract
The research presented in this paper aims at providing a statistical model that is
capable of estimating soil water content based on weather data. The model was tested
using a long-time series of field experimental data from continuous monitoring at
a test site in Oltrepò Pavese (northern Italy). An innovative statistical function was
developed in order to predict the evolution of soil–water content from precipitation and
air temperature. The data were analysed in a framework of robust statistics by using a
combination of robust parametric and non-parametricmodels. Specifically, a statistical
model, which includes the typical seasonal trend of field data, has been set up. The
proposed model showed that relevant features present in the field of experimental data
can be obtained and correctly described for predictive purposes.
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1 Introduction

Large-scale quantitative assessment of water resources, which is useful in hydrology,
hydrogeology, agriculture, and other fields, is generally carried out using models that
take into account soil–atmosphere interaction and the hydraulic behaviour of the soil
(Brocca et al. 2007; Koster et al. 2009; Brocca et al. 2014; Mimeau et al. 2021).
The shallow part of the soil, which is the most affected by atmospheric variables, is
normally unsaturated. Soil water content (SWC) and soil water potential (SWP) are
the main variables to be considered in the evaluation of the hydraulic behaviour of
unsaturated soil in relation to rainfall events. In fact, such variables are used as input
data for different types of physically based models to quantify the soil water balance
(Bittelli et al. 2010, 2015).

In particular, SWC is a fundamental property that affects a large variety of biophys-
ical processes, such as seed germination, plant growth, and plant nutrition. Given that
it determines water infiltration, percolation, evaporation, and plant transpiration, it is
a key variable for computing the soil water budget. Moreover, SWC is an important
quantity often required for agricultural practices (tillage, soil fertilization, and irriga-
tion), assessment of drought conditions, estimation of run-off, management of water
resources, triggering of shallow landslides, and impact on climatic features of an area
(Koster et al. 2004; Liu et al. 2008; Godt et al. 2009; Ahmad et al. 2010).

SWC is also used to model the coupled hydraulic and mechanical behaviour
of unsaturated soils in geotechnical problems such as stability analysis of natural
slopes, levees, dikes, and dams.With regard to the soil–atmosphere interactions, some
researchers demonstrated that SWC might regulate the atmospheric variables that are
relevant to the dynamics of storms and occurrence of future rainfall (Eltahir 1998). Soil
moisture conditions not only reflect past occurrences of rainfall, but also determine a
positive feedback mechanism between soil moisture and subsequent precipitation due
to convection-related parameters (Findell and E E, 1997). However, the identification
of a relationship between soil moisture and precipitation feedback is not simple, due to
a complex interplay between various factors that favour or inhibit convection initiation
(Hauck et al. 2011).

Regarding the coupled hydraulic–mechanical behaviour of unsaturated soils in sta-
bility analysis of both natural and artificial slopes, many authors have highlighted
how small pores in soil induce a strength contribution enabling slope stability even
for slopes that are steeper than the soil friction angle. However, such a contribution
decreases under increasing water content (Rianna et al. 2014; Leung and Ng 2013). In
most slope stability analyses, the behaviour of an unsaturated soil is modelled using
the soil water characteristic curve (SWCC), which represents the relationship between
SWC and SWP (Rahardjo et al. 2005; Fredlund et al. 2012; Fredlund 2019). In any
case, whenever the phenomenon under investigation concerns soil, plants, or atmo-
sphere interactions, the estimation of SWC is very important when directmeasurement
is not available.
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SWC can be measured with a variety of methods in the spatial scale, ranging from
a few cubic centimetres (small soil sensors used in the greenhouse or field applica-
tions) to kilometres (global microwave satellites). Different time scales can also be
employedwithmeasurements that can be performed on aminute-based scale (by using
soil sensors) or daily with satellites. When measurement is dependent on the acquisi-
tion schedule, it is performed with discontinuous methods, such as ground-penetrating
radar (Gerhards et al. 2008). Bittelli (2011) provides a review of the fundamental prin-
ciples employed for SWC measurement and a discussion about the time and spatial
scale measurements. In many practical applications (for instance, irrigation manage-
ment at the farm scale), soil moisture sensors are not available, and satellite data do not
provide the necessary spatial resolution. In this regard, the International Soil Moisture
Network aims at collecting data at the global level for a variety of applications in
climate science, hydrology, agriculture, and other fields (Dorigo et al. 2021). Addi-
tionally, soil moisture modelling and forecast have become important as management
tools and require reliable data for model parameterization and testing. Many models
are available for quantification of vadose zone processes as discussed in some recent
review papers (Vereecken et al. 2016; Zheng et al. 2019).

Prediction methods for the SWC can be grouped into the main categories of data-
driven empirical models and process-based models. The data-driven empirical models
used for producing soil moisture maps are mostly based on satellite remote sensing
data and microwave radar data. They include statistical methods such as Bayesian
models (Kim et al. 2017), support vector machines (Yu et al. 2012; Raghavendra and
Deka 2014; Liu et al. 2016), multiple linear regression models (Qiu et al. 2003; Jung
et al. 2017; Mei et al. 2019; Cai et al. 2019), random forests (Pan et al. 2019), artificial
intelligence methods (Nguyen 2022), and artificial neural network algorithms (Zou
et al. 2010; Schmidt et al. 2020; Hegazi et al. 2021). Despite the good prediction
capabilities of these models, the interpretation of the relationships between one or
more predictors and SWC appears rather difficult to interpret from a physical and
hydrological point of view (Raghavendra and Deka 2014).

Process-based models focus on the hydrological processes that control the soil
moisture transfer mechanisms through physical equations, and calculate the explana-
tory variables as part of the land surface data assimilation techniques (Dai and Cheng
2022). An extended description of numerical methods and computer code for solv-
ing flow equations with process-based models is provided by Bittelli et al. (2015).
Observationally obtained factors such as precipitation, atmospheric temperature, and
solar radiation can be used for the seasonal dynamic prediction of SWC (Panigrahi
and Panda 2003; Bittelli et al. 2010; Valentino et al. 2011; Mo and Lettenmaier 2014).

Process-basedmodels also include numericalmodels that calculate SWCby solving
equations of soil water flow. They are based on water balance parameters and on the
main soil hydrological properties, namely the soil water characteristic curve (SWCC)
and the hydraulic conductivity function (Van Dam et al. 1997; Šimunek and Van
Genuchten 2008). The main advantage of these methods is the physical meaning
of the equations used to solve SWC calculations (Lamorski et al. 2013). However,
these equations need many soil parameters (hydraulic properties, soil properties, land
coverage) that can be difficult to collect over large areas and sometimes require a
preliminary calibration of the adopted hydrological parameters (Deng et al. 2011). In
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this framework, statistical models based on time series analysis and the adoption of
robust statistical analysis are an alternative to process-based modelling and can be
used with data that are more easily obtained, such as weather data. Robust statistics
is a peculiar branch of statistics: broadly speaking, it is referred to as a collection of
methods which provide fully reliable estimates and prediction even in the presence
of multiple outliers and large errors in the collected data (Atkinson and Riani 2000;
Riani 2004).

The aim of this research is to provide a new statistical model to estimate the SWC
within a thickness of 1.4 m from ground level. The rationale is to develop a statisti-
cal function linking the quantities involved in both infiltration and evapotranspiration
phenomena, namely soil volumetric water content, water potential, air temperature,
rainfalls, and solar radiation, but not considering the feedback effect of soil moisture
on convection-related parameters. To achieve this goal, a time series of field experi-
mental data was employed. The time series was collected from continuous monitoring
over a long period at a test site in Oltrepò Pavese in northern Italy (Bordoni et al. 2021).
These data are treated in the framework of robust statistics by using the combination of
robust parametric and non-parametric models: a combination of least trimmed squares
(LTS) and singular spectrum analysis (SSA).

The paper shows how the proposed model can capture the relevant features present
in the data and how it can be used for prediction purposes. The approach is based on
models introduced in the paper by Rousseeuw et al. (2019) and uses the MATLAB
Flexible Statistics Data Analysis (FSDA) toolbox, which is freely available on the
MATLAB marketplace, with fine-tuning on seasonal identifications. Other statistical
approaches exist, but none of the available software is sufficiently fine-tuned to handle
gross errors or outliers (Hosseini et al. 2015).

The main novelty of the proposed model is its ability to accurately predict the SWC
at various soil depths based on daily rainfall data. Among the evaluatedmeteorological
variables that were available in our study, it was found that daily air temperature paired
with prior rainfall accumulation was the most important. Therefore, the model is able
to self-tune and predict seasonal fluctuations using very few field data. Compared
with other models, the proposed model requires very little computational effort and
uses readily available input data. These characteristics make it particularly suitable
for large-scale implementation in areas with scarce experimental data.

The structure of the paper is as follows: Section 2 illustrates the test site, the available
observations, and the processing of field data, while Sect. 3 introduces the model and
the methodology for analysing a time series which contains a trend, time-varying
multiple seasonal components, and isolated or consecutive outliers. Section 4 shows
the results of the methodology application and the comparison between model results
and time series of field measurements. The relevant aspects of the methodology and
results are discussed in Sect. 4 aswell. Finally, Sect. 5 presents the concluding remarks.
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2 Data andMethods

2.1 Monitoring Test Site

The selected test site is located near the village of Montuè (Fig. 1) in the north-eastern
Oltrepò Pavese (northern Italian Apennines, Lombardy region, northern Italy), within
the catchment of Scuropasso creek. The test site is 0.02 km2 wide and is representative
of the main geological and geomorphological features of the study area.

The bedrock is made of gravel, sand, and poorly cemented conglomerates, overly-
ing marls and gypsum (Vercesi and Scagni 1984). The groundwater is characterized
by deep water circulation, which is confined in fractured levels located at different
depths in the bedrock, without forming a continuous aquifer. The test site faces east,
at altitudes ranging between 170 and 210m a.s.l. The slope steepness is between 26◦
and 35◦, in a very steep range all along the hillslope. The top of the slope is mostly
covered by grass and shrubs, while the slope toe is covered by a woodland of black
robust trees.

According to Koppen’s classification of world climates, the climatic regime is tem-
perate/mesothermal (Csa: Mediterranean hot summer climate), with a mean yearly
temperature of 13◦ C and mean yearly rainfall around 694mm (Canevino meteoro-
logical station, ARPA Lombardia monitoring network).

Fig. 1 Location of the site, scheme of the devices, and soil composition
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The test site is located in a catchment very prone to shallow landslides. In particular,
an extreme rainfall event (160mm accumulated rain in 62h) that occurred on 27 and
28 April 2009 triggered many shallow landslides (mean density of 29 landslides per
km2) in the surrounding area (Bordoni et al. 2015) (Fig. 1). The same event caused nine
shallow landslides in the test site. This slope was affected by a further shallow failure
that occurred between 28 February and 2 March 2014 as a consequence of rainfall of
68.9 mm in 42h (Bordoni et al. 2015). Shallow landslides on this slope involved areas
of a few hundred square metres, with sliding surfaces at 1m from ground level, mostly
corresponding to slope steepness between 30◦ and 35◦.

The shallow landslides involved clayey-sandy silts and clayey-silty sands, which
derive from bedrock weathering and are characterized by three main layers (Fig. 1).
In the first layer (US), from the ground surface down to 0.7 m, the soil is clayey-sandy
silt with low plasticity, high carbonate content, and unit weight between 16.7 and 17.0
kN/m3. The second soil layer (LS), between 0.7 and 1.1 m from the ground level, has
similar characteristics as the US layer but a higher unit weight of 18.6 kN/m3. At a
depth between 1.1 and 1.3 m, the soil has the same textural, plasticity, and density
features of the LS layer, but it is characterized by a significant increase in carbonate
content up to 35.3%. This layer can be classified as a calcic horizon (CAL), where
the carbonate concretions have higher density than in other levels. The weathered
bedrock (WB), composed of sand and poorly cemented conglomerates, is positioned
1.3 m below the ground surface. These soil layers are characterized by hydraulic
conductivity that decreases as depth increases. Hydraulic conductivity was measured
in the field through a compact constant head permeameter (Amoozemeter; Amoozegar
1989). The US layer has the highest value, in the order of 10−5 m/s, while LS and
CAL are characterized by a saturated hydraulic conductivity equal to 10−6 m/s and
10−7 m/s, respectively. With regard to the mechanical features of the soils, the peak
shear strength parameters were obtained through triaxial tests. The US and LS layers
are characterized by similar friction angles between 31◦ and 33◦, and by zero effective
cohesion. The CAL layer has a smaller friction angle (26◦) than the other layers, but it
has effective cohesion of 29 kPa. Moreover, all the soil layers are over-consolidated,
as demonstrated by oedometric tests. Table 1 summarizes the main soil features at the
Montuè test site.

A monitoring station, which integrates meteorological and hydrological sensors,
was installed at the test site inMarch2012 (Fig. 1). Themeteorological sensorsmeasure
rainfall, air temperature, air humidity, atmospheric pressure, wind speed and direction,
and net solar radiation. The soil probes measure water content, water potential, and
soil temperature. Details on the devices are reported in Table 2.

Hydrological sensors included six time-domain reflectometer (TDR) probes
installed at different depths, three jet-fill tensiometers, and three heat dissipation (HD)
sensors installed in pairs at three different depths based on the characteristics of the soil
layers. Jet-fill tensiometers and HD sensors are in pairs because the jet-fill tensiome-
ter measures soil–water potential higher than −10 J/kg (fewer negative values, lower
absolute values), whereas the HD sensor allows one to obtain soil–water potential
lower than −10 J/kg (more negative values, higher absolute values). The HD sensor is
based on the Flint et al. (2002) equation to convert the measured change in soil temper-
ature after a constant heating period (Bittelli et al. 2012). All field data were collected
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by a data logger powered by a photovoltaic panel and recorded with a frequency of 10
min. Amore detailed description of themonitoring station and the probes is reported in
Bordoni et al. (2015). As described in the following sections, field-measured data over
8 years relating to both soil hydrological quantities and atmospheric variables (Bordoni
et al. 2021) were taken into account for the development of the proposed model.

2.2 Field Data Processing

Field measurements of both soil and atmospheric variables were recorded with a
frequency of 10min, but for the purpose of this research, accumulated hourly datawere
deemed more appropriate. The final hourly time series presented randomly scattered
missing values. This was the first issue to be solved. There are several methods for
performing missing replacement, and an interpolation is a common choice. A more
robust alternative is to replace the missing data points with the median of a small block
of data, using some of the previous and subsequent records. Additional jittering taken
from a uniform distribution could be considered if data replacement involves a large
chunk of data that would be constant over time.

In the subsequent analysis, daily data are obtained by aggregating or averaging
hourly data. Obviously, data with shorter frequency alleviate the arbitrariness under-
lying the missing data replacement, and both alternatives discussed above result in
similar outcomes once daily data are considered.

3 The Statistical Model

Based on time series of field data discussed in Bordoni et al. (2021), the aim of this
research is to provide a unified statistical framework for modelling and prediction of
SWC at different soil depths. In this section, the statistical features of the data and
the structure of the proposed model are discussed. A preliminary discussion is related
to the approach followed to validate the model. We split the data into two parts: in
the so-called training part, daily time series (21/11/2012 to 31/12/2019) are used to
estimate all parameters of the model. Diagnostics in-sample are assessed via residual
analysis (see Sect. 4.3). Subsequently, in the testing part, the validation of the model is
explored using daily out-of-sample forecasts for the year 2020, with details reported
below (see Sect. 4.4). We recall that we have daily data, properly cleaned with robust
filters discussed in Sect. 2.2. Field SWC data measured at depths of 0.2 m and 1.2
m are plotted in Fig. 2 in black and blue, respectively. The red vertical lines of Fig. 2
denote the daily cumulative precipitation. A similar plot is presented in Fig. 3, where
the red line denotes the daily average temperature.

From visual inspection of both Figs. 2 and3, it is clear that there is a seasonal
variation in SWC at all depths, but whether there is a clear direct link between SWC
and atmospheric variables is far from obvious.

Table 3 lists all the variables that were originally available in the data loggers. The
superscript in Y (m)

t denotes the value of the outcome at soil depth of m metres. A
similar notation is used for the explanatory variables X (m)

t, j (with j = {1, 2, . . . , 9}).
Our aim is to model SWC at a specific soil depth via a minimal set of explanatory
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Fig. 2 Time series of daily values for SWC (first axis) at soil depth of 0.2 m (black line), 1.4 m (blue line),
and the daily accumulated rain (red line on the second axis)

Fig. 3 Time series of daily values for SWC (first axis) at soil depth of 0.2 m (black line), 1.4 m (blue line),
and the daily average air temperature
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Table 3 Variables included in our dataset

Soil/atmosphere
indicator

Measurement
levels (soil depth)

Notation used in
the paper

Specification daily
summary

Soil water content 0.2 m; 0.4 m; 0.6 m Y (02)
t ;Y (04)

t ;Y (06)
t Average WC in a day t

(SWC) 1m; 1.2 m; 1.4 m Y (10)
t ; Y (12)

t ;Y (14)
t At specific soil depth

Soil temperature 0.2 m; 0.6 m; 1.2 m X (02)
t,1 ; X (06)

t,1 Average TSOIL in a day t

(TSOIL) X (12)
t,1 at specific soil depth

Soil water potential 0.2 m; 0.6 m; 1.2 m X (02)
t,2 ; X (06)

t,2 Average Pwp in a day t

(Pwp) X (12)
t,2 At specific soil depth

Atmospheric pressure Ground level Xt,3 Average atmospheric

(Patm) pressure in a day t

Air temperature Ground level Xt,4 Average temperature

(Tair) in a day t

Air humidity Ground level Xt,5 Average air humidity

(Hum) in a day t

Wind speed Ground level Xt,6 Average wind speed

(WSp) in a day t

Precipitation Ground level Xt,7 Cumulative mm of rains

(Cum. rain) in a day t

Wind direction Ground level Xt,8 Most prevalent

(Wdir) direction in a day t

Solar radiation Ground level Xt,9 Average solar radiation

(Solar) in a day t

For each variable we have daily data, and the subscript t indicates that a time series is available for all
variables. Many variables will not be included in our model

variables that are easy to obtain. By “easy to obtain”, we mean that such variables do
not require the installation of specific devices in the soil.

The pairwise scatter of daily data does not suggest any specific relationship between
the available variables. On the contrary, the time series plot shows some regularity,
mostly related to seasonal factors and common trends among the variables. The build-
ing bricks of the proposed model are formulated by the regression-like expression

Y (m)
t = c0 +

A∑

a=0

αat
α +

P∑

j=1

θ j X
(m)
t, j +

[
B∑

b=1

βb,1 cos(ωbt) +
B∑

b=1

βb,2 sin(ωbt)

]

⎛

⎝1 +
G∑

g=1

γgt
g

⎞

⎠ + δ1I(t ≥ δ2) + Wt . (1)

Details and rationales of model (1) are discussed for monthly data in Rousseeuw
et al. (2019), and here we revise the most important features. The model has four main
components: polynomial time parameters for long-term trends, denoted by αa ; linear
effect of time-varying explanatory variableswith coefficients θ j , and the same notation
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is usedwhen the explanatory variables ofTable 3 donot have the superscript (m)or they
have a lag k effect, that is, when Xt−k, j is considered; seasonality term modelled by
trigonometric waves with coefficients βb,1 and βb,2, having time-varying magnitude
driven by γg; and finally, a level shift is included in the case of a major sudden
level break located at time δ2, with magnitude δ1. A minor comment is warranted
for ωb = 2bπ/T , where T is the length of the time period (1 year of daily data, so
T = 365.25), implying that ωb is driven by the time-frequency of the recorded data.

For the random disturbanceWt we assume a Gaussian-like distribution with 0mean
and finite variance σ 2

W . Despite the non-linear structure, the model introduced in Eq.
(1) can be recast into a regression-like framework and enjoy simplicity of estimation
coupled with robustness (see Sect. 2.2 in Rousseeuw et al. (2019) for further details).
One can note the presence of an intercept c0. Additionally, it can happen that there is a
“lag effect” of the explanatory variables on the Y (m)

t , and in that case, the explanatory
variable will be written, for example, like X (m)

t−k, j , with integer k > 1 (with superscript
(m) removed when the explanatory variable is related to ground-level measurements).

Model (1) is fitted to all soil depths of Y (m)
t and, for each single analysis, a careful

variable selection is performed. A relatively common structure considers as significant
only two predictors: the daily average air temperature Xt,4 and the cumulative daily
lagged rain Xt−k,7, with the value of k depending on the soil depth under investigation.
The seasonal sine/cosine waves are significant for values of B in the set {1, 2, 3},
depending on the soil depth. At first glance it seems that the interaction term between
seasonal sine/cosine and polynomial components is unnecessary. Finally, in some
cases we also found a significant linear trend, with negative drift, which might suggest
global warming issues.

In other words, based on our experimental data, the model introduced in Eq. (1)
reduces to the following special case

Y (m)
t = c0 +

A∑

a=0

αat
α +

P∑

j=1

θ j Xt, j +
[

B∑

b=1

βb,1 cos(ωbt) +
B∑

b=1

βb,2 sin(ωbt)

]
+ Wt .

(2)
The focus is now on the specific values of unknown parameters for all studied soil
depths. Before discussing the features of significant coefficients in each sub-model at a
specific depth, we anticipate that the relevant predictors are amixture of trend-seasonal
deterministic components (low-degree polynomial functions and sine/cosine waves)
and atmospheric stochastic components, driven by rain and temperature. These find-
ings have important practical implications, as the water content can be estimated with
a very minimal set of explanatory variables for which data values are easily retriev-
able (simple devices installed on the surface). Additionally, due to the availability of
existing software such as Weather Generator (Tomei et al. 2022), future scenarios can
be easily simulated for long-term assessment.

3.1 Hints from Singular Spectrum Analysis for Seasonal Components

In this work, a very powerful signal processing technique (singular spectrum analysis,
SSA) is used to reduce the impact of noise on themeasured data and to detect structural
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Fig. 4 Eigenvectors of the SSA decomposition for each component and pairwise comparisons. The first
three eigenvectors are responsible for almost all signal in the data (about 97% of the signal) and display a
steady long-term and marked seasonality

variations in the data (Huffaker et al. 2017). SSA separates time series data into struc-
tured variation (signal), including trend and oscillatory components, and unstructured
variation (noise). Since the proposed model can be implemented with a different num-
ber of oscillatory components (periods), we used the SSA to enable optimal selection
of the number of periods. After identifying the proper number of periods contributing
to the signal, the result was used to fine-tune the structure of model (1) and to obtain
a statistical estimation of the associated parameters.

By using SSA, it was possible to obtain information about which seasonal effects
are overwhelming and which are, instead, negligible. From the visual inspection of
eigenvectors (individual and pairwise comparisons) of the SSA for SWC at 0.2 m, it
appears that there is a strong seasonal pattern and a long-term trend, suggesting that
the location under investigation is potentially subject to long-term climate changes.
All these findings are visible from inspection of both panels of Fig. 4. Similar results
hold for all other SWC depths (not reported).

It is possible to extract the components of SSA for convenient visual inspection of
any regularity. As an illustration, we show the extraction of the long-term trend and
seasonal components in Fig. 5. In particular, the four panels represent (i) the original
series of SWCrecorded at 0.2m; (ii) the trend (whose decline looks linear at first glance
and consistent with findings reported in Table 4—see the sign of the estimate of α1);
(iii) the overall effect of the two seasonal components associated with eigenvectors
2 and 3; and (iv) the “residual” part from the decomposition, which still appears to
be far from white noise. As stated previously, this issue will be investigated below, in
Sect. 4, where some model improvements will be discussed, but other adjustments are
subject to further research.

4 Results, Diagnostics, and Validation

4.1 SWC at Superficial Levels: Depth <1m

We report the results of model fitting for soil depths of SWC located at 0.2, 0.4, and
0.6 m, which we refer to as “superficial levels”. We report the estimated parameters
of the model (2) after a careful, statistically motivated variable selection in Table 4.
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Fig. 5 Plot of original series and reconstruction of components after SSA for SWCat 0.2m.The components
responsible for the overall signal are the long-term trend and two seasonal components

Table 4 Significant variables included for SWC at depth of 0.2 m

Depth 0.2 m Estimate S.E. t-stat p-value

c0 2.3E−01 3.7E−03 6.2E+01 0.0E+00

α1 −3.3E−06 9.7E−07 −3.4E+00 7.5E−04

β1,1 5.4E−02 2.6E−03 2.0E+01 1.3E−85

β1,2 4.2E−02 1.0E−03 4.1E+01 9.8E−281

θ7 for Xt−51,7 4.3E−04 1.2E−05 3.7E+01 7.3E−241

θ4 for Xt−1,4 −1.5E−03 2.3E−04 −6.4E+00 2.2E−10

Using the training data, the adjusted R2 value for all the fitted models considered here
is around 0.7 (or even larger), with better performance at more superficial levels. In
all cases, there is a temporal correlation in the residuals, and we provide comments
on this evidence below.

From a temporal viewpoint, the most important findings are the presence of a
negative linear trend and the presence of a single sine/cosine wave, implying one
strong seasonality pattern. At the superficial depth of 0.2 m, there is a positive effect
of accumulated rainfall, which lagged at about 50 days. In otherwords, the contribution
of accumulated rainfall is strongest with a lag of approximately 50 days, implying that
the amount of SWC at day t is mostly driven by the accumulated rainfall over the
prior 50 days. This last piece of evidence indicates a positive effect and relatively
long persistence of accumulated rainfall, holding constant the effect of all the other
explanatory variables. This finding is not new, and one of the first attempts ofmodelling
this persistence dates to Yu and Cruise (1982).
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Table 5 Significant variables included for SWC at depth of 0.4 m

Depth 0.4 m Estimate S.E. t-stat p-value

c0 2.5E−01 3.4E−03 7.3E+01 0.0E+00

α1 −1.2E−05 9.0E−07 −1.3E+01 2.9E−38

β1,1 7.4E−02 2.4E−03 3.1E+01 9.0E−176

β1,2 2.7E−02 8.5E−04 3.2E+01 1.1E−185

β2,1 −8.2E−03 8.8E−04 −9.3E+00 4.6E−20

β2,2 −9.7E−03 8.8E−04 −1.1E+01 1.2E−27

β3,1 −8.3E−03 8.5E−04 −9.8E+00 2.1E−22

β3,2 −2.7E−03 8.3E−04 −3.3E+00 1.1E−03

θ7 for Xt−63,7 2.9E−04 1.0E−05 2.8E+01 5.9E−147

θ4 for Xt−1,4 −6.0E−04 2.1E−04 −2.9E+00 4.3E−03

The temperature at a superficial depth of 0.2 m has a negative effect on the SWC.
Stated more precisely, the value of the average air temperature at day t − 1 nega-
tively influences the level of SWC. The choice of lagged temperature at t − 1 rather
than t is for practical use of the model: using the temperature recorded “yesterday”
gives no uncertainty on such explanatory variable when daily predictions are sought.
Additionally, we report that using Xt,4 instead of Xt−1,4 yielded very marginal model
improvements.

Similar comments hold for models fitted at depths 0.4 and 0.6m, reported in Table 5
and Table 6, respectively. The main differences rely on the selection of more involved
seasonal effects, as three waves of sine/cosine are found by our variable selection
algorithm. The negative gradient of the long-term trend is significant at a depth of 0.4
m and no longer significant at a depth of 0.6 m.We note the longer persistence effect of
the accumulated rainfall, which is always positively related to the amount of SWC, but
with longer-lasting effects as depth increases, suggesting a longer time span needed
for drying the soil. At depths of both 0.4 m and 0.6 m, the effect of the average daily
surface temperature is negative, with magnitude decreasing with increasing depth,
following the results obtained at 0.2 m. This feature anticipates that the average air
temperature might reverse its effect at some stage.

4.2 SWC at Deeper Levels: Depth of 1m andMore

For deeper levels, the structure of the best-fitted model is still in the form of expres-
sion (2). Using our robust fit and robust variable selection algorithm, the coefficients
are reported in Tables 7, 8, and 9.

The main finding is that the coefficient associated with the air temperature has
a positive sign, as we highlighted earlier, and this feature seems to have a natural
physical explanation in the interaction between SWC and air temperature. The effect
of cumulative rainfall is still significant, but the time lag at which the most important
peak is found is longer for this soil depth, suggesting a longer persistence effect at
deeper levels than at superficial levels (we find this very sensible). The number of the
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Table 6 Significant variables included for SWC at depth of 0.6 m

Depth 0.6 m Estimate S.E. t-stat p-value

c0 2.1E−01 2.6E−03 8.0E+01 0.0E+00

β1,1 6.7E−02 1.8E−03 3.7E+01 8.2E−238

β1,2 6.2E−02 9.3E−04 6.6E+01 0.0E+00

β2,1 2.0E−02 7.3E−04 2.7E+01 9.8E−140

β2,2 7.3E−03 6.8E−04 1.1E+01 2.2E−26

β3,1 1.2E−02 6.8E−04 1.7E+01 6.7E−62

β3,2 −1.7E−02 6.8E−04 −2.5E+01 1.6E−127

θ7 for Xt−81,7 4.1E−04 6.6E−06 6.2E+01 0.0E+00

θ4 for Xt−1,4 −5.0E−04 1.7E−04 −2.9E+00 3.5E−03

Table 7 Significant variables included for SWC at depth of 1m

Depth 1m Estimate S.E. t-stat p-value

c0 9.5E−02 4.0E−03 2.4E+01 6.1E−115

α1 −2.7E−06 1.0E−06 −2.6E+00 9.9E−03

β1,1 6.1E−02 2.2E−03 2.7E+01 3.5E−144

β1,2 3.5E−02 1.6E−03 2.2E+01 2.6E−99

θ7 for Xt−92,7 4.2E−04 9.0E−06 4.7E+01 0.0E+00

θ4 for Xt−1,4 1.4E−03 2.2E−04 6.2E+00 5.1E−10

Table 8 Significant variables included for SWC at depth of 1.2 m

Depth of 1.2 m Estimate S.E. t-stat p-value

c0 1.4E−01 4.5E−03 3.2E+01 4.5E−188

β1,1 7.3E−02 2.2E−03 3.3E+01 4.4E−202

β1,2 8.6E−03 2.6E−03 3.3E+00 1.0E−03

θ7 for Xt−112,7 4.9E−04 8.8E−06 5.6E+01 0.0E+00

θ4 for Xt−1,4 2.3E−03 2.8E−04 8.3E+00 2.3E−16

multiple seasonal cycles is generally lower than those found at superficial levels, as it
appears that only long-term seasonality is found. We found a negative linear trend at
1m, the magnitude of which is similar to what we have at a depth of 0.6 m. The actual
presence of a significant long-term trend would require further investigation, perhaps
including more data from several nearby sites.

4.3 Diagnostic Check and Analysis of Residuals

In this section we analyse residuals et = yt − ŷt , t = 1, 2, . . . , N , where N is the
sample size used in the fit, and ŷt are the fitted values after estimating the parameters
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Table 9 Significant variables included for SWC at depth of 1.4m

Depth of 1.4 m Estimate S.E. t-stat p-value

c0 7.2E−02 4.5E−03 1.6E+01 6.0E−54

β1,1 3.4E−02 2.8E−03 1.2E+01 7.6E−32

β1,2 2.5E−02 2.1E−03 1.2E+01 4.8E−32

β2,1 1.7E−02 1.3E−03 1.3E+01 2.8E−38

β2,2 1.8E−02 1.2E−03 1.6E+01 7.0E−54

θ7 for Xt−94,7 7.9E−04 1.0E−05 7.6E+01 0.0E+00

θ4 for Xt−1,4 1.4E−03 2.9E−04 4.9E+00 1.2E−06

Fig. 6 Time series of daily SWC at 0.2 m split into training (up to the end of 2019) and testing, using a
scenario for simulation of precipitation and air temperature

of model (2). We comment only on residuals of SWC at 0.2 m, but results are similar
for other depths. Estimated coefficients are reported in Table 4. Residuals are stan-
dardized so they have zero mean and unit variance, and it is simpler to contrast their
values against quantiles of a standard normal distribution. The comparison against a
standard normal is useful for checking marginal features of residuals. Another feature
to inspect is the temporal correlation of residuals via the analysis of the empirical
autocorrelation and the empirical partial autocorrelation; these diagnostic checks are
routinely performed to assess a model’s mis-specification, and are all summarized, for
example, in Brockwell and Davies (2016)[Sect. 5.3, pp. 144 to 147].

The four panels of Fig. 6 highlight some interesting findings. The plot of residuals
over time (top left panel of Fig. 6) shows a pattern that displays some time depen-
dence. Therefore, residuals are not white noise. This is confirmed by the estimates
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of both autocorrelation and partial autocorrelation of residuals (bottom left and bot-
tom right panels, respectively, of Fig. 6): these two diagnostic plots suggest that an
auto-regressive model should provide some improvement of the fit. The robust fit of
model (2) with auto-regressive moving average (ARMA) is still under construction in
the FSDA toolbox that we have used for this research. Finally, from the top right panel
of Fig. 6 we observe that residuals are not Gaussian, but deviation from normality
appears very minor (see the reference dotted line, which is the density of a standard
normal). For deeper soil levels, results are broadly similar and thus not reported, but
are available upon request.

A concern that needs to be investigated is associated with the “direction” of the
model’s errors: it seems that the model underestimates some large values, as observed
standardized residuals larger than 3 occur quite often (compared with the theoretical
normal assumption). As a final summary, the model diagnostics suggest including
ARMA components and some adjustment for the possible presence of heavy tails;
this will be the subject of further ongoing research.

4.4 Forecast Scenario for 2020

Despite its simplicity, the model demonstrates good performance at all depths, with
an average adjusted R2 exceeding 0.7 for the observed data up to 31 December 2019.
As already highlighted in Sect. 4.3, we also noted some serial correlation in the resid-
uals, and approaches for handling this feature will be better investigated and suitably
addressed in further research. We now turn to the investigation of a genuine forecast
scenario using generated climate data of precipitation and air temperature. The climate
data are generated via scenario simulation on a daily basis for precipitation and air
temperature for all of 2020. We used the Weather Generator software developed by
Tomei et al. (2022) to perform a scenario generation. Here, we discuss in some detail
the two most “extreme” cases (i.e. shallowest and deepest soil levels) for illustrative
purposes. For all intermediate depths, we show all results and give some comments.

Figure 7 includes the training part and the forecast part, distinguished by a dotted
vertical line. In the training part, the agreement between the observed data and the
model results appears convincing. In the forecast part (2020), it is possible to see that
some sharp observed peaks are not accurately predicted by the model (mostly during
the dry period). This is probably due to inappropriate functioning of the field device.
This lack of accuracy is still visible at depths of 0.4 m and 0.6 m (see top left and top
right panels of Fig. 9).

Subsequently, we used the same generated weather to perform a similar check but at
a deeper level (SWC at 1.4 m). For this level, the training part is not fully satisfactory,
especially in 2017 and 2019when periods of severe drought were observed throughout
northern Italy. In this case, the forecast is relatively smooth, and the real observed
values are in agreement with the model results. Similar arguments hold for levels at
1m and 1.2 m, which are displayed in the bottom panels of Fig. 9.

123



Mathematical Geosciences

Fig. 7 Time series of daily SWC at 0.2 m split into the training (up to the end of 2019) and testing, using
scenario for simulation of precipitation and air temperature

Fig. 8 Time series of daily SWC at 1.4 m split into the training (up to the end of 2019) and testing, using
scenario for simulation of precipitation and air temperature

5 Discussion and Final Remarks

Wehave developed a statistical model to describe the temporal pattern of water content
at different depths in soil. SWC is a fundamental variable of water balance in soil,
influencing several agronomic, geological, and hydrological processes. The model
was developed starting from a dataset of meteorological and hydrological parame-
ters measured by a monitoring station on a hillslope very prone to shallow landslides
(Bordoni et al. 2015). In fact, shallow landslide triggering depends strongly on SWC
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Fig. 9 Time series of daily SWC at several depth, ranging from 0.4 to 1.2 m, with data split into training
(up to the end of 2019) and testing, using a scenario for simulation of precipitation and air temperature

values. Shallow failures are triggered when soil approaches or reaches saturated con-
ditions, namely values of SWC close to or equal to the total volume of voids, during
or immediately after intense rainfall events (Godt et al. 2009).

Despite the simplicity of the underlying mathematical model, the results obtained
are very satisfactory. The use of the proposed model might have benefits in water
management and other effects on shallow landslide predictions.We tested ourmethods
using standard goodness-of-fit measures and via a long-term scenario (1 year of daily
data).

One of the major benefits of our data-driven approach is the possibility of obtaining
accurate daily predictions relying on past data only (i.e., on data that are knownwithout
uncertainty). Another benefit is that we require very little physical instrumentation,
none of which is located underground, making the water content estimation feasible
for very large audiences.

There are limitations in our study, and we left some issues open to further research,
some of which are currently under investigation in parallel research projects. From a
statistical viewpoint, the selected models all display some correlation in the residuals,
and this suggests a more involved time series modelling. We try to fix this feature
by adding some with an ARMA structure (and their seasonal generalization), but that
quickly turns into an over-fitting. Additionally, fitting seasonal ARMA models when
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outlying observations are included requires specific software,which is not yet available
for multiple seasonalities, as we have found in our data via the SSA.

Another feature that we have overlooked is the mutual interaction of SWC at dif-
ferent depths and at different temporal lags. Addressing this multivariate response
problem requires methods that generalize those illustrated in Lowther et al. (2020),
which for our perspective require some fine-tuning for robustness checks. We believe
that the joint modelling of water content at different depths, robust fitting, and software
development open an avenue for further research.

In terms of the usability of our approach, we are investigating other sites with
different soil types and soil use, retrieving data from official worldwide sources. At
themoment,we have evidence that different soil compositions and plants have an effect
on SWC and on the speed of drying of the soil. The ability to make valid inferences
regarding the specific soil composition and plant coverage would require a larger set
of data, which are currently being collected.
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