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ABSTRACT

Van Herick technique is a qualitative tool for assessing the anterior chamber angle and can be exploited as a
simple screening alternative to gonioscopy. In our previous papers, we presented a novel instrument able to
automatically perform the Van Herick manoeuvre. Therefore, to fully automate the screening method from the
acquired images, it is still necessary to automatically determine the Van Herick grade. In this paper, we present
a deep learning algorithm for automatically determining the Van Herick grade. In particular, the performances
of three different Convolutional Neural Networks have been verified by acquiring the eye images of 80 patients.
All the networks return the Van Herick grade classification with sufficient accuracy for a screening system and,
after proper training, can offer a real-time response.
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1. INTRODUCTION

Glaucoma is one of the most diffused ophthalmic diseases worldwide and, specifically, Primary Angle Closure
Glaucoma (PACG) is the most aggressive type of Glaucoma; it may cause bilateral blindness in a very short
time making essential the prevention and screening.1 In particular, people with a Narrow Anterior Chamber
Angle (NACA), i.e. narrow iridocorneal angle, are more exposed to the development of PACG.2 Van Herick’s
technique can be used as a screening method to detect NACA and, consequentially, predict potential PACG
development. According to this non-contact, qualitative approach, the ACA width is estimated comparing the
Peripheral Anterior Chamber Depth (PACD) and the thickness of the cornea (CT).3,4 The width is then clas-
sified into 4 grades, i.e 1 for narrow-angle and 4 for wide-angle. The technique usually requires a slit lamp,
enlightening the limbus with a 60° angle, and trained personnel to perform the manoeuvre. The estimation
comes from the visual or digital image comparison between PACD and CT and so some uncertainty due to the
operator and conditions of the manoeuvre (illumination, position, etc.) can be introduced.5 Digital eye images
can be analyzed according to two complementary possible approaches: i) image recognition algorithms extracting
the PACD and CT measurements, and ii) Artificial Intelligence (AI) algorithms for classification of the images
according to the Van Herick grade (VHG).
In this paper, we consider AI approaches. In recent years, many studies have been brought on considering
the possible applications of machine learning on ophthalmic images.6,7 Considering the NACA detection, Fu8

proposed a deep learning algorithm applied to images captured with optical coherent tomography whereas Theer-
aworn et. al9,10 proposed a Support Vector Machine Method applied on images acquired using the classic slight
lamp approach. These approaches are not suitable for PACG screening operations mainly due to the cost of the
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instrumentation and for the need for qualified and highly trained personnel. In this context, the exploitation
of AI methods allows the reduction of complexity, and therefore the cost of the instrumentation. Moreover, the
use of such intelligent and automatic techniques, together with a suitable User Interface, allows execution of
the test even by less qualified personnel. In our previous paper, we presented a compact instrument capable of
automatically performing the manoeuvre11 and returning the most significant images12 of the eye. From these
images an expert can perform the visual comparison and hence assigns a Van Herick grade. To completely
automatize the technique, it is necessary to determine, in a fully automated way, the two key parameters, i.e.
PACD and CT, but this operation is not trivial and requires heavy image processing. The high computational
cost may result in a rather difficult implementation within a low-cost portable embedded system.
Therefore, we analyzed the potential of machine learning approaches by comparing the performance of three
types of Convolutional Neural Networks (CNN). The analysis has been performed using the MATLAB Deep
Network Designer tool. In the following, Section 2 describes the considered networks and the methods used to
compare their performance. The results are reported in Section 3, where the accuracy and confusion matrix of
the considered networks are presented. Finally, discussion and conclusions are drawn in Section 4.

2. METHODS

Eighty adult subjects, 30 males and 50 females, with ages ranging from 25 to 70 years were recruited from the
”IRCCS Fondazione G.B. Bietti per lo Studio e la Ricerca in Oftalmologia”, and informed consent was obtained
from each subject. The collected dataset has the characteristics described in in Table 1.

Charateristic N° of Patients

Sex
Male 30
Female 50

Age
<30 4
30-50 48
50-70 28

Eye Colour

Black 9
Blue 15
Brown 47
Green 9

Table 1. Enrolled subjects data.

Note that the subjects had also different eye pigmentation, thus allowing to train a network being capable to
generalize its functionality to a variety of eye colors. Standard Van Herick’s technique was firstly applied to
each patient’s right eye by highly trained personnel and the corresponding VHG was assigned. This value was
considered as the reference for the analysis of the CNNs performance. Immediately afterward, the subject was
analyzed using our automatic instrument, and the images of the right eye generated were used for the training
and verification of the CNNs. Since the instrument generated 2 to 4 images for each measurement, the total
number of images considered for this study was 277; the distribution of these images in the four VHGs is shown
in Table 2.

VHG Eye Images
1 55
2 62
3 54
4 106

Table 2. Number of images collected for each VHG.

It is worth noting that, by remaining faithful to the real distribution of the VHGs in the population, we made no
prior selection of the subjects, thus resulting in an higher number of collected images associated with VHG = 4.
As an example, in Figure 1 two typical images acquired by the instrument at the two extreme conditions, i.e.
VHG = 1 and VHG = 4, are shown.



(a) (b)

Figure 1. Typical images acquired with the instrument. Figure (a) shows a typical VHG = 1 eye, in which the two line
projections are quite closed, while Figure (b) shows a VHG = 4 with a wide distance between the two line projections.

Exploiting the Deep Network Designer tool of MATLAB, three different types of CNN were tested. Specifically,
the tested networks were: i) AlexNet, already used for finding the most significant images in our previous work,12

ii) GoogLeNet, and iii) ResNet. All the CNNs were just pre-trained by the MATLAB tool. The validation of
the networks was performed using the 40% images of the original dataset, while the remaining 60% images were
augmented and used for the networks training. Because the collected images were imbalanced towards the VHG
= 4, data augmentation was performed just on the training images, thus obtaining a balanced final training
dataset. Data augmentation was performed using a Python algorithm that randomly shifted, rotated, zoomed,
and changed the brightness of the original images. This operation was not performed using MATLAB, since the
Deep Network Designer tool was not able to control the number of images of the augmented set. It is important
to highlight that all the augmented images were used, with no post-processing and no manual selection, in order
to obtain a more robust training of the networks. The final augmented dataset, used for both training and
validation of the CNNs, is summarized in Table 3.

VHG Training Images Validation Images
1 4026 22
2 3996 25
3 3968 22
4 3969 43

Table 3. Dataset used for the networks training and validation.

After training, the performances of the CNNs were compared in terms of the capability of correctly classifying an
image according to its VHG class. The images classified by a network resulted in true-positive (TP), i.e. correctly
classified, false-positive (FP), i.e. incorrectly classified in a class, and false-negative (FN), i.e. incorrectly not
classified in a class. The performances of the networks were evaluated according to three metrics. Firstly,
Accuracy, defined as in 1 for the entire dataset describes the capability of a network to correctly classify an
image. Then, the Precision for a specific class C, defined as in 2, indicates the network capability to not label
different class images to class C. Finally, Recall for a specific class C, defined as in 3 represents the network
capability to not confuse class C images with other class images.

Accuracy(%) =
Correct

Total
∗ 100, (1)

PrecisionC(%) =
TPC

TPC + FPC
∗ 100, (2)

RecallC(%) =
TPC

TPC + FNC
∗ 100, (3)

where subscript C identifies the specific VHG class.



3. RESULTS

The results of the training of the GoogLeNet, ResNet and AlexNet are shown, respectively, in Figures 2.(a), 2.(b)
and 2.(c). In these images, the plot of the training accuracy, in blue, and the validation accuracy, in orange,
are shown with respect to the number of software iterations performed to train the networks. As shown in the
figure, the number of iterations is not equal for the different networks, since the training was performed until
the validation accuracy stabilizes. From these plots it is possible to observe that the ResNet network reaches
more faster a high value of accuracy, both for training and validation. Since the training and validation accuracy
grow together it is possible to exclude the possibility of overfitting. Moreover, AlexNet was the network that,
depending on the i -th iterations, had the higher variability in the accuracy; probably this result is due to the
fact that this network had the simplest configuration among the tested network.
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Figure 2. Accuracy plot of GoogLeNet (a), ResNet (b) and AlexNet (c) respect to the training iterations. Training
Accuracy (-) and Validation Accuracy (◦)

The performances of the networks were evaluated in terms of Recall and Precision exploiting the Validation
dataset. In Figures 3.(a), 3.(b) and 3.(c) the confusion matrix for each trained network is shown. The columns
represent the reference VHG (Target) while the rows the predicted VHG (Output). The main diagonal represents
the images that are correctly classified, while the other cells represent the images that are not correctly classified
and the incorrect VHG estimated for them. The percentage in each cell is calculated with respect to the total



validation image number. The last column represents the Precision, in green; the last row represents the Recall,
in green. The bottom right cell shows the overall accuracy for the trained network.
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Figure 3. Confusion matrix for the GoogLeNet (a), ResNet (b) and AlexNet (c). The main diagonal, green cells, represents
the correctly classify images. The light grey row shows the Recall data, in green. The light grey column shows the Precision
data, in green. In the bottom right cell there is the overall Accuracy data.



4. DISCUSSION AND CONCLUSION

In this preliminary study, we have shown that CNNs can be used to estimate the Van Herick grade. The
performances of all the tested networks are suitable for real-time estimation of Van Herick grade in portable
screening instruments, without requiring a huge computational power.
All the networks have similar characteristics. The overall accuracy is in the order of 80% for each network,
showing a good accuracy even if the training dataset is still limited. Analyzing the obtained results, even if the
networks work in a very similar way, it is possible to appreciate that ResNet has better behaviour, but at the
same time is the most complex network, with the highest computational cost in training phase, among the CNNs
that have been tested.
Recall results show that the probability to correctly classify a VHG = 1 and VHG = 2 is higher than 85%.
Differently, the Recall value for VHG = 4 is lower. This recall reduction could be due to the intrinsic difference
of the positions of the light line projections among the images at different grades. In fact, considering the VHG
= 4, a small misalignment of the light line respect to the the limbus position produces a large variation of the
position of the projected line on the iris; thus VHG = 4 can be easily classified as a VHG = 3 or worstly as VHG
= 2. This phenomenon result also in a low value of Precision for VHG = 2, for all the tested networks, and
VHG= 3, mostly for AlexNet. In fact, networks confuse VHG = 4 with the other grades increasing the number
of images incorrectly classified as other grades. It is possible to observe that each network incorrectly classifies
at least the 7% of VHG = 4 images as VHG = 2. Differently, for the other grades, this critical issues tends to
be reduced, causing less confusion in the classification.
Much more work is still needed to develop a specific CNN for our automatic instrument. However, we can confirm
that the results obtained to date are encouraging and that hopefully, they will improve by having a larger set of
training images. In addition, it will be important to improve the detection of the correct images for measurement
in order to feed the VHG convolutional network with more accurate images and reduce classification confusion.
Simultaneously, we are also developing a deterministic approach capable of providing a measure of the distance
between the projected light lines. In this case, the effort is to reduce the computational load in order to make
the algorithm implementable in a compact and portable system.

REFERENCES

[1] Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C.-Y., “Global prevalence of
glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis,”
Ophthalmology 121(11), 2081–2090 (Nov 2014).

[2] Riva, I., Micheletti, E., Oddone, F., Bruttini, C., Montescani, S., De Angelis, G., Rovati, L., Weinreb, R. N.,
and Quaranta, L., “Anterior chamber angle assessment techniques: A review,” J Clin Med 9, 3814 (Nov
2020).

[3] Van Herick, W., Shaffer, R. N., and Schwartz, A., “Estimation of width of angle of anterior chamber.
incidence and significance of the narrow angle. incidence and significance of the narrow angle,” Am J
Ophthalmol. 68(4), 626–629 (Oct 1969).

[4] Foster, P. J., Devereux, J. G., Alsbirk, P. H., Lee, P. S., Uranchimeg, D., Machin, D., Johnson, G. J.,
and Baasanhu, J., “Detection of gonioscopically occludable angles and primary angle closure glaucoma by
estimation of limbal chamber depth in Asians: modified grading scheme,” Br J Ophthalmol. 84 (2), 186–192
(Feb. 2000).

[5] Leung, M., Kang, S. S. O., Turuwhenua, J., and Jacobs, R., “Effects of illumination and observation angle
on the Van Herick procedure,” Clin Exp Optom. 95(1), 72–77 (Jan 2012).

[6] Tong, Y., Lu, W., Yu, Y., and Shen, Y., “Application of machine learning in ophthalmic imaging modalities,”
Eye and Vision 7 (2020).

[7] Khanafer, M. and Shirmohammadi, S., “Applied ai in instrumentation and measurement: The deep learning
revolution,” IEEE Instrumentation Measurement Magazine 23, 10–17 (Oct 2020).

[8] Fu, H., Baskaran, M., Xu, Y., Lin, S., Wong, D. W. K., Liu, J., Tun, T. A., Mahesh, M., Perera, S. A., and
Aung, T., “A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical
Coherence Tomography Images,” American Journal of Ophthalmology 203, 37–45 (2019).



[9] Theeraworn, C., Kongprawechnon, W., Kondo, T., Bunnun, P., Nishihara, A., and Manassakorn, A., “Au-
tomatic screening of narrow anterior chamber angle and angle-closure glaucoma based on slit-lamp image
analysis by using support vector machine,” in [2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) ], 5887–5890 (2013).

[10] Theeraworn, C., Kongprawechnon, W., Kondo, T., Bunnun, P., Nishihara, A., and Manassakorn, A., “Auto-
matic screening algorithm for narrow anterior chamber angle and angle-closure glaucoma based on slit-lamp
image analysis,” Kasetsart Journal - Natural Science 47, 940–952 (01 2013).

[11] Cassanelli, D., Gibertoni, G., Cattini, S., Quaranta, L., Riva, I., Bruttini, C., Angelis, G. D., and Rovati,
L., “A new screening system for the estimation of ocular anterior chamber angle width,” in [Ophthalmic
Technologies XXXI ], Hammer, D. X., Joos, K. M., and Palanker, D. V., eds., 11623, 101 – 105, International
Society for Optics and Photonics, SPIE (2021).

[12] Fedullo, T., Cassanelli, D., Gibertoni, G., Tramarin, F., Quaranta, L., de Angelis, G., and Rovati, L., “A
machine learning approach for a vision-based van-herick measurement system,” in [2021 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC) ], 1–6 (2021).


	training of an artificial intelligence
	Training of an artificial intelligence algorithm for automatic
	Introduction
	Methods
	Results
	Discussion and Conclusion


