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Abstract: We consider two Möbius transformations that map two variables, compute
their invariants and describe the ordinary differential equations that are kept invariant
under these transformations.

1 Introduction: the Möbius transformation for one variable

It is well know that the Möbius transformation plays an important role in the study of
the integrability of certain nonlinear differential equations. This appears, for example, in
the Painlevé analysis of differential equations [7] and in the study of symmetry-integrable
evolution equations [2]. In this introduction, we sum up the well known cases of the
invariance of ordinary differential equations under one-variable Möbius transformations,
which sets the stage for the study of the two-variable Möbius transformations.

Consider two variables u and x, where u depends on x. We now apply the Möbius
transformation on u, as follows:

M :


u(x) 7→ v(x̄) =

α1u(x) + β1
α2u(x) + β2

x 7→ x̄ = x.

(1.1)

Here

Φ =

(
α1 β1
α2 β2

)
∈ SL(2,R). (1.2)

This is an example of a one-variable Möbius transformation. We compute the invariants of

sl(2,R) using the basis { ∂
∂u
, u

∂

∂u
, u2

∂

∂u
}, in order to find all ordinary differential equations

that are kept invariant under (1.1). The two fundamental invariants [5] are ω1 = x and the

Schwarzian derivative S =
uxxx
ux
− 3

2

u2xx
u2x

(see for example [6]), whereby the higher-order

invariants are the x-derivatives of S, i.e. {Sx, Sxx, . . .}. We conclude that all ordinary
differential equations that are invariant under (1.1) are of the form

Ψ(x, S, Sx, Sxx, . . . , Smx) = 0, Smx :=
dmS

dxm
, (1.3)
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where Ψ is an arbitrary smooth function. The 3rd-order equation Ψ(x, S) = 0 is the lowest
order equation that is invariant under (1.1). If we assume that Ψ(x, S) = 0 can be solved

algebraically for S, we obtain the equation uxxx =
3

2

u2xx
ux

+ uxφ(x), where φ is an arbitrary

smooth function. This has been reported in [3].

Exchanging the roles of u and x in the Möbius transformation (1.1), so that x is mapped

instead of u, we obtain the fundamental invariants ω1 = u and ω2 =
uxxx
u3x
− 3

2

u2xx
u4x
≡ S

u2x
.

The equations that are invariant under this Möbius transformation then take the form [1]

Ψ(u, ω2,
dω2

du
,
d2ω2

du2
, . . . ,

dmω2

dum
) = 0. (1.4)

The aim of the current letter is to consider the cases where the Möbius transforma-
tion acts on two variables and to obtain the ordinary differential equations that are kept
invariant under those transformations. This gives rise to two cases, namely Case 1 and
Case 2, as reported in the next section.

2 Möbius transformations for two variables

We discuss two cases, whereby the Möbius transformation acts on two variables.

Case 1: Consider the following Möbius transformation that acts on the two dependent
variables u1(x) and u2(x), as follows:

M :



u1(x) 7→ v1(x̄) =
a11u1(x) + a12u2(x) + b11
c11u1(x) + c12u2(x) + β

u2(x) 7→ v2(x̄) =
a21u1(x) + a22u2(x) + b21
c11u1(x) + c12u2(x) + β

x 7→ x̄ = x.

(2.1)

Here

Φ =

 a11 a12 b11
a21 a22 b21
c11 c12 β

 ∈ SL(3,R). (2.2)

We construct the Lie generators of the corresponding infinitesimal transformation of (2.1)
given by SL(3,R). A basis for the 8-dimensional matrix Lie algebra sl(3,R) in given by
eight 3×3 matrices {Xj}. Recall that Φ = exp(εX), where Φ ∈ SL(3,R) and X ∈ sl(3,<).
Since det Φ = 1 and det Φ = exp(εTrX), it follows that Tr (Xj) = 0 for all j = 1, 2, . . . , 8.
Applying the above matrices, we obtain the following Lie generators for the basis of the
8-dimensional Lie algebra sl(3,R):

{Z1 =
∂

∂u1
, Z2 =

∂

∂u2
, Z3 = u1

∂

∂u1
, Z4 = u2

∂

∂u2
, Z5 = u1

∂

∂u2
, Z6 = u2

∂

∂u1
,
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Z7 = u21
∂

∂u1
+ u1u2

∂

∂u2
, Z8 = u1u2

∂

∂u1
+ u22

∂

∂u2
}. (2.3)

We refer the reader to the books [5] and [4] for details. We now compute the invariants
for the Möbius transformation (2.1) up to order four. That is, we find the invariants I of

sl(3,R) with generators (2.3). The conditions are Z
(3)
j I = 0, j = 1, 2, . . . , 8, where Z(3)

denotes the 3rd prolongation of Zj , I is assumed to depend on x, u1, u2 as well as all
derivatives with respect to x up to order four. This leads to the following general solution
for this condition: I = F (ω0, ω1, ω2), where, besides the obvious invariant ω0 = x, we
obtain two more invariants ω1 and ω2, namely

ω1 =
1

(u1,xu2,xx − u1,xxu2,x)2

(
3u21,xu2,xxu2,xxxx − 4u21,xu

2
2,xxx − 6u1,xu1,xxxu

2
2,xx

−3u1,xu1,xxxxu2,xu2,xx + 6u1,xu1,xxu2,xxu2,xxx − 3u1,xu1,xxu2,xu2,xxxx

+8u1,xu1,xxxu2,xu2,xxx + 6u1,xxu1,xxxu2,xu2,xx − 6u21,xxu2,xu2,xxx

− 4u21,xxxu
2
2,x + 3u1,xxu1,xxxxu

2
2,x

)
(2.4a)

ω2 =
1

(u1,xu2,xx − u1,xxu2,x)3

(
9u21,xu1,xxxxu

3
2,xx + 8u31,xxxu

3
2,x − 8u31,xu

3
2,xxx

+24u21,xu1,xxxu2,xu
2
2,xxx − 24u1,xu

2
1,xxu2,xu

2
2,xxx − 24u1,xu

2
1,xxxu

2
2,xu2,xxx

−24u21,xu1,xxxu
2
2,xxu2,xxx + 24u1,xu

2
1,xxxu2,xu

2
2,xx + 9u21,xxu1,xxxxu

2
2,xu2,xx

−24u1,xxu
2
1,xxxu

2
2,xu2,xx − 6u1,xxu1,xxxu1,xxxxu

3
2,x + 24u21,xxu1,xxxu

2
2,xu2,xxx

+24u21,xu1,xxu2,xxu
2
2,xxx + 6u31,xu2,xxu2,xxxu2,xxxx − 9u21,xu1,xxu

2
2,xxu2,xxxx

−6u21,xu1,xxxu2,xu2,xxu2,xxxx + 6u1,xu1,xxu1,xxxu
2
2,xu2,xxxx

+18u1,xu
2
1,xxu2,xu2,xxu2,xxxx − 6u21,xu1,xxu2,xu2,xxxu2,xxxx

−9u31,xxu
2
2,xu2,xxxx − 6u21,xu1,xxxxu2,xu2,xxu2,xxx

+6u1,xu1,xxu1,xxxxu
2
2,xu2,xxx − 18u1,xu1,xxu1,xxxxu2,xu

2
2,xx

+ 6u1,xu1,xxxu1,xxxxu
2
2,xu2,xx

)
. (2.4b)

Higher-order invariants are given by the x-derivatives of ω1 and ω2. From the invariants ω0,
ω1 and ω2, we conclude that the 4th-order semilinear system of two ordinary differential
equations that are invariant under the Möbius transformation (2.1) has the following form:

u1,xxxx = − 1

6(u1,xu2,xx − u1,xxu2,x)

[
8u21,xxxu2,x − 8u1,xxxu1,xu2,xxx
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−12u1,xxxu1,xxu2,xx + 12u21,xxu2,xxx + k1(x)(6u21,xu2,xxx − 6u1,xu2,xu1,xxx

− 9u1,xu1,xxu2,xx + 9u21,xxu2,x)

]
+ k2(x)u1,x, (2.5a)

u2,xxxx = − 1

6(u1,xu2,xx − u1,xxu2,x)

[
− 8u1,xu

2
2,xxx + 8u1,xxxu2,xu2,xxx

+12u2,xxxu1,xxu2,xx − 12u22,xxu1,xxx + k1(x)(−6u22,xu1,xxx + 6u1,xu2,xu2,xxx

+ 9u2,xu1,xxu2,xx − 9u22,xxu1,x)

]
+ k2(x)u2,x, (2.5b)

where k1 and k2 are arbitrary functions of x. We remark that the same system of 4th-order
equations (2.5a)-(2.5b) follows by applying the Lie symmetry invariance condition with
the Lie symmetry basis generators (2.3) for a general system of two ordinary differential
equations up to order four. There exists no system of two 1st-order, two 2nd-order or
two 3rd-order ordinary differential equations that are invariant under the Möbius trans-
formation (2.1). Of course higher order systems that are invariant under (2.1) can be
constructed by considering the x-derivatives of ω1 and ω2. Those systems are of the form

Ψ1(x, ω1, ω2, ω1,x, ω2,x, . . .) = 0, Ψ2(x, ω1, ω2, ω1,x, ω2,x, . . .) = 0.

Since the transformation (2.1) maps solutions to solutions for those equations that are
kept invariant, we can use the transformation to map special solutions of the equations
to new solutions that will contain the arbitrary parameters in the transformation (2.1).
For example, for system (2.5a)-(2.5b) with k1 = k2 = 0, (2.1) maps the special solution

u1 = x, u2 = x2 to the solution u1 =
1

x2 + s1x+ 1
and u2 =

x+ s2
x2 + s1x+ 1

, where s1 and

s2 are arbitrary constants (we have set some of the constants in (2.1) to zero and some
to one). We then map the latter solution again by (2.1) to obtain the following general
solution of system (2.5a)-(2.5b) with k1 = k2 = 0:

u1(x) =
b11x

2 + q1x+ q2
x2 + q3x+ q4

, u2(x) =
b21x

2 + q5x+ q6
x2 + q3x+ q4

. (2.6a)

Here q1 = a12 + s1b11, q2 = a11 + b11 + s2a12, q3 = s1 + c12, q4 = c11 + s2c12 + 1,
q5 = a22 + s1b21 and q6 = a21 + b21 + s2a22. Note that the solution (2.6a) contains eight
arbitrary constants, taking condition (2.2) into account.

Case 2: Another possibility for a two-variable Möbius transformation that is associated
with SL(3,R) is to consider one dependent variable u(x) and then apply the transformation
on both u and x, as follows:

M :


x 7→ x̄ =

a11x+ a12u(x) + b11
c11x+ c12u(x) + β

u(x) 7→ v(x̄) =
a21x+ a22u(x) + b21
c11x+ c12u(x) + β

,

(2.7)



5

taking into account condition (2.2). In this case we obtain the following basis for the
corresponding 8-dimensional Lie algebra sl(3,R):

{Z1 =
∂

∂x
, Z2 =

∂

∂u
, Z3 = x

∂

∂x
, Z4 = u

∂

∂u
, Z5 = x

∂

∂u
, Z6 = u

∂

∂x
,

Z7 = x2
∂

∂x
+ xu

∂

∂u
, Z8 = xu

∂

∂x
+ u2

∂

∂u
}. (2.8)

Computing the invariants up to order seven, we find only one, namely the following 7th-
order invariant:

ω1 =
u4xxu7x

(45uxxuxxxu4x − 9u2xxu5x − 40u3xxx)5/3

+
7

18(45uxxuxxxu4x − 9u2xxu5x − 40u3xxx)8/3

[
675u4xxu

4
4x + 1125u34xu

2
xxxu

3
xx

−1890u5xu
2
4xuxxxu

4
xx − 270u6xu

2
4xu

5
xx − 4500u24xu

4
xxxu

2
xx + 405u25xu4xu

5
xx

+1800u5xu4xu
3
xxxu

3
xx + 450u6xu4xu

2
xxxu

4
xx + 4800u4xu

6
xxxuxx + 108u25xu

2
xxxu

4
xx

− 162u6xuxxxu
5
xxu5x − 960u5xu

5
xxxu

2
xx + 27u26xu

6
xx − 1600u8xxx

]
. (2.9)

Searching for all ordinary differential equations that admit the Lie symmetries (2.8) up to
order seven, we obtain two equations, namely the 5th-order equation

u5x =
5uxxx
9u2xx

(
9u4xuxx − 8u2xxx

)
, (2.10)

as well as the 7th-order equation

ω1 = k, (2.11)

where ω1 is given by (2.9). Obviously equation (2.10) is not related to an invariant of
the Möbius transformation (2.7) but this equation does admit the Lie symmetry algebra
sl(3,R) with basis (2.8). Therefore, the Möbius transformation (2.7) does map solutions to
new solutions for both (2.10) and (2.11). We remark that (2.10) can be solved in general.
One way to obtain the general solution is to use the substitution r(x) = uxx, by which
(2.10) reduces to a 3rd-order equation which admits seven Lie point symmetries, where
the 3rd-order equation is linearizable by a point transformation. An alternate way is to
make us to use the Möbius transformation (2.7) as follows. Consider (2.10) in terms of
the variable v(x̄) with the special solution v(x̄) = x̄2. Applying the transformation (2.7)
we have

x̄2 =
a21x+ a22u(x) + b2
c11x+ c12u(x) + β

where x̄ =
a11x+ a12u(x) + b11
c11x+ c12u(x) + β

. (2.12)

By solving u(x) from (2.12) and taking into account condition (2.2), we easily obtain the
general solution of (2.10).
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Special solutions of the 7th-order equation (2.11) can of course also be mapped into
new multi-parameter solutions by the transformation (2.7). A further analysis of equation
(2.11), including a detailed Lie symmetry analysis, will be published elsewhere.

Concluding Remarks: The two reported cases of two-variable Möbius transformations
reveal that the lowest order ordinary differential equations that are invariant under these
transformations are rather complicated and of high order, namely a 4th-order system of
two equations in Case 1 and a 7th-order scalar equation in Case 2. In Case 1, for the
Möbius transformation (2.1), we show that the equations that result from the invariants
of the Lie algebra with basis (2.3) coincided with the Lie symmetry invariance classification
of the equations for this Lie algebra. However, in Case 2, for the Möbius transformation
(2.7), we find that the Lie symmetry algebra with basis (2.8) results in both the 5th-order
equation (2.10) and the 7th-order equation (2.11), whereby the 5th-order equation (2.10)
is not related to an invariant of this transformation.
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