
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

D. Borsatti et al., "Modeling Digital Twins of Kubernetes-Based Applications," 2023
IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia,
2023, pp. 219-224

The final published version is available online at:

https://doi.org/10.1109/ISCC58397.2023.10217853

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/ISCC58397.2023.10217853

Modeling Digital Twins of Kubernetes-Based
Applications

Davide Borsatti∗, Walter Cerroni∗, Luca Foschini∗, Genady Ya. Grabarnik†, Filippo Poltronieri‡,
Domenico Scotece∗, Larisa Shwartz§, Cesare Stefanelli‡, Mauro Tortonesi‡, Mattia Zaccarini‡

∗ University of Bologna, Bologna, Italy
Email: {davide.borsatti,walter.cerroni,luca.foschini,domenico.scotece}@unibo.it

† Department of Mathematics and Computer Science, St. John’s University, Queens, NY, USA
Email: grabarng@stjohns.edu

§ Operational Innovation, IBM TJ Watson Research Center, NY, USA
Email: lshwart@us.ibm.com

¶ Distributed Systems Research Group, University of Ferrara, Ferrara, Italy
Email: {filippo.poltronieri,cesare.stefanelli,mauro.tortonesi,mattia.zaccarini}@unife.it

Abstract—Kubernetes provides several functions that can help
service providers to deal with the management of complex
container-based applications. However, most of these functions
need a time-consuming and costly customization process to
address service-specific requirements. The adoption of Digital
Twin (DT) solutions can ease the configuration process by
enabling the evaluation of multiple configurations and custom
policies by means of simulation-based what-if scenario analysis.
To facilitate this process, this paper proposes KubeTwin, a
framework to enable the definition and evaluation of DTs of
Kubernetes applications. Specifically, this work presents an in-
novative simulation-based inference approach to define accurate
DT models for a Kubernetes environment. We experimentally
validate the proposed solution by implementing a DT model of
an image recognition application that we tested under different
conditions to verify the accuracy of the DT model. The soundness
of these results demonstrates the validity of the KubeTwin
approach and calls for further investigation.

Index Terms—Service Management and Orchestration, Kuber-
netes, Simulation, Optimization.

I. INTRODUCTION

The management of large-scale microservice architectures
requires powerful orchestration solutions such as Kubernetes,
the predominant tool for this task. Kubernetes provides a
plethora of functions to manage the different aspects of
service provisioning, such as cluster creation and federation,
automated replication, and updates management. These func-
tions provide a toolbox for service managers who need to
configure the behavior of Kubernetes applications and tune
their performance.

Finding the most appropriate set of configurations for a Ku-
bernetes application represents a challenging and compelling
problem [1], [2], that requires evaluating a large set of potential
configuration parameters and perhaps even considering the
realization of custom resource management solutions (e.g., for
smart scheduling of software components). For example, there
is the need to evaluate adequate lower and upper bounds for
the number of replicas to associate at each microservice to
avoid over-scaling or over-provisioning. In turn, this evalua-
tion process requires dealing with time-consuming and costly

operations such as the implementation of custom testbeds or
configuring complex cloud-based Kubernetes deployments. To
fully benefit from the potential of orchestration tools such as
Kubernetes, there is a need for solutions that can approximate
the behavior of Kubernetes applications, thus allowing the
evaluation of different configurations safely and quickly.

Digital Twin (DT) approaches could represent a compelling
step forward for the resolution of this problem. In fact, DT
approaches enable what-if scenario analysis [3], [4], thus
implementing a faster (and parallelizable) process for the
exploration of a larger number of configurations, and even
allowing the rapid prototyping of custom Kubernetes functions
(e.g., autoscaling, scheduling). As a result, DTs could be very
effective in speeding up the parameter identification process, as
well as in significantly broadening its scope, with potentially
significant costs savings [5], [6].

However, defining an accurate DT of a Kubernetes applica-
tion is a challenging task. Several variables need modelings,
such as the average container processing time, the commu-
nication latency between the cluster’s nodes, and internal
Kubernetes control loops. These parameters can be defined
a priori or collected from historical data through statistical
analysis. It is important to note that the quality of these
parameters influences the ability of the DT to accurately
reenact the behavior of its Kubernetes application.

Among these variables, modeling the service time of each
microservice arguably represents the most critical step in the
realization of the DT. At the moment of this writing, there is
no consolidated solution to model the statistical distribution of
the response time of Kubernetes applications. We believe that
a good statistical distribution of the service time is essential
to have a simulation environment with a good approximation
of the modeled application. To contribute to this field, we
propose KubeTwin, a framework that enables the definition
of DTs of Kubernetes applications. This paper analyzes the
problem of parameter identification for creating an accurate
statistical description of a Kubernetes application. We present
a generically applicable solution, which can analyze a set of

observations/metrics collected from a Kubernetes application
to create its DT model.

To demonstrate the viability of this solution, this paper
presents the case study of a realistic image recognition ap-
plication that we implemented and deployed on a Kubernetes
testbed. Experimental results show how the proposed solution
is capable of creating a DT model which can provide a
good approximation of the real system even under different
working conditions. We believe that the proposed framework is
a valuable contribution towards the adoption of DTs for what-
if scenario analysis which motivates us to further research.

II. DIGITAL TWINS OF KUBERNETES APPLICATIONS

KubeTwin is a framework we realized to define a DT of
a Kubernetes environment. With the term environment, this
paper specifies the overall components behind a Kubernetes
application, such as pods, computing resources, services (e.g.,
load balancers), and so on. Each component is a “per se DT”
that coexists with other DTs of Kubernetes components in a
larger Kubernetes environment. This concept is referred to as
“composability”, a foundational property of DT discussed by
Minerva et al. in [7].

With KubeTwin we can reenact the whole Kubernetes envi-
ronment at a very fine-grained level, simulating every service
request from the moment of its generation to the delivery of
the response.

The overall architecture and the KubeTwin main compo-
nents are visible in Fig. 1. Specifically, computing nodes,
called KTNodes, have resources with configurable characteris-
tics, e.g., CPU or GPU cores, and can be of two different types:
edge nodes, e.g., edge servers hosted in small-size data centers
located close to the end-user premises, and medium- and large-
size data centers located at Cloud facilities. KTNodes are
logically divided into clusters, which group a set of KTNodes
in a specific location.

A KTNode can execute multiple KTPods, each one hosting
a single KTContainer. Within KubeTwin, a KTContainer is the
single unit of execution, implementing a single software com-
ponent describing the amount of CPU and memory required

KTPodScaler

Creates additional
replicas based on
collected metrics

En
d-

po
in

t

KTDNS

Lookup for KTServices

KTService

KTScheduler

C
LU

ST
ER

Che
ck

s f
or

av
ail

ab
le

no
de

s

KubeTwin

 KTPod

KTNode

KTContainer
<

KTReplicaSet

 KTPod

KTContainer
<

KTNode KTNode KTNode

Fig. 1. The KubeTwin Architecture.

for its execution. Furthermore, KubeTwin associates with each
KTContainer a statistical distribution modeling the response
time of the microservice it is simulating.

Finally, to simulate the request processing at each container
level we adopt a G/G/1/FIFO queuing model. Specifically,
KubeTwin users can configure several parameters, such as the
maximum queue size and the service request arrival rates asso-
ciated with a specific software component. For the latter, Ku-
beTwin provides several choices of widely used distributions:
exponential, log-normal, Pareto family, and others. In case of
multiple replicas of the same service, we implement a queue
before each container of the replica set. This choice is justified
by the default load-balancing mechanism of Kubernetes, which
redirects each request to a pod of the replica set with a given
probability. Let us note that finding a suitable configuration for
these parameters is important to define an accurate DT model,
i.e., a model that can mimic the behavior of a Kubernetes
environment with a good degree of accuracy.

Regarding the scheduling process, the KTScheduler is one
of the main components for the management of computing
resources according to a set of configurable policies, including
the result of automated scaling procedures. Specifically, the
KTScheduler is responsible for scheduling, i.e., allocating,
KTPods onto KTNodes. This association is implemented via
a filter-and-score procedure that analyzes the residual capacity
of the pool of computing resources to assign them a score –
according to a scheduling policy – and then selects the node
with the highest score.

All the above components enable a fine-grained evaluation
of a Kubernetes DT, thus allowing KubeTwin adopters to
run what-if scenario analysis and evaluate the performance of
their Kubernetes environments under different conditions (e.g.,
workload and computing changes). Following this approach,
the outcomes of DT evaluations can be fed into custom policies
and configurations for the real Kubernetes environment.

III. MODEL AND PARAMETERS IDENTIFICATION

As mentioned in the previous section, an accurate statistical
description of the target application is necessary to have a
reliable DT model of the Kubernetes environment. For this
task this paper proposes an innovative simulation-based infer-
ence procedure [8] that identifies the configuration parameters
described above. Specifically, the inference procedure explores
the space of possible configuration parameters, comparing the
metrics collected from a real-life Kubernetes application and
the outcome of a DT simulation with a sample parameter set,
and identifying the parameter set Σ that minimizes the statisti-
cal difference between those two observations. In other words,
our procedure solves the following optimization problem:

arg min
Θ, Σ

𝑓 (𝑥, 𝑦) (1)

where 𝑥 represents a set of observations taken from the
Kubernetes application and 𝑦 is the observations taken from
a simulation run using a model Θ with parameters Σ. The
objective function 𝑓 (𝑥, 𝑦) measures the statistical difference

between the probability density functions of 𝑥 and 𝑦, thus
indicating how distant the observations generated from the DT
are from the ones generated from the Kubernetes application.

Simulation-based inference represents a relatively compu-
tationally intensive process, and in our case problem (1)
typically has to deal with a relatively large search space
to explore. However, in our experience, simulation-based
inference approaches are far more accurate and robust than
other approaches leveraging simplistic approximations, e.g.,
matching the mean processing times values of the target
microservices.

Let us note that while we expect that the observations 𝑥

come from metrics collected from a Kubernetes application,
the observations 𝑦 are generated by the DT with a model
configuration Θ = 𝑚1, 𝑚2, . . . , 𝑚𝑛. Θ is a set containing 𝑛

– where 𝑛 is the number of microservices composing the
application – random variables 𝑚𝑖 , describing the processing
time of the corresponding microservices.

As for the modeling of the random variable 𝑚𝑖 ∈ Θ, the
simulation-based inference procedure provides several pos-
sibilities to describe their distributions. Therefore, users can
choose the distribution that could better fit the microservices
processing times: a log-normal distribution, a gaussian distri-
bution, a Gaussian Mixture Model (GMM) with a configurable
amount of components, and so on.

To solve problem (1), the optimizer looks for the configu-
ration parameters 𝜎𝑖 ∈ Σ of all random variables 𝑚𝑖 ∈ Θ that
allow the DT to produce observations 𝑦 that are most statis-
tically similar to 𝑥. This procedure allows the DT to predict
the behavior of the Kubernetes application with higher preci-
sion. There are several possible methods to measure statisti-
cal similarity, including calculating the Kolmogorov–Smirnov
statistics of two observations 𝑥 and 𝑦 [9], their Wasserstein
distance [10], or their Wilcoxon-Mann-Withey distance [11].
The outcome of the simulation-based inference procedure
will be the service time configurations for Θ to be used for
reenacting the DT model of the Kubernetes application.

With regard to the problem complexity, it is worth noting
that the type of distribution influences the solution of the
optimization problem (1), i.e., increases or decreases the
dimension of the solutions’ search space. Specifically, finding
a solution to the optimization problem (1) would require
exploring a relatively large search space, which we can ap-
proximate using the following:

𝐷 ≈ 𝑛 ×
𝑛∑︁
𝑖=1

𝑘𝑚𝑖
(2)

where 𝑛 is the number of microservices and 𝑘𝑚𝑖
the number

of components chosen to describe the random variable 𝑚𝑖 .
Concerning the optimization algorithm to implement

the simulation-based inference procedure, we
leverage the Quantum-inspired Particle Swarm
Optimization (QPSO) algorithm of the ruby-mhl library
(https://github.com/mtortonesi/ruby-mhl). In our experience,
this metaheuristic approach strikes a good trade-off between

convergence speed and capability to effectively explore large
spaces in search for global minima [4].

IV. USE-CASE APPLICATION

In this paper, we choose an image recognition application
as a reference use case to be discussed. The image recognition
service is an application that lets users identify objects in
a picture, such as a photo captured by the user’s phone or
camera feeds’ frames. When invoked, the application returns
a message containing the names of the recognized objects to
the user who requested the service. It is conceivable that this
application would run on dedicated computing resources given
its high computational requirements, thus allowing users to
save the battery life of their equipment [12].

The image recognition app is a common example of an edge
computing application, as it can process raw data produced
by near cameras or Closed Circuit Television (CCTV) [13].
Processing the images directly at the edge of the network
is beneficial in reducing network latency and usage since
it avoids uploading collected image frames to the cloud for
processing.

We built the image recognition app as a chain of two
different microservices, the first implementing image resizing
and the second implementing an object recognition algorithm.
Both microservices leverage the Flask Python framework
to allow network communication via REST-ful APIs. The
first microservice of the chain (MS1) takes the image and
normalizes it creating a representative array. Then MS1 sends
this array to MS2, which classifies the image by leveraging
a pre-trained model classifier. The final output of MS2 is the
name of the object recognized from the input image. This
information is then relayed back to the user through MS1.

Regarding the orchestration, we encapsulated MS1 and MS2
as two different containers allowing Kubernetes to manage
and orchestrate them. Then, we configured a small-scale
testbed composed of two Virtual Machines (VM) with four
vCPU cores and 8GB of RAM each, running a standard
installation of Kubernetes. To make the image recognition
application available, we deploy the two microservices as two
different containers running in separate pods. In addition, for
each microservice, we define a Kubernetes NodePort Service
for handling the services’ name resolution, load balancing
functions, and exposing the application endpoints. Finally, we
defined a deployment for each microservice to manually scale
the number of replicas of each component.

V. EXPERIMENTAL RESULTS

The first step to define an accurate DT model for the
image recognition application regards the metrics collection.
Specifically, we are interested in estimating the processing
time for MS1 and MS2 and the Time To Resolution (TTR),
i.e., the total time to serve a generic request in a baseline
scenario using the testbed deployment described above. The
baseline configuration is obtained by analyzing the application
behavior in a steady-state scenario, using one replica for each

microservice and a workload of non-overlapping requests (i.e.,
no queue time).

A. Parameters Inference

To collect these metrics, we developed a request generator
using the Python programming language that can send requests
with a configurable interarrival time to an HTTP endpoint.
For the baseline scenario, we configured the request generator
to send 2000 requests with a rate of one request per second
(RPS). With this configuration, the interarrival time between
subsequent requests is much larger than the average service
time (around 50ms), thus canceling the requests’ queuing time.
In fact, minimizing the effect of queuing times is essential to
properly capture the behavior of service processing times and
to make sure the system under analysis is stable and operating
in steady state conditions.

For each request, we collect the end-to-end Time To Reso-
lution (TTR) that we measure as the time needed to complete
an HTTP request to the image recognition application. In
addition, we also collect the service time for MS1 and MS2 by
collecting the time required to execute the instructions within
each HTTP function from their logs.

Then we compute the Simple Moving Averages (SMA) with
𝑛 = 50 of the processing times for all observations of MS1
and MS2. The behavior obtained by these calculations shows
that MS1 and MS2 appear as stationary processes since their
moving averages do not have high variations. Specifically, the
SMA of MS1 is around 10 ms, while the one for MS2 is
around 30 ms.

By assuming the stationarity, a G/M/1 queue model should
describe well the service processing function of both mi-
croservices. Therefore, the simulation-based inference process
described in Section III should be capable to find a DT model
that well fits the image recognition application.

The first requirement for the fitting process is to define a Ku-
beTwin configuration file containing the description of the two
microservices, the available computing resources, and other
Kubernetes-related configurations. For these experiments, we
would fit the processing time of MS1 and MS2 using two
GMM random variables with three components. Each compo-
nent has a weight, a mean, and a sigma parameter for which we
fix lower and upper bounds to help the optimization algorithm
to converge.

Concerning the QPSO parameters, we set the number of
iterations to 200, the swarm size to 50, and the 𝛼 contraction-
expansion parameter to 0.75 [4]. At each iteration, the op-
timizer evaluates 50 different configurations, from which it
selects the population’s best until it reaches the maximum
number of iterations. As a function to measure the statistical
distance between the outcome of the simulation and the
metrics, we used the Wasserstein distance implemented in the
SciPy Python Library.

We report the results of the simulation-based inference pro-
cess in Fig. 2, which shows the Probability Density Functions
generated using i) the image recognition application’s log

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
TTR (s)

0

10

20

30

40

50

60

De
ns

ity

K8S
KubeTwin

Fig. 2. The results of the simulation-based inference process.

0 5 10 15 20
RPS

0.2

0.4

0.6

0.8

Ti
m

e
To

 R
es

ol
ut

io
n

(T
TR

) [
s]

K8S-Mean
KubeTwin-Mean
K8S-99th
KubeTwin-99th

Fig. 3. The average and the 99th percentile TTR values collected for 5000
requests with KubeTwin and the K8S under different workload (RPS).

(K8S) and ii) the best configuration found by the simulation-
based inference process (KubeTwin). We can observe how the
proposed method can generate an accurate model for the DT
that, when executed, can reflect the distribution of the end-
to-end TTR values of the real image recognition application.
Let us also note the distributions illustrated in Fig. 2 have a
long right tail, thus indicating some high TTR values peaks for
the image recognition application. We believe these peaks are
the results of naming resolution, waiting times of containers,
and other situations in which occurrences and distributions are
difficult to model. However, these peaks are limited in number
(1 or 2), thus not changing the steady-state behavior of the
Kubernetes application. Overall, the results illustrated in Fig. 2
show that the proposed method can find an accurate DT model
that mirrors the real Kubernetes application under the baseline
scenario. However, the DT model should still provide good
accuracy even when operating in different working conditions
(e.g., higher requests load).

B. Validating the Model Under Different Conditions

To verify the accuracy of the DT model, we launch an
experimental campaign to collect and compare the TTR values
from 5000 requests for both the Kubernetes application and the
Digital Twin under different workloads. The idea is to show
that the DT model can well reproduce the behavior of the real
application under a modified scenario, thus evaluating if the

0 5 10 15 20
RPS

0.01

0.02

0.03

0.04

0.05
Pr

oc
es

sin
g

Ti
m

e
[s

]

MS1-Mean
MS2-Mean
MS1-99th
MS2-99th

Fig. 4. The average and the 99th percentile of the processing time for MS1
and MS2 from RPS 1 to RPS 20.

fitted model can still be a good representation of the image
recognition application.

In this regard, we built a Python application that sends
a total amount of requests at different Requests Per Second
(RPS) values. Let us note that generating a workload with a
constant frequency (measured as the number of requests sent
in a second) is a per se challenging task. Even if there are
several tools available that can execute a stress test of a web-
based application (e.g., the Apache benchmark tool), none of
them allows the user to specify a target RPS value. In fact,
the capacity to stress an application using a target RPS mainly
depends on the computing resources available on the machine
generating the requests.

For this validation, we collect for each experiment the end-
to-end TTR values of all 5000 requests to compare and verify
their distribution. Fig. 3 shows the Mean TTR (MTTR) and the
99th percentiles values on the y-axis that we collected from the
execution of both the image recognition application (K8S) and
its DT for all experiment (from 1 to 20 RPS) using the baseline
deployment – one replica per microservice. By observing Fig.
3, we can verify how the MTTR values computed by the
DT model are a good approximation of the image recognition
application until around 15 RPS. Then, starting from 16 RPS,
the MTTR values of the DT model diverge from the ones of
the application.

Considering the high variance of the results, analyzing only
the MTTR values could not be enough to understand the model
performance. Therefore, Fig. 3 also shows the distribution of
the 99th percentiles for the application and the DT, which we
believe can provide a better insight. Analyzing the 99th per-
centile values, the divergence between the simulation and the
application is even more evident. The differences revealed that
the DT model was probably overestimating the service time
of the microservices at higher RPS. To prove this behavior,
we gather the logs from the microservices at different RPS in
Fig. 4. From these results, we can see that the service time
of each microservice decreases with the higher request rate.
This speedup effect in the response time is probably caused
by optimizations made at the CPU level (e.g., caching) that
increase the performance of very active processes. Following

0 5 10 15 20
RPS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
To

 R
es

ol
ut

io
n

(T
TR

) [
s]

K8S-Mean
KubeTwin-Mean
K8S-99th
KubeTwin-99th

Fig. 5. The average and the 99th percentile TTR values collected for 5000
requests using the model Fitted at RPS 20.

TABLE I
MSE VALUES FOR THE MTTR AND THE 99TH PERCENTILE

Model MSE - Mean MSE - 99th
Baseline (1R) 0.001641 0.042060
RPS 20 (1R) 0.000364 0.001200
RPS 20 (3R) 0.010873 0.077834

this finding, we utilized the value obtained for RPS 20 to re-fit
the model with the same procedure described in Section V-A.
Then, we remade the measurement campaign and plotted the
results in Fig. 5. As visible from the picture, the model is much
more precise in forecasting the application response time, with
a Mean Square Error (MSE) decrease of about 0, 0013 for the
model fitted at one (Table I.)

C. Multi-Replicas Deployment

As a second validation, we want to verify if the DT model
described in the previous section can also approximate the
behavior of the Kubernetes application when the deployment
increases in size. More specifically, we set the number of
replicas to 3 for each microservice, and we collected the TTR
logs from 5000 requests under different workloads from RPS
1 to RPS 40.

At the same time, we run the DT model using a 3 replicas
configuration to compare the results. These are visible in
Fig. 6, which illustrates how KubeTwin can provide a good
estimate of the real application up to 40 RPS. From then, the
two systems diverge, and the 99th percentile of the DT model
reports a higher value when compared to the K8S application.

We are currently analyzing why the system remains stable
even when the load increases. Of course, with short response
times (i.e., around 40ms), the results are drastically impacted
by numerous sources like network variability, CPU scheduling,
and others.

VI. RELATED WORK

Kubernetes represents the de-facto orchestration solution to
manage a wide range of container-based applications. Among
the related efforts, authors in [14] present a theoretical opti-
mization framework for edge-to-cloud offloading of Vehicle-
to-everything (V2X) tasks and an edge-to-cloud offloading

0 5 10 15 20 25 30 35 40
RPS

0.05

0.10

0.15

0.20

0.25

TT
R

[s
] (

m
ea

n
an

d
99

th
 p

er
ce

nt
ile

)
K8S-Mean
KubeTwin-Mean
K8S-99th
KubeTwin-99th

Fig. 6. The distribution of the MTTR value for 5000 requests under different
RPS values using a 3 replicas deployment and the RPS 20 model.

decision algorithm called ECODA. Furthermore, in [15], the
authors present a hybrid shared-state scheduling framework
model that delegates most tasks to distributed scheduling
agents. Watanabe et al. propose a Kubernetes-based prototype
of a Multi-access Edge Computing architecture to which
users can offload applications [16]. The authors in [17] also
investigate Kubernetes scheduling techniques to find the main
gaps, related challenges, and possible improvements to the
current state-of-the-art. In [1], Santos et al. propose a network-
aware scheduling approach for container-based applications
that extends the default scheduling mechanisms of Kubernetes
to consider the current network conditions.

Despite all these efforts, few initiatives are investigating
DT of Kubernetes applications. Differently, this work takes
the DT perspective and presents a novel framework to define
DTs of Kubernetes applications for running what-if scenario
analysis. We believe this work can bring many contributions to
researchers and practitioners investigating custom and adaptive
scheduling techniques.

VII. CONCLUSIONS

Digital Twins (DTs) of Kubernetes applications can sim-
plify the configuration problems with simulations and what-
if scenarios analyses. However, modeling accurate DTs is
challenging and requires proper design and testing efforts.

To simplify this process, we present the KubeTwin frame-
work, a novel tool that provides a simulation-based approach
to the definition and evaluation of DTs. This work focuses
on the simulation-based inference procedure we devised to
create an accurate DT model leveraging a set of observations
collected from the real application. We experimentally vali-
dated the proposed solution to show its viability by discussing
and presenting a use case of an image recognition application.
The obtained results push for further investigation into the
characterization of microservices processing to create even
more accurate and load-adaptive models.

ACKNOWLEDGEMENTS

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan

(NRPP) of Next Generation EU (NGEU), partnership on
“Telecommunications of the Future” (PE00000001 - program
“RESTART”), and by the Spoke 1 “FutureHPC & BigData” of
the Italian Research Center on High-Performance Computing,
Big Data and Quantum Computing (ICSC) funded by MUR
Missione 4 - NGEU.

REFERENCES

[1] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in IEEE Conference on Network Softwarization (NetSoft), 2019,
pp. 351–359.

[2] T. Kiss, J. DesLauriers, G. Gesmier, G. Terstyanszky, G. Pierantoni,
O. A. Oun, S. J. Taylor, A. Anagnostou, and J. Kovacs, “A cloud-
agnostic queuing system to support the implementation of deadline-
based application execution policies,” Future Generation Computer
Systems, vol. 101, pp. 99 – 111, 2019.

[3] M. Mendula, A. Bujari, L. Foschini, and P. Bellavista, “A data-driven
digital twin for urban activity monitoring,” in IEEE Symposium on
Computers and Communications (ISCC), 2022, pp. 1–6.

[4] W. Cerroni, L. Foschini, G. Y. Grabarnik, F. Poltronieri, L. Shwartz,
C. Stefanelli, and M. Tortonesi, “Bdmaas+: Business-driven and
simulation-based optimization of it services in the hybrid cloud,” IEEE
Transactions on Network and Service Management, vol. 19, no. 1, pp.
322–337, 2022.

[5] G. Nardini and G. Stea, “Using network simulators as digital twins of
5G/B5G mobile networks,” in IEEE 23rd International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022,
pp. 584–589.

[6] D. Van Huynh, V.-D. Nguyen, V. Sharma, O. A. Dobre, and
T. Q. Duong, “Digital twin empowered ultra-reliable and low-latency
communications-based edge networks in industrial iot environment,” in
ICC - IEEE International Conference on Communications, 2022, pp.
5651–5656.

[7] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the IoT context:
A survey on technical features, scenarios, and architectural models,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020.

[8] G. Avecilla, J. N. Chuong, F. Li, G. Sherlock, D. Gresham, and
Y. Ram, “Neural networks enable efficient and accurate simulation-based
inference of evolutionary parameters from adaptation dynamics,” PLoS
Biology, vol. 20, no. 5, p. e3001633, 2022.

[9] R. Legin, Y. Hezaveh, L. P. Levasseur, and B. Wandelt, “Simulation-
based inference of strong gravitational lensing parameters,” arXiv
preprint arXiv:2112.05278, 2021.

[10] M. Sommerfeld and A. Munk, “Inference for empirical wasserstein
distances on finite spaces,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 80, no. 1, pp. 219–238, 2018.

[11] C. Bartolini, C. Stefanelli, and M. Tortonesi, “Modeling it support orga-
nizations using multiple-priority queues,” in IEEE Network Operations
and Management Symposium. IEEE, 2012, pp. 377–384.

[12] B. Herlicq, A. Khichane, and I. Fajjari, “Nextgenemo: an efficient
provisioning of edge-native applications,” in ICC - IEEE International
Conference on Communications, 2022, pp. 1924–1929.

[13] Y. Chen, S. Zhang, Y. Jin, Z. Qian, and S. Lu, “Multi-server multi-
user game at edges for heterogeneous video analytics,” in ICC - IEEE
International Conference on Communications, 2022, pp. 841–846.

[14] E. C. Cejudo and M. Shuaib Siddiqui, “An optimization framework for
edge-to-cloud offloading of kubernetes pods in v2x scenarios,” in IEEE
Globecom Workshops (GC Wkshps), 2021, pp. 1–6.

[15] O.-M. Ungureanu, C. Vlădeanu, and R. Kooij, “Kubernetes cluster
optimization using hybrid shared-state scheduling framework,” in Pro-
ceedings of the 3rd International Conference on Future Networks
and Distributed Systems, ser. ICFNDS ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[16] H. Watanabe, R. Yasumori, T. Kondo, K. Kumakura, K. Maesako,
L. Zhang, Y. Inagaki, and F. Teraoka, “Contmec: An architecture of
multi-access edge computing for offloading container-based mobile ap-
plications,” in ICC - IEEE International Conference on Communications,
2022, pp. 3647–3653.

[17] C. Carrión, “Kubernetes Scheduling: Taxonomy, Ongoing Issues and
Challenges,” ACM Computing Surveys, vol. 55, no. 7, Dec 2022.

	modeling digital copertina
	ISCC_2023____KubeTwin

