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Abstract 

This paper revisits the problem first studied by Jaworsky and Dowell, namely, the free vibration of 

multi-step beams. Previous authors utilized approximate method of Ritz as well as the finite element 

method with attendant comparison with the experimental results. This study provides the exact solution 

for the Javorsky and Dowell problem in terms of Krylov/Duncan functions. Additionally, the Galerkin 

method is applied and contrasted with the exact solution. It is shown that the straightforward 

implementation of the Galerkin method, as it is usually performed in the literature, does not lead to 

results obtained by Jaworsky and Dowell using the Ritz method. Moreover, the straightforward 

application of the Galerkin method does not tend to the results obtained by either exact solution or 

experiments. A modification of the Galerkin method is proposed by introducing generalized functions 

to describe both mass and stiffness of the stepped beam. Specifically, the unit 

delta function and the doublet functions, are utilized for this purpose. With this modification, the 



Galerkin method yields result coinciding with those derived by the Ritz method, and turn out to be in 

close vicinity with those produced by the exact solution as well as experiments. 
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1. Introduction 

Numerous structures, like aircraft wings, helicopter rotor blades, spacecraft antennae, robot arms 

can be modeled as beams. Free vibration of beams is a classic subject in structural mechanics 

originating at about 1735 when Daniel Bernoulli and Leonhard Euler investigated the vibration of 

uniform and homogeneous beams (Elishakoff, 2020). Since then, numerous papers, reviews and books 

have been written on this subject. Just to cite some famous work it is important to remember the one 

done by Young and Felgar (1949), which provide tables with numerical solution for beam in different 

boundary conditions; the book devoted to structural dynamics by Gorman (1975) or by Karnovsky and 

Lebed (2000); Karnovsky and Lebed (2010) described also the Krylov-Duncan method as an approach 

to obtain the natural frequencies by solving an eigenvalue problem; Duncan W.J. (1950) provided 

normalized orthogonal deflection functions for beams. 

What about beams with discontinuous cross-sectional areas, i.e. stepped beams, were also 

investigated by means of various approaches. Specifically, Cauchy iteration method was applied by 

Taleb and Suppiger (1961) yielding upper bounds for natural frequencies; lower bounds were furnished 

by Buckens (1963) using a decomposition method; variational component method with Lagrange 

multipliers to satisfy geometric continuity conditions between different steps was employed by Klein 

(1974). Rayleigh-Ritz energy approach was used by Yuan and Dickinson (1993) in conjunction with 



artificial spring constraints between beam components. This approach was utilized also by Maurizi and 

Belles (1993).  

The above papers resorted to approximate methods. Exact solution was provided by Levinson 

(1976) for a single-stepped beam simply supported at its both ends. Jang and Bert (1986) summarized 

results for a single, centrally located stepped beam. Naguleswaran (2002) dealt with beams with up to 

three steps, whereas Duan and Wang (2013), Lu et al (2009), Mao (2011) and Wang X-W. and Wang 

Y-L (2013) dealt with the case of multiple stepped beams.  

Jarowsky and Dowell (2008) conducted a thorough investigation of a beam with 13 steps using 

approximate methods. Namely, they applied the Rayleigh-Ritz method as well as finite element 

method, and to validate their results they conducted extensive experiments. For the implementation of 

the Rayleigh-Ritz method, the authors used the exact modes of vibration of cantilever beam, whereas 

they built FEM models using ANSYS and various element available in its library (BEAM4, 

BEAM188, SHELL93 and SOLID45). The above results were contrasted with the experimental results. 

In this paper, we conduct two analyses that complement the work by Jaworsky and Dowell (2008). 

Namely, we first used the so-called Krylov/Duncan functions and next two versions of Galerkin 

method to compute the exact natural frequencies at the stepped beam. In particular, for the Galerkin 

method we implemented both the straightforward method, in which the basis function of the Galerkin 

procedure exist and are evaluated for each step of the beam and next combined, and the rigorous 

version of the method which is based on generalized functions of the mass and stiffness of the beam 

which exist over the entire beam domain. In this latter case we used the Heaviside unit step function, 

the as well as the doublet function, to formulate the 

characteristic equation of the free vibration problem of the stepped beam. 

2. Basic Equations 



We are interested to evaluate the natural frequencies of a multi-step beam as shown in Fig.1.

 

Fig.1.  A 13-stepped beam of length   

The beam is a cantilever made of a single material so the elastic modulus  and the mass density  are 

constants in this problem. The beam is composed by two alternating sections: the section A and the 

section B creating 13 components. 

We study the free vibrations of this beam in both vertical x-y and horizontal x-z planes as 

shown in Fig. 2. 

 

(a) 



 

(b) 

Fig. 2 schematic of the stepped beam in the two planes x-y and x-z 

 

The Euler-Bernoulli classic differential equation governing the flexural vibrations in one principal 

plane of the non-uniform beam reads: 

  (1) 

where  is the vertical displacement, I(x) the moment of inertia, A(x) the cross-sectional area,  

the axial coordinate and  is the time. For each segment of the stepped beam, one can write:

  (2) 

where  is an integer which identifies the component. We rewrite the vertical displacement as follows: 

  (3) 

where  is the sought natural frequency of the beam. Substituting Eq. (3) in the differential equations 

(2) we easily obtain the following set of equations valid for any time instant: 



 

  (4) 

where  reads: 

  (5) 

As well known, the following forms of  satisfy the differential equations in (4): 

  (6) 

where  are constants of integration. We now take advantage of the Krylov/Duncan functions to 

rewrite Eq. (6). The Krylov/Duncan functions are four functions (Krylov, 1936; Duncan, 1943) defined 

as follows: 

  (7.a) 

  (7.b) 

  (7.c) 

  (7.d) 



One notes that: 

  (8.a) 

  (8.b) 

  (8.c) 

  (8.d) 

The second property of these functions is that the first derivative of  is equal to : 

Krylov Function     

First derivative     

Second derivative     

Third derivative

 

Table 1: Derivatives of Krylov/Duncan functions 

We can use these functions into equation (6) in order to simplify the representation of the boundary 

conditions. This will lead us to the following equation: 

  (9) 

where   are constant of integration.



3. Exact Solution 

The evaluation of the exact solution consists in the demand that not all four coefficients  for each 

component to vanish simultaneously. In our study we have 13 different segments for the multi-step 

beam resulting in 52 unknowns. The solution should satisfy continuity conditions between the 

segments and the boundary conditions at the outer sections of the beams (first and the 13th 

components). 

For each discontinuity, we have four compatibility conditions namely continuity of vertical 

displacement, slope, bending moment and shear force, for a total of 48 equations of compatibility given 

the 12 discontinuities in the beam. In particular, they read:

 (10.a) 

  (10.b) 

  (10.c) 

  (10.d) 

By adding the 4 boundary conditions at the extremes of the beam we can formulate a problem with 52 

equations for 52 unknowns. In particular, in the following we tackle the case of the cantilever beam, to 

compare our results with those of Jarowsky and Dowell (2008). The boundary conditions read: 

Constrain conditions   

 
Cantilever   



  

Table 2: Boundary conditions 

This system of equations has the following form: 

  (11) 

where  is the coefficient matrix, the vector of unknowns and  the zero vector. The non trivial 

solutions of the homogeneous system in eq (11) lead to the natural frequencies  of the problem. 

The matrix  is sparse and the non-zero terms appear around the main diagonal, as represented 

in Fig. 3. 

 

Fig. 3 Matrix structure for exact solution 

4. Straightforward Galerkin Method 

The Galerkin method is a numerical method to solve in approximate way the differential equations: 



  (12) 

By introducing the axial coordinate in non-dimensional form eq (12) can be represented as:

  (13) 

In order to apply the Galerkin method in its straightforward version, we have to express the vertical 

displacement W in terms of the so-called comparison functions  as: 

  (14) 

where are unknown constants. Now we substitute the expression of  in the differential 

equations obtaining residuals   since the functions do not necessarily satisfy the differential 

equations: 

  (15) 

We now multiply the error  by , we sum it up for all the components and we integrate within 

jth span: 

  (16) 

By defining: 

  (17.a) 

  (17.b) 



we obtain: 

  (18) 

Eq. 18 can be rewritten in matrix notation as: 

  (19) 

where  represent the stiffness matrix of the problem,  the mass matrix of the problem and  the 

vector of the unknown scale factors .

This non-trivial solution of eq. (19) lead to the eigenvalues  and the scale factors of the 

problem. 

5. Rigorous Galerkin Method 

The rigorous version of the Galerkin method does require generalized functions over the entire domain 

of the beam length (0<x<L). Starting from Eq. (1) and (3) we obtain: 

  (20) 

Introducing a non-dimensional axial coordinate  and looking for a solution true for any time value, we 

obtain: 

 

  (21) 

In order to implement the rigorous Galerkin method we represent the flexural rigidity and the mass of 

the system as generalized functions: 



  (22.a) 

 (22.b)

where  is the unit step function or Heaviside function which has the following properties: 

  (23.a) 

  (23.b) 

  (23.c) 

where   and  is the doublet function. Now, rewriting the 

equation (21) with these considerations we obtain: 

  (24) 

We evaluate the derivatives to get:

 (25) 

We substitute the approximation in series of  (Eq. (14)) arriving at: 

  (26) 

We next multiply the differential equation by  and we integrate it from zero to one, to get: 



 

 

(27) 

By defining: 

  (28.a) 

  (28.b) 

  (28.c)  

 (28.d) 

we can rewrite eq. (27) as: 

  (29) 

or in more compact matrix form as:

  (30) 

Non-trivial solutions of the equation:

  (31) 

where  , lead to the frequencies of vibration  and the scale factors of the 

problem. 

We observe that the matrix  coincides with the  matrix for the straightforward implementation 

of the method. Thus, the rigorous implementation of Galerkin method yields to two additional stiffness 



matrices, and , which provide superior performances to the method w.r.t. its straightforward  

version. 

6. Numerical investigation 

6.1 Comparison Functions for Galerkin Method 

To compare the straightforward and rigorous version of the Galerkin method with the exact solution of 

some beam problems, first comparison functions must be assumed. Comparison functions is supposed 

to represent well the solution of the differential equation while satisfying all the boundary conditions of 

the problem. 

According to Jaworsky and Dowell (2008), good comparison functions for the problem at hand, 

consist in the mode shapes for the homogeneous cantilevered beam: 

  (32) 

These functions, however, are not perfect candidates because for large value of  becomes numerically 

unstable due to the difference between large values of the hyperbolic functions arguments. To 

overcome this problem, some authors have proposed to use the following expressions: 

  (33) 

where the order of error is , which is negligible for . 

6.2 Examples 

We consider the cantilever beam represented in Fig.2a, composed by 13 segments, and the following 

geometrical and mechanical parameters: 

 Section 



 
    

    

     

     

     

     

     

Table 3: Mechanical and geometrical data 

The beam steps lengths are  and 

, whereas  the last segment . The total length of the beam is therefore 

. 

We show in the following the first three frequencies of vibration for the two planes x-y and x-z, 

computed by using the exact solution, and both the straightforward and rigorous Galerkin method. 

8.1. Exact Solution 

The first three frequencies of vibration in the  and x-z planes, computed by using the exact 

formulation in section 3, are shown in Table 4. 



Exact Solution [rad/sec]

Mode  Plane  Plane 

1 342.4121 67.5133 

2 2166.4943 423.9471 

3 6143.9243 1191.0450 

Table 4: Exact solution 

8.2. Rigorous Galerkin Method 

The rigorous Galerkin method, for 1, 2, 3, 25, 50, 75 and 100 terms, leads to the frequencies in table 5 

and Table 7 for the frequencies of vibration in the x-y and x-z plane, respectively. 

Frequencies [rad/s] 

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 532.3005 525.2584 525.2059 385.5929 362.8573 353.8210 352.2366 

2 - 3303.9364 3302.5800 2590.9190 2296.1458 2238.5734 2229.1627 

3 - - 9288.0450 7360.6548 6511.9947 6377.2805 6322.6071 

Table 5: Frequencies of vibration for the x-y plane obtained with rigorous Galerkin method 

The relative error between the natural frequencies computed via the Galerkin method and the exact 

ones, computed as: 

  (34) 

is reported in Table 6. 



 

Relative error [%]

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 53.41% 53.40% 53.38% 12.61% 5.97% 3.33% 2.87%

2 - 52.50% 52.44% 19.59% 5.98% 3.33% 2.89% 

3 - - 51.17% 19.80% 5.99% 3.80% 2.91% 

Table 6: Relative error between the rigorous Galerkin method and the exact solution for the frequencies 

of vibration in the x-y plane. 

Frequencies [rad/s] 

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 71.1399 71.1379 71.1364 68.1456 67.9620 67.7800 67.7035 

2 - 446.1477 446.0782 427.7656 426.7094 425.6417 425.1656 

3 - - 1250.6176 1208.3126 1199.1534 1195.9843 1194.5526 

Table 7: Frequencies of vibration for the x-z plane obtained with rigorous Galerkin method 

Relative error [%]

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 5.37% 5.37% 5.37% 0.94% 0.66% 0.39% 0.28% 

2 - 5.24% 5.22% 0.90% 0.65% 0.40% 0.29% 

3 - - 5.00% 1.45% 0.68% 0.41% 0.29% 

Table 8: Relative error between the rigorous Galerkin method and the exact solution for the frequencies 

of vibration in the x-z plane. 



 

8.3. Straightforward Galerkin Method 

Similarly, we computed the frequencies of vibration for the straightforward implementation of the 

Galerkin method for 1, 2, 3, 25, 50, 75 and 100 terms. The frequencies of vibration in the x-y and x-z 

plane are reported in Table 9 and Table 11, respectively, whereas the relative errors with respect to the 

exact solutions are reported in Tables 10 and 12. 

Frequencies [rad/s] 

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 531.0601 530.9327 530.7799 462.7421 427.8476 420.8202 419.3807 

2 - 3335.5952 3334.2992 2884.2579 2697.5635 2652.9731 2645.0811 

3 - - 9357.7550 8163.1046 7594.1873 7490.8281 7450.9256 

Table 9: Frequencies of vibration for the x-y plane obtained with straightforward Galerkin method 

Relative error [%]

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 55.09% 55.06% 55.01% 35.14% 24.95% 22.90% 22.48% 

2 - 53.96% 53.90% 33.13% 24.51% 22.45% 22.09% 

3 - - 52.31% 32.86% 23.60% 21.92% 21.27% 

Table 10: Relative error between the straightforward Galerkin method and the exact solution for the 

frequencies of vibration in the x-y plane. 

 

Frequencies [rad/s] 

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 



1 71.5207 71.5207 71.5207 71.5207 71.5207 71.5207 71.5207 

2 - 448.2448 448.2448 448.2448 448.2448 448.2448 448.2448 

3 - - 1255.2248 1255.2248 1255.2248 1255.2248 1255.2248 

Table 11: Frequencies of vibration for the x-z plane obtained with straightforward Galerkin method 

Relative error [%]

Mode 1 Term 2 Terms 3 Terms 25 Terms 50 Terms 75 Terms 100 Terms 

1 5.94% 5.94% 5.94% 5.94% 5.94% 5.94% 5.94% 

2 - 5.73% 5.73% 5.73% 5.73% 5.73% 5.73% 

3 - - 5.39% 5.39% 5.39% 5.39% 5.39% 

Table 12: Relative error between the straightforward Galerkin method and the exact solution for the 

frequencies of vibration in the x-z plane. 

8.4 Final comparison 

Table 13 reports the frequencies of vibration computed on the previous subsections, in Hertz, along 

with those obtained experimentally by Jaworsky and Dowell (2008). 

Frequency 
Exact 

Solution 

Rigorous 

Galerkin 

Method 

(100 Terms) 

Straightforward 

Galerkin 

Method (100 

Terms) 

Experimental 

Results, Jaworsky 

and Dowell 

(2008)

x-y Plane 

1 54.4965 56.0601 66.7464 49.38 

2 344.8075 354.7814 420.9767 - 

3 977.8336 1006.2718 1185.8489 - 

x-z Plane 
1 10.7451 10.7753 11.3828 10.63 

2 67.4731 67.6670 71.3402 66.75 



3 189.5603 190.1185 199.7748 - 

 Table 13: Frequencies obtained by three methods compared with those proposed in Ref. Jaworsky and 

Dowell (2008) 

The relative error between the first three columns and the fourth, evaluated with formula (35), is 

collected in Table 14: 

  (35) 

 

Frequency 

Exact Solution 

vs Paper by 

Jaworsky/Dowell 

Rigorous 

Galerkin Method 

vs Paper by 

Jaworsky/Dowell 

Straightforward 

Galerkin Method 

vs Paper by 

Jaworsky/Dowell 

In Plane 1 10.36% 13.53% 35.17% 

Out of 

Plane 

1 1.08% 1.37% 7.08% 

2 1.08% 1.37% 6.88% 

Table 14: Relative errors between all the methods 

The tables 14 show that the rigorous Galerkin method tends to the experimental study carried out by 

Jaworsky and Dowell (2008), moreover tables 6 and 8 prove that the cited approach tends to the exact 

solution too. This aspect is demonstrated also by Figure 4 which shows that the error decreases with 

increase of the number of terms. On the other hand, straightforward Galerkin method does not 

converge to the exact solution. The experimental frequencies reported by Jaworsky and Dowell (2008) 

are close to the results obtained with Krylov/Duncan functions and rigorous Galerkin method but not 

with its straightforward implementation. 



 

Fig.4: Rigorous vs Straightforward Galerkin method  Relative error 

9. Conclusions 

In this study we have analyzed the free vibrations of a cantilever homogeneous non-uniform beam with 

different methods. In particular, we have compared two different versions of Galerkin method, namely 

the straightforward version which is generally used in literature and the rigorous one proposed in this 

work, with the exact solution based on the Krylov/Duncan functions. While the straightforward 

approach considers basis functions with domain existing only over each segment, the rigorous 

implementation is based on two generalized functions, one for the stiffness and one for the mass of the 

beam, existing over the entire length of the beam. In this case, the abrupt changes of cross-sections are 

taken into account via the Heaviside function and its derivatives. The study shows that the proposed 



rigorous implementation does convergence to the derived exact solutions whereas the straightforward 

version does not.   
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