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Abstract. We develop a fully diagrammatic approach to finite-state automata, based on
reinterpreting their usual state-transition graphical representation as a two-dimensional
syntax of string diagrams. In this setting, we are able to provide a complete equational theory
for language equivalence, with two notable features. First, the proposed axiomatisation is
finite. Second, the Kleene star is a derived concept, as it can be decomposed into more
primitive algebraic blocks.

1. Introduction

Finite-state automata are one of the most studied structures in theoretical computer science,
with an illustrious history and roots reaching far beyond, in the work of biologists, psycholo-
gists, engineers and mathematicians. Kleene [Kle51] introduced regular expressions to give
finite-state automata an algebraic presentation, motivated by the study of (biological) neural
networks [MP43]. They are the terms freely generated by the following grammar:

e, f ::= e+ f | ef | e∗ | 0 | 1 | a ∈ A

Equational properties of regular expressions were studied by Conway [Con12] who introduced
the term Kleene algebra: this is an idempotent semiring with an operation (−)∗ for iteration,
called the (Kleene) star. The equational theory of Kleene algebra is now well-understood, and
multiple complete axiomatisations, both for language and relational models, have been given.
Crucially, Kleene algebra is not finitely-based: no finite equational theory can appropriately
capture the behaviour of the star [Red64]. Instead, there are purely equational infinitary
axiomatisations [Kro91, BÉ93a] and finitary implicational theories, like that of Kozen [Koz94].

Since then, much research has been devoted to extending Kleene algebra with oper-
ations capturing richer patterns of behaviour, useful in program verification. Examples
include conditional branching (Kleene algebra with tests [Koz97], and its recent guarded
version [SFH+20]), concurrent computation (CKA [HMSW09, KBSZ18]), and specification
of message-passing behaviour in networks (NetKAT [AFG+14]).

Key words and phrases: string diagrams, finite-state automata, symmetric monoidal category, complete
axiomatisation.
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The meta-theory of the formalisms above relies on a three step methodology: (1) given
an operational model (e.g., finite-state automata), (2) devise a syntax (regular expressions)
that is sufficiently expressive to capture the class of behaviours of the operational model
(regular languages), and (3) find a complete axiomatisation (Kleene algebra) for the given
semantics.

In this paper, we open up a direct path from (1) to (3). Instead of thinking of automata
as a combinatorial model, we formalise them as a bona-fide (two-dimensional) syntax, using
the well-established mathematical theory of string diagrams for monoidal categories [Sel11].
This approach lets us axiomatise the behaviour of automata directly, freeing us from the
necessity of compressing them down to a one-dimensional notation like regular expressions.

This perspective not only sheds new light on a venerable topic, but has significant
consequences. First, as our most important contribution, we are able to provide a finite
and purely equational axiomatisation of finite-state automata, up to language equivalence.
This does not contradict the impossibility of finding a finite basis for Kleene algebra, as the
algebraic setting is different: our result gives a finite presentation as a symmetric monoidal
category, while the impossibility result prevents any such presentation to exist as an algebraic
theory (in the standard sense). In other words, there is no finite axiomatisation based on
terms (tree-like structures), but we demonstrate that there is one based on string diagrams
(graph-like structures).

Secondly, embracing the two-dimensional nature of automata guarantees a strong form
of compositionality that the one-dimensional syntax of regular expressions does not have. In
the string diagrammatic setting, automata may have multiple inputs and outputs and, as a
result, can be decomposed into subcomponents that retain a meaningful interpretation. For
example, if we split the automata below left, the resulting components are still valid string
diagrams within our syntax, below right:

a

a

b
a

7→
b

a

a

a
(1.1)

In line with the compositional approach, it is significant that the Kleene star can be
decomposed into more elementary building blocks (which come together to form a feedback
loop):

e∗ 7→
e

(1.2)

This opens up for interesting possibilities when studying extensions of Kleene algebra within
the same approach—we elaborate on this in Section 6.

Finally, we believe our proof of completeness is of independent interest, as it relies on
fully diagrammatic reformulation of Brzozowski’s minimisation algorithm [Brz62]. In the
string diagrammatic setting, the symmetries of the equational theory give this procedure a
particularly elegant and simple form. Because all of the axioms involved in the determinisation
procedure come with a dual, a co-determinisation procedure can be defined immediately
by simply reversing the former. This reduces the proof of completeness to a proof that
determinisation can be performed diagrammatically. Moreover, note that our completeness
proof goes through a richer language, with additional algebraic operations that are adjoint
(in a sense that we explain in Section 3) to those that allow us to express standard automata.
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Within this extended language, we are able to derive a completeness result for (diagrams
corresponding to) automata, but leave open the completeness of the full language. We will
come back to this point in Section 6.

This is not the first time that automata and regular languages are recast into a categorical
mould. The iteration theories [BÉ93b] of Bloom and Ésik, sharing graphs [Has97] of Hasegawa
or network algebras [Ste00] of Stefanescu are all categorical frameworks designed to reason
about iteration or recursion, that have found fruitful applications in this domain. They are
based on a notion of parameterised fixed-point which defines a categorical trace in the sense
of [JSV96]. While our proposal bears resemblance to (and is inspired by) this prior work, it
goes beyond in one fundamental aspect: it is the first to give a finite complete axiomatisation
of automata up to language equivalence.

A second difference is methodological: our syntax does not feature any primitive for
iteration or recursion. In particular, the star is a derived concept, in the sense that it is
decomposable into more elementary operations (1.2). Categorically, our starting point is a
compact-closed rather than traced category.

We elaborate further on the relation between ours and existing work in Section 6.

Conference version. This work is based on the conference paper [PZ21]. It amends a
mistaken completeness claim made in that paper and proposes a new approach to the same
question, based on a different syntax. We detail the relationship between the two papers in
Section 6 and where clarifications are necessary in the main text.

2. Syntax and semantics

Following a standard methodology (recalled in Appendix A), we will define two symmetric
monoidal categories (SMCs), one serving as syntax, the other as semantics. Moreover,
to guarantee a compositional interpretation, we will define a symmetric monoidal functor
between the two.

Syntax. We fix an alphabet Σ. We call Syn the strict SMC freely generated by the following
objects and morphisms:
• two generating objects I (‘right’) and J (‘left’) with their identity morphisms depicted
respectively as and .
• the following generating morphisms, depicted as string diagrams [Sel11]:

a (a ∈ Σ) (2.1)

(2.2)

Semantics. We first define the semantics for string diagrams simply as a mapping from the
set of generators to relations between tuples of languages over Σ, and then discuss how to
extend it to a functor from Syn to a category that we will define below. Let LΣ := 2Σ? . A
diagram with m ports on the left and n on the right, is interpreted as a subset of LmΣ × LnΣ.r z

=
{(
L, (K1,K2)

)
| L ⊆ Ki, i = 1, 2 and L,K1,K2 ∈ LΣ

}
r z

=
{(

(L1, L2),K
)
| Li ⊆ K, i = 1, 2 and L1, L2,K ∈ LΣ

}
J K = {(L, •) | L ∈ LΣ}

r z
= {(•, (L,K)) | L ⊆ K | L,K ∈ LΣ}
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J K = {(•,K) | K ∈ LΣ}
q y

= {((L,K), •) | K ⊆ L, L,K ∈ LΣ}
J a K = {(L,K) | La ⊆ K, L,K ∈ LΣ} (a ∈ Σ)

J K = {(L,K) | L ⊆ K, L,K ∈ LΣ}
J K = {(L,K) | K ⊆ L, L,K ∈ LΣ}r z

= {((L1, L2),K) | L1 ∩ L2 ⊆ K, L1, L2,K ∈ LΣ} J K = {(•,Σ?)} (2.3)
r z

= {(L, (K1,K2)) | L ⊆ K1 ∪K2, L,K1,K2 ∈ LΣ} J K = {(∅, •)} (2.4)

In a nutshell, the generating diagrams denote operations that relate tuples of languages:
represents copying, discarding, and feed back outputs into inputs and

vice-versa, and a represents the action of each letter of Σ on the set of languages, by
concatenation on the right. These are the generators that allow us to encode automata, as
we will see in Section 4. The other generators, , , , , represent operations
that are adjoint to their black counterparts, in a sense that we will explain in Section 3. The
directed syntax highlights the dual roles played by the two generating objects, representing
inclusion and reverse inclusion of languages respectively.

Remark 2.1. A word of warning: in the conference paper [PZ21] on which this work is
based, we use a different three sorted syntax, with an additional red wire denoting the set of
regular expressions. These acted on the set of languages via a white node whose appearance
is reminiscent of the white nodes of the syntax above. However, the reader should not confuse
them—their semantics are totally unrelated and, as we will see, so are their equational
properties.

In order for the mapping J·K to be functorial, we now introduce a suitable target SMC
for the semantics. Interestingly, this will not be the category Rel of sets and relations:
indeed, the identity morphisms and are not interpreted as identities of Rel
(since they denote the order on the set of languages). Instead, the semantic domain will be
the category ProfB of Boolean(-enriched) profunctors [FS19] (also variously called relational
profunctors [HS03] or weakening relations [Mos15] in the literature).

Definition 2.2. Given two preorders (X,≤X) and (Y,≤Y ), a Boolean profunctor R : X → Y
is a relation R ⊆ X × Y such that if (x, y) ∈ R and x′ ≤X x, y ≤Y y′ then (x′, y′) ∈ R.

Preorders and Boolean profunctors form a SMC ProfB with composition given by
relational composition. The identity for an object (X,≤X) is the order relation ≤X itself.
The monoidal product is the usual product of preorders, where (x, y) ≤ (x′, y′) iff x ≤X x′

and y ≤Y y′. For more details on Boolean profunctors, including applications to engineering
design, we refer the reader to [FS19, Chapter 4]. Since relations can be ordered by inclusion
in a way that is compatible with composition, they form a bicategory, and so does ProfB. The
bicategorical structure is rather simple as, for any two morphisms, the set of 2-cells between
them forms a partial order. This also means that ProfB is an order-enriched (1-)category. In
fact, it is a Cartesian bicategory [CW87].

Remark 2.3. Note that every monotone map f : (X,≤X)→ (Y,≤Y ) can be turned into a
monotone relations in two different ways: the relation Y f := {(x, y) | f(x) ≤ y} with type
Y f : (X,≤X) → (Y,≤Y ) and Y opf := {(y, x) | y ≤ f(x)} with type (Y,≤Y ) → (X,≤X).
This implies that ProfB contains (two different copies of) the SMC of monotone maps as a
monoidal sub-category.
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The features of our diagrammatic syntax reflect the rich structure of the profunctor
semantics. Indeed, the order relation is built into the wires and . The two
possible directions represent the identities on the set of languages ordered by inclusion, and
on the same set equipped with the reverse order, respectively.

Proposition 2.4. J·K defines a symmetric monoidal functor of type Syn→ ProfB.

Proof. It suffices to check that the interpretation of all generators define Boolean profunctors.
It is clear that all generators satisfy the condition of Definition 2.2. For example, the action
generator a is a Boolean profunctor: if (L,K) are such that La ⊆ K and, moreover
we have L′ ⊆ L and K ⊆ K ′, then L′a ⊆ La ⊆ K ⊆ K ′ by monotony of concatenation of
languages.

In particular, because Syn is free, we can unambiguously assign meaning to any composite
diagram from the semantics of its components using composition and the monoidal product
in ProfB:

Jc ; dK =
r

c d
X Y Z

z
=
{

(L,K) | ∃M (L,M) ∈
q

c
y
, (M,K) ∈

q
d

y}
Jc1 ⊕ c2K =

s
c1

c2

X1

X2

Y1

Y2

{
=
{(

(L1, L2), (K1,K2)
)
| (Li,Ki) ∈

q
ci

y
, i = 1, 2

}
Single wires labelled by a list X of generating objects (here, I and J) represent |X| parallel
ordered wires, labelled from top to bottom with the elements of X.

Example 2.5. We include here a worked out example to show how to compute the behaviour
of a composite diagram which, as we will see, represents (the action by concatenation of)
the regular language a∗ = {ε, a, aa, . . . }. To reason about complex diagrams, it is easier to
assign variable names to each wire: let us call N to the top wire of the feedback loop, and
M to the middle wire joining to . After simplifying a few redundant constraints,
we get

u

ww
v

e

N

M

KL

}

��
~

= {(L,K) | ∃M.N. L,N ⊆M, Ma ⊆ N ,M ⊆ K}
= {(L,K) | ∃M. L ⊆M, Ma ⊆MM ⊆ K}
= {(L,K) | ∃M. L ∪Ma ⊆M M ⊆ K}.

Call this diagram d. By Arden’s lemma [Ard61], La∗ is the smallest solution of the language
inequality L ∪Ma ⊆M ; thus ∃M. L ∪Ma ⊆M ⇔ ∃M. La∗ ⊆M and

JdK = {(L,K) | ∃M. La∗ ⊆M, M ⊆ K} = {(L,K) | La∗ ⊆ K}.

3. Inequational theory

In Figure 1 we introduce KDA, the theory of Kleene Diagram Algebra, on Syn. Once we have
shown how to encode automata into it, we will show that it is complete for equivalence of
automata-diagrams (Definition 3.1 below). We explain some salient features of KDA below.
As explained in Appendix A, we use equality as a shorthand for two inequalities.
• (A1)-(A2) relate and , allowing us to bend and straighten wires at will. This makes
Syn modulo (A1)-(A2), a compact closed category [KL80]. (A3) allows us to eliminate
isolated loops.
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(A1)
=

(A2)
=

(A3)
=

(B1)
=

(B2)
=

(B3)
=

(B4)
=

(B5)
=

(B6)
=

(B7)
=

(B8)
=

(B9)
=

(B10)
=

(B11)
=

(B12)
=

(C1)
=

(C2)
=

(C3)
=

(C4)
=

(C5)
=

(C6)
=

(D1)
=

(D2)
=

(D3)
=

(D4)
=

(D5)
=

(D6)
=

(E1)
≤

(E2)
≤

(E4)
≤

(E5)
≤

a
(E6)
=

a

a
a

(E7)
=

a

a

(E8)
= a

(E9)
= a

a
(E10)
=

a

a
a

(E11)
=

a

a

(E12)
= a

(E13)
= a

(F1)
≤

(F2)
≤

(F3)
≤

(F4)
≤

(F5)
≤

(F6)
≤

(F7)
≤

(F8)
≤

(F9)
≤

(F10)
≤

(F11)
≤

(F12)
≤

Figure 1: Theory of Kleene Diagram Algebra (KDA).

• The B block states that , forms a cocommutative comonoid (B1)-(B3), while
, form a commutative monoid (B4)-(B6). By (co)commutativity, the (co)unitality

axiom also holds with the (co)unit plugged into the other wire. More generally, as is
usual in standard algebra reason tacitly modulo (co)commutativity, (co)associativity and
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(co)unitality axioms whenever convenient. Moreover, , , , together form
an idempotent bimonoid (B7)-(B11). Incidentally, note that (B1)-(B11) axiomatise the
SMC of finite sets and relations, with monoidal product given by the disjoint sum. (B12)
allows us to eliminate trivial feedback loops, extending the previous axiomatisation to the
traced SMC of sets and relations.
• The C block makes ( , ) into a commutative monoid and ( , ) into a
cocommutative comonoid. As for the black generators, we will reason tacitly modulo
(co)commutativity, (co)associativity and (co)unitality axioms whenever convenient.
• The D block states that both ( , , , ) and ( , , , ) form
two bimonoids.
• The E block encodes fundamental axioms of Cartesian bicategories [CW87]. They are
lax versions of distributive laws, of over and over (as well as
their units and counits). We also have equalities that force the a to distribute over
the other operations. Semantically, this corresponds to the fact that the a are lattice
homomorphisms.
• The F block state a number of adjunctions in the 2-categorical sense1: two morphisms
f : X → Y and g : Y → X are adjoint if idX ≤ f ; g and g ; f ≤ idY . We write f ` g and
say that f is left ajdoint to g. The situation for KDA is summarised by the following six
adjunctions:

a a a (3.1)

a a a (3.2)
The central adjunctions involving only , , , are the key defining adjunc-
tions of Cartesian bicategories. The remaining adjunctions hold whenever the supporting
poset is a lattice (has binary meets and joins), which is the case for the set of (regu-
lar) languages over a given alphabet, as it is closed under union and intersection. To
better understand where these adjunctions come from, it is helpful to adopt a semantic
point of view. For example, recall that

r z
= {(L, (K1,K2)) | L ⊆ K1 ∪K2} and

r z
=
{(
L, (K1,K2)

)
| L ⊆ Ki, i = 1, 2

}
=
{(
L, (K1,K2)

)
| L ⊆ K1 ∩K2

}
. Thus,

one can see the adjunction a as arising from the duality between the two
different ways of turning intersection—a monotone map—into a monotone relation, cf.
Remark 2.3. These two embeddings of the same monotone map always give rise to an
adjunction of this form. Note that we can strengthen some of the inequalities in this block
to equalities: the equalities for (F6),(F8),(F10), and (F12) can all be derived.
• The equational theory contains a number of important symmetries: many equations also
hold when taking the horizontal reflection of the diagrams involved, e.g., (B1) and (B4) or
(D2) and (D5). This will play an important role in our proof of completeness in Section 5.
• Finally, the proposed axiomatisation is not minimal. For example (F3) and (F4) are
obviously subsumed by (B10) and (B11). Similarly, the equations of the E block could
be weakened to inequalities. As we will frequently make use of several symmetries of the
equational theory, for the reader’s convenience we have preferred to add these redundant
axioms to Fig. 1, instead of scattering them in different subsequent lemmas. They also serve
to highlight common algebraic structures that occur in related theories (e.g. bimonoids).

1In this setting, the 2-cells are simply inclusions, so the reader can also think about these adjunctions
simply as Galois connections.
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From the data of the set of generators and the relations of Fig. 1, we can construct a partial
order on each homset of Syn as explained in Appendix A.2. First we build a preorder on
each homset by closing KDA under ⊕ and taking the reflexive and transitive closure of the
resulting relation. Then we obtain a partial order by quotienting the resulting pre-order to
impose anti-symmetry. Below, we will call ≤KDA the resulting order on each homset.

We are interested in the properties of those diagrams that correspond to automata. As we
will see in the next section, there is a close relationship between diagrams composed exclusively
of the generators in (2.1) and standard automata, justifying the following definition.

Definition 3.1. An automaton-diagram is a morphism of Syn built from the generators
of (2.1), namely

, , , , a , , .

We call AutΣ the corresponding monoidal subcategory.

Remark 3.2. Note that, as anticipated in the introduction, constructing automata does not
require the white generators of Syn, as defined in (2.2). However, together with the corre-
sponding adjoint structure in the inequational theory, they are essential to the completeness
proof given below.

We can now state our soundness and completeness result for automata-diagrams.

Theorem 3.3 (Soundness and Completeness). For any two automata-diagrams d and d′,

JdK ⊆
q
d′

y
if and only if d ≤KDA d

′.

The soundness of ≤KDA for the chosen interpretation is not difficult to show and involves
a routine verification that all the axioms in Fig. 1 hold in the semantics. We show (D2) here
as an example. We have
r z

= {((L1, L2), (K1,K2)) | ∃M. L1 ∩ L2 ⊆M ⊆ K1 ∩K2}

= {((L1, L2), (K1,K2)) | L1 ∩ L2 ⊆ K1 ∩K2}

⊆
{

((L1, L2), (K1,K2)) | L1 ⊆ L1 ∪ (K1 ∩K2), L2 ⊆ L2 ∪ (K1 ∩K2),
L1 ∩ L2 ⊆ K1, (K1 ∩K2) ∩ (K1 ∩K2) ⊆ K2,

}

⊆

((L1, L2), (K1,K2)) | ∃M1.M2.M3.M4.

L1 ⊆M1 ∪M3,
L2 ⊆M2 ∪M4,
M1 ∩M2 ⊆ K1,
M3 ∩M4 ⊆ K2


=

u

v

}

~

and, conversely

u

v

}

~ =

((L1, L2), (K1,K2)) | ∃M1.M2.M3.M4.

L1 ⊆M1 ∪M3,
L2 ⊆M2 ∪M4,
M1 ∩M2 ⊆ K1,
M3 ∩M4 ⊆ K2
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⊆

((L1, L2), (K1,K2)) | ∃M1.M2.M3.M4.

L1 ∩ L2

⊆ (M1 ∪M3) ∩ (M2 ∪M4)
⊆ (M1 ∩M2) ∪ (M3 ∩M4)
⊆ K1 ∩K2


⊆ {((L1, L2), (K1,K2)) | ∃M. L1 ∩ L2 ⊆M ⊆ K1 ∩K2}

=
r z

Remark 3.4. The two black generating objects are not discrete in the terminology of
Carboni and Walters [CW87]: this means that , and , do not satisfy the
Frobenius law. In fact, because they already form a bimonoid, satisfying the Frobenius law
would trivialise the equational theory, making any two diagrams of the same type equal.

Remark 3.5. The atomic actions a (a ∈ Σ) compose freely. This is because, as we
study automata, we are interested in the free monoid Σ∗ over Σ. However, nothing would
prevent us from modelling other structures. Free commutative monoids (powers of N), whose
rational subsets correspond to semilinear sets [Con12, Chapter 11] would be of particular
interest.

Remark 3.6. Semantically, the generators of automata-diagrams allow us to specify systems
of linear language inequalities of the form La ⊆ K. The addition of the white nodes
extends the expressiveness of our calculus, giving us the ability to specify systems involving
intersection and union on both sides of an inequality. While it is clear that this is a strictly
more expressive calculus—for example, the relations that interpret any of the white generators
cannot be expressed using only the black ones—we leave the precise characterisation of the
image of J·K for future work.

Remark 3.7. We have already explained that the adjunctions between the white and black
nodes hold whenever the underlying poset is a lattice. In fact, the calculus we give in this
paper could be interpreted over an arbitrary lattice, with the semantics of each a (a ∈ Σ)
given as a lattice endomorphism.

This last claim also shows that KDA is incomplete for the given interpretation. Indeed,
the lattice of languages (and that of regular languages) is a Boolean algebra. This additional
structure can be captured equationally, by making ( , , , ) a Frobenius
algebra. However, the defining equations of Frobenius algebras cannot be derived from KDA.
One way to show this is to devise a counter-model by interpreting the calculus over a different
lattice, which is not complemented.

Note that this is a feature, not a bug. We are hoping that the methods of this paper can
be translated to other settings, e.g. to automata-like structures or modal logics that do not
require the underlying semantics to be Boolean.

We will now write ≤KDA (resp. =KDA) simply as ≤ (resp. =) to simplify notation, and
say that diagrams c and d of the same type are equal when c =KDA d.

4. Encoding regular expressions and automata

A major appeal of our approach is that both regular expressions and automata can be
uniformly represented in the graphical language of string diagrams, and the translation of
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one into the other becomes a (in)equational derivation in KDA. In fact, we will see there
is a close resemblance between automata and the shape of the string diagrams interpreting
them—the main difference being that string diagrams can be composed.

In this section we describe how regular expressions (resp. automata) can be encoded as
string diagrams, such that their semantics corresponds in a precise way to the languages that
they describe (resp. recognise).

4.1. From regular expressions to string diagrams. We can define an encoding 〈−〉 of
regular expressions into string diagrams of AutΣ inductively as follows:

〈e+ f〉 =
e

f
〈0〉 =

〈ef〉 = e f 〈1〉 =

〈e∗〉 = e 〈a〉 = a (4.1)

For example,

〈ab(a+ ab)∗〉 = a b

a

a b
(4.2)

Let JeKR ∈ LΣ be the standard semantics of a regular expression e, defined inductively as
follows:

Je+ fKR = JeKR ∪ JfKR JefKR = {vw | v ∈ JeKR , w ∈ JfKR}

J1KR = {ε} J0KR = ∅ JaKR = {a}(a ∈ Σ) Je∗KR =
⋃
n∈N

JenKR

where en+1 := een and e0 := 1. As expected, the translation preserves the language
interpretation of regular expressions in a sense that the following proposition makes precise.

Proposition 4.1. For e, f two regular expressions, JeKR = JfKR iff J〈e〉K = J〈f〉K.

Proof. To prove the statement, it is enough to show that J〈e〉K = {(L,K) | L JeKR ⊆ K}.
We do so by induction on the structure of regular expressions. Note that we write “ ; ” for
relational composition, from left to right: R ; S = {(x, z) | ∃y, (x, y) ∈ R, (y, z) ∈ S}.

The proposition holds by definition for the generators: J〈a〉K = {(L,K) | La ⊆ K}.
There are three inductive cases to consider. Assume that e and f satisfy the proposition.
• For the ef case, J〈ef〉K = J〈e〉K ; J〈f〉K = {(L,K) | L JeKR ⊆ K} ; {(L,K) | L JfKR ⊆ K}.
Hence, by monotony of the product, we have J〈ef〉K = {(L,K) | L JeKR JfKR ⊆ K} =
{(L,K) | JefKR L ⊆ K}.
• For the case of e+ f we have

J〈e+ f〉K =

(L,K) | ∃K1,K2, L1, L2.

K1,K2 ⊆ K,
L ⊆ L1, L2,
L1 JeKR ⊆ K1,
L2 JfKR ⊆ K2
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=

(L,K) | ∃L1, L2.
L ⊆ L1, L2,
L1 JeKR ⊆ K,
L2 JfKR ⊆ K


=

{
(L,K) | ∃L1, L2.

L ⊆ L1, L2,
L1 JeKR ∪ L2 JfKR ⊆ K

}
= {(L,K) | L JeKR ∪ L JfKR ⊆ K}
= {(L,K) | L(JeKR ∪ JfKR) ⊆ K}
= {(L,K) | L Je+ fKR ⊆ K}

• Finally, for e∗,

J〈e∗〉K = {(L,K) | ∃M,N. M,L ⊆ N,N JeKR ⊆M,N ⊆ K}
= {(L,K) | ∃N. N JeKR ⊆ N,L ⊆ N ⊆ K}
= {(L,K) | ∃N. L ∪N JeKR ⊆ N,L ⊆ N ⊆ K}
(?)
= {(L,K) | ∃N. L JeK∗R ⊆ N,L ⊆ N ⊆ K}
= {(L,K) | ∃N. L Je∗KR ⊆ N,L ⊆ N ⊆ K}
= {(L,K) | L Je∗KR ⊆ K}

where the starred equation is a consequence of Arden’s lemma [Ard61]: A∗B is the smallest
solution (for X) of the language equation B∪AX ⊆ X, where we write A∗ for the language⋃

n≥0A
n.

Remark 4.2. Regular expressions can also be interpreted as binary relations over an arbitrary
set: such an interpretation is given by a mapping of each letter to a binary relation on some
set, and extended inductively to all regexes (with the sum interpreted as union, product
as relational composition, 1 as the identity, 0 as the empty relation, and the star as the
reflexive, transitive closure). We can write Rel � e = f if every relational interpretation
identifies e and f . The statement and proof of Proposition 4.1 follow a slight modification
of the proof that, Rel � e = f implies JeKR = JfKR

2. The standard argument proceeds as
follows: define a map σ : Σ → 2Σ?×Σ? given by σ(a) = {(w,wa) | w ∈ Σ?}, which can be
extended inductively to a map σ̂ defined over all regexes. Then, one can show by induction
that σ̂(e) = {(w,wu) | u ∈ JeKR} so that, in particular, JeKR = {w | (ε, w) ∈ σ̂(e)}. The
version presented above modifies this idea by adding inclusion where necessary, to turn all
the relevant relations into monotone relations.

From a diagrammatic perspective, regular expressions correspond to diagrams that
enforce a restricted form of composition. They can be characterised in the syntax as the
image of 〈·〉 or, equivalently, as those diagrams of type I→I built inductively from the
following three operations

e

f
e f e

starting from the basic diagrams a , , and . In what follows, we will refer
to any diagram of this form as a regex-diagram.

2We thank the anonymous reviewer for pointing this out. The earliest reference we could find is [Pra80,
p.24]
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4.2. From automata to string diagrams. Example (4.2) suggests that the string diagram
〈e〉 corresponding to a regular expression e looks a lot like a nondeterministic finite-state
automaton (NFA) for e. In fact, the translation 〈−〉 can be seen as the diagrammatic
counterpart of Thompson’s construction [Tho68] that builds an NFA from a regular expression.

We can generalise the encoding of regular expressions and translate NFA directly into
string diagrams, in at least two ways. The first is to encode an NFA as the diagrammatic coun-
terpart of its transition relation. The second is to translate directly its graph representation
into the diagrammatic syntax.

Encoding the transition relation. This is a simple variant of the translation of matrices
over semirings that has appeared in several places in the literature [Lac04, Zan15].

Let A be an NFA with set of states Q, initial state q0 ∈ Q, accepting states F ⊆ Q
and transition relation δ ⊆ Q × Σ × Q. We can represent δ as a string diagram d with
|Q| incoming wires on the left and |Q| outgoing wires on the right. The left j-th port of
d is connected to the i-th port on the right through an a whenever (qi, a, qj) ∈ δ. To
accommodate nondeterminism, when the same two ports are connected by several different
letters of Σ, we join these using and . When (qi, ε, qj) ∈ δ, the two ports
are simply connected via a plain identity wire. If there is no tuple in δ such that (qi, a, qj) ∈ δ
for any a, the two corresponding ports are disconnected, using if necessary.

For example, the transition relation of an NFA with three states and

δ = {((q0, a, q1), (q1, b, q2), (q2, a, q1), (q2, a, q2))}

(disregarding the initial and accepting states for the moment) is depicted below. Conversely,
given such a diagram, we can recover δ by collecting Σ-weighted paths from left to right
ports.

d =

a

b

a

a

To deal with the initial state, we add an additional incoming wire connected to the right
port corresponding to the initial state of the automaton. Similarly, for accepting states we
add an additional outgoing wire, connected to the left ports corresponding to each accepting
state, via if there is more than one.

Finally, we trace out the |Q| wires of the diagrammatic transition relation to obtain
the associated string diagram. In other words, for a NFA with initial state q0, set of
accepting states F , transition relation δ, we obtain the string diagram below, where d is the
diagrammatic counterpart of δ as defined above, e is the injection of a single wire as the first
amongst |Q| wires, and f discards all wires that are not associated to states in F with ,
and applies to merge them into a single outgoing wire.

e

|Q|

|Q|

f

d

For example, if A with δ as above has initial state q0 and set of accepting states {q2},
we get the diagram below left; if instead, all states are accepting, we obtain the diagram
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below right:

a

b

a

a

e

d

f

a

b

a

a

e

d

f

The correctness of this simple translation is justified by a semantic correspondence between
the language recognised by a given NFA A and the denotation of the corresponding string
diagram.

Proposition 4.3. Given an NFA A which recognises the language L, let cA be its associated
string diagram, constructed as above. Then JcAK = {(K,K ′) | LK ⊆ K ′}.

Proof. This is the diagrammatic counterpart of the representation of automata as matrices
of regular expressions given in [Koz94, Definition 12].

We write K for a vector of languages (K1, . . . ,K|Q|) and A for a square matrix of
languages; let AK be the language vector resulting from applying A to K in the obvious
way (note that we use standard matrix multiplication order, which is the opposite of the
diagrammatic order). By [Koz94, Theorem 11], square language matrices form a Kleene
algebra, with the composition as product, component-wise union as sum and the star defined
as in [Koz94, Lemma 10]. We also write write K ⊆ K′ if the inclusions all hold component-
wise. Furthermore, Arden’s lemma holds in this more general setting: the least solution of
the language-matrix equation B ∪AX ⊆ X is X = A∗B. This is another consequence of
the fact that matrices of languages also form a Kleene algebra [Koz94, Theorem 11].

Now, for a given automaton A we construct the diagram below as explained above:

cA =
e

|Q|

|Q|

f

d

with d the diagram encoding the transition relation of A, e0 the diagram encoding its initial
state, and f the diagram encoding its set of final states. Let JdK = D be the language matrix
obtained from A by letting Dij = {a} if (qi, a, qj) is in the transition relation of A. We
proceed as in Example 2.5. First, we have

u

w
v |Q|

|Q|

d

}

�
~

= {(K,K′) | ∃M,N, M,K ⊆ N, DN ⊆M, N ⊆ K′}
= {(K,K′) | ∃N, DN ⊆ N, K ⊆ N ⊆ K′}
= {(K,K′) | ∃N, K ∪DN ⊆ N, N ⊆ K′}
(?)
= {(K,K′) | ∃N, D∗K ⊆ N,N ⊆ K′}
= {(K,K′) | D∗K ⊆ K′}

where the starred step holds by the matrix-form of Arden’s lemma. Then, JeK and JfK pick
out the component languages of D∗ that correspond to the initial state of A and each final
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state, and takes their union. Thus, we get

JcAK =

u

w
v

e

|Q|

|Q|

f

d

}

�
~

= JeK ; {(K,K′) | D∗K ⊆ K′} ; JfK
= {(K,K ′) | LK ⊆ K ′}

where L is the language accepted by the original automaton.

From graphs to string diagrams. The second way of translating automata into string
diagrams mimics more directly the usual representation of automata as graphs. The idea
(which should be sufficiently intuitive to not need to be made formal here) is, for each state,
to use to represent incoming edges, and to represent outgoing edges. As
above, labels a ∈ A will be modelled using a . For example, the graph and the associated
string diagram corresponding with the NFA above are

a

a

b
a

7→
a

b a
a (4.3)

Note that the initial state (which we indicate with an arrow pointing down and into a state)
of the automaton corresponds to the left interface of the string diagram, and the accepting
state (which we indicate with an arrow pointing down and out of a state) to the right interface
of the same diagram. As before, when there are multiple accepting states, they all connect
to a single right interface, via . For example, if we make all states accepting in the
automaton above, we get the following diagrammatic representation:

a

a

b
a

7→

a

b aa

4.3. From string diagrams to automata. The previous discussion shows how NFAs can
be seen as string diagrams of type I→I. The converse is also true: we now show how to
extract an automaton from any automaton-diagram d : I→I, such that the language the
automaton recognises matches the semantics of d.

In order to phrase this correspondence formally, we need to introduce some terminology.
We call left-to-right those automata-diagrams whose domain and co-domain contain only I,
i.e. their type is of the form In→Im. The idea is that, in any such string diagram, the n
left interfaces act as inputs of the computation, and the m right interfaces act as outputs.
For instance, (4.3) is a left-to-right diagram I→I.

We call block of a certain subset of generators a diagram composed only of these generators
(using both ; and ⊕), possibly including some permutation of the wires.

Definition 4.4. A matrix-diagram is a left-to-right diagram that factors as a composition of
a block of , , followed by a block of a for a ∈ Σ and finally, a block of , ,
such that any path from a left port to a right port passes through at most one a .
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To each matrix-diagram d we can associate a unique transition relation δ by gathering paths
from each input to each output: (qi, a, qj) ∈ δ if there is a joining the i-th input to
the j-th output. A transition relation is ε-free if it does not contain the empty word. It is
deterministic if it is ε-free and, for each i and each a ∈ Σ there is at most one j such that
(qi, a, qj) ∈ δ. We will apply these terms to matrix-diagrams and the associated transition
relation interchangeably. The example of Section 4.2 below, with the three blocks highlighted,
is a matrix-diagram.

a

b

a

a

It is ε-free but not deterministic since there are two a-labelled transitions starting from the
third input.

We also call relation-diagram a matrix-diagram that contain no a . Intuitively, in the
absence of the a generators, the corresponding theory is simply that of Boolean matrices,
i.e. relations. We now introduce representations of (automata-)diagrams, the diagrammatic
counterpart of Kozen’s automata in matrix form (written (u,M, v), with semantics uM∗v
in [Koz94, Definition 12]).

Definition 4.5 (Representation). For a diagram3 c :I→I, a representation is a triple
(e, d, f) of an ε-free matrix-diagram d :Il→Il representing the transition dynamics, and
two relation-diagrams e :I→Il, and f :Il→I representing the initial and the final states
respectively, such that

c = e fd∗ where d∗ := d

It is a deterministic representation if moreover d is a deterministic matrix-diagram and there
is only one right-port connected to the only left-port of e (i.e., there is exactly one initial
state).

For example, given the string diagram below on the left, we can use the axioms of KDA
to rewrite it to an equivalent diagram from which a representation can easily be read—the
highlighted matrix-diagram corresponds to the same transition matrix d as in the example
above:

a

b a
a =KDA

a

b

a

a

e

d

f

(4.4)

From a diagram c :I→I with representation (e, d, f), we can construct an NFA as follows:
• its state set is Q = {q1, . . . , ql}, i.e., there is one state for each wire of d :Il→Il;

3Representations could also be defined for arbitrary left-to-right diagrams Im→In, but we will only need
them to connect diagrams and automata, so it is sufficient to consider the n = m = 1 case for our purpose.
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• its transition relation built from d as described above;
• its initial state is the only non-zero coefficient of e :I→Il, i.e., the only wire in the
codomain of e connected to the single wire in the domain;
• its final states F are those qj for which the j-th coefficient of f :Il→I is non-zero, i.e.,
the wires of the domain of f connected to its single codomain wire.

The construction above is the inverse of that of Section 4.2. The link between the constructed
automaton and the original string diagram c is summarised in the following statement, which
is a straightforward corollary of Proposition 4.3.

Proposition 4.6. For a diagram c :I→I with a representation ĉ = (e, d, f), let Aĉ be the
associated automaton, constructed as above. Then L̂ is the language recognised by Aĉ iff
JcK = Je; d∗; fK =

{
(K,K ′) | L̂K ⊆ K ′

}
.

The next proposition is crucial: it states that a representation can be extracted from
any diagram I→I.

Proposition 4.7. Any automaton-diagram I→I has a representation.

We will need to prove a few preliminary results before tackling the proof of Proposition 4.7.
The following lemma will also be needed in the determinisation procedure of Section 5.3.

The next theorem establishes completeness for a restricted fragment of our language,
corresponding to matrices of finite languages. More precisely, every diagram formed only of
the generators , , , , a is interpreted via J·K as a matrix with coefficients
in B(Σ∗), the semiring of finite sets of words over the alphabet Σ.

Theorem 4.8 (Matrix completeness). For any two diagrams c, d formed only of the generators
, , , , a , we have JcK = JdK iff c = d.

Proof. This result is particular case of a standard fact, that can be found for matrices over a
ring in [Zan15, Chapter 3]. However, the relevant proof of [Zan15, Proposition 3.9] does not
make use of additive inverses and generalises without any difficulty to arbitrary semirings.
The required axioms are (B1)-(B11) and (E6-11).

The equalities (E6-7) and (E10-11) in Fig. 1 can be extended to any matrix-diagram.

Lemma 4.9 (Matrix distributivity). Any matrix-diagram d :Im→In (cf. Definition 4.4)
satisfies

d
m

n

n
(cpy)
=

d
m

n

d
n

d
m n (del)

=
m

d
m

n

d
m

(co-cpy)
= d

m
n

m
n (co-del)

= d
m n

Proof. This lemma can be easily proved by induction, using axioms (B1)-(B11) and local
distributivity (equalities (E6-7) and (E10-11)) as base case. But it is also an immediate
consequence of Theorem 4.8 and of the equivalent semantic statement for matrices with
coefficients in B(Σ∗).
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Given a matrix-diagram d :Il+m→Ip+n, we will write dij , with i = l, n and j = p,m, to
refer to the diagram obtained from discarding all but the left i-ports with and all but
the right j-ports with . For example,

dm,p = dm
l

n

p

The following lemma states that this operation selects the corresponding submatrices of (the
matrix corresponding to) d.

Lemma 4.10. For any matrix-diagram d :Il+n→Ip+m, with dij defined as above. , we
have

d =
dl,n

m

dl,p

dm,n

dm,p

l

n

p

Proof. This could be proven from Lemma 4.9 but we can appeal once again to the corre-
sponding fact for matrices over a semiring and to the completeness of our theory for matrices
over B(Σ∗) (Theorem 4.8) to deduce it immediately.

Note that if we discard all but one port on the left and one port on the right, we pick out a
dimension-one submatrix, i.e. a coefficient, of the corresponding matrix. Then, Lemma 4.10
is only saying that matrix-diagrams are fully characterised by their coefficients.

The following lemma establishes a useful form for diagrams.

Lemma 4.11 (Trace canonical form). For any automaton-diagram c :In→Im, we can
always find a relation-diagram r :Il+n→Il+m such that

c
mn

= r mn

l

x

where x l denotes a vertical composite of l-many a generators.

Proof. We reason by structural induction on AutΣ. For the base case, if c is a , we have

a
(A1)
= a =

a

and every other generator is trivially in the right form, with the trace taken over the 0 object
(the empty list of generators).

There are two inductive cases to consider:
• c is given by the sequential composition of two morphisms of the appropriate form (using
the induction hypothesis). Then

s
p

n
x

l

t m
y

q

= s
p

l

y
t

q

m

x

n

=
r y

q

mn

x

l



13:18 R. Piedeleu and F. Zanasi Vol. 19:1

Here, the composite of the two relation diagrams s and t is also equal to a relation diagram,
r, by completeness of KDA for matrices over B(Σ∗) (Theorem 4.8) so a fortiori for Boolean
matrices (those B(Σ∗)-matrices that contain only 0 or ε coefficients).
• c is given as the monoidal product of two morphisms of the appropriate form. Then

r1 m1n1
x1

l1

x2r2 m2n2

l2 =

r1

m1n1

x1

l1

x2r2 m2n2

l2

=
m1n1

x1

l1

x2

r
m2n2

l2

where it is immediate that r is a relation diagram, as product of the two relation diagrams
r1 and r2.

We are now ready to prove that any automaton-diagram c :I→I has a representation.

Proof of Proposition 4.7. We first rewrite c to trace canonical form (Lemma 4.11)

c = r

k

x

(4.5)

where the relation-diagram r contains no a , and therefore factorises as a first layer of
comonoid , (potentially followed by some permutations) and a third layer of vertical
compositions of the monoid , .
Then, we can decompose r :Ik+1→Ik+1 as in Lemma 4.10 to obtain

c =
rk,1

x
rk,k

r1,1

r1,k

k (co-cpy)
=

rk,1

rk,k

r1,1

r1,k k

x

x

(B5-B6)
=

rk,1

rk,k

r1,1

r1,k k

x

x (A1-A2)
=

rk,1

rk,k

r1,1

r1,k

kx

x

e f

=:

rk,k

f

r1,k

k

x

x

e
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We are very close to obtaining the desired representation but the highlighted sub-diagram in
the last diagram is not quite of the right form. Recall that rk,k and r1,k are relation-diagrams,
which means that they factor as a block of , composed sequentially with a block
of , . Therefore, to obtain an ε-free matrix-diagram we can push all the scalars in

x into rk,k and r1,k past the , block, using (E10)4. In doing so, we get two
ε-free matrix-diagrams—let us call them dk,k and d1,k, respectively—and can write:

c
(co-cpy)

=

dk,k

f

d1,k

k

e
d =:

e

l

l

f

d

for l = k + 1. We can see directly from the form of this last expression that (e, d, f) is a
representation for c.

5. Completeness and Determinisation

This section is devoted to prove our completeness result, Theorem 3.3. We use a normal
form argument: more specifically we mimic automata-theoretic results to rewrite every string
diagram to a normal form corresponding to a minimal deterministic finite automaton (DFA).
It is a standard result that, for a given regular language L, there is a minimal (in the number
of states) DFA which recognises L and that this DFA is unique up to renaming of the states.
For a review of this fundamental result, we refer the reader to [Koz12, §13-16] There are
several ways to obtain a minimal DFA that is language-equivalent to a given NFA. We will
use Brzozowski’s algorithm [Brz62], which we implement in KDA itself as a sequence of
diagrammatic (in)equalities. The proof proceeds in four distinct steps.
• We first show (Section 5.1) how the problem of completeness for all of AutΣ can be reduced
to that of equality of I→I diagrams.
• We then give (Section 5.3) a procedure to determinise (the representation of) a diagram:
this step consists in eliminating all subdiagrams that correspond to nondeterministic
transitions in the associated automaton. For this, we build on the results of Section 5.2, in
which we show that the standard subset construction can be carried out diagrammatically.
• We use the previous step to implement a minimisation procedure (Section 5.4) from
which we obtain a minimal representation for a given diagram: this is a representation
whose associated automaton is minimal—with the fewest number of states—amongst
DFAs that recognise the same language. To do this, we show how the four steps of
Brzozowski’s minimisation algorithm (reverse; determinise; reverse; determinise) translate
into diagrammatic equational reasoning. Note that the first three steps taken together
simply amount to applying in reverse the determinisation procedure we have already
devised. That this is possible will be a consequence of the symmetry of ≤KDA.
• Finally, from the uniqueness of minimal DFAs, any two diagrams that have the same deno-
tation are both equal to the same minimal representation and we can derive completeness
of ≤KDA (Theorem 3.3).

4This step implements the diagrammatic counterpart of a standard ε-elimination procedure for NFA.
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Remark 5.1. At this point, it is helpful to explain the relationship between the completeness
result of this paper and the erroneous claim of [PZ21]. In the present paper, the white nodes
play a double role: (1) they allow us to reduce completeness to automata-diagrams of type
I→I, and (2) to translate the use of non-equational axioms (in particular the induction
axiom of Kozen’s axiomatisation) in the proof below, using purely local and equational
reasoning steps.

In [PZ21], we used a different syntax: one with another generator (also represented by a
white node) interpreted as the action of regular expressions on languages. This additional
generator allowed us to achieve (1), but was not sufficient to guarantee (2). Indeed, the proof
of (2) is based on an incorrect claim: the rewriting procedure that is supposed to implement
determinisation, as explained in the proof of [PZ21, Lemma 4], makes unfounded assumptions
on the shape of diagrams and is not guaranteed to return the desired determinisation. A
counter-example is provided by the diagrammatic representation of, e.g., (aa)∗(1 + a). The
corresponding diagram should be equal to that representing a∗, but this cannot be proven in
the equational theory of that paper—we explain this further in Example 5.21 below.

5.1. Useful preliminaries and simplifying assumptions. In this section, we use sym-
metries of the theory to make simplifying assumptions about the diagrams to consider in the
completeness proof.

First, note that we need only consider equalities for completeness, since inequalities can
be recovered from the semi-lattice structure of the binary operation defined by and

, both semantically and syntactically as shown by the following two propositions.

Proposition 5.2. For any two diagrams c, d, JcK ⊆ JdK if and only if
s

d

c
{

=

JcK.

Proof. A routine calculation shows that
s

d

c
{

= JcK ∩ JdK. So the result follows

from JcK ∩ JdK = JcK⇔ JcK ⊆ JdK.

Proposition 5.3. For any two automata-diagrams c, d we have c ≤ d iff
d

c
= c.

Proof. If c ≤ d, then c
(F4)
≤ c

(cpy)
≤

c

c
≤

d

c
= c. We

also have
d

c (F2)
≤

d

c (del)
≤

c
Note that we use (cpy) and

(del) from Theorem 5.5 below (but in fact, these inequalities and the statement of the
proposition, holds for any diagram. This can easily be proven by induction—the inductive
cases are trivial, so we just have to check that the relevant inequalities holds for all generators.
However, we will not need this more general fact here, as we only care about completeness
for automata-diagrams).

Conversely if
d

c
= c, then we can reason as before: c =

d

c (F2)
≤

c

d

(del)
≤

d
= d.
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Then, we show that, without loss of generality, we can restrict our attention to diagrams
of type I→I. We proceed in two steps: (1) from all AutΣ diagrams to left-to-right diagrams
only, and from left-to-right diagrams to those of type I→I.

From diagrams of AutΣ to left-to-right diagrams. First, the following proposition
implies that, without loss of generality, we need only consider to left-to-right diagrams
(Section 4.2).

Proposition 5.4. There are natural bijections between sets of string diagrams of the form
A1

B
A2

↔
A1 B

A2 and
B1

A
B2

↔
B1A

B2

where A,B,Ai, Bi represent lists of I and J.

Proof. This proposition holds in any compact-closed category and relies on the ability to
bend wires using and . Explicitly, given a diagram of the first form, we can obtain one
of the second form as follows:

A1
B

A2
7→

A1
B

A2
(5.1)

The inverse mapping is given by the same wiring with the opposite direction. That they are
inverse transformations follows immediately from the defining equations of compact closed
categories (A1)-(A2). The other bijection is constructed analogously.

Intuitively, Proposition 5.4 tells us that we can always bend incoming wires to the left
and outgoing wires to the right before applying some equations, and recover the original
orientation of the wires by bending them into their original place later.

From left-to-right to I→I. As we will now show, we can further restrict our attention
to diagrams I→I. For this we prove that any left-to-right diagram Im→In is fully
characterised by n ×m diagrams I→I much like linear maps can be described by their
coefficients in a given basis. Showing this amounts to proving that Lemma 4.9 extends to all
left-to-right diagrams (so that the monoidal product is also a biproduct for the subcategory
of left-to-right diagrams).

Theorem 5.5 (Global distributivity). For any automaton-diagram d :Im→In, we have

d
m

n

n
(cpy)
=

d
m

n

d
n

d
m n (del)

=
m

d
m

n

d
m

(co-cpy)
= d

m
n

m
n (co-del)

= d
m n

Proof. According to Lemma 4.11, given d as in the statement of the theorem, we can find a
relation-diagram r such that

d
mn

= r mn

l

x

(5.2)
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Note first that, by Lemma 4.9, any relation-diagram satisfies (cpy) and (del) so we will use
these two equations for r below.

First, we prove both inequalities of (cpy).
• The first inequality requires the introduction of new black nodes, via the two axioms

(F1)
≤ and

(F3)
≤ :

r
m

n

l

x

m

(F3)
≤ r m

n

l

x

m

(E6)
≤ r m

n

l

m

x

x

(cpy)
=

r
m

x

l

x
r m

n

(A1-A2)
=

r
m

x l

x
r m

n

l

(F1)
≤

r
m

x

l

x
r m

l

n

• The reverse inequality requires the introduction and elimination of , via the two

axioms
(F5)
≤ and d

(F7)
≤ :

r
m

x

l

x
r m

l

n

(F5)
≤

r
m

x l

x
r m

n

l

(A1-A2)
≤

r
m

x

l

x
r m

n
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(cpy)
≤ r m

n

l

m

x

x

(E8)
≤ c m

n

l

m

x

(F7)
≤ r

m
n

l

x

m

We can prove (del) in a similar way, as follows.

• The first inequality is the unary version of its (cpy) counterpart, using axioms
(F2)
≤

and
(F4)
≤ :

rn

l

x (F2)
≤ r

n

l

x

(E7)
≤ r

n

l

(del)
=

l

n

(A1-A2)
= n

l

(F4)
≤ n

• The reverse inequality requires the introduction and elimination of , using axioms
(F6)
≤ and

(F8)
≤ :

n
(F6)
≤ n

l

(A1-A2)
≤

l

n

(del)
≤ r

n

l
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(E9)
≤ r

n

l

x

(F8)
≤ rn

l

x

The other two equalities—(co-cpy) and (co-del)—can be proved by a symmetric argument,
replacing with , with , axioms (F9) instead of (F5), (F11) instead of
(F7), (F10) instead of (F6), and (F12) instead of (F8).

For d :Im→In, let dij be the string diagram of type I→I obtained as in Lemma 4.10,
by discarding every input and output except the i-th input and j-th output, i.e., by composing
every input with except the i-th one, and every output with except the j-th one.
Theorem 5.5 implies that left-to-right diagrams, like matrix-diagrams, are fully characterised
by their I→I subdiagrams.

Corollary 5.6. Given automata-diagrams d, e :Im→In, d =KDA e iff dij =KDA eij, for all
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Thus, as we claimed above, we can restrict our focus further to left-to-right I→I
diagrams, without loss of generality. Therefore, to prove Theorem 3.3, we only need to to
prove the following result.

Theorem 5.7. For any two automata-diagrams d, d′ :I→I,

JdK =
q
d′

y
if and only if d =KDA d

′.

We will need to prove several preparatory results, including a diagrammatic form of
determinisation, before the proof of Theorem 5.7 which can be found in Section 5.4.

5.2. Diagrammatic subset construction. In what follows we assume familiarity with
the standard subset construction. The reader who wishes to refresh their memory can refer
to [Koz12, §6].

In diagrammatic terms, a nondeterministic transition of the automaton associated to (a

representation of) a given diagram, corresponds to a subdiagram of the form a

a
for

some a ∈ Σ in the matrix-diagram encoding its transition relation. The following example
illustrates how Theorem 5.5 can already be used to determinise some simple automata-
diagrams. The following section is dedicated to giving a formal procedure that extends this
idea to any automaton-diagram, by formalising a diagrammatic version of the algebraic
subset construction due to Kozen [Koz94].

Example 5.8.

a

a

a
a

b

c

7→

a

ba
a

ca

(cpy)
=

b

c
a

a∗

a∗
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(cpy)
=

b

c
a a∗ :=

b

c
a

a

←[
a

a c

b

where we write a∗ for the left-to-right diagram a .

The diagrammatic counterpart of the subset construction we give below makes crucial
use of the adjunctions between the different generators (Block F in Fig. 1). Before we can
give the determinisation procedure for an arbitrary automaton-diagram, we need to cover
essential technical preliminaries, which will allow us to greatly generalise these adjunctions.

Recall from Section 4.2 that, given a bimonoid, we can encode n×m Boolean matrices—
equivalently, relations between the finite sets {0, . . . ,m− 1} and {0, . . . , n− 1}—by a block
of comultiplications and counits composed sequentially with a block of multiplications and
units. The i-th open port on the right is connected to j-th one on the left iff (i, j) is in
the encoded relation. This time we will be working with three different bimonoids, giving
three different encodings of relations: ( , , , ), ( , , , ), and
( , , , ). We will call the corresponding matrix-diagrams (•, •)-matrices5,
(•, ◦)-matrices and (◦, •)-matrices respectively.

We will now prove that the adjunctions between the white and black generators (Block
F in Fig. 1) generalise to these matrix-encodings. We define two notions of transpose for
diagrams: one which swaps the colours of the different generators and one which does not.
These will assist us in generalising the adjunctions between the white and black generators
to all our matrix encodings of relations.

Definition 5.9. Given a diagram d :Im→In, we define its transpose to be the diagram
dT :In→Im obtained by flipping d horizontally, except the letters a . More formally,
(·)T is defined inductively as follows:

( )T = ( )T = ( )T = ( )T =

( )T = ( )T = ( )T = ( )T =( )T
=

( )T
= ( a )T = a

( )T = (c ; d)T = dT ; cT (c1 ⊕ c2)T = cT1 ⊕ cT2
Definition 5.10. Given a diagram d :Im→In, we define its colour-transpose to be the
diagram d◦ :In→Im obtained from d by swapping all black and white nodes, and flipping
the resulting diagram horizontally, except the letters a . More formally, (·)◦ is defined
inductively as follows:

( )◦ = ( )◦ = ( )◦ = ( )◦ =

( )◦ = ( )◦ = ( )◦ = ( )◦ =( )◦
=

( )◦
= ( a )◦ = a

( )◦ = (c ; d)◦ = d◦ ; c◦ (c1 ⊕ c2)◦ = c◦1 ⊕ c◦2
5These are the relation-diagrams of Section 4.3.
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Note that a permutation σ is mapped to its inverse so that σT = σ◦ = σ−1. Another
immediate consequence of these definitions is that these mappings are involutive: (d◦)◦ = d
and (dT )T = d for any diagram d.

For the next lemmas, we use the following notation. Given some relation, we write
for the corresponding (•, •)-matrix. We can assume it factors as = b ; c, where b is a
diagram formed only of , and c is a diagram formed only of , . Then, we
define := cT ; b◦ and := c◦ ; bT .

It is helpful to adopt a semantic point of view in order to develop intuition about these
different diagrammatic encodings of relations. If encodes the relation R, we have

J K = {(L,K) | Li ⊆ Kj if (i, j) ∈ R}

J K =

(L,K) |
⋂

(i,j)∈R

Lj ⊆ Ki

 J K =

(L,K) | Lj ⊆
⋃

(i,j)∈R

Ki


(Notice the reversal of the indices i and j for the adjoint matrices). Furthermore, the matrix

can be seen as the embedding of a monotone map LmΣ → LnΣ (see Remark 2.3) in
monotone relations. In fact, the corresponding map is not just monotone but a lattice
homomorphism, i.e. a map that preserves both meets/intersections and joins/unions. As a
result, it admits both left ( ) and right ( ) adjoints.

From an equational perspective, as we will now prove, the F axioms of KDA are enough
to derive a a .

Lemma 5.11. If b :Im→In is a diagram made entirely from and , we have

(i)
n ≤ n

b◦
n

b and (ii)
m

b
m

b◦ ≤ m

Proof. Consider inequality (i). This can be proven by a straightforward induction on the
structure of b. We can take care of the base cases with axioms (F5) and (F8). There are
three inductive cases to consider, which can be dealt with using these two axioms again:

• b = b′
n

m− 1 . Then b◦ ; b = (b′)◦ b′
n n

m− 1

(F5)
≥ (b′)◦ ; b′.

• b = b′
n

m− 1 . Then b◦ ; b = (b′)◦ b′
n n

m− 1

(F8)
≥ (b′)◦ ; b′

• b = σ ; b′ for some permutation σ. Then b◦ ; b = (b′)◦ ; σ−1 ; σ ; b′ = (b′)◦ ; b′.

In all three cases we can conclude that
n ≤ n

b◦
n

b using the induction hypothesis.
Inequality (ii) can also be proven by a similar induction. We can take care of the base

cases with axioms (F6) and (F7). As before, there are three inductive cases to consider,
which can be dealt with using these two axioms again:

• b = b′
n

m− 1 . Then b ; b◦ = b′
n

m− 1 (b′)◦ m− 1
(I.H.)
≤ m− 1

(F7)
≥ m

.

• b = b′
n

m− 1 . Then b ; b◦ = (b′)◦b′
n

m− 1 m− 1
(I.H.)
≤ m− 1

(F6)
≤ m

• b = σ ; b′ for some permutation σ. Then b◦ ; b = σ ; b ; b◦ ; σ−1
(I.H.)
≤ σ−1 ; σ =

m
.

Lemma 5.12. If w :Im→In, is a diagram made entirely from and , we have

(i)
n ≤ n

w◦ n
w and (ii)

m
w

m
w◦ ≤ m
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Proof. The proof is entirely analogous to that of the previous lemma. Inequality (i) can be
proven in the same way, replacing all uses of (F5) by (F9) and (F8) by (F12). Similarly, we
can prove inequality (ii) by replacing all uses of (F6) by (F10) and (F7) by (F11).

Lemma 5.13. If b :Im→In is a diagram made entirely from and , we have

(i)
n ≤ m

b
m

bT and (ii)
n

bT
n

b ≤ m

Proof. The proof is once again entirely analogous to that of the Lemma 5.12, with the
converse inequalities (as is left adjoint to , whereas is right adjoint to

). We can prove inequality (i) as inequality (ii) in Lemma 5.12 by replacing all uses of
(F6) by (F2) and (F7) by (F3). Inequality (ii) can be proven in the same way as inequality
(i) in Lemma 5.12, replacing all uses of (F5) by (F1) and (F8) by (F4).

Recall that if = b ; c, := c◦ ; bT and := cT ; b◦.

Lemma 5.14. (i)
m ≤ and (ii) ≤ n

Proof. Let w = c◦ so that w is made entirely from , (and we can apply Lemma 5.12
to it) and notice that w◦ = (c◦)◦ = c.

For (i), we have
m ≤ b ; bT ≤ b ; w◦ ; w ; bT := b ; c ; c◦ ; bT =: where the

first inequality comes from Lemma 5.13 (i) and the second from Lemma 5.12 (i).
For (ii), we have := c◦ ; bT ; b ; c ≤ c◦ ; c = w ; w◦ ≤ n

where the first
inequality comes from Lemma 5.13 (ii) and the second one from Lemma 5.12 (ii).

Lemma 5.15. (i)
n ≤ and (ii) ≤ m

Proof. Let b1 = cT and notice that bT1 = (cT )T = c.
For (i), we have

n ≤ b1 ; bT1 := cT ; c ≤ cT ; b◦ ; b ; c =: where the first
inequality comes from Lemma 5.13 (i) and the second from Lemma 5.11 (i).

For (ii), we have := b ; c ; cT ; b◦ =: b ; bT1 ; b1 ; b◦ ≤ b ; b◦ ≤ n
where the

first inequality comes from Lemma 5.13 (ii) and the second one from Lemma 5.11 (ii).

Following Kozen’s proof of completeness [Koz94] we can model the subset construction
algebraically, now with diagrams. We can construct a (•, •)-matrix ps :I2s→Is encoding the
membership relation of elements of {0, . . . , s−1} (in the codomain) to subsets of {0, . . . , s−1}
(in the domain)—in diagrammatic terms, the i-th port on the right is connected to the j-th
port on the left iff i ∈ j ⊆ {0, . . . , s − 1} (where we fix some ordering of the subsets of
{0, . . . , s− 1}). For example, p2 is the following diagram

where the ports on the right correspond to 0 and 1, and those on the left correspond to the
subsets ∅, {0}, {1}, and {0, 1}, from top to bottom.

From now on will refer to pS , and , , to the adjoint (◦, •)-matrices
Is→I2s constructed as explained above. We will omit the explicit label s when it can be
easily inferred from the context.

The next lemma connects the diagrammatic representation of a given automaton to
that of its determinisation. It is simply a reformulation of Kozen’s construction in [Koz94].
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We assume that d :Is→Is, f :Is→I, and e :I→Is are matrix-diagrams encoding the
transition relation, final and initial states of a given automaton, and d̂ :I2s→I2s , f̂ :I2s→I,
and ê :I→I2s are matrix-diagrams encoding the transition relation, final and initial state
of its determinisation, respectively.

Lemma 5.16.
(i) d̂ = d

(ii) e = ê (iii) f̂ = f

Proof. By construction of . The three claims for the corresponding matrix/vectors
can be found in [Koz94, Lemma 17]. The same diagrammatic facts holds because of the
completeness of our theory for (•, •)-matrix-diagrams (Theorem 4.8).

5.3. Determinisation. We are now able to devise a determinisation procedure for rep-
resentation of automata-diagrams. One of the payoffs of our approach is that the proof
of the following theorem can be carried out purely equationally: the adjunctions we have
constructed in the previous subsection make it possible to replace Kozen’s use of bisimulation
laws in his completeness proof [Koz94] by local diagrammatic rewriting steps.

First, we will need the diagrammatic counterpart of (xy)∗x = x(yx)∗, a well-known
identity of Kleene algebra. Note that this law holds generally for arbitrary automata-
diagrams (and is proved entirely analogously) but we only need it for matrix diagram to
show completeness.

Lemma 5.17. For x, y two matrix-diagrams, we have:

x y

x
= y x

x

Proof. We only need two successive applications of matrix distributivity (Lemma 4.9):

x y

x

(cpy)
= y

x

(cocpy)
= y

x

x (compact)
= y x

x

We are now ready to prove a form the bisimulation rule of Kozen’s completeness proof.

Lemma 5.18 (Bisimulation). If d̂ = d then

d̂∗ = d∗
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Proof. We prove the forward inclusion first:

d̂∗ := d̂

≤ d̂ (Lemma 5.14 (i))

= d̂ (Lemma 5.17)

= d (Lemma 5.16 (i))

≤ d (Lemma 5.14 (ii))

=: d∗

For the reverse inclusion, we have:

d∗ := d

≤ d (Lemma 5.15 (i))

= d̂ (Lemma 5.16 (i))

= d̂ (Lemma 5.17)

≤ d̂ (Lemma 5.15 (ii))

=: d̂∗

Theorem 5.19. Every automaton-diagram is equal to its determinisation.

Proof. Given an automata-diagram with representation (e, d, f) let (ê, d̂, f̂) be its determini-
sation as defined as above. Then

e fd∗ = ê fd∗ (Lemma 5.16(ii))

= ê fd̂∗ (Bisimulation)
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= ê f̂d̂∗ (Lemma 5.16(iii))

Combining the theorem above with the existence of representations (Theorem 4.7) yields
the result we are after.

Corollary 5.20 (Determinisation). Any automaton-diagram I→I has a deterministic
representation.

5.4. Minimisation and completeness. As explained above, our proof of completeness
is a diagrammatic reformulation of Brzozowski’s algorithm, which proceeds in four steps:
determinise, reverse, determinise, reverse. We already know how to determinise a given
diagram. The other three steps are simply a matter of changing our perspective on diagrams,
looking at them from right to left, and noticing that all the equations that we needed to
determinise them, can be performed in reverse.

We say that a matrix-diagram is co-deterministic if the converse of its associated
transition relation is deterministic.

Proof of Theorem 5.7 (Completeness). We have a procedure to show that, if JdK = Jd′K, then
there exists a string diagram c in normal form such that d = c = d′. This normal form is the
diagrammatic counterpart of the minimal automaton associated to d and d′. In our setting,
it is the deterministic representation of d and d′ with the smallest number of states. This
is unique because we can obtain from it the corresponding minimal automaton, which is
well-known to be unique. First, given any string diagram we can obtain a representation for
it by Proposition 4.7. Then we obtain a minimal representation by splitting Brzozowski’s
algorithm in two steps.
1. Reverse; determinise; reverse: A close look at the determinisation procedure shows

that, at each step, the required equations all hold in reverse, read from right to left
instead of left to right. For example, we can replace every instance of (cpy) with (co-
cpy). We can thus define, in a completely analogous manner, a co-determinisation
procedure which takes care of the first three steps of Brzozowski’s algorithm, and
obtain a co-deterministic representation for the given diagram.

2. Determinise: By applying Corollary 5.20, we can obtain a deterministic representation
from the co-deterministic representation of the previous step. The result is the desired
minimal deterministic representation and normal form.

Example 5.21. This example treats the diagrammatic equivalent of the regex (aa)∗(1 + a)
which denotes the same language as a∗. This is a simple example of an equivalence that
cannot be proven in Kleene algebra without the induction axiom (or some equivalent infinitary
axiom scheme encoding induction). We prove the first inclusion below.

a

a

a
(B1)
=

a

a

a

(cpy)
=

a
a
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(A1-A2)
=

a
a

(F9)
≤

a
a

(A1-A2)
=

a
a

(B3;B1)
=

a
a

(co-cpy)
=

a

(B7)
=

a

(F11)
≤

a

(A1-A2)
= a

The reverse inclusion can be proven similarly, by introducing instead of (this
is the easier direction, in the sense that the white generators are not needed): first, we
replace use (F1) instead of (F9) to introduce ; in the fourth step instead of
the ; that we introduced above; then, we use (F3) instead of (F11) to turn

; into an identity wire, as we did with ; in the penultimate step
above.

This is an example of an equality that could not be proven in the equational theory of
the conference paper [PZ21]: the determinisation procedure proposed in the proof of [PZ21,
Lemma 4] would fail to identify the two equivalent states (represented by the two loops in
the representation obtained on the third line of the derivation above) and get stuck.

In Section 4.2, we explored the correspondence between I→I diagrams and regular
expressions. In the light of our completeness result, we can revisit this correspondence and
extend it to arbitrary left-to-right diagrams Im→In. More precisely, we can now prove
a Kleene theorem for left-to-right diagrams. We can extend the notion of matrix-diagram
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(Definition 4.4) to that of regex matrix-diagram, which is a left to right diagram that factors as
a block of , , followed by a block of regex-diagrams and finally, a block of , .
This is the diagrammatic counterpart of a matrix with regex coefficients. The completeness
of KDA implies that every left-to-right diagram can be put in this form.

Corollary 5.22 (Kleene theorem for AutΣ). Any left-to-right diagram is equal to a regex
matrix-diagram.

Proof. Let d :Im→In be a left-to-right diagram. By Corollary 5.6, d is fully characterised
by its coefficients dij obtained by discarding all but one of the left ports and all but one of
the right ports. According to Proposition 4.6, we can find a representation for each dij and
therefore a regular language Lij recognised by the associated automata. By the standard
version of Kleene theorem, we can pick a regex eij that describes Lij . Then, by soundness
JdijK = J〈eij〉K and by completeness dij = 〈eij〉. This shows that d is equal to a diagram that
factors as a matrix of regex-diagrams, as we wanted to prove.

As a result, any given Im→In diagram is fully characterised by anm×n array of regular
languages. Finally, by Theorem 5.4 any given diagram (not necessarily left-to-right) with m
inputs and n outputs is fully characterised by an array m× n array of regular languages and
where each of the inputs and outputs is located (on the left or on the right interface).

6. Discussion

In this paper, we have given a fully diagrammatic treatment of finite-state automata, with a
finite equational theory that axiomatises them up to language equivalence. We have seen
that this allows us to decompose the regular operations of Kleene algebra, like the star, into
more primitive components, resulting in greater modularity. In this section, we compare our
contributions with related work, and outline directions for future research.

Traditionally, computer scientists have used syntax diagrams (also called railroad dia-
grams) to visualise regular expressions and context-free grammars [Wir71]. These diagrams
resemble ours very closely but have remained mostly informal More recently, Hinze has treated
the single input-output case rigorously as a pedagogical tool to teach the correspondence
between finite-state automata and regular expressions [Hin19]. He did not, however, study
their equational properties.

Bloom and Ésik’s iteration theories provide a general categorical setting in which to
study the equational properties of iteration for a broad range of structures that appear in
programming languages semantics [BÉ93b]. They are cartesian categories equipped with
a parameterised fixed-point operation closely related to the feedback notion we have used
to represent the Kleene star. However, the monoidal category of interest in this paper is
compact-closed, a property that is incompatible with the existence of categorical products
(any compact-closed category for which the monoidal product is also the categorical product
is trivial [LS88]). Nevertheless, the subcategory of left-to-right diagrams (Section 4.2) is a
(matrix) iteration theory [BÉ93c], a structure that Bloom and Ésik have used to give an
(infinitary) axiomatisation of regular languages [BÉ93a].

Similarly, Stefanescu’s work on network algebra provides a unified algebraic treatment
of various types of networks, including finite-state automata [Ste00]. In general, network
algebras are traced monoidal categories where the product is not necessarily cartesian, and
therefore more general than iteration theories. In both settings however, the trace is a global
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operation, that cannot be decomposed further into simpler components. In our work, on
the other hand, the trace can be defined from the compact-closed structure, as was depicted
in (1.2).

Note that the compact closed category in this paper can be recovered from the traced
monoidal category of left-to-right diagrams, via the Int construction [JSV96]. Therefore, as
far as mathematical expressiveness is concerned, the two approaches are equivalent. However,
from a methodological point of view, taking the compact closed structure as primitive allows
for improved compositionality, as example (1.1) in the introduction illustrates. Furthermore,
the compact closed structure can be finitely presented relative to the theory of symmetric
monoidal categories, whereas the trace operation cannot. This matters greatly in this paper,
where finding a finite axiomatisation is our main concern.

In all the formalisms we have mentioned, the difficulty typically lies in capturing the
behaviour of iteration—whether as the star in Kleene algebra [Koz94, BÉ93a], or a trace
operator [BÉ93b] in iteration theory and network algebra [Ste00]. The axioms should be
coercive enough to force it to be the least fixed-point of the language map L 7→ {ε} ∪LK. In
Kozen’s axiomatisation of Kleene algebra [Koz94] for example, this is through (a) the axiom
1 + ee∗ ≤ e∗ (star is a fixpoint) and (b) the Horn clause f + ex ≤ x⇒ e∗f ≤ x (star is the
least fixpoint). In our work, (a) is a consequence of the unfolding of the star into a feedback
loop and can be derived from the axioms involving only the automata generators (black
nodes); (b) on the other hand does require the existence of their adjoints (white nodes).

Pratt’s action algebras achieve a similar technical goal: the algebraic theory of action
algebra is a finitely-based conservative extension of Kleene algebra [Pra90]. An action algebra
is a Kleene algebra and a residuated lattice: it has two additional operations of implication
that are adjoint to left/right multiplication. As in our setting, the induction axiom of action
algebras can be derived from a finite number of purely equational axioms. However, contrary
to the theory of Kleene algebra, equality for action algebras is undecidable—it remains to
be seen whether that is also the case for the whole language of this paper, and we leave
investigation of its decidability for future work.

In the conference paper [PZ21] on which this work is based, we presented a finite equa-
tional theory for AutΣ only (without the white nodes that we use in this work). Unfortunately,
this theory turns out to not be complete. Example 5.21 provides a counter-example to the
claim of completeness of [PZ21]. There are several ways to fix the issue. The first would be
to recast the existing infinitary axiomatisations of the matricial iteration theories of regular
languages [BÉ93a] into our diagrammatic framework. This would simply involve restating
the two axiom schemes characterising the behaviour of the Kleene star as equations about
feedback loops, leading to an infinitary axiomatisation. While this is certainly feasible, we
wanted to achieve a finitary presentation, which has led us to the approach developed in the
present paper. By extending the syntax, we have been able to exploit additional structure
over the set of regular languages to obtain a finite theory.

There is an intriguing parallel between our case study and the positive fragment of relation
algebra (also known as allegories [FS90]). Indeed, allegories, like Kleene algebra, do not admit
a finite axiomatisation [FS90]. However, this result holds for standard algebraic theories.
It has been shown recently that a structure equivalent to allegories can be given a finite
axiomatisation when formulated in terms of string diagrams in monoidal categories [BSS18].
It seems like the greater generality of the monoidal setting—algebraic theories correspond
precisely to the particular case of cartesian monoidal categories [BSZ18]—allows for simpler
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axiomatisations in some specific cases. In the future we would like to understand whether this
phenomenon, of which now we have two instances, can be understood in a general context.

Lastly, various extensions of Kleene Algebra, such as Concurrent Kleene Algebra
(CKA) [HMSW09, KBSZ18] and NetKAT [AFG+14], are increasingly relevant in current re-
search. Enhancing our theory =KDA to encompass these extensions seems a promising research
direction, for two main reasons. First, the two-dimensional nature of string diagrams has been
proven particularly suitable to reason about concurrency (see e.g. [BHP+19, SMMB13]), and
more generally about resource exchange between processes (see e.g. [BSZ17, CK17, JKZ19,
BF18, BPSZ19]). Second, when trying to transfer the good meta-theoretical properties of
Kleene Algebra (like completeness and decidability) to extensions such as CKA and NetKAT,
the cleanest way to proceed is usually in a modular fashion. The interaction between the
new operators of the extension and the Kleene star usually represents the greatest challenge
to this methodology. Now, in =KDA, the Kleene star is decomposable into simpler compo-
nents (see (1.2)). We believe this is a particularly favourable starting point to modularise a
meta-theoretic study of CKA and NetKAT with string diagrams, taking advantage of the
results we presented in this paper for finite-state automata.

In this work, we have left open the question of completeness for the whole language,
including the white generators of (2.2). In an upcoming paper [GPZ22] we give a partial
answer for a restricted fragment: the same theory without the letters (i.e. over an empty
alphabet), and with the addition of axioms turning the white generators into a Frobenius
monoid, is complete for monotone relations between Boolean algebras. Of course, we expect
the case of nonempty alphabets to be more complicated. We leave this for further work,
starting with the simpler case of a single-letter alphabet.
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Appendix A. Background & Methodology

A.1. Props, String Diagrams, and Symmetric Monoidal Theories. We build on a
line of research that has sought to give a formal treatment of graphical models of computation
of varying expressive power within the unifying language of symmetric monoidal categories.
More specifically, we rely on the notion of coloured product and permutations category (prop),
a mathematical structure which generalises standard multisorted algebraic theories [BSZ18].
Formally, a prop is a strict symmetric monoidal category (SMC) whose objects are lists
of a finite set of objects and where the monoidal product ⊕ on objects is given by list
concatenation. Equivalently, it is a strict SMC whose objects are all monoidal products of a
finite number of generating objects. Prop morphisms are strict symmetric monoidal functors
that act as the identity on objects.

Following an established methodology, we define two props: Syn and Sem, for the
syntax and semantics respectively. To guarantee a compositional interpretation, we require
J·K : Syn→ Sem, the mapping of terms to their intended semantics, to be a prop morphism.

Typically, the syntactic prop Syn is freely generated from a monoidal signature Σ =
(O,M): a pair of a finite set of objects O and a set M of arrows g : X → Y , where X and Y
are lists of elements of G. In this case, we use the notation PS and Syn interchangeably. There
are two ways of describing the arrows of the prop PS concretely. As terms of (G∗, G∗)-sorted
syntax whose constants are elements of S and whose operations are the usual categorical
composition (−); (−) : Syn(X,Y ) × Syn(Y, Z) → Syn(X,Z) and the monoidal product
(−)⊕ (−) : Syn(X1, Y1)× Syn(X2, Y2)→ Syn(X1X2, Y1Y2), quotiented by the laws of SMCs.
But this quotient is cumbersome and unintuitive to work with.

This is why, we will prefer a different representation. With their two forms of composition,
monoidal categories admit a natural two-dimensional graphical notation of string diagrams.
The idea is that an arrow c : X → Y of PS is better represented as a box with |X| ordered
wires labelled by the elements of X on the left and |Y | wires labelled by the elements of Y
on the left. We can compose these diagrams in two different ways: horizontally with ; by
connecting the right wires of one diagram to the left wires of another when the types match,
and vertically with ⊕ by juxtaposing two diagrams:

c ; d = cX Y
d

Z d1 ⊕ d2 =
d1

d2

X1 Y1

X2 Y2

Thus, arrows of PS can be pictured as (directed acyclic) graphs whose nodes are labelled
by elements of S and whose edges are identity ida : a→ a, denoted as a plain wire
for generating object a. The symmetry Sa,b : a, b→ b, a is drawn as a wire crossing which
swaps the a-and b-wires, and the unit for ⊕, id0 : 0→ 0, as the empty diagram (we use 0
to denote the empty list). With this representation the laws of SMCs become diagrammatic
tautologies.

Once we have defined J·K : Syn→ Sem, it is natural to look for equations to reason about
semantic equality directly on the diagrams themselves. Given a set of equations E, i.e., a set
containing pairs of arrows of the same type, we write =E for the smallest congruence w.r.t.
the two composition operations ; and ⊕. We say that =E is sound if c =E d implies JcK = JdK.
It is moreover complete when the converse implication also holds. We call a pair (S, E) a
symmetric monoidal theory (SMT) and we can form the prop PS,E obtained by quotienting
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each homset of PS by =E . There is then a prop morphism q : PS → PS,E witnessing this
quotient.

The reader familiar with categorical logic, may find it helpful to know that the concrete
description above can be described in more abstract categorical terms, in line with Lawvere’s
account of algebraic theories [Law63]: signatures can be organised into a category and the
free prop PS given as a monad structure over this category. Furthermore, the category of
props and prop morphisms is equivalent to the category of algebras for this monad. Then, by
standard abstract nonsense, the prop PS,E and the quotient morphism q arise as a coequaliser
of free props. A detailed account of this presentation can be found in [BCR18, Appendix
A.2].

A.2. Ordered Props and Symmetric Monoidal Inequality Theories. Our semantic
prop Sem often carries additional structure that we wish to lift to the syntax: relations or
Boolean profunctors (which are relations satisfying an extra monotony condition) can be
ordered by inclusion. The corresponding mathematical structure is that of an ordered (or
order-enriched) prop, a prop whose homsets are also posets, with composition and monoidal
product are monotone maps.

In the same way that props can be presented by SMTs, an ordered prop can be presented
by symmetric monoidal inequality theory (SMIT). Formally, the data of a SMIT is the same
as that of a SMT: a signature S and a set I of pairs c, d : X → Y of PS -arrows of the same
type, that we now read as inequalities c ≤ d.

As for plain props, we can construct an ordered prop from a SMIT by building the
free prop PS and passing to a quotient PS,I . First, we build a preorder on each homset by
closing I under ⊕ and taking the reflexive and transitive closure of the resulting relation.
Then, we obtain the free ordered prop PS,I by quotienting the resulting preorder by imposing
anti-symmetry.

An aside, for the reader comfortable with categorical logic: as for props and SMTs, we
can give the concrete construction of this section a more abstract formulation, in terms of
enriched category theory. The free order-enriched prop could be described as a monad over
an order-enriched category of signatures, and the quotient prop PS,I as a weighted-colimit.
We will not need this characterisation here, so leave a detailed account (which we could not
find in the literature) for future work.

SMITs subsume SMTs, since every SMT can be presented as a SMIT, by splitting each
equation into two inequalities. As a result, in the main text, we only consider SMITs, referring
to them simply as theories, and their defining inequalities as axioms. When referring to a
sound and complete theory, we will also use the term axiomatisation, as is standard in the
literature.

The situation for a sound and complete theory is summarised in the commutative diagram
below:

Syn = PS Sem

PS,I

q

J·K

s

Soundness simply means that J·K factors as s ◦ q through PS,E and completeness means that
s is a faithful prop morphism.
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