
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

M. Scherer, G. Rutishauser, L. Cavigelli and L. Benini

CUTIE: Beyond PetaOp/s/W Ternary DNN Inference Acceleration

With Better-Than-Binary Energy Efficiency

In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

41, no. 4, pp. 1020-1033

The final published version is available online at:

https://doi.org/10.1109/TCAD.2021.3075420

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are

specified in the publishing policy. For all terms of use and more information see the publisher's

website.

1

CUTIE: Beyond PetaOp/s/W Ternary DNN
Inference Acceleration with Better-than-Binary

Energy Efficiency
Moritz Scherer, Georg Rutishauser, Lukas Cavigelli, Luca Benini

Abstract—We present a 3.1 POp/s/W fully digital hardware
accelerator for ternary neural networks. CUTIE, the Completely
Unrolled Ternary Inference Engine, focuses on minimizing non-
computational energy and switching activity so that dynamic
power spent on storing (locally or globally) intermediate results is
minimized. This is achieved by 1) a data path architecture com-
pletely unrolled in the feature map and filter dimensions to reduce
switching activity by favoring silencing over iterative computation
and maximizing data re-use, 2) targeting ternary neural networks
which, in contrast to binary NNs, allow for sparse weights
which reduce switching activity, and 3) introducing an optimized
training method for higher sparsity of the filter weights, resulting
in a further reduction of the switching activity. Compared with
state-of-the-art accelerators, CUTIE achieves greater or equal
accuracy while decreasing the overall core inference energy cost
by a factor of 4.8×–21×.

Index Terms—Binary Neural Networks, Ternary Neural Net-
works, Hardware Accelerator, Deep Learning, Internet of Things,
Application Specific Integrated Circuits

I. INTRODUCTION

Since the breakthrough success of AlexNet in the ILSVRC
image recognition challenge in 2012 [1], Convolutional Neural
Networks (CNNs) have become the standard algorithms for
many machine learning applications, especially in the fields of
audio and image processing. Supported by advances in both
hardware technology and neural network architectures, ded-
icated Application-Specific Integrated Circuits (ASIC) hard-
ware accelerators for inference have become increasingly
commonplace, both in datacenter-scale applications as well
as in consumer devices [2]. With the increasing demand to
bring machine learning to Internet of Things (IoT) devices
and sensor nodes at the very edge, the de facto default
paradigm of cloud computing is being challenged. Neither are
most data centers able to process the sheer amount of data
generated by billions of sensor nodes nor can typical edge
devices afford to send their raw sensor data to data centers for
further processing, given their very limited power budget [3].
One solution to this dilemma is to increase the processing
capabilities of each sensor node to enable it to only send
extracted, highly compressed information over power-intensive

M. Scherer, G. Rutishauser, and L. Benini are with the Dept. of Information
Technology and Electrical Engineering, ETH Zürich, Switzerland (e-mail:
{scheremo, georgr, benini}@iis.ee.ethz.ch).

L. Cavigelli is with Huawei Technologies, Zurich Research Center, Switzer-
land (e-mail: lukas.cavigelli@huawei.com).

L. Benini is also with the Dept. of Electrical, Electronic and Information
Engineering, University of Bologna, Italy.

wireless communication interfaces or to act as an autonomous
system.

However, the general-purpose microcontrollers typically
employed in these IoT devices are ill-suited to the compu-
tationally intensive task of DNN inference, placing severe
limitations on the achievable energy efficiency. While great
strides in terms of energy efficiency have been made with
specialized microcontrollers [4], some applications still require
lower power consumption than what can be achieved with
using 32-bit weights and activations in DNN inference. A
popular approach to reducing the power consumption for
neural network computations is the quantization of network
parameters (weights) and intermediate results (activations).
Quantized inference at a bit-width of 8 bits has been shown
to offer equivalent statistical accuracy while allowing for sig-
nificant savings in computation energy as well as reducing the
requirements for working memory space, memory bandwidth,
and storage by a factor of 4 compared to traditional 32-bit
data formats [5], [6], [7], [8].

Pushing along the reduced bit-width direction, recently
several methods to train neural networks with binary and
ternary weights and activations have been proposed [9], [10],
[11], [12], [13], [14], allowing for an even more significant
decrease in the amount of memory required to run inference.
In the context of neural networks, binary values refer to the
set {-1, +1} and ternary values refer to the set {-1, 0, 1} [9],
[15]. These methods have also been used to convert complex
state-of-the-art models to their Binary Neural Network (BNN)
or Ternary Neural Network (TNN) form. While this extreme
quantization incurs sizeable losses in accuracy compared to
the full-precision baselines, such networks have been shown
to work well enough for many applications and the accuracy
gap has been reducing quite rapidly over time [16], [17], [18].

Although quantization of networks does not affect the total
number of operations for inference, it reduces the complexity
of the required multipliers and adders, which leads to much
lower energy consumption per operation. For binary networks,
a multiplier can be implemented by a single XNOR-gate
[19]. Further, the number of bit accesses per loaded value is
minimized, which not only reduces the memory footprint but
also the required wiring and memory access energy.

While Binary Neural Networks (BNNs) in particular are
fairly well-suited to run on modern general-purpose computing
platforms, to take full advantage of the potential energy
savings enabled by aggressively quantized, specialized, digital,
low-power hardware accelerators have been developed [20],

2

[19], [21], [22]. Concurrently to the research in digital neural
network accelerators, analog accelerators that compute in-
memory, as well as mixed-signal, have been explored [23],
[24], [25]. While mixed-signal and in-memory designs hold
the promise of higher energy efficiency than purely digital
designs under nominal conditions, their higher sensitivity to
process and noise variations, coupled with the necessity of
interfacing with the digital world, are open challenges to
achieve their full potential in energy efficiency [26].

Even though both analog and digital accelerators extract
immense performance gains from the reduced complexity of
each operation, there is still untapped potential to further
increase efficiency. Most state-of-the-art binary accelerators
use arrays of multipliers with large adder trees to perform the
multiply-and-popcount operation [19], [21], [27], [25], which
induces a large amount of switching activity in the adder tree,
even when only a single input node is toggled. Adding to
this, even state-of-the-art binary accelerators spend between
30% to 70% of their energy budget on data transfers from
memories to compute units and vice-versa [25], [28]. This
hurts efficiency considerably since time and energy spent on
moving data from memories to compute units are not used to
compute results. Taking these considerations into account, two
major opportunities for optimization are to reduce switching
activity in the compute units, especially the adder trees, and
to reduce the amount of data transfer energy.

In this paper, we explore three key ideas to increase the core
efficiency of digital low-bit-width neural network accelerator
architectures: first, unrolling of the data-path architecture with
respect to the feature map and filter dimensions leading to
lower data transfer overheads and reduced switching activity
compared to designs that implement iterative computations.
Second, focusing on Ternary Neural Networks (TNNs) instead
of BNNs thereby capitalizing on sparsity to statistically de-
crease switching activity in unrolled compute units. Third, op-
timizing the quantization strategy of TNNs resulting in sparser
networks that can be leveraged with an unrolled architecture.
We combine these ideas in CUTIE, the Completely Unrolled
Ternary Inference Engine.

Our contributions to the growing field of energy-optimized
aggressively quantized neural network accelerators are as
follows:

1) We present the design and implementation of a novel ac-
celerator architecture, which minimizes data movement
energy spending by unrolling the compute architecture
in the feature map and filter dimensions, demonstrating
that non-computational energy spending can be reduced
to less than 10% of the overall energy budget (Section
V-C).

2) We demonstrate that by unrolling each compute unit
completely and adjusting the quantization strategy, we
directly exploit sparsity, minimizing switching activity
in multipliers and adders, reducing the inference energy
cost of ternarized networks by 36% with respect to their
binarized variants (Section V-D).

3) We present analysis results, showing that the proposed
architecture achieves up to 589 TOp/s/W in an IoT-
suitable 22 nm technology and up to 3.1 POp/s/W in

an advanced 7 nm technology, outperforming the state-
of-the-art in digital, as well as analog in-memory BNN
accelerators, by a factor of 4.8× in terms of energy per
inference at iso-accuracy (Section V-G).

This paper is organized as follows: in Section II, previous
work in the field of neural network hardware accelerators
and aggressively quantized neural networks is discussed. In
Section III, we introduce the proposed accelerator architecture.
Section IV details the implementation of the architecture
in the GlobalFoundries 22 nm FDX and TSMC 7 nm FF
technologies. In Section V, the implementation results are
presented and discussed, by comparing with previously pub-
lished accelerators. Finally, Section VI concludes this paper,
summarizing the results.

II. RELATED WORK

In the past few years, considerable research effort has been
devoted to developing task-specific hardware architectures that
enable both faster neural network inference as well as a
reduction in energy per inference. A wide range of approaches
to increase the energy-efficiency of accelerators have been
studied, from architectural and device-level optimizations to
sophisticated co-optimization of the neural network and the
hardware platform.

A. Aggressively Quantized Neural Networks

On the algorithmic side, one of the main recent research di-
rections has been quantization, i.e. representing model weights
and intermediate activations in lower arithmetic precision. It
has been known for some time that quantization of network
weights to 5 bits and less is possible without a loss in
accuracy in comparison to a 32-bit floating-point baseline
model [5], [6], [7]. Further quantization of network weights to
binary or ternary precision usually results in a small drop in
accuracy, but precision is still adequate for many applications
[12], [13], [29], [30]. Extending the approach of extreme
quantization to intermediate activations, fully binarized and
fully ternarized networks have been proposed [9], [15]. These
types of networks perform very well on easier tasks such as
10-class classification on the well-established MNIST dataset
[31], and efforts have been taken to improve their performance
with novel training approaches [32], [33], [34]. Neverthe-
less, on more challenging tasks such as classification on the
ILSVRC’12 dataset, they are still significantly less accurate
than their full-precision counterparts [10], [35], [11], [17],
[14], [36], [37]. Figure 1 depicts the accuracy gap between
previously published, strongly quantized neural networks, their
full-precision equivalents with identical architectures and the
state-of-the-art full-precision networks on image classification
tasks of increasing difficulty. On higher difficulty tasks, the
gap between quantized networks and their full-precision equiv-
alents grows larger. Furthermore, the gap between the full-
precision architectures from which the quantized networks
are derived and the overall state-of-the-art results reported
in literature grows with task difficulty, indicating a prevalent
focus in research activity on easier tasks and simple networks.

3

MNIST CIFAR-10 ILSVRC2012
Dataset

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

FP
TWN
BWN
TNN
BNN

[38] [12] [12] [39] [40] [41]
[42][42] [39] [43] [44]

[45][45]

[34] [10]

Fig. 1. Comparison of state-of-the-art accuracy of highly quantized neural
networks of different precisions. FP: state-of-the-art in unquantized/full-
precision neural networks, BWN/TWN: binary/ternary weight networks, BN-
N/TNN: fully binarized/ternarized neural networks. For the quantized network
categories, the accuracy of the corresponding unquantized baseline networks
is shown greyed out. As task difficulty is increased, a) the performance gap
between the quantized networks and the full-precision baselines increases,
and b) the gap between the unquantized baselines from which the quantized
architectures are derived and the full-precision state-of-the-art widens.

Taking all of this into account, BNNs and TNNs provide a
unique and interesting operating point for embedded devices,
since they are by definition aggressively compressed, allowing
for deep model architectures to be deployed to highly memory-
constrained low-power embedded devices.

The core idea of binarization and ternarization of neural
networks has been applied in numerous efforts, some of
which also study the impact of the quantization strategy
on the sparsity of ternary weight networks [13], [46], [47],
[48]. While these previous efforts focus on the impact of
the choice of quantization threshold and regularization, we
evaluate the impact of quantization order, rather than threshold
or regularization. Further, we study the effect of sparsity on
the energy-efficiency of the proposed accelerator architecture.

B. DNN Hardware Accelerators

While the first hardware accelerators used for neural net-
works were general-purpose GPUs, there has been a steady
trend pointing towards specialized hardware acceleration in
machine learning in the past few years [49], [50], [51], [52].
Substantial research efforts have focused on exploring efficient
architectures for networks using activations and weights with
byte-precision or greater, [53], [54], [55], [22] different digital
ASIC implementations for binary weight networks and BNNs
have been proposed [20], [21], [56], [57], [58], [19]. Some
works have tackled analog ASIC implementations of TNN
accelerators, [23], [59], but very few digital implementations
for TNN accelerators have been published [60], [61].

At the heart of every digital neural network accelerator lie
the processing elements, which typically compute Multiply-
Accumulate (MAC) operations. An important distinction be-
tween different architectures, besides the supported precision
of their processing elements, lies in the way they schedule
computations [49]. Most state-of-the-art architectures can be
categorized into systolic arrays [53], [62], [56], [22], [23],
which are flexible in how their processing elements are used,
or output-stationary designs, which assign each output channel
to one processing element [49], [21], [27]. Both approaches
trade-off lower area for lower throughput and increased data

transfer energy by using iterative decomposition since partial
results need to be stored and either weights or feature map data
need to be reloaded. The alternative to iterative decomposition
pursued in our approach, i.e. fully parallelizing the kernel-
activation dot-products, is not only generally possible for
convolutional neural networks, but also promises to be more
efficient by increasing data-reuse and parallelism.

The state-of-the-art performance in terms of energy per
operation for digital BNN and TNN accelerators is reported
in Moons et al. [21] and Andri et al. [19], achieving peak
efficiencies of around 230 TOp/s/W for 1-bit operations, as
well as Knag et al. [27], reporting up to 617 TOp/s/W.
The state-of-the-art for ternary neural networks is found in
Jain et al. [23], achieving around 130 TOp/s/W for ternary
operations.

In this work, we move beyond the state-of-the-art in highly
quantized acceleration engines by implementing a completely
unrolled data path. We show that by unrolling the data path,
sparsity in TNNs is naturally exploited to reduce the required
energy per operation without any additional overhead, unlike
previous works [63], [64], [65], [66]. To capitalize on this
effect, we introduce modifications to existing quantization
strategies for TNNs, which are able to extract 53% more
sparsity at iso-accuracy than by sparsity-unaware methods.
Lastly, our work shows that ternary accelerators can signif-
icantly outperform binary accelerators both in terms of energy
efficiency as well as statistical accuracy.

III. SYSTEM ARCHITECTURE

This section introduces the proposed system architecture.
First, we present the data path and principle of operation and
explain the levels of data re-use that the architecture enables,
then we discuss considerations for lowering the overall power
consumption. Finally, we present the supported functionality.

A. High-level Data Path

Figure 2 shows a high-level block diagram of the accelerator
architecture. It is optimized for the energy-efficient layer-
wise execution of neural networks. This is achieved first and
foremost by a flat design hierarchy; each output feature map
is computed channel-wise by dedicated compute units, called
Output Channel Compute Unit (OCU). Each OCU is coupled
with a private memory block for weight buffering, which
minimizes addressing and multiplexing overheads for weight
memory accesses, reducing the amount of energy spent on data
transfers. The feature map storage buffers are shared between
all OCUs to maximize the re-use of loaded activation data,
which again aims to decrease the data transfer energy.

To exploit the high rate of data re-use possible with CNNs,
the design uses a tile buffer, which produces tiles, i.e. square
windows, of the input feature map in a sliding window manner.
These windows are then broadcast to the pipelined OCUs.

An important aspect of aggressively quantized and mixed-
precision accelerator design is choosing a proper compression
scheme for its values. Since ternary values encode log2(3) ≈
1.585 bits per symbol, the most straight-forward compression
approach would require 2 bits of memory per value, leaving

4

OUTPUT CHANNEL
COMPUTE UNIT

S
O

C
 I

N
T

E
R

F
A

C
E

STAGE 0

BANK M

....

BUFFER A

W
R

R
D

BANK 2W
R

R
D

BANK 1W
R

R
D

8/5×NO 8/5×K ×Ni

READ

3 PIXELS

WRITE

1 PIXEL

8/5×Wimg×Himg×max (NI, NO) /(K×P) (34.95 kbit)Bank Size:

M = K × P (6)

0 1

W
E

IG
H

T

B
U

F
F

E
R

TILE

BUFFER

DECOMPR.

KERNEL WINDOWS

3-PIXEL SEGMENTS

SINGLE PIXELS

WEIGHT

MEMORY

WEIGHT

MEMORY

STAGE P-1 (1)

BUFFER B

WR RD

01

WRITE

ARBITRATION LOGIC

D
O

U
B

L
E

-B
U

F
F

E
R

E
D

F
E

A
T

U
R

E
 M

A
P

 M
E

M
O

R
Y

2×NO/P

2×NO

COMPR.

8/5×NO

2×K2 ×NI

8/5×NI × L×K2 (14.75 kbit)

D
E

C
O

M
P

R
.

SIZE PER BANK:

8/5×NO ×NI × L×K2 (1.89Mbit)
TOTAL SIZE:

WEIGHT BUFFER SIZE:

K (3)

8/5×K ×NI

WR

RD

WR

RD

(128)

(256)

(624)(208)

(624)

(2304)

104

INPUT IMG

TARGET PORT

D
E

C
O

M
P

R
.

W
E

IG
H

T

B
U

F
F

E
R OUTPUT CHANNEL

COMPUTE UNIT

WEIGHTS

TARGET

PORT

WEIGHT MEMORIES

END OF INFERENCE

INTERRUPT

REQUEST LINE

CENTRAL

CONTROL

LOGIC

1

104

NO (128)

NO/P (64)

NO/P (64)

(104)

8/5×NI/WS

NO/P (64)

2×NI ×K2 × 2 (4.6 kbit)

(208)

(104)

8/5×NI/WS

(104)

8/5×NI/WS

NO/P (64)

(104)

8/5×NI/WS

P (2)

Pipeline

Stages

P-1 (1)

Pipeline

Registers

Fig. 2. Data-path schematic view of the accelerator core and its embedding
into an SoC-level system. The diagram shows the unrolled compute archi-
tecture and encoding/decoding blocks, as well as the weight and feature map
memories and tile buffer module. The dataflow of the accelerator is scheduled
to first buffer full feature map windows in the tilebuffer and then compute the
convolution result with pre-loaded weights in the compute units after which
they are saved back to the feature map memory.

one of the four possible codewords unused. To reduce this
overhead, values are stored 5 at a time, using 8 bits leading
to 1.6 bits per symbol. The compression scheme used for this
representation is taken from a recent work by Muller et al.
[67]. To transition between the compressed representation and
the standard 2’s complement representation, compression and
decompression banks are used with feature map and weight
memories.

Figure 2 shows the pipeline arrangement of the OCUs.
A key feature of the architecture is that an output channel
computation is entirely performed on a single OCU. All
OCUs need to receive input activation layers: the broadcast
of input activations to OCUs is pipelined and the OCUs are
grouped in stages. This pipeline fulfils multiple purposes:
from a functional perspective, it allows to silence the input
to clusters of compute units, which reduces switching activity
during the execution of layers with fewer output channels
than the maximum. Concerning the physical implementation
of the design, pipelining helps to reduce fanout, which further
reduces the overall power consumption of the design. It also
reduces the propagation delay introduced by physical delays
due to long wires.

B. Parametrization

The CUTIE architecture is parametrizable at compile time
to support a large variety of design points. An overview
of the design parameters is shown in Table I. Besides the
parameters in Table I, the design’s feature map memories and
weight memories can be implemented using either Standard
Cell Memories (SCMs) or SRAMs. CUTIE is designed to
support arbitrary odd square kernel sizes K, pipeline depths
P , input channel numbers NI and output channel numbers NO

which directly dictate the dimensioning of the compute core,
but also of the feature map memories and the tile buffer. The

TABLE I
DESIGN PARAMETERS OF CUTIE

Parameter Description
NI Maximum number of channels of input feature map
NO Maximum number of channels of output feature map
K Maximum kernel width and height
IW Maximum width of input feature map
IH Maximum height of input feature map
L Maximum number of layers in the queue
P Number of pipeline stages
WS Number of memory words per pixel

Weight loading
Feature map loading
Compute Unit activity
Writeback activity

Weight transfer
Layer meta-information
Feature map transfer

SoC Scheduling

CUTIE Scheduling

End of Inference Event

Weight loading phase Pre-loading phase Execution phase

t

Execution phase(s)

...

Setup phase Low-Power Mode

...

Wakeup Phase

Fig. 3. Scheduling diagram of the accelerator core and SoC interface. The
first two phases are needed to set up the first layer after reset, every other
loading phase overlaps with an execution phase, which reduces the latency
for scheduling a new layer to a single cycle. The host system can be put in
a low-power mode while the accelerator core computes the network since all
layer information is saved inside the core’s memories.

OCU, as shown in Figure 4, consists of a compute core and a
latch-based weight buffer that is designed to hold two kernels
for the computation of one output channel, which amounts to
4×K2×NI bits. The feature map memories are designed to
support the concurrent loading of K full pixels as well as the
granular saving of NO

P ternary values. For these reasons, the
word width of the feature map memories is chosen to be NO

P
ternary values. To further allow for concurrent write and read
accesses of up to K pixels, two feature map memories, each
with P ×K feature map memory banks, are implemented.

C. Principle of Operation

The accelerator core processes neural networks layer-wise.
To enable layer-wise execution, networks have to be compiled
and mapped to the core instruction set. The compilation
process achieves two main goals: first, the networks’ pooling
layers are merged with the convolutional layers to produce
fused convolutional layers. Second, the networks’ convolu-
tional layers’ biases, batch normalization layers, and activation
functions are combined to produce two thresholds that are used
to ternarize intermediate results, similar to constant expression
folding for BNNs [62]. After compilation, each layer consists
of a convolutional layer with ternary weights, followed by
optional pooling functions and finally, an activation function
using two thresholds that ternarizes the result. To map the
network to the accelerator, each layer’s weights are stored
consecutively in the weight memories, the thresholds are
stored consecutively in the OCUs’ Threshold FIFO and the
meta-information like input width, stride, kernel size, padding,
and so on are stored in the layer FIFO. All FIFOs, controllers

5

0 MAX/

AVG

[0] [1]

[0] [1]

[0] [1]

POPCOUNT 1

LATCH-BASED WEIGHT BUFFER

FIFO

POOLING UNIT

2

2

2

2

2

2

2

2

2

TERNARY MULTIPLY-ACCUMULATE

1

1

1

1

1

1

11

11

12

POPCOUNT -1

0

1

1

0

FIFO

32

>

<

[15:0]

[31:16]

[1]

[0]

2

THRESHOLDING

WEIGHTS

FROM

CENTRAL

MEMORY

ACTIVATIONS

FROM

TILE BUFFER

THRESHOLDS

FROM

CENTRAL

MEMORY

RESULT TO

FEATURE MAP

MEMORY

3
 *

 3
 *

 1
2
8
 =

 1
1
5
2

T
er

n
a
ry

 M
u

lt
ip

li
er

s

16

12b->16b

16

1

2

2×K2 ×NI

(2304)

2×K2 ×NI

(2304)

32

-

OUTPUT CHANNEL COMPUTE UNIT (OCU)

Fig. 4. Block diagram of the compute units for the design point K = 3, NI = NO = 128, showing the dual inner weight buffers (1), used for double
buffering to avoid load stalling, the OCU (2), including the completely unrolled multiply/add tree, computing 1'152 multiply-accumulate operations in a single
cycle, the pooling block, which enables max and average pooling and the thresholding module used to ternarize intermediate results. Notably, the multiplier
and popcounts are fully combinational and not pipelined, which adds to the energy efficiency of the compute core.

and scheduling modules combined make up 2% of the total
area.

The accelerator is designed to pre-buffer the weights for
a full network during its setup phase and re-use the stored
weights for multiple executions on different feature maps.
Once at least one layer’s meta-information is stored and the
start signal is asserted, the accelerator’s controllers schedule
the execution of each layer in two phases; first, the weights for
one layer are loaded into their respective buffers in the OCUs,
then the layer is executed, i.e. every sliding window’s result
is computed and written back to the feature map memory.
The loading of weights into the OCUs for the next layer and
the computation of the current layer can overlap, leading to
a single, fully concurrent execution phase after buffering the
first set of weights, as shown in Figure 3. Once all layers
have been executed, the end of inference signal is asserted,
signalling to the host controller that the results are valid and
the accelerator is ready for the next feature map input.

The module responsible for managing the loading and
release of sliding windows is the tile buffer. The tile buffer
consists of a memory array that stores K lines of pixel values
implemented with standard cell latches. Feature maps are
stored in a (H×W×C)-aligned fashion in the feature map
memory. To avoid load stalls and efficiently feed data to the
compute core, up to K adjacent pixels at a time are read from
the feature map memory. The load address is computed to
always target the leftmost pixel of a window.

The scheduling algorithm for the release of the windows
keeps track of the central pixel of the next-to-be scheduled
window. This can be used to enable padding: for layers where
padding is active, the scheduler starts the central pixel at
the top left corner and zero-pads the undefined edges of the
activation window. In case of no padding, the scheduler starts
the central pixel to the lower-right of the padded starting
position. For all but the first layer in a network, the weight
loading and computation phases overlap such that the weights
for the next layer are pre-loaded to eliminate additional loading
latency.

The OCUs form the compute core of the accelerator. Figure
4 shows the block diagram of a single OCU. Each OCU
contains two weight buffers, each of which is sized to hold

all the kernel weights of one layer. Having two buffers allows
executing the current layer while also loading the next layer’s
weights. The actual computations are done in the ternary
multipliers, each of which computes one product of a single
weight and activation. While the input trits are encoded in
the standard two’s complement format, the result of this
computation is encoded differently, i.e. the encoding is given
by f :

f(x) =

 2′b10 x = 1
2′b01 x = −1
2′b00 x = 0

This encoding allows calculating the sum of all multipli-
cations by counting the number of ones in the MSB and
subtracting the number of ones in the LSB of all results, which
is done in the popcount modules. The resulting value is stored
as an intermediate result, either for further processing with
the pooling module or as input for the threshold decider. The
threshold decider compares the intermediate values against
two programmable thresholds and returns a ternary value,
depending on the result of the comparison. Notably, the OCU
is almost exclusively combinational, requiring only one cycle
of latency for non-pooling layers. Registers are only used
to silence the pooling unit and in the pooling unit itself to
keep a running record of the current pooling window. Since
every compute unit computes one output channel pixel at a
time, there are no partial sums that have to be written back.1

However, to support pooling, each compute unit is equipped
with a FIFO, a register, and an Add/Max ALU. In the case of
max pooling, every newly computed value is compared to a
previously computed maximum value for the window. In the
case of average pooling, values are simply summed and the
thresholds that are computed offline are scaled up accordingly.
Figure 5 shows an example of the load & store schedule for
pooling operations.

Low-power optimizations have been made on all
levels of the design, spanning from the algorithmic
design of the neural networks over the system
architecture down to the choice of memory cells.

1Which is a major difference from systolic arrays as well as output
stationary designs!

6

Fig. 5. Example of pooling buffer scheduling for 9×9 feature maps applying
3×3 pooling. The feature map is traversed left- to-right, top-to-bottom. Blue
pixels are stored in the pooling unit’s register, yellow pixels are stored in the
pooling unit’s FIFO for later use and green pixels are loaded from the pooling
unit’s FIFO and compared to the current value. Best viewed in color.

1 for w in range(featuremap_width):
2 for h in range(featuremap_height):
3 for co in range(output_channels):
4 for ci in range(input_channels):
5 for kw in range(kernel_width):
6 for kh in range(kernel_height):
7 out_fm[w][h][co] += in_fm[w+kw][h+kh][ci]
8 * kernel[kw][kh][ci][co]

Listing 1. Loop unrolling of convolutional layers implemented in the CUTIE
architecture. The highlighted lines 3-8 are computed in parallel in a single
shot, in combinational logic. Each OCU computes one output pixel channel
value, i.e. each OCU computes one instance of the third loop.

Unlike most state-of-the-art architectures which use either
systolic arrays or output-stationary scheduling approaches
with iterative decomposition [53], [62], [56], [22], [23],
[49], [21], [27], the CUTIE architecture unrolls the compute
architecture fully with respect to weight buffering and output
pixel computation, such that no storing of partial results is
necessary; each output channel value is computed in a single
cycle, as shown in Listing 1. The proposed design loads each
data item exactly once and reduces overheads in multiplexing
by clock gating unused modules. This applies to both the
system level, with pipeline stages of the compute core that
can be silenced, as well as to the module level, where the
pooling module can be clock gated. To reduce both leakage
and access energy, the feature map and weight memories
can be implemented with standard cell latches, which are
clock-gated down to the level of individual words. Generally,
all flip-flops and latches in the design are clock-gated to
reduce power consumption due to clock activity.

D. Input Encoding

To run real-world networks on the accelerator, the integer-
valued input data has to be encoded with ternary values. We
designed a novel ternary thermometer encoding based on the
binary thermometer encoding [68]. The binary thermometer
encoding is an encoding function f , that maps an integer
between 0 and M to a binary vector with M entries.

f : NM → BM
x 7→ f(x)

f(x)i =

{
1 i < x

−1 i ≥ x

The ternary thermometer encoding is an encoding function
g that maps an integer between 0 and 2M to a ternary vector
of size M.

g : N2M → BM
x 7→ g(x)

g(x)i = sgn(x−M) · f(|x−M |)i + 1

2

The ternary thermometer encoding makes use of the addi-
tional value in the ternary number set with respect to the set of
binary numbers and can encode inputs that are twice the size
for a binary vector of a given size. The introduction of 0s in
the encoding scheme further helps to reduce toggling activity
in the compute units, lowering the average energy cost per
operation. As an example, for M = 128, and x = 110 the
binary thermometer encoding produces [1]

110
[−1]

18, whereas
the ternary thermometer encoding produces [−1]

18
[0]

110.

E. Exemplary Instantiations of CUTIE

The architecture of CUTIE is highly parametric. In the fol-
lowing, we present two practical embodiments of the general
architecture, which we will then push to full implementation.
The instantiations of the accelerator presented in this section
can process convolutions with a kernel of size 3×3 or smaller,
using a stride between (1,1) and (3,3) with independent
striding for the width and height dimension. It further supports
average pooling and maximum pooling. Both no padding and
full zero-padding, i.e. padding value of size 1 on every edge of
feature maps, are supported. Depending on the requirements
of the application, the feature map memory size and weight
memory size should be configured to store the largest expected
feature map and network. For the sake of evaluating the
architecture, we chose to implement one version that supports
feature maps up to a size of 32×32 pixels for both the current
input feature map and the output feature map using SCMs and
another version supporting sizes up to 160× 120 feature map
pixels using SRAMs. The supported feature map memory size
does not restrict the functionality, since feature maps that do
not fit within the memory can be processed in tiles. Assuming
the feature maps need to be transfered from and to an external
DRAM memory which requires 20 pJ/Bit, several orders of
magnitude more energy than accessing internal memory, the
critical goal is to minimize the amount of data transfered from
and to external memory. To achieve that, we propose to adopt
the depth-first computing schedule described in [69].

To estimate the energy cost of processing the feature map
in tiles and to compare the layer-first and depth-first strategies
on CUTIE, we compute the number of processed tiles per
layer, the number of tiles that need to be transfered over
the chip’s I/O and the number of weight kernels that need
to be switched for both the depth-first as well as the layer-
first strategies. We assume a network consisting of eight
convolutional layers using 3×3 kernels and 128 input and
output channels. Using these results and simulated energy

7

TABLE II
ESTIMATED ENERGY CONSUMPTION OF A NETWORK CONSISTING OF 8

CONVOLUTIONAL LAYER WITHOUT POOLING FOR TILED COMPUTATION OF
LARGE FEATURE MAPS ON A GF 22 SCM IMPLEMENTATION INCLUDING

I/O AND EXTERNAL DRAM

Depth-first Layer-first
32×32 7.3 µJ 7.3 µJ

Bit accesses from or to external memory 209 kB 209 kB
Feature map transfer energy 4.2 µJ 4.2 µJ
Weight memory transfer energy 0.3 µJ 0.3 µJ
Computational energy 2.8 µJ 2.8 µJ

64×64 277 µJ 1'069 µJ
Bits moved from or to external memory 12.6MB 52.8MB
Feature map transfer energy 252 µJ 1'057 µJ
Weight memory transfer energy 2.5 µJ 0.3 µJ
Computational energy 22.5 µJ 11.5 µJ

96×96 3'734.5 µJ 6'030.3 µJ
Bit accesses from or to external memory 179.3MB 300.1MB
Feature map transfer energy 3'586 µJ 6'002 µJ
Weight memory transfer energy 14.5 µJ 0.3 µJ
Computational energy 134 µJ 28 µJ

costs for computations and memory transfers, we compute the
additional cost when processing large feature maps layer- and
depth-wise. For large frames, the cost is clearly dominated
by the external memory access energy. Table IV shows an
exploration over different frame sizes starting from 32×32
for which no tiling is required and extending to 64×64 and
96×96 that require significant external memory transfer. We
find that by minimizing the feature map movement, the depth-
first strategy consumes significantly less than the layer-first
strategy for practical cases.

While the CUTIE core is designed to be integrated with
a host processor, one key idea to reduce system-level energy
consumption realized in the architecture is the autonomous
operation of the accelerator core. The control implementation
allows the accelerator to compute a complete network without
interaction with the host. In the presented version, the weight
memories, the layer FIFO, and threshold FIFOs are designed to
store up to eight full layers, which can be scheduled one after
another without any further input. In general, the number of
layers can be freely configured, at the cost of additional FIFO
and weight memory.

Besides offering support for standard convolutional layers,
the architecture can be used for depthwise convolutional layers
by using weight kernels where each kernel is all zeros except
for one channel. Further, it can be used for ternary dense layers
with input size smaller or equal to 3 × 3 × 128 = 1'152 and
output size smaller or equal to 128 by mapping all dense layer
matrix weights to the 3× 3× 128 weight buffer of an OCU.

IV. IMPLEMENTATION

This section discusses the implementation of the CUTIE
accelerator architecture. The results from physical layouts
in a 22 nm technology, one using SCMs and another using
SRAMs, and from synthesis in a 7 nm technology are pre-
sented and discussed.

A. Interface Design

The interface of the accelerator consists of a layer in-
struction queue and read/write interfaces to the feature map
and weight memories. The interface is designed to allow
integration into a System-on-Chip (SoC) design targeting near-
sensor processing. In this context, a pre-processing module
could be connected to a sensor interface, with a host processor
only managing the initial setup and off-chip communication.
This setup consists of writing the weights into their respective
weight memories and pre-loading the layer instructions into
the instruction queue. In the actual execution phase, i.e. once
data is loaded continuously, the accelerator is designed to
autonomously execute the layer instructions without needing
any further input besides the input feature maps and return
only a highly-compressed feature map or even final labels.
The end of computation is signalled by a single-bit interrupt
to the host.

B. Dimensioning

The CUTIE architecture is not architecturally constrained to
support a certain number of input/output channels, i.e. it can
be parameterized to support an arbitrary amount of channels.
Since it can be synthesized with support for any number of
channels and feature map sizes, the proposed implementation
was designed to optimize the accuracy vs. energy efficiency
trade-off for the CIFAR-10 dataset. To this end, the com-
pute units were synthesized and routed for different channel
numbers to evaluate the impact of channel number on the
energy efficiency of individual compute units and by exten-
sion, the whole accelerator. The estimations were performed
for 64, 128, 256, and 512 channels. To estimate the energy
efficiency of the individual implementations, a post-layout
power simulation was performed, using randomly generated
activations and weights. This experiment was repeated and
averaged over 300 cycles, i.e. 300 independently randomly
generated weight tensors and feature maps were used. Further,
post-synthesis simulation estimations for the energy cost of
memory accesses, encoding & decoding, and the buffering
of activations and weights were added. The estimations for
the resulting accelerator-level energy efficiency are shown in
Figure 6. Since these estimations were made using a post-
layout power simulation of a single OCU, they take into
account the wiring overheads introduced by following the
completely unrolled compute architecture. One of the main
drivers for lower efficiency in the designs with more channels
is the decrease in layout density and an increase in wiring
overheads. While energy efficiency per operation does not
directly imply energy per inference, it is a strong indicator
of system-level efficiency.

C. Implementation Metrics

The accelerator design was implemented with a full back-
end flow in GlobalFoundries 22 nm FDX and synthesized in
TSMC 7 nm technology. The first of two implementations
based on GlobalFoundries 22 nm FDX was synthesized using
SRAMs supplied with 0.8 V for feature map and weight

8

64 128 256 512
Number of channels

0

100

200

300

400

TO
p/

s/
W

Fig. 6. Estimation of accelerator-level energy efficiency using data from the
simulation of single OCUs, assuming SCM-based memories. Feature maps
and weights were drawn from a uniform random distributions. There is a
peak in energy efficiency at 128 channels before falling off for increasing
channel numbers.

memories and 8 track standard cells operating at 0.65 V.
The second of the GF 22 nm implementations uses SCM-
based feature map and weight memories as well as 8 track
standard cells for its logic cells, all supplied with 0.65 V.
The TSMC 7 nm implementation similarly uses SCM-based
memories to allow for voltage scaling. The post-synthesis
timing reports show that the GF 22 nm implementations
should be able to operate at up to 250 MHz. We chose to
run both the SCM as well as the SRAM implementation at
a very conservative frequency of 66 MHz. Since we did not
run a full backend implementation of the 7 nm version, we
chose to estimate the performance at the same clock frequency
and voltage as the 22 nm versions. The total area required
by the design is 7.5 mm2 for both 22 nm implementations
and approximately 1.2 mm2 at a layout density of 0.75 for
the 7 nm implementation. The reason for both GF 22 nm
implementations requiring the same amount of area is due to
the larger memories supported in the SRAM implementation,
as explained in section III-E. A breakdown of the area usage
in the SCM-based 22 nm implementation is shown in Figure
7.

For the GF 22 nm implementations, the sequential and
memory cells take up around 80% of the overall design’s
area, while the clock buffers and inverters constitute only a
very small amount of the total area. This characteristic is due
to the choice of using latch-based buffers for a lot of the
design and clocking the accelerator at a comparatively low
frequency, while also extensively making use of clock-gating
at every level of the design’s hierarchy. Note that even though
the area of the design is storage-dominated, power and energy
are not, which is one of the key reasons for the extreme energy
efficiency of CUTIE.

V. RESULTS AND DISCUSSION

This section discusses the evaluation results of the proposed
accelerator design. First, we discuss the design and training of
the network that is used to evaluate the accelerator’s perfor-
mance. Next, we discuss the general evaluation setup. Finally,
we present the implementation and performance metrics and
compare our design to previous work.

A. Quantized Network Training
The accelerator was evaluated using a binarized and a

ternarized version of a neural network, using the binary

SCM Combinational Sequential
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
re

a
in

m
m

2

Fig. 7. Breakdown of the area usage of the SCM implementation of the
accelerator core in 22nm technology. The majority of the area is used by
the standard cell memories, which are used to store feature maps and weight
kernels. Clock area is negligibly small, due to deliberate low clock speeds
and hierarchical clock gating

TABLE III
LAYER ARCHITECTURE OF THE TESTED CNN

Layer Input Dim Op Kernel Padding
2D Convolution 126×32×32 297MOp 3×3 (1,1)
2D Convolution 128×32×32 302MOp 3×3 (1,1)
2D Convolution 128×32×32 302MOp 3×3 (1,1)
Max Pooling 128×32×32 - 2×2 (0,0)
2D Convolution 128×16×16 75.5MOp 3×3 (1,1)
2D Convolution 128×16×16 75.5MOp 3×3 (1,1)
Max Pooling 128×16×16 - 2×2 (0,0)
2D Convolution 128×8×8 18.9MOp 3×3 (1,1)
2D Convolution 128×8×8 18.9MOp 3×3 (1,1)
Max Pooling 128×8×8 - 2×2 (0,0)
2D Convolution 128×4×4 4.7MOp 3×3 (1,1)
Avg Pooling 128×4×4 - 4×4 (0,0)
Fully connected 128 2.6 KOp - -
Total - 1.1 GOp - -

thermometer encoding and the ternary thermometer encoding
for input encoding. The network architecture is shown in Table
III.

Each convolutional layer is followed by a batch normal-
ization layer and a Hardtanh activation [70] layer. For the
quantized versions of the network, the activation layer is
followed by a ternarization layer. The preceding convolutional
layer, batch normalization layer and Hardtanh activation layer
are merged into a single Fused Convolution layer. Any suc-
ceeding pooling layers are then merged as well. The reason
for using Hardtanh activations over, for example, the more
popular ReLU activation which is also usually used in BNNs
is the inclusion of all three ternary values in the range of
the function. We further found that the Hardtanh activation
converged much more reliably than the ReLU activation for the
experiments we ran. We have tested networks with depthwise-
separable convolutions in place of standard convolutions but
have found that accuracy decreases substantially when ternar-
izing these networks, which is in line with the results in [37]
and [71]. Further, depthwise-separable convolutions require
twice the feature map data movement, while performing fewer
operations overall. Since CUTIE’s architecture greatly reduces
the cost of the elementary multiply and add operations, the cost
of accessing local buffers is relatively high. Hence, layers that
have been optimized in a traditional setting to minimize the
number of operations are not guaranteed to be energy efficient.

The approach for training the networks taken in this work
is based on the INQ algorithm [32]. Training is done in
full-precision for a certain number of epochs, after which a

9

0 25 50 75 100 125 150 175 200
Epoch number

0.0

0.2

0.4

0.6

0.8

1.0
Q

ua
nt

iz
at

io
n

ra
tio

Weight quantization schedule
Feature map quantization schedule

Fig. 8. Quantization schedule for the presented network. Weights and feature
map pixels are quantized separately, using different schedules. The weight
quantization schedule uses a decaying step size, which starts at 20%, decreases
to 10% and finishes with 5% of all weights.

pre-defined ratio of all weights are quantized according to a
quantization schedule. These two steps are iterated until all
weights are quantized. One degree of freedom in this algorithm
is the order in which the weights are quantized, called the
quantization strategy. We evaluated three quantization strate-
gies for their impact on accuracy, and sparsity, which is linked
to energy efficiency for execution on the proposed architecture.
The strategies evaluated in this work are the following:
• Magnitude: Weights are sorted in descending order by

their absolute value
• Magnitude-Inverse: Weights are sorted in ascending order

by their absolute value
• Zig-Zag: Weights are sorted by taking the remaining

smallest and largest values one after another.
For both the ternarized and binarized versions, the weights

were quantized using the quantization schedule shown in
Figure 8. The CIFAR-10 dataset was used for training and
the CIFAR-10 test data set was used for all evaluations. The
network was trained using the ADAM optimizer [72] over a
total of 200 epochs.

B. Evaluation Setup

In addition to the quantized network, a testbench was
implemented to simulate the cycle-accurate behavior of the
accelerator core. The testbench generates all necessary signals
to load all weights and feature maps into the accelerator core
and load the layer instructions into the layer FIFO. The 22 nm
implementations were simulated using annotated switching ac-
tivities from their respective post-layout netlist to simulate the
average power consumption of the accelerator core, including
memories, during the execution of each layer. Analogously, the
7 nm implementation was simulated using its post-synthesis
netlist. For power simulation purposes, each layer was run
separately from the rest of the network. This guarantees that
each loading phase is associated with its layer, which is
required to properly estimate the energy consumption of a
layer. For throughput and efficiency calculations, the following
formula for the number of operations in convolutional layers
is used:

Γ = 2 · IW · IH ·K ·K ·NI ·NO

where K corresponds to the side length of the convolutional
kernel, IW and IH are the output features maps’ width and

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Clock

Sequential

SCM

Combinational

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Power Consumption Relative to Total Power

Leakage

Dynamic

Fig. 9. Power breakdown of the accelerator core implementation in 22nm
technology with SCM-based feature map and weight memories, running
the Magnitude-Inverse trained ternary network. The overall power is clearly
dominated by combinational cells, where over 90% of the total power is spent.

height, and NI & NO are the input and output channel number,
respectively. Γ corresponds to the number of additions and
multiplications required to compute each output pixel, i.e.
operations for pooling and activations are not considered.
Furthermore, the runtime of each layer is measured between
the loading of the layer instruction and the write operation for
the last output feature map pixel.

C. Experimental Results

The energy per operation for the 22 nm implementation
using different quantization strategies is shown in Figure 11.
The energy efficiency scales almost linearly with the sparsity
of the executed network. This trend can be explained by zeros
in the adder trees leading to nodes not toggling, which results
in lower overall activity.

A breakdown of power consumption by cell type, as well
as by dynamic and leakage power is shown in Figure 9.
The static power consumption makes up 4.6% of the overall
power consumption in the 22 nm implementation, most of
which stems from the SCMs. Notably, the power consumption
is dominated by combinational cells which underlines the
effectiveness of the architecture, since this implies most energy
is spent in computations, rather than memory accesses or
transfers.

The analysis of the per-layer energy efficiency for both
binary and ternary neural networks reveals a sharp peak in
the first layer, which can be explained with the structural
properties of the thermometer encoding, i.e. the first feature
map contains 66.3% zeros on average. Furthermore, with the
decreasing number of operations in deeper layers, the energy
cost of loading the weights increase in proportion to the energy
cost of computations, which explains the decreasing energy
efficiency in deeper layers.

The binary thermometer encoding and ternary thermometer
encoding were compared for their use with the ternarized net-
work version. The results show that the ternary thermometer
encoding provides a small increase between 0.5% and 1.5%
in test accuracy, while energy efficiency is kept within 2% of
the binary thermometer. Further, the drop in accuracy between
the 32-bit full-precision version and the ternary version can be
reduced to as little as 3%.

10

Multiplier Popcount
0.0

0.1

0.2

0.3

0.4

0.5
A

ve
ra

ge
sw

itc
hi

ng
pr

ob
ab

ili
ty CUTIE - TNN

CUTIE - BNN
Iterative Model - TNN
Iterative Model - BNN

Fig. 10. Overview of the switching probabilities at the multiplier and adder
tree input nodes respectively, smaller is better. For the binary case, toggling in
the multipliers directly translates to switching activity in the adder trees, while
for the ternary case the sparsity of the network reduces switching activity at
the adder tree input nodes by ≈ 2×. Moreover, the smoothness of feature
maps is exploited by unrolling the compute units, which is reflected in a
≈ 3× smaller switching probability compared to an iteratively decomposed
model. Best viewed in color.

TABLE IV
IMPACT OF QUANTIZATION STRATEGY ON TEST ACCURACY AND SPARSITY
FOR BINARIZED & TERNARIZED NETWORKS ON THE CIFAR-10 DATASET

EVALUATED IN THE 22nm SCM IMPLEMENTATION

Accuracy Weighty Sparsity Avg. TOp/s/W
Full-Precision 91% - -
Ternary, TT∗

Magnitude 86.5% 7.4% 260TOp/s/W
Magnitude-Inverse 87.4% 60.7% 392TOp/s/W
Zig-Zag 88.1% 49.1% 345TOp/s/W
Ternary, BT∗

Magnitude 85.9% 6.9% 262TOp/s/W
Magnitude-Inverse 86.8% 60.8% 399TOp/s/W
Zig-Zag 86.6% 49.2% 342TOp/s/W
Binary
Magnitude 83.3% 0% 240TOp/s/W
Magnitude-Inverse 80.1% 0% 248TOp/s/W
Zig-Zag 82.8% 0% 229TOp/s/W

∗ BT: Binary Thermometer
∗ TT: Ternary Thermometer

Finally, the ternary network trained with the Magnitude-
Inverse quantization strategy using the ternary thermometer
encoding was evaluated on the post-synthesis netlist of the
7 nm implementation, achieving a peak energy efficiency of
3'140 TOp/s/W in the first layer and an average efficiency of
2'100 TOp/s/W.

D. Comparison of Quantization Strategies

An overview of test accuracy and sparsity for all tested
strategies is given for the binarized and ternarized versions in
Table IV.

The energy per inference for the most efficient ternary
version in 22 nm adds up to 2.8 µJ, the energy per inference
for the best binary version to about 4.4 µJ. These results
allow three observations: first, the quantization strategy not
only impacts the accuracy of the resulting network but also
the distribution of weights - the number of zeros for the
Magnitude-Inverse strategy is more than 8x higher than for
Magnitude, at comparable accuracy. The second observation

is that energy efficiency increases significantly for very sparse
networks. The Magnitude-Inverse strategy trains a network
that runs 36% more efficiently than the one trained with
Magnitude for the ternary case. Lastly, the results imply that
the optimal quantization strategy might be different for the
binary and ternary case. Most importantly, for all training
experiments we have run, we have found that ternary neural
networks consistently outperform their binary counterparts on
the CUTIE architecture by a considerable margin, both in
terms of accuracy, with 5% higher test accuracy, as well as
in terms of energy efficiency, with 36% lower energy per
inference.

E. Exploiting Feature Map Smoothness

By fully unrolling the compute units with respect to the
feature map channels and weights, we reduce switching ac-
tivity in the adder tree of the compute units by an average
of 66.6% with respect to architectures that use an output-
stationary approach and iterative decomposition. Iteratively
decomposed architectures require the accelerator to compute
partial results on partial feature maps and weight kernels. The
typical approach to implement this is tiling the feature map
and weight kernels in the input channel direction, and switch
the weight and feature map tiles every cycle. This leads to
much higher switching activity.

In the ternary case, an input node of the adder tree switches
when the corresponding weight value is non-zero and the
feature map value changes. Calculating the mean number of
value switches between neighboring pixels, we found that the
binary feature map pixels have an average Hamming distance
of 44 out of 256 bit and the ternary feature map pixels have
an average pixel-to-pixel Hamming distance of 33 out of 256
bit following the 3-ary encoding of CUTIE. It exploits this
fact by keeping the weights fixed for the execution of a full
layer, which eliminates switching activity due to changing the
weight tile while a previous feature map tile is scheduled.
To quantify this effect, we analyzed the switching activity of
the presented network trained with all quantization strategies
on an output-stationary iterative architecture model, taking
into account the network weights as well. Figure 10 shows
the occurring switching activity for CUTIE versus a model
with 2× iterative decomposition for the binary Magnitude and
ternary Magnitude-Inverse trained networks.

F. Comparison of Binary and Ternary Neural Networks

Since the set of ternary values includes the set of binary
values, a superficial comparison between binary and ternary
neural networks on the proposed accelerator architecture is
fairly straight-forward, as binary neural networks can be run on
the accelerator as-is. To fairly compare, however, it is impor-
tant to discount certain contributions that only appear because
the accelerator core supports ternary operations. Most impor-
tantly, the overhead in memory storage, accesses, encoding,
and decoding should be subtracted, as well as the energy spent
in the second popcount module. To apply these considerations
on the architecture, the following simplifications are made:
• The power used for memory accesses is divided by 1.6.

11

1 2 3 4 5 6 7 8
Layer number

0

100

200

300

400

500

600

TO
p/

s/
W

Ternary Neural Network, Magnitude Inverse
Ternary Neural Network, Zig-Zag
Ternary Neural Network, Magnitude
Binary Neural Network, Magnitude Inverse
Binary Neural Network, Zig-Zag
Binary Neural Network, Magnitude

Fig. 11. Energy efficiency simulation results on the CIFAR-10 test dataset for the binarized & ternarized networks comparing the different quantization
strategies using the GF 22nm post-layout power simulation data. Notably, the energy efficiency per operation increases with increasing sparsity of the weight
kernels as shown in table IV.

• The power used in the popcounts of the compute units is
halved.

• The power used for encoding and decoding is subtracted.

While these reductions do not account for all differences
between the ternary and a binary implementation of the
accelerator, they give a reasonably close estimate, considering
that the power spent in popcounts, memories and encoding
& decoding modules accounts for around 80% of the total
power budget. Adding up the reductions, an average of around
30% should be subtracted from the measured values of the GF
22 nm SCM implementation to get an estimate for the energy
efficiency of a purely binary version of the accelerator. Even
including this discount factor into all calculations, the energy
of the binary neural network would be reduced to around
3 µJ, which is slightly higher than the ternary version. Taking
into account that the achieved accuracy for the ternary neural
network comes in at around 88% while the binary version
achieves around 83%, the ternary implementation is both more
energy-efficient and more accurate in terms of test accuracy
than the binary version.

G. Comparison with the State-of-the-Art

A comparison of our design with similar accelerators cores
is shown in Table V. The implementation in TSMC 7 nm
technology outperforms even the most efficient digital binary
accelerator design, implemented in comparable Intel 10 nm
technology as reported by Knag et al. [27], by a factor of
at least 3.4× in terms of energy efficiency per operation and
5.9× in terms of energy per inference as well as the most
efficient mixed-signal design as reported by Bankman et al.
[25], requiring a factor of 4.8× less energy per inference.

For a fairer comparison to other state-of-the-art accelerators,
we also report post-layout simulation results in GF 22 nm
technology, which similarly outperforms comparable imple-
mentations as reported in Moons et al. [21] by a factor 2.5×,
both in terms of peak efficiency as well as average efficiency
per operation. The more practical comparison between the
energy per inference on the same data set reveals that our
design outperforms all other designs by an even larger margin,
i.e. by at least 4.8×, while even increasing the inference
accuracy with respect to all other designs. However, our design
is less efficient in terms of throughput per area compared
to other state-of-the-art designs. This is a deliberate design

TABLE V
COMPARISON OF THE PROPOSED ARCHITECTURE TO STATE-OF-THE-ART ACCELERATORS

[19] [21] [25] [27] [23] This work
Computation Method digital digital mixed digital analog digital digital digital
Weight Precision binary binary binary binary ternary ternary ternary ternary
Activation Precision binary binary binary binary ternary ternary ternary ternary
Memory Implementation SCM SRAM SRAM SCM SRAM SRAM SCM SCM
Technology 22nm 28nm 28nm 10nm 32nm 22nm 22nm 7nm
Core Area [mm2] 0.7 1.4 5.76 0.39 1.96 7.5 7.5 1.2b

Core Voltage [V] 0.4 0.66 0.6 0.37 - 0.65 0.65 0.65
Peak Throughput [TOp/s] 0.3 2.8 - 160 114 16 16 16
Peak Core Energy Efficiency [TOp/s/W] 223 230 - 617 - 457 589 3’140
Average Core Energy Efficiency [TOp/s/W] 36 145 772 617 127 305 392 2’100
Accuracy on CIFAR-10 87% 86% 85.6% 86%a - 88% 88% 88%
Energy per Inference on CIFAR-10 [µJ] (excl. I/O) 1.3–7.3 13.86 2.61 3.2 - 3.6 2.8 0.52

a: uses same network as [21] b: expected value at 0.75 cell layout density

12

choice, which is due to the unrolled architecture of CUTIE.

VI. CONCLUSION

In this work, we have presented three key ideas to increase
the core efficiency of ultra-low bit-width neural network
accelerators and evaluated their impact in terms of energy per
operation by combining them in an accelerator architecture
called CUTIE. The key ideas are: 1) completely unrolling the
data path with respect to all feature map and filter dimensions
to reduce data transfer cost and switching activity by making
use of spatial feature map smoothness, 2) moving the focus
from binary neural networks to ternary neural networks to cap-
italize on the inherent sparsity and 3) tuning training methods
to increase sparsity in neural networks at iso-accuracy. Their
combined effect boosts the core efficiency of digital binary and
ternary accelerator architectures and contribute to what is to
the best of our knowledge the first digital accelerator to surpass
POp/s/W energy efficiency for neural network inference.

Future work will focus on extending the core architecture to
enable efficient computation of different layers and integrating
the accelerator core into a sensor system-on-chip.

ACKNOWLEDGEMENT

The authors would like to thank armasuisse Science & Tech-
nology for funding this research. This project was supported
in part by the EU’s H2020 Programme under grant no. 732631
(OPRECOMP).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012, p.
1097–1105.

[2] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey and benchmarking of machine learning accelerators,”
in Proc. IEEE High Performance Extreme Computing Conference, 2019.

[3] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[4] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gurkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 25, no. 10,
pp. 2700–2713, 2017.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proc. International Conference on Learning Representations, 2016.

[6] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Proc. NIPS, 2015,
p. 1135–1143.

[7] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size,” arXiv:1602.07360, 2016.

[8] L. Cavigelli, G. Rutishauser, and L. Benini, “Ebpc: Extended bit-
plane compression for deep neural network inference and training
accelerators,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 4, pp. 723–734, 2019.

[9] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Neural Information Processing Systems, 2015, pp. 3123–3131.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision, 2016.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 4107–4115.

[12] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” NIPS Workshop
on Efficient Methods for Deep Neural Networks, 2016.

[13] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in Proc. ICLR, 2017.

[14] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017, pp. 345–353.

[15] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary neural
networks for resource-efficient ai applications,” in 2017 International
Joint Conference on Neural Networks, 2017, pp. 2547–2554.

[16] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural
networks: A survey,” Pattern Recognition, p. 107281, Feb 2020.

[17] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
reduced-precision networks,” in Proc. ICLR, 2018.

[18] J. Choi, P. I.-J. Chuang, Z. Wang, S. Venkataramani, V. Srinivasan,
and K. Gopalakrishnan, “Bridging the accuracy gap for 2-bit quantized
neural networks (qnn),” 2018.

[19] R. Andri, G. Karunaratne, L. Cavigelli, and L. Benini, “Chewbaccann:
A flexible 223 tops/w bnn accelerator,” 2020.

[20] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in Proc. IEEE Computer Society Annual Symposium on VLSI,
2016, pp. 236–241.

[21] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst,
“Binareye: An always-on energy-accuracy-scalable binary cnn processor
with all memory on chip in 28nm cmos,” in Proc. IEEE CICC, 2018.

[22] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2,
pp. 292–308, 2019.

[23] S. Jain, S. Gupta, and A. Raghunathan, “Tim-dnn: Ternary in-memory
accelerator for deep neural networks,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 28, pp. 1567–1577, 2020.

[24] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-
mb in-memory-computing cnn accelerator employing charge-domain
compute,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–
1799, 2019.

[25] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8 µ j/86% cifar-10 mixed-signal binary cnn processor with
all memory on chip in 28-nm cmos,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 1, pp. 158–172, 2019.

[26] M. Klachko, M. R. Mahmoodi, and D. Strukov, “Improving noise
tolerance of mixed-signal neural networks,” in 2019 International Joint
Conference on Neural Networks, 2019, pp. 1–8.

[27] P. C. Knag, G. K. Chen, H. E. Sumbul, R. Kumar, M. A. Anders,
H. Kaul, S. K. Hsu, A. Agarwal, M. Kar, S. Kim, and R. K. Krish-
namurthy, “A 617 tops/w all digital binary neural network accelerator in
10nm finfet cmos,” in 2020 IEEE Symposium on VLSI Circuits, 2020,
pp. 1–2.

[28] B. Moons, D. Bankman, and M. Verhelst, BINAREYE: Digital and
Mixed-Signal Always-On Binary Neural Network Processing. Cham:
Springer International Publishing, 2019, pp. 153–194.

[29] Q. Hu, P. Wang, and J. Cheng, “From hashing to cnns: Training
binaryweight networks via hashing,” in AAAI Conference on Artificial
Intelligence, 2018.

[30] G. Cerutti, R. Andri, L. Cavigelli, E. Farella, M. Magno, and L. Benini,
“Sound event detection with binary neural networks on tightly power-
constrained iot devices,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, 2020, pp. 19–24.

[31] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “Gxnor-net: Training
deep neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework,” Neural
networks : the official journal of the International Neural Network
Society, vol. 100, pp. 49–58, 2018.

[32] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
Proc. ICLR, 2017.

[33] A. Bulat and G. Tzimiropoulos, “Xnor-net++: Improved binary neural
networks,” in British Machine Vision Conference, 2019.

[34] M. Spallanzani, L. Cavigelli, G. P. Leonardi, M. Bertogna, and
L. Benini, “Additive Noise Annealing and Approximation Properties
of Quantized Neural Networks,” pp. 1–18, 2019. [Online]. Available:
http://arxiv.org/abs/1905.10452

[35] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016.

13

[36] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Structured binary
neural networks for accurate image classification and semantic segmen-
tation,” in Proc. IEEE/CVF CVPR, 2019, pp. 413–422.

[37] H. Phan, D. Huynh, Y. He, M. Savvides, and Z. Shen, “Mobinet: A
mobile binary network for image classification,” in 2020 IEEE Winter
Conference on Applications of Computer Vision, 2020, pp. 3442–3451.

[38] A. Byerly, T. Kalganova, and I. Dear, “A Branching and Merging
Convolutional Network with Homogeneous Filter Capsules,” 2020.
[Online]. Available: http://arxiv.org/abs/2001.09136

[39] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net: Training
deep neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework,” Neural
Networks, vol. 100, pp. 49–58, 2018.

[40] X. Sun, S. Yin, X. Peng, R. Liu, J. S. Seo, and S. Yu, “XNOR-RRAM:
A scalable and parallel resistive synaptic architecture for binary neural
networks,” Proceedings of the 2018 Design, Automation and Test in
Europe Conference and Exhibition, DATE 2018, vol. 2018-Janua, pp.
1423–1428, 2018.

[41] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly,
and N. Houlsby, “Big Transfer (BiT): General Visual Representation
Learning,” 2019. [Online]. Available: http://arxiv.org/abs/1912.11370

[42] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin, “Binaryrelax: A
relaxation approach for training deep neural networks with quantized
weights,” SIAM Journal on Imaging Sciences, vol. 11, no. 4, pp. 2205–
2223, 2018.

[43] S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia, “BNN+:
Improved Binary Network Training,” pp. 1–10, 2018. [Online].
Available: http://arxiv.org/abs/1812.11800

[44] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test
resolution discrepancy: FixEfficientNet,” pp. 12–16, 2020. [Online].
Available: http://arxiv.org/abs/2003.08237

[45] L. Cavigelli and L. Benini, “RPR: Random Partition Relaxation for
Training; Binary and Ternary Weight Neural Networks,” 2020. [Online].
Available: http://arxiv.org/abs/2001.01091

[46] J. Faraone, N. Fraser, G. Gambardella, M. Blott, and P. H. W. Leong,
“Compressing low precision deep neural networks using sparsity-
induced regularization in ternary networks,” 2017.

[47] A. Marban, D. Becking, S. Wiedemann, and W. Samek, “Learning sparse
& ternary neural networks with entropy-constrained trained ternarization
(ec2t),” 2020.

[48] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu, “Regularizing activation
distribution for training binarized deep networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[49] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[50] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time
embedded scene labeling with convolutional networks,” in Proc.
ACM/IEEE/EDAC Design Automation Conference, 2015.

[51] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264 – 274, 2020.

[52] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
1–14.

[53] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[54] N. P. J. et al., “In-datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture, 2017, pp. 1–12.

[55] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 en-
vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
fdsoi,” in 2017 IEEE International Solid-State Circuits Conference,
2017, pp. 246–247.

[56] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Hyperdrive: A multi-
chip systolically scalable binary-weight cnn inference engine,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 309–322, 2019.

[57] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini,
“Always-on 674µ w@4gop/s error resilient binary neural networks

with aggressive sram voltage scaling on a 22-nm iot end-node,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11,
pp. 3905–3918, 2020.

[58] L. Cavigelli and L. Benini, “Extended bit-plane compression for convo-
lutional neural network accelerators,” in Proc. IEEE AICAS, 2019, pp.
279–283.

[59] S. Okumura, M. Yabuuchi, K. Hijioka, and K. Nose, “A ternary based
bit scalable, 8.80 tops/w cnn accelerator with many-core processing-in-
memory architecture with 896k synapses/mm2.” in 2019 Symposium on
VLSI Circuits, 2019, pp. C248–C249.

[60] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
M. Ikebe, T. Asai, S. Takamaeda-Yamazaki, T. Kuroda, and M. Moto-
mura, “Brein memory: A 13-layer 4.2 k neuron/0.8 m synapse bina-
ry/ternary reconfigurable in-memory deep neural network accelerator in
65 nm cmos,” in 2017 Symposium on VLSI Circuits, 2017, pp. 24–25.

[61] A. Ardakani, Z. Ji, S. C. Smithson, B. H. Meyer, and W. J. Gross,
“Learning recurrent binary/ternary weights,” in Proc. International Con-
ference on Learning Representations, 2019.

[62] F. Conti, L. Cavigelli, G. Paulin, I. Susmelj, and L. Benini, “Chipmunk:
A systolically scalable 0.9 mm2, 3.08gop/s/mw @ 1.2 mw accelerator
for near-sensor recurrent neural network inference,” in Proc. IEEE
Custom Integrated Circuits Conference, 2018, pp. 1–4.

[63] B. Moons and M. Verhelst, “A 0.3–2.6 tops/w precision-scalable pro-
cessor for real-time large-scale convnets,” in 2016 IEEE Symposium on
VLSI Circuits, 2016, pp. 1–2.

[64] S. Sen and A. Raghunathan, “Approximate computing for long short
term memory (lstm) neural networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2266–2276, 2018.

[65] X. Zhou, Z. Du, S. Zhang, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Addressing sparsity in deep neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 10, pp. 1858–1871, 2019.

[66] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li,
and H. Yang, “Sticker: An energy-efficient multi-sparsity compatible
accelerator for convolutional neural networks in 65-nm cmos,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 2, pp. 465–477, 2020.

[67] O. Muller, A. Prost-Boucle, A. Bourge, and F. Pétrot, “Efficient de-
compression of binary encoded balanced ternary sequences,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 27, no. 8,
pp. 1962–1966, 2019.

[68] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in International
Conference on Learning Representations, 2018.

[69] K. Goetschalckx and M. Verhelst, “Breaking high-resolution cnn band-
width barriers with enhanced depth-first execution,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
323–331, 2019.

[70] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, 2011.

[71] H. Phan, Z. Liu, D. Huynh, M. Savvides, K.-T. Cheng, and Z. Shen,
“Binarizing mobilenet via evolution-based searching,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[72] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

14

Moritz Scherer received the B.Sc. and M.Sc. degree
in electrical engineering and information technology
from ETH Zürich in 2018 and 2020, respectively,
where he is currently pursuing a Ph.D. degree at the
Integrated Systems Laboratory. His current research
interests include the design of ultra-low power and
energy-efficient circuits and accelerators as well
as system-level and embedded design for machine
learning and edge computing applications. Moritz
Scherer received the ETH Medal for his Master’s
thesis in 2020.

Georg Rutishauser received his B.Sc. and
M.Sc.degrees in Electrical Engineering and Infor-
mation Technology from ETH Zürich in 2015 and
2018,respectively. He is currently pursuing a Ph.D.
degree at the Integrated Systems Laboratory at ETH
Zürich. His research interests include algorithms and
hardware for reduced-precision deep learning, and
their application in computer vision and embedded
systems.

Lukas Cavigelli received the B.Sc., M.Sc., and
Ph.D. degree in electrical engineering and informa-
tion technology from ETH Zürich, Zürich, Switzer-
land in 2012, 2014 and 2019, respectively. After
spending another year as a Postdoc at ETH Zürich,
he has joined Huawei’s Zurich Research Center in
Spring 2020. His research interests include deep
learning, computer vision, embedded systems, and
low-power integrated circuit design. He has received
the best paper award at the VLSI-SoC and the
ICDSC conferences in 2013 and 2017, the best

student paper award at the Security+Defense conference in 2016, the ETH
Medal for his Ph.D. thesis in 2019, and the Donald O. Pederson best paper
award (IEEE TCAD) in 2019.

Luca Benini is the Chair of Digital Circuits and
Systems at ETH Zürich and a Full Professor at
the University of Bologna. He has served as Chief
Architect for the Platform2012 in STMicroelectron-
ics, Grenoble. Dr. Benini’s research interests are in
energy-efficient system and multi-core SoC design.
He is also active in the area of energy-efficient smart
sensors and sensor networks. He has published more
than 1’000 papers in peer-reviewed international
journals and conferences, four books and several
book chapters. He is a Fellow of the ACM and of

the IEEE and a member of the Academia Europaea.

