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ABSTRACT

Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to
their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub-NUT system
[Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins
et al. [J. Math. Phys. 44, 5811-5848 (2003)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0041130

. INTRODUCTION

In Ref. 1, we have shown that all classical superintegrable systems (and their generalizations, not necessarily superintegrable) in two-
dimensional real Euclidean space E;” possess hidden symmetries leading to their linearization, as well as the Tremblay-Turbiner-Winternitz
system,” and a superintegrable system that is separable in Cartesian coordinates and admits a third-order integral of motion as derived by
Gravel in Ref. 4. Then, we have conjectured that superintegrable systems in two-dimensional non-Euclidean space can also be reduced to
linear equations by means of their hidden symmetries. In this paper, we consider the two Perlick systems on two-dimensional non-Euclidean
spaces,” " the two-dimensional Taub-NUT system,” ' and all the superintegrable systems for the four types of Darboux spaces as determined
in Refs. 12 and 13. We show that they are all intrinsically linear by determining their hidden Lie symmetries. As in Refs. 1 and 14-17, we
also make use of the reduction method.'® More details on superintegrable systems and their hidden linearity have been described in Ref. 1. In
particular, it is regardless of the separability of the corresponding Hamilton-Jacobi equation as shown in Ref. 15 for the Kepler problem in
Cartesian coordinates and in Ref. 16 for a superintegrable system in E, that does not allow separation of variables."’

Il. PERLICK TYPE |

We consider the so-called Hamiltonian of Perlik type L,* i.e.,

2\2 2 2
Hp = M(pf +&) +Aﬂ, (1)

2 r2 r

that generates the Hamiltonian equations
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= p(1+k)?,
-97 pg(l + ki’z)z

" @
b ((1 — krz)pé - 2krp? +Ar)(1 +kr?)

r3

o =0.

The last equation can be easily integrated to give pp = w = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (2) and choose 6 as a new independent variable y, then we obtain the following two equations:

dr pr’

dy w’ 3)
dp- (1 - krz)w2 —2kr*p? + Ar

dy - rw(1 + kr?) ’

If we derive p, from the first equation of system (3) and replace it into the second equation, then we obtain the following second-order
equation in r:

2
&r AP+ (1-kP)w'r + sz(g)

= dy
dy? w?r(1 + kr?) @

This equation admits an eight-dimensional Lie symmetry algebra isomorphic to s[(3, R) and thus is linearizable. A two-dimensional Abelian
intransitive subalgebra is that generated by the two operators

sin(y)r?
1+ kr?

cos(y)r*
;= —2="0, Ig=
T 1k s

Or (5)

that can be put into the canonical form®’ 95, 9; by means of the transformation

kr—r' — Ajw?
y=t , f=——"—"". 6
y=tan(y), 7 0s(r) 6)
Then, Eq. (4) becomes the free-particle equation
2w
47,
dj?

1

Instead, if we only make the transformation of the dependent variable u = kr — r' — A/w?, then Eq. (4) becomes the equation of the harmonic

oscillator
dy?

Ill. PERLICK TYPE I
We consider the so-called Hamiltonian of Perlik type IL® i.e.,

(1-A%)? ( 2 pi,) Br? 7

Hp= A7) b
T eer— 2\t 2 ) T T 2en

that generates the Hamiltonian equations
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}.’_ pr(l —A2T4)2
T 1At 26
PG(I —A2T4)2
r2(1 + A2rt - 26r2)°
pr= i(zrzpf (A4r6 +30%7 -6 - 38)L2r4) (8)
r3(1+ A%rt - 26r2)2
+p§(1 + A At — 400t - 46r2) - 2Br4),
po=0.

The last equation can be easily integrated to give pg = w = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (8) and choose 0 as a new independent variable y, then we obtain the following two equations:

dr _pir’
dy w’
dp, 1 9)

B 2.2/14.6 22 & an24
dy_wr(l+/\2r4—26r2)(1—/\2r4)(2rpr()tr +30°r" =46 36/\7‘)

+ w2(1 T ) BT ) B 46r2) - ZBr4).

If we derive p, from the first equation of system (9) and replace it into the second equation, then we obtain the following second-order
equation in r:

dy
il , 1
dy? wr(1 +A2rt — 26r2) (1 — A2r*) (10)

& wz(z(ﬂ)z(x*r6 FAR2 - 8- 3003 + 14 A% + 607 — 4600 45#) Py

which admits a three-dimensional symmetry algebra sl(2,R), unless B = 2w?*(A* — §%), in which case it admits an eight-dimensional Lie
symmetry algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any
second-order ordinary differential equation that admits a Lie symmetry algebra sI(2, R). If we solve Eq. (10) with respect to B and derive once
with respect to y, then we obtain the following third-order equation:

dr 2
d&r dy 24, dr dr 2 2.4
— =533+ )—-12| —| -4r"(1-1 > 11
dy?  r2(1-2%r%) 4 ' )dy2 dy a ") (1)
which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable 7 = HZ)S’A
transforms Eq. (11) into the linear equation
& d
— =4,
dy? dy
which is a once-derived linear harmonic oscillator with frequency equal to 2.
A. Taub-NUT
The following Taub-NUT Hamiltonian'*!!
1 r 2 1 2) o
H =— r+ = - 12
() 2;1+r(p rzpq) n+r (12)
yields the Hamiltonian equations
J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-3
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_ TPr
A
- Pe
9= (n+r)r’ (13)
Z(arfpé)r+r1(r2pffpé)
T 2(r7+r)2r2 ’
Py =0.

The last equation can be easily integrated to give p, = wo = constant. If we apply the reduction method developed in Ref. 18 to the three
remaining equations of system (13) and choose ¢ as a new independent variable y, then we obtain the following two equations:

o _7
B w'” (14)
dp, 2(¢xr - w(z))r + q(rzpf - w(z,)
dy ~ 2(n+r)rwo ’
Solving the first equation for p, and substituting into the second yields
Pu 3+ (du) u(2a? - qud - 2wiu)
S =R - . (15)
dy?  2u(n+u)\dy 2wi (1 + u)
with u = r. Equation (15) admits a three-dimensional Lie symmetry algebra spanned by the following operators:
u(n+u) .
01=0), O =cos(y)dy+ ——=sin(y)0u,
n
(14 ) (16)
O3 =sin(y)0, - B r v cos(y) 0.
n

However, if a = 0, then the equation admits an eight-dimensional Lie symmetry algebra. Therefore, if we solve Eq. (15) with respect to o and
derive once with respect to y, then we get the following third-order equation:

3 2 2
RN PPN U0 Y 17)
4 dy dy? dy

which is linearizable since it admits a seven-dimensional Lie symmetry algebra spanned by the following operators:

Il =9y, IIh=cos(y)0, +u sin(y)du, Iz =sin(y)0d, — u cos(y)Ou, as)
Iy = uby, Ils = 1’0, Tl = 1> cos(y)0u, 1IIy = W sin(y)Ou.

A two-dimensional Abelian intransitive subalgebra is that generated by the operators Ils and II;. If we put them into the canonical form
Ou, YOu, then the transformation

_sin(y) _ 1
"~ cos(y)’ u cos(y) (19)
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changes Eq. (15) into the following linear equation:

RY y? &
-3 v (20)
dy3 1+ Y2dYy?
Moreover, if we consider the transformation v = —%, then Eq. (15) becomes the once-derived linear harmonic oscillator with frequency equal
to 1,1i.e.,
& d
2= (1)
d?dy
This shows the connection between the Taub-NUT Hamiltonian (12) and the harmonic oscillator.
IV. DARBOUX |
Three superintegrable systems were determined in Ref. 12, where the problem of superintegrability for the Hamiltonian
1
Hpr = @(pﬁ +p5) + V(u,v) (22)

was addressed, namely, finding the potentials V(u,v) such that Hp; admits at least two extra quadratic integrals. We show that all of three
systems have hidden symmetries that make them linear.

A. Case (1)

The Hamiltonian

1,52 4+t by b3
Hpn = — + +b + 24 2 23
DI1 4u (pu pv) 1 u Wl ( )
yields the Hamiltonian equations
=P
2u
o=22
2u
. V(PR ph) + biv? (v — 40P + 4byv” + 4bs (24)
Pu= 4ulv? i
_ 4b3 - b11)4
YT 2w

If we apply the reduction method developed in Ref. 18 and choose v as a new independent variable y, then we obtain the following three

equations:
du _ pu
dy po’
dpu _ YA(pl+pi) + b1y (" — 4u) +4bay” + 4bs (25)
dy 2uy*py ’
dpy _ 4bs - biy!
&y

The last equation can be easily integrated, i.e.,

2 2 byt - 24
o \/ wob1y bl)/4 8w0b3y b3 X (26)
y
J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-5
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with wo being an arbitrary constant. Moreover, if we derive p, from the first equation of system (25) and replace it into the second equation,
then we obtain the following second-order equation in u:

dzu 1 (du 2 ”(bly4 - b3)% +)/3(1Uobl - 21711/12 +2by — 4wob3)
+ 2 , (27)

diyz - ﬂ di)/ yu(2w0b1y2 - b1y4 - 8’[1]0173)/2 - 4b3)
which admits a three-dimensional symmetry algebra sl(2,R), unless b, = 0, in which case it admits an eight-dimensional Lie symmetry algebra
sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order ordinary
differential equation that admits a Lie symmetry algebra sI(2, R). If we solve Eq. (27) with respect to b and derive once with respect to y, then
we obtain the following linear third-order equation:

du_ Gtoan (g -rgY) (28)
&y y2(2wobiy® — biy* — 8wobsy? — 4bs)”
B. Case (2)
The Hamiltonian
2, .2
HD12=$(Pi+pi +%+%+a3u +v (29)
yields the Hamiltonian equations
=P,
12)u
b= zl
u
_ pE 4Pl +day + da® - day(ut —v?) (30)
pu= 4u? ’

ap + 2asv
v T -

u

If we apply the reduction method developed in Ref. 18 and choose v as a new independent variable y, then we obtain the following three

equations:
du_pu
& p 2 2., .2 2
dpu _ 4a1 +4axy — 4asu” +4dasy” +py, + Py 31)
dy ~ 2upy ’
dpy _ Rt 2asy
dy po

The last equation can be easily integrated, i.e.,
Po = £2v/d2wo — azy — asy?, (32)

with wp being an arbitrary constant. Moreover, if we derive p, from the first equation of system (31) and substitute it into the second equation,
then we obtain the following second-order equation in u:

2
2\(d d 2
Py (a2wo—azy —aszy )(d—;) +(a2+2a3y)ud—;fa3u +ay + aywy

— s 33
dy? 2u(arwo — azy — azy?*) (33)
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which admits a three-dimensional symmetry algebra sl(2, R), unless a; + awg = 0, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (33) with respect to a; and derive once with respect
to y, then we obtain the following linear third-order equation:

@ B 3(az + 2a3y) diu (34)
dy3 7 2(aawo — azy — asy?) dy?’
C. Case (3)
The Hamiltonian
1 a
Hprs = E(‘Di +po)+ 0 (35)
yields the Hamiltonian equations
it
%u
b= 2—”
u
4a + pk + ph (36)
T
pv=0.

The last equation can be easily integrated, i.e., p, = wo, with wo being an arbitrary constant. If we apply the reduction method developed in
Ref. 18 and choose v as new independent variable, then system (36) reduces to the following two equations:

a_p
dy - ’wo’

dpy _ 4a+pl+wyg (37)
dy 2uwy

If we derive p, from the first equation of system (37) and replace it into the second equation, then we obtain the following second-order
equation in u:

2 2 2
du l(du) +4a+w0 (38)

dy? ~ 2ul\dv 2wiu ’
which admits a three-dimensional symmetry algebra sl(2, R), unless 4a + wg = 0, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order

ordinary differential equation that admits a Lie symmetry algebra sl(2, R). If we solve Eq. (38) with respect to a and derive once with respect
to y, then we obtain the following linear third-order equation:

du
- =0. 39
i (39)
V. DARBOUX II
Four superintegrable systems were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian
2

wi 2 2
Hpy = —— + +V s 40
DI w1 (w3 w4) (w1, w2) (40)

was addressed, namely, finding the potentials V' (w1, w>) such that Hpyr admits at least two extra quadratic integrals.
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A. Case (A)
The Hamiltonian
w? wi as
?'-1{1311,4‘:271 wi +wi +ar| —- +w; +amwy + — (41)
wy +1 4 wy
yields the Hamiltonian equations
w2w3
Wy =2——,
wi +1
2
Wy =2 w21w4 ,
wir 12 2 4 2 2 (42)
. 4ws +4wj + ajwi + 2a1w + 4a1w; + 4arw; — 4a;
w3 = —wi SRSV ,
2(wi +1)
s = 102 2a1w; + az
T w?+1

If we apply the reduction method developed in Ref. 18 and choose w; as a new independent variable y, then we obtain the following three

equations:
dwz _ W4
dy T ws’
dws 74w§ + 4wi + u1y4 + 2a1y2 + 4a1w§ +4a,w, — 4as (43)
dy - 2yws(w? +1) ’
dw4 _ 2a1w; + ap
dy B w3 ’

If we solve the second equation with respect to a3 and then derive once with respect to y, then we obtain the following second-order equation
in ws(y):

wi(yws +3ws) +a
w;/:_ 3()/ 3 3) 1}1) (44)
yws

which admits an eight-dimensional Lie symmetry algebra sl(3, R) and therefore is linearizable. In this case, Lie canonical transformation is

2 4 2~
o Yws aryt d s
Wy="——+— J=y = a7 =0, (45)

and consequently,

\/ 8C2y2 + 8C1 - a1y4 (46)

w3 =% >
3 2}/

with Cy, C; being arbitrary integration constants, although only one is really arbitrary since there is a relationship between them and a3. Then,
if we solve the first equation in (43) with respect to w4 and replace it into the third equation, we obtain the following linear second-order
equation in w,(y):

Wl = —(ay* + 8Cy)w) + 4ary’w + 2a2y°
2 = .

47
ary® — 8Ciy — 8Cyy3 “7)

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-8
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Its general solution is

ws = (a1y” - 4C,)Cs +\/ary* — 8C; — 8C2y2Cy — 2“721 (48)

with Cs, C4 being arbitrary integration constants.

B. Case (B)
The Hamiltonian
2
w b b
Houp = ——— w§+wi+b1(w%+w§)+—22+—32 (49)
wi +1 wy W

yields the Hamiltonian equations

. wiws
w1 = 2 > 5

wi+1
. wiwy
Wy =2———7,

w1+122 22 4 2 2 2 4 2 (50)
. W W3 + Wywy + biwiws + 2biwiw; + biw, — byw; + bs
w3 = *2’11)1 0 B 2 N

w3 (w? +1)
4
. 2 blwz —-b;
Wy = —2U)1 VAT
w; (w? +1)

If we apply the reduction method developed in Ref. 18 and choose w; as a new independent variable y, then we obtain the following three

equations:
dwy  wy
Ay wy
dws wiw3 + wiw; + b1y ws + 2b1yws + biw; — byws + bs
Ay whwsy(y? +1) ’ GD
dUJ4 _ b]’w;l - b3
dy  wlws

If we solve the second equation with respect to b, and then derive once with respect to y, then we obtain the following second-order equation
in ws(y):

W - _wg(ng + 3w3) +4by

3 = (52)
yws
which is exactly the linearizable equation (44) if a; is replaced with 4b, and consequently,
8Cyy% + 8C) — 4b1y*
wy = 2 YT A TN (53)

2y

with Ci, C; being arbitrary integration constants.
Another reduction would also lead to linearity. If we choose w; as a new independent variable y, then we obtain the following three

equations:

dw; w3
dy B 1U4’
dws _ y2w§ +y2wi + blw‘fyz + Zwafyz + b1y4 - b2y2 + b3 (54)
dy B wiwgy?(w? +1) ’
dw4 _ b1y4 - bg
dy  Yws

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-9
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and we can easily integrate the third equation, i.e.,

wWyq = ii\/Zbﬂonz - b1y4 - 2b3woy2 - b3, (55)

with wy being an arbitrary integration constant. Then, if we solve the first equation in (54) with respect to w3 and replace it into the second
equation, we obtain the following second-order equation in w, (y):

w,, _ —w{z . (b1y4 - b3)w{ 2 b] (w]l + wa + 2w0) - bz - 2b311}0 (56)
" wi(w2 1) p(2(br - bs)wey? — biyt - bs) 4 wi(w? +1)(2(by — bs)wey? — biy* — b3)’

which admits a three-dimensional symmetry algebra sl(2,R), unless b, = 2(b; — bs)wo — by, in which case it admits an eight-dimensional
Lie symmetry algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any
second-order ordinary differential equation that admits a Lie symmetry algebra sl(2,R). If we solve Eq. (56) with respect to b, and derive
once with respect to y, then we obtain the following third-order equation:

nr

wq =-3

! " b 4 _ b " 2 7
wi;wy 3 1y 3 ; wy 4 wy ﬂ (57)
3

w1 2(by = b3)woy? — biy* - 7 ywr  y?

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable U = 2—;2 and
1

independent variable Y = b1y* + wo(bs — by) transform Eq. (57) into the linear equation

&u 3ydy
dy? Y2 - blwd + bibs + 2bibsw? - b

C. Case (C)

The Hamiltonian

2
‘Hopiic = “ (58)
w? +w? + wif + w%
yields the Hamiltonian equations
Wy = wfw%w;
! (wiw? + 1) (w? + w)’
Wy w1w2w4
: (w? w2+1)(w1+w2)
(59)
iy = 2102 (w3 + a3 + (w3 + wHw?) (wi —1) + (w + 1+ 2wiw)a,
(w? w2 +1)2 (w +w?)?
s = 20w (alwl +ay + (w3 +w)w?) (ws - 1) + (wi +2wiws + 1)a3
! (wiw? + 1) (w? + w?)?

Before applying the reduction method,'® we introduce the following transformations of the dependent variables in order to avoid the
mishandling of formulas with square roots by either REDUCE or MAPLE, i.e.,

wr =1, wr=+/r2, w3=+/13, W=+, (60)

J. Math. Phys. 62, 073503 (2021); doi: 10.1063/5.0041130 62, 073503-10
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and then choose r, as a new independent variable y that gives rise to the following three equations:

dr _ [nrs
dy yry ’
%: 7 (ay+as+ (r3+r)y)(l —1) + (P +1+2ny)a 61)
dy yriry (ry+1)(r1+y) ’
dry _ (amin +ax+ (r3 + r4)r1)(y2 D)+ (P 1+ 2r1y)as
dy y(riy +1)(r +y) '
From the Hamiltonian Hpyc, i.e.,
rstratar+ 2+
Hbpic = r—lll = ho, (62)
Ly
we can derive
i (riy + 1)(r1 + y)ho — niray — asri — axy — ayyn ’ 63)
yn
with hg being an arbitrary constant. Consequently, the third equation in (61) becomes
drs a3+ ()"~ Dho (64)
dy » ’
which can be easily integrated, i.e.,
2
- 1)h
py = LY +2()’ +Dho, (65)
Y
with wo being an arbitrary constant. Finally, we are left with the first equation in (61), i.e.,
dri  \/hor} — (a1 +wo)r — az + ho (66)

di}’_ \/h0y2+woy—a3+ho

which can be solved by quadratures. However, if we solve it with respect to a; and derive once by y, then the following linear second-order
equation is obtained:

2

d d
2((13 —woy — (yz + l)ho)irzl - (UJ() + 2]’10)/)i + 2]’101‘1 —wo —ap =0. (67)
dy dy
D. Case (D)
The Hamiltonian
wi 2 2
Hpip = 271(11)3 +wy + d) (68)
wy+1
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yields the Hamiltonian equations
2
iy = 212
wy +1
. wiw,
wy = 2 > N
wi +1 (69)
i = -2 w3 +wj +d
T e
wy = 0.

The last equation yields w4 = wy. If we apply the reduction method developed in Ref. 18 and choose w; as a new independent variable y, then
we obtain the following two equations:

dw _ws

dy T w’

%7_ wi +wi+d (70)
dy  wowi(w?+1)

Then, if we solve the first equation in (70) with respect to w3 and replace it into the second equation, we obtain the following second-order
equation in w; (y):

" w(z)wiz + wé +d
Wy ==——5 5, (71)
wgwr (wi + 1)

which admits a three-dimensional symmetry algebra sl(2,R), unless d = —wg, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2, R). If we solve Eq. (71) with respect to d and derive once with respect
to y, then we obtain the following third-order equation:

3wlwll
wi’ === (72)
w1

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent variable r; = w} transforms
Eq. (72) into the linear equation

nr

r =0. (73)

VI. DARBOUX llI

Five superintegrable cases were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian

uf.2 | .2
e (Putp
Hpmr = % (74)
was addressed.
A. Case (A)
The Hamiltonian
2 2
w3 +ws + ajw; + aw; + a
Hpia = ——— 21 22 e (75)
4+ wi +w;
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yields the Hamiltonian equations

Wy = 2’!1)3
VTt a
. 2wy
Wy = —S5———,
: wi+wl +4
s = 2awiw; + ul(wlz = w% - 4) + 2azw; + 2w1(w§ + wf) (76)
T (w? +w? +4)2 ’
in 2a1wiw, — az(wf —w; —4) + 2azw; + 2w2(w§ + wi)
‘o (w? + w3 +4)? ’
We apply the reduction method'® by choosing w> as a new independent variable y that gives rise to the following three equations:
dwr _ws
dy T ws
dw3 26121U1y + al(wlz *)/2 - 4) + 2azw; + 2’[1)1(11)% + wf)
; ) + 2 , 77)
dy 2wy (wi +y2 +4)
dwy _ 2mwny - ar(w? - y* — 4) + 2a3y + 2wz (w3 + wi)
dy 2wy(w? +y* +4) '
From the Hamiltonian Hpa, i.e.,
w_% + wi +tayw +axy +as
Hpma = SR = ho, (78)
4+wy+y
we can derive
w3 :i\/ho(wf+y2)+4ho—a1w1 - azy —az — w3, (79)
with ho being an arbitrary constant. Consequently, the third equation in (77) becomes
dwy  2hoy-a
4 _ 0y 2 , (80)
dy 2wy

which can be easily integrated, i.e.,
wy = £\/az(wo — y) + hoy?, (81)

with wo being an arbitrary constant. Finally, we are left with the first equation in (77), i.e.,

dw1 _ \/h()(’w% +4) —a 1w —awy — as

dy Vax(wo ~y) + hoy?

(82)

which can be solved by quadratures. However, if we solve it with respect to asz and derive once by y, then the following linear second-order
equation is obtained:

2
w

d d
2((11)0 —y)az + hoyz) dyzl + (az - 2h0y)dlyl + 2ho’u)1 —wo —ap =0. (83)
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B. Case (B)

The Hamiltonian

w§+wi+%+%+b3
Hpms = T (84)
4+ wy +w;
yields the Hamiltonian equations
. 2ws
w1 = — 5
w? +w?+4’
. 2wy
W2 = — 5 >
wi+ w3 +4
) (b2 + byw + (wi + wﬁ)wg)w‘f + (w% +4+ Zw%)blwg (85)
w3 = >
2 a2 + AV 2u32
2 2(w1 JANER 4?1 9t 2 2
s (b1 + bswi + (w3 + wi)wi )wy + (2(w3 +2) + wi ) bawy
Wy = .

(w? + w? +4)2wiw3

Before applying the reduction method,'® we introduce the following transformations of dependent variables, in order to render the next
calculations more amenable to computer algebraic software such as REDUCE, i.e.,

wy = \/E, wy = i\/a, (86)

and then choose r; as a new independent variable y that gives rise to the following three equations:

dri _ /riws

dy  /yws ’
dws (bz + b3y + (w} + wi)y)rf +(y+4+2n)by
—— = , (87)
dy 2yri/yri(r +y +4)ws
% B (bl + b3 + (w% + wf)rl)yz + (2()/+ 2) + rl)bzrl
dy = 2211 (r1 +y +4)wy ’
From the Hamiltonian Hps, i.e.,
w§+wﬁ+%+%+b3
Hpuis = : = ho, (88)
4+r+y
we can derive
ho(y+4+1)—bs—w?)yri—bar1 = b
s ‘i\J (ho(y r) —bs —w})yri — bary v (39)
yn
with ho being an arbitrary constant. Consequently, the third equation in (87) becomes
2
dws _ b2 + hoy” ) (90)
dy 2wsy?
which can be easily integrated, i.e.,
wy = oy | FYO = wo) ~ ba(1 +woy) 1)
y
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with wo being an arbitrary constant. Finally, we are left with the first equation in (87), i.e.,

, (92)

dri | b1+ (bs — bawo)ri — hori (11 + wo + 4)
dy by (1 +woy) + hoy(wo — ¥)

which can be solved by quadratures. However, if we solve it with respect to b; and derive once by y, then the following linear second-order
equation is obtained:

d2r1 (bzwo + ho’wo - 2]10)/)%: + 2h0r1 + bzwo - b3 + ho’LUo + 4]’10 (93)
dy? 2(b2(1 + woy) + hoy(wo - y)) ‘
C. Case (C)
The Hamiltonian
22
Mo - wiw? - wiw? + a(wr +wy) + ¢ “;ljl*wwzz +c3 “73&;21 o8
(w1 + wz)(2 +w — wz)
yields the Hamiltonian equations
_ waw3
' (w1 + ’u)z)(z +w; — ’wz)’
W = — 2wWiw4
. (w21+w22)(2+2w1—1gz)’ 2 2 22
iy = 2(w3 — wi)wiw; — 2W3W W, — WiW3 — WrWy a
(w1 +w2)2(2+w1 7w2)2 (2+U)1 7w2)2 (95)
2w —wy + 2 wf—2w1w2+w1+w§—2w2
+ C > + 2C3 3 2 ,
(2 + w1 —wy)?wiw, (2 + w1 — wy)?wiws
ion = -2 (w} — whwiw; — wiw] — 2w, + w ) wrw; B c
* (w1 +w2)?(2 + wy —wy)? (2 +w; —wy)?
, wy — 2wy +2 C3w%—2w1w2+2w1+w2—w2
(2 + w1 — wy)*wiw3 (2 +wi - wz)2wiw3
We apply the reduction method" by choosing w» as a new independent variable y that gives rise to the following three equations:
dU)1 _ 711)%’!1]3
dy s’
dws (w3 — wl)wiy? = 2wiwyy — wiwi - y*wi . wy +y
dy (w1 + ) (2 + w1 — y)y*ws 12(2+w1 - y)y*ws
_Quimy ) (wity) | (wi- 2wyt wn+y” - 2y)(wn+y) (%)
22+ wy — y)wylwy (2+ w1 - y)wiytwy ’
dwy _ wfy(ug —wj}) - wiw? —2w1w§y—w2y fa wi +y
dy (w1 +¥)(2 + w1 — y)way? 2(2 + wy — y)way?
_ i (wi=2y+2) (wi = 2wy + 2wy +y* = y)(wn +y)
2(2 +wi — y)wiwayt (2 + w1 — y)wiwyy®

From the Hamiltonian Hpic, i.e.,

wity

Z_
wiwi — y*wl + a1 (wr +y) + &2 w3 uljufyz
‘Hopuic = = ho, (97)

(wi+y)(2+w1-y)
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we can derive

w i\/wfwiy‘* —wy(w +y)(awry + c2) + c3(y? —w?) + ho(wr +y) (2 + w1 — y)wiy?
3= ,

: (98)
wyy
with hy being an arbitrary constant. Consequently, the third equation in (96) becomes
dwy 2wiy' —ay’ +ay+ 20+ 2o (1 - y)
- = ) 99)
dy 2wyy?
which can be easily integrated, i.e.,
2+ayP+ay+a+thyy(y-2
wy = Ny +ay @y 6+ hoy 0-2) (100)
y
with wo being an arbitrary constant. Finally, we are left with the first equation in (96), i.e.,
dw, \/wowf - aw} — i + ¢ + how} (w1 +2) (101)
dy VWwoey? + c1y? + cay + 3 + hoyd (y — 2)
which could be solved by quadratures. If we introduce new parameters in order to simplify this equation, i.e.,
c1 = Cy + 2hy, 2 =CCi, ¢ =CC, ho=HoCi, wo=WoCi, (102)
and the new dependent variable u = —w;, then Eq. (101) becomes
u'(y _du VGu+ G+ Hou* + Wou? + u3 (103)

=d7)’ B \/Czy+C3+Hoy4+W0y2+y3'

If we solve this first-order equation with respect to C3 and derive once by y, then a second-order equation is obtained. If we solve this second-
order equation with respect to Wy and derive once by y, then a third-order equation is obtained. Finally, if we solve this third-order equation
with respect to Hy and derive once by y, then the following fourth-order equation is obtained:

(’U) (x1uli3 + azu//z _ ‘x3u/1u/// _ “4u// + (Xsulllz _ 6“7””’ + ‘xg
ul) =~ , (104)
3(Co —uy) (uu’ = 2u" = 2u' — u"y) (u? - y?)
with
a1 = 9(u - y)[C(3u + 59) - 20y — 5uy” - y'],
@y = Co(36u + 54y + 36un’ — 54u"%y) - 36u°u"y + 72uu”y* + 18u%y’
+ 18 - 72u2u'y - 18uu'y2 + 36u'y3 - 18u2y - 72uy2,
az =3(u-y) [Cz(l?:uu' +15u'y + 5u+7y) — 1200y — 15u’y* — 'y’ + u® — 5Py - Suyz],
oy =18u'(u' + 1)[C2(u'2 1) —du?y+u?y + 30 -3y -+ 4uy],
as = 5(u+y)(u-y)*(C2 - wy),
a7 =u' (' +1)[Co(3uu’ +5uy — 5u-3y) - 2%u'y - 5u'y’ — 'y’ + i’ + 5y + 2uy2],
ag = 36u” (o — 1) ( + 1) (u—u'y).
It admits a fourth-dimensional Lie symmetry algebra 2A, generated by the following operators:
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M= (G )y + (G +wy)n), (105)
I = Zfi(—(cﬁyz)@ﬁ(u2+Cz)6u), (106)
I3 = %_y((uy—ZCZ—yz)By+ (2C2+u2—uy)8u), (107)
__ 1 2 2
Iy = 3(u—y) ((Cz 2uy -y )+ (U - Co + 2uy)8u). (108)

In order to follow the classification of the fourth-dimensional Lie symmetry algebra in Ref. 22 and the fourth-order equations, admitting them
as derived in Ref. 23, we choose another representation of the operators that generate 24,, i.e.,

1 1
X1 =T1-3CGI3, Xp=I Xs3= §r3 +Ty, Xy= §F3 —2I4. (109)

We thank Nicola Ciccoli for his invaluable help on this issue. A two-dimensional Abelian intransitive subalgebra of the Lie symmetry algebra
24, is that generated by X, and X5, and the corresponding canonical transformations”’ are

u+y P 1

yZS(uy—Cz)’ Tuy-3G

Then, Eq. (104) turns into the following fourth-order equation:

5
d'a ( & d“a) &
— =35 +5—— | (110)
2 ~d%i
SR T P
If we make the substitution
d’i
=R(%),
a5 (})
then Eq. (110) becomes the following second-order equation:
: ar
d—f = 3R+5ydl_2 Y (111)
dy dy ) 3R

which admits an eight-dimensional Lie symmetry algebra s/(3,R) and therefore is linearizable.”’ Indeed, the transformation Y = R*>,
U= %zRZ/ 3 yields

d’u
ﬁ =0= U=A1Y+A2,

with Ay, A; being arbitrary constants. Consequently, the general solution of Eq. (111) is

R= 2A57/24A,
(7 - 2407 241

which integrated twice yields the general solution of Eq. (110), i.e.,

(112)

A
o= A—Z\/ZAz(y2—2A1)+A35/+A4, (113)

1
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with A3z, A4 being arbitrary constants. Finally, the general solution of Eq. (104) is

with

Lo By Byt Byt + ysy ey iy
9A1(A2A1 +4A3))% + 6A2A3Asy + A2A2 - 243 °

(114)

B2 = ~3A1A3A4,

B1 = 9ATAIC, — 3ATA4 + 243 — ATAS + 36A3A,Cs,

Bo = ATA;(3CoA4 - 1),

ya = —18ATA] + 9ATA, + 3643,

Y3 = ~36A7As,

2 = 18A2A1Cy — 6A4A; + 7245C, — 36AZA%C, - 1841,
Y1 = —36A1CAs,

Yo = —18ATA}C) + 9A1AIC; — 64, CrA4 + A1 + 3645C5.

We would like to remark that if we solve the fourth-order equation (104) with respect to C; and derive once by y, then a fifth-order equation
is obtained, which admits an eight-dimensional Lie symmetry algebra and can be transformed into a third-order linearizable equation since
it admits a seven-dimensional Lie symmetry algebra, quite similar to the fourth-order equation that we discuss in detail here.

D. Case (D)

The Hamiltonian

wiws — wiw; + diwy + daws + d3 (wi + w3)

U = 115
DIID (w1 +w2) (2 + w1 —w2) (115)
yields the Hamiltonian equations
. waw3
wy = >
(w1 +w2)(2 +wy —ws)
W = — AT TN
27 (wy +w2) (2 +wy —ws)’
w3 = (Z(wlwg(wg - wi) — 2w wwh — wiwd - wfw%) (116)
(w1 +w2)?(2 +wy —wy)?
+ dl(wf +ws — 2w,) + 2dhws(wr + 1) + 2d3(w§ —w + 2wwi - 211}111]2)),
. 1 2 2 2 2 2 2 2 2
Wy = 2(wiwz (wy — w3) + 2wiwrwy + wywy + wiw
4 (w1+w2)2(2+w1—w2)2( ( jw2 (wy 3) 1W2Wy 2 Wy 1 3)
+2dyw (1 - wy) - dz(wf + w% +2wy) — 2d3(w§ - w% + wawz + Zwlwz)),
We apply the reduction method' by choosing w» as a new independent variable y that gives rise to the following three equations:
dw, _ 7wfw3
dy Yrws’
dws = - 5 ! (Z(wlyz(w§ - wi) - 2w1yw§ —yzwi - wfw%)
dy  2wyy(wr+y)(2+wi-y) o
+ dl(wf +y2 -2y) +2dpy(wy + 1) + 2d3(y2 - wf + 2w1y2 - 2w1y)), (117)
dw, 1 2, 2 2 2 2 2 2 2
=- 2(wiy(wy —w3) + 2wiywy + ¥y wy + wiw
dy 2w4y2(w1+y)(2+w17y)( ( (i ) 1YWa Ty W ! 3)
+2dw (1-y) - dz(wf +y2 +2wy) — 2d3(y2 - wf + 2wfy+ Zwly)).
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From the Hamiltonian Hpup, i.e.,

wiws - y*wi + diw + day + ds(wi +y°) _
(w1 +y)(2+ w1 -y)

Hpumw = ho, (118)

we can derive

B i\/(ho - d3)wf + (2]’10 - dl)wl + (2h0 - dz)y - (d3 + ho)y2 + wiyz
3= >

w (119)
w1
with ho being an arbitrary constant. Consequently, the third equation in (117) becomes
dws _ d2—2h0+2(d3+h0)y—2wiy) (120)
dy 2way?
which can be easily integrated, i.e.,
dy —2h ds + ho)y?
wy = Y (2= 2h0)y + (ds + ho)y” + wo, (121)
y
with wo being an arbitrary constant. Let us introduce new parameters that simplify the formula for w3 and wy, i.e.,
Dy =2hy — di, D = d, — 2ho, D3 =ds + hy, (122)

and consequently,

2hy — D3)w? + Dywy + /D2y + D3y? +
wy =2 Yo DJwT D vwn /Doy Day? o (123)

w1 y

Finally, we are left with the first equation in (117), i.e.,

d'UJl _ _wl\/(2ho - Ds)w% + D1w1 + Wy

dy AV D3y2 + Dzy + Wy

(124)

which can be solved by quadratures. However, if we solve it with respect to D; and derive once by y, then the following second-order equation
is obtained:

d2w1 2 2 dw; :
2y%w, (Dsy* + D -3y*(Dsy* +D ==
y w1 (Dsy” + Day + wo) a7 y"(Dsy” + Day +wo) 4
+(4Dsy* + 3Dy + ZwO)ywl% +(Ds - 2ho)w! + wow? = 0, (125)
y

which admits a three-dimensional symmetry algebra sl(2,R), unless D3 = 2ho, in which case it admits an eight-dimensional Lie symmetry
algebra sl(3,R) and thus is linearizable. We now use the general method described in Ref. 21 and that may be applied to any second-order
ordinary differential equation that admits a Lie symmetry algebra sl(2, R). If we solve Eq. (125) with respect to hg and derive once with respect
to y, then we obtain the following third-order equation:
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d3w1
3

2)’“’% 2
PO (Dy? + D
3 (Dsy” + Day +wo) a

dw1 ’
= -4y(D3y* +D ==
y(Dsy” + 2y+w0)( dy)
dw z dw
+ 2w, (4Dsy” +3D2y+2w0)(d—y1) —2(2D3y+Dz)wfd—y1
dzwl

dyr’

+ (4yw1 (Dsy* + Dyy + wo)% — (4Dsy* + 3D,y + 2wo)wf) (126)
y

which admits a seven-dimensional Lie symmetry algebra and therefore is linearizable. Indeed, the new dependent and independent variables,
ie.,

1 2D3y + Dz

W =-—, j= (127)
1 w y y
transform Eq. (126) into the linear equation
d3ﬁ}1 _ 3(4D3w0 - D% - 211}05/) dzﬁ}] (128)
dj*  2(woj? + (4Dswo - D3)(Ds - 7)) dj?
E. Case (E)
The Hamiltonian
2 2
w35+ wy + ¢
Hpme = - (129)
4+ wp +w;
is a subcase of Hamiltonian #Hpya, with a; = a; = 0 and a3 = c. Consequently, its corresponding Hamiltonian equations, i.e.,
Wy = 2’[1)3
' w? +wl+4’
W = ZU)4
*" w? +w?+4
iy = 2t wl +wi) (130)
T (w+w?+4)?°
2wy (c+wi +wl)
Wy = 2 2 2
(wi + w3 +4)
can be reduced to the following linear equation in w = w (w2 ):
dzwl dw1
2wo —W3)——a — Wy~ +wy =0 131
(2wo —w3) du? 23, T (131)
with
w3 =i\/h0(wf+w§) +4ho — ¢ — w? (132)
and
Wy = i\/ho(w§72wo). (133)
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VIl. DARBOUX IV

Four superintegrable systems were determined in Ref. 13, where the problem of superintegrability for the Hamiltonian
2. 2
. +p
Hpry = —sin®(2u)— P Pv_ 134
P ( )2 cos(2u) +a (134)
was addressed.

A. Case (A)

The Hamiltonian

w3+ wi +an +az(iz + %) + as(wi +w3)
2 wy w;

Hprva = —4wiw 135
prva 12 (a+2)w? + (a-2)w? (135)
yields the Hamiltonian equations
. Swfwgwg
wy = — ,
a(w? +w3) +2(wi —w3)
. Bwywywy
W= o+ wd) + 2wk —w?)
a(w] +w3) +2(wi - w3)
8
w; = Wit 2(mg(wf +w3)? + aws (w3 +wy) + mws(a—2) - 4ay (136)
(a(w} +w}) +2(w} ~w}))

+ 2u3(w‘11 —wh - Zw%wﬁ) - 2w§(w§ + wﬁ)),
Swfwz
2
(a(wf +w?) +2(w? - w%))

+ 2a3(w) - wy + 2wiw)) + 2w (w3 +wy)).

Wy = (aa;(w%+w§)2+uwf(w§+wi)+a1wf(a+2)+4a2

In order to simplify the calculations, we make the following substitutions of the four dependent variables:

wi =1, w2=+/r, ws=+/13, wWwi=+/Ta (137)

and consequently, system (136) is transformed into the following system:

. 167‘1\/7'17‘37'2
n=- >
a(h + rz) + 2(?’1 - T’z)
_ 167’2\/7'21’41‘1
T oa(n+n)+2(n-n)
. 16+/r11312 2
73 = aaz(r +nr2) +ara(r3s +r4) +aira(a—2) —4a
’ (a(r1+r2)+2(r1—1’2))2( ) (s ) vain(a=2) - dar (138)
+ 2a3(rf - r% —2r112) = 2r2(r3 + r4)),
. 16y/raran (aa (r +r)2++ar(r +r4) +arri(a+2) +4a
4= 3(r1+12 1(r3 + 14 11 2
(a(r + 1) +2(n -n))?
+ 2a3(rf - r% +2r11r2) + 2r1(r3 + r4)).
We apply the reduction method'® by choosing r; as a new independent variable y that gives rise to the following three equations:
dr, B rirs
dy yra ’
drs V1rs 2
—-— =- + + +14) + -2)-4
&y = nmaln ) 20—y (00T o) e e 159)
+ 2a3(rf —yz =2ry) - 2y(r3 + r4)),
df‘4 2
— = + + +14) + +2)+4
& "yt 1) 2200 =) (aag(rl y) +ari(rs+ra) +ain(a+2) +4ay
+2a3(r} = y* +2r1y) + 21 (r3 + 13)).
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From the Hamiltonian Hpyva, i.e.,

r3 +r4+a; +612(% + l) +a3(r1 +y)

y
(a+2)r+(a-2)y = ho. (140)

Hprva = —4r1y

we can derive

_ dnny+ ((a+2)r1+ (a=2)y)ho + darriy + 4ax(r1 + y) + dazriy(r +y)

141
4ryy (141)
with hg being an arbitrary constant. Consequently, the third equation in (139) becomes
dry _ (a+2)ho + 4az 74a3y2’ (142)
dy 4y?
which can be easily integrated, i.e.,
4ryy - 2)hy — 4a; — 4azy*
- roy — (a+2)ho — 4a, — 4azy , (143)
4y
with rg being an arbitrary constant. Finally, we are left with the first equation in (139), i.e.,
dri | (2-a)ho —4as — 4ri (a1 + 1) - dasr} (144)
dy a 7(a + 2)]’10 —4a; — 4(13)/2 + 41’0)/

which could be easily solved by quadratures. If we introduce a new parameter b, = —(a + 2)ho — 4a, such that a, = —((a + 2)ho + b2) /4 and
then solve the first-order equation (144) with respect to a; and derive once by y, then a second-order equation is obtained. If we solve this
second-order equation with respect to /g and derive once by y, then the following linear third-order equation is obtained:

dzi’l

B 0. (145)

d3
(by + 4roy - 4a3yz)$7’31 —6(2a3y — )

B. Case (B)

The Hamiltonian

.2 2 2 b, bs
sin (Zwl)(w3 + Wi+ Gtoy * Coshz(w)) + by

=— 146
Honvs 2 cos(2w) +a (146)
can be written in the following equivalent form with sinh and cosh replaced by exp:
sin® (2w )(w§ +ws + (ngiiiwz)z + (ew:iiw)z) + b
Hprve = — (147)
2 cos(2wi) +a
We apply the reduction method'® by choosing r, = ¢ as a new independent variable y that gives rise to the following three equations:
dwp _ ws
dy  yws’
dws _ N
dy  sin(2wi)ws(y* —1)2[a + 2 cos(2w1)]’ (148)
% B 4)/2 (bz + b3)y8 + 4(b2 - b3)y6 + 6(52 + b3)y4 + 4(b2 - b3)y2 + bz + b3]
&y wily —1)° !
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where
N= 7[4(w§ +w3)y® +16(by + b3)y® — 8(w3 + wh — 4by +4b3)y* +16(by + b3)y” + 4(w3 + wi)] cos (2w )?
- Za[(wg +w3)y® +4(by + b3)y° — 2(w3 + wi — 4b; — 4bs )yt + 4(by + bs)y: + w3 + wﬂ cos(2wy)
+[—2(w3 +wi)y® = 8(ba +b3)y° + 4(w3 +wi — 4by + 4b3)y" — 8(by + bs)y’ - 2(w3 +wi) ] sin (2w )’

—2b1y® +4byy* - 2b). (149)

We can solve the third equation with respect to ws, i.e.,

= im\/&’ﬁsa)g —by) (58 +1) = 3375(bs + by) (5* + 1)y? — 4(625b, + 81b3) (3 — 1)wy. (150)

Then, the first equation in (148) yields

d
ws :yw4dﬂyl, (151)

which replaced into the second equation in (148) gives rise to a second-order equation in w; that we solve with respect to b;. Then, we derive
once with respect to y and the following third-order equation is obtained (w1 = u):

—— =—6cot2u) - ——F—< -
dy? ( )dy 2yt -1) Q(y) dy? dy

6 cot(2u) pl(y)(@)z+ 3. Pay)du
yo'-1) Q) \dy ) (4 -1)’ Q) &y’

3 2 2 3
d’u du d“u 3 Pl(y)g+4(du)

(152)
where

Py = [(2500b; + 324bs )wo + 3375(by — b3)]y"> — [(7500b2 + 972b3 )wo + 16 875(by — b3 ) |y* — 20250(b, + bs)y°
+ [(7500b2 + 97253)1[}0 - 10 125(52 - 53)])/4 - 6750(b2 + bg)yz - (2500h2 + 324b3)’LUo - 3375(52 = b}), (153)

P, = [(2500b; + 324b3 )wo + 3375(by — b3)]y"® = [(10 000b, + 1296b3 )wo — 20 250(by — b3)]y*
~33750(by + b3 )y'® + [(15000b, + 1944b3)wo — 47 250(b, — bs)]y* — 67 500(b; + bs)y*
- [(10 000b2 + 1296b3)w0 —47 250(b2 - b3)]y4 - 6750(b2 + h3 )y2 + (2500(72 + 324b3)w0 + 3375(b2 - b3), (154)

Q = [(2500b; + 324b3 )wo + 3375(by — b3 )]y + 3375(by + b3 )y® — (50008, + 648b3)wey*
+3375(by + b3)y” + (2500b, + 324b3 )wy + 3375(bs — bs). (155)

Equation (152) is linearizable since it admits a seven-dimensional Lie symmetry algebra. In fact, the two-dimensional Abelian intransitive
subalgebra generated by the two operators

2 1

- CO.S( u) us . au (156)

2 sin(2u) sin(2u)

when put into the canonical form 0;, 70 yields the new dependent and independent variables, i.e.,
1 ~Bay* — By +4B3y* + 96Woy’

it=—-=cos(2u), y= 4 2 4 A (157)

2 6y?
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where we have introduced new constants B;, B3, Wy such that

Bz - B3 - 12W0 Bz + 33 + 12W() 3375(33 + 18W0)
by = , 3= , Wy = . (158)
40500 40500 4(353B, — 272B;3 — 3264W,)
Then, Eq. (152) transforms into the linear equation
&u 9d B + 48B3 Wy + 1152W¢ — 72Woj (159)

dj® 2 dj? B2Bs + 24(B2 + 2B2) Wy + 2304B; W2 + 27 648 W7 — 3(B2 + 48B3 Wy + 1152W2)j + 108 Woj?

C. Case (C)

The original Hamiltonian

2 2 31 [ 1 _ 1
w3 + Wy + cos? (wy) + cosh? (w,) + C3(sin2(w1) sinhz(wz))
Hprve =~  R—— (160)
sinh? (2w,) sin? (2w, )

can be written in the following equivalent form with sinh and cosh replaced by exp:

2 2 o o 1 _ 1
w3 + Wy + cos? (wy) + (e1112+e—1uz )z + C?’(sinz(wl) (E’wz_ef‘(uz )z)
2 2
Hpive = - e ) . (161)

+ =
( 2wy _ 2wy )Z sin? (zwl)
2

Before applying the reduction method,'® we introduce the following transformations of dependent variables, in order to render the next
calculations more amenable to computer algebraic software such as REDUCE and MAPLE, i.e,,

wi = arccosr1, wy = logra, w3 = /73, ws = /14, (162)

and then choose r; as a new independent variable y that gives rise to the following three equations:

dr 1 rs(1-r7)

&y no
drs _ __ 2YmNs (163)
dy yW1- rlz\/ﬁrlD’
dry 8Ny
dy  (F-1D’
where
N; = 16y4(c1 —c)(a+ 2)r14 +[(14c1 + 8c2 + 10c3)a + 36¢1 — 16¢;, — ZOC3]y4
H20- 1’0+ )7 1) (a- 2+ 20- 1)+ 1D + 1) (a-2)m
+ 8y2((cz —c3)(a—2)y" + ((~4c1 — 22 — 2c3)a — 8y + 42 + 463)y” + (c2 — ¢3) (a — 2))]1’12
2 2
=D (1) (a-2)n- (-1’ (D)’ + 1) (a-2)n
+(a-a)a-2)"-4(a-a)a-2)"-4(a-c)(a-2)y" +(a-c)a-2), (164)
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Ny = 8)/2[()/4 + 1)r3 + (y4 + 1)r4 + 2y2(cz - C3)](a + 2)1’14
+8 [-(r + 1) (s +ra) + (1 —3)y' + (-2 +263)y +c1 — 3] (a + 2)r?
+(c2—c3)(a- 2)y8 +[(~8c1 —4c2 —4cz)a—16¢ + 8¢ + SC3]y6 +6(ca—c3)(a-2)y
+[(~8c1 — 4c; — 4c3)a — 16¢; + 8¢, + 8c3 ]y + (c2 — ¢3) (a - 2), (165)

2
D=-16*(a+2)n* +16y* (a+2)r* + (y4 - 1) (a-2). (166)
From the Hamiltonian Hpyvc, i.e.,

[4()/4 - 1)2(r3 +r4) + 16y2((cz - C3)(y4 + 1) -2(e2 + C3)y2)]r‘f - 40 (y4 - 1)2

7[4();4 - 1)2(r3 +14) —4(c1 —3)()° +1) +16(c2 — c3)y* (" +1) +8(c1 — 42 - 5ca)y4}rf

H = = ho, 167
e (' - 1) (a-2) - 16y*(a+2)r(n* - 1) ’ (167
we can derive
c 4y%c 4rty* +y' —6y* + 1)c a-2)h 4(a + 2)hoy*
r3:—r4——;— 2)’22+(1)/2)’23/ )3+(2 2)0_(4)2}/’ (168)
1’1 ()’ +1) (,V _1) (1’1—1) 41‘1(7’1—1) ()’ _1)
with ho being an arbitrary constant. Consequently, the third equation in (163) becomes
DY+ 1) - (0 + 1) + 2k (0 + 1 2
dre g =D+ Dle = (7 + 1)+ 20y’ (@ +2) (169)
dy -1
which can be easily integrated, i.e.,
G+ -y, Yy S+l
14 =4 (y2+ 1)2 +4c3 (y2—1)2 —2(!1-!—2)]10(}/4¥71)2 + wo, (170)
with w being an arbitrary constant. If we introduce new constants Cs, C3, C1, A as
4]’10 — W — C3 - 4C2 + Zaho 72uh0 - C1 + 4ho 4C2 + 9C3 + wo — A- C1
=C+c, 3= , €1 = , a= , (171)
8 8 4hy
then we are left with the following simplified expression of the first equation in (163):
dn y-1 8Csrt - Art - Cy (172)
dy - 2y 2C3y8 + 8Cyy0 + 4woy* + 8Cary? + 2G5 ’

which could be solved by quadratures. However, if we solve it with respect to A and derive once by y, then a second-order equation is obtained
that admits a three-dimensional Lie symmetry algebra sl(2,R), and as a particular case, if C, is equal to zero, then it is linearizable since it
admits an eight-dimensional Lie symmetry algebra sI(3,RR). If we solve this second-order equation with respect to C; and derive once by y,
then the following third-order equation is obtained (r; = u):
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&

Fu 3dudu 3[Cy” - (5Cs + 2w0)y* —24Co)° - (3Cs + 6wn)y' ~8Cy” - G [ dPu 1 dPu)’
dy3 u dy dy? y(¥* = 1)(Csy® +4Cay® + 2woy* +4Cay? + C3)

Cudydy dy
3[Csy"® = (6Cs + 2wo)y"* = 40Cyy" = 2(7Cs + 10wp)y* - 80Coy° — 2(7C5 + 5wy )y* — 8Cay* + C3] d
+

u
-, 173
2(y4 = 1)2(C3y® +4Co)° + 2woy* + 4Cop? + C3) dy (173)

which is linearizable since it admits a seven-dimensional Lie symmetry algebra. In fact, the two-dimensional Abelian intransitive subalgebra
generated by the two operators

_ Cs +2Cop* + Coyt
W', T IV, (174)
uy
when put into the canonical form 0y, 0; yield the new dependent and independent variables, i.e.,
2 2 4
C3+2Cy +C
ot geomies
which transform Eq. (173) into the linear equation
i 35 d%i
7_1/{ = 4)}- 7.”, (176)
P -2 dj?
with w? = 2(2C§ + C§ - Gswy).
D. Case (D)
The Hamiltonian
2 2 1 1
w3 + wj +d(ﬁ + F)
Hprvp = —4wiws ! . (177)
(a+2)w? + (a-2)w?
is a subcase of Hamiltonian #prva, with a1 = a3 = 0 and a, = d. Consequently, its corresponding Hamiltonian equations, i.e.,
. 8w%w§w3
wy = — s
! a(w? +w?) + 2(w? —w3)
. Swiwiws
Wz = - 2. .2 22y
a(wi +w3) +2(wi - w3)
8w w (178)
. 1w 2, 2 2 2, 2 2
w3 = . . . . 2(awz(w3+w4)—4d—2w2(w3+w4)),
(a(w? +w?) 4—22(w1 -w?))
8
Wy = Wi 5 (aw? (w3 +wi) +4d + 2w} (w3 +wy)),
(a(w} +w3) +2(w} —w3))

can be reduced to the following system of three equations, after making the substitutions (137) and choosing r; as a new independent

variable y:
dy Voyr’
i—’; =- rl\/y_m(a(ﬁﬁ_'_ 21 =) (ay(rs + 1) —4d - 2y(r3 + 11)), (179)
i—’; = aln +y)1+2(r1 =) (ari(rs +14) +4d + 211 (13 + 14)).
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Then,
_ _4nny+ ((a+2)r1+ (a=2)y)ho +4d(r1 +y) (180)
4ry
and
4roy — 2 -4
Y roy — (a+2)ho d) (181)
4y
and the first equation in (179) becomes
dry _ (2-a)hy —4d — 4r119) (182)
dy —(a+2)ho—4 d+4rgy’

which could be easily solved by quadratures. However, if we make the simplifying substitution d = D — (a + 2)ho/4, solve the first-order
equation (182) with respect to ho, and derive once with respect to y, then the following linear second-order equation is obtained:

d2T1
2 -D)— —_ =0. 183
(roy )dyz +10 dy +1o (183)

VIIl. CONCLUSIONS

In this paper, 19 classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries
leading to linearity. This fulfills the conjecture that we made in Ref. 1, namely that all classical superintegrable systems in two-dimensional
space hide linearity regardless of the separation of variables of the corresponding Hamilton-Jacobi equation and of the order of the first
integrals.

In some cases, we have used the Hamiltonian in order to derive one of the two momenta as a function of the other momentum and
coordinates. None of the other two known first integrals have been used. In other cases, one of the equations of the Hamiltonian system could
be integrated by quadrature, and that was all we needed in order to then find the hidden symmetries leading to the linear equation of either
second or third order.

As we stated in Ref. 1, it remains an open-problem to see if linear equations are hidden in (maximally) superintegrable systems in N > 2
dimensions, regardless of the separability of the corresponding Hamilton-Jacobi equation and the degree of the known first integrals.
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