Avaliação do Crescimento de Cultivares Clonais de Coffea canephora Irrigado e em Sequeiro

Iricelia Vieira Cardoso¹, Aureny Maria Pereira Lunz², Marilene Santos de Lima³, Valéria Lopes da Costa⁴, Lauro Saraiva Lessa⁵ e Victor da Silva Barbosa⁶

¹Graduanda em Engenharia Agronômica, Universidade Federal do Acre, bolsista do Pibic/CNPq na Embrapa Acre, Rio Branco, AC.
²Engenheira-agrônoma, doutora em Fitotecnia, pesquisadora da Embrapa Acre, Rio Branco, AC.
³Engenheira-agrônoma, doutora em Fitotecnia, bolsista do Consórcio Pesquisa Café/Funape na Embrapa Acre, Rio Branco, AC.
⁴Engenheira-agrônoma, bolsista da Capes na Universidade Federal do Acre, Rio Branco, AC.
⁵Engenheiro-agrônomo, doutor em Fitotecnia, analista da Embrapa Acre, Rio Branco, AC.
⁶Graduando em Ciências Biológicas, Instituto Federal do Acre, bolsista do Pibic/CNPq na Embrapa Acre, Rio Branco, AC.

Resumo – O objetivo deste trabalho foi avaliar o crescimento vegetativo de cultivares clonais de *Coffea canephora* no sistema irrigado e não irrigado, nos períodos de estiagem e das chuvas, em Rio Branco, Acre. O experimento foi conduzido na Embrapa Acre. O delineamento experimental foi em blocos casualizados, em parcelas subsubdivididas. As variáveis avaliadas foram: altura do ramo ortotrópico (cm), diâmetro da copa (cm), comprimento e número de nós dos ramos plagiotrópicos. Houve interação significativa (p ≤ 0,05) entre os períodos de avaliação (estiagem e chuvoso) e sistemas de cultivo em todas as características avaliadas. Ao desdobrar a interação, verificaram-se maior incremento em altura de ramo ortotrópico, comprimento e número de nós do ramo plagiotrópico, no período chuvoso. Na estação seca, não foi observada diferença significativa entre os clones, no entanto, a parcela irrigada apresentou o maior incremento no comprimento e número de nós dos ramos plagiotrópicos. Já no período das chuvas, o clone BRS 3213 apresentou o maior incremento em altura. No mesmo período não foi observada diferença significativa entre os sistemas de cultivo. Conclui-se que a irrigação propicia um maior desenvolvimento dos ramos plagiotrópicos nas cultivares estudadas, no período de estiagem amazônica.

Termos para indexação: Coffea canephora, irrigação, sequeiro.

Introdução

Na família Rubiaceae as espécies *Coffea arabica* L. e *Coffea canephora* Pierre ex A. Froehner são as de maior importância dentro do gênero. Na espécie *C. canephora* tem-se o grupo botânico Conilon, que é caracterizado por apresentar porte menor, maior tolerância ao déficit hídrico e menor resistência à ferrugem, e o grupo botânico Robusta, que possui maior resistência à ferrugem e nematoide, maior potencial para bebidas finas, menor resistência ao déficit hídrico e porte elevado (Ferrão et al., 2020).

Recentemente, a Embrapa lançou dez cultivares híbridas de *Coffea canephora* adaptadas às condições da Amazônia Sul-Ocidental brasileira, denominadas Robustas Amazônicos. Esses clones são originários do cruzamento dessas variedades botânicas, resultando em plantas com características mais desejáveis como porte intermediário, tolerância à ferrugem (*Hemileia vastatrix* L.) e ao nematoide (*Meloidogyne incognita* – El2) e maior potencial para qualidade de bebida (Espindula et al., 2019). Tais clones são altamente produtivos, desde que aplicadas as práticas tecnológicas recomendadas para a cultura.

Para a obtenção de cafezais altamente produtivos é necessário considerar três pilares básicos: material genético, condições edafoclimáticas e manejo da cultura. Entre as práticas de manejo utilizadas, a irrigação é de grande importância em regiões onde ocorre déficit hídrico. Apesar de ser elevada, a precipitação pluviométrica na região amazônica é desuniforme ao longo do ano, especialmente entre os meses de maio a setembro. O déficit hídrico no solo nesse período, principalmente em agosto/setembro, é maior que 200 mm, tornando-se a principal restrição ao cultivo de café da espécie *C. canephora* em alguns municípios do estado do Acre (Amaral et al., 2018). Mesmo sendo uma cultura importante para o Acre, inexistem informações a respeito do comportamento de cafeeiros nas condições edafoclimáticas do estado.

Plantas de cafeeiros submetidas a déficit hídrico (sequeiro) tiveram retardamento na altura e redução de área foliar com decréscimo da transpiração, apresentando menor coeficiente de transpiração quando comparadas às plantas sem déficit hídrico (Ribeiro et al., 2021). Dessa forma, o gerenciamento adequado da irrigação se apresenta como uma tecnologia indispensável, suprindo as necessidades hídricas e fornecendo condição menos estressante por déficit hídrico (Scheel et al., 2019). Ademais, o manejo inadequado das lâminas de água por meio dos sistemas de irrigação, tanto em excesso ou deficiência, contribui para que a planta não consiga expressar sua máxima capacidade produtiva (Bispo et al., 2017).

Diante do exposto, a pesquisa teve como objetivo avaliar o crescimento vegetativo de cultivares clonais de *C. canephora* em sistema irrigado e não irrigado, nos períodos de déficit hídrico e de chuvas, em Rio Branco, Acre.

Material e métodos

O experimento foi conduzido na Embrapa Acre, situada em Rio Branco, AC, a 10°01'37.8" S, 67°41'14.4" O e a 150 m de altitude. O clima é Am de acordo com Köppen-Geiger, temperatura média anual de 26,1 °C, precipitação pluvial média anual de 1.940 mm e déficit hídrico anual de 180 mm (Amaral et al., 2018). O solo da área experimental é um Argissolo Vermelho-Amarelo. A implantação do experimento ocorreu em janeiro de 2020, sendo as plantas conduzidas com duas hastes.

O delineamento utilizado foi de blocos casualizados (DBC), em esquema de parcelas subsubdivididas, sendo representadas pelos períodos de estiagem amazônica (julho a outubro/2021) e de chuvas (novembro/2021 a abril/2022). As subparcelas foram o sistema de cultivo (irrigado e não irrigado) e as subsubparcelas as cultivares de café Canéfora (BRS 2314, BRS 2299, BRS 3210, BRS 3213, BRS 3220, BRS 1216), totalizando 24 tratamentos com três repetições e cinco plantas por subsubparcelas. O espaçamento adotado foi de 3 m x 1 m (3.333 plantas por hectare) e o sistema de irrigação implantado foi por gotejamento, mantendo-se a tensão do solo em 40 kPa, com gotejadores autocompensantes, espaçados a 50 cm e vazão de 7,6 L h⁻¹.

Os tratos culturais foram realizados de acordo com as recomendações para a cultura (Espindula et al., 2015), com adubações via fertirrigação.

Em cada clone, foram selecionadas duas plantas, de forma aleatória, para avaliações do crescimento vegetativo, as quais foram mensuradas até o fim do período de estudo. As características avaliadas foram: altura do ramo ortotrópico (cm), diâmetro da copa (cm), comprimento dos ramos plagiotrópicos (cm) e número de nós do ramo plagiotrópico. A altura da planta e o diâmetro da copa foram medidos com trena, sendo esse último no sentido perpendicular à linha de plantio. Selecionou-se um

ramo plagiotrópico por planta com elevada atividade de crescimento, localizado no terço superior do cafeeiro, para mensuração de seu comprimento e do número de nós, cujos registros foram efetuados, respectivamente, com uma régua milimétrica e pela contagem direta. Essas avaliações foram realizadas mensalmente, no período de julho de 2021 a abril de 2022.

Os dados obtidos foram submetidos à verificação da presença de valores discrepantes, pelo teste de Grubbs, da normalidade dos resíduos, pelo teste de Shapiro-Wilk, e da homogeneidade das variâncias, pelo teste de Bartlett. Posteriormente, submetidos à análise de variância (Anova) e comparação de médias pelo teste de Tukey a 5% de significância.

Resultados e discussão

Houve interação significativa (p < 0,05) entre os períodos de avaliação (estiagem e chuvoso) e sistema de cultivo (irrigado e não irrigado) em todas as características avaliadas.

Ao desdobrar a interação entre os períodos de avaliação (estiagem e chuvoso) e sistema de cultivo (irrigado e não irrigado), observou-se maior incremento em altura no ramo ortotrópico, comprimento e número de nós do ramo plagiotrópico, no período chuvoso (Tabela 1).

Plantas de cafeeiro irrigadas, no período da seca, apresentaram maiores incrementos em comprimento (30,60 cm) e número de nós (7,61 cm) no ramo plagiotrópico.

A irrigação do cafeeiro produz efeitos significativos sobre as características altura de plantas, diâmetro da copa, diâmetro do caule, comprimento do ramo plagiotrópico e número de entrenós no ramo ortotrópico, proporcionando maior crescimento das plantas (Gottardo, 2016). Alves et al. (2000) também constataram que a irrigação do cafeeiro produziu incremento no diâmetro do caule e da copa e comprimento do primeiro ramo plagiotrópico.

Não houve efeito significativo (p > 0,05) para as características de altura de ramo ortotrópico, diâmetro da copa e comprimento do ramo plagiotrópico, exceto para o número de nós do ramo plagiotrópico, quando as plantas foram avaliadas no período de chuvas (Tabela 1). Isso indica uma condição homogênea, em que todas as plantas apresentaram o mesmo grau de desenvolvimento nos dois sistemas de cultivo: irrigado e não irrigado. Resultado semelhante foi observado por Comério et al. (2020) ao avaliar o desenvolvimento vegetativo do cafeeiro Conilon, não sendo constatado efeito significativo entre os tratamentos no número de nós do ramo plagiotrópico, de entrenós no ramo ortotrópico e de pares de ramos plagiotrópicos.

Ainda no período chuvoso, verificou-se diferença estatística entre as cultivares avaliadas apenas para altura do ramo ortotrópico, sendo observado o maior incremento na BRS 3213 (54,58 cm), diferindo significativamente da BRS 3220 (40,51 cm), que apresentou menor incremento na altura do ramo ortotrópico.

Tabela 1. Incremento em altura, diâmetro da copa, comprimento e número de nós dos ramos plagiotrópicos de plantas de seis cultivares clonais de *Coffea canephora* irrigado e não irrigado no período de déficit hídrico e chuvoso. Rio Branco, Acre, 2021.

Tratamento	Altura do ramo ortotrópico (cm)		Diâmetro da copa (cm)		Comprimento do ramo plagiotrópico (cm)		Número de nós no ramo plagiotrópico	
	Seca	Chuva	Seca	Chuva	Seca	Chuva	Seca	Chuva
Irrigado	23,11 aB	42,31 aA	25,69 aA	40,69 aA	30,60 aB	50,75 aA	7,61 aB	8,78 bA
Sem irrigação	12,67 aB	51,89 aA	17,54 aB	45,50 aA	16,61 bB	58,32 aA	4,08 bB	9,92 aA
Cultivar								
BRS 3213	18,83 a	54,58 a	24,00 a	39,75 a	19,35 a	53,79 a	5,42 a	8,75 a
BRS 3210	19,50 a	52,00 ab	16,91 a	36,08 a	24,28 a	53,50 a	6,16 a	9,16 a
BRS 2299	16,58 a	44,75 ab	24,25 a	35,33 a	22,10 a	55,50 a	5,75 a	10,83 a
BRS 1216	16,00 a	46,25 ab	23,50 a	48,92 a	22,76 a	52,88 a	5,58 a	8,33 a
BRS 2314	17,58 a	44,50 ab	16,08 a	51,33 a	25,90 a	55,13 a	6,42 a	8,67 a
BRS 3220	18,83 a	40,51 b	24,96 a	47,16 a	27,25 a	56,42 a	6,50 a	10,33 a
Média	17,88 B	47,10 A	21,62 A	43,09 A	23,60 B	54,53 A	5,97 B	9,35 A
CVa (%) ⁽¹⁾	63,42		73,69		9,89		12,21	
CVb (%)(2)	37,23		51,61		15,55		4,07	
CVc (%)(3)	16,77		40,39		19,61		17,23	

⁽¹)CVa = Coeficiente de variação associado às parcelas (período da seca e chuvoso). (²)CVb = Coeficiente de variação associado às subparcelas (irrigado e sem irrigação). (³)CVc = Coeficiente de variação associado às subsubparcelas (cultivares clonais) e interações.

Médias seguidas de mesmas letras, minúsculas na coluna e maiúsculas na linha, não diferem entre si pelo teste de Tukey, a 5% de probabilidade.

Conclusões

As cultivares dos clones de *Coffea canephora* avaliadas apresentam maior desenvolvimento vegetativo, em ambos os sistemas de cultivo, no período das chuvas.

No período da seca, o sistema de cultivo irrigado proporciona maior comprimento e número de nós do ramo plagiotrópico dos clones.

A irrigação do cafeeiro propicia um maior desenvolvimento dos ramos plagiotrópicos no período de estiagem amazônica, sem distinção entre os clones.

Agradecimento

Os autores agradecem o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão da bolsa de iniciação científica, à equipe de fruticultura e a Embrapa Acre pela infraestrutura física para condução dos experimentos.

Referências

ALVES, M. E. B.; FARIA, M. A. de; GUIMARÃES, R. J.; MUNIZ, J. A.; SILVA, E. L. da. Crescimento do cafeeiro sob diferentes lâminas de irrigação e fertirrigação. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 4, n. 2, p. 219-225, jan. 2000. DOI: https://doi.org/10.1590/S1415-43662000000200015.

AMARAL, E. F. do; MARTORAN, O. L. G.; BERGO. C. L.; MORAES, J. R. da S. C. de; LUNZ, A. M. P.; SOUZA, L. P. de; ARAUJO, E. A. de; BARDALES, N. G.; LIMA, M. N. de. Condições agroclimáticas para subsidiar cultivos do café canéfora no Acre. In: BERGO, C. L.; BARDALES, N. G. (ed.) **Zoneamento edafoclimático para o cultivo do café canéfora (Coffea canephora) no Acre**. Brasília, DF: Embrapa, 2018. p. 49-88. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092480. Acesso em: 12 out. 2022.

BISPO, R. de C.; FLORES, D. S.; NETA, H. B. dos S.; VENTURA, K. M.; QUEIROZ, S. O. P. Manejo de irrigação para cultivo de pimentão em ambiente protegido. In: INOVAGRI INTERNATIONAL MEETING, 4., 2017, Fortaleza. **Anais...** Fortaleza: Associação Brasileira de Irrigação e Drenagem: Universidade Federal do Recôncavo da Bahia, 2017. 8 p.

COMÉRIO O. B.; RIOS, L. P.; BONOMO, R.; SOUZA, J. M. de; PARTELLI, F. L.; EFFEGEM, C. Desenvolvimento vegetativo do cafeeiro Conilon sob déficit hídrico controlado associado ao secamento parcial alternado. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 49., 2020, Jaboticabal. **Anais eletrônicos**... Jaboticabal: Associação Brasileira de Engenharia Agrícola, 2020. 4 p.

ESPINDULA, M. C.; PARTELLI, F. L.; DIAS, J. R. M.; MARCOLAN, A. L.; TEIXEIRA, A. L.; FERNANDES, S. R. Condução de cafeeiros *Coffea canephora*. In: MARCOLAN, A. L.; ESPINDULA, M. C. (ed.). **Café na Amazônia**. Brasília, DF: Embrapa, 2015. p. 217-236.

ESPINDULA, M. C.; TEIXEIRA, A. L.; ROCHA, R. B.; RAMALHO, A. R.; VIEIRA JUNIOR, J. R.; ALVES, E. A.; DIOCLECIANO, J. M.; LUNZ, A. M. P.; SOUZA, F. de F.; COSTA, J. N. M.; FERNANDES, C. de F. **Novas cultivares de cafeeiros** *Coffea canephora* para a Amazônia Ocidental brasileira: principais características. Porto Velho, RO: Embrapa Rondônia, 2019. 36 p. (Embrapa Rondônia. Comunicado técnico, 413). Disponível em: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1112645. Acesso em: 12 out. 2022.

FERRÃO, R. G.; FERRÃO, M. A. G.; VOLPI, P. S.; FONSECA, A. F. A. da; VERDIN FILHO, A. C.; COMÉRIO, M. Cultivares de cafés Conilon e Robusta. **Informe Agropecuário**, v. 41, n. 309, p. 17-25, mar. 2020.

GOTTARDO, R. D. **Desenvolvimento inicial de (***Coffea canephora***) submetidos à irrigação superficial e subsuperficial em Campos dos Goytacazes**. 2016. 96 f. Dissertação (Mestrado em Produção Vegetal) — Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro.

RIBEIRO, W. R.; RODRIGUES, R. R.; PIZETTA, S. C.; GONÇALVES, M. S.; GONÇALVES, D. da C.; SALES, R. A; MARTINS, C. A. da S.; REIS, E. F. dos. Fator crítico de disponibilidade hídrica para o crescimento inicial do cafeeiro Conilon. **Agrarian**, v. 14, n. 51, p. 71-81, ago. 2021. DOI: https://doi.org/10.30612/agrarian.v14i51.11391.

SCHEEL, G. L.; PAULI, E. D.; RAKOCEVIC, M.; BRUNS, R. E.; SCARMINIO, I. S. Environmental stress evaluation of *Coffea arabica* L. leaves from spectrophotometric fingerprints by PCA and OSC–PLS–DA. **Arabian Journal of Chemistry**, v. 12, n. 8, p. 4251-4257, Dec. 2019. DOI: https://doi.org/10.1016/j.arabjc.2016.05.014.