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Finite element analysis of square FRP-concrete-steel columns under 
eccentric compression 
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A B S T R A C T   

This paper presents the development of a finite element (FE) methodology for investigating the behavior of the 
FRP, concrete and steel components of a square FRP-concrete-steel composite (FCSC) columns with a rotated 
square inner steel tube. The FE models are developed in ABAQUS using the authors’ recently refined Concrete 
Damage Plasticity Model (CDPM) in conjunction with the FRP damage criteria available in the literature. The 
developed FE methodology is verified against the authors’ experimental test results involving columns with 
normal and rotated square inner steel tubes under eccentric loading, and the FE analysis results are used to 
explain the column behavior and failure. The most vulnerable region of the concrete column was confirmed to be 
the corner, where the sandwiched concrete was the most confined in the diagonal direction of the cross-section. 
Coupled with the findings that the GFRP hoop strain at the corner was typically less than one third of the rupture 
strain when the column suddenly failed, and that the corner hoop strains at column failure varied by up to 100% 
between specimens even though the same GFRP material was used, it indicates the possibility that rather than the 
FRP rupture leading to concrete failure, the concrete failure precipitated the “premature” FRP rupture. Rotating 
the square inner steel tube reduced the vulnerability of the sandwiched concrete in the non-uniformly confined 
and compressed corner regions, leading to higher resistance and/or greater ductility of the FCSC column. The 
beneficial effects diminished with increasing eccentricity, partly due to yielding of the rotated inner steel tube on 
the tensile side as the material was further from the neutral axis of bending.   

1. Introduction 

Fiber-reinforced polymer (FRP) jackets are used to increase the 
strength and ductility of concrete columns by providing “passive 
confinement” to the concrete core under compression [1]. Lam and Teng 
[2] were among the first to propose a design procedure for circular FRP- 
confined concrete columns, and the majority of published studies have 
investigated the performance of such circular columns. Studies on 
square FRP-confined concrete columns [3–12] are not so extensive, 
especially those with inner steel tubes. Researchers [14–17] have also 
conducted experimental tests to investigate the behaviour of circular 
FRP-concrete-steel composite (FCSC) columns under combined bending 
and compression, or under eccentric compression, with very few studies 
[18] done on square FCSC columns under eccentric compression. 

Finite element (FE) analyses are instrumental in overcoming the 
difficulties and limitations associated with laboratory studies, including 
clarifying the interaction mechanism between FRP, concrete, and steel 

members, distribution of axial stresses, and confining pressures over the 
section [13,19–25]. Izadi et al. [26] recently developed a refined con-
crete damage plasticity model (CDPM), which is capable of closely 
predicting the entire stress–strain path of the confined concrete column, 
whether the post-transition response is ascending or descending. The 
proposed model was implemented in ABAQUS [27] for the CDPM to 
analyze the circular and square FRP-confined concrete columns and 
square hybrid FCSC columns under concentric compression. The FE 
methodology includes a confinement dependent hardening/softening 
rule based on Yu et al.’s recommendation [20], a modified flow rule in 
which the dilation angle is defined as a function of the ratio of the 
confining pressure to the lateral strain [22], and a newly proposed 
confinement dependent damage parameter. 

A number of researchers [28–29] have proposed three-dimensional 
(3D) FE methodologies for square or rectangular FRP-confined con-
crete columns under eccentric loading. However, these early method-
ologies do not incorporate an accurate constitutive model for concrete 
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under triaxial compression, which is essential for concrete under non- 
uniform confinement [19–25]. 

This paper presents the development of a FE methodology for 
analyzing square FCSC columns under concentric, mono-eccentric, or 
biaxial loading. The FE models are developed in ABAQUS [27] by using 
the authors’ refined CDPM [26] and the FRP damage criteria available in 
the literature. The developed FE models are verified against the exper-
imental results obtained by Izadi and Teh [30], involving four square 
FCSC columns loaded under concentric compression, twelve under 
mono-eccentric compression, and four under biaxial compression. This 
paper analyses the behaviour and strength of eccentrically loaded square 
FCSC columns having either typical or rotated inner steel tube config-
uration [26], and is not a parametric study. 

2. Constitutive models 

2.1. Constitutive model of FRP 

Glass Fibre-Reinforced Polymer (GFRP) has high stiffness along the 
length of the fibers and low stiffness in the transverse direction. In the 
current study, the fibers of the GFRP tubes were along the hoop direction 
of the column. The hoop tensile stiffness of the GFRP tubes was therefore 
higher than its axial compressive stiffness. The elasticity model in 
ABAQUS was adopted for the GFRP tubes, which exhibit linearly elastic 
stress–strain behaviour. 

Averaging from four flat coupon tests [30], the elastic modulus and 
rupture strain of the GFRP were found to be 30.5 GPa and 0.0218, 
respectively. Based on the manufacturer’s data, the elastic modulus and 
the rupture strain of the GFRP are 27.6 GPa and 0.023, with a nominal 
layer thickness of 0.294 mm. Unless stated otherwise, the manufac-
turer’s values were used in the FE modelling. In the transverse direction 
to the fibre (or the matrix direction), the elastic modulus is assumed to 
be 10 MPa so its contribution to the axial resistance is negligible. 

2.1.1. Damage initiation of FRP 
The inbuilt Hashin’s damage criteria [31] in ABAQUS is used for 

modelling the FRP jacket. The initiation of FRP damage refers to the 
beginning of material degradation. Hashin’s damage criteria include 
four different damage initiation mechanisms as follows: 

Fiber tension (σ11⩾0) 
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where Ft
f , Fc

f , Ft
m and Fc

m are indexes showing the satisfaction of a 
damage initiation criterion when they exceed 1.0; σij are the components 
of the stress tensor; F1t ,F1c, are the tensile and compressive strengths in 
the fiber direction; F2t ,F2c, are the tensile and compressive strengths in 
the matrix direction; F4, F6, are the transverse and longitudinal shear 
strengths; and α indicates the contribution of the shear stress to the fiber 
tensile criterion. 

Barbero et al. [32] proposed α = 0, used in the current study to 
ignore the shear stress effects on the fiber tensile criterion. Barbero et al. 
[32] used F4 = 0.5F2c in their study. However, due to the negligible 
transverse shear strength and compressive strength in the matrix 

direction, these values are set equal to each other (i.e.,F4 = F2c) in the 
current study. Details are provided in Table 1. 

The damaged stiffness matrix c used to calculate σ = C : ε is given by: 

C =

⎡

⎣
(1 − df )E1/Δ (1 − df )(1 − dm)ν21E1/Δ 0

(1 − df )(1 − dm)ν12E2/Δ (1 − dm)E2/Δ 0
0 0 (1 − ds)G12

⎤

⎦

(5a)  

Δ = 1 − (1 − df )(1 − dm)ν12ν21 (5b)  

ds = 1 − (1 − dt
f )(1 − dc

f )(1 − dt
m)(1 − dc

m) (5c) 

where σ is the apparent stress, ε is the strain; E1 and E2 are the moduli 
in the fiber direction and perpendicular to the fibers, respectively; G12 is 
the in-plane shear modulus; ν12 and ν21 are the in-plane Poisson’s ratios; 
dt

f , dc
f , dt

m, dc
m and ds are the damage variables for fiber in tension, fiber in 

compression, matrix in tension, matrix in compression, and shear 
damage mode, respectively. The damage variables dt

f ,dc
f ,dt

m and dc
m 

correspond to the four damage initiation modes in Equations (1)-(4). 
They can be reduced to two variables since material points are either in 
tension or compression at any time: 

df =

{
dt

f if σ11⩾0
dc

f if σ11 < 0
(6) 

and 

dm =

{
dt

m if σ22⩾0
dc

m f σ22 < 0
(7)  

2.1.2. Damage evolution of FRP 
The damage evolution criterion uses the effective stress σ̃ instead of 

the apparent stress σ [33]: 

σ̃ = M− 1 : σ (8a)  

M− 1 =

⎡
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(1 − df )
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− 1 0
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− 1

⎤
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where M− 1 is the damage effect tensor. 
Before damage is initiated, the damage effect tensor is equal to the 

identity tensor. When any of the damage initiation criteria, i.e. Equa-
tions (1)-(4), is satisfied, the material stiffness degradation is triggered. 
The evolution of each damage variable is governed by an equivalent 
displacement δI

eq (I = ft, fc, mt, mc) [32]: 
Fiber tension (σ11⩾0) 

δft
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σft
eq =
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(9b) 

Fiber compression (σ11 < 0) 

δfc
eq = LC〈 − ε11〉 (10a)  

σfc
eq =

〈 − σ11〉〈 − ε11〉

δfc
eq/LC

(10b) 

Matrix tension and/or shear (σ22⩾0) 

Table 1 
Manufacturer’s data used for modelling the GFRP tube.  

F1t(MPa) F1c(MPa) F2t(MPa) F2c(MPa) F6(MPa) F4(MPa) 

540 432 10 10 42 10  
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Matrix compression (σ22 < 0) 

δmc
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where 〈□〉 represents the Macaulay operator that is defined as 〈x〉 =
1
2 (x + |x|) for every x ∈ R. The superscripts ft, fc, mt and mc denote the 
four damage modes: fiber tension, fiber compression, matrix tension, 
and matrix compression, respectively; σeq is the equivalent stress value 
corresponding to the equivalent displacement for a linearly softening 
material; and LC is the characteristic length of the membrane and shell 
elements, which is the square root of the area of the reference surface of 
the element. 

The damage variable dI (I = ft, fc, mt, mc) for each failure mode is: 

dI =
δc

eq(δ
I
eq − δ0

eq)

δI
eq(δ

c
eq − δ0

eq)
(13) 

where δI
eq is the equivalent displacement based on a particular failure 

mode (i.e. Equations (9)-(12)), δc
eq is the equivalent displacement at the 

complete damage state of the FRP, and δ0
eq is the initial equivalent 

displacement at which the damage initiation criterion is satisfied. Fig. 1 
shows the bilinear damage evolution model used for the materials 
having a linear softening behaviour. The parameter δ0

eq depends on the 
elastic stiffness and strength, and the parameter δc

eq depends on the 
fracture toughness. 

The fracture energy parameters govern the post failure slope of the 
unloading process. Due to the absence of experimental data, the fracture 
energy values in Table 2 were obtained from the literature [34–37] for 
the same material and were applied in the current FE analyses. In 
Table 2, the fracture energy parameters GLt,GLc,GTt , and GTc are the 
longitudinal tensile, longitudinal compressive, transverse tensile, and 
transverse compressive fracture energies. The dissipated fracture en-
ergies specify the yielding after the damage initiation. 

In Table 2, ηLt , ηLc, ηTt and ηTc are the input parameters for the vis-
cosity coefficients in the longitudinal tensile, longitudinal compressive, 
transverse tensile, and transverse compressive directions. Small values 
of viscosity coefficients are recommended in order to reduce the 
convergence difficulties caused by the stiffness degradation of an 
element and the softening behaviour [35,38]. Different values of vis-
cosity coefficients have been trialed in the analyses and a value of 
0.0004 is adopted for the fiber and the matrix viscosity coefficients. 

The FRP damage initiation and evolution criteria employed in the 
present work are evaluated in Section 3.3. 

2.2. Constitutive models of steel and concrete 

The classical plasticity model based on the J2 flow theory is used for 
the steel tubes with isotropic hardening. The experimental tensile 
stress–strain results were extracted from the steel coupon tests to define 
the true stress–strain curve using the Ramberg-Osgood parameters [39]. 
Four flat coupons were cut from different sides of the steel tube and used 
in the standard tensile tests [40]. The average elastic modulus, yield 
stress and ultimate tensile strength are 202 GPa, 425 MPa and 460 MPa, 
respectively. The Poisson’s ratio is assumed to be 0.3. 

In this study, the refined Concrete Damaged Plasticity (CDPM) model 
[26] is applied to analyze the concrete behaviour under eccentric 
compression. The compression hardening/softening rule is a function of 
the confining pressure based on Yu et al.’s recommendation [20]. The 
dilation angle is defined as a function of the ratio of the confining 
pressure to the lateral strain [22]. The confinement dependent concrete 
damage parameter d proposed by Izadi et al. [26] is: 

d = ϕ

⎧
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(σ2 + σ3 + 0.078f ′
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− 0.039f ′

co (14e) 

where ϕ is a reduction factor equal to 0.6, f ′

cc* and ε*
cc are the peak 

compressive stress and the corresponding strain under the effective 
confining pressure σl,eff . The variables σ2 and σ3 are the orthogonal 
principal lateral stresses of the concrete. Based on Yu et al.’s recom-
mendation [20], the value of A = 0.12 is adopted in this study. The value 
of C = 1.83 is used based on the experimental shear strength ratio of 
concrete between biaxial compression and triaxial compression [20]. f ′

co 
is the unconfined concrete strength, εco is the axial strain at the peak 
axial stress of the unconfined concrete set to εco = 0.000937

̅̅̅̅̅
f ′

co
4
√

[41],εc 

Fig. 1. Damage evolution behaviour of a linearly softening material.  

Table 2 
Damage evolution (fracture energies) and stabilization parameters of the FRP.  

Damage evolution Damage stabilization 

GLt(N/mm) GLc(N/mm) GTt(N/mm) GTc(N/mm) ηLt ηLc ηTt ηTc  

12.5  12.5 1 1  0.0004  0.0004  0.0004  0.0004  
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is the axial strain of concrete, and Ec is the elastic modulus of the un-

confined concrete set to Ec = 4730
̅̅̅̅̅̅

f
′

co

√

(f ′

co in MPa) [42]. More details of 
refinements applied to the CDPM model are provided in Izadi et al. [26]. 

To apply the refinements in ABAQUS [27], the in-built field variables 

f1 and f2 are specified by providing a link between the FE software and a 
FORTRAN subroutine. The field variable f1 includes the ratio of the 
confining pressure to the lateral strain values, and f2 contains the 
confining pressure values. The relationship between the field variables is 
defined in the user subroutine USDFLD coded in FORTRAN. 

The concrete material of the specimens analysed in this paper had an 
average unconfined strength f ′

co of 56.7 MPa as obtained from the 
standard cylinder tests [43]. The Poisson’s ratio is assumed to be 0.15. 

3. FE modelling and analysis of square FCSC beam-columns 

3.1. Test specimens [30] analysed in this paper 

Fig. 2 shows the cross-section configurations of the 850 mm long, 
225 mm wide square concrete columns tested by Izadi and Teh [30] 
under combined bending and compression. The eccentric e and other 
variables of the twenty FCSC specimens analyzed in this paper are given 
in Table 3. The designations N and R in the specimen labels denote the 
“normal” and the “rotated” inner steel tube configurations shown in 
Fig. 2, respectively, while E and B denote the mono-axial and the biaxial 

Fig. 2. Tested and analysed configurations.  

Table 3 
Test specimens [30] analysed in this paper.  

Configuration Steel tube (mm) e (mm) 

N-125 125 × 125 × 4 0 
R-125 125 × 125 × 4 0 
N-150 150 × 150 × 5 0 
R-150 150 × 150 × 5 0 
NE-125-20 125 × 125 × 4 20 
RE-125-20 125 × 125 × 4 20 
NE-125-35 125 × 125 × 4 35 
RE-125-35 125 × 125 × 4 35 
NE-150-35 150 × 150 × 5 35 
RE-150-35 150 × 150 × 5 35 
NB-150-35 150 × 150 × 5 35 
RB-150-35 150 × 150 × 5 35  

Fig. 3. Square FCSC under eccentric compression.  
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Fig. 4. Effects of FRP damage criteria on FE analysis results.  
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loading conditions, respectively. All specimens had a corner radius of 30 
mm, and were confined with five layers of GRFP. 

3.2. The basic FE model 

Fig. 3 shows the FE model for a square FCSC under mono-axial 
eccentric compression, which takes advantage of symmetry [44–45]. 
The tie constraints option in ABAQUS [27] was used to simulate the 
interaction between the steel tube’s outer side and the concrete cover 
(sandwiched concrete) and the steel tube’s inner side and the concrete 
core. The tie constraint is also adopted to simulate the interaction be-
tween the concrete and the FRP tube. A compressive load is applied to 
the top nodes by prescribing axial displacements there while the bottom 
surface is restrained against axial displacement. The concrete circum-
ference is taken as the master of the inner surface of FRP in the Tie 
option, which is assumed to provide perfect bonding between the FRP 
and the concrete for a “no-slip” simulation [46]. There are five inte-
gration points along the thickness of the FRP jacket. 

The eight-node reduced-integration brick element (C3D8R) [27] was 
used to model the concrete core, the sandwiched concrete and the steel 
tube. The concrete’s mesh size was set to 12 mm following a mesh 
convergence study using 20, 16, 14, 12, and 10 mm meshes. Ignoring the 
flexural stiffness of the surrounding FRP sheets in the longitudinal di-
rection of the columns, the four-node quadrilateral membrane element 
(M3D4R) [27] is used for modelling the FRP tube. This measure reduces 
the possibility of convergence difficulties usually caused by shell ele-
ments while avoiding the use of brick elements. 

In the post-processing phase, the symmetric model can be mirrored 
to produce a whole model in order to facilitate visualization of the FE 
analysis outputs. 

3.3. FRP damage simulation results 

Fig. 4 demonstrates both the necessity and the accuracy of the FRP 
damage initiation and evolution criteria described in Section 2.1. It can 
be seen that the FE model employing the FRP damage criteria resulted in 

Fig. 5. Specimen RE-125-35a at the test termination point.  
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much closer agreements with the test results [30] than the model 
without the damage criteria. The first detections of complete damage 
(failure) of the GFRP matrix are indicated in the figures. 

It can be seen that GFRP matrix failure occurred on the compressive 
side of all the eccentrically loaded columns, and preceded the failure on 
the tensile side if the latter took place at all. It is also evident that while 
the column’s resistance invariably declined following a GFRP matrix 
compression failure, such a failure did not immediately lead to the 
sudden loss of the column’s load-carrying capacity. On the other hand, 
the sudden loss of a column’s capacity was not always preceded by a 
GFRP matrix tension failure, especially for the specimens with mono- 
axial eccentricity. 

Fig. 5 shows the FE simulation results for Specimen RE-125-35a at 
the test termination point, which are consistent with the experimental 
observations. The results shown in the figure are also consistent with the 
indications of Fig. 4(a), which show that the first matrix compression 
failure occurred early while the matrix tension failure only took place at 
the termination point. It can be seen from Fig. 5(a) that the FE simula-
tion predicts multiple matrix compression failures, as did occur in the 
experimental test. On the other hand, Fig. 5(b) shows that the FE 
simulation predicts only one matrix tension failure, also consistent with 
the test result. 

However, Fig. 4(b) and 4(f) indicate that the first GFRP matrix ten-
sion failures occurred well before the respective termination points of 
the two biaxial specimens NB-150-35b and RB-150-35b, suggesting the 
likelihood of multiple matrix tension failures. In fact, Fig. 6(a) and 6(b) 
show the occurrence of multiple matrix tension failures in the two 
specimens, both in the FE simulations and in the experimental tests. 

It should be noted that the violent FRP rupture at the termination 
point typically occurred at a corner on the compressive side. The matrix 
compression failures of the two specimens are shown in Fig. 6(c) and 6 
(d). However, the FE analyses indicated that the columns had not 
experienced GFRP rupture (fiber in tension) at the test termination point 
according to the criteria described in Section 2.1. The FE results are in 
fact consistent with the experimental FRP hoop strains at the termina-
tion point obtained from the strain gauges at the ruptured corners, as 
shown in Table 4. The experimental and FE hoop strains at the test 
termination point are typically less than one third of the manufacturer’s 
value of 0.023 for the GFRP’s rupture strain, or, for that matter, the 
value of 0.0218 obtained by the authors through flat coupon tests [30]. 
It is also noteworthy that the hoop strain at the termination point of 
Specimen R-150 was about double that of Specimen N-150, as was the 
case with Specimens RE-150-35 and NE-150-35. 

3.4. Concrete behavior and the hoop strain 

The hoop strain-axial strain curves obtained by the present FE ana-
lyses are compared with the experimental results of the FCSC columns 
[30] in Fig. 7. The experimental corner hoop strain values are the 
average taken from the four horizontal strain gauges (with a gauge 
length of 20 mm) on the rounded corners in the mid-height region of the 

Fig. 6. Biaxially tested specimens at the test termination point.  

Table 4 
Apparent FRP hoop strains (at critical corners) at the test termination point.  

Specimen εterm,test εterm,FEA 

N-125a  0.0064  0.0058 
R-125b  0.0052  0.0057 
N-150a  0.0030  0.0032 
R-150a  0.0064  0.0061 
NE-125-20a  0.0080  0.0076 
RE-125-20b  0.0065  0.0067 
NE-125-35a  0.0055  0.0050 
RE-125-35a  0.0057  0.0056 
NE-150-35a  0.0035  0.0041 
RE-150-35a  0.0069  0.0076 
NB-150-35b  0.0047  0.0049 
RB-150-35b  0.0060  0.0055  
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Fig. 7. Hoop strain-axial strain verification results.  
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column. Similarly, the experimental flat side hoop strain values are the 
average of the four horizontal strain gauges on the flat sides in the mid- 
height region. The axial strain values are the average from two full- 
length LVDTs. 

Fig. 7 shows that the FE hoop strain-axial strain curves are consistent 
with those observed in the tests, although there were a few instances 
where the experimental curve did not follow the expected trend. Since 
the FRP hoop strain is related to the concrete expansion under axial 
compression, the comparison results should provide confidence that the 
constitutive model described in Section 2.2 is reasonably accurate, 
consistent with the earlier finding [26] and supported by the FRP 
simulation results discussed in the preceding subsection. 

Comparisons of the maximum principal plastic strains and the shear 
strains of the concrete columns are presented in Fig. 8 for the normal and 
the rotated steel tube configurations. Each comparison is made at the 
same axial displacements corresponding to the termination point of the 
normal specimen. It can be seen that, for both the mono-axial and the bi- 
axial eccentric loading cases of the respective 125-mm and 150-mm 
columns, the concrete columns with the normally orientated steel tube 
are more vulnerable to failure than their rotated counterparts. 

As shown in Fig. 8, the most vulnerable region of each column is the 
corner, where the sandwiched concrete is the most confined in the di-
agonal direction of the cross-section. In fact, FRP ruptures in square 
columns have been observed to take place at the corners [6–8,30,47] 
rather than the more strained flat sides. This finding coupled with the 

previous discussions on the results of Table 4 suggests the possibility 
that, rather than the FRP rupture leading to concrete failure in an FRP 
confined concrete column, the concrete failure precipitates the FRP 
rupture. Since the concrete failure is violent, the strain gauges cannot 
capture the actual rupture strain of the FRP, which could explain why 
the rupture strain values obtained from column tests are typically much 
lower than those from standard coupon tests [2,48]. 

3.5. Effects of inner steel tube’s orientation and size 

Fig. 9 shows the axial load–displacement curves obtained in the 
present FE analyses are reasonably close to the laboratory test results 
[30]. Coupled with the verification results discussed in the preceding 
subsections, the present FE methodology is considered validated, and 
the results can be reliably used to interpret the column behaviour. 

It can be seen from Fig. 9 that the rotated steel configuration is 
generally superior to the normal alternative, leading to higher resistance 
and/or greater ductility of the hybrid column. In fact, Fig. 9(a) shows 
that rotating the 125-mm inner steel tube led to a greater ductility than 
using the 150-mm steel tube, although the larger steel tube afforded a 
slightly higher resistance at the transition point (not at column failure). 

The beneficial effects of the rotated inner steel tube diminished with 
increased load eccentricity, as evident from Fig. 9(b) through (d). 
Nevertheless, Fig. 9(b) shows that the rotated configuration still led to 
greater ductility for the load eccentricity of 35 mm, to the same extent as 

Fig. 8. Maximum principal strains and shear strains at the same axial displacements.  
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for the concentric loading case. On the other hand, Fig. 9(d) shows the 
higher resistance of the rotated configuration under biaxial loading. The 
rotated configuration also led to higher resistance for the columns under 
the load eccentricity of 20 mm, as shown in Fig. 9(c). 

The von Mises stress contours on the compressive side of the steel 
tubes corresponding to the axial displacement at the termination point 
of the respective normal configuration specimens are presented in 
Fig. 10. It can be seen from Fig. 10(a) that the rotated steel tube of 
Specimen RE-125-20b is subjected to significantly less yielding than its 
normal counterpart, which is consistent with the results in Fig. 9(c) 
showing the higher resistance of the rotated specimen. 

On the other hand, Fig. 10(b) shows that the tensile side of the 

rotated steel tube in Specimen RE-125-35a is subjected to more yielding 
than its normal counterpart, which explains why the rotated steel tube 
did not lead to better performance. The reason for the more extensive 
yielding under the larger eccentricity is that the tensile corner of the 
rotated tube was farther from the neutral axis compared to the normally 
placed tube. 

4. Conclusions 

The paper has presented the FE analysis of square FRP-concrete-steel 
composite (FCSC) columns under concentric and eccentric loadings, and 
validated the developed FE methodology against experimental test 

Fig. 9. Effects of steel tube’s orientation and size.  

Fig. 10. The von Mises stresses of the inner steel tubes.  
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results. The FE model was able to replicate the GFRP matrix compression 
and tension failures in addition to accurately tracing the load–deflection 
path beyond the transition point. The FE analysis was used in this paper 
to investigate the strain patterns of the sandwiched concrete under 
different orientations of the inner steel tube. 

The most vulnerable region of each column was shown to be the 
corner, where the sandwiched concrete was the most confined in the 
diagonal direction of the cross-section. Failures of the test columns in 
fact typically started at a corner even though the hoop strain there was 
significantly lower than at the flat sides of the square column. Rotating 
the inner steel tube reduces the vulnerability of the sandwiched concrete 
in the non-uniformly confined and compressed corner regions, leading 
to higher resistance and/or greater ductility of the FCSC column. The 
beneficial effects diminished with increasing eccentricity, partly due to 
yielding of the rotated inner steel tube on the tensile side as the material 
was further from the neutral axis of bending. 

When a column suddenly failed, the GFRP hoop strain at the failed 
corner was found through experimental measurement as well as FE 
analysis to be typically less than one third of the rupture strain obtained 
from flat coupon tests, and as low as 15%. Furthermore, among the 
tested columns, the hoop strains at column failure varied by up to 100% 
even though the same GFRP material was used. These observations, 
coupled with those described in the second paragraph of this section, 
suggest that it was the concrete failure that led to the FRP rupture rather 
than the other way round, as believed in the literature. Further research 
is required to confirm this indication. 

Under combined bending and compression, GFRP matrix compres-
sion failure invariably occurred on the compressive side of the FCSC 
column, and preceded the matrix tension failure if the latter occurred at 
all. Neither matrix failure immediately led to a sudden loss of the test 
column’s load-carrying capacity. 

The developed FE methodology can be used for future parametric 
studies of square FRP-concrete-steel columns under concentric and 
eccentric loadings. Such studies are often required in order to derive 
strength equations for use in structural design. However, more verifi-
cations against experimental test results of square FCSC columns having 
very different configurations may be needed to identify potential limi-
tations of the presented FE methodology. 
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