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Abstract

For a Digital Twin - a precise, virtual representation of a physical counterpart -

of a human-like system to be faithful and complete, it must appeal to a notion

of anthropomorphism (i.e., attributing human behaviour to non-human entities)

to imitate (1) the externally visible behaviour and (2) the internal workings of

that system. Although the Belief-Desire-Intention (BDI) paradigm was not de-

veloped for this purpose, it has been used successfully in human modeling appli-

cations. In this sense, we introduce in this thesis the notion of abductive design

of BDI agent-based Digital Twins of organizations, which builds on two powerful

reasoning disciplines: reverse engineering (to recreate the visible behaviour of

the target system) and goal-driven eXplainable Artificial Intelligence (XAI) (for

viewing the behaviour of the target system through the lens of BDI agents). Pre-

cisely speaking, the overall problem we are trying to address in this thesis is to

“Find a BDI agent program that best explains (in the sense of formal abduction)

the behaviour of a target system based on its past experiences". To do so, we pro-

pose three goal-driven XAI techniques: (1) abductive design of BDI agents, (2)

leveraging imperfect explanations and (3) mining belief-based explanations. The

resulting approach suggests that using goal-driven XAI to generate Digital Twins

of organizations in the form of BDI agents can be effective, even in a setting with

limited information about the target system’s behaviour.
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Chapter 1

Introduction

Digital Twin technology - a precise, virtual representation of a physical de-

vice or system - has been the subject of considerable attention over the past

decade. A relatively recent survey made by Gartner, Inc. on 200 firms has found

that 48% of the survey sample are using or planning to use Digital Twins in the

foreseeable future based in the USA [1]. Another recent survey conducted by Al-

tair Engineering Inc. on 2000 firms has reported that 69% of the firms are now

leveraging Digital Twin technology [2]. HVM Catapult research centre has re-

ported that the Digital Twin market will grow to over $15 billion by 2023 in the

field of manufacturing based in the United Kingdom [3]. Major companies al-

ready leverage Digital Twin technology. For example, NASA uses Digital Twins

for continuousmonitoring of its spaceflights [4]. General Electric employs Digital

Twin technology to track the operations of electric utilities (e.g., wind turbines)

[5]. Digital Twin platforms also enjoy popularity among technology corporations,

such as Azure Digital Twin [6] and Oracle IoT Digital Twin [7]. While consider-

able attention has been paid to the development of Digital Twins for physical de-

vices and systems, the question of developing twins for organizations has received

relatively little attention.

A large body of literature in management anthropomorphises (i.e., attributing

human behaviour to non-human entities) the organization, e.g., [8–10]. Indeed,

real-life organizations are organic (i.e., social systems) to a large degree since they

are, above all, an assembly of personalities. Relatively fewworks on Digital Twins

(e.g., [11–13]) submit that for a Digital Twin of human-like systems to be com-

plete and faithful, it must appeal to a notion of anthropomorphism to imitate (1)

1



2

the structured processes and (2) the internal workings of the target system. It

makes sense, therefore, to concentrate on the beliefs of an organization and its

goals and intentions (i.e., internal workings) when developing Digital Twins of

organizations. A software agent with Belief-Desire-Intention (BDI) architecture

[14] is arguably one of themost sophisticated agent architectures on offer, permit-

ting the modelling of organizations using anthropomorphic handles. Our choice

of BDI agent technology as the implementation vehicle thus enables some mod-

icum of adaptation capability, context-sensitivity and autonomy in the resulting

Digital Twins. While the target systemsmight not exhibit these attributes in an ob-

vious fashion, the act of viewing them through the lens of BDI agents allows us to

model, implement and analyse these using an anthropomorphic vocabulary. As

the literature [15] suggests, this is an elegant means of dealing with systems with

considerable underlying complexity. It is also generally submitted that there is no

unified template for organizations. Hence, it is not our intention to try to argue

that we can build complete and faithful Digital Twins of organizations. Rather,

we aim to provide Digital Twin developers with some “first cut" description (also

known as the “start with what you have" principle to build organizational Digi-

tal Twins [13]) of the behavioural aspects of an organization. However, even with

“rough cuts", hand-craftingDigital Twins, which is the ongoing norm, comeswith

several obvious limitations. The time and effort involved in crafting a Digital Twin

lead to bottlenecks.

Digital Twins, therefore, have to be “re-crafted” in response to every change in

the target system or the operating context [16]. The setting in which we address

this problem is very general and, consequently, very challenging. We look at au-

tomating the acquisition of Digital Twins of organizations without loss of gener-

ality to physical and cyber-physical systems. This, in turn, opens up important

new classes of applications, such as competitor modeling, where our contribution

to Digital Twin acquisition enables the building of effective twins, even in a set-

ting where there is limited information available about competitor behaviour. A

major assumption guiding the state-of-the-art Digital Twins is collaborative target

systems, which allows developers to design Digital Twins under the assumption

that the target system would disclose its characteristics at any given time to Digi-
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tal Twin developers. Rather, we view the target system as neither cooperative nor

unobtrusive with the observant (aka keyhole settings).

Our overall goal in this thesis is to address the above-cited challenges. To do

so, we propose a number of goal-driven XAI techniques aiming to explain the

behaviour of anthropomorphic systems and, consequently, recraft that behaviour

through the lens of BDI agents.

1.1 Research Questions

As they are typically a collection of people, it is our perspective that organizations

are “organic” to a large degree. Hence, our focus here is not only to build a Digital

Twin of the externally visible behaviour of the organization but also of its internal

workings, for which we choose the BDI agent technology as an implementation

vehicle. During this thesis, we sought to address the general research question of

how to design first cut Digital Twins of organizations based on BDI ontology. To

that end, the first research question we seek to address is:

RQ1: What is an end-to-endmethodology for the development of BDI agent-

based Digital Twins?

In competitive settings, where our research is situated, the only readily avail-

able inputs one may think of are (1) the externally visible behaviour of the target

organization and (2) common patterns of organization behaviour. However, ob-

served behaviours are often not from the set of common patterns [17]. For exam-

ple, business environments typically require dynamic execution of plans where

organizations must engage in behaviour that includes, for example, re-planning,

plans reusing, plan repair, etc. Hence, the second research questionwewould like

to address is:

RQ2: How can potential plans be leveraged to explain new classes of obser-

vations?

Explaining the internalworkings of anthropomorphic systemsmay involve some

ambiguity (e.g, one decision havingmore than one possible explanation) and irra-

tionality (e.g., different decisions having one explanation) in competitive settings.
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Arguably, a sufficiently detailed explanation (i.e., one that justifies an action with

extensive information about the internal reasoning of the target system) can con-

tribute to an accurate justification of the decisions of anthropomorphic systems.

Hence, the third question we seek to address is:

RQ3: How to leverage the historical data associated with the business envi-

ronment to provide detailed explanations about the organization’s actions?

It is generally acknowledged that the design of Digital Twins involves consid-

erable investment in terms of effort and time , which would be multiplied if there

was an additional obligation to do so in a keyhole setting. Thus, Digital Twins

have to be “re-crafted” in response to every change in the target system or the op-

erating context [16]. Our fourth research question thus focuses on providing this

kind of support.

RQ4: Is it possible to build a toolkit to support programmers in developing

first-cut Digital Twins of organizations and use it as a basis for evaluating

our approach?

Note that addressing RQ4 is strongly related to the three above-cited research

questions. Particularly, answering RQ4 is closely linked to the question of evalu-

ating the generated Digital Twins, including the proposed answers to the above-

cited research questions.

1.2 Research Main Contributions

During this thesis, we sought to develop a body of contributions that is able to

“Find a BDI agent program that best explains the behaviour of a target system

on the basis of its past experiences". To that end, we leverage two powerful rea-

soning strategies: reverse engineering (to re-create the visible behaviour of the

target system) and goal-driven XAI (for viewing the behaviour of the target sys-

tem through the lens of BDI agents). We shall refer to this notion of re-crafting as

the abductive design of BDI agents.

Our overall contribution is to leverage the externally observable behaviour of

the target system and then generate candidate BDI agent programs that best ex-

plain (in the sense of formal abduction) the observed behaviour. The candidate
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agent programs are generated by searching through potentially large hypotheses

spaces for possible plans, selection functions and beliefs. This framework is de-

picted in Figure 1.1.

Figure 1.1: Abductive design of BDI agent-based Digital Twins

The key contributions of this thesis can be summarized as follows:

1. Our first contribution is the abductive design of BDI-based Digital Twins,

a pragmatic approach to building Digital Twins of organizations through

the lens of BDI agents. The overall approach is to leverage the externally

observable behaviour of the target system and then generate candidate BDI

agent programs that best explain (in the sense of formal abduction) the ob-

served behaviour. Our abductive design gives a complete account of the BDI

handles (e.g., plans, beliefs, desires and intentions), which is implemented

through the following means (1) abductive plan recognition, (2) explaining

by beliefs, and (3) explaining by selection strategies. Our evaluation of the

abductive design of BDI-basedDigital Twins using two synthetic yet realistic

observation logs suggests the effectiveness of this contribution to addressing

RQ1.

2. The second contribution of the thesis is leveraging (in the sense of plan edit-

ing) imperfect explanations, the task of modifying existing hypotheses (i.e.,

potential plans) to explain new classes of observations. We show that when

the target organization operates in a domain model known to the observer,

imperfect explanations can be a valuable guide to explain unknown plans

that involve new classes of observations. Hence, this contribution can be

seen as a post-processing stage for various plan library-based plan recogni-

tion techniques. To avoid arbitrary leveraging of hypotheses, we also intro-
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duce a classificationmodel that can determine the settings (e.g., noisy or ex-

planatory) in which an unknown plan has been observed. The performance

of the proposed approach using theMonroe Plan Corpus [19] demonstrates

the applicability of this contribution to answering RQ2.

3. Our third contribution is mining belief-based agent explanations, a data-

driven approach to mining and validating explanations (specifically belief-

based explanations) of the actions of the target system. Our approachmakes

use of the historical data associated with the target system execution, which

describes action execution events and external events (represented as be-

liefs). We have employed an association rule miner to discover regularities

between external events and actions of the target system. Also, we devel-

oped a state update operator (i.e., an operator that defines how the specifi-

cation of a belief state is updated as a consequence of the system’s percep-

tion of the environment) to contextualise the explanation (i.e., provide users

with detailed explanations) and validate the discovered explanations. Our

evaluation suggests that mining belief-based explanations can answer RQ3.

4. Our fourth contribution is the XPlaM (eXplainable Plan Miner) toolkit, de-

veloped to support users in the design of Digital Twins of organizations

without loss of generality to other anthropomorphic systems. XPlaM builds

on the following two premises: (1) Digital Twins should be re-crafted in re-

sponse to every change in the target system or the operating context [16] and

(2) Hand-crafting Digital Twins, which is the current norm, comeswith sev-

eral obvious limitations (e.g., time and effort). The setting in which XPlaM

has developed is very challenging. We look at the automatic acquisition of

Digital Twins in competitive environments (i.e., with very little insight into

exactly how the target system carries out its tasks). XPlaM provides three

explanation techniques in the form of plugins, each representing the imple-

mentation of the above-cited contributions. XPlaM has been developed to

answer RQ4.
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1.3 Structure of this Thesis

This section provides a summary of this thesis and the general structure of its

chapters. A brief overview of the thesis structure is depicted in Figure 1.2.

Figure 1.2: Structure of this thesis
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Figure 1.2 can be detailed as follows:

� Chapter 2 reviews the state-of-the-art Digital Twin technology focusing on

its related concepts, applications and simulation modeling techniques. The

chapter also provides a background on intelligent agents (specifically BDI

agents) along with an overview of one specific agent-based programming

language (AgentSpeak(L) [20]). It also presents a brief introduction to XAI

(specifically goal-driven XAI). Recall that this thesis lies at the intersection

of these three research areas. Finally, this chapter concludes by outlining

gaps in the literature

� Chapter 3 addresses the problem of the abductive design of Digital Twins

based on the BDI agent ontology (specifically AgentSpeak(L) programming

language [20]) by the following means (1) abductive plan recognition, (2)

explaining by beliefs, and (3) explaining by selection strategies.

� Chapter 4 addresses the problem of leveraging imperfect explanations. This

chapter focuses on improving the explanatory power of plan libraries by

leveraging imperfect explanations and exploiting new classes of observa-

tions. Hence, it can be seen as a post-processing technique to the plan recog-

nition mechanism presented in chapter 3.

� Chapter 5 introduces and addresses the problem of mining belief-based ex-

planations. This chapter also shows how to obtain detailed explanations in

situations when the observed behaviour cannot be explained rationally by

other BDI handles. Hence, it can be seen as a complementary technique to

explaining by selection strategies presented in chapter 3.

� Chapter 6 describes how the algorithms and the conceptual components pre-

sented in chapters 3, 4 and 5 have been implemented. The implemented tool

has been named XPlaM (“eXplaniable Plan Miner). XPlaM provides five

techniques in the form of plugins, three of which are related to the explana-

tion techniques offered in the thesis, which are (1) Abductive design of BDI

agents, (2) Abductive plan editing, and (3) Explaining by beliefs.
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� Chapter 7 summarizes the contributions of this thesis and discusses the pos-

sible future work.



Chapter 2

Background

The main goal of this chapter is to (1) briefly introduce the landscape of Dig-

ital Twin technology, (2) give an overview of the computational model that

we use as the implementation vehicle for Digital Twins development (i.e., the BDI

model) and (3) provide some background on eXplainable Artificial Intelligence

(XAI) and its role in re-crafting Digital Twins. Note that these three disciplines

represent the main ingredients of this thesis. The first part of this chapter (Sec-

tion 2.1) provides a semi-comprehensive review of Digital Twin technology, in-

cluding its concept, applications and modeling techniques. The second part of

this chapter (Section 2.2) gives an overview of intelligent agents, particularly the

Belief-Desire-Intention (BDI) agents. Finally, XAI is briefly described in Section

2.3 before we summarise the weaknesses of the existing literature in Section 2.4.

Note that for any work that is strongly relevant to the research questions of this

thesis, we discuss them in the related work section of each chapter.

2.1 Digital Twin Technology

Digital Twins have largely become an integral part of the Fourth Industrial Revo-

lution (Industry 4.0). A recent survey conducted by Altair Engineering Inc. has

reported that 1393 out of 2000 firms are currently usingDigital Twin technology to

achieve various business goals [2]. The report includes industries like aerospace,

automotive, financial services and healthcare, indicating that Digital Twin tech-

nology enjoys popularity among different industrial sectors. Moreover, the sig-

nificant increase in publications indicates that there has also been serious work in

10
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the academic field of Digital Twins. Figure 2.1 illustrates the rate of publication

increase since 2013 a.

Figure 2.1: Number of publications on Digital Twins

A wide range of initiatives for developing Digital Twins has been proposed in

the literature, including traffic control [17] and predicting driver intention [21],

vehicle manufacturing systems [22], iron and steel product life cycle [23], health

care information systems [24], and remote surgeries [25]. Nevertheless, many of

these solutions concentrate on specific domain problems and produce unreusable,

incompatible, and limited Digital Twin designs, leading to high duplication and

confusion levels. It has been reported by HVM Catapult research centre [3] that

80% of its engineers have no common understanding of the Digital Twin. Another

recent survey on 2000 firms conducted by Altair Engineering Inc. has reported

that 50% of the survey sample has no common understanding of the Digital Twin

technology. Another recent research by Schleich et al. [26] has emphasized this.

To address this challenge, we provide a brief review of the state-of-the-art Dig-

ital Twins, describing the development of Digital Twins and discussing Digital

Twin-related concepts, applications and simulation modelling techniques. We re-

fer to the following reviews for readers interested in an in-depth review of Digital
ahttps://dblp.uni-trier.de/
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Twins. Negri et al. [27] reviewed the state-of-art Digital Twins between 2012 and

2016. The review investigated theDigital Twin technology origin, uses, simulation

techniques and tools. Tao et al [28] reviewed theDigital Twin concept, history, and

theoretical foundations between 2003 and 2018. Based on the reviewed literature,

the authors suggested a list of best practices for Digital Twin development.

The remainder of this section is structured as follows. After the introduction,

we represent a brief historical view of Digital Twin technology, in Section 2.1.1.

Section 2.1.2 presents a comprehensive view of Digital Twin definitions and pro-

poses an unbiased unified one. Section 2.1.3 describes Digital Twin applications.

In Section 2.1.4, we describe and group the existing literature according to the

most noticeable simulation modeling techniques.

2.1.1 Historical View

Digital Twin technology was first introduced in 2002 [29–31] but did not become

an active research space until recently. Arguably, the reason for this recent in-

terest may relate to the emerging identity of the Fourth Industrial Revolution. It

is useful at this point to recall the first three industrial revolutions: mechaniza-

tion, electricity and computer and information technology. The fourth industrial

revolution (or simply Industry 4.0) has been characterized as the intertwining of

advanced technologies and physical processes. According to the Consortium II b

(as cited in [32]) Industry 4.0 is “the integration of complex physical machinery

and devices with networked sensors and software, used to predict, control and

plan for better business and social outcomes".

According to the available literature, Digital Twin technology has been pro-

posed for the first time by Grotepass et al. [33] as “virtual representative, allows

independent measuring and the integration of body data into Computer-Aided

Design (CAD) data of the production lines and logistic processes at companies.",

for creating anthropometric models. NASA (National Aeronautics and Space Ad-

ministration) defined a Digital Twin as “an integrated multi-physics, multi-scale,

probabilistic simulation of a vehicle or system that uses the best available physi-

cal models, sensor updates, fleet history, etc., to mirror the life of its flying twin.
bAvailable from: http://www.iiconsortium.org/docs/IIC_FACT_SHEET.pdf
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It is ultra-realistic and may consider one or more important and interdependent

vehicle systems" [34].

2.1.2 Digital Twin Concept

Fundamentally, a Digital Twin provides a test bed that mimics the behaviour of

its physical counterpart based on real-time data, which can form the basis for op-

timizations or handle potential deviations before they turn into real-world events.

Although this concept ofDigital Twin technology sounds straightforward enough,

there is no general agreement on the definition of Digital Twins in the literature.

Indeed, through our review, we found that there are numerous definitions of the

Digital Twin concept. Table 2.1 represents a brief view of Digital Twin definitions

that have been proposed in the literature.

It is possible to attribute such diversity in defining Digital Twin technology to

twomain reasons: (1) physical space nature, Digital Twins are not limited to phys-

ical devices and their controllers only. Indeed, a Digital Twin can be a counterpart

of any IoT applications, such as smart manufacturing systems, vehicles, supply

chains, and many other applications (see Section 2.1.3 for further details) and (2)

level of abstraction. Defining Digital Twins at a certain level of abstraction deter-

mines the level of detail and complexity by which a Digital Twin is designed and

viewed. As mentioned above, the concept of the Digital Twin has been proposed

from different abstraction levels and perspectives. This, in turn, impedes the un-

derstanding of the concept. Thus, we propose an unbiased definition of a Digital

Twin as follows

“an independent living virtual representation of a physical space that drives innovative

business outcomes."

An independent representation implies that a Digital Twin is not limited to repli-

cating physical space behaviour but also simulating hypothetical situations. A

Digital Twin can be a virtual counterpart of any physical space, including, but not

limited to, products, manufacturing systems, factories, or even cities. A living rep-

resentation means that a Digital Twin updates itself constantly using two types of

data: operational and environmental data. In this sense, a Digital Twin represents
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the latest state of the physical space. With the intention of driving innovative busi-

ness outcomes, the Digital Twin manages, analyses and leverages operational and

environmental data in order to provide business people and industrial practition-

ers with critical solutions.

2.1.3 Digital Twin Applications

This section presents the most common Digital Twin applications that we found

in the literature. Through our review, we observed threemain applications: smart

products, smart manufacturing systems and smart factories.

Digital Twins of Products

As stated in [49], a smart product is an entity, such as a software product, service,

or tangible object, designedwith computational, data storing, communication and

interaction capabilities. Schmidt et al. [50] assert that smart products result from

intertwining digital and physical workflows across the product life-cycle. The au-

thors suggest a number of smart product capabilities, including, but limited to,

the ability to obtain workflow tasks, anticipate upcoming tasks and maintenance

operations, perceiving and interacting with the surrounding environment.

An example of smart products related to Digital Twin technology is Virtual Ve-

hicle (VV) models [21], for addressing smart vehicles. The VV model is a virtual

state of both drivers and vehicles. It uses, for example, Global Positioning System

(GPS) coordinates, current speed, the average speed of vehicles, and driver be-

haviour to model smart traffic management systems. Another example, Chen et

al. [17] propose a framework for learning and sharing Digital behavioural Twins

of connected cars, for which decision trees and K-Nearest Neighbors are used to

learn driver behaviour, while discrete-time Markov Decision Process (MDP) is

used to build driving context models and risk analysis. Luo et al. [46] propose

a Digital Twin framework to realize self-sensing, prediction and maintenance of

Computer Numerical Control Machine Tools (CNCMT).
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Digital Twins of Manufacturing Systems

As reported by the National Institute of Standards and Technology (NIST), a

smart manufacturing system, or simply smart manufacturing, is “fully integrated,

collaborative manufacturing system that responds in real-time to meet changing

demands and conditions in the factory, in the supply network and in customer

needs".

Biesinger et al. [22] employ IoT, cyber-physical systems and 3D scans of vehicle

production systems to create a Digital Twin of two real stations in a body-in-white

production system. Shahriar et al. [40] present a cyber-physical cloud-based Dig-

ital Twin for physical machine operations, for which cloud environment is used to

reduce the gap between Digital Twin and physical machines. Schluse et al. [36]

propose Experimentable Digital Twin (EDT) in an act to simulate smart manufac-

turing systems based on model-based systems engineering and simulation tech-

nology. CPS Twinning [39] is a framework to construct Digital Twins of cyber-

physical systems. The framework uses specifications identified throughout the

system engineering phases. The main components of this framework are: a gen-

erator to transfer system specifications into a vertical environment; a vertical envi-

ronmentwhere the physical space is simulated and the cyber part is reconstructed;

and a set of modules that interact with the Digital Twin, such as monitoring, test-

ing, security and safety, and behaviour learning modules. Microservice-based

architecture is used in [41] to build a flexible smart cyber-physical production

system, in which the Digital Twin is a composition of these microservices. Sto-

janovic and Milenovic [45] defines a self-aware digital twin as a new generation

of Digital Twins which it does not replicate the behaviour of production processes

and physical assets only, but also it can reason about its own behaviour.

Digital Twins for Smart Factories

A smart Factory is an industrialization solution for flexible and adaptive produc-

tion facilities, as described by [51]. Intuitively, it refers to software systems, me-

chanics, labours, resources, and industrial and non-industrial partners. For our

purposes, then, we use the term “Factory" to refer to the shopfloor, which might

include smartManufacturing Systems and products. In this sense, wewish to dis-
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tinguish smart factories from Industry 4.0. Utilizing advanced technologies, such

as IoT, cyber-physical systems, cloud computing, etc., we call “Industry 4.0", while

“smart Factory" we see as the result of employing these technologies on shopfloor

entities, such as those mentioned above. Industry 4.0 is a manufacturing trend,

while a smart Factory is a result.

To give an idea of smart Factories related to Digital Twins, CyberFactory#1 aims

to develop key enabling capabilities for Digital factories and Factories of the Fu-

ture. CyberFactory#1 includes, but is not limited to, supply chains, human be-

haviour, finances, goods, and products [52]. Another example is the Digital Twin-

Driven smart Shopfloor (DTSF), which considers production processes, tooling,

equipment, materials, quality, cost, human, and environmental data [53]. Qi and

Tao [37] review the role of IoT, Big data, cloud computing, and machine learning

in industry 4.0. The design uses Big Data analytics to gather sharper insights into

the product life-cycle, such as customer demands, market preferences, and cus-

tomer voices about product features and quality. Karakra et al. [24] propose a

Digital Twin for hospital services based on discrete event simulation and health

care information systems. The work aims to enable the assessment of existing

healthcare systems and apply different change impact analyses without interpret-

ing hospital activities. For the developed Digital Twin model to be reliable, hos-

pital information systems and IoT devices are used to collect care and contextual

data, respectively.

2.1.4 Two approaches to Design Digital Twins

In this section, we give a brief overview of the most common simulation mod-

eling techniques to design Digital Twins: (1) discrete-event and (2) continuous

simulation modeling.

Discrete-event Digital Twins

Banks [54] defines discrete-event simulation modeling as a representation of sys-

tem components as discrete order of sequential events. Hence, the simulation

model transits from one state to another based on the occurrence of an event. An-

other concept related to discrete-event simulationmodeling is agent-basedmodel-
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ing and simulation, which enables to recreate and prediction of complex phenom-

ena using autonomous software agents (see section 2.2 for more details). Agent-

based simulation and modeling have been proposed in a wide range of applica-

tions, such as supply chains and logistics, social sciences, and business processes

[55]. Machine learning can be a useful tool for agent-basedmodeling and simula-

tion software. DeepMind, for example, uses deep reinforcement learning to teach

software agents locomotion behaviours without any previous learning; that is, an

agent has never shown locomotion behaviours, but it learns how to walk using a

reward function [56].

Eckhart and Ekelhart [57] propose a Digital Twin of Industrial control systems

(ICSs) based on Finite-State Machine (FSM). Formally, a program P of an ICS is

defined by tuple (S,s0, I,O,γ), where S = (s0,s0, . . . ,sn) is a finite (i.e., non-empty)

set of states, s0 ∈ S is an initial state, I is a finite set of inputs, O is a finite set of

outputs, and γ is a state-transition function: γ : S× I→ 2S. A Digital Twin P̂ is an

identical counterpart of the system (P = P̂), thus γ(s, i) = γ̂(ŝ, î)⇔ x1 = x̂1 provided

that (x = x̂)∧ (i = î). In this sense, replicating a stimulus (i.e., a state) in an input-

output fashion requires capturing its trigger. Atorf and Roßmann [58] present

a Digital Twin for traffic situation from 2016 in Florida, USA, whose objective is

to simulate accurately all possible state trajectories. The Digital Twin relies on

monitoring and recording drive state variable s(i, j, t), where i is a property, such

as joint angles, positions, and temperatures; j simulation variants; and t is time.

On this basis, simulating relies on: state variable s(i, j, t), Time series τ(i, j), State

vector s(j, t), State trajectory S(j). Isochrone map and variant ghost are used to

analyse and visualise the physical space. Luo et al. [59] propose a Digital Twin for

Computer Numerical Control Machine Tool (CNCMT). The Digital Twin gathers

different data on manufacturing phases, such as temperature, pressure, velocity,

position, and vibrating of the CNCMT, augmented with system knowledge. An

inference engine is used to deduce new information. MWorks software is used

to generate descriptive models of the physical space. Neural networks algorithm

over the descriptive models to provide fault prediction and diagnosis.
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Continuous Digital Twins

Continuous simulation modeling refers to simulation techniques that view the

system as variables that change continuously with respect to time. For example,

Lamb [60] uses time series plots and flow duration curves to build a continuous

simulation of flood frequency estimation. Banks [54] believes continuous simu-

lation is more popular among agricultural, chemical and electrical engineers.

Laaki et al. [25] propose a Digital Twin for remote medical operations. Its goal

is to emulate accurately human hand movements during medical operations. To

achieve this, the application relies on human hand movements data and a coordi-

nation system. The Digital Twin stores human hand movements data in a quater-

nion format (location, X-, Y-, Z- axis), so that a set of coordinate equations can

model the axis-angle representation. Using a control interface and 4G connec-

tion, a robotic arm replicates human hand movement in real-life settings. Zhao

et al. [61] introduce a Digital Twin for micro-punching systems, i.e., embossing

flat sheet materials. In micro-punching physical space, the punching process re-

lies mainly on composite platforms, linear motors, and piezoelectric ceramics that

drive (X-, Z- axis), X-axis, and Z-axis, respectively. The Digital Twin obtains these

coordinates through reiterating experiments of the punching process under differ-

ent inputs. Dynamic equations, such as depth value and staggered interval equa-

tions, are used to mimic punching functionalities. Nikolakis et al. [62] describe a

Digital Twin for a human-based manufacturing environment. Timestamped sen-

sors, Controlled Natural Language (CNL), and multi-depth cameras, are used to

gather data on the physical space. The Digital Twin relies on a data-driven mo-

tion synthesis approach to simulate human motions and objects picking, placing,

and carrying. The authors suggest a Digital-to-analog conversion to provide the

physical part with details, optimisation constraints, and potential modifications.

2.2 Intelligent Agents

For readers who are unfamiliar with the concept of “intelligent agent," we briefly

present here the notion of an intelligent agent and its main characteristics. Next,

we present the BDI architecture with one particular reference for programming
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BDI agents. For an elaborate introduction to intelligent agents and the BDI archi-

tecture, the reader is referred to [63] and [14], respectively.

Perhaps the most general way the term “intelligent agent" is used is to denote

any software entity that has the ability to perceive the environment in which it

is situated through sensors and (2) act upon that environment through actuators

[64]. This notion of intelligent agents is depicted in Figure 2.2.

Figure 2.2: Agent-environment interactions

For many researchers, the term “intelligent agent" possess a stronger notion

than perceiving and acting. An intelligent agent is a software entity that enjoys

the following characteristics [65]:

� Autonomy: An autonomous agent is a software entity operating on behalf

of an employer but without any direct intervention of that employer or other

agents.

� Reactivity: A reactive agent has the ability to perceive the environment and,

consequently, take an action that serves its goals in a timely fashion.

� Sociability: A social agent is a software entity that has the ability to interact

with other entities (e.g., humans and agents) through common agent-based

communication language.

� Proactivity: A proactive agent is one that do not only react to changes in the

environment but also responds to changes before they turn into real-world

events through the realization of its long-term goals.
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� Rationality: A rational agent should select actions that are expected to serve

the achievement of its goals and optimize its performance measure, given

the evidence provided by the percept sequence andwhatever built-in knowl-

edge the agent has.

Other researchers tend to describe intelligent agents with an even stronger no-

tion of characteristics, such as learning, flexibility, mobility, and context-sensitive

[66, 67]. Another distinctive mark of intelligent agents is their cognitive architec-

tures. A cognitive architecture depicts how the agent implements a certain theory

of cognition. The BDI software model is a typical example of cognitive architec-

ture. Onemight reasonably ask “Why not another softwaremodel?". Actually, the

reader can find many alternative architectures (e.g., Soar [68], and ACT-R [69])

that have been used for similar applications. It should be noted that it is not our

intention to argue that BDI agents are the best way to design Digital Twins of or-

ganizations. Rather, this thesis has been built on the premise that the BDI agent

framework is already widely used, and its state-of-the-art exhibits a large number

of extensions, which can be leveraged as bases for a more fine-grained design of

Digital Twins.

2.2.1 BDI Agents

The BDI agent architecture was first raised by Georgeff and Rao [15], which is

an architecture inspired by the theory of human practical reasoning of Michael

Bratman [70] but which is significantly influenced by the need to harmonise be-

tween deliberative and reactive planning in goal-oriented autonomous systems.

The origin of the BDI model goes back to folk psychology with a little variation.

While folk psychology is commonly used to explain and predict human behaviour

[71], the BDImodel is used to generate behaviour. Perhaps themost eloquent and

simplest description of this notion is the intentional stance of Dennett

”First, you decide to treat the object whose behaviour is to be pre-

dicted as a rational agent; then you figure out what beliefs that agent

ought to have, given its place in the world and its purpose. Then you

figure out what desires it ought to have, on the same considerations,
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and finally you predict that this rational agent will act to further its

goals in the light of its beliefs. A little practical reasoning from the

chosen set of beliefs and desires will in most instances yield a decision

about what the agent ought to do; that is what you predict the agent

will do." [72, p. 17]

Committing to a course of action (i.e., intention) is the centric notion of the

BDI model. Once the agent is committed to bringing about a certain goal, it pro-

ceeds with a relevant course of action until, but not necessarily, that goal is accom-

plished. Among the exceptions are when the goal becomes unreachable, irrele-

vant or another opportunity comes to light. Arguably, the last exception is what

grants BDI agents the sense of harmony between reactivity and deliberation.

Figure 2.3: A high-level abstraction of BDI architecture

Figure 2.3 illustrates the main components of the BDI agent, which are:

1. The beliefs of the agent, which represent what the agent knows about the

environment in which it is situated. New percepts of the world should be
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submitted to a belief revision function, which in turn updates the current

belief base with the new beliefs. Where sensor readings may not accurately

reflect a perfect view of the environment, beliefs can be incomplete and in-

consistent

2. The desires of the agent, which are states of affairs (i.e., goals) that the agent

would like to bring about. The option generation function looks at the cur-

rent beliefs and intentions of the agent in order to select which desires to

pursue. Normally, the agent is equipped with one or more suitable plans to

achieve its goals.

3. The intentions of the agent are plans that the agent is committed to executing

in order to achieve its goals. The agent needs to filter unrealistic options (e.g.,

unreachable goals) and, consequently, determine its intentions. Finally, one

intention has to be executed.

Implementing BDI agents requires also a plan library (a set of predefined oper-

ational procedures). Despite this discussion, the reader should note that there are

slight differences between the original BDI architecture and its implementations.

Where there are different agent programming languages (e.g., Jack [73] and 3APL

[74]) for BDI agents, we use AgentSpeak(L) programming language [20] as basis

to design Digital Twins. This section introduces a brief overview of the standard

AgentSpeak(L). For an elaborate introduction to AgentSpeak(L), the reader is re-

ferred to [75] and [20]. An AgentSpeak(L) agent is a tuple 〈E,B,P, I,A,SE,SO,SI〉,

where:

� E is a set of events,

� B is a set of beliefs

� P is a set of plans,

� I is a set of intentions,

� A is a set of actions,

� SE selects an event from the set E
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� SO selects an applicable plan from the set P, and

� SI selects an intention from the set I

The basic reactive behaviour of an agent system programmed using AgentS-

peak(L) involves the system responding to events by selecting an event to ad-

dress from the set of all pending events (E), selecting a plan from the library (P),

and stacking its program into I. A plan in the plan library is a rule of the form

ε : ν ← ρ , where the program ρ is a predefined strategy designed to handle the

goal event ε whenever the context condition ν is believed to be true by the agent.

A program ρ can include primitive actions and sub-goals that can be achieved

by selecting other suitable sub-plans. A plan can be selected for addressing an

event ε if it is relevant and applicable, i.e., designed with respect to the goal event

ε , and the agent believes that its context ν is a logical consequence of his belief

base, respectively. For our purposes, given an AgentSpeak(L) plan p, we use the

functions triggering(p) to return its triggering event, context(p) to return its context

conditions, and body(p) to return its program.

An AgentSpeak(L) agent is associated with various selection functions, which

form the bases for customizing its internal behaviour (i.e., SE,SO,SI). Selection

strategies yield a way of customizing the BDI internal behaviour in terms of event

selection (SE), selection of plans (SO), and generation and deliberation of goals

(SI). Note that SE,SO,SI are user-defined, i.e., they can be customized by program-

mers [75].

2.2.2 Positioning BDI Agents Within the Scope

Now, we try to demonstrate how a software agent with a belief-desire-intention

architecture can be appropriate to imitate the behaviour of organizations in an en-

vironment characterized by various requirements and limitations. Organizations,

and a wide range of other physical spaces, exhibit a number of characterises, such

as:

1. At any given time, there are different ways in which the business environ-

ment can evolve. Note that this could include data on orders, characteristics
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of production inputs, also information on the state of the business environ-

ment, competitors, regulatory regime, etc. Also, there are different objec-

tives that the organization is required to achieve (e.g., establishing brand

awareness and recruiting candidates).

2. As the organization has to act on environment developments, it is required

to select suitable activities and procedures that best achieve its objectives.

This can include plans for workforce development, product and services,

finances and expansion.

3. During the execution of selected options (or even during the selection pro-

cess), organisational environment may change in an unpredictable and sig-

nificantmanner. This imposes the organization to deliberate - think carefully

- about alternative options.

To clarify our claim that a BDI agent can be an adequate means to remodel an

organization’s behaviour in such settings, let us map the above characterises to

the SE, SO and SI, which represent the core of BDI agent reasoning cycle:

1. After perceiving the business environment, an event selection function (SE)

selects an event (e) from the set of all pending events (E), where each event

can be assumed to have different importance for the agent. An event rep-

resents either change in the organization’s goals or changes in the business

environment.

2. As the agent has to react to the selected event e, an option selection function

(SO) selects a business plan (p) among other applicable options (Oe). A plan

is applicable with respect to an event e if the agent believes that the current

business context is a logical consequence of its beliefs.

3. Where the agentmight havemany intentions (e.g., business goals), an inten-

tion selection function (SI) is, typically, agent-specific. That is, the choice of

an intention (i) between other competing intentions (I) might be associated

with goals urgency degrees.

A BDI agent is arguably one of the most sophisticated agent architectures on

offer, permitting the modelling of organizations using anthropomorphic handles.
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2.3 Explainable Artificial Intelligence

For readers who are unfamiliar with eXplainable Artificial Intelligence (XAI), we

introduce here a very brief overview of XAI concept. Readers who are unfamiliar

with the explainable agency or, indeed, who are familiar with a different notion of

XAI (e.g., explainable machine learning) have to proceed to Section 2.3.1. Further

details on explainable machine learning can be found in works such as [76] and

[77].

Roughly speaking, AI models (whether statistical or cognitive) are black boxes

to the user and, indeed, to their designers in the sense of their capability to an-

swer why a certain prediction or decision has been made. Fundamentally, XAI

allows humans to understand the predictions or decisions of AI models [76]. One

might reasonably ask “Why my AI model needs to be explainable?" especially if

it achieves high-performance measurements (e.g., accuracy). The answer is that

XAI can help improve human-machine interaction (e.g., teaming and collabora-

tion) by ensuring trustworthiness, transferability, confidence, etc. [76]. Aswewill

show in this thesis, XAI also opens up important new classes of applications, such

as competitor modelling in a setting where there is limited information available

about competitor behaviour. It should be noted that not all machine learning al-

gorithms are black boxes - some are interpretable (aka white-box) by design (i.e.,

they do not need an external XAI model), such as decision trees and logistic re-

gression models [77]. However, white-box machine learning algorithms are not

always able to achieve high performance.

To illustrate how explainable machine learning works, consider the following

example.

Example 2.1. In our scenario, let us assume a startup that aims to understand the

decision process of one of its competitors. A particular situation for the startup

is how its competitor chooses courier companies to carry out its logistic services.

Assume that the selection process depends on four features: years of experience,

whether the courier services have been used before, the number of drivers, and

whether the courier supports offshore deliveries (columns 2-5). Assume also

that these features represent information that many of the industry players know
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about. As illustrated in Table 2.2, raw 1-9 are labelled data points representing

past decisions (column 6) of the competitor. Whereas, raw 10 is not labelled data

point representing a future selection of the competitor.

Table 2.2: Example of an explainable machine learning problem

No. Experience Employed? No. of Couriers Offshore? Hired

1 10 Y 35 N Y
2 9 N 41 N N
3 15 Y 51 N Y
4 16 N 60 Y N
5 9 N 30 N N
6 17 Y 66 Y Y
7 21 Y 131 Y Y
8 13 N 38 Y N
9 10 N 30 N N
10 5 N 20 N ?

Assume that we have a machine learning model that was trained to predict

whether the tenth local courier companywould be hired (Y) or not (N). The learn-

ing model can predict this problem as long as the above-cited features are avail-

able. Given the above-cited features of the tenth courier, most machine learning

algorithms prediction will be (N) with 1.00 accuracy. Although such predictions

are beneficial in many applications, the startup still has no clue on which bases its

competitor will make such a decision.

Continuing with Example 1, the startup can obtain more explainable predic-

tions by the following two strategies: (1) using a white-box predictive algorithm

(e.g., decision trees) and (2) using an external XAI model. The former strategy

can be problematic since some learning problems requires sophisticated black-box

algorithms (e.g., deep learning algorithms), which are extremely hard to explain.

Let us consider, therefore, the latter strategy. Among other XAI techniques, the

feature importance score would tell the startup the significance of each feature to

the prediction. In this case, it would tell the startup that the competitor concen-

trates on the feature Employed and overlooks other features.

Perhaps, it is now clearer that XAI was developed as a means of understanding
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the predictions and decisions of machine learning algorithms. That is to say, XAI

was not designed to build Digital Twins, but it has considerable potential in this

application area. At the core of the original proposal of Digital Twin technology

was the idea that a Digital Twin should be re-crafted in response to every change

in the target system or the operating context [16]. Once Digital Twin developers

understand the target system and its operational context (provided by XAI), they

do not need to start from scratch.

2.3.1 Explainable Agency

Explainable Agency refers to intelligent agents’ ability to explain their actions,

and goals [78]. Although the explainable agency can intersect with explainable

machine learning (recall that agents can be learning software entities [66]), we

shall limit our discussion to goal-driven XAI in this section.

It is generally acceptable to assume that people tend to explain observed be-

haviour by resorting to their own anthropomorphic vocabularies (e.g., beliefs,

emotions, goals and norms). Where most of the well-known agent architectures

are inspired by folk psychology, explainable agents could be the most appropriate

XAI model to provide structured explanations to humans. Researchers who have

used folk psychology-inspired architectures for this purpose have identified three

tasks for the agent to be explainable: (i) generating why an action was taken or a

goal was carried out, (ii) representing the explanation to the end-user, and (iii)

evaluating explanation usefulness. This thesis focuses on the former two tasks,

which use the BDI ontology as the implementation vehicle of the first task and

AgentSpeak(L) programming language as a means of communication for the sec-

ond task. Note that existing agentmodels are not explainable by design [78]. That

is to say, similar tomachine learning algorithms, an agentmodel requires an exter-

nal XAI model to satisfy the above three tasks. However, unlike machine learning

algorithms, agent models are open software architecture that allows adding ex-

planation generation modules [78].

Most of the existing work on explainable BDI agents (e.g., [79] and [80]) views

action selection in the BDI framework as a result of the agent’s current beliefs and
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goalsc, which can be represented using a Goal Hierarchy Tree (GHT). A GHT is a

tree structure representing a high-level abstraction of agent reasoning. An agent’s

top-level goal is placed at the root of the GHT. A link from a goal to one or more

sub-goals (square nodes) means that these sub-goals must be carried out as part

of achieving that top-level goal. Tree leaves (shaded square nodes) represent ac-

tions that the agent can execute. For the agent to execute an action, certain beliefs

(rounded nodes) placed directly above the action must be true. For illustration

purposes, we consider a part of the leading firefighter agent [79] as an example.

Example 2.2. As shown in Figure 2.4, the leading FireFighter Agent (or simply

FFAgent) has the goal of leading the firefighter team. FFAgent prepares to handle

a fire incident whenever it acquires the belief fire alarm. If the equipment has

not yet been collected, then the FFAgent collects the equipment, gets into the fire

engine and calls the operator.

Figure 2.4: An excerpt of GHT of FFAgent

Figure 2.4 illustrates the structure of the goal hierarchy tree to which the goals

and beliefs of the FFAgent are updated. One may think of triggering action as

the result of the agent’s current goals ad beliefs. At every reasoning cycle, if there
cWe argue that this notion of action selection is exclusive. Indeed, a practical BDI agent trig-

gers an action based on all its handles (e.g., current beliefs, goal, plan and the event, option and
intention selection functions). However, explaining action selection by beliefs and/or goals for
human-agent interaction purposes can be useful.
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is no applicable action, the agent waits until its beliefs change. If multiple ac-

tions are applicable, the agent chooses an action based on a particular selection

strategy (see section 3.6 for more details). What existing explanation algorithms

do is selecting the beliefs and goals that are directly above the selected action in

the tree to design explanation patterns. For example, in the goal hierarchy de-

picted in Figure 2.4, the action Collectequipment can be explained by the belief

Notyetcollectedequipment and the goal Prepareandgotothefire.

Designing agent explanations is not as straightforward as the account above

suggests. There are preferences involved in terms of choosing between different

types of explanations (e.g., belief-based, goal-based, and belief and goal-based

explanations). Determining how to represent generated explanations is related to

the task (ii). For example, Harbers et al. [79] described four algorithms to design

explainable BDI agents: one using parent goals, one using top-level goals, one

using enabling beliefs, and one using the following action or goal in the execution

sequence. They found goal-based explanations were slightly preferable to belief-

based expansions to explain procedural actions (i.e., a sequence of actions and

sub-goals) based on users’ evaluation. Nevertheless, belief-based explanations

were preferable in explaining conditional and single actions. Similar explanation

algorithms were proposed by Kaptein et al. [80], but to investigate the difference

in preference of adults and children for goal-based and belief-based explanations.

They found that both adults and children prefer goal-based explanations.

2.4 Summarising the Weaknesses

After introducing the main ingredients of this thesis, we summarize the weak-

nesses of using the current endeavours for developing Digital Twins of organi-

zations and explainable agencies attempting to build on the strengths of the BDI

ontology and XAI. We identified six critical shortcomings, namely.

1. While considerable attention has been paid to developing Digital Twins for

physical devices and systems (as described in section 2.1.3), the question

of developing twins for organizations has received relatively little attention.

Digital Twins of organizations can provide value to the organization and
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other industry players.

2. Much of the reviewed literature on Digital Twins of anthropomorphic coun-

terparts focuses only on how physical space behaviour can be remodeled

(in silico) to output the same external behaviour (as described in section

2.1.4). Recall that real-life organizations are anthropomorphic entities [8–

10]. Therefore, it is also of great importance to concentrate on their inner

workings. For example, how an organization prioritizes its goals?

3. Although there is a large body of work on explainable agency concentrated

on making the internal state of human-like agents and robots more under-

standable to humans (as described in section 2.3), it does not provide an

approach to generate an explicit representation of the agent model. Rather,

it generates explanations that look like “because I believe that {beliefs}" and

“because I want to {goals}".

4. Much of the literature on explainable BDI agents does not provide a com-

plete account of the reasoning capacity of the BDI model (i.e., beliefs, de-

sires, intentions and plans). To illustrate this, assume a reward function de-

fined to give a positive reward to a BDI agent each time it selects a suitable

action. One might reasonably ask “What exactly should I reward?" the SE,

SO or the SI. Predicated on the original proposal of the BDI model, all these

components shape the action selection mechanism.

5. A significant assumption made by the reviewed literature was the collab-

orative settings. Collaborative settings allow developers to design Digital

Twins, assuming that honest physical counterparts would tell their char-

acteristics at any given time. Clearly, this does not work in many settings,

where no more than common patterns, external events, and the external be-

haviour of the target system are available.

6. Much of the work done on explanation generation in the field of goal-driven

XAI has traditionally assumed the availability of explanation generationmod-

ules, reliable observations, and deterministic execution of plans. However,

in real-life settings, explanation generation modules are not readily avail-
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able, unreliable observations are frequently encountered, and plans are non-

deterministic.



Chapter 3

Abductive Design of BDI Based
Digital Twins

Digital Twin technology ideally manifests the same behaviour (in silico) as

its physical counterpart. While considerable attention has been paid to the

development of Digital Twins for physical devices/systems, the question of devel-

oping Twins for organizations has received relatively little attention. The setting in

which we address this problem is very general and, consequently, very challeng-

ing. We look at the automatic acquisition ofDigital Twins of organizations. To that

end, this work builds on the following two premises: (1) that Digital Twins of or-

ganizations can provide value, and (2) that Belief-Desire-Intention (BDI) agents

are a particularly effective means for representing Digital Twins. The overall ap-

proach is to leverage the externally observable behaviour of the target system and

then generate candidate BDI agent programs that best explain (in the sense of

formal abduction) the observed behaviour. The candidate agent programs are

generated by searching through potentially large hypotheses spaces for possible

plans, selection functions and beliefs. The resulting approach suggests that using

abduction to generate Digital Twins of organizations in the form of BDI agents can

be effective.

3.1 Introduction

Fundamentally, a Digital Twin provides a test-bed that mimics the behaviour of

its physical counterpart based on real-time data, which can form the basis for op-

33
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timizations or handle potential deviations before they turn into real-world events.

Awide range of initiatives for developingDigital Twins have been proposed in the

literature, including, but not limited to, vehicle manufacturing systems, product

life cycle and health care information systems [81]. Recently, work has emerged

addressing the problem of developing Digital Twins of organizations [13].

Our objective in this chapter is twofold. First, we look at the automatic acquisi-

tion of Digital Twins. “Hand-crafting” Digital Twins, which is the current norm,

comes with several obvious limitations. The time and effort involved in crafting a

Digital Twin lead to bottlenecks. Digital Twins have to be “re-crafted” in response

to every change in the target system or the operating context [16]. Second, while

much of the literature on Digital Twins addresses target systems that are physical

devices and their controllers, we propose an approach that can generate effective

Digital Twins of organizations without loss of generality to physical and cyber-

physical systems. This opens up important new classes of applications, such as

competitor modelling, where our approach to Digital Twin acquisition enables

the building of effective twins even in a setting where there is limited information

available about competitor behaviour.

This chapter presents an approach to automate the acquisition of autonomous,

context-aware and adaptive Digital Twins [16] by defining techniques for acquir-

ing agent programs in the BDI architecture. The starting point to our approach

is to leverage the externally observable behaviour of the target organization and

then generate candidate agent programs that best explain (in the sense of formal

abduction) the observed behaviour. The candidate agent programs are generated

by searching through potentially large spaces for possible plans, selection func-

tions and beliefs.

We structure this chapter as follows. Section 3.2 presents our running example

with pointers to different common patterns of organization behaviour. Section 3.3

introduces some required preliminaries, i.e., AgentSpeak(L) programming lan-

guage. Section 3.4 describes the application of abductive plan recognition to ex-

plain the behaviour of organizations. We describe our approach for belief-based

action explanation in Section 3.5. Section 3.6 describes our approach to explain-

ing the behaviour of organizations in terms of goal generation and deliberation
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and applicable plan selection strategies. Related work is discussed in Section 3.7

before we conclude and outline future work in Section 3.8.

3.2 Running Example

Startup competitor analysis can be a practical motivating application for using the

abductive design of BDI based Digital Twins. As a running example, we consider

a startup that aims to build a Digital Twin of one of its competitors, with a view

to predicting how the competitor will behave in certain situations. We shall refer

to the latter company as the Adversary Co. or simply ACo. A particularly stress-

ful situation for the startup is how ACo takes its products through their life cycle

(these situations might present competitive opportunities for the startup in our

story). As part of its competitor analysis, the startup also leverages a forecasting

model similar to the one taken by Jennings et al. [82]. A key advantage of the

forecasting model is that it enables the startup to estimate the stage of products

based on different factors such as demand states, product age, and changes in

technology.

Example 3.1. In our scenario, ACo designs industrial IoT products to stay on the

market for an average lifetime of 4 years. For ACo to manage products during

their lifetime, it adopts a similar product life cycle to the one developed by Levitt

et al. [83], in that the product typically goes through five recognizable stages:

release, active, mature, limited, and obsolete. We identify five common patterns

that can arise during the product life cycle.

1. A new product is released to the market before there is a real demand for

it and often before a proven competition. Before launching the product, the

organization should conduct pre-release testing (i.e., beta test). Also, it is

committed to developing and maintaining feedback channels during this

stage.

2. Due to sales volume and competition growth, the organization moves the

product into the active stage. During this stage, the product is in volume
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production and sold according to the price-lists for the active stage. Also, the

organization will continue to improve and add new features to the product.

3. As market saturation and sales volume peaks are reached, the organization

moves the product into themature stage. During this stage, the organization

offers limited technical support, reduces production and distribution, and

does limited product improvement.

4. Due to components unavailability or sales volume declines, the organization

moves the product into the limited stage. Last Time Buy (LTB)will be sched-

uled during this stage, and the organization will make no further product

improvements or testing. As a rule, mature stage prices are no longer valid,

i.e., higher unit prices may be applied.

5. Due to latent demand or product ageing, the organization moves the prod-

uct into the obsolete stage. During this stage, the organizationwill not accept

orders for the product, and no technical support will be offered. Neverthe-

less, the organization is willing to provide a limited amount of compatible

spare parts for the product.

As in Example 3.1, each transition in the product stages can be seen as a result

of changes in the business environment (i.e., external events), which triggers the

execution of a product life cycle strategy. Note that the product does not need to

go through these five stages. For example, a product can be classified as limited

soon after being active because of component unavailability, e.g., semiconductor

shortage.

Example 3.2. After identifying ACo as a direct competitor, let us assume that the

startup decided to concentrate its competitive analysis on five products: (1) IoT

Device Gateway model sgx51, (2) Wireless IoT Gateway model wgt67, (3) Time

GPS Tracker model tpt09, (4) IoT Smart Home Kit model swd01, and (5) Tem-

perature & Humidity Sensor model ths04. We describe the history of the past

behaviour of ACo for managing these five products below. While Table 3.1 illus-

trates the behaviour log for managing these five products
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Table 3.1: An example of ACo external behaviour

Timestamp Action
t3 advertise(sgx51,socialMedia)
t5 launch(sgx51)
t8 create_feedback(sgx51)
t14 advertise(wgt67,email_list)
t16 advertise(tpt09,email_list)
t18 LTB(wgt67)
t20 reduce_support(tpt09)
t22 discontinue_updating(wgt67)
t24 reduce_production(tpt09)
t25 discontinue_testing(wgt67)
t27 reduce_updating(tpt09)

Timestamp Action
t29 rise_price(wgt67)
t33 advertise(swd01,email_list)
t35 reduce_price(swd01)
t37 increase_production(swd01)
t38 add_features(swd01)
t40 improve(swd01)
t44 advertise(ths04,email_list)
t46 stop_distributing(ths04)
t48 cease_production(ths04)
t50 discontinue_support(ths04)
t52 provide_parts(ths04)

Table 3.2 represents an event log that stores information on the state of the busi-

ness environment during the execution of an excerpt of the behaviour log in Table

3.1 (we omit details on changes in the business environment during the rest of

the behaviour log, which would be not necessary for the objectives of our running

example). We use an underlying commercial vocabulary (i.e., state description

language) to describe the changes in the business environment. For example, at

time t30, the first observation indicates that sensor model ths04 has been in the

market for 4 years.

Table 3.2: An excerpt example of changes in ACo business environment

Timestamp Event
t30 age(ths04) = 4Y0M0D
t31 high_demand(swd01)
t32 competitors(swd01)
t34 promoted(swd01,active)
t36 price_reduced(swd01)
t39 features_added(swd01)

As the product goes through its life cycle stages, a wide variety of information

on the product characteristics and the state of the business environment can be

represented through events. We are interested in recording two types of events:

(1) events that record the behaviour of the organization (e.g., tasks and activities

recorded in Table 3.1) and (2) events that record state changes in the business

environment (e.g., changes in the state of the business environment recorded in

Table 3.2). Obtaining these two types of events can be achieved by instrumenting

the business environment with off-the-shelf market monitors. However, we do
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not claim to be able to obtain a complete description of the state of the business

environment in competitive settings.

Now, we can relate the problem of this work to our running example. Funda-

mentally, a Digital Twin should re-create the externally visible behaviour of ACo,

as captured in its behaviour logs (e.g., Table 3.1). Recreating the behaviour de-

picted in Example 3.2 is far from trivial and involves a number of strategies for

goal deliberation and plan selection. For example, the startup might ask: How

does ACo react to competing product management strategies? Why did ACo se-

lect a particular plan among other options? What must have been known for ACo

to perform a particular task over another? Amore fine-grained definition of aDig-

ital Twin, therefore, is one that not only faithfully recreates the externally visible

behaviour of ACo but also faithfully re-creates its internal workings. We address

the problem of designing such Digital Twins based on the BDI agent ontology

(specifically AgentSpeak(L) programs [20]) by the following means (1) abduc-

tive plan recognition, (2) explaining by beliefs, and (3) explaining by selection

strategies.

3.3 Programming BDI Agents

A software agent system programmed using BDI programming languages com-

monly consists of a belief base (what the agent knows about the environment in

which it is situated), a set of events (desires that the agent would like to bring

about), a plan library (a set of predefined operational procedures of the domain),

and a base of intentions (plans that the agent is committed to executing). This

chapter builds on the well-studied AgentSpeak(L) language for programming

BDI agents as a demonstration platform.

Nowwe apply the alphabet of AgentSpeak(L) language introduced in this sec-

tion to Example 3.1. Figure 3.1 illustrates an excerpt of the product life cycle man-

agement plan library written on the basis of AgentSpeak(L) programming lan-

guage.
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/* initial beliefs and rules */
lifetime(x) = .date(04,00,00).
release(x):- new(x) & competitive(x).
active(x):- high_demand(x) & not competitive(x).
mature(x):- market_saturation(x) & overfull_demand(x).
limited(x):- declining_demand(x) | not available_component(x).
obsolete(x):- age(x) > lifetime(x) | latent_demand(x).

/* plans */

@p1 +release(x): beta_test(x)
<- !promote(x);
launch(x);
create_feedback(x).

@p2 +active(x): not stocked(x)
<- !promote(x);
reduce_price(x);
increase_production(x);
add_features(x);
improve(x).

@P3 +mature(x): stocked(x)
<- !promote(x);
reduce_support(x);
reduce_production(x);
reduce_updating(x).

@p4 +limited(x): stocked(x)
<- !promote(x);
LTB(x);
discontinue_updating(x);
discontinue_testing(x);
rise_price(x).

@p5 +obsolete(x): not stocked(x)
<- !promote(x);
stop_distributing(x);
cease_production(x);
discontinue_support(x);
provide_parts(x).

@p6 +defective(x): distributed(x) & not obsolete(x)
<- stop_distributing(x);
!promote(x);
withdraw(x);
modify_production(x).

@p7 +!promote(x): not promoted(x) <- advertise(x,email_list). .
@p8 +!promote(x): not promoted(x) <- advertise(x,socialMedia).

Figure 3.1: An excerpt of product life cycle management plan library
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The main task of the plan library is to manage a product as it goes through its

life cycle. As illustrated in Figure 3.1, the belief base contains an initial belief re-

garding the lifetime of the product and rules that allow us to conclude the stage

of the product based on its characteristics, information on the state of the busi-

ness environment, competitors, etc. Belief addition events trigger each depicted

top-level plan due to the perception of the business environment, which in our

scenario are outputs of the product life cycle forecasting model. Note that these

plans have a common sub-goal !promote(x), for which there are two applicable op-

tions to achieve it (p7 and p8) whenever the organization does not believe that the

product has been promoted yet.

3.4 Abductive Plan Recognition

We describe in this section the application of abductive plan recognition as a hy-

pothesis assembly problema to support Digital Twin developers in explaining the

external behaviour of organizations. However, what our mechanism tries to infer

is slightly different from the notion of classical abductive plan recognition, where

it seeks to find a set of plans whose execution generates precisely the observed

action sequence. To our application area, abductive plan recognition is designed

to take

1. A set of potential ordered plans, denoted by H, which describes common

patterns of organization behaviour, and

2. A behaviour log, denoted by D, of the target organization that we want to

explain.

Assuming:

1. That the observed behaviour is rational (i.e., there are no selection prob-

lems).

2. That all behaviour of interest we might extract from the available data will

be drawn from H.
alogical abduction is also of interest, and we think that it is an applicable extension of the set-

tings presented in this chapter, but is beyond the scope of this chapter
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Explaining the external behaviour of an organization using H computes the fol-

lowing:

1. An initial high-level event, and

2. A composite hypothesis of plans and sub-plans (H′ ⊆ H) from the plan li-

brary

such that the execution of the plans and sub-plans thus identified generates pre-

cisely the observed action sequence given the initial high-level event thus identi-

fied (we use the terms “hypothesis" and “plan " interchangeably in this chapter).

Particularly, we seek to find plans and sub-plans that explain the observed be-

haviour (i.e., organization external behaviour). We say that H′ explains a given or-

ganization external behaviour if its execution generates precisely that behaviour.

Finally, to ensure the practical use of the inferred model, we need to assume the

completeness of H′.

Example 3.3. To illustrate this idea, consider the behaviour log given in Table

3.1, and let H be given in our running example specifications in Figure 3.1. For

this simple example, it might be straightforward to infer that the top-level plans

p1,p2,p3,p4, and p5 explain the behaviour represented in Table 3.1.

As discussed above, organizations are driven by a wide range of values that

shape their behaviour, and they cannot be recognized using domain knowledge.

Recall that one of the main objectives of this work is to recreate any organiza-

tion behaviour with as little as possible previous knowledge of the underlying

behaviour of the organization. Intending to address this issue, we define the fol-

lowing algorithm.

Algorithm 3.1 (Abductive plan recognition algorithm). Let D be an observed

sequence of tasks and activities and H be a set of potential explanations written

on the basis of AgentSpeak(L). A composite hypothesis H′ ⊆ H that explains D can

be computed as follows

Algorithm 3.1 starts with parsing the triggering part of hypotheses that exist

in H. What the function top(E) does is simply to select the first event (e) in E at
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Algorithm 3.1. Abductive Plan Recognition Algorithm

1: D = {d1,. . . ,dn}
2: H = {h1, . . . ,hm}
3: E = ∅
4: H′ = ∅
5: For h in H: E = E ∪ [triggering(h)]
6: stack = ∅
7: while(E 6= ∅):
8: e = top(E)
9: Re = unify_event(H)

10: stack.push(Re)
11: E = E - {e}
12: For ht in stack:
13: For am in body(ht) and dn in D:
14: if(am = dn):
15: explain(ht) = [dn]
16: H′ = H′ ∪ {ht}
17: if(parent(ht) 6= nil):
18: explain(parent(ht)) = [dn]
19: if(am = !g(t)):
20: e = !g(t)
21: Re = unify_event(H)
22: Foreach h in Re: parent(h) = ht
23: stack.push(Re)
24: Endfor
25: Endfor
26: stack.clear()
27: Endwhile

each parse step (line 8). Afterwards, it uses the function unify_event to retrieve

all relevant hypotheses Re with respect to the event e (line 9) and then removes it

from E (line 11). A nested parsing runs over Re (lines 12 and 13). At each parse

step, the body part of each relevant hypothesis is compared with D elements (line

14). We use the function parent(h) to return the plan for which the hypothesis

h has been triggered. Depending on the current hypothesis body construct, the

algorithm determines if the potential explanation should be added to H′ (line 16)

or parsing hypothesis sub-plans (line 19). The algorithm terminates when E =∅

(line 7).

It is useful at this point to disclose some insightful strength points and weak-

nesses we observed through the implementation of Algorithm 3.1. Our algorithm

offers valuable advantage for: (1) unlike other workflowmining algorithms (e.g.,

alpha algorithm [84]), it works efficiently on both sorted and unsorted observa-
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tion logs, (2) as we describe in chapter 6, in the worst-case scenario, where the

target hypothesis is at the end of H or not present at all, Algorithm 3.1 will have to

scan the entire dataset. This results in an average and worst-case time complexity

of O(n), where n is the number of hypotheses inH, and (3) evenwhen all the rele-

vant observations are not available (due to competitive settings) it can still provide

plausible explanations. However, Algorithm 3.1 can be (1) subjectivity, where the

selection of the best explanation relies on the programmer’s background knowl-

edge, (2) it does not guarantee that the explanation is true or correct, and (3)

it may lead to premature conclusions if it overlooks other plausible explanations

that were not initially considered.

Finally, we should disclose a number of relaxing assumptions that were made

to focus on the core issue of this work. First, although we aim to automate the

acquisition of agent-based Digital Twins, we need manual input to map between

the vocabulary used in the plan library and the vocabulary used in the event logs

used. Second, in other settings, target plans are not necessary from the set of

potential plans. Hence, other notions of plan recognition would be more suitable,

e.g., discovering plans by executing action models to best explain the observed

actions, such as in [85]. Third, it is important to note that we do not claim to be

capable of inferring a complete and correct composite of hypotheses but providing

a description of organization behaviour. Developers can then use this description

for developing a more complete and correct Digital Twin.

3.5 Explaining by Beliefs

We seek in this section to provide explanations in terms of the beliefs responsible

for organization actions, such that explanations about an action would possibly

describe the knowledge or the context of the organization about its business en-

vironment. Explaining by beliefs can be summarized as follows: Given as inputs

1. A behaviour log of the target organization,

2. Information that other industry playerswould expect the target organization

to be aware of, and

3. The set of plans whose execution generated input (1),
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compute the beliefs that must have been known to the organization in order to ex-

ecute every action referred to in the behaviour log. Let us consider the following

example to highlight this problem.

Example 3.4. Continuing with Example 3.2, let us assume that the startup ob-

served the events shown in Table 3.3 (a) while moving IoT Smart Home Kit model

swd01 into the active stage, as shown in Table 3.3 (b).

Table 3.3: An example of ACo external behaviour (excerpt 1)

(a)

Timestamp Event
t30 age(ths04) = 4Y0M0D
t31 high_demand(swd01)
t32 competitors(swd01)
t34 promoted(swd01,active)
t36 price_reduced(swd01)
t39 features_added(swd01)

(b)

Timestamp Action
t33 advertise(swd01,email_list)
t35 reduce_price(swd01)
t37 increase_production(swd01)
t38 add_features(swd01)
t40 improve(swd01)
t44 advertise(ths04,email_list)

We expect that explaining by beliefs can helpDigital Twin developers to answer,

for example, the following question: What must have been known for ACo to

reduce the price of the product swd01?

3.5.1 Explanation Design

Recall that the task of explaining by beliefs is to generate the beliefs because of

which a certain actionwas executed. To that end, we build on the approach of [79]

to design explainable BDI agents. A BDI agent triggers an action with respect to

its goals and beliefs, which can be represented in terms of a Goal Hierarchy Tree

(GHT), such as in [79], [80] and [86]. In the following, we describe the structure

of GHTs, which are based on hierarchical task analysis, an approach utilized in

cognitive psychology for complex human tasks specification. We then use GHTs

later in this section, wherewe describe howwe can design explanations by beliefs.

Definition 3.1 (Goal Hierarchy Tree). A Goal Hierarchy Tree (GHT) is a tree

structure representing a high-level abstraction of an agent’s reasoning. In any

GHT, the agent’s main goal is placed at the root of the tree. A link from the top-
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level goal to one or more sub-goals (square nodes) means that these sub-goals

must be achieved as part of the top-level goal. Tree leaves (shaded square nodes)

represent actions that the agent can execute. For the agent to execute an action,

certain beliefs (rounded nodes) placed directly above the action must be true.

Example 3.5. Continuing with Example 3.4, consider the GHT illustrated in Fig-

ure 3.2. The top-level node represents the main goal of ACo (i.e., moving product

swd01 to the active stage) at time t33. A link from the belief node to its children

nodesmeans thatAComust have known high_demand(swd01) and competitors(swd01)

when it performed, for example, the action increae_production(swd01).

Figure 3.2: A GHT of ACo

Figure 3.2 illustrates the structure of the GHT to which the goals and beliefs of

the organization are updated. One may think of triggering action as the result of

the organization’s current goals and beliefs. If there is no applicable action, the

organization waits until its beliefs change. If multiple actions are applicable, then

the organization chooses an action based on a particular selection strategy (which

will be discussed in detail in Section 3.6).

When a developer asks to explain an action in terms of beliefs, a GHT is con-

structed, to which the goals and beliefs of the organization are updated. Next,

an explanation generation returns the beliefs that are directly above the selected

action to design an explanation by beliefs. Continuing with Example 3.5, explain-

ing by beliefs generates an explanation that looks like “given that the ACo per-

formed the action reduce_price(swd01), it must have known high_demand(swd01)

and competitors(swd01)”.

We should point out a number of relaxing assumptions that were made to focus
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on viewing the target system through the lens of BDI agents. We assumed that

GHTs can be readily available to the observer, deterministic execution of plans and

reliable observations. However, these are, to a certain extend, hard assumptions

in real-life settings. To that end, we propose a data-driven approach to mining

and validating belief-based explanations in chapter 5.

3.6 Explaining by Selection Strategies

Our guiding intuition behind explaining by selection strategies is that practical

strategies to SE, SO, and SI used to customize the rational behaviour of BDI agent

systems can also explain the rational behaviour of organizations. We concentrate

in this chapter on explaining by SE, SO, and SI strategies (other selection functions

are also of interest, and we believe that an extension of the mechanism presented

here can address these but are outside the scope of the present chapter). To that

end, we leverage existing strategies to AgentSpeak(L) selection functions used in

practical implementations for programming BDI agents, including First-in-First-

out (FIFO), RoundRobin (RR), andUser-Defined (UD) selection strategies. Table

3.4 outlines the potential explanations for explaining by selection strategies, which

are described later in this section in greater detail.

Table 3.4: Main selection strategies for customizing the BDI reasoning cycle

Strategy Explanation Description
A1 FIFO SE Selects the first event in the list of pending events.

A2 FIFO SO
Selects the first applicable plan from the set of
applicable plans.

A3 UD SO
Selects one applicable plan based on user-defined
conditions.

A4 FIFO SI
Executes each intention to completion before
starting another one.

A5 RR SI
Executes a fixed number of steps of each intention
in turn.

Explaining by selection strategies involves some mechanisms that take as in-

puts (1) A behaviour log of the target organization, (2) an event log, (3) plans

and sub-plans whose execution generated these logs, (4) selection strategies that

serve as potential explanations, and find the best selection strategies for explain-

ing the observed behaviour. Recall that input (3) can be abductively recognized
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given (1) and a set of potential plans, as discussed in Section 3.4. We view explain-

ing by selection strategies as an inclusive process, which accounts for SE, SO, and

SI selection strategies without distinction. Initially, users might prefer to explain

an observed behaviour using some BDI ontology. For example, [79] has shown

that explaining by enabling beliefs and parent goals are preferable to users. Nev-

ertheless, users may overlook some of the desired explanations that may present

competitive opportunities in our settings. Thus, explaining by all AgentSpeak(L)

selection functions is essential. To illustrate this with our running example, we

consider three casesb in which selection strategies can explain the observed be-

haviour.

Case I: FIFO SE, FIFO SO, and FIFO SI

Case I is the most straightforward rational behaviour that selection strategies can

explain, where it can be explained merely by FIFO SE, FIFO SO, and FIFO SI. We

expect FIFO SE to be helpful when the revision of beliefs is unobservable (due to

the competitive settings of this work). FIFO SO can deliver useful explanations

when the set of applicable plans is always singleton (i.e., SO has only one appli-

cable plan). FIFO SI allows us to explain the non-interleaving behaviour of the

organization. To clarify this case, let us consider the following example.

Example 3.6. Due to the risk of product information overload and lack of con-

sistency, organizations often tend to minimize the interactions between product

management ormarketing plans. To illustrate this, consider the behaviour ofmov-

ing product swd01 to the active stage and product ths04 to the obsolete stage, as

depicted in Table 3.5 and let the event log be given in our running example.

Table 3.5: An example of ACo external behaviour (excerpt 2)

Timestamp Action
t33 advertise(swd01,email_list)
t35 reduce_price(swd01)
t37 increase_production(swd01)
t38 add_features(swd01)
t40 improve(swd01)

Timestamp Action
t44 advertise(ths04,email_list)
t46 stop_distributing(ths04)
t48 cease_production(ths04)
t50 discontinue_support(ths04)
t52 provide_parts(ths04)

bMany other cases are possible also, however they are redundant.
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A1: Explaining by FIFO SE. FIFO SE selects which event to be handled based on

event temporal ordering (selects the first event in the list of pending events). Note

that it can be irrational to explain event selection based on behaviour logs due to

the independency of SO and SI selection strategies. For instance, in Example 3.6,

ACo selected to move the product swd01 into the active stage, although perceiv-

ing that sensor model ths04 has been obsolete due to product age occurring at an

earlier stage.

A2: Explaining by FIFO SO. FIFO SO selects an applicable plan based on the or-

der in which the set of applicable plans appears in the plan library (selects the

first applicable plan in the set of applicable plans). For instance, in Example 3.6,

ACo chose email marketing (plan p7) to promote changes in its products life cycle

status (i.e., handling the sub-goal +!promote(x)), according to the order in which

the applicable plans (plans p7 and p8) appear in Figure 3.1.

A4: Explaining by FIFO SI. FIFO SI executes one intention to completion before

selecting another intention. For example, the behaviour shown in Example 3.6

represents two intentions: one to achieve the goal of moving the product swd01

into the active stage and another tomove the product ths04 into the obsolete stage.

FIFO SI can explain the behaviour depicted in Example 3.6, since ACo selected

to carry out moving +!active(swd01) to completion before committing to achieve

+!obsolete(ths04).

Case II: FIFO SE, FIFO SO, and RR SI

The interleaving of plan steps mainly characterizes case II. The only difference

between Case II and simple rational behaviour is that intention execution is inter-

leaved with others. In contrast, in Case I, the goal is achieved, or the next step in

the intention cannot be executed. Hence, the behaviour in Case II is explained by

FIFO SE, FIFO SO, andRR SI. We expect RR SI to explain the interleaving behaviour

of plans steps. To illustrate this case, let us consider the following example.

Example 3.7. Assume that managing mature and limited products possess the
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same importance for ACo. Where it is possible for mature and limited products

to emerge regularly, ACo can commit to managing either before committing to

managing the other. Nevertheless, doing so may result in trapping short-term

tasks behind long-term tasks, which, in turn, requires the organization to ensure

fairness between competing product life cycle strategies. For example, consider

the behaviour of moving product wgt67 to the mature stage and product tpt09 to

the limited stage, as depicted in Table 3.6 and let the event log be given in our run-

ning example. A1: Explaining by FIFO SE. Explains the organization behaviour

Table 3.6: An example of ACo external behaviour (excerpt 3)

Timestamp Action
t14 advertise(wgt67,email_list)
t16 advertise(tpt09,email_list)
t18 LTB(wgt67)
t20 reduce_support(tpt09)
t22 discontinue_updating(wgt67)

Timestamp Action
t24 reduce_production(tpt09)
t25 discontinue_testing(wgt67)
t27 reduce_updating(tpt09)
t29 rise_price(wgt67)
t33 advertise(swd01,email_list)

according to the guidance given in explanation A1 (Section 3.6.1).

A2: Explaining by FIFO SO. Explains the organization behaviour according to

the guidance given in explanation A2 (Section 3.6.1).

A5: Explaining by RR SI. RR SI executes a certain number of steps of each in-

tention in turn. More precisely, RR SI allows the agent to be committed to concur-

rently executing a set of planswhile keeping the option of further commitments to

other plans open. For instance, in Example 3.7, the two product life cycle manage-

ment plans p3 and p4 have been executed concurrently (one step in turn). This,

in turn, ensures fairness between competing product life cycle strategies.

Case III: FIFO SE, UD SO and RR SI

So far, we have assumed that predefined selection strategies (e.g., FIFO and RR)

can explain the rational behaviour of an organization. Nevertheless, in real-life

settings, organizations are driven by a wide range of values that shape their se-

lection strategies. For Case III, we consider the problem of what is required to
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be done when predefined selection strategies are unable to maintain rational se-

lection. We offer developers an easy yet practical guide to manually override the

first-cut selection functions from available data. Our discussion concentrates on

settings with plan selections, but the approach easily extends to other AgentS-

peak(L) selection functions.

Example 3.8. Promoting media releases can be communicated through a variety

of means, such as television advertising, online and printed newspapers, ACo’s

website, and social media (e.g., Facebook and Twitter). Figure 3.3 represents dif-

ferent plans for notifying customers of the changes in product life cycle status.

@p7 +!promote(x): not promoted(x) <- advertise(x,socialMedia).

@p8 +!promote(x): not promoted(x) <- advertise(x,email_list).

Figure 3.3: An example on a set of applicable plans

It is clear that the sub-goal+!promote(x) has two applicable options to achieve it

(p7 and p8) whenever ACo does not believe that the product has been promoted

yet. Now, let us consider the behaviour shown below in table 3.7 and let the event

log be given in our running example.

Table 3.7: An example of ACo external behaviour (excerpt 4)

Timestamp Action
t3 advertise(sgx51,socialMedia)
t5 launch(sgx51)
t8 create_feedback(sgx51)
t14 advertise(wgt67,email_list)
t16 advertise(tpt09,email_list)
t18 LTB(wgt67)

Timestamp Action
t20 reduce_support(tpt09)
t22 discontinue_updating(wgt67)
t24 reduce_production(tpt09)
t25 discontinue_testing(wgt67)
t27 reduce_updating(tpt09)
t29 rise_price(wgt67)

A1: Explaining by FIFO SE. Explains the organization behaviour according to the

guidance given in explanation A1 (Section 3.6.1).

A3: Explaining by UD SO. UD SO selects an applicable plan based on hand-

crafted conditions. We expect that explaining by UD SO is useful, in particular
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when FIFO SO fails to explain the observed behaviour rationally. For instance,

in Example 3.8, the goal event +!promote(x) has two relevant plans {p7,p8}, and

they can be selected whenever ACo does not believe that the product has been

promoted. We say that FIFO SO is an irrational selection strategy if SO = p7 at

some instances and SO = p8 at other instances, which has occurred at timestamp

t3 and timestamp t14, respectively. A straightforward way to solve this is to seek

more beliefs (as described in Section 3.4) to explain each selection and try again

to override the SO method accordingly. For example, one may override the SO

method to make the selection based on the current stage of the product.

A5: Explaining by RR SI. Explains the organization behaviour according to the

guidance given in explanation A5 (Section 3.6.2).

3.6.1 Abductive Design of BDI Selection Functions

After introducing explaining by selection strategies, we shall now describe how

these explanations are made use of. The basic idea behind the abductive design

of AgentSpeak(L) selection functions is that those selection strategies that can ex-

plain an observed behaviour can also be used as the basis for customizing AgentS-

peak(L) selection functions. As such, the execution of the plans and sub-plans

thus identified by, for example, our abductive plan recognition mechanism gen-

erates precisely the observed behaviour given the selection functions thus cus-

tomized. We term the customization of AgentSpeak(L) selection functions based

on observation as the abductive design of AgentSpeak(L) selection functions.

Algorithm3.2 (Abductive design ofAgentSpeak(L) program). From the results

of the abductive plan recognition (i.e., H′) and the available selection strategies

(i.e., potential explanations), we can leverage the AgentSpeak(L) interpreter of

Rao [20] to customize SE, SO and SI abductively as follows.

Algorithm3.2 presents an abstract interpreter forAgentSpeak(L) given the com-

posite of hypotheses H′ and the selection strategies found using the guidelines in

this section.
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Algorithm 3.2.Abductive design of AgentSpeak(L) program

1: H′ = {h1, . . . ,hn}
2: While E 6= ∅:
3: IF explain(A1) = E:
4: SE(E) = top(E) // implements FIFO SE

5: E = E - top(E)
6: Re = unify_event(H′) // retrieves all relevant plans
7: Oe = check_context(Re) // determines applicable plans
8: IF explain(A2) = Oe:
9: SO(Oe) = top(Oe) // implements FIFO SO

10: IF explain(A3) = Oe:
11: SO(Oe) = UD(Oe) // implements UD SO

12: I = Construct_intention_stacks(H′)
13: For each i in I:
14: IF explain(A4) = i:
15: SI(I) = top(I) // implements FIFO SI

16: IF explain(A5) = i:
17: SI(I) = RR(I) // implements RR SI

18: Endwhile

Finally, we need to point out two key abstractions that weremade to concentrate

on the core problem of explaining by selection strategies. First, we abstract from

theoretical approaches to intention selection, e.g., coverage-based [87] and sum-

mary information-based intention selection [88]. Clearly, theoretical approaches

to intention selection are relevant for explaining by selection strategy. Neverthe-

less, for the practical results of this work, we can abstract from this. For similar

reasons, we abstract from the theoretical approaches to applicable plan selection,

e.g., cost-based [89] and best outcomes based [90] plan selection.

3.7 Related Work

Ourwork is related tomultiple research areas: XAI (used as explainable agency in

this chapter), learning agents, and process mining. In this section, we present dif-

ferent approaches in the literature as alternatives to support the design of Digital

Twins of organizations. Afterwards, we put our work into context.

3.7.1 Digital Twins of Anthropomorphic Systems

Although a large body of literature exists on developingDigital Twins for physical

devices and systems, few works focus on developing Digital Twins for anthropo-
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morphic entities (e.g., organizations), where re-crafting the internal behaviour of

the physical space is relevant.

Focusing on patient flows, [91] proposed a Digital Twin for hospital services.

For the Digital Twin to be reliable, hospital information systems and IoT devices

are employed to collect care and contextual data, respectively. These data repre-

sent the incorporation of dynamic and static resources and predefined care flows.

The hospital Digital Twin employs a discrete event simulation software package

(FlexSim) to assess the health care current state and observe its dynamic behaviour.

[58] presented a Digital Twin for automated driving based on traffic situations

from 2016 in Florida, USA, whose objective is to accurately simulate all possible

driving trajectories. The Digital Twin relies on monitoring and recording drive

state variables. Isochrone map and variant ghost are used to analyze and visual-

ize the physical space. [62] described a Digital Twin for a human-based manufac-

turing environment. Timestamped sensors, ControlledNatural Language (CNL),

and multi-depth cameras are used to gather data on the physical space. The Dig-

ital Twin relies on a data-driven motion synthesis approach to simulate human

motions and objects picking, placing, and carrying. The authors suggest a digital-

to-analogue conversion to provide the physical part with details, optimization

constraints, and potential modifications. [25] proposed a Digital Twin for remote

medical operations. Its goal is to emulate accurately human handmovements dur-

ing medical operations. The application relies on human hand movements data

and a coordination system to achieve this. The Digital Twin stores human hand

movement data in a quaternion format so that a set of coordinate equations can

model the axis-angle representation. Using a control interface and 4G connection,

a robotic arm is used to replicate human handmovement in real-life settings. [92]

proposed a framework for learning and sharing Digital behavioural Twins of con-

nected cars, for which decision trees and K-Nearest Neighbors are used to learn

driver behaviour, while discrete-time Markov Decision Process (MDP) is used to

build driving context models and risk analysis.
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3.7.2 Explainable Agency

Ourwork is related to explainable agency, which seeks tomake the internal state of

intelligent agents and robotsmore understandable [78] to humans. [93] proposed

an abductive approach to derive the mental states of BDI agents in terms of be-

liefs and goals based on their observed actions. [79] described four algorithms to

design explainable BDI agents: one using parent goals, one using top-level goals,

one using enabling beliefs, and one using the next action or goal in the execution

sequence. They found goal-based explanationswere preferable to belief-based ex-

pansions to explain procedural actions (i.e., a sequence of actions and sub-goals)

based on user evaluation. [80] applied belief-based and goal-based explanation

algorithms overGHTs to investigate the difference in preference of adults and chil-

dren for goal-based and belief-based explanations. They found that goal-based

explanations are preferable to both adults and children than belief-based expla-

nations. [93] proposed an abductive approach to infer the mental states of BDI

agents in terms of beliefs and goals. They described three explanatory strategies

under three perceptive presumptions: complete, late, and partial observations.

Sindlar et al. extended this work to an explanation approach considering three

organizational principles: roles, norms, and scenes in [94]. Related, but in a dif-

ferent domain, is thework presented by [95] also leveraged the reasoning capacity

of the BDI model to deduce students’ emotions from the observable behaviour of

students.

3.7.3 Learning Agents

Our work is also related to learning agents, particularly learning BDI agents. [96]

applied inductive logical decision trees to enable BDI agents to learn plan ex-

ecutability (i.e., success and failure of plan execution). [97] proposed two ap-

proaches: aggressive concurrent andbottom-up learning to learn the success prob-

ability of plans based on historical execution experiences. A probabilistic plan

selection function can then select the most appropriate plan among other applica-

ble ones in the given context. [98] introduced a Jason-based framework for inte-

grating Reinforcement Learning (RL) into BDI agents. The Jason-RL framework

supports the design of BDI agents, in which some of the plans are programmed
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by developers, and others can be learned during the development/engineering

stage. Closely related to our work is the Case-Based Reasoning (CBR) BDI sys-

tem of [99]. A CBR-BDI architecture enables the agent to learn from past cases

stored in a case memory. Unlike other works, if there are no similar cases in the

case memory, a CBR-BDI agent resorts to concept hierarchy (keywords represent-

ing areas of expertise) to explore information on the WWW.

3.7.4 Process Mining

Process mining has been the subject of considerable attention in business process

management. Much of this attention has focused on discovering and analyzing

what the organization is doing based on its event data [100]. [84] introduced a

formal algorithm (called the alpha algorithm) to rediscover workflow models in

terms of Petri nets based on event logs. Many authors subsequently expanded

this work to analyze various aspects of business processes. [101] applied decision

trees to analyse choices in business processes (i.e., decision point analysis) based

on discovered process models (e.g., models discovered using a process mining

algorithm called the alpha algorithm) and data attributes. [102] have also used

a process mining algorithm and machine learning techniques to discover process

models with decision points. [103] proposed an approach to learning the priori-

tization orders of resources that can be used to discover how resources select and

prioritize their work items. Their approach supports three disciplines of queuing:

FIFO, LIFO, and Priority. [104] introduced an extensible software framework to

extract changes in resource behaviour over time using time series analysis. [105]

applied decision trees and queuing heuristics to discover resource scheduling pro-

tocols in service processes.

Additional related work that applied process mining techniques to automate

the recognition of agent-based models is presented in [106], [107], [108], and

[109]. Fundamentally, these works employ process mining algorithms, such as

the alpha algorithm, to generate workflow nets by which agent models are in-

ferred.
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3.8 Chapter summary

In this chapter, we have proposed a novel approach to re-crafting Digital Twins

of organizations. A key novelty of our method is the fusion of two powerful re-

search disciplines: reverse engineering (to re-create the visible behaviour of the

target system) and explainable agency (for viewing the target system’s behaviour

through the lens of BDI agents). The abductive design of Digital Twins of organi-

zations was formulated as follows: “Find a BDI agent program that best explains

the behaviour of a target system based on its observation logs."We have described

three explanation techniques to model a Digital Twin as a BDI agent: (i) Abduc-

tive plan recognition, (ii) Explaining by beliefs, and (iii) Explaining by selection

strategies. To do so, unlike the current norm in the explainable agency litera-

ture, we have provided a complete account of the anthropomorphic handles (e.g.,

beliefs, desires and intentions). Also, we have leveraged a number of practical

strategies for goal generation and deliberation and applicable plan selection (e.g.,

Round-robin scheduling) to explain the rational behaviour of the target system.

This, in turn, allowed for using off-the-shelf agent-oriented platforms (e.g., Jason

[75]) to re-crafting observed behaviour.

At this point, we are improving algorithm (1) to deal with logs obtained from

complex real-life organizations, where incompleteness of knowledge and non-

determinism might be present, and algorithm (2) to model hypothetical situa-

tions. Experimental results and technical details are discussed in chapter 6.



Chapter 4

Leveraging Imperfect Explanations

Open environments (e.g., business environments) typically require dynamic

execution of plans where organizations must engage in situations that in-

clude, for example, re-planning, plan repair, plan reusing, etc. Hence, real-life

Plan Recognition (PR) applications are required to deal with different classes of

observations, such as exogenous actions, switching between activities, and miss-

ing observations. Many approaches to PR consider the above-cited classes of ob-

servations, but none have dealt with them as deliberated events. Actually, using

existing PR approaches to explain such classes of observations may generate only

so-called imperfect explanations (plans that partially explain a sequence of ob-

servations). Unlike previous applications to PR, we view imperfect explanations

and new classes of observations as bases for PR problems. Our overall approach

is to leverage (in the sense of plan editing) imperfect explanations by exploiting

new classes of observations. We use the notation of capabilities in the well-known

Belief-Desire-Intention (BDI) agents programming as an ideal platform to discuss

our work.

Following that rational behaviour of an organization can be theoretically viewed

through the lens of BDI agents, we hereafter use the terms “organization" and

“agent system" interchangeably.

4.1 Introduction

It is generally accepted that an agent system with practical extensions can carry

out tasks that would not otherwise be achievable by its basic reactive system. Of-

57
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ten when the environment is highly dynamic and/or the task is complicated for

the basic reactive behaviour of the agent system, developers resort to extending

or adding new modules to the agent system. A typical example of extending the

basic reactive behaviour of agentmodels can be found far andwide in the state-of-

the-art Belief-Desire-Intention (BDI) paradigm [14], including, but not limited to,

extending the architecture with self-awareness [110], automated planning [111]

and reconfigurability [112].

Much of the work done on PR involves abductive reasoning (e.g., [113], [114],

and [115]), which seeks to abductively infer plans by mapping the observed ac-

tions to a plan library. A major drawback to Abductive Plan Recognition (APR)

is that target plans are usually not from the plan library (this also applies largely

to anthropomorphic systems, since they are able to repair and reuse existing plan

designs). This drawback can be due to several reasons, some of which are re-

lated to extending the target system with different modules, such as the works

presented in [110–112]. Actually, appealing to APR applications to explain such

observed actions would only generate imperfect explanations. An imperfect ex-

planation is one that partially explains a sequence of actions. Another notion of

PR is discovering plans by executing action models to best explain the observed

actions. Nevertheless, this can take a great deal of time in complex problems. Our

approach is a third way which does not align itself with either notion. Still, it can

potentially improve the explanatory power of plan libraries without the need for

action model execution.

In this chapter, we address the problem of leveraging imperfect explanations, the

task of modifying existing hypotheses to explain an observed sequence of actions.

We show that when the target system operates in a domain model known to the

observer, imperfect explanations can be a valuable guide to explain unknown

plans that involve new classes of observations. Hence, our approach can be seen as

a post-processing stage for various single-agent plan library-based PR techniques.

To avoid arbitrary modification of hypotheses, we also introduce a classification

model that can determine the settings (e.g., noisy or explanatory) in which an

unknown plan has been observed.

The remainder of this chapter is structured as follows. Related work is dis-
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cussed in Section 4.2 with some pointers to different PR domains. Section 4.3

presents a motivation example with pointers to different scenarios. In Section

4.4, we introduce some preliminaries on the notion of capabilities and BDI agents

programming, which are the two main ingredients of this work. We formalize

the problem of leveraging imperfect explanations in Section 4.5. Our approach

to leveraging imperfect explanations for PR problems is described in Section 4.6

before we conclude and outline future work in Section 4.7.

4.2 Related Work

Real-life PR systems are required to deal with domains in which new classes of

observations are frequently encountered. Roughly speaking, there are three no-

ticeable domains regarding new classes of observations in PR problems: (1) Ex-

ploratory domains - the observed behaviour is a subject of exploratory and dis-

covery learning (e.g., mistakes, exogenous and repeating activities), (2)Noisy do-

mains - the observed behaviour is characterized by imperfect observability (e.g.,

extraneous, mislabeled and missing activities), and (3) Open domains - the ob-

served behaviour is characterized by new, deliberated action events (e.g., recon-

figured plans). Table 4.1 summarizes how new classes of observations are viewed

according to these three PR domains.

Table 4.1: How different PR domains view edits in plan execution.

Domain Exploratory Noisy Open

C
la
ss
es

of
ob

se
rv
at
io
ns Match Match Match
Exogenous Extraneous Inserted
Mistake Mislabeled Replaced
Mistake Missing Deleted

We concentrate our review on how existing PR approaches viewed and handled

new classes of observations. We then use these classes as classification criteria in

later sections where we describe our approach for leveraging imperfect explana-

tions.

We first describe works that assume exploratory domains. With the intention of

inferring students’ plans,Mirsky et al. [115] proposed a heuristic plan recognition
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algorithm (called CRADLE) that incrementally prunes the set of possible expla-

nations by reasoning about new observations and by updating plan arguments, in

which explanations stay consistent with new observations. Uzan et al. [116] in-

troduced an off-line PR algorithm (called PRISM) to recognize students’ plans by

traversing the plan tree in a way that is consistent with the temporal order of stu-

dents’ activities. Amir et al. [117] proposed an algorithm (called BUILDPLAN)

based on recursive grammar to heuristically generate students’ problem-solving

strategies.

Many prior approaches to PR focused on dealing with noisy domains. Mas-

sardi et al. [118] classified noise in PR problems into three types: missing obser-

vations, mislabeled observations and extraneous actions and proposed a particle

filter algorithm to provide robust-to-noise solutions to PR problems. Sohrabi et

al. [119] transformed the PR problem into an AI planning problem that allows

noisy and missing observations. Ramírez and Geffner [85] proposed a proba-

bilistic plan recognition approach, in which a classical planner is used to produce

plans for a given goal G and compare these plans to the observed behaviour O in

noisy settings. The probability distribution P(G|O) can be then computed by how

the produced plans are close to the observed behaviour. Sukthankar and Sycara

[120] proposed an approach for pruning and ranking hypotheses using temporal

ordering constraints and agent resource dependencies.

PR systems are also required to deal with open domains, where the observed

plans are usually not from the used plan library. Avrahami-Zilberbrand et al.

[121] described two processes for anomalous and suspicious activity recognition:

one using symbolic behaviour recognizer (SBR) and one using utility-based plan

recognizer (UPR), respectively. Mainly, SBR filters inconsistent and ranking hy-

potheses, while UPR allows the observer to incorporate his preferences as a utility

function. Zhuo et al. [17] also addressed the problem of PR in open domains us-

ing two approaches: one using an expectation–maximization algorithm and one

using deep neural networks. A notable difference from other approaches is that

the work of f Zhuo et al. [17] is able to discover unobserved actions by constantly

sampling actions and optimizing the probability of hypotheses.

Our work is not competing to, but complementing most of the previous works
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on PR, where it can be seen as a post-processing task for various single-agent plan

library-based PR techniques. More precisely, leveraging imperfect explanations

for PR problems can be viewed as an activity that occurs just before ruling out

imperfect explanations or considering an observation as exploratory or noisy. In

contrast with the literature, we focus on improving the explanatory power of plan

libraries by leveraging imperfect explanations and exploiting new classes of ob-

servations.

4.3 Running Example

As a running example, we consider the Request For Quote (RFQ) process devel-

oped to buy specific goods or services. The reader can view the task RFQ as a goal

that is delegated to an intelligent agent by the target organization, such as in [122].

Example 4.1. As shown in Figure 4.1, the RFQ starts with the agent advertis-

ing the need for some required goods (gds). After receiving all the quotes (qtd)

from prospective vendors, the agent selects a vendor to supply the goods. Once

the goods are delivered, the agent sends the payment. Also, the agent is also

equipped with capabilities related to the FRQ domain problem.

@p14 +!request(qtd,x): not stocked(x)

<- !promote(rfq);

select(vendor);

receive(gds);

pay(vendor).

@p8 +!promote(x): not promoted(x) <- adver(x). .

{not promoted(x),prepared(rfq)} adver(x) {promoted(x)} .

{valid(vendor)} select(vendor) {publised(qtd)}

{publised(qtd)} receive(gds) {stocked(x)}

{received(gds),matched(gds,qtd)} pay(vendor) {sent(payment)}

{not competitive(qtd)} negotiate(vendor) {competitive(qtd)}

{avaliable(truck) } pick_up(x) {stocked(x)}

Figure 4.1: RFQ plan and some known capabilities
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RFQ is supposed to be a straightforward business process. However, in busi-

ness environments, agents must handle exceptions and exploit opportunities. We

argue that existing APR applications are inadequate in such settings. To illustrate

this, let us consider the following example.

Example 4.2. Consider the following scenarios that may arise in the RFQ:

i Before receiving the goods, the agent decided to negotiate the quote further

with the vendor.

ii Instead of waiting for the delivery to arrive, the agent decided to pick up the

goods from the vendor’s warehouse.

iii The agent selected a vendor without prior advertising for RFQ, and even be-

fore receiving quotes from other prospective vendors.

Although simple, Example 4.2 is far from trivial. First of all, it is not difficult to

recognize that the basic reactive behaviour of the BDI agent system (described in

chapter 2) cannot produce the behaviours depicted in these scenarios on its own,

since it does not have those plans in its plan library. Arguably, there is at least an

extension to the system that enabled such edits in the agent behaviour. Indeed,

the state-of-the-art BDI agent framework exhibits a large number of extensions

to the reactive behaviour of the BDI agent system. For example, the behaviour

illustrated in scenario (i) involves an insertion edit (where the agent added ne-

gotiation into the plan). It is possible for the agent to add an action(s) to a plan

by incorporating automated planning into its system, such as in [111] and [123].

Scenario (ii) involves a substitution edit (where the agent replacedwaiting for the

delivery to arrive with collecting the goods from the vendor’s warehouse). It is

possible for the agent to replace a capability with another one by leveraging an

extension such as reconfigurability [112]. Finally, scenario (iii) represents a dele-

tion edit (where the agent passed the advertising of RFQ), which is doable if the

agent is equipped with a task aborting mechanism, such as the one presented in

[124].
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4.4 Preliminaries

This Section reviews the prior research used in the remainder of this chapter. First,

we clarify the link between the notion of capability and BDI programming, and

then we describe the representation we use for capabilities and plans.

4.4.1 BDI Programming and Capabilities

An agent system with BDI architecture [14] commonly consists of a belief base

(what the agent knows about the environment), a set of events (desires that the

agent would like to bring about), a plan library (a set of predefined operational

procedures), and a base of intentions (plans that the agent is committed to exe-

cuting).

It is useful at this point to revisit AgentSpeak(L) programming language to

clarify the link between the notion of capability and BDI programming. Funda-

mentally, the reactive behaviour of BDI agent systems includes the agent system

handling external and internal events by selecting an event to address from the

set of pending events, selecting a suitable plan from the plan library, and stack-

ing its program into the intention base. A plan in the plan library is a rule of the

form ε : ν ← ρ , where the program ρ is a predefined strategy to handle the event

ε whenever the context condition ν is believed to be true by the agent. A plan can

be selected for handling an event ε if it is relevant and applicable, i.e., designed

with respect to the event ε , and the agent believes that the context of the plan ν

is a logical consequence of its belief base, respectively. A program ρ often can be

presented as a set of actions that result in changes in the environment state. For

the purpose of this work, we ignore other elements (e.g., trigger events or guards)

in the plan body. Note that using BDI programming languages such as Jason and

2APL, information on action pre- and post-conditions can only be defined in a

separate file (called simulated environment), making this information invisible

to the agent.

To reason about actions and their specifications, we need to access information

about the preconditions and postconditions of all available actions. We shall refer

to capability as an explicit specification of action preconditions and postconditions.

A capability has been understood in intelligent agent studies as having at least one
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way to achieve some state of affairs, where it can be used only if its preconditions

are believed to be true [110, 125, 126]. For the purposes of this work, we shall

concentrate mostly on the plan library. We do not, therefore, discuss other issues

related to integrating the notion of capabilities into the BDI paradigm. For a de-

tailed introduction to integrating the notion of capabilities into the BDI system,

the reader is referred to [110, 125].

4.4.2 Capability and Plan Representation

Our representation of agent capabilities is closely related to [110, 125], but sig-

nificantly influenced by the action theory found in classical automated planning,

such as what has been presented in situation calculus [127] and STRIPS reasoning

[128]. Following this representation, we use a language of propositional logic L

over a finite set of literals L = {l1, . . . , ln} to represent the set of states of the envi-

ronment S in which the agent is situated, such that each state of the environment

s ∈ S is a subset of L, i.e., li ∈ s defines that the propositional literal li holds at the

state s. Asmentioned before, a capability specification describes an action that the

agent can carry out along with its pre- and post-conditions. Notationally, capabil-

ity specification is triple subsets of L, which can be written as a rule of the form

{pre(c)}c{post(c)}, where

– {pre(c)} is a set of predicateswhose satisfiability determines the applicability

of the capability,

– c is the capability, and

– {post(c)} is a set of predicates that materialize with respect to the execution

of the capability.

It is not hard to see that, by sequentially grouping capabilities that are dedicated

to bringing about some state of affairs, the sequence C = 〈c1, . . . ,cn〉 can be seen as

an operational procedure to resolve that state. Consider the plan p, we use

– {pre(p)} as the conditions under which the plan is applicable,

– C = 〈c1, . . . ,cn〉 as the plan body, and
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– {post(p)} as the conditions associated with the end event of the plan,

As such, we use the notation p = {pre(p)}C{post(p)} to represent plan p specifica-

tions.

For the purpose of reasoning about the execution of agent capabilities, we work

with a simple representation of the possible ways the plan can be executed, which

we term normative plan traces. A normative plan trace is one such that (1) the

specification of capabilities completely determines the transition on states in S,

i.e., if s ∈ S and c is applicable to s, then it produces another state s′ ∈ S, (2) the

capabilities are guaranteed to execute sequentially, e.g., knowing that capability c2

immediately follows capability c1, then c2 cannot be executed until post(c1) holds,

and (3) a plan execution can not be interleaved with other plans.

4.5 Problem Formulation

A plan library H is a set of plans, each of which contains a sequence of capabilities

〈c1, . . . ,cn〉 as its body, where each ci, 1≤ i≤ n, is the capability name and a list

of typed parameters. We assume the presence of a capability library, denoted by

A , comprises the set of all available capabilities specifications related to the do-

main problem. An observation of an unknown plan p is denoted byO = 〈o1, . . . ,om〉,

where oi ∈A ∪{∅}, i.e., the observation oi is either a capability in A or an empty

capability ∅ that has not been observed. Note that the plan p is not necessarily in

H, and thus mapping O to the H may generate only imperfect explanations.

When reasoning about new classes of observation, one can classify an observed

capability by four types: (1) match, when the capability is correctly observed, (2)

insertion edit, when the observed capability is added to a normative plan trace,

(3) deletion edit when the observed capability is dropped from a normative plan

trace, (4) substitution edit, when a capability that is to be executed as part of a

normative plan trace is replaced with another one. We propose to describe these

three edits in plan execution using operations as follows.

Definition 4.1 (Abductive edit operation, sequence). Let p with C = 〈c1, . . . ,cn〉

as its body be an imperfect explanation for the observation O = 〈o1, . . . ,om〉. An
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abductive edit operation is the insertion, deletion, or substitution of capabilities

in C according to the observations in O. An abductive insertion of an observed

capability oi is denoted by (∅→ oi), deletion of ci is denoted by (ci→∅) and

substitution of ci with oi is denoted by (ci→ oi). An abductive edit sequence

AES = 〈ae1, . . . ,aen〉 is a sequence of abductive edit operations. An AES derivation

from C to O is a sequence of sequences C0, . . . ,Cn, such that C0 = C and Cn = O and

for all 16 i6 n, Ci−1→ Ci via aei.

Definition 4.2 (Extended plan library). Given H and AES, an extended plan li-

brary is a couple EPL = (H,AES), where

1. H is a plan library, and

2. AES is a sequence of abductive edit operations.

Definition 4.3 (APR problem). Considering our settings, the APR problem is

then can be defined by a 4-tuple APR = (EPL,O, explain, A ), where:

1. EPL is an extended plan library,

2. O is an observed trace of capabilities,

3. explain is a map from plans and sub-plans of H to subset of O, and

4. A is a library of capability specifications.

As such, the solution to APR is to discover an unknown plan p, which is a plan

with an edited sequence of capabilities as its body that best explains O given EPL

and A . Again, this can be challenging since the plan p is not necessarily in H, and

thus mapping O to the H may generate only imperfect explanations.

4.6 Approach

Our approach to leveraging imperfect explanations consists of four phases, as

shown in Figure 4.2. These phases are:

1. Classification of unknown plans. To avoid arbitrary leveraging of hypothe-

ses (i.e., we do not want to build on noisy or exploratory observations), we
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introduce a classification model that can determine the settings (e.g., noisy

or explanatory) in which an unknown plan has been observed.

2. Abductive editing. Appealing to the notion of optimal edit distance, we

propose a simple procedure to “modify" an imperfect explanation according

to the observed unknown plan. This step is doable iff it turns out that the

observed edits are not noisy nor explanatory.

3. Validity checking. Abductive editing is not as straightforward as the above

count suggests, where we must check the consistency of the edited plan and

whether the new sequence of capabilities can still handle the original target

event.

4. Abductive updating. To improve the explanatory power of plan libraries

by leveraging imperfect explanations and exploiting new classes of observa-

tions, we propose an algorithm to merge existing hypotheses (i.e., imperfect

explanations) with unknown plans. The algorithm improves the explana-

tory power of the plan library while maintaining its earliest construct.

We describe each of these steps in greater detail in the following sub-sections.

Figure 4.2: Overview of leveraging imperfect explanation approach

As illustrated in Figure 4.2, leveraging imperfect explanations takes as inputs
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1. An unknown plan involves new classes of observations that we want to ex-

plain using an imperfect explanation,

2. An approximation of the plan (i.e., an imperfect explanation) that has been

used to generate input (1), and

3. A set of all available capabilities specifications related to the domain prob-

lem.

While inputs (1) and (2) are used in the classification and updating phases, inputs

(2) and (3) are used in the editing and validation phases.

4.6.1 Classification

Given an unknown plan, before any decision can be made concerning leveraging

imperfect explanations, it is first necessary to determine the characteristic of the

environment in which the unknown plan has been carried out (i.e., we do not

want to build on noisy or exploratory observations). To that end, we use decision

tree learning to classify unknown plans. Following the classification described in

Section 4.2, the following taxonomy for classification is proposed:

EE Exploratory environment - observed behaviour is a subject of exploratory or

discovery learning. Much of the work done on PR for exploratory domains

considers trial-and-error, activity repeating and interleaving as features of

exploratory behaviours [115–117].

NE Noisy environment - observed behaviour is characterized by imperfect ob-

servability. Previous studies (e.g., [119] and [118]) reported noisy obser-

vations as those that cannot be explained by the actions of any plan for any

given goal (computing all possible plans for a given goal is fully described

in [114]).

OE Open environment - observed behaviour is characterized by by new, deliber-

ated action events. Many studies on intelligent agents (e.g., [112, 129, 130])

consider rational changes in plan execution (see Section 4.5.3 for how ra-

tional changes are validated) as a feature of engaging the agent with open

environments.
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A given unknown plan is classified into one of the classes {EE, NE, OE}, each

representing the settings in which the unknown plan has been executed. An un-

known plan is assigned to a class membership based on its characteristic features

by comparing it to its imperfect explanation (i.e., approximation of the unknown

plan). For example, unknownplans containing actions that any plan for any given

goal cannot explain are labelled as NE, while unknown plans with rational edits

compared to their imperfect explanations are labelled as OE. Historical instances

are labelled manually while the test data is not labelled, so the decision tree can

classify whether the unknown plan is a result of EE, NE, or OE.

According to state-of-the-art PR and intelligent agents [112, 114–119, 129, 130],

we initially extracted a number of features related to EE, NE, and OE.

1. Unreliable action: This binary feature representswhether an unknownplan

contains action(s) that any plan for any given goal cannot explain.

2. Trial-and-error: This binary feature represents whether an unknown plan

contains multiple attempts to achieve a desirable effect using different activ-

ities.

3. Action repeating: This binary feature represents whether an unknown plan

contains multiple attempts to achieve a desirable outcome using the same

activity with different parameters.

4. Activity interleaving: This binary feature represents whether an unknown

plan contains the execution of an activity while waiting for the results of the

current activity.

5. Rational editing: This binary feature represents whether an unknown plan

contains rational edit(s) compared to its normative plan traces.

Classification takes place as a supervised multi-class classification making use

of the features described above. Figure 4.3 represents a decision tree trained to

discriminate OE from EE and NE. For each PR problem, the classification task

compares the unknown plan and its imperfect explanation by checking for the

above-cited features. This decision tree can be understood as follows: “Rational
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edits predictOE, whereas unreliable actions predictNE. Activity interleaving pre-

dicts EE, as do action repeating and trial-and-error."

Figure 4.3: A Decision tree trained to predict the domain of unknown plans.

In this work, we have seen one possible way of classifying changes in plan exe-

cution by attending to the settings in which they have been carried out (i.e., noisy,

explanatory and open). However, in fact, many other features can be adopted

to classify these changes hence a better understanding of what the target agent

is actually doing and why. For example, these changes can be divided into mis-

takes and exploratory activities in exploratory domains. Another example, noisy

observations can be classified as sensor failure or programming errors (e.g., inap-

propriate belief revision). However, such classifications are outside the scope of

the present work since this is, in general, an intractable problem.

Example 4.3. Continuing with our running example and using the decision tree

described above, the sequence belowwas classified asEE. This is due to containing

the feature of action repeating, which strongly correlates to EE.

adver(x),adver(x),adver(x),select(vendor),receive(gds),pay(vendor)

Whiles, the scenario belowwas classified as aNE because it could not be explained

by any plan of the given goal.

adver(x),improve(x),receive(gds),pay(vendor)

Classification of unknown plans is applied before leveraging imperfect expla-

nations to avoid useless wait (i.e., we do not want to build on noisy or exploratory



4.6. Approach 71

observations). If an unknown plan is classified as OE, the plan will be taken as

input.

4.6.2 Abductive Editing

Our guiding intuition here is that a plan that serves as an imperfect explanation for

an observed behaviour could be edited (modified) according to that observation,

thus improving the explanatory power of the plan library. We realize a computa-

tional solution to leveraging imperfect explanations by appealing to the optimal

edit distance between an unknown plan and its imperfect explanation and using

its corresponding edit sequence.

Let plan p with body C = 〈c1, . . . ,cn〉 be an imperfect explanation of the obser-

vations O = 〈o1, . . . ,om〉, with the former having length n and the latter length m.

Recall that turning the plan body C into O requires a sequence of edit operations.

Each operation can beweighted by a cost function, denoted byw(ae). For example,

one can set the cost function to return 0 when the capability is correctly observed

and return one otherwise.

With a cost function in hand, the abductive plan edit distance between C and O

is given by a matrix d of size n×m, defined by the recurrence

d[i,0] = i

d[0, j] = j

d[i, j] =



d[i-1,j-1] (correctly observed)

min


d[i-1,j]+w(∅,oi) (insertion edit)

d[i,j-1]+w(ci,∅) (deletion edit)

d[i-1,j-1]+w(ci,oi) (substitution edit)

After filling the matrix, the value in the bottom-right cell of the d, or d[m,n], will

represent theminimum cost to turn the plan body C into the observation sequence

O, and this cost is the abductive plan edit distance. For the corresponding AES to

be computed, we need to trace back the choices that led to the minimum edit cost
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in the above recurrence. Hence, turning the imperfect explanation p into an un-

known plan p that best explains the observations in O can be seen as applying an

AES that corresponds to the abductive plan edit distance of p.

Example 4.4. Continuing with our running example, assume the imperfect expla-

nations h1 with a body as shown below:

adver(x),select(vendor),receive(gds),pay(vendor)

An observation sequence O from scenario (ii) as shown below:

adver(x),select(vendor),pick_up(gds),pay(vendor)

And let w(ae) = 0 when the capability is correctly observed and w(ae) = 1 other-

wise. Based on the above inputs, the abductive edit operations needed to turn the

body part of plan p14 into O are:

� receive(gds)→ pick_up(gds),

Example 4.4 illustrates how the imperfect explanation p14 can be modified to

explain an unknown plan involves a replacement edit. Although the required

edit in Example 4.4 sounds rational, it may be invalid in other scenarios. Hence,

two important questions are yet to be discussed: how to ensure (1) that the edited

plan is consistent and (2) at the end of its execution, the goal is achieved. We will

address these two questions in the following sub-section.

4.6.3 Validity Checking

When an edit is made to a plan, it brings into question whether the plan being

modified rests valid. We assume that plans are drawn based on the specifications

inA . The task of plan validity check involves: (1) checkingwhether the execution

of an edited plan will reach the defined goal, (2) whether the preconditions of

each step of the plan execution will be satisfied.

We build on the approach of monitoring plan validity proposed by [131]. Our

theory of edited plan validity uses the accumulative effects of [132] and ensures

consistency during the process of plan editing, given the capability library A . To
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monitor an edited plan validity, two plans are generated for every PR problem

- one with the minimum edit cost, i.e., the imperfect explanation, and one that

explains O completely, i.e., explain(p) = O. Assuming an idealised execution envi-

ronment, plan validity can be defined as follows.

Definition 4.4 (Valid Plan). Consider the capability library A and a plan specifi-

cation p = {pre(p)}C{post(p)} for plan p with body C = 〈c1, . . . ,cn〉, we say that the

plan p is valid in the state s if

1. A |= (〈pre(c1), . . . ,pre(cn)〉,s), and

2. accum(p) |= post(p).

As such, with respect to the library A and the current state of the world s, the

preconditions of each capability in the plan body of p will be satisfied (here |=

means logical entailment), and the final effect scenario associated with the end

state event of the plan p execution entails its post-condition specifications.

An important detail of this definition is that a single edit can impact the plan’s

consistency. Furthermore, it can change the final effect scenario associated with

the end state of the plan. We now identify a valid edited plan.

Definition 4.5 (Valid edited plan). Consider the plan p = {pre(p)}C{post(p)} as

an imperfect explanation of O. Let p be an edited plan that has identical pre-

and post-conditions to the imperfect explanation p except that p has an edited

sequence of capabilities C. We say that the edited plan p preserves the validity of

p if p = {pre(p)}C{post(p)} is valid.

For example, it does not matter by which means the goods arrive to the agent

(e.g., pick up or delivery) for p to preserve h14 validity as long as the goal of

requesting for a quote is achieved under the same context conditions.

4.6.4 Abductive Updating

Now, we consider the problem of what needs to be done to improve the explana-

tory power of the plan library when an edited plan is found valid according to the

checks described in the previous section. An easy solution is to create a new plan
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that has identical triggering and context parts to the imperfect explanation, except

that p has an edited body C that explains O, i.e., explain(p) = O. However, this may

increase the complexity of determining applicable plans at run-time. More inter-

estingly, we offer a semi-automated solution for merging an edited plan with its

imperfect explanation.

Procedure 4.1 (Abductive Updating) Consider the imperfect explanation p and

its edited plan p and let AES = 〈ae1, . . . ,aen〉 be a derivation from p to p.

Procedure 4.1. Abductive Updating
1: For each aei in AES:
2: Replace ci with subgoal sgi
3: Create two sub-plans p1 and p2, and let
4: triggering(p1) = triggering(p2) = sgi
5: switch(aei):
6: case(ci→ oi)
7: context(p1) = pre(ci)
8: context(p2) = pre(oi)
9: body(p1) = ci

10: body(p2) = oi
11: case(ci→∅)
12: context(p1) = pre(ci)
13: context(p2) = not pre(ci)
14: body(p1) = ci
15: body(p2) = true
16: case(∅→ oi)
17: context(p1) = not pre(oi)
18: context(p2) = pre(oi)
19: body(p1) = true
20: body(p1) = oi

Procedure 4.1 facilitates the merging between an imperfect explanation, i.e.,

one with the minimum edit cost, and its edited plan, i.e., one that explains O

completely. Fundamentally, for each aei in AES, the procedure replaces the cor-

responding capability with a sub-goal sgi (line 2), for which two sub-plans p1 and

p2 are created (line 3-4). Our guiding intuition behind creating two sub-plans is

to improve the explanatory power of the plan library while maintaining its con-

struction.

Recall that there are three ways in which a plan can be edited: deletion, inser-

tion, and substitution. Hence, there are three ways in which sub-plans can be

created (line 5). For example, let us consider the substitution edit (line 6): In this
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case, plan p1 takes the corresponding capability ci as its body and pre(ci) as its

context part (lines 7 and 9). While p1 takes the corresponding observation oi as its

body and pre(oi) as its context part (lines 8 and 10). However, there are situations

where valid edited plans could possibly be merged with their imperfect explana-

tions, but they should not bemerged. For example, avoiding negative interactions

between goals. For readers interested in how we can deal with the feasibility of

plans merging, we refer to [133].

4.7 Chapter summary

Much of the work done on APR requires a plan library to infer the top-level plans

of the observed system. Nevertheless, in open environment settings, target plans

are usually not from the plan library due to reusing plans, replanning and agent

self-awareness, etc. To that end, this work builds on a more sophisticated notion

of APR, which seeks to improve the explanatory power of plan libraries by way of

leveraging imperfect explanations and exploiting new classes of observations.

In this chapter, we proposed a classification of unknown plans based on the

characteristics of the domains in which they have been carried out. As far as we

know, this has been absent in PR research. Furthermore, we presented a theory

based on capabilities and plans and introduced the notion of abductive plan edit-

ing. Finally, we described how imperfect explanations could be updatedwith new

classes of observations in a rational fashion.

A number of extensions of this work are of interest, including applications of

plan library reconfigurability [112], plan editing in online settings, and dealing

with incomplete action models (i.e., learning unknown activities). Experimental

results and technical details are discussed in chapter 6.



Chapter 5

Explanation Mining

Explanation generation is the task of justifying the decisions of a target sys-

tem after observing its behaviour. Much of the previous explanation gen-

eration approaches can theoretically do so but assuming the availability of expla-

nation generation modules, deterministic execution of plans and reliable obser-

vations. However, in real-life settings, explanation generation modules are not

readily available, plans are non-deterministic, and unreliable observations are

frequently encountered. We seek in this chapter to address these challenges by

proposing a data-driven approach to mining and validating explanations (and

specifically belief-based explanations) of the past executed actions of a target sys-

tem. Our approach leverages the historical data associated with the system exe-

cution, which describes action execution events and external events (represented

as beliefs).

Following that rational behaviour an organization can be theoretically viewed

through the lens of BDI agents; we hereafter use the terms “organization" and

“agent system" interchangeably.

5.1 Introduction

Explainable agents have been the subject of considerable attention in recent litera-

ture. Much of this attention involves folk psychology [78], which seeks to explain

the actions of an agent by citing its mental state (e.g., the beliefs of the agent, and

its goals and intentions). Roughly speaking, when an explainee requests explana-

tions about a particular action, two common explanation styles might be adopted:

76
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(1) a goal-based explanation and (2) a belief-based explanation [79, 80, 86]. This

chapter focuses on the latter stylea in the context of the well-known Belief-Desire-

Intention (BDI) paradigm [14]. Fundamentally, belief-based explanations help

answer the following question: What must have been known for the target system to

perform a particular action over another? Arguably, a sufficiently detailed explana-

tion (e.g., one that justifies an action with extensive information about the rea-

soning of the target system) will require no additional information to answer this

question. Nevertheless, in specific settings (e.g., explaining by UD SO in chapter 3

and time-constrained environments), explanations aremore useful when they are

relatively unfaithful [134, 135]. Explaining by beliefs can also help solve a range of

problems, such as encouraging behaviour change [86], enhancing human-agent

teaming [136], and transparency [137].

Although there is a large and growing body of work on explanation genera-

tion in the field of explainable agency [78], much of this work has traditionally

assumed the availability of explanation generation modules (e.g., the target sys-

tem is explainable by design), reliable observations and deterministic execution of

plans. However, in real-life settings, explanation generationmodules are not read-

ily available, unreliable observations are frequently encountered, and plans are

non-deterministic. We seek in this chapter to address these challenges by propos-

ing techniques that mine the historical data associated with the system execution

to generate belief-based explanations of the past actions of that system. We shall

refer to this problem as mining belief-based explanations.

Our proposal relies on audit logging (or instrumenting the business environ-

ment with off-the-shelf market monitors). Many existing MAS frameworks (e.g.,

JACK framework [73]) support logging different aspects of agent behaviour. Of

these, we are interested in two particular aspects: (1) a behaviour log that records

the creation and completion of the past executed actions, and (2) an event log

that describes the belief set activity of the target system during the recording of

(1). One such implementation of audit logging is the tracing and logging tools for

JACK Intelligent Agents [73]. Our approach to mining belief-based explanation
agoal-based explanations are also of great value to our general research question, and we con-

firm that an extension of the techniques presented in this chapter can address these, but are outside
the scope of the present work
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involves two steps:

1. We leverage these two audit logs in chronological order to generate one se-

quence database taken as input by a sequential pattern miner. The intuition

behind this is identifying commonly occurring patterns of action execution

events preceded by sequences of external events (i.e., beliefs). Here, we in-

tend to mine the enabling beliefs of each action referred to in the behaviour

log.

2. We define a validation technique that leverages a state update operator (i.e.,

an operator that defines how the specification of a belief state is updated as

a consequence of the agent’s perception of the environment), agent’s past

experiences provided by the above-cited sequence database to compute the

soundness and completeness of the mined belief-based explanations.

Mining and validating belief-based explanations can be outlined as follows:

Given as inputs

1. A behaviour log of the past executed actions of the target system that we

want to explain,

2. An event log of the past external events or information that other industry

players would expect the target system to be aware of,

3. A plan or plans whose execution generate these logs (recall that these can

be abductively recognized as described in chapter 3), and

4. A state update operator.

Compute: the belief-based explanations of every action referred to in the be-

haviour log. While inputs (1) and (2) are used for mining belief-based explana-

tions, inputs (3) and (4) are used for validating the mined explanations. As we

show later in this chapter, inputs (3) and (4) can also be used to generate detailed

belief-based explanations.

The remainder of this chapter is organized as follows. Section 5.2 introduces our

running example and some required preliminaries. Section 5.3 describes our ap-

proach to updating belief-based explanations, which sits at the core of this work.
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Section 5.4 describes our approach to mining belief-based explanations. In Sec-

tion 5.5, we describe how the mined explanations can be validated. Related work

is discussed in Section 5.6 before we conclude and outline future work in Section

5.7.

5.2 Preliminaries and Running Example

Agents with BDI architecture are designed to imitate human practical reasoning

using beliefs, desires and intentions. The beliefs represent what the agent knows

about the environment inwhich it is situated, the desires are goals (i.e., objectives)

that the agentwould like to bring about, and the intentions are plans that the agent

is committed to executing. With these anthropomorphic handles, the BDI agent

derives its actions and, consequently, can explain them. As the literature (e.g.,

[138]) suggests, this is an elegant means to explain systems with considerable

underlying complexity.

Running Example

Although explanations must faithfully reflect the underlying reasoning of the tar-

get system (i.e., including its beliefs, goals, plans and intentions), explaining by

beliefs can provide value in ways other types of explanations cannot. To illustrate

this, we study two scenarios for handling the situation of engine failure on take-

off in jet-engine aircraft, which are: (1) accelerate-stop and (2) accelerate-go, as

described in [139]. A secondary intent behind this example is to illustrate that our

contributions apply to organizations without loss of generality to other anthropo-

morphic systems.

Example 5.1. As shown in Figure 5.1, the pilot agent has two plans to handle

Engine Failure on Take Off (EFTO) in large jet-engine aircraft: (p1) accelerate-

stop and (p2) accelerate-go. The plan p1 involves reducing thrust, applying speed

breaks and notifying the tower of the emergency. The plan p2 begins with ensur-

ing full power is applied (includingmixture, throttle, landing gear and flaps), fol-

lowed by liftoff, and then notifying the tower of the emergency and the intended

landing. To handle an EFTO successfully, two critical speeds must be calculated
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before each take-off, namely v1 (the speed at which the pilot can abort the take-off

safely) and v2 (the speed at which the pilot can take-off safely).

@p1 +efto(aircraft): v1 < speed < v2

<- idle(throttle);

deploy(brakes);

.send(tower,tell,stop(accelerate)).

@p2 +efto(aircraft): v1 < speed < v2

<- increase(mixture);

increase(throttle);

take_up(flap);

pull(yoke);

take_up(gear);

.send(tower,tell,go(accelerate));

.send(tower,tell,return(landing)).

Figure 5.1: AgentSpeak(L) plans for handling EFTO

A particularly stressful situation for the pilot agent is when EFTO occurs be-

tween v1 and v2 (i.e., the aircraft is going too fast to accelerate-stop but too low to

accelerate-go). For this particular situation, the two plans (p1 and p2) are appli-

cable.

Another example illustrating the value of belief-based explanations has been

seen earlier in this thesis (chapter 3), when we discussed Explaining by UD SO.

It is useful at this point to recall UD SO to clarify the importance of mining belief-

based explanations. UD SO selects an applicable plan based on hand-crafted con-

ditions. We expect that explaining by UD SO is useful, in particular when FIFO

SO fails to explain the observed behaviour rationally. A straightforward way to

solve this is to seek more beliefs to explain each selection and try again to over-

ride the SO method accordingly. Hence, we argue in this chapter that belief-based

explanations (and precisely detailed ones) are also helpful to design an accurate

Explaining by UD SO.

Explaining by beliefs

Existing explanation generation techniques can be summarized as follows: A BDI

agent triggers an action with respect to its goals and beliefs, which can be rep-
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resented in terms of a Goal Hierarchy Tree (GHT) [79, 80, 86]. A GHT is a tree

structure representing a high-level abstraction of an agent’s reasoning. Figure 5.2

illustrates the GHT of of the pilot agent.

Figure 5.2: A GHT the pilot agent

At the root of the tree, the agent’s main goal is placed. A link from the top-level

goal to one or more sub-goals means that these sub-goals must be achieved as

part of the top-level goal. Tree leaves represent actions that the agent can execute.

For the agent to execute an action, certain beliefs placed directly above the action

must be true.

What existing explanation algorithms do is select the beliefs and goals that are

directly above the selected action node in the GHT to design explanation patterns.

We argue that such explanation-generation techniques can involve some ambigu-

ity (e.g, one decision havingmore than one possible explanation) and irrationality

(e.g., different decisions having one explanation) in competitive settings. Further-

more, this is not how BDI agents are practically reason, and it cannot be easy to

update the GHT associated with the agent reasoning in sophisticated environ-

ments. To illustrate this, consider the following scenarios.

Example 5.2. Assume that the pilot decided to accelerate-stop at one instance and

accelerate-go at another instance in the past. Now, consider the following queries

that may arise by an aviation candidate:

• Why did the pilot agent pull the throttle lever to idle immediately after the EFTO?

• Why did the pilot agent move the mixture knob to rich after the EFTO?

Following the current norm of explanation generation, the two queries in Ex-

ample 5.2 can be readily answered using the goal efto(aircraft) and the belief that

v1 < speed < v2. Another way to say that the same goal and same belief explain



5.2. Preliminaries and Running Example 82

both queries. It is clear that these explanations are inaccurate - they do not accu-

rately describe how the pilot agent came to its decision to accelerate-stop at the

first instance nor to accelerate-go at the latter instance.

Audit Logs

During a system execution, awide variety of data on changes in the agent’smental

attitude and environment can be represented in the form of audit logs. Collecting

such data can be implemented using audit logging tools such as Mind Inspector

in Jason platform [75] and Design Tracing Tool (DTT) in JACK platform [73]. We

are interested in two modes of audit logging: (1) behaviour logs and (2) event

logs. A behaviour log describes the historical execution of plans as sequences of

eventswhere each event refers to some action. A behaviour log can be represented

as a set of instances, each of which is a set of triples 〈p_label, ti,ai〉, where the value

of ti refers to the starting time of the action ai, which has been executed as part of

a plan labelled p_label. An excerpt of the behaviour log associated with the plans

in our running example is recorded in table 5.1.

Table 5.1: A behaviour log of the pilot agent.

plan timestamp action

p1 t75 idle(throttle)

p1 t77 deploy(brakes)

p1 t80 send(tower, msg)

p2 t1027 increase(mixture)

p2 t1029 increase(throttle)

p2 t1031 take_up(flap)

p2 t1033 pull(yoke)

p2 t1035 take_up(gear)

p2 t1037 send(tower, msg)

p2 t1038 send(tower, msg)

An event log records the history of the external events perceived by the target

system. It consists of a set of pairs 〈ti,qi〉, where ti value indicates the time when

the agent added the event qi to its belief base. Note that event logs b record new
bOne can leverage JACK capability methods to make belief set activities available at agent level

[140]. This manipulation allows, in turn, to store enabling beliefs based on the user-defined data
structure.
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beliefs as they are added to the belief base but do not record persistent beliefs.

Determining which beliefs hold at a certain point of system execution, therefore,

requires updating machinery (e.g., the state update operator described in Section

5.3). Table 5.2 illustrates an excerpt of the event log describing external events

perceived by the pilot agent during the execution of the plans in Figure 5.1.

Table 5.2: An event log of the pilot agent

timestamp beliefs timestamp beliefs
t70 runway(dry) t1024 efto
t71 wind(cross) t1025 v1 = 156
t72 efto t1025 v2 = 166
t73 v1 = 129 t1025 flaps = 15
t73 v2 = 145 t1026 speed = 161
t73 flaps = 15 t1028 escalate(fuel flow)
t74 speed = 135 t1030 accelerate(thrust)
t76 decelerate(thrust) t1032 flaps = 0
t78 steady(aircraft) t1034 liftoff(aircraft)
t1022 runway(wet) t1036 up(gear)
t1023 wind(head) t1040 liftoff(aircraft)

Usually, it is more convenient to represent beliefs in first-order sentences to

maintain consistency and constraints. To avoid handling different groundings of

the variables as distinct beliefs, we need to neglect the precise grounding of valu-

ables. Nevertheless, there are settings where we need exact instantiations of the

variables.

5.3 Updating Belief-based Explanations

An updated belief-based explanation of any given step in a plan execution is a

consistent set of persistent (cumulative) beliefs that explains the execution of that

plan if it was executed up to that step. Recall that plans can be abductively recog-

nized given a sequence of actions (e.g., the observations in Table 5.1) and a set of

potential plans (e.g., the plans in Figure 5.1), as discussed in Section 3.4.

Updating belief-based explanations is helpful for at least three reasons. First,

it could be used to contextualise explanations (i.e., providing users with detailed
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explanations of each step in a plan execution). Another way to say that is updated

belief-based explanations can help answer the following question for any step of

plan execution: What must have been known in detail for the agent to perform a par-

ticular action over another? As the second reason, it could also be used to validate

the mined explanations, which we describe in detail in later sections. Finally, up-

dated belief-based explanations can be a valuable guide to implement Explaining

by UD SO.

At each action step in a plan execution, we derive the updated belief-based ex-

planation of an action by combining the enabling beliefs of the preceding steps

with the enabling beliefs of the step we are at. We assume that each action in a

plan is associated with enabling beliefs (i.e., no provisional execution of actions)

written as conjunctive normal-form sentences using a state description language

that might involve propositional variables (i.e., variables that can be true or false)

and non-Boolean variables (i.e., new value assignments). We allow the updated

belief-based explanations to be non-deterministic for two reasons (1) in any plan

with OR branching, one might arrive at an action through multiple trajectories,

and (2)much of the existing state update operators resolve inconsistencies inmul-

tiple different ways. Among the two well-known state update operators in the

literature - the Possible Worlds Approach (PWA) [141], and the Possible Models

Approach (PMA) [142] - our work relies on the PWAc. More precisely, we use the

state update operator⊕ as defined below, assuming the presence of a background

knowledge base KB.

Definition 5.1 (⊕ Operator). For the two belief states si, sj, and the knowledge

base KB, the state update operator ⊕ can be defined as follows:

si⊕ sj = {sj∪ s′i |(si∧ s′i ∪ sj∪KB 6|=⊥) ∧ (@ s′′i such that

s′i ⊂ s′′i ⊆ si∧ s′′i ∪ sj∪KB 6|=⊥)},

in which if sj∪ si is consistent, then the resulting updated explanation is sj∪ si.

Otherwise, we need to define s′i ⊆ si such that sj∪ s′i is consistent and there is no

exists s′′i such that s′i ⊂ s′′i ⊆ si and sj∪ s′′i is consistent. Note that we might need to
cOne reason for not using PMA is that it may be unable to satisfy the preservation criterion in

stochastic settings, as proven in [143].
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refer to a general version of the state update operator, i.e., if S = {s1, . . . ,sn} is a

finite set of belief states, then S⊕ s = {si⊕ s |si ∈ S}. Note that we might need to

refer to a general version of the state update operator, i.e., if S = {s1, . . . ,sn} is a

finite set of belief states, then S⊕ s = {si⊕ s |si ∈ S}. Note also that the output of

the state update operator is not always a unique state specification. Actually, the

output might be a set of non-deterministic possible belief-based explanations. For

the purpose of illustrating why this might be the case, we consider the following

example.

Example 5.3. Consider the following knowledge base

KB = r⇒¬(d ∧ q)

representing a rule for the pilot agent, where the propositional letter r can be

read as there is an EFTO, the letter d as the thrust is accelerating, and the letter q as

the aircraft is ascending. Now, let (d ∧ q) hold in some previous belief state, and

r came to be held in the belief state where we are at. Applying ⊕, the generated

two alternative scenarios describing the updated belief states are

1. {d∧ r} and

2. {q∧ r}

which is to say, the rule in KB expresses that whenever the pilot agent believes

that there is an EFTO, then it is believed that either the thrust is accelerating or

the aircraft is ascending (i.e., the thrust cannot accelerate unless descending after

engine failure).

With the intention of obtaining complete detailed belief-based explanations of

the agent behaviour, we need to apply the state update operator over each pair of

actions in a plan body repeatedly, with the previous updated belief-based expla-

nations associated with the former action as the first argument and the current

enabling beliefs associated with the later action as the second argument. How-

ever, before we can do so, we need some guidance from plan developers who

are at least somewhat familiar with the plan design. This guidance comes in the
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form of providing a description of the enabling beliefs of each action (in the ab-

sence of an accurate mining model). Recall that a plan body can contain actions

and sub-goals, where sub-goals can be combined by either AND (e.g., “achieve

sub-goal sg1 and then achieve sub-goal sg2") or OR (e.g., “achieve sub-goal sg1

or achieve sub-goal sg2") operations. On this basis, we defined three procedures

to “annotate" actions with belief-based explanations: (1) contiguous actions, (2)

AND sub-goals and (3) OR sub-goals as follows:

� Contiguous Actions: Let 〈ai,aj〉 be an ordered pair of actions (i.e., the action

aj directly follows ai), and assume that bi = {pi1, . . . ,pin} and bj = {pj1, . . . ,pjn}

be their enabling beliefs, respectively. Recall that a belief set can be seen also

as a conjunctive normal-form sentence (i.e., a set of clauses). On condition

that the result of bi∪bj is consistent, then the resulting updated belief-based

explanation is bi∪bj. Otherwise (bi∪bj is inconsistent), then we need to de-

fine a synthetic belief state b′i such that b′i = {pik |pik ∈ bi and{pik}∪bi is con-

sistent}. Hence, the resulting updated belief-based explanation would be

b′i ∪bj. Another way to say is that the updated explanation of the contiguous

actions would contain the enabling beliefs of the later action aj plus some

of the enabling beliefs of the former action ai provided that the combination

is consistent. Precisely speaking, we need to remove those belief clauses in

the updated explanation of the former action that contradict the enabling

beliefs of the later action. We assume that the remaining belief clauses are

“undones" (e.g., enabling beliefs overridden by the execution of the later

action). We shall use update(bi,bj) to refer to the result of an updated belief-

based explanation of two contiguous actions ai and aj with enabling beliefs

bi and bj, respectively.

It is important to note that belief-based explanations are updated only within

plans (i.e., notwithin a library of plans). Additional to “annotating" each action in

a plan bodywith its enabling beliefs, we need to compute the updated belief-based

explanation (denoted hereafter by βa) of each action a. An updated explanation

βa can be defined as a set of alternative belief scenarios βa = {bsa1, . . . ,bsan}, where

each bsai denotes a belief scenario (we use the term “scenario" to indicate the non-

deterministic nature of plan execution). As described later in this section, belief
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scenarios are introduced by AND sub-goals and OR sub-goals. Hence, we need to

make special provisions for updating belief-based explanations across AND sub-

goals and OR sub-goals. Now, we describe a simple procedure to be followed in

the instance of 2 sub-goals (which can be generalized in a straightforward fashion

to n sub-goals):

� AND sub-goals: Let 〈a1,a2〉 be two actions directly precede an AND sub-

goal (!sg). Assume that their updated explanations be β1 = {bs11, . . . ,bs1n}

and β2 = {bs21, . . . ,bs2n}, respectively. Let b be the enabling beliefs and β the

updated explanation of an action a that directly follows the AND sub-goals

!sg. Wedefine β = {update(bs1i,b)∪update(bs2j,b) |bs1i ∈ β1 andbs2i ∈ β2}. For

the purpose of this work, we assume that plan designs are not erroneous.

Hence, we do not consider cases such that bs1i and bs2j being inconsistent.

� OR sub-goals: Let 〈a1,a2〉 be two actions directly precede an OR sub-goal

(!sg). Assume that their updated explanations be β1 = {bs11, . . . ,bs1n} and

β2 = {bs21, . . . ,bs2n}, respectively. Let b be the enabling beliefs and β the up-

dated explanation of an action a that directly follows the OR sub-goal !sg.

We define β = {update(bs1i,b) |bsi ∈ β1 or bsi ∈ β2}.

We noticed that the above-cited procedures might be erroneous when applied

to loops. Although loopsmight be uncommon in a declarative programming style

(e.g., AgentSpeak(L) programming language), they still can be useful for build-

ing recurrence behaviour. We also noticed that some belief scenarios can be in-

feasible in some cases. Hence, we do not claim to be able to infer complete belief-

based explanations of all the actions referred to in a given plan.

5.4 Mining Belief-based Explanations

Mining belief-based explanations starts with transforming the observations in the

audit logs into observation sequences, each of which involves the execution of an

action and the manifestations of some external events. Note that logging tools are

usually designed to record one mode of observation per log. That is to say, ac-

tion execution and external events manifestation are recorded in separate logs. To
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that end, we need first to start a correlation between the two logs to obtain an ob-

servation log that serves as a sequential database, which will be mined to extract

belief-based explanations using a sequential rule miner. We define this correla-

tion as follows.

Definition 5.2 (Observation sequence, and log). Let {A = a0, . . . ,an} be an ac-

tions space, B = {b0, . . . ,bn} be a belief states space. An observation instance is an

alternating sequence of the form b0,a0, . . . ,bn,an. DAll is an observation log, such

that DAll ∈ 2T, where T is the set of all observation instances.

Mining belief-based explanations relies on the two following premises: (1) that

the external events observed in the event log immediately before executing an ac-

tion can be the enabling beliefs of that action, and (2) that the persistent beliefs

observed a long time before the execution of an action are typically not the en-

abling beliefs of that action, but may be of that action plus some others. Hence,

we use the basic relation “direct successor" [144] over the actions and the external

events in the DAll as follows:

Definition 5.3 (Direct successor). Let DAll be an observation log over T. Let

b,a,b′ ∈ T.

1. b is a direct predecessor state, denoted by b >D a, iff 〈b,a〉 is a subsequence

of a given observation instance of T, and

2. b′ is a direct successor state, denoted by a >D b′, iff 〈a,b′〉 is a subsequence of

a given observation instance of T.

Relation >D describes which belief states directly following/preceding a given

action. Direct predecessor relation over DAll would offer learning entries of the

form 〈b,a〉, where a is an action applicable at the belief state b. For our purposes,

we do not distinguish between 〈q,p,a〉 and 〈p,q,a〉, because we are only interested

in relating actions to their enabling beliefs but not in the relation amongst enabling

beliefs. Against this background, we create DDirect, which is a sequence of the

following form

〈〈〈b11〉, ..,〈b1n〉,a1〉〉, ..,〈〈bi1〉, ..,〈bim〉,ai〉〉, ..,〈〈bp1〉, ..,〈bpk〉,ap〉〉〉
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where each 〈ai−1,ai〉 represents an ordered pair of actions, and each 〈bi1〉 rep-

resents the observed external events before the execution of action ai and after

action ai−1 execution. An exception is required for the first recorded action in DAll,

as there is no preceding action. In this case, we use the timestamp of the initial

high-level event as the start time of the system execution. Given DDirect, we view

the problem ofmining belief-based explanations as finding all the sequences 〈b,a〉

that satisfy some predefined measures of interestingness, assuming unique activ-

ity execution (i.e., there is no concurrent execution of actions).

Again, we are interested in discovering all the external events that are observed

always, or most of the time, directly before the execution of each action referred

to in the behaviour log. Association rule learning can be an effective means for

discovering regularities (i.e., potential associations) between external events and

executed actions. With regard to our application area, an association rule is an

implication expression that looks like “the target system must have been known

〈b〉 to execute the action a". Remark that for an external event to be considered

as an enabling belief of an action it has to satisfy some predefined measures of

interestingness, which will be discussed later in this section.

Let L = {l1, . . . , ln} be a set of distinct distinct literals. Let DDirect be a set of se-

quences, called a sequence database, such that each sequence consists of a set of

literals. Given two itemsets X and Y, the association rule X⇒ Y is an implication

states that if the elements in X occur, then it will be followed by the elements in

Y. For an association rule to be an interesting one, it must satisfy two measures of

interestingness: minimum support (min supp) and minimum confidencemin conf

thresholds, which can be computed as follows

� An association rule X⇒ Y holds in DDirect with a certain support (how fre-

quently the rule appears in DDirect) provided by

Support(X⇒ Y) = P(X∩Y)

� An association rule X⇒ Y holds in DDirect with a certain confidence (the

accuracy of the rule) provided by

Confidence(X⇒ Y) = Support(X∪Y)/Support(X)
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� For an association ruleX⇒ Y to be interesting it has to have a support greater

than, or equal to, min supp and a confidence greater than, or equal to, min

conf, which are commonly depicted as

Support(X⇒ Y)> min supp

Confidence(X⇒ Y)> min conf

We use the well-known CMRules algorithm [145] to discover this form of rules.

Fundamentally, CMRules algorithmmakesmultiple passes overDDirect to discover

interesting rules. The algorithm startswith searching for all association rules, then

it goes through DDirect again calculating the support and confidence of each dis-

covered rule and eliminating those rules that do not satisfy the givenmin supp and

min conf. The rest of the discovered rules are considered in our context as belief-

based explanations.

Example 5.4. Continuing with our running example, table 5.3 shows the results

of applying the CMRules algorithm to DAll obtained from table 5.1 and table 5.2.

Table 5.3: Mined belief-based explanations

plan action belief-based explanations

p1 idle(throttle)
runway(dry) ∧ wind(cross) ∧ efto
∧ flaps = 15 ∧ v1 <speed <v2

p1 deploy(brakes) decelerate(thrust)

p1 send(tower, msg) steady(aircraft)

p2 increase(mixture)
runway(wet) ∧ wind(head) ∧ efto
∧ flaps = 15 ∧ v1 <speed <v2

p2 increase(throttle) escalate(fuel_flow)

p2 take_up(flap) accelerate(thrust)

p2 pull(yoke) liftoff(aircraft)

p2 take_up(gear) flaps = 0

p2 send(tower, msg) up(gear)

CMRules algorithmcandiscover all the interesting association rules fromDDirect.

Nevertheless, additional post-processing is required, where we rule out any asso-

ciation rule that its consequent label is not a single action name or its antecedent

label is not beliefs.
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5.5 Validating the Mined Explanations

Our guiding intuition here is that the state update operator and the available data

used to generate updated belief-based explanations can also be leveraged to vali-

date themined explanations. Our validation approach involves somemechanisms

that take as inputs (1) A DAll, (2) A state update operator, and compute the sound-

ness and completeness of the mind explanations. We shall keep assuming unique

action execution through this section.

First, we need inputs (1) and (2) to generate a sequence (denoted hereafter

as DUpdated) that associates each action in DAll to the set of updated beliefs of all

actions executed up to that point in the plan execution. Each object in DUpdated

is a pair of the form 〈β i,ai〉, where β is the set of updated beliefs of all actions

executed up to ai. DUpdated can be simply obtained using ⊕ over DAll assuming

the presence of a KB defined in the same language as that in which the beliefs are

described. table 5.4 illustrates the results of applying the operator⊕ to input DAll.

It should be noted that a single action in DUpdated can be associated with a set of

sets of beliefs, due to the non-determinism nature of the ⊕ operator. To validate

the mined explanations, it is useful to establish:

• Soundness. A sound belief-based explanation is one that is mined correctly

(i.e., observed in DAll). Another way to say that a detailed belief-based ex-

planation to a given point in the plan execution should contain the mined

belief-based explanation updated using⊕ at that point in the plan execution.

Formally, for each plan execution sequence in DUpdated and each action ai the

following condition must hold: βi∪KB |= b for some b ∈ ba1, . . . ,bai , where

bai is the mined belief-based explanation of action ai .

• Completeness. A complete belief-based explanation requires that all the

enabling beliefs of a given action are mined. Actually, this can be viewed as

a reversal of the above-cited entailment relation (i.e., b∪KB |=βi)
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Table 5.4: Updated belief-based explanations of plan p1

plan action belief-based explanations

p1 idle(throttle)
runway(dry) ∧ wind(cross) ∧ efto ∧
flaps = 15 ∧ v1 <speed <v2

p1 deploy(brakes)
decelerate(thrust) ∧
runway(dry) ∧ wind(cross) ∧ efto ∧
flaps = 15 ∧ v1 <speed <v2

p1 send(tower, msg)
decelerate(thrust) ∧ steady(aircraft)
∧ runway(dry) ∧ wind(cross) ∧ efto
flaps = 15 ∧ v1 <speed <v2

Where it is possible for the mined explanations to be unsound or incomplete,

further post-processing may be required for more reliable results. We overtake

this problem by seeking more observations and/or re-mining with lower support

and confidence thresholds.

Example 5.5. Continuing with Example 5.2 and Example 5.4, the scenarios:

• Why did the pilot agent pull the throttle lever to idle immediately after the EFTO?,

• Why did the pilot agent move the mixture knob to rich after the EFTO?

Can be answered as depicted in Table 5.5 below

Table 5.5: An example of belief-based explanations

Action Belief-based explanation

idle(throttle) runway(dry) ∧ wind(cross) ∧ efto ∧ flaps = 15 ∧ v1 <speed <v2

increase(throttle) runway(wet) ∧ wind(head) ∧ efto ∧ flaps = 15 ∧ v1 <speed <v2

Explaining by UD SO using the above-cited mechanism is not as straightfor-

ward as the account above suggests. There is some post-processing required in

terms of choosing between beliefs that achieve a sensible selection strategy. Con-

tinuing with Example 5.5, one can customize SO to select between accelerate-stop

and accelerate-go based onwind direction (e.g., cross or head), runway condition

(e.g., dry or wet), or based on both context conditions.



5.6. Related Work 93

5.6 Related Work

Although a large and growing body of work exists on developing explainable

agents and robots [78], fewworks focus on generating explanations for intelligent

agents.

Harbers et al. [79] described four algorithms to design explainable BDI agents:

one using parent goals, one using top-level goals, one using enabling beliefs, and

one using the following action or goal in the execution sequence. They found

goal-based explanations were slightly preferable to belief-based expansions to ex-

plain procedural actions (i.e., a sequence of actions and sub-goals) based on users’

evaluation. Nevertheless, belief-based explanations were preferable in explaining

conditional and single actions. Similar explanation algorithms were proposed by

Kaptein et al. [80], but to investigate the difference in preference of adults and chil-

dren for goal-based and belief-based explanations. They found that both adults

and children preferred goal-based explanations. Related, but in a different ontol-

ogy, is the work presented in Kaptein et al. [146], in that the agent explains its

action in terms of its beliefs, goals and emotions.

Sindlar et al. [93] proposed an abductive approach to infer the mental states

of BDI agents in terms of beliefs and goals. To that end, they described three

explanatory strategies under three perceptory presumptions: complete, late, and

partial observations. Sindlar et al. extend their work to an explanation approach

that takes into account three organizational principles: roles, norms, and scenes in

[94]. The extended work proposes an approach to how the observed behaviour

of game players can be explained and predicted in terms of the mental state of

virtual characters. Related, but in a different domain, is the chapter presented in

[147]. Sequeira and Gervasio propose a framework for explainable reinforcement

learning that extracts relevant aspects of the RL agent interaction with its environ-

ment (i.e., interestingness elements) in [147]. They suggested four dimensions of

analysis: frequency, execution certainty, transition-value, and sequence analysis

to extract the interestingness elements, which are used to highlight the behaviour

of the agent in terms of short video clips.

All the previous approaches presented in this chapter can theoretically gener-

ate explanations of agents’ actions, but assuming reliable observations, availabil-
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ity of an explanation generation module and deterministic execution of plans. On

the other hand, we leverage the past execution experiences of the target agent,

which allows performing various techniques to handle unreliable observations

(e.g., measures of interestingness). Much of the work done on agent explanation

generation shares the common judgment that relatively short explanations are

more useful to explainees. Nevertheless, as shown in our running example, de-

tailed explanations are critical in some cases (e.g., explaining BDI plan selection)

as shown in our running example. Finally, and in contrast with the literature, our

mechanism allows explanations to be non-deterministic.

5.7 Chapter Summary

In this chapter, we addressed the problemof agent explanationmining (and specif-

ically belief-based explanations) in the context of the well-known BDI paradigm.

This problem was formulated as follows: “Given the past execution experiences

of an agent and an update operator, generate the belief-based explanation of each

action referred to in the agent’s past execution experiences". We presented an

update operator that is able to generate detailed explanations. Through exam-

ples, we also showed that detailed explanations could be useful in explaining BDI

plan selection. We have tackled the problem of explanation generation in non-

deterministic settings. At this point, we are trying to extend the application of

the proposed approach to other BDI handles. Experimental results and technical

details are discussed in chapter 6.



Chapter 6

The XPlaM Toolkit

This chapter presents XPlaM (eXplainable Plan Miner) Toolkit guide, devel-

oped to support programmers in the design of Digital Twins of organiza-

tions without loss of generality to other anthropomorphic systems. XPlaM man-

ual describes how the algorithms and the conceptual components presented in

chapters 3, 4 and 5 have been implemented. Fundamentally, XPlaM builds on

the following two premises: (1) Digital Twins should be re-crafted in response

to every change in the target system or the operating context [16] and (2) Hand-

crafting Digital Twins, which is the current norm, comes with several obvious

limitations (e.g., time and effort). Re-crafting a Digital Twin is the process of un-

derstanding and consequently imitating an anthropomorphic system through, in

our case, abductive reasoning with little knowledge into its historical behaviour.

The setting in which XPlaM has developed is very challenging, where we look at

the automatic acquisition of Digital Twins. To that end, XPlaM leverages:

� Abductive reasoning to infer explanations from the historical behaviour of

the target system,

� BDI ontology (e.g., beliefs and desires) as the implementation vehicle for

explanations generation, and

� AgentSpeak(L) programming language as a means of representing the gen-

erated explanations.

XPlaM provides a number of explanation techniques that comply with the op-

erational semantics of Jason [75]. For now, XPlaM provides five techniques in the

95
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form of plugins, three of which are related to the explanation techniques offered

in the previous three chapters and two pre- and post-processing plugins that will

be discussed later in this chapter.

Technical Details

XPlaM is implemented on top of Visual Studio 2019 using C# programming lan-

guage. Similar to the idea of the well-known process mining workbench ProM

[101], XPlaM has been developed as an extensible framework to support different

goal-driven XAI techniques (each of which comes in the form of a plugin action).

XPlaM users can navigate through three main user interfaces: (1) Workspace

view,which facilitatesmanaging imported resources, (2)Action view,which shows

all the plugins that can be taken over the imported resources, and (3) View view

which shows an overview of a selected resource or the results of applying a plugin

over that resource. Figure 6.1 represents the user interface of the XPlaM toolkit.

Figure 6.1: A snapshot of XPlaM main interface

XPlaM leverages Jason implementationa of the alphabet of AgentSpeak(L) lan-

guage. Note that, for the practical results of this work, XPlaM recognises only the

most common operational semantics of Jason. XPlaM also leverages theNanoByte
ahttps://github.com/jason-lang/jason
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SAT Solverb to implement the state update operator described in chapters 4 and 5.

The developed operator supports both propositional variables (i.e., variables that

can be true or false) and non-Boolean variables (i.e., new value assignments). For

testing, experiments have been implemented on an Intel Core i5-6200 CPU (with

8GB RAM). Note that each XPlaM plugin requires different inputs (data files)

to operate on. XPlaM can deal with three data extensions: AgentSpeak(L) plan

libraries with a .xml and a .txt extensions, logs with a .csv extension, and knowl-

edge bases written in Conjunctive Normal Form (CNF) with a .txt extension. The

source code for XPlaM has been published online at https://github.com/DSL-

UOW/XPlaM.

What questions is XPlaM used for?

We expect XPlaM toolkit to help answer a number of questions that users may

have about designing Digital Twins of organizations. To illustrate this, consider

again the ACo example from chapter 3. Table 6.1 outlines some of the questions

that the startup may have about ACo.

Table 6.1: What questions is XPlaM used for?

Question Section
What are ACo’s top-level plans based on its observed actions? 6.2
How ACo prioritizes its goals? 6.2
How does ACo deliberate between competing options? 6.2
How to leverage existing hypotheses to explain unknown plans? 6.3
What must have been known for ACo to perform a particular action? 6.4

The following sections show how to use XPlaM to answer such questions.

Converting Plugins

To use XPlaM, the user is required to upload AgentSpeak(L) plans in the form of

.xml format. The choice of .xml format as a hierarchical structure ofAgentSpeak(L)

plans enables our parsing mechanism to resolve a plan into its component based

on the operational semantics of Jason [75] without the need for a fully-fledged
bhttps://github.com/nano-byte/sat-solver
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interpreter. Furthermore, .xml structural representation allows more readabil-

ity for developers and other future works. To do so, XPlaM provides the plugin

ConvertAgentSpeak(L) toxml. This plugin complies with the operational semantics

of Jason [75]. To illustrate the functionality of this plugin, consider the following

example.

Example 6.1. Consider the product release plan from chapter 3.

@p1 +release(x): beta_test(x)
<− !promote(x);

launch(x) ;
create_feedback_channel(x).

Applying ConvertAgentSpeak(L) toxml plugin over the above AgentSpeak(L) plan

generates the following .xml file

<Plans>
<Plan lable="p1">
<Triggering>+release(x)</Triggering>
<Context>beta_test(x)</Context>
<PlanBody>
<BodyLiteral Type="achieve">
<Name>!promote</Name>
<Parameters>x</Parameters>

</BodyLiteral>
<BodyLiteral Type="action">
<Name>launch</Name>
<Parameters>x</Parameters>

</BodyLiteral>
<BodyLiteral Type="action">
<Name>create_feedback_channel</Name>
<Parameters>x</Parameters>

</BodyLiteral>
</PlanBody>

</Plan>
</Plans>

In addition, XPlaM supports converting .xml to AgentSpeak(L) with a .txt ex-

tension. To do so, the user needs to select the plugin ConvertAgentSpeak(L) totext.
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chapter organization

Table 6.2 illustrates how the remainder of this chapter is organized.

Table 6.2: XPlaM main plugins and corresponding chapters

Plugin Section Corresponding chapter
Abducive Design of BDI Agents 6.1 chapter 3
Abductive Plan Editing 6.2 chapter 4
Explaining by Belief 6.3 chapter 5

This section uses the startup competitor analysis example (described in chapter

3) as a running example.

6.1 Plugin I: Abductive Design of BDI Agents

TheXPlaMAbductiveDesignof BDIAgentsplugin provides the ability to understand,

through abductive reasoning, how an anthropomorphic system (i.e., an organi-

zation in this case) carries out its tasks with very little insight into exactly how

it does so. As the name suggests, AbductiveDesignof BDIAgents plugin does not

provide mere explanations of target system behaviour but also generates an ex-

ecutable BDI agent model on the basis of the generated explanations. Executing

the agent model can then imitate the behaviour of the target system in terms of

plans, beliefs, goals generation and deliberation. This, in turn, allows performing

various types of analysis of the internal workings of the system being twinned. It

is important to note that we do not claim to be capable of inferring a complete and

correct BDI agent-based Digital Twin but providing a description of organization

behaviour. Developers can then use this description to develop a more complete

and correct Digital Twin. As depicted in Table 6.3, AbductiveDesignof BDIAgents

requires two inputs: (1) A collection of AgentSpeak(L) plans in a .xml extension,

and (2) A sequence of actions in a .csv extension.

Table 6.3: AbductiveDesignof BDIAgents inputs

Data file Description Extension

Collection of plans
A set of potential hypotheses written using
AgentSpeak(L) programming language.

.xml

A behaviour log Action sequence that we want to explain. .csv
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Note that AgentSpeak(L) plans in .txt format can be converted to .xml (and vice

versa) using XPlaM converting plugins. Nevertheless, it is important to note that

the user is still required to map between the vocabulary used in input (1) and

the vocabulary used in the behaviour logs used. This is not an impractical issue

because, in many settings, developers must first agree on the grammar and the

syntax used for parsing to avoid linguistic controversy.

Running AbductiveDesignof BDIAgents plugin over inputs (1) and (2) generates

three outputs, as shown in Table 6.4.

Table 6.4: AbductiveDesignof BDIAgents outputs

Data file Description Extension

Plan Library
A set of plans and sub-plans whose
execution generates precisely the
observed actions.

.asl

Model of Abduction
Mapping from available plans to
subsets of the observed actions.

.txt

Customized Agent
Class

Three overrided methods describing event,
option and selection functions.

.java

As such, the execution of the plans and sub-plans thus identified (in .asl format)

generates precisely input (2) given the Agent Class thus customized (in .java for-

mat). For more explainability, the plugin also displays the model of abduction -

a mapping between hypotheses (i.e., plans) and observations (i.e., observed ac-

tions). To create a BDI agent-based Digital Twin out of these outputs, the user

needs to copy the plan library and Agent Class into his Jason project. For readers

interested in Jason project development, we refer to [75].

The remainder of this Section is organized as follows. Section 6.1.1 illustrates the

implementation of abductive plan recognition. Section 6.1.2 describes our imple-

mentation of the abductive design of BDI selection functions. Section 6.1.3 reports

on the experimental evaluation of the plugin.

6.1.1 Abductive Plan Recognition

The starting point for the AbductiveDesignof BDIAgents plugin is to infer the top-

level plans that best explain an observed sequence of actions. We view this prob-
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lem as a hypothesis assembly task [148]. However, what our mechanism tries to

infer is slightly different from the notion of classical abductive plan recognition,

where it seeks to find a set of plans whose execution generates precisely the ob-

served action sequence.

First of all, XPlaM traverses the uploaded plans checking for improper use of

Jason’s operational semantics. If there is a syntax error preventing XPlaM from

interpreting the uploaded plans, a pop-upwindowwill appear informing the user

that XPlaM cannot parse the .xml file successfully.

Figure 6.2: XPlaM: syntax error pop-up window

Recall that XPlaM does not provide a fully-fledged interpreter. Hence, it can-

not detect run-time errors (e.g., the user did not provide the required plan for a

sub-goal) nor logical errors (e.g., incorrect definition of context conditions). If the

uploaded plans are syntax error-free, the XPlaM starts the abductive plan recog-

nition algorithm (described in chapter 3). Our implementation of abductive plan

recognition involves two steps: (1) search for a potential explanation, then (2)

repeatedly search for a better explanation.

As defined in chapter 3, a behaviour log is a sequence of observations, each

of which consists of an action name and a list of typed parameters. To avoid han-

dling different groundings of the variables as distinct observations, we neglect the

precise grounding of valuables. For each observation in the behaviour log, XPlaM
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traverses each uploaded plan searching formatching. Amatching, therefore, does

not include the list of typed parameters. Once matching is found, XPlaM takes

the current plan as a potential hypothesis and generates a list of lists to capture

all possible instances of that plan. A plan instance is one way in which a plan

can be executed, each of which is represented as a sequence of primitive actions.

Continuing with the product release plan, the generated plan instances are:

instance 1: < advertise (x, email_list ) , launch(x) ,create_feedback_channel(x)>
instance 2: < advertise (x, socialMedia) , launch(x) ,create_feedback_channel(x)>

Once the recognition is completed, XPlaM starts sorting potential hypotheses

based on their plausibility (i.e., degree of fitness). The definition of the best expla-

nation for a given sub-set of observations, therefore, requiresmapping hypotheses

in the set of potential explanations to a partially ordered set of integers. We shall

refer to this mapping as plausibility. For example, if plan p1 is the most plausible

hypothesis, p1 explains a sub-set of DAll, then p1 can be stated as the best explana-

tion without the need for further search. Plausibility is the ratio of observations,

the plan can explain the total number of the plan steps. For example, if plausibil-

ity(p1) > plausibility(p2) for a given sub-set of observations, then p1 is a better

explanation than p2 for that sub-set.

Figure 6.3: A snapshot of AbductiveDesignof BDIAgents outputs
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Only the best explanations will be displayed as part of the plugin output. Plans

that can partially explain a subset of the observed actions can also be recognized,

but using AbductivePlanEditing plugin, as described in Section 6.2 in this chapter.

6.1.2 Abductive Design of BDI Selection Functions

For a BDI agent to faithfully imitate a target system, it must also re-create the inter-

nal workings of that system. Viewing the internal workings of the target system

through the lens of BDI agents can be programmed by answering the following

questions: How does the system prioritize its goals or changes in the environ-

ment?, How does the system select its know-how? And How does the system

execute its competing attention? XPlaM suggests three common selection strate-

gies to answer these questions: FIFO (First-In-First-Out), RR (Round-Robin) and

UD (User Defined). XPlaM takes these strategies as hypotheses to explain the in-

ternal workings of the target system based on some observations, as detailed in

Table 6.5.

Table 6.5: Main selection strategies for customizing BDI agents

Hypothesis Observation
FIFO SE Pending events are handled based on their temporal order.
UD SE Pending events have different priorities.
FIFO SO There is a strict preference for one option.
UD SO Applicable options have different priorities.
FIFO SI Executing each intention to completion.
RR SI Executing a fixed number of steps of each intention in turn.
UD SI Competing intentions own different priorities.

The guiding intuition behind the abductive design of BDI selection functions

can be summarized as follows: selection strategies that explain the behaviour of

the target system can also be used to customize the internal workings of its BDI-

based Digital Twin. As described in chapter 3, XPlaM considers SE, SO and SI,

which are methods of AgentClass. What XPlaM tries to achieve here is to extend

the basic functionality of BDI selection functions to re-create the internal workings

of the target system.
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Abductive Design of SE

The starting point to the abductive design of AgentClass is to abductively cus-

tomise the way in which the BDI agent will, but not necessarily, prioritise events.

Typically, this can be implemented in a FIFO (first-in-first-out) style, i.e., select

the first event in the list of pending events. However, there are some exceptions

where the target system has an obvious preference for a specific event. Our im-

plementation focuses on settings with FIFO SE due to the competitive settings of

this work, but it offers guidance to developers to manually modify SE to satisfy

preference-based event selection. XPlaM starts recording all the events that trig-

ger the execution of the inferred plans, e.g., beliefs and achievement goals, in a

queue called Queue < Event >. The queue Queue<Event> orders the set of all

recorded events in a FIFO style. Accordingly, the method selectEvent selects the

first events in Queue<Event>. Once the queue is filled up, XPlaM generates the

following .java code.

/∗ Abductive Design of AgentSpeak(L) Selection Functions ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ This code has been generated by XPlaM toolkit.
∗ Copy XPlaM.Class into your Jason project as a java file .
∗ Add Agent_name agentClass XPlaM; to your mas2j file.
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
import jason .asSemantics.∗;
import jason .asSyntax.∗;
import java . util .∗;

public class XPlaM extends Agent {
@Override
public Event selectEvent (Queue<Event> events) {

private Trigger e4 = Trigger. parseTrigger ("+release(x)");
private Trigger e7 = Trigger. parseTrigger ("+active(x)");
private Trigger e9 = Trigger. parseTrigger ("+mature(x)");
private Trigger e15 = Trigger. parseTrigger ("+limited(x)");
private Trigger e18 = Trigger. parseTrigger ("+obsolete(x)");
Iterator <Event> i = events. iterator () ;
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while ( i .hasNext()) {
Event e = i.next() ;
i .remove();
return e;}
}

return super. selectEvent (events) ;
}

At run-time, the method selectEvent selects the first event in the list of pending

events.

Abductive SO

The second point to the abductive design of AgentClass is to abductively customise

the way in which the BDI agent will select applicable plans. The default imple-

mentation of selectOption method in the Jason platform selects the first applicable

plan from the set of applicable plans Oe according to the order in which they are

written. This implementation is used if the set of applicable plans is not a singleton

for the current unification and belief state. We shall refer to this implementation

of selectOption as FIFO SO.

The abductive customization of selectOption can be summarized as follows. For

each possible unification and belief state, XPlaM determines Oe. If Oe is a single-

ton, it does nothing. Otherwise, it runs through Oe again, searching for irrational

selections. XPlaM exploits the default implementation of selectOption by setting

the order in which the set of applicable plans should be written in the recognized

plan library, as depicted below.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ Change the order in which plans are written in your AgentSpeak(L) plan
∗ library code as follows:
∗ @p8, then @p7
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

Note that Abductive SO can deal only with the rational selection of plans (i.e.,



6.1. Plugin I: Abductive Design of BDI Agents 106

the observation log shows only strict preferences for one option for each Oe). Ir-

rational selection strategies (e.g., SO = p7 at some instances and SO = p8 at other

instances) can also be explained, but using Explaining by Beliefs plugin, as described

in Section 6.3 in this chapter.

Abductive SI

The third point to the abductive design of AgentClass is to abductively customise

the method selectIntention - the way in which the BDI agent will select intentions

to be further executed in each reasoning cycle. Recall that there are two imple-

mentations of selectIntention: RR SI and FIFO SI.

XPlaM starts constructing intention stacks from the sequence of inferred plans

H′. The procedure below shows how to construct intention stacks, as described in

[75].

Construct_intention_stacks(H′)
While(E 6= ∅):

SE(E) = e
Re = unify_event(H′)
Oe = check_context(Re)
if(external_event(e)): I = I ∪ [SO(Oe)]
if(internal_event(e)): i.push(SO(Oe))

Endwhile

Given a sequence of inferred plans H′, we can recognize a new intention stack i

if the parsed plan is triggered by an external event, or else it is pushed on the top

of the current stack. Note that each intention i refers to an execution instance.

@Override
public Intention selectIntention (Queue<Intention> intentions) {

Iterator <Intention> i = intentions . iterator () ;
while ( i .hasNext()) {

Intention cit = i.next() ;
boolean i1 = cit . hasTrigger(e4, new Unifier ()) ;
boolean i2 = cit . hasTrigger(e7, new Unifier ()) ;
boolean i3 = cit . hasTrigger(e9, new Unifier ()) ;
boolean i4 = cit . hasTrigger(e15, new Unifier ()) ;
boolean i5 = cit . hasTrigger(e18, new Unifier ()) ;
if ( intentions . size () == 1) {

if ( i1 || i2 || i5){return cit ;}
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}
else if ( i3 && i4) {

i .remove();
return cit ;} }

}

Consider the two intentions I = {i1, i2}. FIFO SI executes either i1 or i2 to com-

pletion before starting the other intention based on their temporal order. This can

be extracted by checking for non-interleaving execution of their plans. RR SI exe-

cutes a fixed number of steps of i1 and i2 in turn. This can be extracted by checking

for interleaving execution of their plans. After identifying which intentions can

be interleaved and which cannot, XPlaM generates an override selectIntention as

depicted above. Typically, the overridden method generates one possible flow of

control (i.e., IF statement) for FIFO intentions combined with the logical opera-

tor OR and n number of possible flow of controls for each pair of RR intentions

combined with the logical operator AND. This, in turn, prevents FIFO intentions

from being interleaved with RR intentions at run-time and vice versa.

User-Defined Customization

Now, we consider the problem of what needs to be done when the above-cited se-

lection strategies are found to be irrational or unable to explain a particular selec-

tion. This section offers guidance to developers to modify the first-cut customized

selection functions by using simple tests as a preference-based learning problem.

Our discussion focuses on settingswhere there is a strong preference for one selec-

tion. Preference-based UD customization of AgentClass involves somemechanism

that takes the sequence of recognized plans H′, the set of potential explanations

H, i.e., H′ ⊆ H, and generates preference relations between potential and inferred

selections. The basic intuition behind this is that, for example, if a triggering event

is always followed by another event, then this suggests that there is a preference

relation between both events. To that end, we introduce the following notations

and definitions.

Definition 6.1 (Regular weak and strict preferences). Let F be a totally ordered

set of elements {a,b,c, . . . ,z}. A regular weak preference, denoted by ‘�’, is a bi-
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nary relation on F. For the ordered pairs (a,b), we use the notation a� b to point

out that “a is preferred or indifferent to b". Relation ‘�’ is transitive; whenever

a� b and b� c, then also a� c. Relation ‘�’ is reflexive. Formally, ∀a ∈ F : a� a.

A regular strict preference, denoted by ‘�’, is another binary relation on F. For

the ordered pairs (a,b), we use the notation a� b to indicate that “a is strictly pre-

ferred to b". Relation � is asymmetric. Notationally, a� b⇒¬b� a. Also, it is

transitive [149].

Preference-based UD SE

Let b1,b2 be two external events such that b1 triggers the execution of plan p1 and

b2 triggers p2. Assume also that the creation time of p1 is tj and p2 is tk.

� b1� b2 iff there is an H′ where p1 is always executed before p2 (i.e., j < k).

Relation� describes regularweak preference relation on E. For example, the

statement b1� b2 means that the external event b1 is preferred or indifferent

to b2.

� b1� b2 iff b1� b2 ∧ ¬b2� b1. Relation � suggests a regular strict prefer-

ence. For instance, the statement b1� b2 indicates that “b1 is strictly pre-

ferred to b2", and can be computed from � relation.

� SE(E) = {b1 | b1� E}. Given the relation ‘�’ on E we say that SE(E) = b1 if

for every other b ∈ E we have b1� b.

Regular strict preferences, in this context, describe how the target system prior-

itized external events based on their appearance in H′. Assume that “+release(x)"

has a priority over other external events. This can be implemented by adding the

following code to selectEvent method.

if (e4) {
i .remove();
return e;}

UD SO

Let p1,p2 ∈ Oe be two applicable plans for the external event b1. When both plans

appear in the same observation log, two possible explanations might be adopted:
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(1) Assuming that the target system has made an irrational decision by selecting

p1 or p2, or (2) seeking more beliefs (as described in chapter 4) to explain each

selection and try again to override the method selectOption accordingly. Note that

preference-based UD SO can be problematic since some of the target behaviour

might be impossible to be re-crafted. Our focus, therefore, is on the latter expla-

nation. We shall address this issue later in this chapter (section 6.3).

Preference-based UD SI

Let ij, ik ∈ I be two intention stacks.

� ij � ik iff there is an I such that ij, ik ∈ I and j < k. Relation� describes regular

weak preference relation on I. For example, the statement ij � ik means that

“ij is preferred or indifferent to ik".

� ij � ik iff ij � ik ∧ ¬ik � ij. Relation � suggests a regular strict preference. For

instance, the statement ij � ik indicates that “ij is strictly preferred to ik", and

it can be computed from � relation.

� SI(I) = {i | ij � I}. Given the relation ‘�’ on I, we say that SI(I) = ij if for every

other intention i ∈ I we have ij � i.

Regular strict preferences here describe how the target system prioritizes differ-

ent focuses of attention based on their appearance in H′.

6.1.3 Experimental Results

Aiming to establish that our proposed abductive design of BDI agents generates

reasonable, reliable results, we ran an experiment with one of Jason’s examples

called the Domestic Robotc and another one with an amended IT incident man-

agement logsd. For the Domestic Robot example, data has been collected using a

debugging tool called Mind Inspector [75]. The collected data contains 100 exe-

cution instances, with multiple event, option, and intention selections.
chttp://jason.sourceforge.net/wp/examples
dhttps://www.kaggle.com/datasets/asjad99/it-incident-management-process
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Performance Results of the Abductive Design

Our evaluation relies on the notion that an agent equipped with an abductive

design should generate precisely the observed behaviour. Accuracy measure is,

therefore, used to evaluate our abductive design. Accuracy is the ratio of correctly

imitated actions over the total number of imitated actions. Figure 6.4 illustrates

the accuracy results of the abductive design approach described in this thesis com-

pared to other workflow-based approaches represented in [106], [107], [108], and

[109]. Most of these approaches share a common inferring technique, i.e., trans-

forming inferred models (e.g., workflow net) into well-defined plans.

(a) (b)

Figure 6.4: Accuracy results for IT incidentmanagement (a), andDomestic Robot
(b) examples for different numbers of instances.

As illustrated in Figure 6.4, the accuracy results demonstrate that our abduc-

tive approach can be an adequate solution to recreate the observed behaviour

in both examples. However, the reader should keep in mind two critical details.

The more complex the target system’s inner workings are, the lower accuracy we

can obtain. This is not surprising because, in real-life settings, organizations are

driven by a wide range of values that shape their inner workings. Second, we

have considered artificially adding noise/irrational selections to the entries - as ex-

pected; the accuracy goes down as the instances number increases. With respect

to these two details, the abductive designs performed a higher accuracy compared

to other workflow-based design approaches. Note that we intentionally modified
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the selection functions to implement different selection strategies of the queued

elements in the IT incident management example. This explains the low accuracy

values obtained using workflow-based design approaches in Figure 6.4 (a). For

the second experiment, as illustrated in Figure 6.4 (b), our abductive design per-

formed only slightly better than the workflow-based design approaches because

what the Domestic Robot does is select the first event, plan and intention in every

reasoning cycle (FIFO).

Complexity of the Abductive Design

In this subsection, we ran a series of experiments to find out how fast XPlaMwould

take to explain an organization behaviour. For any given behaviour, we noticed

that four parameters can highly affect the computation time of the explanation

techniques: (1) size of H, (2) branching factor, (3) depth of search, and (4) num-

ber of selections (SE,SO,SI) the physical space made during data recording. We

tested the time complexity of the explanation techniques by fixing and varying

the above parameters as follows.

1. Experiment 1. (Size of H). We calculated the computing time in millisec-

onds needed for the abductive design by fixing the branching factor, depth

of search, and the number of selections and varying the number of poten-

tial explanations (i.e., size of H). We set the branching factor = 1, depth of

search = 1, and the number of selections = 8.

2. Experiment 2. (Branching factor). We calculated the computing time in

milliseconds needed for the abductive design by fixing the size of H, depth

of search, and the number of selections and varying the number of OR nodes

presented in each plan. We set the size of H = 10, depth of search = 1, and

the number of selections = 8.

3. Experiment 3. (Depth of search). We calculated the computing time in

milliseconds needed for the abductive design by fixing the size of H, the

branching factor, and the number of selections and varying the number of

levels of the goal-plan tree up to which the abductive plan recognition al-

gorithm will be applied. We set size of H = 10, branching factor = 1, and
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number of selections = 8.

4. Experiment 4. (Number of selections). For the purposes of this exper-

iment, we focused on the required time to explain by selection strategies.

We calculated the computing time in milliseconds needed for the abductive

design by fixing the size of H, depth of search, and branching factor and

varying the number of selections. We set size of H = 10, depth of search =

1, and branching factor = 1.

Figure 6.5 depicts the time complexity for each of the above-detailed experi-

ments.

(a) (b)

As illustrated in Figure 6.5 (a), the computing time is plotted linearly in respect

of the number of available hypotheses. We view this as an unfortunate necessity.

Recall that the abductive design of Digital Twins is about finding a correct and

complete explanation of organization behaviour. It is necessary, therefore, to in-

clude all available hypotheses. A higher growth rate can be seen with the increase

in search depth, as shown in Figure 6.5 (b). A similar trend is noted with respect

to the number of OR nodes presented in the hypothesis body part, as shown in

Figure 6.5 (c). As illustrated in Figure 6.5 (d), the number of selections the orga-

nization made during data recording can slightly affect the computation time of

the abductive design approach. It is to be noted here that for each run, the abduc-

tive plan recognition algorithm generates a different set of explanations (different
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(c) (d)

Figure 6.5: Computing time in milliseconds needed for recognition of a different
number of hypotheses, depths of search, branching factors, and the number of
selections.

H′). Thus, explaining by selection strategies generates new explanations. Nev-

ertheless, compared to plan recognition, inferring the internal behaviour of the

organization in terms of event, option, and intention selection functions is rela-

tively tiny.

6.2 Plugin II: Abductive Plan Editing

The XPlaM AbductivePlanEditing plugin enables users to explain unknown plans

(i.e., ones that involve new classes of observations) by modifying existing hy-

potheses. As detailed in chapter 4, AbductivePlanEditing plugin does not involve

a plan recognition mechanism, but it works as a complementary for a variety of

single-agent plan library-based plan recognition techniques. Hence, this plugin

is not suitable for stand-alone use, but it requires a plan recognition mechanism.

Table 6.6 illustrates the required inputs for this plugin action.



6.2. Plugin II: Abductive Plan Editing 114

Table 6.6: AbductivePlanEditing inputs

Data Description Extension

Plan
A plan that explains partially a sequence
of observation.

.xml

Unknown plan An action sequence that we want to explain. .csv

Capability library
A base comprises the set of all capabilities
specifications.

.txt

Goal state
A specification of the final effect associated
with the end state of the plan execution

.txt

To illustrate the implementation of AbductivePlanEditing plugin, we consider

variants ofMonroe County Corpus for emergency response domain [19] as a run-

ning example through this section.

Example 6.2 As shown below, the agent aims to provide medical attention to pa-

tients. It just receives requests from medical personnel, drives to the patient’s

location (loc), loads the patient (pt) into the ambulance (amb), drives back to the

hospital (h), and takes the patient out of the ambulance. Moreover, the agent is

also equipped with capabilities related to the emergency response domain prob-

lem.

@h1 +provide_medical_attention(pt)
: available (amb)
<− !at(amb,pt);

get_in(pt,amb);
!at(amb,h);
get_out(pt,amb).

@h2 +!at(amb,loc) : not at(amb,loc) <− drive_to(loc).
@h3 +!at(ambulance,loc) : at(amb,loc) <− true.

Consider the following scenarios that may arise in this emergency response do-

main:

i After arriving at the scene, the agent performed CardioPulmonary Resuscita-

tion (CPR) on the patient and loaded the patient into the ambulance.

ii The agent called an air ambulance anddrove back to the hospitalwithout load-

ing the patient into the ambulance due to rough terrain, poor weather, etc.
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iii The agent drove back to the hospital without loading the patient into the am-

bulance as the patient went missing.

It is not difficult to recognize that the basic reactive behaviour of the BDI agent

system (described in chapter 2) cannot produce the behaviours depicted in these

scenarios on its own; since it does not have those plans in its plan library. Ar-

guably, there is at least an extension to the system that enabled such edits in the

agent behaviour. For example, the behaviour illustrated in scenario (i) involves

an insertion edit (where the agent added CPR execution into the plan). Scenario

(ii) involves a substitution edit (where the agent replaced loading the patient into

the ambulance with calling an air ambulance). Finally, scenario (iii) represents a

deletion edit (where the agent dropped loading and taking the patient into and

out of the ambulance from the plan).

First, PlanEditing main method splits the first two inputs into sequences (only

body literal of type Action are converted). Continuing with Example 6.2 scenario

(ii), the following shows an example of an imperfect explanation (line 1) and an

unknown plan (line 2) that holds insertion and deletion edits.

[1] [drive_to(pt) ,get_in(pt,amb),drive_to(h),get_out(pt,amb)]
[2] [drive_to(pt) , call (air_am),drive_to(h)]

As a second input, the user needs to upload a .txt file that comprises the set of all

available capabilities specifications related to the domain problem, which should

be represented as follows.

[1]{not at(abm,loc)} drive_to(loc) {at(abm,loc)}
[2]{ at(abm,loc)} get_in(pt,amb) {in(pt,abm)}
[3]{ in(pt,abm),at(amb,h)} get_out(pt,amb) {out(pt,abm),at(pt,h)}
[4]{not reachable(pt)} call (air_amb) {at(pt,h)}
[5]{not breathing(pt) ,has(pt, pulse)} cpr(pt) {breathing(pt)}

Also, the user needs a .txt containing the specifications of the final effects asso-

ciated with the end state of plan execution (the imperfect explanation).

[1]{ at(abm,h),at(pt,h)}

Fundamentally, there are three methods that implement AbductivePlanEditing:

LevenshteinDistance, PlanEditing and PlanValidating. LevenshteinDistance method
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takes the first two inputs to measure the difference between them. Unlike the cus-

tomary implementation of distance algorithms, LevenshteinDistance method com-

putes and represents the edit distance (integer data type) and a list of required

modifications to turn an imperfect explanation into the unknown plan (list data

type). Table 6.7 shows an example of Levenshtein distance calculation between

the above-cited plans.

Table 6.7: An example of Levenshtein Distance calculation between two plans

drive_to(pt) call(air_amb) drive_to(h)
0 1 2 3

drive_to(pt) 1 0 1 2
get_in(pt,amb) 2 1 1 2
drive_to(h) 3 2 2 1
get_out(pt,amb) 4 3 3 2

For the corresponding modifications to be computed, we need to trace back the

choices that led to the minimum edit cost (bottom-right cell in the above table).

This trace back in Table 6.7 is marked in yellow.

[1] replace call (air_amb) at step 2
[2] delete get_out(pt,amb) at step 4

PlanValidatingmethod implements the state update operator (described in chap-

ter 4) to check the validity of the modifications suggested by the above methods.

After computing the state specifications of s1, . . .sn, where s1 is the initial state and

sn is the final state scenario associated with the execution of the modified plan

and for each action ai in the modified plan body, PlanValidating method checks the

conditions illustrated in Table 6.8.
Table 6.8: Conditions for plan validity

Condition Method Returns
pre-conditions of ai are exist in the preceding state si−1. Contains(T) Boolean
pre-conditions of ai are consistent with si−1. SatSolver Boolean
goal specifications exist in the final effect scenario
of the modified plan.

Contains(T) Boolean

goal specifications are consistent with sn. SatSolver Boolean

An edit is valid if all the four conditions in Table 6.8 are true. Note that each
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si is created as a list of list data type, since each state can be non-deterministic in

general.

[1] replace call (air_amb) at step 2 valid edit
[2] delete get_out(pt,amb) at step 4 valid edit

The code below shows the results of executing AbductivePlanEditing plugin us-

ing the inputs in Example 6.2.

Number of edits = 2
replace call (air_amb) at step 2 valid edit
delete get_out(pt,amb) at step 4 valid edit

======== Edited Plan =====================
@p1 +provide_medical_attention(patient)

: available (amb)
<− drive_to(amb,pt);

call (air_amb);
drive_to(amb,h).

======== Validation: Plan Consistency ====
replace call (air_amb) at step 2 valid edit
delete get_out(pt,amb) at step 4 valid edit

======== Validation: Goal State ========
goal state is reachable

Computing Time: 9 ms

6.2.1 Experimental Results

To conduct our evaluation, we use Monroe Plan Corpus [19]. For the purposes

of this work, the corpus has been rewritten using AgentSpeak(L) programming

language and executed using Jason interrupter [75]. Observation traces have been

collected using a debugging tool calledMind Inspector [75]. Unknownplans have

been classified using C4.5 decision tree algorithms [150].
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Performance Results

We ran a number of experiments to test the scalability of our approach with re-

spect to the number of new classes of observations. The corpus used in these

experiments has been executed to consider all possible traces (the number of ex-

ecuted actions is 80). New classes of observations were artificially added to the

observation traces. The number of capabilities is set to 20. Figure 6.6 compares

the number of explanations generated by our approach for a different number of

new classes of observations.

Figure 6.6: Number of generated explanations to new classes of observations

Our first study shows that with a moderate number of new classes of obser-

vations and a reasonable number of capabilities, abductive plan editing would

possibly improve the explanatory power of plan libraries in open environment

settings. Note that the scalability of the abductive plan editing should be tied

to the performance of the classification task. Nevertheless, the results depicted

in Figure 6.6 are partially independent of the used classifier (C4.5 decision tree).

Actually, we allowed for unknown plans that contain unreliable actions to be con-

sidered as inputs. We argue that additional features are required for a more-fine

classification of unknown plans.
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Speed

Aiming to find out how fast abductive plan editing would take to explain un-

known plans, we ran a number of experiments with Monroe Plan Corpus. Recall

that executing action models (i.e., planning) is another technique to explain un-

known plans. Hence, we use diverse planning [151] as a benchmark to assess the

complexity of our approach. Diverse planning aims at discovering a set of plans

that are within a certain distance from each other. The discovered set is then used

to compute the closest plan to the observation sequence. Figure 6.7 shows the

time required to discover a valid explanation for variant numbers of new classes

of observations using diverse planning (as used by LPG-d planner [151]) to the

time required by our plan editing approach.

Figure 6.7: Required time for plan editing vs. diverse planning.

Figure 6.7 shows that, unlike diverse planning for different numbers of new

classes of observations, plan editing is a relatively faster approach to explaining

unknown plans. However, the reader should keep two details in mind. First,

the performance of plan editing is tied to the performance of the used distance

algorithm (in our case, Levenshtein distance). A more fine-grained evaluation,

therefore, should include diffident distance algorithms (e.g., Hamming distance).

Secondly, during our experiments, we noticed that the size of the capability library

could highly affect the performance of diverse planning and plan editing. Wewill

investigate these two details as part of our future work.
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6.3 Plugin III: Explaining by Beliefs

The XPlaM Explaining by Beliefs plugin allows the user to obtain detailed explana-

tions of observed actions using a number of settings. Fundamentally, this plugin

helps answer the following question for any step of plan execution: What must

have been known in detail for the agent to perform a particular action over another?. The

answer to this question may also help resolve the problem of explaining irrational

explanations. Table 6.9 illustrates the required inputs for Explaining by Beliefs plu-

gin.

Table 6.9: ExplainingbyBeliefs inputs

Data Description Extension
Observation log An alternating sequence of beliefs and actions .csv

Plan library
A collection of AgentSpeak(L) plans whose
execution generates the used log.

.xml

Knowledge base A set of rules and axioms. .txt

As Explaining by Beliefs plugin requires the past execution data associated with

agent system execution, it takes an alternating sequence of beliefs and actions,

which can be represented as a sequence of the form b0,a1, . . . ,bn,an. Collecting

such data can be implemented using audit logging tools such as Mind Inspector

in Jason platform [75] and Design Tracing Tool (DTT) in JACK platform [73]. The

plugin also requires a plan library whose execution generates the used observa-

tion log in a .xml extension and a knowledge base that contains rules and axioms

related to the behaviour of the target system.

Running Explaining by Beliefs plugin over the above-cited inputs generates a set of

association rules, each of which represents the relation between perceived beliefs

and executed actions. For example, if the agent selected action ai, then it must has

known bi, . . . ,bn.

Table 6.10: ExplainingbyBeliefs output

Data file Description Extension

Association rule
A set of rules identifying the relation between
actions and beliefs.

.txt
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The default implementation of Explaining by Beliefs does not require the user to

specify any measures of significance (e.g., support and confidence) as input. The

only required inputs are a plan library, an observation log and a knowledge base.

Unlike previously mentioned plugins, Explaining by Beliefs is particularly useful in

collaborative settings (i.e., the target system would tell what its beliefs are at any

given time). To illustrate the implementation of Explaining by Beliefs, we study part

of the leading firefighter agent as described in [79].

Example 6.3. As shown in Figure 6.8, the leading FireFighter Agent (or simply

FFAgent) has the goal of leading the firefighter team. FFAgent starts preparing to

handle a fire incident whenever it acquires the belief fire alarm. If the equipment

has not yet been collected, then the FFAgent collects the equipment, gets into the

fire engine and calls the operator.

Figure 6.8: A GTH of FFAgent
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Figure 6.8 illustrates the structure of the goal hierarchy to which the goals and

beliefs of the FFAgent are updated. One may think of triggering action as the

result of the agent’s current goals ad beliefs. At every reasoning cycle, if there is

no applicable action, the agent waits until its beliefs change. If multiple actions

are applicable, the agent chooses an action based on a particular selection strategy

(as described in section 6.1). We are interested in twomodes of audit logging: (1)

behaviour logs and (2) belief logs. An excerpt of the observation log associated

with the plans in our example is recorded in Table 6.11.

Table 6.11: An observation log of FFAgent

timestamp action timestamp belief
t3 collect(equipment) t1 alarm(fire)
t5 get_into(truck) t2 not collected(equipment)
t7 call(operator) t4 collected(equipment)
t11 instruct(team,explore) t6 have(operator,new_info)
t13 instruct(team,prepare) t8 at(incident,loc)
t16 query(police) t9 not had(team,instructions)
t19 develop(attack_plan) t10 need(info,situation)

Consider the following knowledge base

KB = r→¬(d ∧ q)

representing a rule for the FFAgent. The propositional letter r can be read as

there is no explosion danger when using water, d as it is not safe to go inside the

house, and the letter q as an attack from the inside house is more effective.

There are two methods that implement Explaining by Beliefs plugin: belief Miner

and UpdateOperator. The belief Miner method takes an alternative sequence of ac-

tions and beliefs to extract frequent if-then patterns of the form b0, . . . ,bn→ ai (i.e.,

if the agent selects the action ai, then it has known that b0, . . . ,bn). The default im-

plementation set min conf = 0.90 and min supp = 0.4. As XPlaM source code is

published publicly, the user can tune themin conf andmin supp thresholds. How-

ever, it should be noted that tuning association rules thresholds arbitrarily can

be dangerous, as the typical problems of performance measurements can happen

when extreme thresholds are provided without due care (e.g., high min supp can
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return irrelevant rules). On the other hand, noisy observationsmight require high

thresholds.

As shown above, each rule is a composite of two itemsets: (1) Antecedent, the

left-hand-side of the rule, which is a set of beliefs and (2) Consequent, the right-

hand-side of the rule, which is a single action. belief Miner method rules out rules

that contain beliefs on both sides, actions on both sides, and rules with more than

one action on the right-hand side. Also, it rules out any association rules that

do not satisfy min conf and min supp. Next, the belief Miner method stores all the

rules that satisfy the above conditions as a Dictionary < string,List < string >>. A

dictionary (a collection of key-value pairs) datatype allows for only unique keys

(actions). The value of each action is then a list of beliefs. The results below show

the output of belief Miner over Table 6.11 in our running example.

[1] collect (equipment): [alarm( fire ) , not collected (equipment)]
[2] get_into(fire_engine) : [ collected (equipment)]
[3] call (operator) : [have(operator ,new_info)]
[4] instruct (team,explore) : [at( incident , loc) , .... , need(info , situation ) ]
[5] instruct (team,prepare) : [not ready(equipment)]
[6] query( police ) : [have(people,new_info), have(police ,new_info)]
[7] develop(attack_plan): [ sufficient ( info ) ]

The UpdateOperator method takes the generated dictionary as an input to com-

pute the updated belief-based explanation for each key (i.e., action) in the dictio-

nary. For each contiguous keys in the dictionary, UpdateOperator combines their

values in a new list, such that the later values take over the former ones. That

is if the later list contains undoes (e.g., negation) or different assignments (e.g.,

location(Agent) = 1.1) than the former list, then UpdateOperator updates the new

list with the later beliefs. The results below show the an expert of UpdateOperator

over the dictionary illustrated above.

[1] collect (equipment): [alarm( fire ) , not collected (equipment)]
[2] get_into(fire_engine) : [alarm( fire ) , collected (equipment)]

As discussed before, an updated belief-based explanationmight be a set of non-

deterministic possible belief states. Hence, a value of a specific key can be replaced

with another value based on preceding keys. After the Explaining by Beliefs plugin



6.3. Plugin III: Explaining by Beliefs 124

finishes parsing the uploaded inputs, the following window appears.

Figure 6.9: A snapshot of explaining by beliefs outputs

In this window, the user can specify which agent(s) to explain its actions in the

case of multi-agent systems.

6.3.1 Experimental Results

This section presents the evaluation of Explaining by Beliefs plugin action. We eval-

uated Explaining by Beliefs using a synthetic log of 1000 execution instances, repre-

senting FFAgent past behaviour as described in [79]. We also used a plan library

consisting of 15 plans.

We published the data sets supporting the conclusions of this section and its ad-

ditional files online at https://www.kaggle.com/datasets/alelaimat/explainable-

bdi-agents.

Performance Results

Our goal of this evaluation is to establish that Explaining by Beliefs can generate gen-

erally reliable explanations. To that end, we recorded the precision (i.e., number

of correctlymined explanations over the total number ofmined explanations) and

recall (i.e., number of correctly mined explanations over the total number of ac-

tual explanations) obtained from applyingExplaining by Beliefs. We consider min
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conf and min supp of the mined rules as the most important factors for mining

belief-based explanations. The results are depicted in Figure 6.12 and are sum-

marized below.

Table 6.12: Performance results for different min conf and min supp

min conf 1.00 0.95 0.9 0.85 0.8

Precision 0.8948 0.8910 0.8731 0.8487 0.8235
Recall 0.5678 0.6387 0.7265 0.7854 0.8547

min supp 0.5 0.4 0.3 0.2 0.1

Precision 0.9216 0.8741 0.8254 0.7703 0.6987
Recall 0.2257 0.3458 0.5361 0.6966 0.8815

min conf :

1. Confidence threshold considerably impacts performance results, i.e., higher

min conf leads to higher precision but lower recall. For example, our ap-

proach achieved the highest precision of 0.89 with the lower recall of 0.56

for min conf of 1.00.

2. It is necessary, thus, to find a trade-off between precision and recall when

varying min conf threshold. Hence, we use min conf of 0.9 for testing the

impact of varying min supp threshold.

min supp

1. Similar to themin conf, varyingmin supp has a significant impact on the per-

formance results. For example, we achieved the highest precision of 0.92

with an insignificant recall of 0.22 for min supp of 0.5.

2. Note that extracting association rules related to infrequent events needsmin

supp to be low. However, this, in turn, sacrifices the precision of the mined

explanations.

Finally, wenoticed some insightful observations through our experiments. First,

the size of DAll does not impact the performance results of the mined explanations

iff DAll includes all possible behaviours of the observed agent. For example, we
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achieved close precision values for DAll of 200 and 800 execution instances, which

were 0.836 and 0.842, respectively. Second, varying min conf and min supp have

a significant impact on the performance of the mined explanations and, conse-

quently, come with several limitations (e.g., time and effort).

6.4 Future Implementations

At this point in time, XPlaM has a number of limitations that require further re-

search to address.

1. The model of plan recognition XPlaM leverages can be problematic in some

cases since the target plans are not necessarily in the used library. Hence,

other models of plan recognition (e.g., AI planning-based plan recognition

[85]) can be more practical.

2. XPlaM has not been tested against real-world scenarios. Currently, we are

improving XPlaM to deal with logs obtained from complex real-life organi-

zations where incompleteness of knowledge and non-determinismmight be

present. A typical example of this is to leverage noise-tolerant plan recogni-

tion approaches, such as the work presented in [118].

3. Abductive plan editing views the leveraging of existing hypotheses to ex-

plain unknownplans (plans that involve new classes of observations). How-

ever, the state-of-the-art BDI agent framework exhibits a large number of ex-

tensions. Knowing which extension (i.e., what tools the target system has in

hand) caused the new classes of observations permits a more fine-grained

imitation of the target system. A number of these extensions are of inter-

est, including the application of norms mining [152], learning planning risk

mitigation [153] and change impact analysis in agent systems [154].

4. XPlaMviews the process of explaining by the BDI handles (e.g., beliefs, plan

and selection strategies) as an inclusive process. However, it is generally rec-

ognized that helpful explanations take explainees who are receiving the ex-

planation into consideration. Thus, we plan to extend our evaluation by in-

volving industrial practitioners familiar with agent-oriented programming.
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6.5 Chapter Summary

This chapter described the implementation of the XPlaM toolkit, designed to sup-

port the explanation techniques offered in the previous three chapters. A key

novelty of XPlaM is the fusion of two powerful styles: reverse engineering (to

re-create the visible behaviour of a target system) and explainable agency (for

viewing the behaviour of a target system through the lens of BDI agents).

For each plugin, we conducted a set of empirical evaluations, which suggest

that XPlaM can provide generally reliable results. Compared to the workflow-

based discovery of agent models, the XPlaM AbductiveDesignof BDIAgents plugin

has achieved significantly higher accuracy on two synthetic yet realistic observa-

tion logs. A significant aspect of this high performance is related to XPlaM’s abil-

ity to infer the internal workings of the target systems. The plugin achieved lin-

ear time complexity O(n) with respect to the number of observed instances. The

XPlaM AbductivePlanEditing plugin has achieved good scalability in leveraging

imperfect explanations with respect to the number of new classes of observations.

The plugin achieved significantly higher speed than executing action models to

best explain unknown plans. The XPlaM Explaining by Beliefs plugin has achieved

0.87 precision and 0.72 recall using min conf = 0.9. Also, it has achieved 0.92 pre-

cision but 0.22 recall using min supp = 0.5. As discussed in section 6.3, although

Explaining by Beliefs plugin can archive good performance measurements; the user

must find the suitable trade-off between precision and recall when varying min

conf and min supp thresholds.

Despite all of the above, it should be emphasized that XPlaM cannot provide

complete and correct BDI agent-based Digital Twins of anthropomorphic systems

(especially in competitive settings). Hence, we discussed a number of future im-

plementations in section 6.4.



Chapter 7

Conclusion and Future Work

This chapter concludes the contributions that we carried out through this the-

sis and provides pointers to a number of possible future directions of re-

search. It is useful at this point to revisit the general problem being addressed,

which was formulated as follows: “Find a BDI agent program that best explains

the behaviour of a target system on the basis of its observation logs".

7.1 Thesis Contributions

We presented three data-driven explanation techniques to support developers in

the design of Digital Twins of anthropomorphic systems. Through examples and

initial results, each of these techniques demonstrated its applicability in a setting

where there is limited information available about the target system behaviour.

We summarize these explanation techniques as follows:

� Abductive Design of BDI Agents (Chapter 3). We have proposed an end-

to-end methodology for the development of BDI agent-based Digital Twins.

Our contribution is able, to a certain extent, to re-create the externally visible

behaviour and the internal workings of the target system through the lens

of BDI agents. To this end, we proposed three explanation techniques: (1)

Abductive plan recognition, (2) Explaining by beliefs, and (3) Explaining

by selection strategies. Our evaluation of the abductive design of BDI-based

Digital Twins using two synthetic yet realistic observation logs suggests the

applicability of this contribution to addressing the research question ofwhat

128
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is an end-to-end methodology for the development of BDI agent-based Dig-

ital Twins.

� Leveraging Imperfect Explanations (Chapter 4). A drawback to abduc-

tive plan recognition (APR) is the assumption that target plans are usually

not from the used plan library. Actually, appealing to APR applications in

such settings would only generate imperfect explanations. Hence, we have

proposed an approach to address the problem of leveraging imperfect explana-

tions, the process of modifying existing hypotheses to explain an observed

sequence of actions. We have shown that when the observed system oper-

ates in a domain model known to the observer, imperfect explanations can

be a valuable guide to explain unknown plans that involve new classes of

observations. To avoid arbitrary modification of hypotheses, we have also

introduced a classificationmodel that can determine the settings (e.g., noisy

or explanatory) in which an unknown plan has been observed. The evalua-

tion of the proposed approach using the Monroe Plan Corpus demonstrates

the responsibility of this contribution to answering the research question of

how imperfect explanations can be leveraged to recognize unknown plans.

� Explanation Mining (Chapter 5). We have developed a data-driven ap-

proach to mining and validating explanations (and specifically belief-based

explanations) of target system actions. To do so, we have employed an asso-

ciation rule miner to discover regularities between external events and the

action of the target system. Also, we developed a state update operator (i.e.,

an operator that defines how the specification of a belief state is updated

as a consequence of the system’s perception of the environment) to contex-

tualise the explanation (i.e., provide users with detailed explanations) and

validate the discovered explanations. The evaluation results demonstrated

that mining belief-based explanations is able to answer the question of how

to leverage the historical data associated with the business environment to

provide detailed explanations about the organization’s actions.

� XPlaM (Chapter 6). We have developed a toolkit to support the algorithms

and the conceptual components presented in this thesis. XPlaM includes a
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user-friendly interface, requiring very little agent programming knowledge

of the user. The results from each evaluation demonstrated the benefit of

XPlaM in answering the research question of whether it is possible to build

a toolkit to support programmers in developing first-cut Digital Twins of

organizations. Recall that addressing this question is related to the applica-

bility of the above-cited contributions.

7.2 Future Work

This section highlights a number of future directions that could be pursued on the

path to a more fine-grained design of BDI agent-based Digital Twins.

� Selection strategies. Due to the practical results of this work, theoretical

strategies to plan and intention selections have not been considered. Never-

theless, they are realistic and, potentially, practical selection strategies. For

example, the target system may adopt a summary information-based inten-

tion selection similar to the one in [88] to implement positive or avoid neg-

ative interactions between goals. The target system may also select options

based on their costs [89] or particular preferences and moral values [155].

Of these, we are interested in the concurrent execution of goals and cost-

based selection strategies.

� Learning Planning Digital Twins. To provide support for run-time adapta-

tion, Digital Twins must address the question of what will be carried out to

handle given changes in the target system or the operating context. Given

the current state of the target system and a specification of its goals, this

can be viewed as a planning problem. The planning operators are capabili-

ties that appear as actions either in the currently deployed plan design or in

other designs in the target system repository (e.g., as illustrated in chapter

4). The output generated by a planner will therefore be action sequences

representing ways in which the target system will react to given changes.

� Explaining by Norms. Designing Digital Twins of anthropomorphic sys-

tems is the problem of recreating the external behaviour and the internal

workings of a target system, and related literature in this domain has limited
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itself to this case. We have done so as well, disregarding that social norms

are a powerful force in anthropomorphic systems. We view the problem

of designing normative Digital Twins as a two-step task: identification and

imitation. Norm identification can be viewed as the problem of inferring

societal rules that govern the behaviour of a target system after observing

its behaviour. Norm imitation can be seen as updating existing plans to best

explain an observed sequence of actions.
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