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Abstract

A two-stage stochastic linear programming model is proposed to formulate the Multi-Period Stochas-
tic Location-Inventory Problem, where both location, allocation and inventory management related deci-
sions are considered. A variant, which adds the concept of lead times between suppliers and DCs, is also
formulated as a two-stage stochastic linear programming model.

In order to solve it, the concept of demand scenarios is introduced as a means to capture the uncer-
tainty of the customers’ demand. This way, the Multi-Period Stochastic Location-Inventory Problem can
be formulated as a mixed-integer linear programming model. This is the model that needs to be solved,
which can be done, for example, through the use of a commercial solver.

A set of instances is computationally generated for the purpose of performing computational tests.
Afterwards, two batches of computational tests are run. The first batch uses the generated instances as
they are, while in the second batch those instances have their fixed costs for locating a DC at some site
modified (the original values are multiplied by one hundred).

Some characteristics and metrics are chosen in an effort to evaluate the quality of the solving ap-
proach. Most instances are solved in a considered suitable time (the majority take less than a minute).
Only a few (the largest ones in both number of decision variables and constraints) are not solved due to
hardware constraints.

Keywords: location-inventory; stochastic demand; multi-period, two-stage stochastic linear pro-
gramming;
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Resumo

Nos dias correntes em que as cadeias de abastecimento são globais, os problemas de Investigação
Operacional aplicados a este âmbito são de extrema relevância. Estes problemas podem ser classificados
em três grandes categorias: problemas de localização, problemas de roteamento ou problemas de gestão
de aprovisionamento (ou de cadeias de stock). Na maioria das vezes, um problema logı́stico insere-se
dentro de apenas uma das categorias supramencionadas. No entanto, recentemente começaram a ser
estudados problemas que podem pertencer a duas ou até mesmo às três categorias.

Nesta dissertação, o Multi-Period Stochastic Location-Inventory Problem é definido, sendo que per-
tence às categorias de localização e de gestão de aprovisionamento. Neste problema, existem três enti-
dades diferentes, sendo elas: fornecedores, centros de distribuição e clientes. Considera-se que o hori-
zonte temporal é composto por um número finito de perı́odos e admite-se que a procura dos clientes pode
ser modelada através de uma distribuição de probabilidade, sendo esta conhecida.

Em cada perı́odo, podem ser instalados novos centros de distribuição, sendo que ficam a funcionar
desde esse mesmo perı́odo até ao fim do horizonte temporal. Desta forma, torna-se óbvio que a afetação
entre fornecedores e centros de distribuição e entre estes e os clientes pode sofrer alterações ao longo
dos perı́odos. No entanto, para satisfazer a procura de um determinado perı́odo só pode haver uma única
origem. Tal aplica-se tanto na satisfação da procura dos clientes como dos centros de distribuição.

Ainda assim, no que diz respeito à satisfação da procura dos clientes, ruturas de stock podem ocorrer
e consequentemente é permitido que as encomendas sejam entregues num perı́odo posterior ao que era
suposto. Ou seja, num determinado perı́odo, um cliente pode receber a encomenda A proveniente do cen-
tro de distribuição X referente à procura desse mesmo perı́odo e simultaneamente receber a encomenda
B proveniente do centro de distribuição Y referente à procura de um perı́odo anterior.

A capacidade que os fornecedores possuem para satisfazer as encomendas dos centros de distribuição
não tem limite e o mesmo se verifica entre os centros de distribuição e os clientes. Além do mais, admite-
se que as entregas são instantâneas.

A formulação proposta para o Multi-Period Stochastic Location-Inventory Problem diz-se que é two-
stage stochastic linear programming. Além deste problema, é do mesmo modo formulada uma extensão
sua, onde são considerados tempos de entrega entre os fornecedores e os centros de distribuição. Em
ambos, pretende-se minimizar o custo total esperado.

Dado que problemas de programação estocásticos não são fáceis de resolver e, por forma de ainda as-
sim conseguir capturar a incerteza da procura estocástica, são considerados cenários de procura. Por ex-
emplo, se a procura de determinado cliente para um certo perı́odo pode ser caracterizada pela distribuição
Normal com valor esperado de 100 unidades e de desvio-padrão 15, cinco cenários para a sua procura
desse perı́odo podiam então ser 116, 82, 91, 106 e 102 unidades.

Partindo da distribuição de probabilidade de cada cliente e para cada perı́odo, os cenários podem
ser gerados através, por exemplo, do uso de técnicas expeditas de predição. Deste modo, o Multi-Period
Stochastic Location-Inventory Problem passa a poder ser formulado em programação linear inteira-mista.
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Por consequência, a fim de resolver uma instância deste problema, basta utilizar uma solver comercial,
como, por exemplo, o CPLEX da IBM.

A fim de poder avaliar o valor do método de resolução proposto, é necessário efetuar testes com-
putacionais. No entanto, para tal é necessário ter instâncias do problema. Estas foram geradas computa-
cionalmente, sendo que os algoritmos desenvolvidos para esse propósito são descritos. Relativamente à
procura, são admitidas duas situações. Uma em que a procura dos clientes segue distribuições Uniformes
discretas e outra em que segue distribuições Normais.

Nos testes computacionais existem duas fases. Na primeira, pretende-se obter a solução ótima para
as instâncias tal como elas foram geradas. Na segunda etapa, o objetivo é exatamente o mesmo, mas os
custos fixos para localizar um centro de distribuição num determinado local foram alterados (tendo sido
todos multiplicados por cem).

No conjunto das duas etapas, a solução ótima só não é encontrada em apenas uma ı́nfima fração das
instâncias (sendo que a maioria delas coincidem com as maiores instâncias em termos de quantidade
de variáveis de decisão (superiores a 3 000 000) e de restrições (superiores a 3 500 000)), devido a
constrangimentos de hardware. Na maioria das instâncias em que se encontra a solução ótima, esta é
encontrada em menos de um minuto.

Além do tempo demorado até a solução ótima ser encontrada, o número de variáveis de decisão
e de restrições, são definidas outras métricas para avaliar a solução obtida e/ou o método proposto.
Nomeadamente, o rácio, em percentagem, entre o número total de centros de distribuição a abrir e o
número de localizações disponı́veis para esse efeito (batizado de DC ratio (%)) e a percentagem da
procura dos clientes que foi entregue sem atrasos (batizado de CDDOT (%)) para cada cenário de procura.

Dados os resultados registados, constata-se que os valores dos custos fixos para instalar num deter-
minado local um centro de distribuição afetam de forma significativa o valor do DC ratio (%). Quando
a segunda fase de testes computacionais é efetuada, observa-se um claro decrescimento do número de
centros de distribuição a abrir comparativamente aos resultados obtidos durante a primeira fase. Con-
tabilizando apenas as instâncias em que a solução ótima é encontrada, o DC ratio (%) de 52.75% das
instâncias utilizadas na primeira fase está compreendido entre 80% e 100%; enquanto o DC ratio (%) de
67.02% das da segunda etapa estão compreendidas entre 0% e 20%.

Relativamente aos valores do CDDOT (%) para cada cenário de procura, não se observam-se
diferenças significativas entres as duas etapas dos testes computacionais. No geral, verifica-se um ligeiro
decréscimo dos resultados da primeira para com os da segunda fase. No entanto, tal não ocorre com
todas as instâncias em que a comparação é possı́vel.

Excluindo as instâncias em que a solução ótima não é encontrada, apenas 14.89% das instâncias
da segunda etapa têm cenários de procura com valores do CDDOT (%) inferiores a 75%. Já entre as
instâncias da primeira fase, nenhuma delas contém cenários de procura com valores do CDDOT (%)
inferiores a 75%.

Assim, tendo em conta a informação apresentada, considera-se que o método de resolução escolhido
pode-se afirmar ser bom.

No entanto, devem ser realizados mais testes computacionais, não só com base em instâncias do
problema geradas computacionalmente, mas tabmém com base em instâncias provenientes de situações
reais. Adicionalmente, devem ser também consideradas outras métricas com o propósito de avaliar a
solução obtida.

Além demais, devem ser também estudadas novas variantes do Multi-Period Stochastic Location-
Inventory Problem estudado no âmbito desta dissertação. Nomeadamente, variantes em que se consid-
erem capacidades não só nos centros de distribuição como também nos fornecedores; variantes em que
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é possı́vel não só abrir novos centros de distribuição, mas também se pode fechar outros que existiam
aquando do inı́cio do horizonte temporal. Por fim, também podem ser consideradas variantes em que as
capacidades dos centros de distribuição sejam modulares, podendo-se ao longo do horizonte temporal
tanto aumentar como diminuir a capacidade dos mesmos.

Por fim, devem ser aplicadas outros métodos de resolução e/ou ser desenvolvidos novos. Conse-
quentemente, é necessário realizar testes computacionais que permitam a comparação entre as diferentes
abordagens para resolver o problema e eventuais extensões.

Palavras-chave: location-inventory; procura estocástica; multi-perı́odo, two-stage stochastic linear
programming
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Chapter 1

Introduction

Everyday goods are being produced, stored, transported, bought and sold around the world. So the
extreme relevance of Operations Research to the domain of Logistics is not at all surprising. There are
three major segments of Operations Research problems applied to this domain. These are the Facility
Location, Routing and Inventory Management problems. All of them contribute to the design of efficient
and reliable supply chain networks. And each of them has their own high degree of complexity, which
it is further increased whenever more details are incorporated. The more details are included in the
problems, the better they resemble reality.

In Facility Location problems, the usual goal is to find the “best” way to locate one or more facilities
so that a set of communities can be properly served by them. In Routing problems, the usual goal is to
find the “best” routes to serve all communities allocated to a facility (or more). In Inventory Management
problems, the main goals are to discover the quantity a facility should order and when the order should
be placed so as to satisfy the demand.

Normally, these segments of problems are studied separately. However, they are not truly indepen-
dent from each other, since everything is connected in the real world. For instance, the location of some
facilities will affect which routes to use.

Therefore, one way to encapsulate this inter-connectivity could be to solve different, but intercon-
nected, problems sequentially. However, the sequence will impact the final solution. Here is an example.
If at first it is decided where to locate some services and how to allocate the services to the communities
and afterwards it is decided what routes to use and only then it is chosen how to manage those services’
inventory, the solution reached will differ from the one obtained had the order been other.

Nonetheless, making these decisions separately might led to sub-optimal results. Therefore, recently
researchers have began to explore problems that encompass decisions from two or from all three seg-
ments. This seems to be a better option, since it should lead to better solutions (for instance, less costly
solutions).

Then why are these segments of problems still to this day, more often than not, studied separately?
These kind of optimisation problems are frequently computationally hard to solve on their own. And
combining them does not mean that they become easier to solve.

In fact, many Location, Routing and Inventory Management problems belong to NP-Hard class. On
practice, this is reflected by not existing (or having yet to be discovered) an exact algorithm capable
of finding the optimal solution in polynomial time, no matter the problem’s instance. Consequently,
research is conducted to improve existing exact and approximate algorithms as well as to discover new
ones.

Despite this detail, over time the problems studied have grown more complex as new optimisation
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1. INTRODUCTION

techniques have been developed alongside technological evolution.
On the other hand, some problems are simply arduous to model. Particularly, if it is intended to model

entirely through the use of linear expressions. Consequently, finding the optimal solution becomes even
more challenging. Inventory Management problems are an example of this situation, where the objective
function is customarily non-linear.

Going back to the topic of the detail level included in the problems, Chapter 2 of this dissertation
will illustrate the on-going increase of detail in Facility Location problems and Inventory Management
problems, culminating in a brief overview of Location-Inventory problems.

In Location-Inventory problems, there usually are at least one supplier, a set of possible locations for
distribution centres, abbreviated as DCs, (or warehouses) and a set of customers. While the available
suppliers and the customers are known, the customers’ demand might not be. The goal is to satisfy all
the demand at the lowest cost. Decisions regarding the location of DCs and the allocation of DCs to
customers are common in these problems, but the same does not happen with the decisions regarding the
inventory management. For this reason, Amiri-Aref et al. (2018) distinguish between joint and integrated
Location-Inventory problems.

Amiri-Aref et al. (2018) stated that integrated Location-Inventory problems (such as the one they
studied) encompass “the location-allocation decisions with the hierarchical integration of the periodic
inventory policy and inventory replenishment decisions”.

On the other hand, the joint ones can be seen as an extension of the Uncapacitated Fixed-Charged
Facility Location Problem as Amiri-Aref et al. (2018) noted. The costs associated to the inventory
management part of the problem are added to the objective function of the Uncapacitated Fixed-Charged
Facility Location Problem, and thus no actual decisions regarding the inventory management are made.
One of the earliest joint Location-Inventory problem studied was introduced by Daskin et al. (2002).

This dissertation aims to model the Multi-Period Stochastic Location-Inventory Problem and then to
solve it. This problem considers a finite planning horizon, where the customers’ demand, which while
unknown, follow a known probability distribution. At each period, DCs can be installed and therefore
the allocation between DCs and customers (as well as between suppliers and DCs) may change along the
planning horizon.

The capacity for the suppliers and DCs to deliver goods to the DCs and customers, respectively is
unbound. For both cases, the deliver is instantaneous. At each period, both operating DCs and customers
are single-sourced, but the source does not have to be the same throughout the planning horizon. Stock-
outs can occur and for that reason the customers’ demand for some period may be satisfied at a latter
time.

Considering the classification seen previously, the Multi-Period Stochastic Location-Inventory Prob-
lem falls under the integrated label, since there are location and allocation decisions as well as inventory
management related decisions to be made at each time period.

The goal is to minimize the total expected cost during the planning horizon. For that, this problem is
modelled as a two-stage stochastic linear programming model.

The remainder of this dissertation is organized as follows. In the next chapter a literature review
concerning Facility Location, Inventory Management and Location-Inventory problems is performed, as
mentioned previously. In Chapter 3 the problem under study is presented and modelled, a variant con-
sidering lead times between suppliers and DCs is also introduced and modelled and, at last, a resolution
method is proposed. Chapter 4 focuses on the computational tests. Hence the data generation process is
explained and the computational results are discussed. Finally, some conclusions are drawn and future
work is suggested in Chapter 5.

2



Chapter 2

Literature Review

This chapter intends to present a brief overview of the work that has been done within the scope of
Location Problems (Section 2.1), Inventory Management Problems (Section 2.2) and Location-Inventory
Problems (Section 2.3) in order to show the relevance of this dissertation. For that, some models will be
enunciated and briefly explained.

2.1 Facility Location Problems

In most facility location problems there are two major decisions. These are where to locate the facil-
ities and the assignment of users (which in this section they will be known as customers or retailers) to
working facilities. The main objective is usually to minimize the costs regarding the decisions. Overall,
facility location problems are not just relevant in the field of supply chain management. They may be
also used to help decision makers locating facilities such as schools, fire stations, and even telecommu-
nications hubs or bank accounts.

In this section, a short review on facility location problems is presented, namely the Uncapacitated
Fixed-Charged Facility Location Problem (Section 2.1.2), the Capacitated Fixed-Charged Facility Lo-
cation Problem (Section 2.1.3), the Stochastic Uncapacitated Fixed-Charged Facility Location Problem
(Section 2.1.4), the Multi-Echelon Facility Location Problem (Section 2.1.5) and the Multi-Period Un-
capacitated Facility Location Problem (Section 2.1.6).

All the necessary notation for sets, parameters and decision variables is presented in Section 2.1.1.
However, to avoid confusion, the notation used for the Multi-Echelon Facility Location Problem and the
Multi-Period Uncapacitated Facility Location Problem is instead included in Sections 2.1.5 and 2.1.6,
respectively. The notation and formulations presented in throughout these sections were adopted from
chapter eight of the book by Snyder and Shen (2019), except for the the Multi-Period Uncapacitated
Facility Location Problem, whose notation and formulation were adopted from Nickel and da Gama
(2019).

2.1.1 Notation

Sets

I: set of customers;

J: set of potential facility locations;

S: set of scenarios (capturing uncertainty in parameters).

3



2. LITERATURE REVIEW

Parameters

hi: annual demand of customer i ∈ I;

ci j: cost to transport one unit of demand from facility j ∈ J to customer i ∈ I;

f j: fixed annual cost to open a facility at site j ∈ J;

v j: maximum demand that can be served by facility j ∈ J per year;

his: annual demand of customer i ∈ I under scenario s ∈ S;

ci js: cost to transport one unit of demand from facility j ∈ J to customer i ∈ I under scenario
s ∈ S;

qs: probability that scenario s ∈ S occurs

(
∑
s∈S

qs = 1

)
.

Decision Variables

x j =

1, if facility j ∈ J is opened;

0, otherwise;

yi j = fraction of the demand of customer i ∈ I that is served by facility j ∈ J;

yi js = fraction of the demand of customer i ∈ I that is served by facility j ∈ J in scenario s ∈ S.

2.1.2 The Uncapacitated Fixed-Charged Facility Location Problem

A popular facility location problem is the so-called Uncapacitated Fixed-Charged Facility Location
Problem. In this problem, it is decided where to locate facilities and how to assign the customers to
working facilities, while minimizing the costs incurred.

An assumption made is that the facilities’ capacity to satisfy the customers’ demand is non-binding.
As constraints, all demand must be supplied (constraints (2.2)) and only from open facilities (constraints
(2.3)). Thus, this problem can be formulated as a mixed-integer linear programming model as it follows,
where constraints (2.4) and (2.5) are the decision variables’ domain constraints.

minimize ∑
j∈J

f jx j +∑
j∈J

∑
i∈I

hici jyi j (2.1)

subject to ∑
j∈J

yi j = 1 ∀i ∈ I (2.2)

yi j ≤ x j ∀i ∈ I, j ∈ J (2.3)

x j ∈ {0,1} ∀ j ∈ J (2.4)

yi j ≥ 0 ∀i ∈ I, j ∈ J (2.5)

2.1.3 The Capacitated Fixed-Charged Facility Location Problem

The Capacitated Fixed-Charged Facility Location Problem is an extension of the Uncapacitated
Fixed-Charged Facility Location Problem, since the facilities’ capacity to satisfy the customers’ demand
may now be binding (constraints (2.6)). This is the only difference between these two problems.
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minimize ∑
j∈J

f jx j +∑
j∈J

∑
i∈I

hici jyi j (2.1)

subject to ∑
j∈J

yi j = 1 ∀i ∈ I (2.2)

yi j ≤ x j ∀i ∈ I, j ∈ J (2.3)

∑
i∈I

hiyi j ≤ v j ∀ j ∈ J (2.6)

x j ∈ {0,1} ∀ j ∈ J (2.4)

yi j ≥ 0 ∀i ∈ I, j ∈ J (2.5)

A variant of the above problem imposes that each customer is supplied from a single facility, which
calls to replace constraints (2.5) with yi j ∈ {0,1}, ∀i ∈ I, j ∈ J.

2.1.4 The Stochastic Uncapacitated Fixed-Charged Facility Location Problem

The Stochastic Uncapacitated Fixed-Charged Facility Location Problem is another extension of the
Uncapacitated Fixed-Charged Facility Location Problem. This problem allows for uncertainty to be
considered.

In the model formulation exposed here, the uncertainty is present in the customers’ demand as well as
in the transportation costs. Both may vary according to a set of different scenarios previously identified.
The more scenarios are considered the larger the model will be and the longer it is expected to take to be
solved.

minimize ∑
j∈J

f jx j +∑
s∈S

∑
j∈J

∑
i∈I

qshisci jsyi js (2.7)

subject to ∑
j∈J

yi js = 1 ∀i ∈ I, s ∈ S (2.8)

yi js ≤ x j ∀i ∈ I, j ∈ J, s ∈ S (2.9)

x j ∈ {0,1} ∀ j ∈ J (2.4)

yi js ≥ 0 ∀i ∈ I, j ∈ J, s ∈ S (2.10)

2.1.5 The Multi-Echelon Facility Location Problem

The Multi-Echelon Facility Location Problem is an extension of the Capacitated Fixed-Charge Fa-
cility Location Problem, where each echelon represents a kind of facilities. It could also be known as
the Multi-Echelon Multi-Commodity Capacitated Fixed-Charge Facility Location Problem and is usually
present when one needs to design a supply chain network.

The model formulated in this section considers a three-echelon system, namely plants, distribution
centres (DCs) and customers. The customers are known and so are the locations for possible plants
and DCs. Therefore, the locating decisions apply to two echelons (plants and DCs). Similarly to the
Capacitated Fixed-Charge Facility Location Problem, the customers’ demand for each commodity and
the capacities of the available sites for the different facilities to locate are known.

The goal of this problem is to minimize the costs incurred, just like in the other problems that have
been seen. As constraints, all demand for each commodity must be supplied (constraints (2.12)) and
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only from open DCs, whose capacity must not be exceeded (constraints (2.13)). For each commodity
and each DC, all quantity that arrives from the suppliers must be delivered to the customers (constraints
(2.14)). The DCs can only be supplied by open plants, whose capacity must not be exceeded (constraints
(2.15)). Constraints (2.16) - (2.19) are the decision variables’ domain constraints.

The notation for sets, parameters and decision variables required is presented next, followed by the
model formulation.

Sets

I: set of customers;

J: set of potential DC locations;

K: set of potential plant locations;

L: set of products.

Parameters

hil: annual demand of customer i ∈ I for product l ∈ L;

v j: capacity of DC j ∈ J;

bk: capacity of plant k ∈ K;

sl: units of capacity consumed by one unit of product l ∈ L;

f j: fixed annual cost to open a DC at site j ∈ J;

gk: fixed annual cost to open a plant at site k ∈ K;

ci jl: cost to transport one unit of product l ∈ L from DC j ∈ J to customer i ∈ I;

d jkl: cost to transport one unit of product l ∈ L from plant k ∈ K to DC j ∈ J.

Decision Variables

x j =

1, if DC j ∈ J is opened;

0, otherwise;

zk =

1, if plant k ∈ K is opened;

0, otherwise;

yi jl = number of units of product l ∈ L shipped from DC j ∈ J to customer i ∈ I;

w jkl = number of units of product l ∈ L shipped from plant k ∈ K to DC j ∈ J.
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minimize ∑
j∈J

f jx j + ∑
k∈K

gkzk +∑
l∈L

[
∑
j∈J

∑
i∈I

ci jlyi jl + ∑
k∈K

∑
j∈J

d jklw jkl

]
(2.11)

subject to ∑
j∈J

yi jl = hil ∀i ∈ I, l ∈ L (2.12)

∑
i∈I

∑
l∈L

slyi jl ≤ v jx j ∀ j ∈ J (2.13)

∑
k∈K

w jkl = ∑
i∈I

yi jl ∀ j ∈ J, l ∈ L (2.14)

∑
j∈J

∑
l∈L

slw jkl ≤ bkzk ∀k ∈ K (2.15)

x j ∈ {0,1} ∀ j ∈ J (2.16)

zk ∈ {0,1} ∀k ∈ K (2.17)

yi jl ≥ 0 ∀i ∈ I, j ∈ J, l ∈ L (2.18)

w jkl ≥ 0 ∀ j ∈ K, k ∈ K, l ∈ L (2.19)

2.1.6 The Multi-Period Uncapacitated Facility Location Problem

The Multi-Period Uncapacitated Facility Location Problem is yet another extension of the Unca-
pacitated Fixed-Charged Facility Location Problem. This problem allows for the time dimension to be
considered, by having a finite planning horizon divided into periods.

The notation for sets, parameters and decision variables required is presented next, followed by the
model formulation.

Sets

I: set of customers;

J: set of potential DC locations;

T : set of time periods.

Parameters

f jt: the cost for operating the facility j ∈ J in period t ∈ T ;

ci jt: the cost for satisfying all the demand of customer i ∈ I in period t ∈ T from facility j ∈ J.

Decision Variables

x jt =

1, if a facility is operating at site j ∈ J in period t ∈ T ;

0, otherwise;

yi jt = fraction of demand of customer i ∈ I in period t ∈ T that is supplied by facility j ∈ J.

7
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minimize ∑
t∈T

∑
j∈J

f jtx jt + ∑
t∈T

∑
j∈J

∑
i∈I

ci jtyi jt (2.20)

subject to ∑
j∈J

yi jt = 1 ∀i ∈ I, t ∈ T (2.21)

∑
i∈I

yi jt ≤ |I|x jt ∀ j ∈ J, t ∈ T (2.22)

x jt ∈ {0,1} ∀ j ∈ J, t ∈ T (2.23)

yi jt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T (2.24)

However, the model formulation shown for this problem can be decomposed into |T | single-period
problems (i.e., |T | Uncapacitated Fixed-Charged Facility Location Problems). This happens since what
happens at some period is independent from what happens at another. For instance, it is possible at some
period for a facility to be operating in some location, but not at the subsequent period. If the constraints
x jt ≤ x j,t+1, ∀ j ∈ J, t ∈ T \ {|T |} are added to this formulation, the previous example will not occur.
These constraints ensure that, once a facility is opened at some period, it will work at all the subsequent
ones and constitutes a variant for the problem presented here. Therefore, this new problem can no longer
be decomposed.

Correia and Melo (2016), Correia and Melo (2017) and Sauvey et al. (2020) addressed variants of
the Multi-Period Uncapacitated Facility Location Problem. The models developed by Correia and Melo
(2016) tackle the time dimension, while taking into consideration delivery lead times. Modular capacities
for the facilities are considered as so is the option to close initially existing facilities. The customers’
demand are known, hence it is deterministic. Not only these settings are also addressed by the models
developed by Correia and Melo (2017), the use of modular capacities for the facilities is further exploited
by allowing their expansion and contraction over the planning horizon. A particular detail of all these
models is that there are two segments of customers based on their sensitivity to the delivery lead times.
Some customers must receive their orders on time, while the others can receive their with a delay as long
as it does not surpass a pre-established limit. Sauvey et al. (2020) developed heuristics for the problem
introduced by Correia and Melo (2016).

2.2 Inventory Management Problems

In Inventory Management Problems there are two major decisions. These are when to place an order
and what the order size shall be, which compose the inventory policy.

These problems can be characterized regarding various factors. Either there is a single commodity
(or a family of commodities) or multiple ones. The demand can be deterministic or stochastic. The
planning horizon can be finite or infinite. The replenishment of the stock can either be instantaneous or
not. Either the facility produces itself the amount needed (production policy) or orders it from a supplier
(order policy).

The inventory level can be monitored continuously (continuous review) or periodically (periodic
review). In continuous review models, the inventory level is constantly assessed and an order will be
placed whenever the stock level falls bellow a certain value. In periodic review models, the inventory
level is assessed at discrete intervals, which is when ordering may be decided.

When demand surpass supply, stock-outs occur. Then, either there will be back-orders (the unmet
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orders will be delivery at a later time) or lost sales (the unmet orders will never be fulfilled). Even so,
it is naturally relevant to ensure a good service. Generally, the service level is said to be good when the
proportion of satisfied demand is high.

Two types of service level are usually mentioned in the literature, which are type 1 (or cycle service
level) and type 2 (or fill rate). Snyder and Shen (2019) define the cycle service level as “the percentage of
order cycles during which no stock-out occurs” (often denoted by α or A), and fill rate as “the percentage
of demand that is met from stock” (often denoted by β or B).

Most inventory management problems deal with imperishable inventory, also mentioned as stable
inventory. So, there has to be specific models to deal with perishable commodities. Some might get
spoiled (such as foods and medicine), become obsolete (for instance, technological products) or have a
deadline to be sold (such as newspapers or airline tickets).

For a variety of reasons, it may be impossible to know or even accurately forecast the demand. Yet,
when it is possible to described it by a random variable with some known probability distribution, the
inventory management problems are said to be stochastic. In this case, it is common to mention the
term “safety stock”, which, as the name suggests, refers to the quantity held in stock to buffer against
uncertainty.

For the case when the demand is deterministic, three models will be presented: the Economic Order
Quantity Model (Section 2.2.1), the Economic Order Quantity Model with Planned Stock-Outs and Non-
Instantaneous Replenishment (Section 2.2.2) and the Wagner-Whitin Model (Section 2.2.3). There are
other variants of the Economic Order Quantity Model, where, for instance, lead times are considered or
there are discounts based on the quantity purchased, but those will not be presented here.

For the case when the demand is stochastic, inventory policies are required. An inventory policy is
the rule that dictates when to place and order and how much to order. An inventory management problem
following the (r, Q) policy is presented in Section 2.2.4. The (s, S) policy is introduced in Section 2.2.5.
Finally, The Newsboy Problem is presented in Section 2.2.6, which considers a perishable commodity
(such as newspapers).

The notation used to present the models was adapted from Snyder and Shen (2019) and Hillier and
Lieberman (2015).

2.2.1 The Economic Order Quantity Model

The Economic Order Quantity Model is one of the most well known inventory management models.
There is a product, whose demand rate is deterministic and constant. The product’s delivery and replen-
ishment are instantaneous. The inventory is continuously reviewed and stock-outs are not allowed. It is
considered a infinite planning horizon.

For this model, the goal is to find the order (batch) size, Q, and the cycle length (time between two
consecutive stock replenishments), T . The following parameters are required:

d: demand rate per time unit;

c: cost per unit produced or purchased;

K: fixed cost for placing an order (it is independent of the order’s size);

h: holding cost per unit per time unit held in inventory.

Figure 2.1 illustrates the evolution of the inventory level over time, whose behaviour repeats every
cycle length. The objective is to minimize the total cost per time unit (function (2.25)), which is given
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by the quotient between the total cost per cycle and the length of one cycle.

f (Q) =
dK
Q

+ cd +
hQ
2

(2.25)
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Figure 2.1: Evolution of the inventory level over time.

Ultimately, the optimal order size Q∗, cycle length T ∗ and cost per unit of time f (Q∗) are given by
the expressions (2.26) – (2.28), respectively.

Q∗ =

√
2dK

h
(2.26)

T ∗ =
Q∗

d
(2.27)

f (Q∗) = cd +
√

2dKh (2.28)

2.2.2 The Economic Order Quantity Model with Planned Stock-Outs and Non-
Instantaneous Replenishment

The Economic Order Quantity Model with Planned Stock-Outs and Non-Instantaneous Replenish-
ment is an extension of the previous model. As the name suggests, back-orders are allowed when stock
shortages occur and the replenishment of the inventory is not instantaneous.

In addition to the order size, Q, and the cycle length, T , it is relevant to find the value of the maximum
stock-out, Smax, and the maximum inventory level, Imax. However, to achieve that goal, besides the
parameters indicated in the previous model, the following ones are required:

p: stock-out cost per unit per time unit of time short;

r: replenishment rate per time unit (r > d).

Figure 2.2 illustrates the evolution of the inventory level over time, whose behaviour repeats every
cycle length, just like in the former model. Once more, the objective is to minimize the total cost per
time unit.
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Figure 2.2: Evolution of the inventory level over time.

The optimal order size Q∗, cycle length T ∗, cost per unit of time f (Q∗, S∗max), maximum stock-out
S∗max, maximum inventory level I∗max are given by the expressions (2.29) – (2.33), respectively.

Q∗ =

√
2dK

h

√
r

r−d

√
h+ p

p
(2.29)

T ∗ =
Q∗

d
=

√
2K
dh

√
r

r−d

√
h+ p

p
(2.30)

f (Q∗, S∗max) = cd +
√

2dKh

√
r−d

r

√
p

h+ p
(2.31)

S∗max =

√
2dKh

p(h+ p)

√
r−d

r
(2.32)

I∗max = Q∗(1− d
r
)−S∗max (2.33)

Additionally, the fraction of time with no stock-outs is given by the expression (2.34).

1− r
r−d

S∗max

Q∗
(2.34)

There are also the Economic Order Quantity Model with Planned Stock-Outs (the replenishment is
instantaneous) and the Economic Order Quantity Model with Non-Instantaneous Replenishment (without
planned stock-outs). From the model presented in this section, the optimal values for the previous models
are obtained by considering p→+∞ and r→+∞, respectively.

2.2.3 The Wagner-Within Model

The Wagner-Within Model, also known as the Uncapacitated Lot Sizing Model, is another of most
well known inventory management models. While in the previous ones the inventory review happens
continuously, in the Wagner-Within Model it occurs periodically during a finite planning horizon. It
is further assumed that replenishment occurs instantaneously and stock-outs are not allowed. At the
beginning and at the end of the planning horizon there is no stock.

Let T denote the set of time periods that compose the planning horizon. The parameters and decision
variables required by this model are described below.
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Parameters

dt: demand in period t, ∀t ∈ T ;

c: cost per unit produced or purchased;

K: fixed cost for producing or purchasing any units to replenish the inventory at the beginning
of a period;

h: holding cost per unit per time unit held in inventory at the end of a period;

M: an arbitrarily large number.

Decision Variables

xt = amount to be purchased or produced in period t, t ∈ T ;

yt =

1, if production or purchasing occurs in period t ∈ T ;

0, otherwise;

qt = inventory level at the end of period t ∈ T .

This model is formulated as a mixed-integer linear programming problem. While the decision vari-
ables qt are not necessarily required, because of equation (2.35), there are included so that the model is
more easily understood. To further simplify it, let q0 and q|T | denote the inventory level at the beginning
and at the end of the planning horizon, respectively.

qt =
t

∑
s=1

(xs−ds) (2.35)

Figure 2.3 illustrates how the relationship between the decision variables and the demand affect the
inventory level at each period of the planning horizon. At each period, the existing stock comes from
the amount produced or purchased at that time plus the amount held at the end of the prior period.
However, part of that existing stock is destined to satisfy that period’s demand and the rest will be hold
for the next period. This situation is represented by constraints (2.37), which are often known as the
inventory-balance constraints.

q0 q1 q2 q3

x1 x2 x3

d1 d2 d3

period 1 period 2 period 3

Figure 2.3: Stock evolution over a planning horizon composed by three time periods.

Since there is no stock at those times, let q0 = q|T | = 0, as indicated by constraint (2.38). This also
facilitates modelling the circumstances where there is stock at any of those moments. Constraints (2.39)
guarantees that the product will only be produced or purchased at some period if an order is placed at
that same time. Finally, constraints (2.40) – (2.42) are the decision variables’ domain constraints.
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As seen in the other models, the objective is to minimize the total cost incurred with the decisions
regarding the inventory management in the planning horizon, as seen in the objective function (2.36).

minimize ∑
t∈T

(Kyt + cxt +hqt) (2.36)

subject to qt−1 + xt = qt +dt ∀t ∈ T (2.37)

q0 = q|T | = 0 (2.38)

xt ≤Myt ∀t ∈ T (2.39)

xt ≥ 0 ∀t ∈ T (2.40)

yt ∈ {0,1} ∀t ∈ T (2.41)

qt ≥ 0 ∀t ∈ T (2.42)

2.2.4 The (r, Q) Policy

Consider a stochastic inventory management problem for a stable commodity, where the inventory
level is checked continuously throughout a non-finite planning horizon. Lead times are taken into con-
sideration, replenishment is instantaneous and stock-outs with back-orders are allowed.

In the Economic Order Quantity Model, an order was placed whenever there was not any stock left.
Even though, in the new problem the demand is stochastic, the same reasoning is applied. thus, whenever
the inventory level reaches the reorder point r, an order of size Q must be placed. This is said to be a
(r, Q) inventory policy and these are the quantities to be determined. Figure 2.4 illustrates the evolution
of the inventory level over time, which shows an unequal cyclic behaviour.
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Figure 2.4: Evolution of the inventory level over time under the (r, Q) policy.

Let D be the continuous random variable that represents the demand per time unit. The expected
demand per time unit is known and is denoted as µD. Also, let X be the random variable that represents
the demand during the lead time, whose cumulative distribution function is denoted as FX(x) = P(X ≤ x)
and it is known as well. The following parameters are known as well:

c: cost per unit produced or purchased;

K: fixed cost for placing an order;
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h: holding cost per unit per time unit held in inventory;

p: stock-out cost per unit short independently from the shortage time;

l: lead time.

The expected demand during the lead time is µX = µD× l. The service level is the probability of
stock-outs not occurring during the cycle. Hence, it is calculated as shown in equation (2.43), while the
safety stock is calculated as shown in equation (2.44).

Service level = 1−P(X > r) = FX(r) (2.43)

Safety stock = r−µX (2.44)

When the demand during the lead time is larger than the reorder point, it is said to have occurred
outstanding orders. Its value is given by max{0, X − r}, so it is also a random variable. Therefore, its
expected value, η(r), is calculated by solving the integral in (2.45), where fX(x) represents the density
distribution function of X .

η(r) =
∫ +∞

0
max{0, x− r} fX(x)dx =

∫ +∞

r
(x− r) fX(x)dx (2.45)

On the other hand, the average on-hand inventory during a cycle, Ī, is estimated by Q/2+ r− µX ,
while the average cycle length, T̄ , is Q/µD.

The total expected cost per cycle is the sum of the ordering cost (expression (2.46)), expected holding
cost (expression (2.47)) and expected shortage cost (expression (2.48)).

Ordering cost = K + cQ (2.46)

Expected holding cost = hĪT̄ = h(
Q
2
+ r−µX)

Q
µD

(2.47)

Expected shortage cost = pη(r) (2.48)

However, the objective is to minimize the expected total cost per time unit (function (2.49)), which
is given by the quotient between the total expected cost per cycle and the average cycle length.

f (r, Q) =
KµD

Q
+ cµD +h(

Q
2
+ r−µX)+

pµDη(r)
Q

(2.49)

Contrary to what happens in the Economic Order Quantity Model, a closed form solution is not
found. Instead, the system of equations (2.50) is obtained. Therefore, as a means to find the solution, an
iterative procedure was defined. First, initialize it by having Q0 =

√
2dK/h and used it to find r0 through

the first equation, which is then used in the second equation to find Q1. Then, use Q1 in the first equation
to find r1 and r1 in the second equation to find Q2, and so on until the values stabilize.

Q =

√
2µD(K + pη(r))

h
FX(r) = 1− hQ

pµD

(2.50)
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2.2.5 The (s, S) Policy

Consider an inventory management problem for a stable commodity, whose demand is stochastic,
lead times can be taken into consideration and replenishment is instantaneous. The planning horizon
is composed by multiple periods, where at each period the inventory level is observed (periodic-review
policy). If it is lower than s, then an order is placed so that the inventory level rises to S. This constitutes
the (s, S) inventory policy, which is somewhat similar to the (r, Q) inventory policy. In the (s, S) policy,
s and S are constants and not quantities to be determined as it is the case of the (r, Q) policy. Yet, s and r
are both known as the reorder points. S is often known as the order-up-to level, while Q is the order size.

In the (s, S) policy, the values for both s and S may vary from period to period, although s≤ S. The
orders’ size do not have to be the same, even if s and S were fixed throughout the planning horizon.

Figure 2.5 illustrates the evolution of the inventory level over time, if the values for the reorder point
and the order-up-to-level do not change across the planning horizon.
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Figure 2.5: Evolution of the inventory level over time under the (s, S) policy.

As it is the case for stochastic inventory management problems, minimizing the expected total cost
for a cycle is not trivial.

2.2.6 The Newsboy Problem

The Newsboy Problem, also known as the Newsvendor Problem, is a classical example of stochastic
optimisation as well of stochastic inventory management for a perishable product.

Consider a newsboy that each morning acquires Q newspapers to sell during the day. That is the only
moment he can buy newspapers to sell that day. Each newspaper costs the newsboy p and he sells it for
c. At the end of the day, he is able to return the unsold newspapers and gets s for each copy (this is often
known as the salvage cost). Let D be the random variable that represents the newspapers demand for a
day. Function (2.51) denotes the total cost for the newsboy if he buys Q newspapers.

f (Q) = pQ− cmin{D, Q}− smax{Q−D, 0} (2.51)

The goal is to minimize the expected total cost, E[ f (Q)].
The Newsboy Problem is also a a particular case of the S inventory policy, since it is a case of single-

period inventory management problem.
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In general, when the planning horizon is composed by multiple periods and under the S inventory
policy, the inventory level is observed at each period and an order is placed so that it rises to S. S is often
known as the base-stock level and it does not have to be the same for each period.

2.3 Facility Location and Inventory Management Problems

Location problems and inventory management have often been studied separately. Research com-
bining these two areas is fairly recent. In fact, the articles by Daskin et al. (2002) and Shen et al. (2003)
are two of the earliest related studies, which were prompted by a work on the blood bank system in the
greater Chicago area.

Daskin et al. (2002) stated that platelets are “the most expensive and most perishable of all blood
products”. Each hospital supplied by the blood bank managed their own supply and their demand for
platelets was irregular due to, as stated by Shen et al. (2003), “when they are needed, it is often the
case that multiple units must be transfused at one time”. These are some of the reasons that led to the
existence of oversupplied hospitals (and therefore, greater amounts of expired platelets units), but also
undersupplied hospitals (which would then need to place emergency orders at substantial costs).

The authors’ idea was for the hospitals be supplied by a subset of them. Hence, the models proposed
in both articles resemble a typical facility location model. The decisions to be made regard where to
locate distribution centres (DCs) and the allocation of the retailers to a working DC. Therefore, the con-
straints required are straightforward: every retailer must be assigned to a single DC, and only functioning
DCs can be assigned to retailers. The inventory management part of their models only shows up in the
objective functions. Both papers aim at developing an objective function that includes the location and
allocation related costs plus the costs regarding the inventory. In both articles, the terms that express the
inventory costs are based on the Economic Order Quantity (EOQ) model. Thus, their objective func-
tions are non-linear and the only explicit decisions made refer to the location and allocation part of the
problem.

To solve their model, Daskin et al. (2002) proposed a Lagrangian relaxation based algorithm. Shen
et al. (2003) proposed a set-covering approach to solve theirs, which was further explored by Shu et al.
(2005).

Almost two decades later, these models served as the basis for the location-inventory model presented
in the chapter dedicated to integrated models from the comprehensive book regarding Supply Chains by
Snyder and Shen (2019). This model, which is non-linear, is presented next.

Sets

I: set of retailers;

J: set of potential DC sites.

Parameters

µi: mean daily demand of retailer i ∈ I;

σ2
i : variance daily demand of retailer i ∈ I;

f j: fixed (daily) cost to open a DC at site j ∈ J;

K j: fixed cost for DC j ∈ J to place an order from the supplier, including fixed components of
both ordering and transportation costs;
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c j: per-unit cost for each item ordered by DC j ∈ J from the supplier, including per-unit inbound
transportation;

di j: per-unit outbound transportation cost from DC j ∈ J to retailer i ∈ I;

h j: holding cost per unit per day at DC j ∈ J;

L j: lead time (in days) to for orders placed by DC j ∈ J to the supplier;

α: desired fraction of DC order cycles during which no stockout occurs;

zα : α-quantile from the Standard Normal Distribution.

Decision Variables

x j =

1, if site j ∈ J is selected as a DC;

0, otherwise;

yi j =

1, if retailer i ∈ I is served by DC j ∈ J;

0, otherwise.

The objective function is the sum of all costs and it is defined as shown in (2.52). Its first term,

∑
j∈J

f jx j, gives the fixed location costs, while its second term, ∑
j∈J

∑
i∈I

µi

(
c j + di j

)
yi j, are the in-bound

and out-bound per-unit costs. The objective function is non-linear, because of its last two terms,√
2K jh j ∑

i∈I
µiyi j + h jzα

√
∑
i∈I

L jσ
2
i yi j, which give the expected inventory costs (cycle stock cost plus

safety stock cost) at the DCs, under the expected-inventory-level approximation and a (r,Q) inventory
policy with a type-1 service level.

Costs(xxx, yyy) = ∑
j∈J

[
f jx j +∑

i∈I
µi

(
c j +di j

)
yi j +

√
2K jh j ∑

i∈I
µiyi j +h jzα

√
∑
i∈I

L jσ
2
i yi j

]
(2.52)

Thus, the formulation is as it follows:

minimize Costs(yyy, xxx)

subject to ∑
j∈J

yi j = 1 ∀i ∈ I (2.53)

yit ≤ x j ∀i ∈ I, j ∈ J (2.54)

x j ∈ {0,1} ∀ j ∈ J (2.55)

yi j ∈ {0,1} ∀i ∈ I, j ∈ J (2.56)

Constraints (2.53) guarantees that each retailer is supplied by a DC, while constraints (2.54) ensures
that each retailer will only have assigned a DC that is open. Constraints (2.55) and (2.56) are the decision
variables’ integrality and domain constraints. Note that single-allocation is being considered.

Amiri-Aref et al. (2018) studied stochastic location-inventory problem, which takes into considera-
tion the time dimension and a decentralized periodic-review (R, s, S) inventory control policy. At the
end of each period, the inventory is reviewed (hence R = 1) and, if the inventory is less or equal to the
reorder point s, an order is placed so that it reaches the order-up-to-level S. The customers’ demand
follow a compound non-stationary stochastic process.
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2. LITERATURE REVIEW

The problem is formulated as a two-stage stochastic model, where the goal is to maximize the total
profit. Despite being taken into account, not all decisions are time dependent. Those that are not time
dependent are known as the design decisions and regard the DCs location, the customers allocation and
the inventory policy. The decisions regarding the inventory level, the order quantity and the transporta-
tion flow are known as the periodic planning decisions and are time dependent. In order to solve their
model, Amiri-Aref et al. (2018) used a sample average approximation technique based on the linear
approximation of the two-stage stochastic model.
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Chapter 3

Problem Description

In this chapter the Multi-Period Stochastic Location-Inventory Problem is defined (Section 3.1). In
Section 3.2, an optimisation model is proposed, while in Section 3.3 an extension is introduced. At last,
a solution approach is proposed in Section 3.4.

3.1 Problem Statement

Consider a finite planning horizon divided into time periods. At any given time period, the flow of
a single commodity goes according to the Figure 3.1. Suppliers deliver the goods to distribution centres
(DCs) and these are responsible for supplying the customers.

The suppliers and customers are known and so are the possible locations for the distribution centres.
The suppliers’ production capacity is unlimited and so is the transportation capacity from the suppliers
and DCs. The DCs’ inventory capacity from a time period to the subsequent one is also unlimited.
At the beginning of the planning horizon, there is no DC working. Thus, the system is being planned
from scratch. Nevertheless, once a DC is installed it will stay so until the end of the planning horizon.
Furthermore, for each period there is a given maximum number of DCs that can be installed.

Distribution Centres

(DCs)
Suppliers Customers

5

5

5

Figure 3.1: Product flow from suppliers to customers at some period from the planning horizon

It is assumed that for each period the DCs and customers are supplied from a single source. However,
that source may change over the planning horizon. Stock-outs are allowed to occur and so it is back-
ordering. In other words, a customer’s demand for some period can be satisfied at a later time.
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3. PROBLEM DESCRIPTION

This problem involves different costs and revenues, whose values are given. They are the following:

1. cost for installing a DC;

2. cost for allocating a supplier to a DC (includes, for instance, the transportation costs);

3. cost for allocating a DC to a customer (includes, for instance, the transportation costs);

4. fixed cost for ordering by a DC from a supplier;

5. cost per unit ordered by a DC from a supplier;

6. unitary holding cost at a DC;

7. revenue per unit sold by a DC to a customer (revenues may differ if the order was delivered on
time or with a delay).

What it is not known beforehand is the customers’ demand for each period. Nonetheless, it is as-
sumed to follow a given probability distribution (for example, Normal, Exponential or Log-Normal). It
is further assumed that all the random variables (i.e., demands) are independent from each other.

The goal is to minimize the costs incurred, while satisfying the customers’ demand throughout the
planning horizon. The decisions to be made are time dependent and comprise of:

1. those typically found in facility location problems:

(a) when and where to install DCs;

(b) how to allocate the workings DCs to suppliers;

(c) how to allocate the customers to working DCs;

2. and those commonly found in inventory management problems:

(a) when a working DC should be supplied;

(b) how much a DC should receive;

(c) how much a DC should hold for the subsequent period;

(d) how much the customers should receive on time;

(e) how much the customers should receive due to back-ordering.

It is assumed that a DC is fully operational from the beginning of the time period in which it is
installed.

3.2 Model Formulation

The problem previously described is here formulated as a two-stage stochastic linear model. In
the first-stage, the location and allocation decisions are made, while the decisions regarding inventory
management are tackled in the second-stage (thus adapting to the observed demand).

Consider a set K of suppliers, a set I of possible locations for distribution centres (DCs), a set J of
customers and a set T of time periods that comprise the planning horizon. As parameters, besides seven
types regarding costs and revenues (each is described below), there is also the number of DCs that can
be installed at each time period.
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3.2 Model Formulation

Sets

K: set of suppliers;

I: set of potential distribution centres (DCs);

J: set of customers;

T : set of time periods;

Tt = {1,2, . . . , t} ⊆ T : a subset of time periods.

Parameters

Fit: fixed cost of locating DC i ∈ I in period t ∈ T , plus any other incurred costs (for instance,
maintenance related) from period t until the end of the planning horizon;

C1
ikt: cost of allocating DC i ∈ I to supplier k ∈ K in period t ∈ T ;

C2
i jt: cost of allocating DC i ∈ I to customer j ∈ J in period t ∈ T ;

nt: maximum number of DCs that can be installed in period t ∈ T ;

gikt: fixed cost incurred by DC i ∈ I when placing an order at supplier k ∈ K at the beginning of
period t ∈ T ;

aikt: cost for each item ordered by DC i ∈ I from the supplier k ∈ K at the beginning of period
t ∈ T ;

hit: unit holding cost at DC i ∈ I during period t ∈ T ;

pi jts: unit revenue for each item sold to customer j ∈ J by DC i ∈ I in period t ∈ T to satisfy the
demand from period s ∈ Tt ;

M: an arbitrarily large number.

Random Variables

ξξξ =
[
ξ jt

]
j∈J, t∈T

, where ξ jt represents the demand of customer j ∈ J at time period t ∈ T

First-Stage Decision Variables

yit =

1, if DC i ∈ I is operating in period t ∈ T

0, otherwise

wikt =

1, if DC i ∈ I is supplied from supplier k ∈ K in period t ∈ T

0, otherwise

xi jt =

1, if DC i ∈ I supplies customer j ∈ J in period t ∈ T

0, otherwise
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3. PROBLEM DESCRIPTION

Second-Stage Decision Variables

rikt(ξξξ )=


1, if DC i ∈ I places an order at supplier k ∈ K in the beginning of period t ∈ T

under customers’ demand scenario ξξξ ;

0, otherwise;

qikt(ξξξ )= quantity DC i ∈ I receives from supplier k ∈ K in the beginning of period t ∈ T under
customers’ demand scenario ξξξ ;

uit(ξξξ )= quantity that remains in DC i ∈ I at the end of period t ∈ T under customers’ demand
scenario ξξξ ;

vi jts(ξξξ )= quantity DC i ∈ I sends to customer j ∈ J in period t ∈ T to satisfy their demand from
period s ∈ Tt under customers’ demand scenario ξξξ .

Additionally, to simplify the model formulation, consider the following decision variables lookalikes,
but they are in fact parameters:

yi0 = 0, ∀i ∈ I, because initially no DC is operating;

ui0(ξξξ ) = 0, ∀i ∈ I, because initially DC i does not hold anything.

The two-stage stochastic model is presented in the following page. The goal is to minimize the costs
incurred, as shown in both objective functions (3.1) and (3.10).

Constraints (3.2) ensure that the maximum number of DCs that can be installed at each period is not
surpassed, while constraints (3.3) guarantee that the DCs will be working all the subsequent periods from
the moment they are installed.

Constraints (3.4) and (3.5) ensure for each period each customer’s demand is fulfilled by a single
DC and this DC must be a working one. Constraints (3.6) ensure that, for each period, working DCs are
supplied by only one supplier and non-working DCs are not supplied at all.

Constraints (3.11) are the inventory-balance constraints.
For each period, an order can only arrive to a DC from a supplier if an order was placed in that same

period, which is guaranteed by constraints (3.12). However, constraints (3.13) ensure that a DC can only
place an order to a supplier if they are allocated in the same period.

Constraints (3.14) assure that, for each period, a DC can only hold anything in stock if it is a working
DC. And constraints (3.15) guarantee that a DC can only satisfy a customer’s demand from a period if
they are allocated in that same period.

Each customer’s demand for each period must always be completely satisfied, which is ensured by
constraints (3.16).

Constraints (3.7)–(3.9) and (3.17)–(3.20) define the domain of the decision variables.
The first term of the objective function (3.1) is the total cost of opening and operating DCs. Its

second term is the total cost of the allocation between suppliers and DCs, while the third term is the total
allocation cost between DCs and customers. The fourth and final term represents the expected cost of
the inventory management in all DCs for the whole planning horizon, given the decisions yyy, www, xxx and
the customers’ demand ξξξ .

The first term of the objective function (3.10) is the total cost of the commodities’ order, which
includes both the fixed cost per order and the unitary cost per unit. The total holding cost for DCs is
expressed by the second term of this objective function. Finally, the last term expresses the total revenue
from satisfying the customers’ demand.
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3.3 A Model Extension

minimize ∑
t∈T

∑
i∈I

Fit(yit − yi,t−1) + ∑
t∈T

∑
i∈I

∑
k∈K

C1
iktwikt+∑

t∈T
∑
i∈I

∑
j∈J

C2
i jtxi jt +Q(yyy,www,xxx) (3.1)

subject to ∑
i∈I
(yit − yi,t−1)≤ nt ∀t ∈ T (3.2)

yit ≥ yi,t−1 ∀i ∈ I, t ∈ T (3.3)

∑
i∈I

xi jt = 1 ∀ j ∈ J, t ∈ T (3.4)

xi jt ≤ yit ∀i ∈ I, j ∈ J, t ∈ T (3.5)

∑
k∈K

wikt = yit ∀i ∈ I, t ∈ T (3.6)

yit ∈ {0,1} ∀i ∈ I, t ∈ T (3.7)

wikt ∈ {0,1} ∀i ∈ I, k ∈ K, t ∈ T (3.8)

xi jt ∈ {0,1} ∀i ∈ I, j ∈ J, t ∈ T (3.9)

Q(yyy,www,xxx) = E[Q(yyy,www,xxx,ξξξ )] is called the recourse function, where Q(yyy,www,xxx,ξξξ ) =

minimize ∑
t∈T

∑
k∈K

∑
i∈I

(
giktrikt(ξξξ )+aiktqikt(ξξξ )

)
+ ∑

t∈T
∑
i∈I

hituit(ξξξ ) − ∑
t∈T

∑
s∈Tt

∑
j∈J

∑
i∈I

pi jtsvi jts(ξξξ ) (3.10)

subject to ∑
k∈K

qikt(ξξξ )+ui,t−1(ξξξ ) = uit(ξξξ )+∑
j∈J

∑
s∈Tt

vi jts(ξξξ ) ∀i ∈ I, t ∈ T (3.11)

qikt(ξξξ )≤Mrikt(ξξξ ) ∀i ∈ I, k ∈ K, t ∈ T (3.12)

rikt(ξξξ )≤ wikt ∀i ∈ I, k ∈ K, t ∈ T (3.13)

uit(ξξξ )≤Myit ∀i ∈ I, t ∈ T (3.14)

vi jtt(ξξξ )+ ∑
s∈T\Tt

vi jst(ξξξ )≤Mxi jt ∀i ∈ I, j ∈ J, t ∈ T (3.15)

∑
i∈I

(
vi jtt(ξξξ )+ ∑

s∈T\Tt

vi jst(ξξξ )

)
= ξ jt ∀ j ∈ J, t ∈ T (3.16)

rikt(ξξξ ) ∈ {0,1} ∀i ∈ I, k ∈ K, t ∈ T (3.17)

qikt(ξξξ )≥ 0 ∀i ∈ I, k ∈ K, t ∈ T (3.18)

uit(ξξξ )≥ 0 ∀i ∈ I, t ∈ T (3.19)

vi jts(ξξξ )≥ 0 ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt (3.20)

Given the structure of the model, for the problem to be feasible, at least one DC may be installed in
the first period. Besides considering that capacity constraints were included in the problem being studied,
it is highly unlike for a problem instance not to be feasible.

3.3 A Model Extension

The above model assumes negligible lead times. Suppose now that these need to be accounted for.
In this case, only the second-stage model (and thus its related decision variables) requires some changes.

First, let χt be the number of days in time period t ∈ T and denote by likt the lead time also in days,
from supplier k ∈ K to DC i ∈ I in period t ∈ T . Define ∆ikt =

⌊
likt
χt

⌋
as the number of periods it takes an
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3. PROBLEM DESCRIPTION

order placed in the beginning of period t to arrive to DC i from supplier k. Also, let Tik = {t +∆ikt ∈ T :
t ∈ T} be the set of periods when DC i ∈ I can receive an order from supplier k ∈ K.

(a) Case when there are no lead times between a supplier k and a DC i.

(b) Case when there are lead times between a supplier k and a DC i.

Figure 3.2: Comparison between the moment an order is placed at period t and the moment of its delivery without (Figure 3.2a)
and with lead times (Figure 3.2b).

Although there is no need for considering additional decision variables, those associated to the sup-
pliers need some modifications. In the case of variables rikt(ξξξ ), they retain the same meaning, but now
t ∈ Tik instead of t ∈ T . However, the variables qikt(ξξξ ) are now defined as it follows:

qikt(ξξξ ) = quantity DC i ∈ I receives from supplier k ∈ K during period t ∈ Tik from an order

placed in the beginning of period t−∆ikt under customers’ demand scenario ξξξ .

To simplify the notation, let qikt(ξξξ ) = 0, ∀i ∈ I, k ∈ K, t ∈ T \Tik. This way, qikt(ξξξ ) is defined for
all the periods of the planning horizon.

Neither do the objective function nor the constraints suffer major alterations and therefore their mean-
ing remains the same. The second-stage model for the lead time variant of the problem is as it follows:

minimize ∑
i∈I

∑
k∈K

∑
t∈Tik

(
gik,t−∆ikt rik,t−∆ikt (ξξξ )+aik,t−∆ikt qikt(ξξξ )

)
−∑

t∈T
∑
s∈Tt

∑
j∈J

∑
i∈I

pi jtsvi jts(ξξξ ) +

+ ∑
t∈T

∑
i∈I

hituit(ξξξ ) (3.21)

subject to ∑
k∈K

qikt(ξξξ )+ui,t−1(ξξξ ) = uit(ξξξ )+∑
j∈J

∑
s∈Tt

vi jts(ξξξ ) ∀i ∈ I, t ∈ T (3.22)

qikt(ξξξ )≤Mrikt−∆ikt (ξξξ ) ∀i ∈ I, k ∈ K, t ∈ Tik (3.23)

rikt−∆ikt (ξξξ )≤ wikt−∆ikt ∀i ∈ I, k ∈ K, t ∈ Tik (3.24)

uit(ξξξ )≤Myit ∀i ∈ I, t ∈ T (3.25)

vi jtt(ξξξ )+ ∑
s∈T\Tt

vi jst(ξξξ )≤Mxi jt ∀i ∈ I, j ∈ J, t ∈ T (3.26)

∑
i∈I

(
vi jtt(ξξξ )+ ∑

s∈T\Tt

vi jst(ξξξ )

)
= ξ jt ∀ j ∈ J, t ∈ T (3.27)

rikt(ξξξ ) ∈ {0,1} ∀i ∈ I, k ∈ K, t−∆ikt ∈ Tik (3.28)

qikt(ξξξ )≥ 0 ∀i ∈ I, k ∈ K, t ∈ Tik (3.29)

uit(ξξξ )≥ 0 ∀i ∈ I, t ∈ T (3.30)

vi jts(ξξξ )≥ 0 ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt (3.31)
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3.4 Solution Approach

3.4 Solution Approach

It is rare that the customers’ future demand is properly known. However, through a variety of fore-
casting methods, one may think about defining a set of possible demand scenarios and also estimate their
occurrence probability. This is the main reasoning leading to the solution approach for the problem being
studied.

In the two-stage stochastic linear models introduced previously, ξξξ is a |J|× |T | matrix, where each
entry ξ jt is a random variable representing the demand of customer j ∈ J in period t ∈ T . Let Φ be the
finite set of demand scenarios to be considered. For each scenario ϕ ∈ Φ, there will be a matrix ξξξ

ϕ ,
where each entry ξ

ϕ

jt is the known demand of customer j ∈ J for the period t ∈ T under that scenario.
Also let the parameter Πϕ denote the probability that demand scenario ϕ ∈Φ occurs, where ∑

ϕ∈Φ

Π
ϕ = 1.

Due to these considerations, the two-stage stochastic linear models above described can be rewritten
as mixed-integer linear programming models. Notice that only the decisions variables and constraints
involving the random matrix ξξξ require adaptations. All parameters introduced so far remain unchanged.

The mixed-integer linear programming model for the case where lead times between suppliers and
DCs are not considered is discussed now. First, let all the decision variables be stated.

yit =

1, if DC i ∈ I is operating in period t ∈ T ;

0, otherwise;

wikt =

1, if DC i ∈ I is supplied from supplier k ∈ K in period t ∈ T ;

0, otherwise;

xi jt =

1, if DC i ∈ I supplies customer j ∈ J in period t ∈ T ;

0, otherwise;

rϕ

ikt =


1, if DC i ∈ I places an order at supplier k ∈ K in the beginning of period t ∈ T under

customers’ demand scenario ϕ ∈Φ;

0, otherwise;

qϕ

ikt = quantity DC i ∈ I receives from supplier k ∈ K in the beginning of period t ∈ T under
customers’ demand scenario ϕ ∈Φ;

uϕ

it = quantity that remains in DC i ∈ I at the end of period t ∈ T given customers’ demand
scenario ϕ ∈Φ;

vϕ

i jts = quantity DC i ∈ I sends to customer j ∈ J in period t ∈ T to satisfy their demand from
period s ∈ Tt under customers’ demand scenario ϕ ∈Φ.

Just like it was done in Section 3.2, to simplify the model formulation, consider the following addi-
tional parameters:

yi0 = 0, ∀i ∈ I, because initially no DC is operating;

uϕ

i0 = 0, ∀i ∈ I,ϕ ∈Φ, because initially DC i does not hold anything.

In the mixed-integer linear programming model, the goal remains the same, which is to minimize the
costs incurred. These are calculated as shown in the function (3.32).
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3. PROBLEM DESCRIPTION

Costs(yyy, www, xxx, rrr, qqq, uuu, vvv) = ∑
t∈T

∑
i∈I

Fit(yit − yi,t−1)+ ∑
t∈T

∑
i∈I

∑
k∈K

C1
iktwikt + ∑

t∈T
∑
i∈I

∑
j∈J

C2
i jtxi jt+

+ ∑
ϕ∈Φ

Π
ϕ

[
∑
t∈T

∑
i∈I

∑
k∈K

(
giktr

ϕ

ikt +aiktq
ϕ

ikt

)
+ ∑

t∈T
∑
i∈I

hitu
ϕ

it−

−∑
t∈T

∑
s∈Tt

∑
i∈I

∑
j∈J

pi jtsv
ϕ

i jts

]
(3.32)

The constraints are slightly changed, considering the two-stage stochastic linear model initially pro-
posed (as it was mentioned previously), but their meaning remains the same. Therefore, the meaning of
constraints (3.33)–(3.50) is the same as that for expressions (3.2)–(3.6), (3.11)–(3.16), (3.7)–(3.9) and
(3.17)–(3.20), respectively.

minimize Costs(yyy, www, xxx, rrr, qqq, uuu, vvv)

subject to ∑
i∈I
(yit − yi,t−1)≤ nt ∀t ∈ T (3.33)

yit ≥ yi,t−1 ∀i ∈ I, t ∈ T (3.34)

∑
i∈I

xi jt = 1 ∀ j ∈ J, t ∈ T (3.35)

xi jt ≤ yit ∀i ∈ I, j ∈ J, t ∈ T (3.36)

∑
k∈K

wikt = yit ∀i ∈ I, t ∈ T (3.37)

∑
k∈K

qϕ

ikt +uϕ

i,t−1 = uϕ

it +∑
j∈J

∑
s∈Tt

vϕ

i jts ∀i ∈ I, t ∈ T, ϕ ∈Φ (3.38)

qϕ

ikt ≤Mrϕ

ikt ∀i ∈ I, k ∈ K, t ∈ T, ϕ ∈Φ (3.39)

rϕ

ikt ≤ wikt ∀i ∈ I, k ∈ K, t ∈ T, ϕ ∈Φ (3.40)

uϕ

it ≤Myit ∀i ∈ I, t ∈ T, ϕ ∈Φ (3.41)

vϕ

i jtt + ∑
s∈T\Tt

vϕ

i jst ≤Mxi jt ∀i ∈ I, j ∈ J, t ∈ T, ϕ ∈Φ (3.42)

∑
i∈I

(
vϕ

i jtt + ∑
s∈T\Tt

vϕ

i jst

)
= ξ

ϕ

jt ∀ j ∈ J, t ∈ T, ϕ ∈Φ (3.43)

yit ∈ {0,1} ∀i ∈ I, t ∈ T (3.44)

wikt ∈ {0,1} ∀i ∈ I, k ∈ K, t ∈ T (3.45)

xi jt ∈ {0,1} ∀i ∈ I, j ∈ J, t ∈ T (3.46)

rϕ

ikt ∈ {0,1} ∀i ∈ I, k ∈ K, t ∈ T, ϕ ∈Φ (3.47)

qϕ

ikt ≥ 0 ∀i ∈ I, k ∈ K, t ∈ T, ϕ ∈Φ (3.48)

uϕ

it ≥ 0 ∀i ∈ I, t ∈ T, ϕ ∈Φ (3.49)

vϕ

i jts ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt , ϕ ∈Φ (3.50)

Since the problem is now formulated as a mixed-integer linear programming problem, then commer-
cial solvers like IBM’s CPLEX, FICO’s Xpress or Gurobi’s Gurobi Optimizer can be utilized in order to
solve it.
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Chapter 4

Computational Results

The model introduced in Section 3.4 was implemented using IBM ILOG CPLEX Optimization Stu-
dio, version 22.10. To assess its relevance and tractability, a set of instances was generated computa-
tionally. The procedures for accomplish that are detailed in Section 4.1. This section also details the
implementation of these algorithms and their pre-requisites. The instances generated are briefly de-
scribed in this section as well. Finally, the results obtained from the computational tests are presented
and analysed in Section 4.2.

4.1 Data Generation

Recall the mixed-integer linear problem presented in the Section 3.4. In this model, there are a
total of ten groups of parameters, where eight were already part of the two-stage stochastic linear model
presented in Section 3.2. These original parameters are nt , Fit , hit , C1

ikt , gikt , aikt , C2
i jt and pi jts, where

t ∈ T, i ∈ I, k ∈ K, j ∈ J and s ∈ Tt . The other two are Πϕ and ξ
ϕ

jt , where ϕ ∈Φ, j ∈ J and t ∈ T .
For these computational tests, it was decided that the customers’ demand scenarios have the same

occurring probability, that is, Πϕ = 1/|Φ|, ∀ϕ ∈ Φ. For the remainder parameters, the data generation
is based in pseudo-random numbers from a discrete Uniform distribution in {a, . . . , b}, a < b. For
each parameter, initial values for a and b were selected according to the table 4.1 and are from now on
mentioned as initalMin and initalMax, respectively. By considering discrete Uniform distributions, it is
ensured that the obtained values are integers.

Table 4.1: Initial parameters’ minimum and maximum values

Parameter initalMin initialMax
nt 0 ⌈|I|/2⌉
Fit 10000 50000

C1
ikt 100 500

C2
i jt 100 500

gikt 50 200
aikt 1 25
hit 1 30

pi jts 10 60
ξ

ϕ

jt 100 1000

The generation of the values nt , t ∈ T , is accomplished according to Algorithm 4.1. For
each period, a pseudo-random number is generated according to a discrete Uniform distribution in
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4. COMPUTATIONAL RESULTS

{initalMin, . . . , initialMax}, which, as stated in Table 4.1, is {0, . . . , ⌈|I|/2⌉}. However, for the first
period, if the possibility to open at least one DC is missing, then it is decided that one DC can be open at
that period. Otherwise, given the structure of the problem, it will be impossible to solve it.

Algorithm 4.1 Data Generator for nt

1: for each t ∈ T do
2: value∼Uni f orm{initalMin, initialMax}
3: if t = 1 and value = 0 then
4: value← 1 ▷ so that there is one DC working at the first period
5: end if
6: end for

The data generation method for Fit , hit , C1
ikt , gikt , aikt and C2

i jt (Algorithm 4.3), although similar, it
is not equal to the previous method. First, notice that all of the parameters are indexed in t ∈ T . To
simplify the explanation, let the remaining indexes be known as the situational indexes from now on. For
instance, the situational indexes of C1

ikt are i ∈ I and k ∈ K.
Just like in the process for generating the values of nt , for this group of parameters, their values will

be pseudo-random numbers from a discrete Uniform distribution. However, it will not be the discrete
Uniform distribution in {initalMin, . . . , initialMax}. Instead, with the purpose of creating extra diver-
sity, for each group of situational indexes, the values of initalMin and initialMax will be replaced by
newMin and newMax, which are obtained according to the Algorithm 4.2. This algorithm is designed
so that it is impossible that these new values are negative or that newMax is inferior to newMin. And its
main goal is to introduce more variability into the data to be generated.

Algorithm 4.2 New Limits Generator
1: function NEWLIMITS(oldMin, oldMax)
2: Generate u0, u1, u2 ∼Uni f orm{0, 100}

3: v1, v2 ∼Uni f orm
{⌊

oldMin×u0

100

⌋
,

⌈
oldMax×u0

100

⌉}
4: w← 1
5: if u1 < 50 and v1 < oldMin then
6: w←−1
7: end if
8: newMin← oldMin+w× v1
9: w← 1

10: if u2 < 50 and v2 < oldMax−newMin then
11: w←−1
12: end if
13: newMax← oldMax+w× v2
14: return newMin, newMax
15: end function

Regarding the parameter pi jts, the idea behind Algorithm 4.3 is used, but with a twist. Recall that
pi jts refers to the unit revenue from DC i ∈ I to customer j ∈ J in period t ∈ T to satisfy the customer’s
demand from period s ∈ Tt , where Tt = {1, . . . , t}. When t = s, then the product is sold at the period it is
requested. When t ̸= s, the product is being sold with a delay of t− s periods. For this reason, the values
generated for this parameter follow the following rule: for each period that the delivery is delayed, the
customer may be given a non-specified discount. Algorithm 4.4 reflects this decision.

When it comes to the generation procedure for data regarding the customers’ demand, two different
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Algorithm 4.3 Data Generator for Fit , hit , C1
ikt , gikt , aikt and C2

i jt

1: for each situational index do
2: (newMin, newMax)← newLimits(initialMin, initialMax)
3: for each t ∈ T do
4: value∼Uni f orm{newMin, newMax}
5: end for
6: end for

Algorithm 4.4 Data Generator for pi jts

1: for each i ∈ I and j ∈ J do
2: (newMin, newMax)← newLimits(initialMin, initialMax)
3: for each t ∈ T and s ∈ Tt do
4: if t = s then
5: value∼Uni f orm{newMin, newMax}
6: else
7: value∼Uni f orm{newMin, pi j,t−1,s}
8: end if
9: end for

10: end for

possibilities were defined. In the first one, it is assumed that the demand follows an Uniform distribution
and therefore the method applied for the parameters Fit , hit , C1

ikt , gikt , aikt and C2
i jt (Algorithm 4.3) is

used. Notice that ϕ ∈Φ is considered to be part of the situational indexes.
In the second possibility, a Normal distribution is assumed. The expected value chosen is the average

of the values obtained after applying Algorithm 4.2; the standard deviation is the absolute value of the
subtraction of the chosen expected value with the average of initialMin and initialMax. When generating
the values, only those between the limits defined are accepted.

Algorithm 4.5 Data Generator for ξ
ϕ

jt− Normal Demand

1: for each j ∈ J and ϕ ∈Φ do
2: (newMin, newMax)← newLimits(initialMin, initialMax)

3: initialMean← initialMax+ initialMin
2

4: newMean← newMax+newMin
2

5: di f f ←| initialMean−newMean |
6: for each t ∈ T do
7: repeat
8: value∼ Normal(newMean, di f f )
9: until newMin≤ value≤ newMax

10: end for
11: end for

The algorithms presented in this section were implemented using the C++ programming language
and the Eclipse IDE. As inputs, the user only needs to indicate the dimensions of the sets K, I, J, T and
Φ. The outputs are two .dat files and .txt. This means that two different instances are generated, but the
only difference between them regards the costumers’ demand data. In one case it is generated using the
Uniform distribution and in the other using the Normal distribution, as described previously. The .txt file
is only created so that a user can easily read the data. It contains both customers’ demand cases.
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The .dat files do not require any kind of modification in order to be read by CPLEX, given the
implementation of the model from Section 3.4.

The dimensions of sets K, I, J, T and Φ of the instances generated are listed in Table 4.2. The letters
‘U’ and ‘N’ next to the instances’ number refer to the customers’ demand generation process: Uniform
and Normal distributions, respectively. In this table, the number of decision variables and constraints
are also indicated. It is expected that the set whose dimension has the largest impact in the number of
decision variables and constraints is T (it is present in all of them). On the other hand, K is expected to
have the least impact, since it is only present in three groups of decision variables and in about a quarter
of the constraints’ groups.

Table 4.2: Instances’ dimensions of sets and other characteristics

Instance |K| |I| |J| |T | |Φ| Decision variables Constraints
1U, 1N 3 10 50 3 2 8 040 13 533
2U, 2N 3 10 50 3 5 17 670 28 833
3U, 3N 3 10 100 3 2 15 540 25 983
4U, 4N 3 10 100 6 3 70 500 98 466
5U, 5N 3 10 100 12 3 249 000 304 932
6U, 6N 3 10 250 6 3 174 000 241 566
7U, 7N 3 25 50 3 3 28 125 45 678
8U, 8N 3 25 50 6 5 144 600 197 706
9U, 9N 3 25 100 12 2 425 400 524 412

10U, 10N 3 25 250 3 3 133 125 213 078
11U, 11N 3 25 250 12 3 1 545 500 1 864 812
12U, 12N 3 50 100 12 5 2 033 400 2 425 812
13U, 13N 3 50 250 3 5 418 350 654 153
14U, 14N 5 10 50 3 2 8 340 14 073
15U, 15N 5 10 50 12 2 87 360 110 292
16U, 16N 5 10 50 12 5 208 320 255 372
17U, 17N 5 10 250 3 2 38 340 63 873
18U, 18N 5 10 250 3 3 53 670 87 813
19U, 19N 5 10 250 3 5 84 330 135 693
20U, 20N 5 10 250 6 3 174 840 243 126
21U, 21N 5 25 50 12 3 319 200 393 012
22U, 22N 5 25 100 3 2 39 600 64 953
23U, 23N 5 25 100 6 2 124 200 174 906
24U, 24N 5 25 100 6 5 286 650 389 556
25U, 25N 5 25 100 12 2 428 400 529 812
26U, 26N 5 25 100 12 3 626 700 762 912
27U, 27N 5 25 250 6 5 702 900 946 206
28U, 28N 5 50 50 3 2 41 700 68 553
29U, 29N 5 50 50 3 5 91 650 146 853
30U, 30N 5 50 50 6 3 184 200 256 806
31U, 31N 5 50 250 6 5 1 405 800 1 883 406
32U, 32N 5 50 250 12 5 5 061 600 6 016 812
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Table 4.2: Instances’ dimensions of sets and other characteristics

Instance |K| |I| |J| |T | |Φ| Decision variables Constraints
33U, 33N 10 10 50 3 2 9 090 15 423
34U, 34N 10 10 50 6 5 62 460 88 986
35U, 35N 10 10 50 12 5 214 920 267 972
36U, 36N 10 10 100 3 5 36 480 59 643
37U, 37N 10 10 100 6 5 117 960 164 286
38U, 38N 10 25 50 6 5 156 150 219 756
39U, 39N 10 25 50 12 3 329 700 412 512
40U, 40N 10 25 100 6 2 127 950 181 656
41U, 41N 10 25 100 12 2 435 900 543 312
42U, 42N 10 25 250 3 5 214 950 340 353
43U, 43N 10 50 50 3 2 45 450 75 303
44U, 44N 10 50 50 3 3 63 600 104 403
45U, 45N 10 50 50 6 5 312 300 437 706
46U, 46N 10 50 100 3 2 82 950 135 753
47U, 47N 10 50 100 6 2 255 900 361 506
48U, 48N 10 50 250 6 5 1 422 300 1 914 906
49U, 49N 10 50 250 12 3 3 119 400 3 772 212
50U, 50N 10 50 250 12 5 5 094 600 6 079 812

Table 4.3 shows, for each set, the number of instances being considered per set dimension for a type
of customers’ demand generation method.

Table 4.3: Absolute frequencies of each set’s dimension for each customers’ demand generation method

Set K I J T Φ

Dimension 3 5 10 10 25 50 50 100 250 3 6 12 2 3 5
Frequency 13 19 18 18 17 15 19 16 15 19 16 15 16 14 20
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Figure 4.1: Scatter plot of the number of decision variables and number of constraints.

In order to observe the relationship between the number of decision variables and the number of
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constraints, these values are displayed in a scatter plot presented in Figure 4.1. It seems that the latter
increases in an linear way with respect to the former, which it is not at all surprising.

4.2 Computational Tests

The characteristics of the computer and software used to run the one-hundred generated instances
are the following ones:

Processor: 12th Gen Intel(R) Core(TM) i5-12500 3.00 GHz;

Installed RAM: 8.00 GB (7.68 GB usable);

System type: 64-bit operating system, x64-based processor;

Windows edition: Windows 10 Enterprise version 22H2;

IBM ILOG CPLEX Optimization Studio: version 22.1.0.

The standard parameters’ values of the solver were adopted (therefore a time limit was not estab-
lished). When running the computational tests, the most relevant characteristics regarding the instances,
which are presented in Table 4.4, are the following ones:

1. whether the instance is, or not, solvable;

2. time it took to solve it, as given by cplex.getSolvedTime(), in seconds;

3. how many DCs are to be installed and when;

4. percentage of the customers’ demand delivered on time (CDDOT (%)) for each demand sce-
nario.

Instead of reporting on the number of DCs to be installed and when, the third column of Table 4.4
presents a metric, named ‘DCs ratio (%)’, which is the percentage ratio between the number of DCs
opened and the number of potential locations available.

All the instances solved to proven optimality registered negative optimal objective function values,
which indicates a profit.

Table 4.4: Main results

Instance Time (seconds) DCs ratio (%) CDDOT (%)
1U 0.312 70 94.78, 95.57
1N 0.282 70 95.93, 94.70
2U 0.766 60 93.32, 95.18 95.71, 94.59, 95.47
2N 0.64 60 92.81, 95.97 95.00, 94.58, 95.26
3U 0.688 60 89.24, 88.74
3N 0.797 60 95.76, 94.61
4U 1.781 100 94.06, 93.76, 93.98
4N 1.813 100 93.97, 93.57, 94.19
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Table 4.4: Main results

Instance Time (seconds) DCs ratio (%) CDDOT (%)
5U 13.594 100 90.03, 89.56, 90.73
5N 10.656 100 89.74, 89.55, 90.55
6U 36.328 100 94.81, 94.37, 94.32
6N 328 100 94.62, 92.97, 94.87
7U 2.828 40 98.47, 97.49, 98.62
7N 1.687 44 99.47, 98.78, 99.40
8U 5.594 76 91.47, 91.93, 91.50, 91.05, 91.84
8N 5.204 72 91.79, 91.66, 92.26, 92.61, 91.74
9U 35.125 96 94.08, 94.01
9N 36.906 96 94.03, 93.55
10U 15.094 44 93.72, 94.16, 94.27
10N 10.813 44 95.33, 95.46, 95.38
11U Error 1001: Out of memory
11N 295.047 100 94.93, 94.81, 95.05
12U 571.828 50 94.54, 94.31, 94.14, 93.93, 94.64
12N 508.937 50 94.95, 94.74, 94.77, 94.56, 94.83
13U 41.515 60 88.82, 89.54, 88.07, 88.49, 88.90
13N 41.719 60 88.54, 88.47, 87.22, 88.58, 88.87
14U 0.406 50 83.52, 84.74
14N 0.437 50 83.64, 84.62
15U 3.812 100 92.01, 92.42
15N 3.578 100 92.82, 92.41
16U 10.672 100 93.07, 92.82, 92.64, 92.51, 91.88
16N 10.562 100 93.17, 92.24, 92.34, 92.43, 92.03
17U 4.516 90 96.31, 96.26
17N 2.906 90 96.75, 96.61
18U 3.672 90 96.15, 95.92, 96.36
18N 7.406 90 96.08, 96.01, 96.87
19U 6.36 90 93.69, 94.02, 93.74, 93.71, 93.66
19N 7.672 80 91.33, 91.84, 91.60, 91.97, 91.58
20U 18.516 100 90.14, 90.46, 90.83
20N 21.078 100 90.11, 90.46, 90.78
21U 6.86 100 94.15, 94.69, 94.17
21N 7.312 100 94.73, 93.69, 93.98
22U 1.203 52 96.47, 96.84
22N 1.547 52 96.44, 96.85
23U 2.437 100 95.86, 95.14
23N 2.047 100 95.23, 94.85
24U 23.328 92 84.99, 84.15, 83.73, 83.39, 84.51
24N 25.516 92 85.28, 84.74, 84.21, 83.25, 83.70
25U 7.719 40 94.75, 95.03

33



4. COMPUTATIONAL RESULTS

Table 4.4: Main results

Instance Time (seconds) DCs ratio (%) CDDOT (%)
25N 7.032 40 94.61, 94.96
26U 10.844 40 94.73, 94.57, 94.30
26N 11 40 94.79, 94.56, 94.47
27U 64.375 100 94.32, 94.58, 94.46, 95.10, 94.37
27N 54.484 100 87.76, 87.35, 87.48, 87.75, 87.28
28U 1.032 34 97.84, 96.95
28N 0.813 34 97.32, 97.05
29U 3.719 34 97.76, 96.56, 96.86, 97.91, 97.78
29N 3.844 34 97.29, 96.56, 96.83, 97.18, 97.13
30U 12.891 52 94.84, 94.01, 94.08
30N 13.844 52 95.70, 95.32, 95.12
31U Error 1001: Out of memory
31N Error 1001: Out of memory
32U Error 1001: Out of memory
32N Error 1001: Out of memory
33U 0.515 30 97.53, 99.05
33N 0.453 30 98.00, 98.73
34U 2.781 90 97.43, 96.60, 96.29, 96.33, 96.15
34N 2.765 90 97.12, 96.24, 96.53, 96.24, 95.96
35U 9.36 100 93.38, 92.84, 92.36, 92.21, 91.58
35N 9.5 100 92.74, 92.34, 92.62, 92.11, 91.84
36U 2.016 100 95.86, 95.51, 96.13, 96.48, 95.71
36N 3.187 90 97.44, 97.69, 97.86, 97.80, 97.94
37U 5.89 100 95.15, 94.99, 95.11, 95.15, 94.91
37N 6.093 100 95.00, 95.39, 95.27, 95.70, 95.19
38U 4.812 84 98.15, 98.60, 98.69, 98.28, 98.24
38N 3.797 84 97.86, 97.93, 97.68, 98.14, 98.18
39U 17.797 100 97.30, 97.76, 97.85
39N 20.734 100 97.81, 97.81, 97.85
40U 2.969 92 96.65, 97.21
40N 3.079 92 97.07, 96.79
41U 19.187 100 95.94, 95.37
41N 15.281 100 95.89, 95.98
42U 26.125 88 95.90, 96.16, 95.81, 96.37, 95.75
42N 19.438 92 95.31, 95.51, 95.37, 95.88, 96.11
43U 1.485 42 97.12, 96.70
43N 1.312 42 96.64, 94.91
44U 2 40 95.70, 97.39, 95.60
44N 2.094 44 96.25, 97.86, 96.18
45U 7.797 58 97.66, 98.39, 97.19, 97.77, 96.93
45N 5.703 56 98.01, 97.04, 97.72, 97.06, 96.95
46U 4.609 46 97.36, 97.26
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Table 4.4: Main results

Instance Time (seconds) DCs ratio (%) CDDOT (%)
46N 4.516 44 86.56, 85.26
47U 17.922 70 96.98, 97.56
47N 16.125 68 95.55, 96.08
48U 246.422 100 84.24, 85.17, 85.40, 85.09, 85.18
48N 227.797 100 84.16, 84.76, 84.97, 84.83, 84.68
49U Error 1001: Out of memory
49N Error 1001: Out of memory
50U Error 1001: Out of memory
50N Error 1001: Out of memory

The data in this table reveals that the problem’s instances can be quickly solved by the chosen solver
as long as there is available memory. In fact, the instance that took the longest time (instance 12U) was
solved in less than ten minutes and had 2 033 400 decision variables and 2 425 812 constraints. On the
other hand, from instances 11U and 11N, only one was solvable and yet they have the same number of
decision variables (1 545 500) and constraints (1 864 812). The only difference in the parameters of
these two instances were the values for the customers’ demand.

Among the nine instances that were not solved due to lack of available memory (instances 11U, 31U,
31N, 32U, 32N, 49U, 49N, 50U and 50N), all of them had 250 as the dimension for the set of customers.
Eight of them had 50 as the dimension for the set of possible location for DCs, while the remaining one
had 25. Seven of them comprised 12 time periods, while the last two had six. Six of them had five as
the dimension for the set of demand scenarios, while the remaining three had three. Finally, four had
consisted of ten suppliers, four others had five, while the last one had three.

In the scatter plots from Figures 4.2 and 4.3, it is easily observed that the majority of the instances
that were solved took less than a minute and half, comprising less than 500 000 decision variables and
less than 1 000 000 constraints. It is not surprising that larger instances tend to take longer to be solved,
but this is not a rule. For example, instance 6N took 328 seconds to be solved, but instance 6U, which
has the same number of decision variables and constraints, was solved in 36.328 seconds.
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Figure 4.2: Scatter plot of the time it took to solve the instance by the number of decision variables.
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Figure 4.3: Scatter plot of the time it took to solve the instance by the number of constraints.

Regarding the values for the DCs ratio (%), from Table 4.4, it is observed that for the majority of
instances, the results dictate that at least half of the possible locations for DCs should be open. In fact,
50 out of the 91 solved instances showed a DC ratio (%) of at least 75%. Moreover, for 30 instances
that value is 100%. It is possible that these results are highly affected by the values for the fixed cost of
locating a DC (denoted by Fit), particularly when compared to the total profit of the sold products. To
investigate this further, it was decided to run every instance again, but the original values for Fit were
multiplied by 100. The results from the new tests are presented in Table 4.5 and analysed afterwards.

Note that if it is not desirable to open DCs in every possible location, then a new constraint is
required. Constraint (4.1) limits the total number of DCs to be installed in the planning horizon, where
the parameter N is the value for that limit. N must be a positive integer lower than the number of
available locations for DCs (|I|). This constraint, if needed, should be added as it is to the first-stage
models discussed in Sections 3.2 and 3.3 and to the linear programming model proposed in Section 3.4.

∑
i∈I

yi|T | ≤ N (4.1)

The values for CDDOT (%) for each demand scenario from Table 4.4 are high. This is in some sense
positive, since it means that the majority of the total customers’ demand under each demand scenario was
delivered on time. Overall, the lowest percentage registered was 83.25% for the fourth demand scenario
in instance 24N and the highest was 99.47% for the first demand scenario in instance 7N. However, it
does not imply that every customer in each demand scenario had most of their demand be delivered on
time. For this reason, it might be beneficial to know these values by customer, even though they are not
displayed here.

Table 4.5: Main results, where instead of Fit it was used 100×Fit

Instance Time (seconds) DCs ratio (%) CDDOT (%)
1U 0.172 10 87.14, 85.54
1N 0.172 10 87.97, 87.22
2U 0.36 10 85.25, 86.86, 87.76, 86.68, 85.45
2N 0.407 10 86.46, 86.67, 86.17, 85.13, 86.35
3U 0.594 20 87.45, 86.89
3N 0.609 20 87.00, 86.21
4U 5.375 100 47.95, 49.29, 50.92
4N 6.906 20 88.07, 87.02, 87.64
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Table 4.5: Main results, where instead of Fit it was used 100×Fit

Instance Time (seconds) DCs ratio (%) CDDOT (%)
5U 14.11 40 87.34, 85.79, 85.98
5N 11.297 40 86.77, 86.53, 86.20
6U 42.125 100 44.72, 44.08, 44.28
6N 35.813 100 44.70, 44.10, 44.77
7U 1.921 4 88.16, 90.36, 89.58
7N 1.579 4 88.97, 88.29, 87.62
8U 9.906 8 79.29, 77.71, 78.02, 78.42, 78.23
8N 10.359 8 80.00, 78.56, 79.06, 79.22, 79.24
9U 42.531 24 86.16, 86.74
9N 41.704 24 86.75, 87.59
10U 15.328 44 91.95, 92.13, 90.83
10N 13.875 44 91.18, 92.55, 91.50
11U 489.094 100 74.67, 74.83, 75.00
11N 633.687 100 74.58, 74.57, 75.23
12U 1824.406 20 92.69, 93.04, 93.01, 92.55, 92.79
12N 1487.828 20 92.36, 92.26, 92.30, 92.04, 92.42
13U 118.422 10 91.41, 91.36, 90.63, 92.02, 90.83
13N 171.484 10 91.39, 91.64, 90.82, 91.29, 91.21
14U 0.328 10 70.49, 71.39
14N 0.329 10 69.02, 70.68
15U 2.875 20 81.66, 81.63
15N 3.062 20 81.57, 81.77
16U 16.015 20 82.40, 84.07, 81.70, 81.85, 81.84
16N 14.579 20 81.74, 82.63, 81.00, 81.86, 80.80
17U 3.813 30 89.36, 89.00
17N 3.656 30 87.80, 89.22
18U 4.968 30 74.12, 73.11, 72.65
18N 5.719 30 89.19, 89.80, 89.23
19U 7.875 30 52.02, 53.33, 51.65, 51.33, 52.97
19N 12.766 30 88.37, 89.28, 89.32, 89.15, 88.57
20U 21.625 50 68.83, 68.17, 69.01
20N 26.484 50 84.98, 85.61, 85.29
21U 25.297 16 89.24, 89.61, 88.26
21N 25.75 16 88.34, 88.90, 87.75
22U 2.312 8 94.28, 93.10
22N 1.906 8 95.19, 94.66
23U 6.141 16 84.70, 83.49
23N 8.422 16 86.65, 87.72
24U 38.844 12 88.62, 87.45, 88.33, 88.65, 87.91
24N 49.719 12 88.26, 87.34, 88.43, 88.77, 88.35
25U 7.86 20 92.11, 91.08
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Table 4.5: Main results, where instead of Fit it was used 100×Fit

Instance Time (seconds) DCs ratio (%) CDDOT (%)
25N 8.688 20 91.33, 91.25
26U 13.109 20 91.45, 91.64, 91.44
26N 12.015 20 91.32, 91.89, 91.46
27U 197.766 48 88.66, 88.45, 88.85, 89.56, 88.65
27N 208.735 36 88.10, 88.59, 89.29, 89.30, 88.94
28U 3.484 6 92.15, 92.34
28N 3.313 4 96.52, 97.83
29U 16.297 4 97.18, 98.03, 98.66, 98.03, 98.05
29N 17.844 4 97.42, 98.22, 97.51, 98.37, 97.06
30U 29.094 6 92.97, 92.73, 91.59
30N 34.171 6 92.56, 92.24, 91.83
31U 2119.562 16 90.39, 91.12, 91.60, 91.20, 91.04
31N 2081.844 16 91.24, 91.44, 91.10, 90.91, 91.28
32U Error 1001: Out of memory
32N Error 1001: Out of memory
33U 0.328 10 96.16, 95.82
33N 0.359 10 95.60, 96.43
34U 5.859 20 85.13, 83.42, 83.98, 83.80, 83.65
34N 4.625 20 63.51, 63.52, 61.64, 61.44, 60.51
35U 27.656 60 86.67, 86.88, 86.07, 86.46, 85.68
35N 22.406 60 83.12, 83.42, 83.63, 83.32, 82.56
36U 2.485 20 94.69, 93.36, 94.31, 94.75, 92.63
36N 2.312 20 93.49, 93.62, 93.64, 94.35, 92.51
37U 11.093 40 79.40, 79.62, 78.62, 79.84, 79.15
37N 11.797 30 90.63, 90.84, 90.28, 91.29, 90.81
38U 8.969 8 91.86, 92.11, 92.84, 92.66, 92.41
38N 9.375 8 92.06, 92.33, 93.25, 93.39, 92.38
39U 43.203 24 68.17, 69.06, 67.56
39N 41.046 16 90.65, 90.82, 91.58
40U 7.391 16 93.55, 95.13
40N 5.875 16 93.59, 94.82
41U 38.578 32 90.72, 89.66
41N 35.343 44 90.45, 90.37
42U 88.531 40 93.55, 94.22, 94.21, 93.69, 94.10
42N 118.906 40 93.50, 93.64, 93.72, 93.73, 93.15
43U 2.36 4 90.12, 88.76
43N 2.359 4 91.18, 90.58
44U 5.297 4 89.46, 93.00, 92.52
44N 5.328 4 91.82, 91.40, 90.50
45U 149.843 8 90.93, 92.45, 89.84, 91.20, 91.87
45N 95.531 10 77.17, 77.40, 74.75, 77.39, 76.06
46U 16 8 90.04, 89.06
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Table 4.5: Main results, where instead of Fit it was used 100×Fit

Instance Time (seconds) DCs ratio (%) CDDOT (%)
46N 9.688 6 90.39, 90.86
47U 36.469 10 91.99, 91.90
47N 43.266 10 92.19, 91.94
48U 922.031 26 74.52, 74.49, 75.16, 75.47, 74.26
48N 2460.703 14 95.09, 94.55, 94.51, 95.05, 94.52
49U Error 1001: Out of memory
49N Error 1001: Out of memory
50U Error 1001: Out of memory
50N Error 1001: Out of memory

By comparing the data in Tables 4.4 and 4.5, the differences are noticeable. First, it was possible to
solve instances 11U, 31U and 31N (before, the result was ‘Error 1001: Out of memory’). In summary,
in the second batch of tests, instances seem to take longer to be solved and to have lower values for both
DCs ratio (%) and CDDOT (%) for each demand scenario.

Out of the 91 instances that were solved in both situations, in the second run of tests, 73 took longer
to be solved. In 77 instances, the difference between the run times are under one minute, while in only
six instances, the difference is greater than five minutes.

In Figure 4.4, it is observed that in both situations, most of the instances were solved in less than
a minute, but only in the second run of tests there were instances taking longer than ten minutes to be
solved. In fact, instances 48N, 31U and 31N were the ones that took the longest to solve, taking between
34 and 42 minutes, while instances 1U and 1N were the ones that took the least time to be solved (0.172
seconds).
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Figure 4.4: Bar graph of the time it took to solve the instances by their typology.

As seen before and as expected, the larger instances are the ones that tend to take longer to be solved,
as seen in Figures 4.5 and 4.6. A large majority of instances were solved in less than five minutes and
had at most 500 000 decision variables and 1 000 000 constraints. Among the eight instances that took
longer than five minutes to be solved, six had 50 possible locations for DCs and five demand scenarios,
while the remaining two had, respectively, 25 and three. Six had 250 customers, while the other two had
100. Four had 12 time periods and three suppliers, while the remaining four had six time periods. Out of
these four instances, half had ten suppliers, while the other half had five.
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Figure 4.5: Scatter plot of the time it took to solve the instance and the number of decision variables.
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Figure 4.6: Scatter plot of the time it took to solve the instance and the number of constraints.

Regarding the DCs ratio (%) registered for the new tests, as hypothesised previously, they are lower
than those registered in Table 4.4. In the first group of tests, the majority of instances (52.75%) had DC
ratios in the interval ]80, 100], while ]0, 20] is the range with the majority of instances from the new
group of tests (67.02%). This is a significant difference. Figure 4.7 details the variations between these
groups.
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Figure 4.7: Bar graph of the DCs ratios (%) by the instances’ typology.

Given that the DCs ratio (%) registered for the new tests is lower than the original tests, it is expected
to see some decrease in the values for CDDOT (%) for each demand scenario. Despite the fact that this
is what occurs, they remain generally high. In fact, only 14 out of the 94 solved instances have scenarios
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with CDDOT percentages lower than 75%, and three of them have scenarios with CDDOT percentages
lower than 50%. The lowest percentage registered is 44.08% from the second scenario in instance 6U
and 98.66% from the third scenario in instance 29U is the highest one. In the results from Table 4.4,
in 85.7% of the instances, the worst scenario had a CDDOT (%) higher than 90%. In the results from
the new tests (in Table 4.5), that percentage decreases to 41.5%. Nonetheless, in 81.9% of the instances,
from the new tests, the worst scenario had a CDDOT (%) higher than 80%.

In the majority of the instances, the CDDOT percentages from Table 4.5 decreased for all scenarios,
when compared to those from Table 4.4. However, instances 13U, 13N, 24U, 24N, 46N and 48N showed
an increase for all scenarios, while only some scenarios from instances 28N, 29U and 29N showed an
increase (and the remaining scenarios a decrease).

In Figure 4.8, it is possible to observe the differences between the CDDOT (%) from all scenarios
given the group of tests. The majority demand scenarios from the first group of tests had a CDDOT (%)
of at least 90%, while the majority from the second group had between 85% and 95%.

0

20

40

60

80

100

120

140

160

lower than 75 ]75,80] ]80, 85] ]85, 90] ]90, 95] ]95, 100]

N
u

m
b

er
 o

f 
d

em
an

d
 s

ce
n

ar
io

s

CDDOT (%)

Original instances Instances, where it was used 100 x Fit instead of Fit

Figure 4.8: Bar graph of the CDDOT (%) of all demand scenarios by their instances’ typology.

In short, the linear programming model proposed in Section 3.4 works well as it was expected. It was
also seen that the values for Fit affect primarily the percentage of DCs ratio, but the percentages from
each demand scenario’s CDDOT as well.

41



42



Chapter 5

Conclusions and Future Work

In this chapter, a brief summary on work done in this dissertation is presented in Section 5.1 as well
as the main conclusions. In Section 5.2, some ideas for future work are identified.

5.1 Summary and Conclusions

In this dissertation, a two-stage stochastic linear programming model was proposed to formulate the
Multi-Period Stochastic Location-Inventory Problem. In the first-stage model, the location and allocation
decisions are addressed, while the decisions from the second-stage model regard the inventory manage-
ment aspect of the problem. A two-stage stochastic linear programming model was also proposed to
formulate a variant of the Multi-Period Stochastic Location-Inventory Problem, which added the concept
of lead times between suppliers and DCs.

A mixed-integer linear programming model was proposed based on the concept of demand scenarios,
which intends to capture the uncertainty of customers’ demand. This is the basis of the proposed solution
approach.

For the purpose of performing computational tests, a set of instances was computationally generated.
Afterwards, computational tests were run through the use of a commercial solver. Later, a second batch
of computational tests were performed by only modifying the values for the fixed cost of locating a DC
at some site of all generated instances (the original values were multiplied by 100).

In an effort to evaluate the quality of the solving approach, a few characteristics and metrics were
chosen. Namely, the number of decision variables and constraints, the time taken to obtain the optimal
solution, the percentage ratio between the number of DCs to open and the number of potential locations
available (known as DCs ratio (%)), and, at last, the percentage of customers’ demand delivered on time
(known as CDDOT (%)) for each demand scenario.

Most instances were solved in a considered suitable time, which led not to impose a maximum time
limit in the solver settings. In fact, in the grand majority of computational tests, it took less than a minute
to obtain the optimal solution.

Only in 15, out of the total 200 computational tests, it was not possible to find the optimal solution.
And in those 15, the lack of memory space was the reason, taking into account these were performed
in a computer with 8.00 GB of RAM. Out of the 15, nine were from the first out of two batches, while
the remaining ones were from the second. Out of those 15, 12 involved the six largest instances in both
number of decision variables (higher than 3 000 000) and number of constraints (higher than 3 500 000).

The results obtained suggest than the value of the fixed cost for locating a DC has a high impact on the
DCs ratio (%) metric. In the second batch of tests, which had higher values for the group of parameters,
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the DCs ratios (%) were significantly lower than those from the first batch. In fact, excluding the tests
that failed to find the optimal solution, the DC ratios in 52.75% of the tests from the first batch were
between 80% and 100%, while in 67.02% of the tests from the second batch were between 0% and 20%.

The same level of impact was not observed in the CDDOT (%) metric for each demand scenario.
While generally, these values decreased slightly, it was not a rule. Excluding the tests that failed to find
the optimal solution, only 14.89% of the tests from the second batch had scenarios with CDDOT lower
than 75%, while in first batch, not a single scenario registered a CDDOT lower than 75%.

The results that were highlighted here suggest that the solution approach chosen can be said to be
good.

5.2 Future Work

As previously seen in Chapters 1 and 2, research concerning optimisation models applied to the
domain of Logistics still is extremely relevant and continues to grasp the attention of both academics and
professionals.

In the Multi-Period Stochastic Location-Inventory Problem studied in this dissertation, some of its
possible variants are quite obvious. The two-stage stochastic linear model proposed in Section 3.2 is a
first step, while the lead time extension proposed in Section 3.3 is the second step. The variants of this
problem intend to capture details that have yet to be taken into consideration and represent the next steps.

For instance, there could be multiple variants dealing with the concept of capacity. Namely, the
suppliers’ capacity to provide the DCs, the DCs’ capacity to hold inventory and to supply their customers.
Under the same rationale, there could be variants where the DCs’ capacities are modular, as it was
considered, for instance, in the paper by Correia and Melo (2017).

The problem studied follows the assumption that initially there are no DCs working. Instead, there
could be initially some DCs operating (i.e., it is already established an initial supply chain network), of
which some could be afterwards closed (or changed, in the case that modular capacities are considered).
Meanwhile, new DCs may be installed (and later be adapted, if their capacities are modular). Models
from Correia and Melo (2016) and Correia and Melo (2017) dealt with this situation, which intends to
improve the supply chain network in effect.

These are just a few examples of possible extensions of the Multi-Period Stochastic Location-
Inventory Problem defined in this dissertation. Nonetheless, it is not only with respect to modelling
that further work should be done. In fact, more research should be done regarding solving the model
presented. This will be particular helpful to solve the original problem as well as its variants, since they
will be more complex and thus likely be harder to solve. It is also expected that new solving approaches
would be able to solve larger instances.

Alongside further development on new solving approaches, more computational tests should be per-
formed. In this dissertation, fabricated instances were used. However, in order to better assess the
quality of the solving approaches, it would be most helpful to use instances from real-world situations
on the computational tests. In the case that fabricated instances must be used, the method applied in
this dissertation for that purpose should be improved. For instance, for each parameter, a value A could
be generated for the situational indexes at the first period. Then, for the remaining periods, their val-
ues could be generated based on a percentage change to that value A (or to the value of the previous
period). Notwithstanding, even with computationally generated instances, an innumerable quantity of
computational tests could be performed by fixing all parameters except one.
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Lastly, besides the metrics that were considered in this dissertation (identified in Section 5.1), there
are others that could be potentially interesting to known as well. For instance, for the orders that were
not satisfied on time for each demand scenario, it could be valuable to known the time average between
the moment an order is satisfied and the moment that same order was placed. This would give some
insight of the tardiness average and could be compared to average of all orders. The percentage of the
customers’ demand not delivered on time for each demand scenario seen by the amount of delay as well
as the ratio between the number of customers with back orders and the total number of customers for
each demand scenario are other metrics that could be worthy to know. Still on the subject of lateness, for
each demand scenario, it could be relevant to know the customers with the lowest and highest percentage
of demand delivered on time as well as these values.
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